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Abstract. We present a method for combined fault localization and correction
for sequential systems. We assume that the specification is given in linear-time
temporal logic and state the localization and correction problem as a game that
is won if there is a correction that is valid for all possible inputs. For invariants,
our method guarantees that a correction is found if one exists. The set of fault
models we consider is very general: components can be replaced by arbitrary new
functions. We compare our approach to model based diagnosisand show that it is
more precise. We present experimental data that supports the applicability of our
approach, obtained from a symbolic implementation of the algorithm in the Vis
model checker.

1 Introduction

Knowing that a program has a bug is good. Knowing its locationis even better, but only
a fix is truly satisfactory.

Even if a failure trace is available, it may be hard work to findthe fault contained in
the system. Researchers have taken different approaches toalleviate this problem. One
approach is to make the traces themselves easier to understand. In the setting of model
checking, [JRS02] introduces an approach that identifies points of choice in the failure
trace that cause the error and [RS04] proposes a method to remove irrelevant variables
from a counterexample derived using bounded model checking. Similarly, in the setting
of software testing, Zeller and Hildebrandt [ZH02] consider the problem of simplifying
the input that causes failure.

A second approach to help the user understand a failure (which is not necessarily the
same as locating the fault) is to consider several similar program traces, some of which
show failure and some success [Zel02, GV03, BNR03, RR03, Gro04]. The similarities
between failure traces and their differences with the successful traces give an indication
of the parts of the program that are likely involved in the failure.

A third approach, which aims to locate the fault, is based on atheory of diagnosis,
originally developed for physical systems. We discuss thisapproach in Section 2 as it
warrants a more detailed description.

In this paper, we take the view that a component may be responsible for a fault if it
can be replaced by an alternative that makes the system correct. Thus fault localization
and correction are closely connected, and we present an approach that combines the
two. We assume a finite-state sequential system, which can behardware or finite-state
software. We furthermore assume that a (partial) specification is given in linear-time
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temporal logic (LTL), and we endeavor to find and fix a fault in such a way that the
new system satisfies its specifications for all possible inputs. Our fault model is quite
general: we assume that any component can be replaced by an arbitrary function in
terms of the inputs and the state of the system.

Jobstmann et al. [JGB05] present a method for the repair of a set of suspect com-
ponents. The most important weakness in that work is that a suspicion of the location
of the fault has to be given by the user. We solve that weaknessby integrating fault
localization and correction.

We consider the fault localization and correction problem as an infinite game in
which the system is the protagonist and the environment the antagonist. The winning
condition for the protagonist is the satisfaction of the specification. The system first
chooses which component is incorrect and then, at every clock cycle, which value to
use as the output of the component. If for any input sequence,the system can choose
outputs of the component such that the system satisfies the specification, the game is
won. If the corresponding strategy is memoryless (the output of the component depends
only on the state of the system and its inputs), it prescribesa replacement behavior for
the component that makes the system correct. The method is complete for invariants,
and in practice works well for general LTL properties, even though it is not complete.

Much work has been done in correcting combinational circuits. Typically, a correct
version of the circuit is assumed to be available. (For instance, because optimization
has introduced a bug.) These approaches are also applicableto sequential circuits, as
long as the state space is not re-encoded. The work of [MCB89]and [LTH90] discusses
formal methods of fault localization and correction based on Boolean equations. The
fault model of [MCB89] is the same one we use for sequential circuits: any gate can
be replaced by an arbitrary function. Chung, Wang, and Hajj [CWH94] improve these
methods by pruning the set of possible faults. They consideronly a set ofsimple, fre-
quently occurring design faults. In [TYSH94] an approach ispresented that may fix
multiple faults of limited type by generating special patterns.

