
The Tao of Parallelism in Algorithms ∗

Keshav Pingali1,3, Donald Nguyen1, Milind Kulkarni5,
Martin Burtscher4, M. Amber Hassaan2, Rashid Kaleem1, Tsung-Hsien Lee2, Andrew Lenharth3,

Roman Manevich3, Mario Méndez-Lojo3, Dimitrios Prountzos1, Xin Sui1
1Department of Computer Science, 2Electrical and Computer Engineering and 3Institute for Computational Engineering and Sciences

The University of Texas at Austin
4Department of Computer Science, Texas State University–San Marcos

5School of Electrical and Computer Engineering, Purdue University

Abstract
For more than thirty years, the parallel programming community
has used the dependence graph as the main abstraction for reason-
ing about and exploiting parallelism in “regular” algorithms that
use dense arrays, such as finite-differences and FFTs. In this paper,
we argue that the dependence graph is not a suitable abstraction for
algorithms in new application areas like machine learning and net-
work analysis in which the key data structures are “irregular” data
structures like graphs, trees, and sets.

To address the need for better abstractions, we introduce a data-
centric formulation of algorithms called the operator formulation
in which an algorithm is expressed in terms of its action on data
structures. This formulation is the basis for a structural analysis of
algorithms that we call tao-analysis. Tao-analysis can be viewed
as an abstraction of algorithms that distills out algorithmic proper-
ties important for parallelization. It reveals that a generalized form
of data-parallelism called amorphous data-parallelism is ubiqui-
tous in algorithms, and that, depending on the tao-structure of
the algorithm, this parallelism may be exploited by compile-time,
inspector-executor or optimistic parallelization, thereby unifying
these seemingly unrelated parallelization techniques. Regular algo-
rithms emerge as a special case of irregular algorithms, and many
application-specific optimization techniques can be generalized to
a broader context.

These results suggest that the operator formulation and tao-
analysis of algorithms can be the foundation of a systematic ap-
proach to parallel programming.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming; D.3.3
[Programming Languages]: Language Constructs and Features—
Frameworks
General Terms: Algorithms, Languages, Performance
Keywords: amorphous data-parallelism, Galois system, irregular
programs, operator formulation, tao-analysis.
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1. Introduction

n. /tau/, /dau/: 1. a. the source and guiding principle
of all reality as conceived by Taoists; b. process which is
to be followed for a life of harmony. Origin: Chinese dào,
literally, way. (adapted from Merriam-Webster)

Dense matrix computations arise naturally in high-performance
implementations of important computational science methods like
finite-differences and multigrid. Therefore, over the years, the par-
allel programming community has acquired a deep understanding
of the patterns of parallelism and locality in these kinds of “regular”
algorithms. In contrast, “irregular” data structures such as sparse
graphs, trees and sets are the norm in most emerging problem do-
mains such as the following.

• In social network analysis, the key data structures are extremely
sparse graphs in which nodes represent people and edges rep-
resent relationships. Algorithms for betweenness-centrality,
maxflow, etc. are used to extract network properties [10].

• Machine-learning algorithms like belief propagation and survey
propagation are based on message-passing in a factor graph, a
sparse bipartite graph [44].

• Data-mining algorithms like k-means and agglomerative clus-
tering operate on sets and multisets [61].

• Simulations of electrical circuits and battlefields often use
event-driven (discrete-event) simulation [49] over networks of
nodes.

• Optimizing compilers perform iterative and elimination-based
dataflow analysis on structures like inter-procedural control-
flow graphs [1].

• Even in computational science, n-body methods use spatial
decomposition trees [6], and finite-element methods use 2D
and 3D meshes produced using algorithms like Delaunay mesh
generation and refinement [11].

Unfortunately, we currently have few insights into the struc-
ture of parallelism and locality in irregular algorithms, and this has
stunted the development of techniques and tools that make it easier
to produce parallel implementations. Domain specialists have writ-
ten parallel programs for some of the algorithms discussed above
(see [5, 20, 31, 33] among others). There are also parallel graph li-
braries such as Boost [22] and STAPL [2]. However, it is difficult to
extract broadly applicable abstractions, principles, and mechanisms
from these implementations. Another approach is to use points-to
and shape analysis [19, 27, 30] to find data structure invariants that
might be used to prove independence of computations. This ap-



proach has been successful in parallelizing n-body methods like
Barnes-Hut that are organized around trees [17], but most of the
applications discussed above use sparse graphs with no particular
structure, so shape analysis techniques fail to find any parallelism.
These difficulties have seemed insurmountable, so irregular algo-
rithms remain the Cinderellas of parallel programming in spite of
their central role in emerging applications.

In this paper, we argue that these problems can be solved only
by changing the abstractions that we currently use to reason about
parallelism in algorithms. The most widely used abstraction is the
dependence graph in which nodes represent computations, and
edges represent dependences between computations; for programs
with loops, dependence edges are often labeled with additional in-
formation such as dependence distances and directions. Computa-
tions that are not ordered by the transitive closure of the dependence
relation can be executed in parallel. Dependence graphs produced
either by studying the algorithm or by compiler analysis are re-
ferred to as static dependence graphs. Although static dependence
graphs are used extensively for implementing regular algorithms,
they are not adequate for modeling parallelism in irregular algo-
rithms. As we explain in Section 2, the most important reason for
this is that dependences between computations in irregular algo-
rithms are functions of runtime data values, so they cannot be rep-
resented usefully by a static dependence graph.

To address the need for better abstractions, Section 3 introduces
a data-centric formulation of algorithms, called the operator for-
mulation of algorithms. In the spirit of Niklaus Wirth’s aphorism
“Program = Algorithm + Data Structure” [65], we express algo-
rithms in terms of operations on abstract data types (ADTs), in-
dependently of the concrete data structures used to implement the
abstract data types. This formulation is the basis of a structural
analysis of algorithms that we call tao-analysis after the three key
dimensions of the analysis. In the literature on parallel program-
ming, there are many abstractions of parallel machines, such as a
variety of PRAM models [32]. Tao-analysis can be viewed as an
abstraction of algorithms that distills out properties important for
parallelization, hiding unnecessary detail.

Tao-analysis reveals that a generalized data-parallelism called
amorphous data-parallelism is ubiquitous in algorithms, as we dis-
cuss in Section 4. We also show that depending on the tao-structure
of the algorithm, this parallelism may be exploited by compile-
time, inspector-executor or optimistic parallelization, thereby uni-
fying these seemingly unrelated techniques by consideration of the
binding time of scheduling decisions. In addition, regular algo-
rithms emerge as special cases of irregular algorithms.

In Section 5, we show how these concepts can be applied to the
parallelization of many important algorithms from the literature.
Some of the techniques discussed in this paper have been incor-
porated into the Galois system1. In Section 6, we give experimen-
tal results for three full applications that demonstrate the practical
utility of these ideas. Extensions to the amorphous data-parallelism
model are discussed in Section 7. We summarize the main contri-
butions in Section 8.

