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1. Introduction

This expository article is based on a lecture from the Stanford Symposium on
Algebraic Topology: Application and New Directions, held in honor of Gunnar
Carlsson, Ralph Cohen, and Ib Madsen.

“I predict a new subject of statistical topology. Rather than
count the number of holes, Betti numbers, etc., one will be
more interested in the distribution of such objects on noncom-
pact manifolds as one goes out to infinity.” — Isadore Singer,
2004 [48]

1.1. Earlier work. Random triangulated surfaces were studied by Pippenger
and Schleich [46]. Their model is randomly gluing together n oriented triangles,
uniformly over all such gluings, and they compute the expected genus E[gn] of the
resulting oriented surface as n→∞. Such random surfaces arise in 2-dimensional
quantum gravity and as world-sheets in string theory.

Dunfield and Thurston considered this same model around the same time, and
they pointed out that in general one can not make a random 3-manifold by gluing
together tetrahedra in an analogous way, as the probability that a gluing results in
a manifold tends to 0 as the number of tetrahedra n→∞. They introduced a new
model for random 3-manifolds M where one takes a random walk on the mapping
class group, resulting in a random gluing of a two handlebodies [17]. They were
able to compute the probabilities that the resulting manifolds have finite covers of
particular kinds.

The configuration space for a random planar linkage, where the number of links
tends to infinity, was a different kind of random manifold introduced by Farber and
Kappeler [20]. They gave a formula the mean of the Betti numbers, and showed
exponential concentration around the mean.

Random functions on manifolds were studied by Adler and Taylor, and they
discovered the “Gaussian kinematic” formula for the expected Euler characteristic
of the sub-level sets. See for example, Chapter 12 of their book [2]. Giving a
formula for the expectation of the individual Betti numbers seems to be an open
problem. For a survey of this area see [1].

We will will focus on random simplicial complexes.

The author gratefully acknowledges support from DARPA grant # N66001-12-1-4226.
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Random 2-dimensional simplicial complexes were first studied by Linial and
Meshulam [41], and the k-dimensional version by Meshulam and Wallach [43].
One way to think about these kinds of models is as higher-dimensional analogues
of random graphs — for example the main results of [41] and [43] are cohomological
analogues of the Erdős–Rényi theorem which characterizes the threshold for con-
nectivity of a random graph. These kinds of theorems describe topological phase
transitions where cohomology passes from nontrivial to trivial within a very short
window of parameter.

Since the influential paper [41], random complexes and their topological prop-
erties have continued to be explored by several teams of researchers [43, 7, 39,
4, 5, 35]. Random clique complexes provide another way of generalizing random
graphs to higher dimensions [31, 33], which puts a measure on a wide range of
topologies.

1.2. Motivation.
1.2.1. Randomness models the natural world.

(1) The field of topological data analysis has received a lot of attention over
the past several years — see for example the survey articles [14, 22]. In
order to quantify statistical significance of topological features, it will be
necessary to have firmer probabilistic foundations. In other words, random
topology may be viewed as the null hypothesis for statistical topology.

(2) Certain situations in physics seem to be well modeled by probabilistic
topology. For one famous example, John Wheeler suggested in the 1960’s
that inside a black hole, one would need a topological and geometric theory
to account for relativity, and that near the presumed singularity one would
also require a quantum theory, necessarily stochastic. He reasoned that
inside a black hole the topology of space-time itself may best be under-
stood as a probability distribution over shapes, rather than any particular
fixed shape.

(3) One might also want to understand why certain mathematical phenomena
are so ubiquitous. For example, a folklore theorem is that “almost all
groups are hyperbolic”. This turns out to be true under a variety of
different measures — see Ollivier’s survey [44].

It is known that many simplicial complexes and posets found in the
wild are homotopy equivalent to wedges of spheres of the same dimension,
and many researchers in topological combinatorics have wondered if there
is a deeper reason why [21]. Is it possible that asymptotically almost all
complexes are relatively simple, topologically speaking? One the goal of
this article is to describe a yes to this question, at least according to certain
natural measures, and in terms of homology with rational coefficients.