Work on sequential diagnosis and correction is more sparse.In the sequential set-
ting, we assume that it is not known whether the state is correct at every clock tick, either
because the reference model has a different encoding of the state space, or because the
specification is given in a logic rather than as a circuit. Wahba and Borrione [WB95]
discuss a method of finding single errors of limited type (forgotten or extraneous in-
verter, and/or gate switched, etc.) in a sequential circuit. The specification is assumed
to be another sequential circuit, but their approach would presumably also work with a
specification given in a temporal logic. Their algorithm finds the fault using a given set
of test patterns. It iterates over the time frames, in each step removing from suspicion
those gates that would, if changed, make a correct output incorrect or leave an incorrect
output incorrect. Our work improves that of Wahba and Borrione in two respects: we
use a more general fault model, and we correct the circuit forany possible input, not
just for a given test sequence. Both improvements are important in a setting where a
specification is available rather than a reference model. Asfar as we are aware, there
are currently no complete approaches to correct a broken system with a fault model of
comparable generality.



The paper is structured as follows. In Section 2, we discuss the relation of our ap-
proach to model based diagnosis and argue that the consistency-based approach is in-
sufficiently precise. Section 3 gives the necessary definitions together with a motivating
example. In Section 4, we show how the game can be solved and weprove the correct-
ness and completeness of our approach. In Section 5, we show experimental evidence
of the usability of our approach. We assume a basic understanding of LTL, see [CGP99]
for an introduction.

2 Model Based Diagnosis for Fault Localization

Model based diagnosis provides a general, logic-based approach to fault localization.
In this section, we describe the approach and discuss its shortcomings, which are ad-
dressed by our approach.

Model based diagnosis originates with the localization of faults in physical systems.
Console et al. [CFTD93] show its applicability to fault localization in logic programs.
In model based diagnosis, a model is derived from the source code of the program. It
describes the actual, faulty behavior of the system. An oracle provides an example of
correct behavior that is inconsistent with the actual behavior of the program. Using the
model and the desired behavior, model based diagnosis yields a set of components that
may have caused the fault.

Model based diagnosis comes in two flavors: abduction-basedand consistency-
based diagnosis [CT91]. Abduction-based diagnosis [PGA87] assumes that the set of
fault models is enumerated, i.e., it is known in which ways a component can fail. Using
these fault models, it tries to find a component of the model and a corresponding fault
that explains the observation.

The set of fault models that we consider in this work is quite large (doubly exponen-
tial in the number of inputs and state variables to the system), and we do not consider it
wise to enumerate all possible fault models. Thus, our approach should not be consid-
ered abductive.

Consistency-based diagnosis [KW87, Rei87] does not require the possible faults to
be known, but rather tries to make the model consistent with the correct behavior by
finding a component such that dropping any assumption on the behavior of the compo-
nent causes the contradiction between the model and the correct behavior to disappear.
In this setting, components are described as constraints, for example, an AND gatex
with inputsi1 andi2 is described as

¬faultyx ⇒ (outx ⇔ i1 ∧ i2),

where faultyx means thatx is considered responsible for the failure. Note that nothing
is stated about the behavior of the gate when faulty is asserted. The task of consistency-
based diagnosis is to find a minimal set∆ of components such that the assumption
{faultyc | c ∈ ∆} ∪ {¬faultyc | c ∈ COMP\ ∆} is consistent with the oracle (where
COMP is the set of components).

Fahim Ali et al. [FAVS+04], for example, present a SAT-based method for consis-
tency-based diagnosis of sequential circuits in which theyunroll the circuits and use
multiplexers with one free input instead of the faulty predicate.
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Fig. 2. Unrolling of circuit in Figure 1

Consistency-based reasoning has weaknesses when multipleinstances of a compo-
nent appear, for instance in the unrolling of a sequential circuit. (A similar observation
is made in [SW99] for multiple test cases.) In diagnosis of sequential circuits, as in its
combinational counterpart, the aim is to find a small set of components that explains
the observations. A single incorrect trace is given and diagnosis is performed using
the unrolling of the circuit as the model. A single faulty predicate is used for all occur-
rences of a given component. Hamscher and Davis [HD84] show that consistency-based
diagnosis is indiscriminate in this setting: If dropping the constraints of a component
removes any dependency between input and output, that component is a diagnosis. In
sequential circuits, because of the replication of components, this is likely to hold for
many components.