2. Inadequacy of static dependence graphs
The need for new algorithmic abstractions can be appreciated by
considering Delaunay Mesh Refinement (DMR) [11], an irregular
algorithm used extensively in finite-element meshing and graphics.
The Delaunay triangulation for a set of points in a plane is the tri-
angulation in which each triangle satisfies a certain geometric con-
straint called the Delaunay condition [14]. In many applications,
triangles are required to satisfy additional quality constraints, and
this is accomplished by a process of iterative refinement that re-

1 Available from http://iss.ices.utexas.edu/galois

(a) Unrefined mesh (b) Refined mesh

Figure 1. Fixing bad triangles

1 Mesh mesh = / / read i n i n i t i a l mesh
2 W o r k l i s t<T r i a n g l e> wl ;
3 wl . add ( mesh . b a d T r i a n g l e s ( ) ) ;
4 whi le ( wl . s i z e ( ) != 0 ) {
5 T r i a n g l e t = wl . p o l l ( ) ; / / g e t bad t r i a n g l e
6 i f ( t no l o n g e r i n mesh ) c o n t in u e ;
7 C a v i t y c = new C a v i t y ( t ) ;
8 c . expand ( ) ;
9 c . r e t r i a n g u l a t e ( ) ;

10 mesh . u p d a t e ( c ) ;
11 wl . add ( c . b a d T r i a n g l e s ( ) ) ;
12 }

Figure 2. Pseudocode of the mesh refinement algorithm

peatedly fixes “bad” triangles (those that do not satisfy the quality
constraints) by adding new points to the mesh and re-triangulating.
Refining a bad triangle by itself may violate the Delaunay prop-
erty of triangles around it, so it is necessary to compute a region
of the mesh called the cavity of the bad triangle and replace all
the triangles in the cavity with new triangles. Figure 1 illustrates
this process; the darker-shaded triangles are “bad” triangles, and
the cavities are the lighter shaded regions around the bad trian-
gles. Re-triangulating a cavity may generate new bad triangles,
but it can be shown that, at least in 2D, this iterative refinement
process will ultimately terminate and produce a guaranteed-quality
mesh. Different orders of processing bad triangles lead to different
meshes, although all such meshes satisfy the quality constraints and
are acceptable outcomes of the refinement process [11]. This is an
example of Dijkstra’s don’t-care non-determinism (also known as
committed-choice non-determinism) [16]. Figure 2 shows the pseu-
docode for mesh refinement. Each iteration of the while-loop re-
fines one bad triangle; we call this computation an activity.

DMR can be performed in parallel since bad triangles whose
cavities do not overlap can be refined in parallel. Note that two
triangles whose cavities overlap can be refined in either order but
not concurrently. Unfortunately, static dependence graphs are in-
adequate for exposing this parallelism. In Delaunay mesh refine-
ment, as in most irregular algorithms, dependences between loop
iterations (activities) are functions of runtime values: whether or
not two iterations of the while-loop in Figure 2 can be executed
concurrently depends on whether the cavities of the relevant trian-
gles overlap, and this depends on the input mesh and how it has
been modified by previous refinements. Since this information is
known only during program execution, a static dependence graph
for Delaunay mesh refinement must conservatively assume that ev-
ery loop iteration might interfere with every prior iteration, serial-
izing the execution.

A second problem with dependence graphs is that they do not
model don’t-care non-determinism. In dependence graphs, compu-
tations can be executed in parallel if they are not ordered by the
dependence relation. In irregular algorithms like Delaunay mesh
refinement, it is often the case that two activities can be done in ei-
ther order but cannot be done concurrently, so they are not ordered
by dependence and yet cannot be executed concurrently. Exploit-
ing don’t-care non-determinism can lead to more efficient parallel
implementations, as we discuss in Section 4.

Event-driven simulation [49], which is used in circuit simula-
tions and system modeling, illustrates a different kind of complex-
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Figure 3. Conflicts in event-driven simulation

ity exhibited by some irregular algorithms. This application simu-
lates a network of processing stations that communicate by sending
messages along FIFO links. When a station processes a message,
its internal state may be updated, and it may produce zero or more
messages on its outgoing links. Sequential event-driven simulation
is implemented by maintaining a global priority queue of events
called the event list and processing the earliest event at each step.
In this irregular algorithm, activities correspond to the processing
of events.

In principle, event-driven simulation can be performed in paral-
lel by processing multiple events from the event list simultaneously,
rather than one event at a time. However, unlike in Delaunay mesh
refinement, in which it was legal to process bad triangles concur-
rently provided they were well-separated in the mesh, it may not be
legal to process two events in parallel even if their stations are far
apart in the network. Figure 3 demonstrates this. Suppose that in
a sequential implementation, node A fires and produces a message
time-stamped 3, and then node B fires and produces a message
time-stamped 4. Notice that node C must consume this message
before it consumes the message time-stamped 5. Therefore, in Fig-
ure 3(a), the events atA and C cannot be processed in parallel even
though the stations are far apart in the network. However, notice
that if the message from B to C had a time-stamp greater than 5, it
would have been legal to process in parallel the events at nodes A
and C. To determine if two activities can be performed in parallel
at a given point in the execution of this algorithm, we need a crystal
ball to look into the future!

In short, static dependence graphs are inadequate abstractions
for irregular algorithms for the following reasons.

1. Dependences between activities in irregular algorithms are usu-
ally complex functions of runtime data values, so they cannot
be usefully captured by a static dependence graph.

2. Many irregular algorithms exhibit don’t-care non-determinism,
but this is hard to model with dependence graphs.

3. Whether or not it is safe to execute two activities in parallel at a
given point in the computation may depend on activities created
later in the computation. It is not clear how one models this with
dependence graphs.

3. Operator formulation of algorithms
These problems can be addressed by a data-centric formulation of
algorithms, called the operator formulation, in which an algorithm
is viewed in terms of its action on data structures. The operator
formulation can be defined for any abstract data type, and we will
use the graph ADT to illustrate the key ideas. As is standard, a
graph is (i) a set of nodes V , and (ii) a set of edges E ⊆ V × V
between these nodes. Graphs can be directed or undirected, and
nodes and edges may be labeled with values.

We will not discuss a particular concrete representation for the
graph ADT. The implementation is free to choose the concrete
representation that is best suited for a particular algorithm and
machine: for example, cliques may be represented using dense
arrays, while sparse graphs may be represented using adjacency
lists. This is similar to the approach taken in relational databases:
SQL programmers use the relation ADT in writing programs, and
the underlying DBMS system is free to implement the ADT using
B-trees, hash tables, and other concrete data structures.

Figure 4. Active elements and neighborhoods

3.1 Active elements, neighborhoods and ordering

Active elements: At each point during the execution of a graph
algorithm, there are certain nodes or edges in the graph where
computation might be performed. These nodes and edges are called
active elements; to keep the discussion simple, we assume from
here on that active elements are nodes. To process an active node,
an operator is applied to it, and the resulting computation is called
an activity.