(4) Random topology might also model certain number-theoretic objects.
The following natural class of simplicial complexes were introduced

by Björner [10]: ∆n has primes less than n as its vertices, and its faces
correspond to square-free numbers i with 1 ≤ i ≤ n. He pointed out that
the Euler characteristic χ(∆n) coincides with the Mertens function

M(n) =

n∑
k=1

µ(k),
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where µ(k) is the Möbius function. The Riemann hypothesis is well known
to be equivalent to the statement that M(n) satisfies

|M(n)| = O(n1/2+ε)

for every fixed ε > 0, suggesting that studying the topology of ∆n might
be quite interesting.

Björner proved these complexes are all homotopy equivalent to wedges
of spheres (not necessarily of the same dimension), hence homologyH∗(∆n)
is torsion-free. He also provided some estimates for Betti numbers, show-
ing that

βk ≈
n

2 log n

(log log n)k

k!

for k fixed, and also that∑
k≥0

βk (∆n) =
2n

π2
+O

(
nθ
)

for all θ > 17/54.
Unfortunately, this does not seem to get us any closer to proving

the Riemann hypothesis, but Björner’s work suggests further study. The
primes are not random, but they are “pseudorandom” and for many pur-
poses behave as if they were a random subset of the integers with density
predicted by the prime number theorem — the Green–Tao theorem is a
celebrated example [23].

1.2.2. The probabilistic method provides existence proofs. This is a complemen-
tary point of view. Random objects often have desirable properties, and in some
cases it is difficult to construct explicit examples. This has been one of the most
influential ideas in discrete mathematics of the past several decades — for a broad
overview of the subject, see Alon and Spencer’s book [3].

(1) In Ramsey theory and extremal graph theory, the probabilistic method has
proved to be an extremely powerful tool. Almost all graphs are known
to have strong Ramsey properties (i.e. no large cliques or independent
sets), but after several decades of research no one knows how to give
large explicit examples nearly as strong. This paradoxical situation is
sometimes referred to as the problem of finding hay in a haystack.

(2) Since early work of Pinsker [45], and even earlier work of Barzdin and
Kolmogorov [9], it has been known that “almost all graphs are expanders.”
(For a survey of expander graphs and their applications, see [30].) Some
of the work surveyed in this article may be viewed as higher-dimensional
analogues of this paradigm. One of our goals is to describe expander-like
qualities of random simplicial complexes.

(3) The probabilistic method has found applications in other areas of math-
ematics as well. Gromov asked, “What does a random group look like?
As we shall see the answer is most satisfactory: nothing like we have ever
seen before,” [24], and then later fulfilled his own prediction by proving
the existence of a finitely generated group Γ whose Cayley graph admits
no uniform embedding in the Hilbert space [25]. His argument is a prob-
abilistic one.
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Figure 1. The beginning of a random graph process on n = 12 vertices.

2. Random graphs

The random graph G(n, p) has vertex set [n] = {1, 2, . . . , n} and each edge ap-
pears independently with probability p, independently. The closely related random
graph G(n,m) is selected uniformly among all

((n2)
m

)
graphs on n vertices with m

edges.
One can also think about random graphs as part of a stochastic process. In the

andom graph process

{G(n,m)}(
n
2)
m=1,

for example, the mth edge is selected uniformly randomly from the remaining n−(
m
2

)
− 1 edges. See Figure 1 for the beginning of a random graph process.
In random graph theory, one is usually interested in the asymptotic behavior of

such graphs as n→∞, and p = p(n). A celebrated theorem about random graphs,
but also perhaps the most the topology of random graphs is the following [19].

Theorem 2.1 (Erdős–Rényi, 1959). Let ε > 0 be fixed. Then as n→∞,

P[G(n, p) is connected]→

 1 : p ≥ (1+ε) logn
n

0 : p ≤ (1−ε) logn
n

The Erdős–Rényi theorem is actually slightly sharper than this, as follows. Let

β̃0(G) = # of connected components of G− 1,

i.e. to a topologist, the reduced 0th Betti number of G.

Theorem 2.2 (Erdős–Rényi, 1959). Let G = G(n, p) where

p =
log n+ c

n
,



TOPOLOGY OF RANDOM SIMPLICIAL COMPLEXES: A SURVEY 5

and c ∈ R is fixed. Then as n → ∞, β̃0(G) is asymptotically Poisson distributed
with mean e−c. In particular,

P[G is connected]→ e−e
−c

Corollary 2.3. Let ω →∞ arbitrarily slowly as n→∞. Then

P[G(n, p) is connected]→

 1 : p ≥ logn+ω
n

0 : p ≤ logn−ω
n

We sometimes write “with high probability (w.h.p.)” for an event if the proba-
bility of the event tends to 1 as the number of vertices n→∞.

