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Abstract. We present a method for combined fault localization andemtion
for sequential systems. We assume that the specificationas ¢n linear-time
temporal logic and state the localization and correctiayblgm as a game that
is won if there is a correction that is valid for all possibiguts. For invariants,
our method guarantees that a correction is found if one £x3te set of fault
models we consider is very general: components can be ezblgcarbitrary new
functions. We compare our approach to model based diagaogdishow that it is
more precise. We present experimental data that supperepiblicability of our
approach, obtained from a symbolic implementation of tige@hm in the Vis
model checker.

1 Introduction

Knowing that a program has a bug is good. Knowing its locagaven better, but only
a fix is truly satisfactory.

Even if a failure trace is available, it may be hard work to fihe fault contained in
the system. Researchers have taken different approachiswiate this problem. One
approach is to make the traces themselves easier to untrstahe setting of model
checking, [JRS02] introduces an approach that identifiggpof choice in the failure
trace that cause the error and [RS04] proposes a method tvedmelevant variables
from a counterexample derived using bounded model checRingjlarly, in the setting
of software testing, Zeller and Hildebrandt [ZHO02] consithee problem of simplifying
the input that causes failure.

A second approach to help the user understand a failure Mgt necessarily the
same as locating the fault) is to consider several similaggam traces, some of which
show failure and some success [Zel02, GV03, BNR03, RRO3)4Grd he similarities
between failure traces and their differences with the ssgfaétraces give an indication
of the parts of the program that are likely involved in théue.

A third approach, which aims to locate the fault, is based treary of diagnosis,
originally developed for physical systems. We discuss dlpigroach in Section 2 as it
warrants a more detailed description.

In this paper, we take the view that a component may be reggerfisr a fault if it
can be replaced by an alternative that makes the systenttadrreis fault localization
and correction are closely connected, and we present anagpthat combines the
two. We assume a finite-state sequential system, which céaigsvare or finite-state
software. We furthermore assume that a (partial) spedificas given in linear-time
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temporal logic (LTL), and we endeavor to find and fix a fault ircls a way that the
new system satisfies its specifications for all possibletspQur fault model is quite
general: we assume that any component can be replaced byignargrfunction in
terms of the inputs and the state of the system.

Jobstmann et al. [JGBO05] present a method for the repair ef afssuspect com-
ponents. The most important weakness in that work is thaspicon of the location
of the fault has to be given by the user. We solve that weakbgsstegrating fault
localization and correction.

We consider the fault localization and correction problesraa infinite game in
which the system is the protagonist and the environmentrtteganist. The winning
condition for the protagonist is the satisfaction of thecsfieation. The system first
chooses which component is incorrect and then, at everk dgcle, which value to
use as the output of the component. If for any input sequeéheesystem can choose
outputs of the component such that the system satisfies #uifisption, the game is
won. If the corresponding strategy is memoryless (the dupilne component depends
only on the state of the system and its inputs), it presci@beplacement behavior for
the component that makes the system correct. The methodriplete for invariants,
and in practice works well for general LTL properties, evenugh it is not complete.

Much work has been done in correcting combinational ciscdiypically, a correct
version of the circuit is assumed to be available. (For imsta because optimization
has introduced a bug.) These approaches are also appltocasdeuential circuits, as
long as the state space is not re-encoded. The work of [MCB8@]LTH90] discusses
formal methods of fault localization and correction basadBoolean equations. The
fault model of [MCB89] is the same one we use for sequenti@udis: any gate can
be replaced by an arbitrary function. Chung, Wang, and HajyH94] improve these
methods by pruning the set of possible faults. They considbr a set ofsimple fre-
quently occurring design faults. In [TYSH94] an approaclpriesented that may fix
multiple faults of limited type by generating special paite