For instance, consider the sequential circuit shown in Figure 1. Suppose the initial
state of the circuit is(0, 0) and the specification is(out= 0)∧G((out = 0) ↔ X(out=
1)). Figure 2 shows the unrolling of the circuit corresponding to a counterexample of
length 2. Consider the XOR gate. Any output is possible if theconstraints on the outputs
of this gate are removed, so it is a diagnosis. The AND gate is also a diagnosis.

The conclusion that either gate can be the cause of the failure, however, is incorrect.
There is no replacement for the XOR gate that corrects the circuit: for the output of the
circuit to be correct for the given inputs, the output of the XOR gate needs to be 0 in the
first and 1 in the second time frame. This is impossible because the inputs to the gate
are necessarily 0 in both time frames. The circuit can be corrected, but the only single
consistent replacement to fix the circuit for the given inputsequence is to replace the
AND gate by a gate whose output is 1 when both inputs are 0.

In diagnosis of physical systems, faults may be intermittent, and a consistent expla-
nation of the faulty behavior may not be required. In the setting of correction, however,
the replacement must be consistent and functional. Thus, correctability is the proper
notion for fault localization, and for maximum precision, the combination of fault lo-
calization and correction is essential.

Model based diagnosis gives a general, formal methodology of fault localization,
but its two flavors each have significant shortcomings. The abduction-based approach
can only handle a small set of possible faults, and the consistency-based method is un-
able to differentiate between correctable and non-correctable diagnoses. Furthermore,



model based diagnosis does not deal with the problem of correcting a system for any
possible input, but only finds a correction that is valid for asingle input. Our approach
is precise and finds corrections that are valid for all inputs.

3 Games for Localization and Correction

Using the simple example introduced in the previous sectionwe explain the basic ideas
of our approach. Additionally, we introduce some formalisms necessary for the proof
of correctness in Section 4.2.

In order to identify faulty components, we need to decide what the components of
the system are. In this paper, the components that we use for circuits are gates or sets
of closely related gates such as full adders. For finite-state programs, our set of com-
ponents consists of all expressions and the left-hand side of each assignment. Thus,
for finite-state programs both diagnosis and correction areperformed at the expression
level, even though an expression may correspond to multiplegates on the implementa-
tion level.

Given a set of components our approach searches for faulty components and cor-
responding replacement functions. The range of the replacement function depends on
the component model, the domain is determined by the states and inputs. Note that the
formulation of our approach is independent of the chosen setof components.

We show how to search for faulty components and correct replacements by means
of sequential circuits, where the specificationF is the set of runs that satisfies some
LTL formula ϕ. Our approach can handle multiple faults, but for simplicity we use a
single fault to explain it. Thus, a correction is a replacement of one gate by an arbitrary
Boolean function in terms of the primary inputs and the current state.

A circuit corresponds to afinite state machine (FSM)M = (S, s0, I, δ), whereS is a
finite set of states,s0 ∈ S is the initial state,I is a finite set of inputs, andδ : S×I → S
is the transition function. For example, if we are given the circuit in Figure 1 and we
want it to fulfill the specification(out = 0) ∧ G((out = 0) ↔ X(out = 1)), we obtain
the FSM shown in Figure 3.

We extend the FSM to a game between the system and the environment. AgameG
is a tuple(S, s0, I, C, δ, F ), whereS is a finite set of states,s0 ∈ S is the initial state,
I andC are finite sets of environment inputs and system choices,δ : S × I × C → S
is the complete transition function, andF ⊆ Sω is the winning condition, a set of
infinite sequences of states. To simplify matters, we translate the given specification in
a corresponding set of sequences. In our example(out= 0)∧G((out = 0) ↔ X(out=
1)) corresponds to all sequences in whichD1 is 0 in the first two time frames and
alternates between 1 and 0 afterwards.