Why is p = log n/n the right answer here? To answer this, we set p = (log n+
c)/n and ask how many isolated vertices we expect to see. The probability that a
vertex is isolated is (1− p)n−1, by independence. Then by linearity of expectation,
the expected number of isolated vertices X0 is

E[X0] = n(1− p)n−1.

It follows easily that E[X0]→ e−c as n→∞, and with only a little more work one
can show that X0 is asymptotically Poisson distributed with mean e−c. See, for
example, Chapter 8 of [3] to learn how to prove limit theorems like this using the
method of moments.

To finish the proof of Theorem 2.2, one also needs a structure theorem, namely
that for p is in this range, G(n, p) w.h.p. consists of only two kinds of connected
components: a unique “giant component”, and isolated vertices. Given this struc-
ture, the graph is connected if and only if there are no isolated vertices. See Chapter
7 of [11] for a complete proof. Moreover, we can understand the limiting distribu-
tion for the total number of connected components by understanding the limiting
distribution for the number of isolated vertices.

Corollary 2.3 shows that p = log n/n is a sharp threshold for connectivity
of G(n, p), meaning that the phase transition from probability 0 to probability 1
happens within a very narrow window. More precisely, a function f is said to be
a sharp threshold for a graph property P if there exists a function g = o(f) such
that

P[G(n, p) ∈ P]→

 1 : p ≥ f + g

0 : p ≤ f − g
The message of Corollary 2.3 is that the threshold function for “G is connected”

is the same as the threshold function for “G has no isolated vertices.” The following
result of Bollobás and Thomasson takes this idea all the way to its logical conclusion
[12].

Theorem 2.4. For a random graph process {G(n,m)}(
n
2)
m=1, with high probability

min{M : G(n,M) has no isolated vertices} = min{M : G(n,M) is connected}.

We leave it to the reader to convince themselves that Theorem 2.4 is even
sharper than Corollary 2.3.
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Figure 2. The beginning of a random 2-complex process on n =
12 vertices.

It is worth noting that there is another important topological phase transition
for G = G(n, p), namely where cycles first appear, or to a topologist, where H1(G)
first becomes nontrivial. See [47] for a proof of the following.

Theorem 2.5. Let p = c/n where c > 0 is constant.

P[G(n, p) has no cycles]→


1 : c ≥ 1

√
1−c

exp(c/2+c2/4) : c < 1

In contrast to the connectivity threshold, the threshold described in Theorem
2.5 is not sharp in the sense described above, or one might say more precisely that
is sharp on one side, but not on the other.

3. Random 2-complexes

Linial and Meshulam initiated the topological study of random 2-dimensional
simplicial complexes Y (n, p) in [41]. This model random simplicial complex is de-
fined to have vertex set [n], edge set

(
[n]
2

)
(i.e. the underlying graph is a complete

graph), and each of the
(
n
3

)
possible triangle faces is included with the same proba-

bility p = p(n), independently. A random 2-complex complex process is illustrated
in Figure 2.

The main result of [41] is a perfect cohomological analogue of Theorem 2.1.

Theorem 3.1 (Linial–Meshulam, 2006). Let ε > 0 be fixed and Y = Y (n, p).
Then as n→∞,

P[H1(Y,Z/2) = 0]→

 1 : p ≥ (2 + ε) log n/n

0 : p ≤ (2− ε) log n/n

Although Theorem 3.1 is analogous to Theorem 2.1, the proof is much harder.
Perhaps this is not surprising — cohomology is after all cocycles modulo cobound-
aries, and in degree 0 there are not too many coboundaries. The combinatorics are
considerably more complicated in degree 1.

A few comments are in order.
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(1) The Linial–Meshulam theorem is sharper than this, analogous to Corollary
2.3 but we sometimes trade the strongest result for a simpler statement.

(2) The threshold p = 2 log n/n is exactly what is required in order to ensure
that there are no isolated edges. The analogue of the “stopping time”
Theorem 2.4 for the random 2-complex process was recently established
in [35].

(3) It was shown by Meshulam and Wallach [43] that the same result holds
with (Z/`)-coefficients for every fixed `. The threshold for Z-coefficients
is still unknown. It might seem that the Z-threshold would follow from
this, but the problem is that there could be `-torsion growing with n. We
return to speculation about random torsion in Section 4.