Neighborhoods: Performing an activity may require reading or
writing other nodes and edges in the graph. Borrowing terminology
from the literature on cellular automata, we refer to the set of nodes
and edges that are read or written while performing an activity as
the neighborhood of that activity. Figure 4 shows an undirected
sparse graph in which the filled nodes represent active nodes, and
shaded regions represent the neighborhoods of those active nodes.
Note that in general, the neighborhood of an active node is distinct
from its neighbors in the graph.

Ordering: In general, there are many active nodes in a graph,
so a sequential implementation must pick one of them and perform
the appropriate activity. In some algorithms such as Delaunay mesh
refinement, the implementation is allowed to pick any active node
for execution. We call these unordered algorithms. In contrast,
some algorithms dictate an order in which active nodes must be
processed by a sequential implementation; we call these ordered
algorithms. Event-driven simulation is an example: the sequential
algorithm for event-driven simulation processes messages in global
time order. The order on active nodes may be a partial order.

We illustrate these concepts using the algorithms from Sec-
tion 2. In DMR, the mesh is usually represented by a graph in which
nodes represent triangles and edges represent adjacency of trian-
gles. The active nodes in this algorithm are the nodes representing
bad triangles, and the neighborhood of an active node is the cav-
ity of that bad triangle. In event-driven simulation, active nodes are
stations that have messages on their input channels, and neighbor-
hoods contain only the active node.

3.2 From algorithms to programs

A natural way to write these algorithms is to use worklists to keep
track of active nodes. However, programs written directly in terms
of worklists, such as the one in Figure 2, encode a particular or-
der of processing worklist items and do not express the don’t-care
nondeterminism in unordered algorithms. To address this problem,
we can use the Galois programming model, which is a sequential,
object-oriented programming model (such as sequential Java), aug-
mented with two Galois set iterators [40]:

DEFINITION 1. Galois set iterators:

• Unordered-set iterator: foreach (e in Set S) {B(e)}
The loop body B(e) is executed for each element e of set S.
The order in which iterations execute is indeterminate and can
be chosen by the implementation. There may be dependences



between the iterations. When an iteration executes, it may add
elements to S.

• Ordered-set iterator: foreach (e in OrderedSet S) {B(e)}
This construct iterates over an ordered set S. It is similar to
the unordered set iterator above, except that a sequential im-
plementation must choose a minimal element from S at every
iteration. When an iteration executes, it may add elements to S.

1 Mesh mesh = / / read i n i n i t i a l mesh
2 Workset<T r i a n g l e> ws ;
3 ws . add ( mesh . b a d T r i a n g l e s ( ) ) ;
4 foreach ( T r i a n g l e t i n Set ws ) {
5 i f ( t no l o n g e r i n mesh ) c o n t i nu e ;
6 C a v i t y c = new C a v i t y ( t ) ;
7 c . expand ( ) ;
8 c . r e t r i a n g u l a t e ( ) ;
9 mesh . u p d a t e ( c ) ;

10 ws . add ( c . b a d T r i a n g l e s ( ) ) ;
11 }

Figure 5. DMR using an unordered Galois set iterator

Iterators over multi-sets can be defined similarly. In principle,
unordered iterators are a special case of ordered iterators, but they
are sufficiently important in applications that we give them spe-
cial treatment. Allowing break statements in the body of a Galois
iterator permits early exits out of iterators. This can be useful for
search problems. Some unordered algorithms can also be written
using divide-and-conquer, as discussed in Section 7.

Set iterators were first introduced in the SETL programming
language [58] and can now be found in most object-oriented lan-
guages such as Java and C++. However, new elements cannot be
added to sets while iterating over them, which is possible with Ga-
lois set iterators. Note that the iterators have a well-defined sequen-
tial semantics. The unordered-set iterator specifies the don’t-care
nondeterminism of unordered algorithms.

The Galois system provides a (concurrent) data structure library,
similar in spirit to the Java collections library, containing imple-
mentations of key ADTs such as graphs, trees, grids, work-sets, etc.
Application programmers write algorithms in sequential Java, us-
ing the appropriate library classes and Galois set iterators. Figure 5
shows pseudocode for Delaunay mesh refinement, written using the
unordered Galois set iterator. The body of the Galois set iterator is
the implementation of the operator. Note that neighborhoods are
defined implicitly by the calls to the graph ADT; for example, if
the body of the iterator invokes a graph API method to get the out-
going edges from an active node, these edges become part of the
neighborhood for that activity. Therefore, in general, the neighbor-
hood of an activity is known only when that activity is completed.
This has important implications for parallelization, as we discuss
in Section 4.

3.3 Tao-analysis of algorithms

Algorithms

Topology

Operator

Active
Nodes

Structured

Semi-structured

Unstructured

Morph

Local computation

Reader

Location

Ordering
Unordered

Ordered

Topology-driven

Data-driven
∧ ∧

Figure 6. Structural analysis of algorithms
The operator formulation permits a natural structural analysis of

algorithms along three dimensions (shown in Figure 6): Topology,

Active nodes and Operator. The topology describes the data struc-
ture on which computation occurs. The active nodes dimension de-
scribes how nodes become active and how active nodes should be
ordered, providing a global view of an algorithm. Finally, the opera-
tor describes the action of the operator on an active node, providing
a local view of an algorithm. We call this tao-analysis. Exploiting
this structure is key to efficient parallel implementations as we dis-
cuss in Section 4.

1. Topology: We classify graph topologies according to the (Kol-
mogorov) complexity of their descriptions. Highly structured
topologies can be described concisely with a small number of
parameters, while unstructured topologies require verbose de-
scriptions. The topology of a graph is an important indicator
of the kinds of optimizations available to algorithm implemen-
tations; for example, algorithms in which graphs have highly
structured topologies may be amenable to static analysis and
optimization.

• Structured: An example of a structured topology is a graph
consisting of labeled nodes and no edges: this is isomorphic
to a set or multiset. Its topology can be described by a single
number, which is the number of elements in the set/multiset.
If the nodes are totally ordered, the graph is isomorphic to
a sequence or stream. Cliques (graphs in which every pair
of nodes is connected by a labeled edge) are isomorphic
to square dense matrices (row/column numbers are derived
from a total ordering of the nodes). Their topology is com-
pletely specified by a single number, which is the number of
nodes in the clique. The final example we will consider in
this paper is the rectangular grid; its topology is determined
completely by two numbers, its height and width.

• Semi-structured: We classify trees as semi-structured topolo-
gies. Although trees have useful structural invariants, there
are many trees with the same number of nodes and edges.

• Unstructured: General graphs fall in this category.