Suppose we are given a circuit and the gates in the circuit arenumbered by0 . . . n.
We extend the corresponding FSMM = (S, s0, I, δ) to a game by the following two
steps

1. We extend the state space to(S × {0 . . . n}) ∪ s′0. Intuitively, if the system is in
state(s, d), we suspect gated to be incorrect.s′0 is a new initial state. From this
state, the system can choose which gate is suspect.
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Fig. 5. Game to localize and correct the fault

2. We extend the transition relation to reflect that the system can choose the output of
the suspect gate.

If gated is suspect, it is removed from the combinational logic of ourcircuit, and we
obtain new combinational logic with one more input (and somenew outputs, which we
ignore). Let the function computed by this new circuit be given byδd : S×I×{0, 1} →
S, where the third argument represents the new input.

We construct the gameG = (S′, s′0, I, C′, δ′, F ′), where

S′ = (S × {0, . . . , n}) ∪ s′0,

C′ = {0 . . . n},

δ′(s′0, i, c) = (s0, c),

δ′((s, d), i, c) = (δd(s, i, c mod 2), d),

F ′ = {s′0, (s0, d0), (s1, d1), · · · | s0, s1, · · · ∈ F}.

Note that the full range of the system choice ({0 . . . n}) is only used in the new initial
states′0 to choose the suspect gate. Afterwards, we only need two values to decide the
correct output of the gate (0 and1), so we use the modulo operator. Also note that
the decision which gate is suspect does not depend on the inputs: δ′(s′0, i, c) does not
depend oni.

For our simple example, we obtain the game shown in Figure 5. In the initial state
the system chooses which of the gates (G0 or G1) is faulty. The upper part of the game
in Figure 5 corresponds to an arbitrary function for gate G0, the lower one represents a



State Input Choice
S × {0, 1} I C′

D0 D1 d i c

0 0 0 0 1
0 0 0 1 1
0 1 0 0 -
0 1 0 1 -
1 0 0 0 1
1 0 0 1 1
1 1 0 0 1
1 1 0 1 1

Table 1. Function for the system choice

replacement of gate G1. The edges are labeled with the values of environment inputi
and the system choicec separated by a slash, e.g., the transition from state100 to 010
labeled with−/0 means that starting at D0 = 1 and D1 = 0 and assuming G0 to be
faulty, the system choiceC = 0 forces the latches to be D0 = 0 and D1 = 1 in the next
state regardless of the input.

Once we have constructed the game, we select system choices that restrict the game
to those paths that fulfill the specification. In our example,first we choose a transition
from s′0 to either the upper or the lower part of the game. Choosing thetransition from
s′0 to 000 means we try to fix the fault by replacing gate G0. In state000 we select
transitions that lead to paths that adhere to the given specification. In Figure 5 the bold
arrows only allow paths with the sequence 001010. . . for D1 as required by the speci-
fication. Taking only these transitions into account we get the function shown in Table
1 for the system choicec. For the 3rd and 4th Line in Table 1 we can choose arbitrary
values for the system choice. This choice gives us freedom inpicking the desired cor-
rection. Since we aim for corrections that yield simple modified systems, we choose
the simplest implementation, which setsc = 1 all the time. Using the corresponding
transitions in the original model (Figure 3) yields the correct model shown in Figure 4.

Choosing the right transitions of the game corresponds to searching a memoryless
winning strategy for the system that fulfills the winning condition F ′. Formally, given
a gameG = (S, s0, I, C, δ, F ), a memoryless strategyis a functionσ : S × I → 2C ,
which fixes a set of possible responses to an environment input. A playonG according

to σ is a finite or infinite sequenceπ = s0

i0c0−→ s1

i1c1−→ . . . , such thatci ∈ σ(si, ii),
si+1 = δ(si, ii, ci), and either the play is infinite, or∃n : σ(sn, in) = ∅, which means
that the play is finite. A play iswinning(for the system) if it is infinite ands0s1 · · · ∈ F .
A strategyσ iswinningonG if all plays according toσ onG are winning. Depending on
the winning condition we distinguish different types of games. The winning condition
of an LTL gameis the set of sequences satisfying an LTL formulaϕ. A safety game
has the conditionF = {q0q1 · · · | ∀i : qi ∈ A} for someA. The type of the game for
localizing and correction depends on the specification. In Section 4, we explain how to
obtain a winning strategy and we prove the correctness of ourapproach.