(4) As mentioned in the original paper, the argument is cohomological but
then universal coefficients for homology and cohomology give the corre-
sponding result for homology.

The threshold for simple connectivity has been shown to be much larger [7].

Theorem 3.2 (Babson et al., 2011). Let ε > 0 be fixed and Y = Y (n, p). Then
as n→∞,

P[π1(Y ) = 0]→


1 : p ≥ nε√

n

0 : p ≤ n−ε
√
n

On the way to showing the fundamental group is nontrivial when p ≤ n−ε
√
n
, one

first shows that it is word hyperbolic.
The study of fundamental groups of random 2-complexes is continued in [29].

A group G is said to have Kazhdan’s property (T) if the trivial representation is
an isolated point in the unitary dual of G equipped with the Fell topology. More
intuitively, Property (T) is an “expander-like” property of groups, and first explicit
examples of expanders, due to Margulis, were constructed from Cayley graphs of
quotients of (T) groups such as SL3(Z).

The following theorem shows that the threshold for π1(Y ) to have Kazhdan’s
Property (T) is the same as for H1(Y,Z/2) to vanish [29].

Theorem 3.3 (Hoffman et al., 2012). Let ε > 0 be fixed and Y = Y (n, p).
Then as n→∞,

P[π1(Y ) is (T)]→

 1 : p ≥ (2 + ε) log n/n

0 : p ≤ (2− ε) log n/n

The proof that Y (n, p) is (T) when p ≥ (2 + ε) log n/n utilizes the following
theorem of Żuk [51].

Theorem 3.4 (Żuk). If X is a pure 2-dimensional locally-finite simplicial com-
plex so that for every vertex v, the vertex link lkv(X) is connected and the normalized
graph Laplacian L = L(lkv(X)) has smallest positive eigenvalue λ2(L) > 1/2, then
π1(X) has property (T).

The link of a vertex in the random 2-complex Y (n, p) has the same probability
distribution as a random graph G(n − 1, p). So Żuk’s theorem reduces the proof
of Theorem 3.3 to a question about Laplacians of random graphs. However, new
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results about such Laplacians are still required in order to prove Theorem 3.3.
Establishing the following comprises most of the work in [29].

Theorem 3.5. (Hoffman et al., 2012) Fix k ≥ 0 and ε > 0. Let 0 = λ1 ≤ λ2 ≤
· · · ≤ λn ≤ 2 be the eigenvalues of the normalized Laplacian of the random graph
G(n, p). There is a constant C = C(k) so that when

p ≥ (k + 1) log n+ C
√

log n log log n

n
is satisfied, then

λ2 > 1− ε,
with probability at least 1− o(n−k).

The proof of Theorem 3.3 only requires Theorem 3.5 with k = 1 and ε = 1/2.
The proof is almost immediate once Theorem 3.5 is established: There are n vertex
links, and for each one, the probability that its spectral gap is smaller than 1/2 is
o(n−1). So the probability that there is at least one vertex link with spectral gap
too small is o(1) by a union bound — the probability that at least one bad event
occurs is never more than the sum of the probabilities of the individual bad events.

The k = 0 case of Theorem 3.5 is also of particular interest, as this gets very
close to the connectivity threshold for G(n, p). It would be interesting to see just
how close one can get. Consider a random graph process, for example, adding one
edge at a time: is the graph already an expander at the moment of connectivity?
We discuss applications of Theorem 3.5 with other values of k in Section 4.

Both Theorem 3.1 and Theorem 3.3 have the following corollary.

Corollary 3.6. Let ε > 0 be fixed and Y = Y (n, p). Then as n→∞,

P[H1(Y,Q) = 0]→

 1 : p ≥ (2 + ε) log n/n

0 : p ≤ (2− ε) log n/n

This follows from Theorem 3.1 by universal coefficients for homology and co-
homology, and follows from Theorem 3.3, since a finitely presented group with
Property (T) has finite abelianization.

Homology vanishing for any choice of coefficients, simple connectivity, and
Property (T) are all monotone properties for random 2-complexes, meaning that
if at some point in the random complex process, you have one of these properties,
the property continues to hold from that point on. This is in contrast to what we
will see in Section 4, where each homology group passes through two distinct phase
transitions, vanishing-to-nonvanishing and nonvanishing-to-vanishing.