2. Active nodes: This dimension describes how nodes become
active and the order in which they must be processed.

• Location: Nodes can become active in a topology-driven or
data-driven manner. In topology-driven algorithms, the ac-
tive nodes are determined by the graph, so the execution of
the operator at some active node does not cause other nodes
to become active. Common examples are algorithms that it-
erate over all the nodes or edges of a graph. In data-driven
algorithms, an activity at one node may cause other nodes to
become active, so nodes become active in a data-dependent
and unpredictable manner. Some examples are the preflow-
push algorithm for maxflow computation in graphs and al-
gorithms for event-driven simulation.

• Ordering: As discussed above, active nodes in some algo-
rithms are ordered whereas others are unordered.

3. Operator: We classify operators based on how they modify the
graph.

• Morph: A morph operator may modify its neighborhood by
adding or deleting nodes and edges, and it may also update
values on nodes and edges. The Delaunay mesh refinement
operator is an example; other examples are discussed in
Section 5.1.

• Local computation: A local computation operator may up-
date values stored on nodes and edges in its neighbor-
hood, but it does not change the graph connectivity. Finite-
difference computations are the classic example; other ex-
amples are discussed in Section 5.2.
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• Reader: An operator is a reader for a data structure if it
does not modify it in any way. For example, the ray-tracing
operator is a reader for the scene being rendered; other
examples are discussed in Section 5.3.

These definitions can be generalized in the obvious way for
algorithms that deal with multiple data structures. In that case,
neighborhoods span multiple data structures, and the classification
of an operator is with respect to a particular data structure. For
example, in matrix multiplication C = AB, the operator is a local
computation operator for C and a reader for matrices A and B.

3.4 Discussion

As mentioned above, under-specification of the order of process-
ing active nodes in unordered algorithms is an instance of don’t-
care non-determinism. In some unordered algorithms, the output
is independent of the order in which active nodes are processed, a
property that is referred to as the Church-Rosser property since the
most famous example of this behavior is β-reduction in λ-calculus.
Dataflow graph execution [4, 15] and the preflow-push algorithm
for computing maxflow [12] also exhibit this behavior. In other al-
gorithms, the output may be different for different choices of active
nodes, but all such outputs are acceptable, so the implementation
can still pick any active node for execution. Delaunay mesh refine-
ment and Petri net simulation [52] are examples. The preflow-push
algorithm also exhibits this behavior if the algorithm outputs both
the min-cut and the max-flow. Even for unordered algorithms, itera-
tion execution order may affect cache performance and the number
of executed iterations, so control of iteration order is useful for effi-
ciency. Nguyen et al describe a notation and an implementation for
doing this [50].

The metaphor of operators acting on neighborhoods is reminis-
cent of notions in term-rewriting systems, such as graph grammars
in particular [18, 42]. The semantics of functional language pro-
grams are usually specified using term rewriting systems that de-
scribe how expressions can be replaced by other expressions within
the context of the functional program. The process of applying
rewrite rules repeatedly to a functional language program is known
as string or tree reduction.

Tree reduction can be generalized in a natural way to graph
reduction by using graph grammars as rewrite rules [18, 42]. A
graph rewrite rule is defined as a morphism in the category C of
labeled graphs with partial graph morphisms as arrows: r : L→ R,
and a rewriting step is defined by a single pushout diagram [42]
as shown in Figure 7. In this diagram, G is a graph, and the total
morphism m : L → G, which is called a redex, identifies the
portion of G that matches L, the left-hand side of the rewrite rule.
The application of a rule r at a redex m leads to a direct derivation
(r,m) : G⇒ H given by the pushout in Figure 7.

In graph reduction, rewrite rules are applied repeatedly to the
text of the program until a normal or head-normal form is reached;
in the operator formulation on the other hand, the operator is ap-
plied to the data structure until there are no more active nodes. In
addition, we do not require operators to be expressible as a finite
set of “syntactic” rewrite rule schemas (it is not clear that Delau-
nay mesh refinement, for example, can be specified using graph
grammars, although some progress along these lines is reported by
Panangaden and Verbrugge [63]). Nevertheless, the terminology of
graph grammars may be useful for providing a theoretical founda-

tion for the operator formulation of algorithms. For example, in the
context of Figure 7, the graph structure of L andR are identical for
local computation operators, while for reader operators, the rewrite
rule r is the identity morphism. We also note that whether operators
make imperative-style in-place updates to graphs or create modified
copies of the graph in a functional style can be viewed as a matter
of implementation.

4. Amorphous data-parallelism
The operator formulation of an algorithm is not explicitly paral-
lel, but Figure 4 shows intuitively how opportunities for exploiting
parallelism arise in an algorithm: if there are many active nodes at
some point in the computation, each one is a site where a proces-
sor can perform computation, subject to neighborhood and ordering
constraints. When active nodes are unordered, the neighborhood
constraints must ensure that the output produced by executing the
activities in parallel is the same as the output produced by execut-
ing the activities one at a time in some order. For ordered active
elements, this order must be the same as the ordering on active el-
ements.

DEFINITION 2. Given a set of active nodes and an ordering on
active nodes, amorphous data-parallelism is the parallelism that
arises from simultaneously processing active nodes, subject to
neighborhood and ordering constraints.

Amorphous data-parallelism is a generalization of conventional
data-parallelism in which (i) concurrent operations may conflict
with each other, (ii) activities can be created dynamically, and (iii)
activities may modify the underlying data structure. Not surpris-
ingly, the exploitation of amorphous data-parallelism is more com-
plex than the exploitation of conventional data-parallelism. In this
section, we present a baseline implementation that uses optimistic
or speculative execution.

4.1 Baseline: speculative parallel execution
In the baseline execution model, the graph is stored in shared-
memory, and active nodes are processed by some number of
threads. A thread picks an active node from the work-set and specu-
latively applies the operator to that node, making calls to the graph
API to perform operations on the graph as needed. The neighbor-
hood of an activity can be visualized as a blue ink-blot that begins
at the active node and spreads incrementally whenever a graph API
call is made that touches new nodes or edges in the graph. To en-
sure that neighborhoods are disjoint, the concurrent graph class
can use exclusive logical locks: each graph element has an exclu-
sive lock that must be acquired by a thread before it can access
that element. Locks are held until the activity terminates. If a lock
cannot be acquired because it is already owned by another thread,
a conflict is reported to the runtime system, which rolls back one of
the conflicting activities. Lock manipulation is performed entirely
by the methods in the graph class; in addition, to enable rollback,
each graph API method that modifies the graph makes a copy of
the data before modification, as is done in other systems that use
speculation such as transactional memory and thread-level specu-
lation [25, 29, 56, 60, 64].

If active elements are not ordered, the activity commits when
the application of the operator is complete, and all acquired locks
are then released. If active elements are ordered, active nodes can
still be processed in any order, but they must commit in serial or-
der. This can be implemented using a data structure similar to a
reorder buffer in out-of-order processors [40]. In this case, locks
are released only when the activity commits (or is aborted). Exclu-
sive logical locks can be implemented by using a compare-and-set
instruction to mark a graph element with the id of the activity that
touches it.