In order to handle multiple faults we extend the game to select a set of suspect
components in the initial state. In every following state the system chooses an output
for the suspect component. Thus, the range of the replacement function consists of
tuples of outputs, one output for each suspect component.

4 Solving Games

In Section 4.1, we summarize the approach of [JGB05] to find a winning strategy for
a game, which we adopt. We describe the approach for safety games in some detail,
and briefly recapitulate how to find a strategy when the specification is given in LTL. In
Section 4.2, we prove that a winning strategy corresponds toa valid correction and that
for invariants a winning strategy exists iff a correction exists.

4.1 Strategies

For a setA ⊆ S let

MXA = {s | ∀i ∈ I ∃c ∈ C, s′ ∈ A : (s, i, c, s′) ∈ δ}

be the set of states from which, for any input, the system can force a visit to a state in
A in one step. We defineMGA = νZ.A ∩ MXZ to be the set of states from which the
system can avoid leavingA. (The symbolν denotes a greatest fixpoint, see [CGP99].)
Note that theMX operation is similar to the preimage computation in symbolic model
checking, apart from the quantification of the input variables. TheMG operation mir-
rorsEG.

If the specification is an invariantA, the setMGA is exactly the set of states from
which the system can guarantee thatA is always satisfied. If the initial state is inMGA,
the game is won. The strategy for a safety game is then easily found. From any state,
and for any input, select any system choice such that the nextstate is inMGA:

σ(q, i) = {c ∈ C | δ(q, i, c) ∈ A}.

Note that the strategy is immaterial for nodes that are unreachable. The same holds for
states that are not winning: they will never be visited.

For LTL specifications, the situation is more intricate.
A finite-state strategydetermines the set of allowed system choices using a finite-

state machine that has a memory of the past input and system choices. A finite-state
strategy may, for example, alternately pick two different choices for one and the same
system state and input.

We can compute a finite-state strategy for a game with winningconditionϕ by
finding a strategy on the product of the game and a deterministic automaton forϕ. A
finite-state strategy corresponds to a correction in which the new FSM is the product
automaton. Thus, it would add state that corresponds to the automaton forϕ.

Finding a deterministic automaton forϕ is hard in terms of implementation and
needs doubly exponential space. Furthermore, it is probably a bad idea to fix a sim-
ple fault by the addition of a large amount of state. Therefore, [JGB05] proposes a



heuristic approach. The approach constructs a nondeterministic Büchi automaton from
ϕ in the standard way [VW94], which causes only a singly exponential blowup. It then
constructs the product of the Büchi automaton and the game.The result is a Büchi
game, which in general has a finite-state strategy. To avoid adding state to the circuit,
[JGB05] presents a heuristic to turn a finite-state strategyinto a memoryless strategy.
The heuristic works by finding choices that are common to all states of the finite-state
strategy. These two heuristics imply that the method is not complete: if the property is
not an invariant, a correction may not be found even if it exists. We take the view that
this tradeoff is necessary for efficiency and simplicity of the correction.

Jobstmann et al. [JGB05] show how a simple correction statement is extracted from
a memoryless strategy.

The complexity of the approach is comparable to that of symbolic model checking
of a property on the game that hasO(k · lg |COMP|) more Boolean state variables than
the original system, wherek is the number of faults assumed.