4. Random flag complexes

The flag complex X(H) of a graph H is the maximal simplicial complex com-
patible with H as its 1-skeleton; in other words, the i-dimensional faces of X(H)
correspond to the cliques of order i + 1 in H. (Such complexes have apparently
arisen independently several times, and X(H) is also sometimes called the clique
complex or the Vietoris–Rips complex of H.)

We define the random flag complexX(n, p) to be the flag complex of the random
graph G(n, p). Every simplicial complex is homeomorphic to a flag complex, e.g.
by taking the barycentric subdivision. So X(n, p) puts a measure on a wide variety
of topologies as n→∞.
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Figure 3. A random flag complex process. Vanishing of Hk for
k ≥ 1 is no longer a monotone property.
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Figure 4. The Betti numbers for a random flag complex process
on n = 100 vertices. (Computation and image courtesy of Afra
Zomorodian.)

One can also consider a random flag complex process, which is the same prob-
ability space as the random graph process, edges being added one at a time. See
Figure 3. The Betti numbers of an instance of such a process on n = 100 vertices
and roughly 3000 steps are illustrated in Figure 4.

We see immediately that homology no longer behaves in a monotone way
with respect to the underlying parameter. Instead homology passes through two
phase transitions, vanishing-nonvanishing and nonvanishing-vanishing, and that in-
between the dimension of homology is roughly unimodal.

4.1. Vanishing homology. First of all, we check that, as suggested by Figure
4, there is a range of p outside of which Hk = 0 with high probability [31].
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Theorem 4.1. Let ε > 0 be fixed and X = X(n, p) .
(1) If

p ≤ n−ε

n1/k

then
P[Hk(X,Z) = 0]→ 1

as n→∞.
(2) Also, if

p ≥ nε

n1/(2k+1)

then
P[Hk(X,Z) = 0]→ 1

as n→∞.

Note that this theorem actually holds for homology with integer coefficients.
The proof of (1) is essentially local and geometric, showing first that homology

is supported on cycles of small support (bounded in size as n → ∞), and then
showing that every such cycle is a boundary.

The key observation for (2) is that link of a vertex in a random flag complex is
a random flag complex with shifted parameter. Indeed, even intersecting the links
of several vertex links results in another random flag complex. Then the Nerve
Lemma allows one to bootstrap local information about connectivity of a large
number of random graphs into global information about cohomology vanishing.
This argument shows something stronger topologically: that if

p ≥ nε

n1/(2k+1)

then w.h.p. X is k-connected, i.e. πi(X) = 0 for i ≤ k. Recent work of Babson
shows that this exponent is tight when k = 1 [6].

In Section 4.4 we will see that the exponent in (2) can be improved, with a
spectral gap argument, if one relaxes to cohomology with rational coefficients.

4.2. Nonvanishing homology and cohomology. It is also known that for
every k ≥ 0 there is a range of p = pk(n) for which Hk(X(n, p)) 6= 0 with high
probability. Here are three ideas for how one might try to prove this.

(1) Linear algebra. Let fi denote the number of i-dimensional faces of X.
Then if fk > fk−1 + fk+1, we already have that Hk 6= 0 for dimensional
reasons, i.e.

βk ≥ −fk−1 + fk − fk+1.

(2) Homological argument: sphere. Try to find a subcomplex Y home-
omorphic to a sphere Sk, and a simplicial map f : X → Y such that
f |Y = id. Then the homology of Y is naturally a summand of the homol-
ogy of X, and in particular Hk(X) 6= 0.

(3) Cohomological argument: isolated face. If σ is a k-dimensional
face not contained in any (k+ 1)-dimensional face, then the characteristic
function of σ represents a cocycle. If one can somehow show that this
function is not also a coboundary, then one has a nontrivial class.
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All three of these approaches work, and in roughly the same range of param-
eter. They also work equally well for with any choice of coefficients. Any of these
approaches yields the following, for example.

Theorem 4.2. Let ε > 0 be fixed and X = X(n, p) If

nε

n1/k
≤ p ≤ n−ε

n1/(k+1)

then
P[Hk = 0]→ 0

as n→∞.

The first two approaches are discussed in [31], and the third approach in [33].
In Section 4.4 we will see that the third approach has a slight edge on the other
two approaches at the upper end of the nonvanishing window. In this case, a much
sharper estimate may be obtained. So the exponent 1/k in Theorems 4.1 and 4.2
is sharp. The exponent 1/(k + 1) in Theorem 4.2 is also sharp, as we will see in
Section 4.4.