Neighborhoods of concurrent activities can be permitted to
overlap if these activities do not modify nodes and edges in the
intersection of these neighborhoods (consider activities i3 and i4
in Figure 4). Therefore, additional concurrency is possible if we
recognize read-only data structures and do not lock their elements;
reader/writer locks are another solution. The most general solution
is to use commutativity conditions; this allows iterations to exe-
cute in parallel even if they perform reduction operations on shared
variables, for example. To keep the discussion simple, we do not
describe these alternatives here but refer the interested reader to
Kulkarni et al. [39]. The literature on PRAM algorithms has ex-
plored similar variations such as the EREW and combining CRCW
models [32].

4.1.1 Parallelism profiles

For an algorithm like matrix multiplication for which a static de-
pendence graph can be generated, it is possible to give closed-form
estimates of the critical path length and the amount of parallelism
at each point of execution (these estimates are usually parameter-
ized by the size of the input). For example, in multiplying two
N ×N matrices using the standard algorithm, there are N3 multi-
plications that can be performed in parallel. In contrast, amorphous
data-parallelism in irregular algorithms is usually a function of run-
time values, and closed-form estimates are not generally possible.

One measure of amorphous parallelism in irregular algorithms
is the number of active nodes that can be processed in parallel
at each step of the algorithm for a given input, assuming that (i)
there is an unbounded number of processors, (ii) an activity takes
one time step to execute, (iii) the system has perfect knowledge
of neighborhood and ordering constraints so it only executes ac-
tivities that can complete successfully, and (iv) a maximal set of
non-conflicting activities is executed at each step. This is called the
available parallelism at each step, and a graph showing the avail-
able parallelism at each step of execution of an irregular algorithm
for a given input is called a parallelism profile. For algorithms for
which a static dependence graph can be generated, the available
parallelism at any step corresponds to the width of the dependence
graph at that step. In this paper, we will present parallelism profiles
produced by the ParaMeter tool [38].

Figure 8 shows the parallelism profiles of Boruvka’s and Prim’s
minimal spanning tree (MST) algorithms; the input is a random
graph. As explained in Section 5.1, Boruvka’s algorithm is un-
ordered while Prim’s algorithm is ordered. At first sight, it is sur-
prising that an ordered algorithm like Prim has any parallelism, but
an intuitive explanation is that processing active nodes in the spec-
ified order is sufficient but not necessary to produce correct results.
A parallel implementation can process active nodes out of order,
and as long as no conflicts are detected before the activity com-
mits, the output produced by the parallel execution will be correct.
This is similar to how out-of-order execution processors find paral-
lelism in sequential machine language programs. In our experience,
many problems can be solved by both ordered and unordered algo-
rithms, but the critical path is shorter for the unordered algorithm
although it may perform more work than its ordered counterpart
(see Hassaan et al. [26] for more details).

4.2 Exploiting structure to reduce overheads

The overheads of the baseline system can be reduced by exploiting
structure when it is present. The following structure is very impor-
tant in applications.

DEFINITION 3. An implementation of an operator is said to be
cautious if it reads all the elements of its neighborhood before it
modifies any of them.
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(a) Boruvka’s unordered MST algorithm
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(b) Prim’s ordered MST algorithm

Figure 8. MST parallelism profiles of a random graph with 10,000
nodes and 35,605 edges; the edges have random, uniformly dis-
tributed weights between 1 and 1,000.

Operators can usually be implemented in different ways: for ex-
ample, one implementation might read node A, write to node A,
read nodeB, and write to nodeB, in that order, whereas a different
implementation might perform the two reads before the writes. By
Definition 3, the second implementation is cautious, but the first
one is not. In our experience, the natural implementations of most
operators such as Delaunay mesh refinement are cautious2. In con-
trast, the operator for the well-known Delaunay triangulation algo-
rithm of Guibas, Knuth and Sharir [23] does not have a naturally
cautious implementation. It performs graph mutations called edge
flips, which are done incrementally.

Unordered algorithms with cautious operator implementations
can be executed speculatively without buffering updates or making
backup copies of modified data because all conflicts are detected
during the read-only phase of the operator execution. Blandford et
al. [7] exploit this optimization in their DMR implementation;
phrasing this optimization in terms of algorithmic structure permits
a general-purpose system like Galois to use it for other algorithms
(see Méndez-Lojo et al. [47]). Prountzos et al. [55] present a shape
analysis for determining cautiousness using static analysis.

4.3 Exploiting structure for coordinated scheduling

Compile-time

Just-in-time

Run-time
Scheduling
Strategy

Coordinated

Autonomous

Figure 9. Scheduling strategies
The scheduling strategy implemented in the baseline system

can be called autonomous scheduling because activities are exe-
cuted in an uncoordinated way, requiring online conflict detection
and rollback for correct execution. Speculative overheads are elim-
inated if we ensure that only non-conflicting iterations are sched-
uled for simultaneous execution, a strategy that we call coordinated
scheduling. Figure 9 shows a number of coordinated scheduling
strategies. All of these strategies are based on constructing a de-
pendence graph either explicitly or implicitly, but they do so at dif-
ferent points during program compilation and execution.

2 In principle, every operator has a trivial cautious implementation that
touches all graph elements before beginning the computation (equivalently,
it locks the whole graph). The obvious disadvantage is that this comes in
the way of exploiting parallelism.



In terms of the operator formulation, construction of the de-
pendence graph involves the following steps: (i) determine all ac-
tive nodes, (ii) determine neighborhoods and ordering of the cor-
responding activities, and (iii) create a partial order of activities
that respects neighborhood and ordering constraints. Activities can
then be executed in parallel without speculation but with proper
synchronization to ensure that the partial order of activities is re-
spected. Although this approach seems obvious, ordered, data-
driven algorithms like event-driven simulation cannot in general be
parallelized using this approach: the execution of one activity may
cause a new node to become active, and this new activity may have
higher priority than and conflict with existing activities. It is likely
that optimistic parallelization is the only general-purpose approach
for parallelizing ordered, data-driven algorithms, even if they are
expressed in a functional language. All other classes of algorithms
can be executed without speculation as described below.

4.3.1 Runtime coordination

Unordered data-driven algorithms: These algorithms can be par-
allelized without speculation by interleaving the construction of
the dependence graph with execution of activities. The execution
of the algorithm proceeds in rounds. In each round, a set of non-
conflicting activities is selected and executed in parallel without
synchronization. Any newly created activities are postponed to the
next round at which point they are considered for execution to-
gether with unprocessed activities from the current round. Imple-
menting this strategy requires solving two problems: (i) how do
we compute the neighborhoods of activities, and (ii) given a set of
activities and their neighborhoods, how do we find a set of non-
conflicting activities?