Work on sequential diagnosis and correction is more spargbe sequential set-
ting, we assume that it is not known whether the state is coatevery clock tick, either
because the reference model has a different encoding ofateespace, or because the
specification is given in a logic rather than as a circuit. Wéahnd Borrione [WB95]
discuss a method of finding single errors of limited type dfiiten or extraneous in-
verter, and/or gate switched, etc.) in a sequential cirduie specification is assumed
to be another sequential circuit, but their approach wortdypmably also work with a
specification given in a temporal logic. Their algorithm fritie fault using a given set
of test patterns. It iterates over the time frames, in eagh @gmoving from suspicion
those gates that would, if changed, make a correct outpatri@ct or leave an incorrect
output incorrect. Our work improves that of Wahba and Bareidn two respects: we
use a more general fault model, and we correct the circuiafigrpossible input, not
just for a given test sequence. Both improvements are irapbih a setting where a
specification is available rather than a reference modefaAas we are aware, there
are currently no complete approaches to correct a brokeéaraysith a fault model of
comparable generality.



The paper is structured as follows. In Section 2, we disdusselation of our ap-
proach to model based diagnosis and argue that the cortigbased approach is in-
sufficiently precise. Section 3 gives the necessary defimstiogether with a motivating
example. In Section 4, we show how the game can be solved apdowve the correct-
ness and completeness of our approach. In Section 5, we stpmsimental evidence
of the usability of our approach. We assume a basic undetistgiof LTL, see [CGP99]
for an introduction.

2 Mode Based Diagnosisfor Fault Localization

Model based diagnosis provides a general, logic-basedappito fault localization.
In this section, we describe the approach and discuss itscsimoings, which are ad-
dressed by our approach.

Model based diagnosis originates with the localizatioraofts in physical systems.
Console et al. [CFTD93] show its applicability to fault Idieation in logic programs.
In model based diagnosis, a model is derived from the sowde of the program. It
describes the actual, faulty behavior of the system. Anlenavides an example of
correct behavior that is inconsistent with the actual bevaf the program. Using the
model and the desired behavior, model based diagnosisyaeddt of components that
may have caused the fault.

Model based diagnosis comes in two flavors: abduction-basédconsistency-
based diagnosis [CT91]. Abduction-based diagnosis [PGAa83umes that the set of
fault models is enumerated, i.e., it is known in which waysmmponent can fail. Using
these fault models, it tries to find a component of the moddlanorresponding fault
that explains the observation.

The set of fault models that we consider in this work is quitgé (doubly exponen-
tial in the number of inputs and state variables to the systand we do not consider it
wise to enumerate all possible fault models. Thus, our aggrehould not be consid-
ered abductive.

Consistency-based diagnosis [KW87, Rei87] does not red@ possible faults to
be known, but rather tries to make the model consistent wighcbrrect behavior by
finding a component such that dropping any assumption onghauvior of the compo-
nent causes the contradiction between the model and thectdehavior to disappear.
In this setting, components are described as constraoritgxample, an AND gate
with inputsi; andis is described as

—faulty, = (out, < i1 A iz),

where faulty means that is considered responsible for the failure. Note that ngthin
is stated about the behavior of the gate when faulty is assefhe task of consistency-
based diagnosis is to find a minimal sétof components such that the assumption
{faulty, | c € A} U {-faulty, | c € COMP\ A} is consistent with the oracle (where
COMP is the set of components).

Fahim Ali et al. [FAVSF04], for example, present a SAT-based method for consis-
tency-based diagnosis of sequential circuits in which tinesoll the circuits and use
multiplexers with one free input instead of the faulty prede.
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Fig. 1. Simple circuit Fig. 2. Unrolling of circuit in Figure 1

Consistency-based reasoning has weaknesses when mini$iigleces of a compo-
nent appear, for instance in the unrolling of a sequentrauid (A similar observation
is made in [SW99] for multiple test cases.) In diagnosis gjusmtial circuits, as in its
combinational counterpart, the aim is to find a small set ofijgonents that explains
the observations. A single incorrect trace is given andrdiags is performed using
the unrolling of the circuit as the model. A single faulty gieate is used for all occur-
rences of a given component. Hamscher and Davis [HD84] shatcbnsistency-based
diagnosis is indiscriminate in this setting: If dropping tbonstraints of a component
removes any dependency between input and output, that cenps a diagnosis. In
sequential circuits, because of the replication of comptsjehis is likely to hold for
many components.