4.3. Limit theorems. Much more can be shown in the nonvanishing regime.
Not only do we know that Hk 6= 0 w.h.p., but we can also understand the expec-
tation of βk and its limiting distribution.

The following asymptotic formula for the expectation follows from the linear
algebra approach described above.

Theorem 4.3. Let ε > 0 be fixed and X = X(n, p) If

nε

n1/k
≤ p ≤ n−ε

n1/(k+1)

then
E[βk](
n
k+1

)
p(
k+1
2 )
→ N (0, 1)

as n→∞.

Here E[βk] denotes the expectation of βk. A similar formula can be given for
the asymptotic variance Var[βk].

The following central limit theorem characterizes the limiting distribution [34].

Theorem 4.4 (Meckes et al.). Let ε > 0 be fixed and X = X(n, p) If

nε

n1/k
≤ p ≤ n−ε

n1/(k+1)

then
βk − E[βk]√

Var[βk]
→ N (0, 1)

as n→∞.

Here N (0, 1) is the standard normal distribution with mean 0 and variance 1,
and the convergence is in distribution.
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4.4. Sharp thresholds for rational cohomology. The following gives a
sharp (upper) threshold for rational cohomology [33] of random flag complexes. It
may be seen as a generalization of the Erdős-Renyi theorem, which corresponds to
the k = 0 case.

Theorem 4.5. Let k ≥ 1 and ε > 0 be fixed, and X = X(n, p).
(1) If

p ≥
(

(k/2 + 1 + ε) log n

n

)1/(k+1)

,

then
P[Hk(X,Q) = 0]→ 1,

(2) and if

n−1/k+ε ≤ p ≤
(

(k/2 + 1− ε) log n

n

)1/(k+1)

,

then
P[Hk(X,Q) = 0]→ 0,

as n→∞.

The main tools used to prove this are Theorem 3.5 above which gives a con-
centration result for the spectral gap, together with the following Theorem 4.6.

Theorem 4.6 (Garland, Ballman–Świątkowski). Let ∆ be a pure D-dimensional
finite simplicial complex such that for every (D − 2)-dimensional face σ, the link
lk∆(σ) is connected and has spectral gap is at least λ2[lk∆(σ)] > 1 − 1/D. Then
HD−1(∆,Q) = 0.

Theorem 4.6 is a special case of Theorem 2.5 of Ballman–Świątkowski [8], which
in turn based on earlier work of Garland. For a deeper discussion of Garland’s
method, see A. Borel’s account in Séminaire Bourbaki [13]. It is worth noting that
Kazhdan had already proved other cases of Serre’s conjecture in 1967 [37], and that
this is the paper in which he introduced Property (T).

As a corollary, many random flag complexes have nontrivial rational homology
only in middle degree.

Corollary 4.7. Let d ≥ 1 and ε > 0 be fixed. If

nε

n2/d
≤ p ≤ n−ε

n2/(d+1)
,

then w.h.p. X(n, p) is d-dimensional, and

H̃i(X(n, p),Q) = 0 unless i = bd/2c.

The same argument shows that if p = O(n−ε) for any fixed ε > 0 then w.h.p.
X(n, p) has at most two nontrivial rational homology groups. This might be remi-
niscent of the concentration of chromatic number of a graph χ(G(n, p)) on at most
two values if say p = O(n−1/2).

There is a slightly subtle point to be made here. In contrast to the earlier
k-dimensional examples Yk(n, p), now the dimension d of the complex is a random
variable. But by choosing p in the indicated regime, the complex is d-dimensional
w.h.p.
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Since the link of face in a random flag complex has the same distribution as
another random flag complex (with shifted parameter), with a little more work one
can show the following.

Corollary 4.8. Let d ≥ 1 and ε > 0 be fixed. If

nε

n2/d
≤ p ≤ n−ε

n2/(d+1)
,

then w.h.p. X(n, p) is d-dimensional, and the bd/2c-skeleton of X(n, p) is Cohen–
Macaulay over Q.

It is conceivable that Theorem 4.5 could be sharpened to the following.