In general, we must execute the operator completely to find
the neighborhood of an activity, and this may cause side-effects
to global data structures. If an activity is not chosen for execution
in the current round (because of conflicts), these side-effects must
be undone for correct execution. One solution is to privatize these
updates as is done in some versions of transactional memory. In
effect, activities are executed twice in each round: once with pri-
vatization to determine neighborhoods, and then again for real if
they are chosen for execution in the current round. Implemented
literally, this strategy is not very efficient; fortunately, most algo-
rithms have structure that can be exploited to eliminate the need for
repeated execution. In all data-driven local computation algorithms
we have studied (see Section 5.2.2), the neighborhood of an activity
is just the active node and its immediate neighbors in the graph. In
morph algorithms, most operator implementations are cautious, so
the neighborhood of an activity can be determined by executing it
partially up to the point where it starts to make modifications to its
neighborhood. If the activity is chosen for execution in that round,
execution simply continues from that point.

Once the neighborhoods of all activities have been determined,
we can build a conflict graph in which nodes represent the active
nodes from the algorithm, and edges represent conflicts between
activities. Luby’s randomized parallel algorithm can be used to
find a maximal independent set of activities [43], and this set of
activities can be executed in parallel without synchronization. This
approach can be viewed as building and exploiting the dependence
graph level by level, with barrier synchronization between levels.
The DMR implementation of Hudson et al. uses this approach [31].

Topology-driven algorithms: In these algorithms, activities do
not create new active nodes, so both unordered and ordered al-
gorithms can be executed using runtime coordination. Unordered
topology-driven algorithms can be executed in rounds as de-
scribed above. A variation of this approach can be used for ordered
topology-driven algorithms. In this case, we find a maximal prefix
of the sequence of active nodes (rather than a maximal independent

set of the set of active nodes) such that all active nodes in the prefix
have non-interfering neighborhoods, and execute these nodes in
parallel. This process can then repeated with the remaining suffix
of active nodes.

Notice that the runtime coordination scheduling strategy can
be used for all irregular algorithms other than ordered, data-driven
algorithms.

4.3.2 Just-in-time coordination

For some topology-driven algorithms, the dependence graph is
independent of the labels on nodes and edges of the graph and it
is a function purely of the graph topology. Therefore, a dependence
graph can be generated at runtime after the input graph is given but
before the program is executed. We call this strategy just-in-time
coordination, and it is a generalization of the inspector-executor
method of Saltz et al. [66].

For topology-driven algorithms, active nodes are known once
the input is given, so the remaining problems are the determination
of neighborhoods and ordering. In local computation algorithms
amenable to just-in-time scheduling, these can usually be deter-
mined from an inspection of the graph and the resulting code is
called the inspector. A well-known example is the implementation
of sparse iterative solvers on distributed-memory computers. The
distribution of the graph between processors is known only at run-
time, so inspection of the graph is required to determine input de-
pendences for use in communication schedules, as advocated by
Saltz et al. [66]. Other examples are parallel top-down and bottom-
up walks of trees. In a bottom-up walk, a recursive descent from
the root sets up the dependences, and the bottom-up computations
can then be done in parallel with appropriate synchronization; an
example is the center-of-mass computation in n-body methods.

For topology-driven morph algorithms amenable to just-in-time
scheduling, inspection of the graph may be insufficient since the
structure of the graph can be modified during the execution of the
algorithms, changing neighborhoods and dependences. For these
algorithms, neighborhoods and ordering can be determined by a
symbolic execution of the algorithm. Parallel sparse Cholesky fac-
torization is the most famous example of this approach [20]. The
algorithms is unordered but heuristics like minimal degree order-
ing are used to order the active nodes for efficiency. The algorithm
is executed symbolically to compute the dependence graph (this
phase is called symbolic factorization and the dependence graph
is called the elimination tree). The elimination tree is then used to
perform the actual factorization in parallel (this phase is known as
numerical factorization). Symbolic factorization is done efficiently
using boolean operations, and for large matrices, it takes little time
relative to numerical factorization. Just-in-time coordination can-
not be used for sparse LU factorization with pivoting since its de-
pendence graph is affected by pivoting, which depends on the data
values in the matrix.

4.3.3 Compile-time coordination

Some algorithms amenable to just-in-time coordination have struc-
tured input graphs. In that case, the dependence graph, suitably pa-
rameterized by the unknown parameters of the input graph, can be
produced at compile-time. For example, if the graph is a grid as it
is in finite-difference methods, the dependence graph is parameter-
ized by the dimensions of the grid. Other important examples are
dense Cholesky and LU factorization (the input graph is a clique),
the dense Basic Linear Algebra Subroutines (the input graph is a
clique), and FFTs (sequences or sequences of sequences).

Given the importance of these algorithms in high-performance
computing, it is not surprising that automatic generation of depen-
dence graphs for this class of algorithms has received a lot of at-
tention. These techniques are known as dependence analysis in the



literature, and methods based on integer linear programming are
successful for regular, dense array programs in which array sub-
scripts are affine functions of loop indices [35]; LU with pivoting
requires fractal symbol analysis [48].

Compile-time coordination is also possible regardless of the
topology if the algorithm is a topology-driven local computation
and the neighborhood of an activity is just the active node itself,
ignoring read-only data structures. In this case, activities are triv-
ially independent (subject to ordering constraints) because each one
modifies a disjoint portion of the graph. A typical example is com-
puting some result for each node in a graph. The output is a vector
indexed by node. Each activity reads some portion of the graph
but only writes to the node-specific portion of the output vector. In
the literature, most PRAM algorithms and algorithms written using
DO-ALL loops fall in this category.

4.4 Discussion
To the best of our knowledge, the first use of optimistic paralleliza-
tion was in Jefferson’s Timewarp system for event-driven simu-
lation [33]. However, Timewarp was not a general-purpose paral-
lel programming system. Thread-level speculation (TLS) was pro-
posed by Rauchwerger and Padua [56] for parallelizing array pro-
grams in which subscripts could not be analyzed by the compiler.
This work was very influential, and it inspired a lot of work on ar-
chitectural support for speculative execution [60, 64]. TLS systems
were designed for languages like FORTRAN and C, so there was no
support for don’t-care non-determinism or unordered algorithms.
Moreover, data abstractions do not play a role in the implementa-
tion of TLS. Another influential line of work is the transactional
memory (TM) work of Herlihy, Moss, Harris and others [25, 29].
In contrast to our approach, the application programming model
is explicitly parallel; threads synchronize using transactions, and
the overheads of executing this synchronization construct are re-
duced using optimistic synchronization. In addition, most TM sys-
tems other than boosted systems [28] perform memory-level con-
flict checking rather than ADT-level conflict checking. This results
in spurious conflicts that prevent efficient parallel execution. For
example, if an iteration of an unordered iterator is rolled back, the
concrete state of the work-set must also be restored to its original
state, and all other iterations that were executed since that iteration
must also be rolled back [40].