4.2 Localization and Correction

If a winning positional strategy for the system exists, it determines (at least) one in-
correct gate plus a replacement function. To see this, we need some definitions. For a
functionf : S × I → {0, 1}, let δ[d/f ] be the transition function obtained fromδ by
replacing gated by combinational logic specified byf : δ[d/f ](s, i) = δd(s, i, f(s, i)).
Let M [d/f ] be the corresponding FSM. Letσ : ((S × {0 . . . n}) ∪ s′0) × I → 2{0...n}

be a winning finite-state strategy. Since the transition from the initial states′0 does not
depend on the inputi, neither does the strategy for this state. LetD = σ(s′0, i) for some
i.

LetFd be the set of all functionsf : S× I → {0, 1} such thatf(s, i) ∈ {c mod 2 |
c ∈ σ((s, d), i)}. We claim thatD contains only correctable single-fault diagnoses
and{Fd}d∈D contains only valid corrections, and that for invariants there are no other
single correctable diagnoses or corrections.

Theorem 1. Let d ∈ {0 . . . n} and letf : S × I → {0, 1}. We have thatd ∈ D and
f ∈ Fd implies thatM [d/f ] satisfiesF . If F is an invariant, thenM [d/f ] satisfiesF
impliesd ∈ D andf ∈ Fd.

Proof. Supposed ∈ D andf ∈ Fd. Let π = (s′0, (s0, d), (s1, d), . . . ) be the play of
G for input sequencei′0, i0, i1, . . . so that(sj+1, d) = δ′((sj , d), ij , f(sj , ij)). Since
f(sj , ij) ∈ σ((sj , d), ij) (mod 2),π is a winning run ands0, s1, · · · ∈ F . Now note that
(sj+1, d) = δ′((sj , d), ij, f(sj , ij)) = (δd(s, ij , f(sj , ij)), d) = (δ[d/f ](sj , ij), d).
Thus,s0, s1, . . . is the run ofM [d/f ] for input sequencei0, i1, . . . , and this run is in
F .

For the second part, supposeF is an invariant, and sayM [d/f ] satisfiesF . Then
for any input sequence, the run ofM [d/f ] is in F , and from this run we can construct a
winning play as above. The play stays within the winning region, and by construction of
the strategy for a safety game, all system choices that do notcause the play to leave the
winning region are allowed by the strategy. Thus, the play isaccording to the winning
strategy, sod ∈ D andf ∈ Fd. ⊓⊔



Note that for LTL properties, the theorem holds in only one direction. The primary
reason for this is that a memoryless strategy may not exist for an LTL formula. Further-
more, even if a repair exists, our heuristics may fail to find it [JGB05].

5 Experiments

In this section we present initial experiments that demonstrate the applicability of our
approach. We have implemented our algorithm in VIS-2.1 [B+96]. In the current ver-
sion of the algorithm, the examples are manually instrumented in order to obtain and
solve the corresponding games. The instrumentation can easily be automated.

The game constructed from a program proceeds in three steps:

1. decide which component is faulty,
2. read the inputs to the program, and
3. execute the extended version of the program, in which one component is left unim-

plemented.

Because the selection of the faulty component is performed before any inputs are passed
to the program, the diagnosis does not depend on the inputs, and is valid regardless of
the inputs.

Our implementation is still incomplete: it builds a monolithic transition relation for
the corrected system, which is intractable for large designs. We are investigating the use
of partitioned relations.

5.1 Locking Example

Figure 6 shows an abstract program which realizes simple lock operations [GV03].
Nondeterministic choices in the program are represented by*. The specification must
hold regardless of the nondeterministic choices taken, andthus the program abstracts a
set of concrete programs with different if and while conditions. The methodlock()
acquires the lock, represented by the variableL, if it is available. If the lock is already
held, the assertion in Line 11 is violated. In the same way,unlock() releases the lock,
if it is held. The fault is located in Line 6, which should be within the scope of theif
command. This example is interesting because the error is caused by switching lines,
which does not fit our fault model.

The components of the program that are considered for correction are the expres-
sions in theif statement in Line 1, thewhile statement in Line 7, and the right-hand
side (RHS) of the assignments togot_lock in Line 3 and 6.