Conjecture 4.9. If

p =

(
(k/2 + 1) log n+ (k/2) log log n+ c

n

)1/(k+1)

,

where c ∈ R is constant, then the dimension of kth cohomology βk approaches a
Poisson distribution with mean

µ =
(k/2 + 1)k/2

(k + 1)!
e−c.

In particular,

P[Hk(X,Q) = 0]→ exp

[
− (k/2 + 1)k/2

(k + 1)!
e−c
]
,

as n→∞.

By earlier results, this conjecture is equivalent to showing that in this regime,
cohomology is generated by characteristic functions on isolated k-faces.

4.5. Torsion. The question of torsion in random homology is still fairly mys-
terious, but for certain models torsion will be quite large. It may be surprising to
learn, for example, that there exists a 2-dimensional Q-acyclic simplicial complex
S on 31 vertices with H1(S,Z) cyclic of order

|H1(S,Z)| = 736712186612810774591.

The complex is relatively easy to define. The vertices are the elements of the
cyclic group Z/31, the 1-skeleton is a complete graph, and a set of three vertices
{x, y, z} span a 2-dimensional face if and only if

x+ y + z ≡ 1, 2, or 9 (mod 31).

This type of “sum complex” was introduced and proved to be Q-acyclic by Linial,
Meshulam, and Rosenthal [40], and I found this example with a calculation in Sage
[50].

Work of Kalai [36] showed that for Q-acyclic complexes, the expected size of
the torsion in homology is enormous. For example, for a random 2-dimensional
Q-acyclic complex Sn on n vertices,

E [|H1(S,Z)|] ≥ ecn
2

for some constant c > 0.
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Compare this to Kowalski’s note on torsion in homology of Dunfield–Thurston
random 3-manifolds [38], where he shows that even though these manifolds Mn

have H1(Mn,Q) = 0, with probability going to 1,

E [|H1(Mn,Z)|] ≥ eαn,
for some α > 0.

For random 2-complexes or random flag complexes, my guess is that there may
be a window when Hi(X,k) vanishes for every fixed field k but such that Hi(X,Z)
is nonvanishing, but that this window is fairly small. Once you have a random
finite abelian group of finite order, it should only take a few more random relations
thrown in before the group becomes trivial. So in particular I would guess the
following.

Conjecture 4.10. Let d ≥ 6 and ε > 0 be fixed. If
nε

n2/d
≤ p ≤ n−ε

n2/(d+1)
,

then w.h.p. X(n, p) is homotopy equivalent to a wedge of bd/2c-spheres.

It is shown in [31] that for p ≥ n−1/3+ε, X(n, p) is simply connected w.h.p. So
by uniqueness of Moore spaces, Conjecture 4.10 is equivalent to showing that for
this range of p, H∗(X(n, p)) is torsion-free.

There may well be a window of nontrivial integer homology. Perhaps the pretti-
est thing we could hope for would be that for some model, Cohen–Lenstra heuristics
hold. The Cohen–Lenstra heuristics propose roughly that the probability of a finite
abelian p-group is inversely proportional to the size of its automorphism group.
Could this hold for integer homology of a random Q-acyclic complex, according to
an appropriate determinantal measure, for example?

Lyons has carefully thought about these measures and described a way to gen-
eralize uniform spanning trees to higher dimensions, even on infinite cell complexes
via `2-cohomology [42]. In closely related enumerative work, Duval, Klivans, and
Martin extended Kalai’s result, generalizing the Matrix Tree Theorem to higher
dimensions [18].

5. Comments

Now that several different models of random simplicial complex have been
studied, we start to see a few common themes emerging.

5.1. There are at least two different kinds of topological phase tran-
sitions. The “upper” phase transition where homology or cohomology passes from
nonvanishing to vanishing seems easier to understand cohomologically. Examples of
this kind of phase transition include the Erdős–Rényi theorem, the Linial–Meshulam
theorem, and Theorem 4.5 above. These thresholds tend to be sharp, happening in
a very narrow window.

The “lower” phase transition where homology or cohomology passes from van-
ishing to nonvanishing seems easier to understand homologically. Theorem 2.5
characterizes the first appearance of cycles in G(n, p). The higher-dimensional ana-
logue of this phase transition in random complexes is apparently much more subtle,
but interesting recent work by Aronshtam, Linial, et al. studying this phase transi-
tion appears in [4] and [5]. These thresholds tend to be sharp on one side, not on
the other.
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The content of a certain number of theorems about random graphs is that non-
sharp thresholds for monotone graph properties come from local properties, such as
“contains a triangle”, whereas sharp thresholds come from global properties, such
as connected. Certifying that a graph contains a triangle only checking 3 relations
of edge or non-edge. But certifying that a vertex is isolated involves checking n− 1
other relations. Since isolated faces generate cohomology near the upper phase
transition, by the same argument this is a global property and hence we should
guess the upper threshold is sharp.