For instance, consider the sequential circuit shown in feidu Suppose the initial
state of the circuit i0, 0) and the specification i®ut= 0) A G((out= 0) <« X(out=
1)). Figure 2 shows the unrolling of the circuit correspondia@tcounterexample of
length 2. Consider the XOR gate. Any output is possible itthestraints on the outputs
of this gate are removed, so it is a diagnosis. The AND gatiseésadiagnosis.

The conclusion that either gate can be the cause of thedahiorvever, is incorrect.
There is no replacement for the XOR gate that corrects tleaitifor the output of the
circuit to be correct for the given inputs, the output of tHeX gate needs to be 0 in the
first and 1 in the second time frame. This is impossible bex#us inputs to the gate
are necessarily 0 in both time frames. The circuit can beected, but the only single
consistent replacement to fix the circuit for the given inpeuence is to replace the
AND gate by a gate whose output is 1 when both inputs are 0.

In diagnosis of physical systems, faults may be intermiti@md a consistent expla-
nation of the faulty behavior may not be required. In theiisgtbf correction, however,
the replacement must be consistent and functional. Thuseatability is the proper
notion for fault localization, and for maximum precisiohgtcombination of fault lo-
calization and correction is essential.

Model based diagnosis gives a general, formal methodolddguit localization,
but its two flavors each have significant shortcomings. Tdueation-based approach
can only handle a small set of possible faults, and the camsig-based method is un-
able to differentiate between correctable and non-caldetdiagnoses. Furthermore,



model based diagnosis does not deal with the problem of dingea system for any
possible input, but only finds a correction that is valid faitagle input. Our approach
is precise and finds corrections that are valid for all inputs

3 Gamesfor Localization and Correction

Using the simple example introduced in the previous seatieexplain the basic ideas
of our approach. Additionally, we introduce some formaksnecessary for the proof
of correctness in Section 4.2.

In order to identify faulty components, we need to decidetwha components of
the system are. In this paper, the components that we usédaits are gates or sets
of closely related gates such as full adders. For finiteegtadgrams, our set of com-
ponents consists of all expressions and the left-hand digaach assignment. Thus,
for finite-state programs both diagnosis and correctiorparéormed at the expression
level, even though an expression may correspond to mufjgies on the implementa-
tion level.

Given a set of components our approach searches for faultypaoents and cor-
responding replacement functions. The range of the replanefunction depends on
the component model, the domain is determined by the statesputs. Note that the
formulation of our approach is independent of the chosenfsgtmponents.

We show how to search for faulty components and correct cepi@nts by means
of sequential circuits, where the specificatibnis the set of runs that satisfies some
LTL formula ¢. Our approach can handle multiple faults, but for simpfieite use a
single fault to explain it. Thus, a correction is a replacahtd one gate by an arbitrary
Boolean function in terms of the primary inputs and the auirstate.

A circuit corresponds to finite state machine (FSMY = (S, so, I, ), whereS'is a
finite set of states;y € S is the initial state/ is a finite set of inputs, andl: Sx 1 — S
is the transition function. For example, if we are given tirewt in Figure 1 and we
want it to fulfill the specificatiorfout = 0) A G((out = 0) « X(out= 1)), we obtain
the FSM shown in Figure 3.