Relatively little is known about automatic generation of depen-
dence graphs for runtime and just-in-time coordination. The dis-
cussion in this section shows that there is no sharp dichotomy be-
tween regular and irregular algorithms: instead, regular algorithms
are a special case of irregular algorithms in the same way that met-
ric spaces are a special case of general topologies in mathematics.
Note that although coordinated scheduling seems attractive because
there is no wasted work from mis-speculation, the overhead of gen-
erating a dependence graph may limit its usefulness even when it is
possible to produce one.

5. Case studies of algorithms
In this section, we discuss how tao-analysis of algorithms described
in Section 3 and the implementation strategies described in Sec-
tion 4 can be used for important algorithms. The discussion is or-
ganized by the type of the operator.

5.1 Morph algorithms
Morphs are the most complex variety of operators. Although they
can be viewed abstractly as replacing sub-graphs with other graphs,
it is more intuitive to classify them as follows.

• Refinement: A refinement operator makes the graph bigger by
adding new nodes and edges, possibly removing a few nodes
and edges in the process.
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Figure 10. Available parallelism in Delaunay mesh refinement

• Coarsening: A coarsening operator clusters nodes or sub-
graphs together, replacing them with a smaller sub-graph that
represents the cluster.

• General morph: All other operations that modify the graph
structure fall in this category.

5.1.1 Refinement

Data-driven refinement algorithms usually operate on a single
graph. Most topology-driven refinement operators operate on two
data structures Gi and Go; Gi is read-only and its topology deter-
mines the active nodes in the algorithm, while Go is morphed by
each activity.

Map-reduce: In the map-reduce programming model [13], a
map operation applies a function “point-wise” to each element of
a set or multi-set Si to produce another set or multi-set So. The
active nodes are the elements of Si, and they can be processed in
any order. This is a topology-driven, unordered algorithm, which is
a refinement morph for So since elements are added incrementally
to So during execution.

Streams: A stream operator in languages like StreamIt [21] is
a refinement morph from its input streams to its output streams
(streams are non-strict sequences [54]). Stateless and stateful
stream operators can be expressed using unordered and ordered
iteration on sequences.

Prim’s MST algorithm: Most algorithms that build trees in a
top-down fashion use refinement morphs. Figure 11 shows one
implementation of Prim’s algorithm for computing MSTs; it is
a topology-driven, ordered algorithm in which the operator is a
reader for the graph g and a refinement morph for tree mst . Ini-
tially, one node is chosen as the root of the tree and added to the
MST, and all of its edges are added to the ordered work-set, or-
dered by weight. In each iteration, the smallest edge (s, t) is re-
moved from the work-set. Note that node s is guaranteed to be in
the tree. If t is not in the MST, (s, t) is added to the tree, and all
edges (t, u) are added to the work-set, provided u is not in the MST.
When the algorithm terminates, all nodes are in the MST. This al-
gorithm has the same asymptotic complexity as the standard algo-
rithm in textbooks [12], but the work-set contains edges rather than
nodes. The standard algorithm requires a priority queue in which
node priorities can be decreased dynamically. It is unclear whether
it is worth generalizing the implementation of ordered-set iterators
in a general-purpose system like Galois to permit dynamic updates
to the ordering.

N-body tree-building: Top-down tree construction is also used
in n-body methods like Barnes-Hut [6] and fast multipole. The
tree is a recursive spatial partitioning in which each leaf contains
a single particle. Initially, the tree is a single node, representing the
entire space. Particles are then inserted into the tree, splitting leaf
nodes so that each leaf node contains only a single particle. The
work-set in this case is the set of particles. In contrast to Prim’s
algorithm, this algorithm is unordered because particles can be
inserted into the tree in any order.

Andersen-style inclusion-based points-to analysis: This com-
piler algorithm [3] is an example of a refinement morph on general
graphs. It builds a points-to graph in which nodes represent pro-



1 Graph g = / / read i n i n p u t graph
2 Tree mst ; / / c r e a t e empty t r e e
3 mst . s e t R o o t ( r ) ; / / r i s an a r b i t r a r y v e r t e x i n g
4 OrderedWorkse t<Edge> ows ; / / o r d e r e d by edge w e i g h t
5 ows . add ( g . g e t E d g e s ( r ) ) ;
6 foreach ( Edge ( s , t ) i n OrderedSet ows ) {
7 i f ( mst . c o n t a i n s ( t ) ) c o n t in u e ;
8 mst . addEdge ( s , t ) ; / / s becomes p a r e n t o f t
9 foreach ( Edge ( t , u ) i n Set g . g e t E d g e s ( t ) ) {

10 i f ( ! mst . c o n t a i n s ( u ) ) ows . add ( ( t , u ) ) ;
11 }
12 }

Figure 11. Top-down tree construction: Prim’s MST algorithm
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Figure 12. Two kinds of coarsening operators

gram variables, and an edge (a, b) asserts that variable a may point
to b at some point in the program. Each iteration of the algorithm
may discover new points-to facts, and if it does, it adds new edges
to the points-to graph. This is an unordered, data-driven algorithm
that uses a refinement morph on the graph.

Delaunay mesh refinement: This is an unordered, data-driven
morph algorithm on an unstructured graph (see Section 2).

Discussion: Refinement algorithms in which graph elements are
only added and never removed are called strong refinement algo-
rithms. All the algorithms listed above other than DMR are strong
refinement algorithms. Section 6.3 describes how this property can
be exploited to produce efficient implementations.

Although parallelism in most irregular algorithms is very input
dependent, algorithms that use refinement morphs have a character-
istic profile when executed with randomized input data. Figure 10
shows the parallelism profile for DMR for an input of 100,000 tri-
angles. Available parallelism starts at some level, increases as the
data structure gets larger (because there is less likelihood of con-
flicts), and then ramps down as work is completed. The parallelism
profile for Prim’s algorithm, shown in Figure 8(b), has a similar
pattern—in this algorithm, the available parallelism is very small
initially since only one activity succeeds in growing the tree from
the root. As the MST gets larger, there are more sites where the
tree can grow, so parallelism ramps up and then ramps down as the
MST is completed. Tree-building in Barnes-Hut exhibits a similar
parallelism profile, as can be seen in Figure 13(a).

5.1.2 Coarsening

There are three main ways of doing coarsening: edge contraction,
node elimination and sub-graph contraction.

Edge contraction An edge is eliminated from the graph by fus-
ing the two nodes at its end points and removing redundant edges
from the resulting graph, as shown in Figure 12(a). When redundant
edges are eliminated, the weight on the remaining edge is adjusted
in application-specific ways. In sparse graphs, each edge contrac-
tion affects a relatively small neighborhood, so in sufficiently large
graphs, many edge contraction operations can happen in parallel.