5.2. Homology and cohomology try to be as small as possible. With
this motto we mean something more geometric, namely that near the lower thresh-
old. homology tends to be supported on small classes. For example, homology
of random geometric complexes in the sparse regime has a basis of vertex-minimal
spheres [32]. This happens for both Čech and Vietoris–Rips complexes, even though
the minimal spheres are combinatorially different in the two cases. This already
accounts for the difference in the formulas for expectation of the Betti numbers in
the sparse regime.

Near the upper threshold, cohomology is generated by small classes, namely
characteristic functions on isolated k-faces.

The existence of these two phase transitions already implies something about
what a theory of random persistent homology will have to look like. Perhaps a
deeper understanding of these transitions will enable us to understand better how
individual random homology classes are likely to begin and end.

This kind of paradigm also allows one to prove Poisson and normal approxi-
mation for Betti numbers. Since the homology is generated by small cycles, these
cycles don’t intersect very often, so they are “mostly independent”. Then one can
use the method of moments or Stein’s method, for example, to prove something
about limiting distributions [34, 35].

5.3. Nature abhors homology. (With apologies to Aristotle.) Homology
is, after all said to measure the number of “holes” in a topological space, and holes
are made out of vacuum. More seriously, it is often the case that unless there is a
good reason random homology is forced to be there, then it is likely to vanish or
be “small.”

Suppose you have some measure on “pairs of random linear maps f : A→ B and
g : B → C satisfying g ◦ f = 0”. What can we say about the resulting distribution
on HB? Sometimes you can guess the answer from random linear algebra.

For example, one might guess that if

dimA� dimB � dimC

then there is a good chance that the map g : B → C is injective, in which case
Hb = 0. Or else perhaps ker g is merely small, but then this still bounds the size of
homology. Similarly, if

dimA� dimB � dimC,

then one might expect f : A → B is probably surjective (or nearly so) and so one
expects that HB is small. In fact only place the one place where we actually expect
to see large homology, if dimension where the only consideration, would be if

dimA� dimB � dimC.

So you might guess that dimHB ≈ max{0,− dimA−+ dimB − dimC}.
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The random flag complex X(n, p) is an example of where this kind of argument
works surprisingly well.

5.4. Random simplicial complexes are expanders. One of the takeaway
messages is that random simplicial complexes have expander-like properties. Higher-
dimensional analogues of expanders have attracted a lot of attention — see for ex-
ample the discussion in [16], and also Gromov’s recent work on “geometric overlap”
properties of expanders [26, 27]. As expander graphs have had so many appli-
cations in mathematics and theoretical computer science [30], one expects that
higher-dimensional expanders will eventually find applications as well.

Expander graphs are well understood to be impossible to embed in Euclidean
space with small metric distortion, thanks to work of Bourgain and many oth-
ers. A recent “volume distortion” analogue of this was recently proved for random
simplicial complexes by Dotterrer [15].

We would like to better understand the higher-dimensional analogues of the
Cheeger–Buser inequalities relating spectral gap and the “bottleneck” expansion
constant. See also Jerrum–Sinclair. For recent work on higher-dimensional ana-
logues of Cheeger-Buser, see Gunder–Wagner [28], and Steenbergen–Klivans–Mukherjee
[49].

5.5. A multi-parameter model. A model that deserves more attention is
the multi-parameter random simplicial complex ∆(n; p1, p2, . . . ). Here there are
n vertices, the probability of an edge is p1 = p1(n), and the complex is built
inductively by dimension in so that the probability of every k-dimensional simplex,
conditioned that its entire (k − 1)-dimensional boundary is already in place, is
pk = pk(n), independently.

Several of the random simplicial complexes discussed here are special cases of
this model, the random graph

G(n, p) = ∆(n; p1, 0, 0, . . . ),

random 2-complex
Y (n, p) = ∆(n; 1, p2, 0, 0, . . . ),

and random flag complex

X(n, p) = ∆(n; p1, 1, 1, . . . ).
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