We extend the FSM to a game between the system and the eneénbtrsgameG
is atuple(S, so, I, C, 6, F), whereS is a finite set of states,, € S is the initial state,
I andC are finite sets of environment inputs and system choites x I x C — §
is the complete transition function, ard C S“ is the winning condition, a set of
infinite sequences of states. To simplify matters, we tegaghe given specification in
a corresponding set of sequences. In our exarfguie= 0) A G((out= 0) « X(out=
1)) corresponds to all sequences in whith is 0 in the first two time frames and
alternates between 1 and 0 afterwards.

Suppose we are given a circuit and the gates in the circuit@areered by . . . n.
We extend the corresponding FSM = (S, so, I, ) to a game by the following two
steps

1. We extend the state space(t® x {0...n}) U sj. Intuitively, if the system is in
state(s, d), we suspect gaté to be incorrects;, is a new initial state. From this
state, the system can choose which gate is suspect.
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2. We extend the transition relation to reflect that the sgstan choose the output of
the suspect gate.

If gated is suspect, it is removed from the combinational logic of@truit, and we
obtain new combinational logic with one more input (and ser@& outputs, which we
ignore). Let the function computed by this new circuit beegivoyd, : Sx I x{0,1} —
S, where the third argument represents the new input.

We construct the gam@ = (5, s(, I,C’, ¢, F'), where

S = (S x{0,...,n}) U s,
C'"={0...n},
8 (80,1, ¢) = (s0,¢),
8 ((s,d),i,¢) = (6a(s,i,cmod 2),d),
F' = {s{, (s0,do), (s1,d1), - | 0,81, € F}.

Note that the full range of the system choidé (..n}) is only used in the new initial
states;, to choose the suspect gate. Afterwards, we only need twesatudecide the
correct output of the gate)(and 1), so we use the modulo operator. Also note that
the decision which gate is suspect does not depend on thesinpis;, ¢, ¢) does not
depend on.

For our simple example, we obtain the game shown in Figure thd initial state
the system chooses which of the gates (GG;) is faulty. The upper part of the game
in Figure 5 corresponds to an arbitrary function for gage tGe lower one represents a



State  Input Choice
Sx{0,1} I c’
Do D1 d 7 (&
000 O 1
0 00 1 1
01 0 O -
010 1 -
1 00 O 1
1 00 1 1
110 O 1
110 1 1

Table 1. Function for the system choice

replacement of gate {GThe edges are labeled with the values of environment ihput
and the system choiceseparated by a slash, e.g., the transition from dt@@eo 010
labeled with— /0 means that starting atfD= 1 and D, = 0 and assuming &to be
faulty, the system choic€ = 0 forces the latches to beyD= 0 and D, = 1 in the next
state regardless of the input.

Once we have constructed the game, we select system chiwétesdtrict the game
to those paths that fulfill the specification. In our examfitet we choose a transition
from s, to either the upper or the lower part of the game. Choosingrémsition from
s to 000 means we try to fix the fault by replacing gatg.Gn state000 we select
transitions that lead to paths that adhere to the given fipatodn. In Figure 5 the bold
arrows only allow paths with the sequence 001010. .. fpeBrequired by the speci-
fication. Taking only these transitions into account we getftinction shown in Table
1 for the system choice For the 3 and 4" Line in Table 1 we can choose arbitrary
values for the system choice. This choice gives us freedagpicking the desired cor-
rection. Since we aim for corrections that yield simple nfiedi systems, we choose
the simplest implementation, which sets= 1 all the time. Using the corresponding
transitions in the original model (Figure 3) yields the eatrmodel shown in Figure 4.