In order to illustrate the instrumentation of the source code, Figure 8 shows an in-
strumented version of the program. In Line 0 we have introduced a variablediagnose.
The game chooses one of four lines fordiagnose. Functionchoose represents a
system choice. The result of the function is one of its parameters:l1, l3, l6 or l7.

If a line is selected bydiagnose, the game determines a new value for the right-
hand side in that line (again represented by the functionchoose. Note that in the other
suspect lines the original values are kept.



int got_lock = 0;
do{

1 if (*) {
2 lock();
3 got_lock = got_lock + 1;}
4 if (got_lock != 0) {
5 unlock();}
6 got_lock = got_lock - 1;
7 } while(*)

void lock() {
11 assert(L = 0);
12 L = 1; }

void unlock(){
21 assert(L = 1);
22 L = 0; }

Fig. 6. Locking Example

1 int least = input1;
2 int most = input1;

3 if(most < input2)
4 most = input2;
5 if(most < input3)
6 most = input3;
7 if(least > input2)
8 most = input2;
9 if(least > input3)
10 least = input3;

11 assert (least <= most);

Fig. 7. MinMax Example

The algorithm finds three possible error locations: Line 1, 6, or 7. The correction
for Line 1 suggests to set the if-condition to!L. Both lock() andunlock() are
then called in every loop iteration. Note that the conditioncould also be set to true,
but the algorithm cannot exclude the possibility of reaching Line 1 withL=1 before
it fixes the strategy. The algorithm also suggests to set the loop condition to false in
Line 7. Clearly that works, because the loop is now executed only once and the wrong
value ofgot_lock does not matter. Finally, the algorithm suggests to setgot_lock
to 0 in Line 6. This is a valid correction, because nowunlock() is only called if
got_lock has been incremented before in Line 3. The last suggestion issatisfactory:
it is a correction for the program no matter which concrete conditions are used for the
if and while conditions.

Note that our method does not recognize the intent of the designer to place the as-
signment togot_lock within the scope of theif, but it finds a correction regardless.

5.2 Minmax Example

Minmax is a simple program to evaluate the maximum and the minimum of three input
values [Gro04]. The minimum is stored inleast, the maximum is stored inmost.
The fault is located of Line 8 in Figure 7. Instead of assigning input2 to least the
value is assigned tomost.

We consider as possible faults the left-hand sides and right-hand sides of the as-
signments in Lines 4, 6, 8, and 10, and the expressions in Line3, 5, 7, and 9. Note
that a correction for a left-hand side should be independentof the state of the pro-
gram. Therefore, the corrections for the left-hand side aredecided together with the
faulty components before the inputs are read. The assertionin Line 11 is replaced by
if !(least <= most) error=1 and we check the propertyG(error= 0).



The algorithm provides two diagnoses and the correspondingcorrections. The al-
gorithm suggests to set the if-condition in Line 7 to false. In Line 8 more than one
correction is possible. The algorithm suggests to change the LHS of the assignment
to least, or to change the RHS either toinput1 or to input3. It is obvious that
all of the suggested corrections are valid for the assertion(least <= most), but
that assertion does not guarantee the intended behavior of the program, namely that the
minimum value is assigned toleast and the maximum value tomost. We make the
specification more precise:

(least <= input1) && (least <= input2) && (least <= input3) &&
(most >= input1) && (most >= input2) && (most >= input3)

With this specification we find one diagnosis and correction:Change the LHS from
most to least in Line 8.

As stated before, our approach is not restricted to invariants. In order to show the
applicability of our approach, we change the program and thespecification. In a modi-
fied program version we initializeerror with 1 and set it to0 if the assignment holds.
We change the specification to the LTL formulaX XF(error = 0), meaning: “After
two stepserror must eventually be equal to0”. This is clearly not an invariant. Our
algorithm is again able to find the correction.