Choosing the right transitions of the game correspondsdochéng a memoryless
winning strategy for the system that fulfills the winning dition . Formally, given
a gameG = (S, so, I, C, 5, F), amemoryless strategy a functiono : S x I — 2¢,
which fixes a set of possible responses to an environment iAgqlay on G according
to o is a finite or infinite sequence = sy 2% s; 2% ..., such that; € o(8iy i),
si+1 = 0(sq,1i,¢;), and either the play is infinite, @n : o(s,,i,) = (), which means
that the play is finite. A play isinning(for the system) if it is infinite andys; - - - € F.
A strategyo iswinningond if all plays according tar onG are winning. Depending on
the winning condition we distinguish different types of gganThe winning condition
of anLTL gameis the set of sequences satisfying an LTL formylaA safety game
has the conditioF = {qog: --- | Vi : ¢; € A} for someA. The type of the game for
localizing and correction depends on the specification elctiSn 4, we explain how to
obtain a winning strategy and we prove the correctness a@ppiroach.



In order to handle multiple faults we extend the game to $eleset of suspect
components in the initial state. In every following state #ystem chooses an output
for the suspect component. Thus, the range of the repladefmection consists of
tuples of outputs, one output for each suspect component.

4 Solving Games

In Section 4.1, we summarize the approach of [JGBO05] to findreniwg strategy for
a game, which we adopt. We describe the approach for safetgeg@a some detall,
and briefly recapitulate how to find a strategy when the spatifin is given in LTL. In
Section 4.2, we prove that a winning strategy correspondstdid correction and that
for invariants a winning strategy exists iff a correctionstx.

4.1 Strategies

Forasetd C S let
MXA={s|Viel3ceC,s € A: (sics) e}

be the set of states from which, for any input, the system cegefa visit to a state in
A'in one step. We definblG A = vZ. A N MX Z to be the set of states from which the
system can avoid leavind. (The symbol denotes a greatest fixpoint, see [CGP99].)
Note that theMiX operation is similar to the preimage computation in syntwlodel
checking, apart from the quantification of the input varghTheMG operation mir-
rorseG.

If the specification is an invariamd, the setMG A is exactly the set of states from
which the system can guarantee tHas always satisfied. If the initial state isMG A,
the game is won. The strategy for a safety game is then easilydf From any state,
and for any input, select any system choice such that thestatet is inMG A:

o(q,i) ={ce C|d(q,i,c) € A}.

Note that the strategy is immaterial for nodes that are whaae. The same holds for
states that are not winning: they will never be visited.

For LTL specifications, the situation is more intricate.

A finite-state strateggletermines the set of allowed system choices using a finite-
state machine that has a memory of the past input and systeitesh A finite-state
strategy may, for example, alternately pick two differembices for one and the same
system state and input.

We can compute a finite-state strategy for a game with wincmrgdition ¢ by
finding a strategy on the product of the game and a deterigigistomaton forp. A
finite-state strategy corresponds to a correction in whiehrtew FSM is the product
automaton. Thus, it would add state that corresponds toutoereaton forp.

Finding a deterministic automaton fgr is hard in terms of implementation and
needs doubly exponential space. Furthermore, it is prgbalblad idea to fix a sim-
ple fault by the addition of a large amount of state. Themf@#GBO05] proposes a



heuristic approach. The approach constructs a nondetistiniBichi automaton from
v in the standard way [VW94], which causes only a singly expdiaéblowup. It then
constructs the product of the Buichi automaton and the gdine.result is a Buchi
game, which in general has a finite-state strategy. To awtdéhg state to the circuit,
[JGBO5] presents a heuristic to turn a finite-state stratetgya memoryless strategy.
The heuristic works by finding choices that are common totatkes of the finite-state
strategy. These two heuristics imply that the method is notmete: if the property is
not an invariant, a correction may not be found even if it &xig/e take the view that
this tradeoff is necessary for efficiency and simplicitytod torrection.

Jobstmann et al. [JGBO05] show how a simple correction statéim extracted from
a memoryless strategy.

The complexity of the approach is comparable to that of syimiboodel checking
of a property on the game that h@sk - 1g |COMP|) more Boolean state variables than
the original system, wherkis the number of faults assumed.

4.2 Localization and Correction

If a winning positional strategy for the system exists, itedmines (at least) one in-
correct gate plus a replacement function. To see this, we seme definitions. For a
functionf : S x I — {0,1}, letd[d/f] be the transition function obtained frofrby
replacing gatel by combinational logic specified bf §[d/ f](s, i) = da(s, i, f(s,1)).
Let M[d/ f] be the corresponding FSM. Let: ((S x {0...n})Us}) x I — 2{0-n}
be a winning finite-state strategy. Since the transitiomftbe initial states;, does not
depend on the input neither does the strategy for this state. Det o (sj, ¢) for some
1.

Let F, be the set of all functiong : S x I — {0, 1} such thatf(s,7) € {¢ mod 2 |
¢ € o((s,d),i)}. We claim thatD contains only correctable single-fault diagnoses
and{F,}4ep contains only valid corrections, and that for invarianerthare no other
single correctable diagnoses or corrections.

Theorem 1. Letd € {0...n} andletf : S x I — {0,1}. We have thatl € D and
f € Fqimplies thatM[d/ f] satisfiesF'. If F'is an invariant, then\/[d/ f] satisfiesF’
impliesd € D and f € Fy.

Proof. Supposel € D andf € Fy. Letw = (s(, (s0,d), (s1,d),...) be the play of
G for input sequencé), i, i1,... SO that(s;j+1,d) = §'((s;,d),i;, f(s;,1;)). Since
f(s4,1;) € o((sj,d),i;) (mod 2),r is awinning run andy, s1, - - - € F. Now note that
(sj+1,d) = 6'((s5,d), i, f(s5,15)) = (da(s, iz, f(s5,45)),d) = (8[d/f](s;,i5), d).-
Thus,so, s1, ... is the run of M|[d/ f] for input sequencé, i1, . .., and this run is in
F.

For the second part, suppoBeis an invariant, and say/[d/ f] satisfiesF'. Then
for any input sequence, the run&f[d/ f] is in F', and from this run we can construct a
winning play as above. The play stays within the winningeegand by construction of
the strategy for a safety game, all system choices that doause the play to leave the
winning region are allowed by the strategy. Thus, the placiording to the winning
strategy, s@l € D andf € Fy. a



Note that for LTL properties, the theorem holds in only orreclion. The primary
reason for this is that a memoryless strategy may not existfa TL formula. Further-
more, even if a repair exists, our heuristics may fail to fifdGBO05].

5 Experiments

In this section we present initial experiments that denratsthe applicability of our
approach. We have implemented our algorithm in VIS-2.19B]. In the current ver-
sion of the algorithm, the examples are manually instruectivt order to obtain and
solve the corresponding games. The instrumentation caly basautomated.

The game constructed from a program proceeds in three steps:

=

decide which component is faulty,

read the inputs to the program, and

3. execute the extended version of the program, in which omgonent is left unim-
plemented.

N

Because the selection of the faulty componentis perforraéatd any inputs are passed
to the program, the diagnosis does not depend on the inputssaalid regardless of
the inputs.

Our implementation is still incomplete: it builds a monbii transition relation for
the corrected system, which is intractable for large desigve are investigating the use
of partitioned relations.

5.1 Locking Example

Figure 6 shows an abstract program which realizes simple dperations [GVO03].
Nondeterministic choices in the program are represented e specification must
hold regardless of the nondeterministic choices takenffaugithe program abstracts a
set of concrete programs with different if and while coratis. The methodlock()
acquires the lock, represented by the varidhld it is available. If the lock is already
held, the assertion in Line 11 is violated. In the same way,ock( ) releases the lock,
if it is held. The fault is located in Line 6, which should bethinh the scope of thef
command. This example is interesting because the errousedaby switching lines,
which does not fit our fault model.

The components of the program that are considered for dareare the expres-
sionsin thd f statementin Line 1, thehi | e statement in Line 7, and the right-hand
side (RHS) of the assignmentsdot _| ock in Line 3 and 6.