5.3 Sequential Multiplier

The four-bit sequential multiplier shown in Figure 9 is introduced in [HD84]. The mul-
tiplier has two input shift-registers A and B, and a registerQ which stores intermediate
data. If inputINIT is high, shift registers A and B are loaded with the inputs andQ is
reset to zero. In every clock cycle register A is shifted right and register B is shifted left.
The least significant bit (LSB) of A is the control input for the multiplexer. If it is high,
the multiplexer forwards the value of B to the adder, which adds it to the intermediate
result stored in register Q. After four clock cycles Q holds the product A∗ B.

The multiplier has a fault in the adder: The output of the single-bit full adder re-
sponsible for bit 0 always adds 1 to the correct output. The components we use for fault
localization are the eight full adders in the adder, the eight AND gates in the multiplexer,
and the registers A, B, and Q.

Our approach is able to find the faulty part in the adder and provides a correction
for all possible inputs. It suggests to use a half adder for bit 0. This is simpler than
the correction we expected and still correct: In the first time step, Q is 0 and in all
subsequent steps, the LSB of B is 0 because B is shifted left. Thus, a carry never occurs.

Let us consider the candidates for correction that model-based diagnosis finds. If
we load A and B with 6 and 9, respectively, the output is 58 instead of 54. Consistency-
based diagnosis finds the registers B and Q, the AND gate for bit two in the multiplexer
and the full adders for the three least significant bits as candidates. We can reduce the
number of diagnoses by using multiple test cases and computing the intersection of
the reported diagnoses. However, the full adder for bit one is a candidate in every test
case. To see this, note that after four time slices the computed result is the correct value
plus four. Regardless of the inputs, the carry bit of the fulladder for bit 1 will have
value 1 in at least one time step. If we change this value to 0, the calculated result of



0 diagnose = choose{l1, l3, l6, l7}
int got_lock = 0;
do{

1.0 if (diagnose = l1)
1.1 tmp = choose(true, false);
1.2 else
1.3 tmp = *;
1.4 if (tmp) {
2 lock();
3.0 if (diagnose = l3)
3.1 tmp = choose(0,..,n-1);
3.2 else
3.3 tmp = got_lock + 1;
3.4 got_lock = tmp;}
4 if (got_lock != 0) {
5 unlock();}
6.0 if (diagnose = l6)
6.1 tmp = choose(0,..,n-1);
6.2 else
6.3 tmp = got_lock - 1;
6.4 got_lock = tmp;
7.0 if (diagnose = l7)
7.1 tmp = choose(true, false);
7.2 else
7.3 tmp = *;
7.4 } while(tmp)

Fig. 8. Instrumented Lock Example

the multiplication is reduced by four and we obtain the correct result. Similarly Q is
a diagnosis for every test case. This example shows once morethat consistency-based
diagnosis finds candidates that cannot have caused the fault.

The example can also be used to show that it is not possible to correct a fault using a
single test case: for any single test case there is a valid correction for the full adder for bit
one. There is not, however, one correction that is valid for all test cases. This conclusion
can only be reached by considering multiple inputs, which iswhat our approach does.

6 Conclusions

We have presented an integrated approach to localizing and correcting faults in finite-
state systems with a specification given in LTL. Our approachuses a very general fault
model in which a component is replaced by an arbitrary new function. Though it has
been formulated for single faults, it is applicable to localization and correction of mul-
tiple faults as well.

The approach, which is based on infinite games, is sound in thesense that a sug-
gested correction is valid for all possible input sequences. If the specification is an
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invariant, our approach is complete: if a single point of failure exists, the fault is always
found and corrected. For general LTL properties, the approach is sound and it performs
well in practice, though it is not complete.

We have also shown that the most important competing localization method, model
based diagnosis using consistency, does not provide the same precision in locating er-
rors. Other known methods work with very restricted fault models, which are very use-
ful when the fault is incurred during an incorrect optimization or re-encoding step, but
does not appear to be applicable for systems for which no reference model is available.
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