In order to illustrate the instrumentation of the sourcee;delgure 8 shows an in-
strumented version of the program. In Line O we have intredwcvariableli agnose.
The game chooses one of four lines tiragnose. Functionchoose represents a
system choice. The result of the function is one of its patarsd 1,1 3,1 6 orl 7.

If a line is selected byli agnose, the game determines a new value for the right-
hand side in that line (again represented by the funalomose. Note that in the other
suspect lines the original values are kept.



int got_lock = 0;

do{
10t () |
2 I ock();
3 got _lock = got_lock + 1;} 1 int least = inputl;
4 if (got_lock I'=0) { 2 int nopst = inputl;
5 unl ock();}
6 got _lock = got_lock - 1; 3 if(npst < input?2)
7} while(*) 4 nost = input 2;
5 if(npst < input3)
voi d lock() { 6 nost = input 3;
11 assert(L = 0); 7 if(least > input2)
12 L =1; } 8 nost = input 2;
9 if(least > input3)
voi d unl ock(){ 10 | east = input3;
21 assert(L = 1);
22 L =0; } 11 assert (least <= nost);
Fig. 6. Locking Example Fig. 7. MinMax Example

The algorithm finds three possible error locations: Line,10167. The correction
for Line 1 suggests to set the if-conditionth.. Both| ock() andunl ock() are
then called in every loop iteration. Note that the conditomuld also be set to true,
but the algorithm cannot exclude the possibility of reaghiime 1 with L=1 before
it fixes the strategy. The algorithm also suggests to setabp tondition to false in
Line 7. Clearly that works, because the loop is now executdg@ance and the wrong
value ofgot _| ock does not matter. Finally, the algorithm suggests t@gsét | ock
to 0 in Line 6. This is a valid correction, because nawl ock() is only called if
got _| ock has been incremented before in Line 3. The last suggesteatisfactory:
it is a correction for the program no matter which concreteditions are used for the
if and while conditions.

Note that our method does not recognize the intent of theydesito place the as-
signmenttayot _| ock within the scope of thef , but it finds a correction regardless.

5.2 Minmax Example

Minmax is a simple program to evaluate the maximum and thémuim of three input
values [Gro04]. The minimum is stored ireast , the maximum is stored inost .
The fault is located of Line 8 in Figure 7. Instead of assigrimput 2 to | east the
value is assigned toost .

We consider as possible faults the left-hand sides and-hightl sides of the as-
signments in Lines 4, 6, 8, and 10, and the expressions in Bing, 7, and 9. Note
that a correction for a left-hand side should be independttite state of the pro-
gram. Therefore, the corrections for the left-hand sidedm@ded together with the
faulty components before the inputs are read. The assertibime 11 is replaced by
if !'(least <= nost) error=1andwe check the proper€(error=0).



The algorithm provides two diagnoses and the correspormbingctions. The al-
gorithm suggests to set the if-condition in Line 7 to falseLine 8 more than one
correction is possible. The algorithm suggests to changd HiS of the assignment
to | east, or to change the RHS either tonput 1 or toi nput 3. It is obvious that
all of the suggested corrections are valid for the asseftlomast <= nost), but
that assertion does not guarantee the intended behavioe pfbgram, namely that the
minimum value is assigned tceast and the maximum value toost . We make the
specification more precise:

(least <= inputl) && (least <= input2) && (least <= input3) &&
(nmost >= inputl) && (nost >= input2) && (nobst >= input3)

With this specification we find one diagnosis and correct®hange the LHS from
nost tol east inLine 8.

As stated before, our approach is not restricted to invesidn order to show the
applicability of our approach, we change the program andpleeification. In a modi-
fied program version we initializer r or with 1 and set it td) if the assignment holds.
We change the specification to the LTL formMaX F(error = 0), meaning: “After
two stepser r or must eventually be equal @. This is clearly not an invariant. Our
algorithm is again able to find the correction.

5.3 Sequential Multiplier

The four-bit sequential multiplier shown in Figure 9 is oduced in [HD84]. The mul-
tiplier has two input shift-registers A and B, and a regiSewrhich stores intermediate
data. If inputl NI T is high, shift registers A and B are loaded with the inputs @nd
resetto zero. In every clock cycle register A is shifted rigind register B is shifted left.
The least significant bit (LSB) of A is the control input foretmultiplexer. If it is high,
the multiplexer forwards the value of B to the adder, whicHsad to the intermediate
result stored in register Q. After four clock cycles Q holds product A« B.

The multiplier has a fault in the adder: The output of the rgjt full adder re-
sponsible for bit 0 always adds 1 to the correct output. Tmegaments we use for fault
localization are the eight full adders in the adder, thetAdgtfD gates in the multiplexer,
and the registers A, B, and Q.

Our approach is able to find the faulty part in the adder andiges a correction
for all possible inputs. It suggests to use a half adder foObiThis is simpler than
the correction we expected and still correct: In the firstetistep, Q is 0 and in all
subsequent steps, the LSB of B is 0 because B is shifted ladis,Ta carry never occurs.

Let us consider the candidates for correction that modséthaiagnosis finds. If
we load A and B with 6 and 9, respectively, the output is 58dadtof 54. Consistency-
based diagnosis finds the registers B and Q, the AND gatetftwdiin the multiplexer
and the full adders for the three least significant bits aslicates. We can reduce the
number of diagnoses by using multiple test cases and congpthie intersection of
the reported diagnoses. However, the full adder for bit gree¢andidate in every test
case. To see this, note that after four time slices the coaapesult is the correct value
plus four. Regardless of the inputs, the carry bit of the &dter for bit 1 will have
value 1 in at least one time step. If we change this value tbécalculated result of



0 di agnose = choose{l1, I3, 16, |7}
int got_lock = 0;
do{
if (diagnose =11)
tnp = choose(true, false);
el se
tmp = *;
if (tm) {
I ock();
if (diagnose =13)
tnp = choose(0,..,n-1);
el se
tnp = got_Iock + 1;
got _lock = tnp;}
if (got_lock I'=0) {
unl ock();}
if (diagnose =16)
tnp = choose(0,..,n-1);
el se
tnp = got _Iock - 1;
got _| ock = tnp;
if (diagnose =17)
tnp = choose(true, false);
el se
tmp = *;
} while(tnp)
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Fig. 8. Instrumented Lock Example

the multiplication is reduced by four and we obtain the corresult. Similarly Q is
a diagnosis for every test case. This example shows once timatreonsistency-based
diagnosis finds candidates that cannot have caused the fault

The example can also be used to show that it is not possibtateat a fault using a
single test case: for any single test case there is a validction for the full adder for bit
one. There is not, however, one correction that is valid ideat cases. This conclusion
can only be reached by considering multiple inputs, whiclihat our approach does.

6 Conclusions

We have presented an integrated approach to localizing @meating faults in finite-
state systems with a specification given in LTL. Our apprassgs a very general fault
model in which a component is replaced by an arbitrary newtfan. Though it has
been formulated for single faults, it is applicable to lazation and correction of mul-
tiple faults as well.

The approach, which is based on infinite games, is sound isghse that a sug-
gested correction is valid for all possible input sequentethe specification is an
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Fig. 9. Sequential Multiplier

invariant, our approach is complete: if a single point olfisg exists, the fault is always
found and corrected. For general LTL properties, the agtr@asound and it performs
well in practice, though it is not complete.

We have also shown that the most important competing |lcatadiza method, model
based diagnosis using consistency, does not provide the geguision in locating er-
rors. Other known methods work with very restricted faultd®ls, which are very use-
ful when the fault is incurred during an incorrect optimipator re-encoding step, but
does not appear to be applicable for systems for which noereée model is available.
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