Boruvka’s MST algorithm: Boruvka’s algorithm [12] computes
MSTs bottom-up by performing edge contraction on the input
graph until there is only one node left. A separate graph represents
the MST as it is built bottom-up. The MST is initialized with
every node in the input graph forming its own single-node tree,
i.e., a forest. The active nodes are the nodes remaining in the input
graph. In each iteration, an active node n finds the minimum weight

edge (n,m) incident on it and performs edge contraction along
this edge. This edge is added to the MST where it connects two
previously disjoint trees. A new node nm is created in the input
graph to represent the merged nodes n andm. If there are redundant
edges during edge contraction, only the least weight edge is kept.
Finally, nm is added back to the work-set. When the input graph
has been contracted to one node, the MST graph will be the correct
minimal spanning tree of the input graph.

Figure 8(a) shows a parallelism profile for Boruvka’s algorithm.
Interestingly, Kruskal’s algorithm [12] also finds MSTs by per-
forming edge contraction, but it iterates over an ordered work-set
of edges, sorted by edge weight.

Metis graph partitioner: Graph coarsening by edge contraction
is a key step in the Metis graph partitioner [34]. This algorithm
builds a sequence of successively coarser graphs until a coarse-
enough graph is obtained; this graph is then partitioned, and the
partitioning is interpolated back to the original graph. Each of the
coarsening steps is performed by an unordered, topology-driven
morph (the nodes of the finer graph are the active nodes).

The parallel implementation of Metis uses runtime coordinated
scheduling. The problem of finding a maximal independent set of
edges that can be contracted in parallel can be solved by finding
maximal matchings [12]. Efficient heuristics are known for comput-
ing maximal cardinality matchings and maximal weighted match-
ings in graphs of various kinds. Metis uses randomized matching
since that seems to perform well in practice; this strategy is well-
suited for autonomous scheduling as well.

Agglomerative clustering and map/reduce: Agglomerative clus-
tering, a well-known data-mining algorithm, also uses a coarsening
morph. The input is (i) a data-set, and (ii) a measure of the dis-
tance between items in the data-set. At each step, the two closest
points in the data-set are clustered together and replaced by a sin-
gle new point that represents the new cluster. The location of this
new point may be determined heuristically [61]. The greedy strict
consensus merger (SCM) algorithm for phylogeny reconstruction
implements this algorithm for a set of trees. These algorithms can
be expressed using an ordered set iterator. The reduce operation
in the map-reduce model [13] can be implemented in many ways;
an in-place reduction can be implemented by an unordered iterator
in which the operator replaces randomly chosen pairs of elements
from the set with the result of applying the reduction operation to
these elements.

Node elimination Graph coarsening can also be based on node
elimination. Each step removes a node from the graph and inserts
edges as needed between its erstwhile neighbors to make a clique,
adjusting weights on the remaining nodes and edges appropriately.
In Figure 12(b), node u is eliminated, and edges (b, v), (v, n) and
(n, b) are inserted to make {b, v, n} a clique. Node elimination is
the graph-theoretic foundation of matrix factorization algorithms
such as Cholesky and LU factorizations.

Sparse Cholesky factorization in particular has received a lot of
attention in the numerical linear algebra community. The new edges
inserted by node elimination are called fill since they correspond to
zeroes in the original matrix that become non-zeros as a result of the
elimination process. Different node elimination orders result in dif-
ferent amounts of fill in general; therefore, although the basic algo-
rithm is unordered, practical implementations of sparse Cholesky
factorization use heuristic orderings for node elimination to mini-
mize fill. One heuristic is minimal-degree ordering, which greedily
picks the node with minimal degree at each elimination step. Just-
in-time coordination is used to schedule computations [20].

Sub-graph contraction Graphs can be coarsened by contracting
entire sub-graphs at a time (edge contraction is a special but im-
portant sub-case). In the compiler literature, elimination-based al-



gorithms perform dataflow analysis on control-flow graphs by con-
tracting “structured” sub-graphs whose dataflow behaviors have a
concise description. Dataflow analysis is performed on the reduced
graph, and within contracted sub-graphs, interpolation is used to
determine dataflow values. This idea can be used recursively on the
reduced graph. Sub-graph contraction can be performed in paral-
lel. This approach to parallel dataflow analysis has been studied by
Ryder [41] and Soffa [37].

5.1.3 General morph
Some applications make structural updates that are neither refine-
ments nor coarsenings, but many of these updates may nevertheless
be performed in parallel.

Some algorithms build trees using complicated structural ma-
nipulations that cannot be classified neatly as top-down or bottom-
up construction. For example, when values are inserted into a heap
or a red-black tree, the final data structure is a tree, but each in-
sertion may perform complex manipulations [12]. The structure of
the final heap or red-black tree depends on the order of insertions,
but for most applications, any of these final structures is adequate,
so this is an example of don’t-care non-determinism, and it can be
expressed with an unordered set iterator.

Algorithms that perform general morph operations on trees usu-
ally require optimistic parallelization. The simple conflict detec-
tion policy described in Section 4.1, which ensures disjointness of
neighborhoods, is not adequate for these applications since every
neighborhood contains the root of the tree. This class of algorithms
may benefit from mechanisms like transactional memory that use
more sophisticated conflict detection policies [29]; in fact, the par-
allelization of red-black tree operations is a standard microbench-
mark in the literature on transactional memory.

Graph reduction of functional language programs and social
network maintenance [10] are general morphs on graphs.

5.2 Local computation algorithms
We divide our discussion of local computation algorithms based on
whether their active nodes are topology-driven or data-driven.

5.2.1 Topology-driven local computation algorithms
Cellular automata: Cellular automata operate on grids of one or
two dimensions. Grid nodes represent cells of the automaton, and
the state of a cell c at time t is a function of the states at time t−1 of
cells in some neighborhood around c. This iterative scheme can be
written using unordered iterators. A large variety of neighborhoods
(stencils) are used in cellular automata [62].

Finite-differences: A similar state update scheme is used in
finite-difference methods for the numerical solution of partial dif-
ferential equations (PDEs) where it is known as Jacobi iteration.
In this case, the grid arises from spatial discretization of the do-
main of the PDE, and nodes hold values of the dependent variable
of the PDE. A disadvantage of Jacobi iteration is that it requires
two arrays for its implementation to hold the states at the current
and previous time steps. More complex update schemes have been
designed to get around this problem. Intuitively, all these schemes
blur the sharp distinction between old and new states, so nodes are
updated using both old and new values. For example, red-black
ordering, or more generally multi-color ordering, assigns a min-
imal number of colors to nodes in such a way that no node has
the same color as the nodes in its neighborhood. Nodes of a given
color therefore form an independent set that can be updated con-
currently. These algorithms can be expressed using unordered set
iterators with one loop for each color. Methods like Gauss-Seidel
can be expressed using ordered set iterators.

In all these algorithms, active nodes and neighborhoods can be
determined from the grid structure, which is known at compile-
time. As a result, compile-time scheduling can be very effective

for coordinating the computations. Most parallel implementations
of Jacobi iteration partition the grid into blocks, and each proces-
sor is responsible for updating the nodes in one block. This data
distribution requires less inter-processor communication than other
distributions such as row or column cyclic distributions.

Tree traversals: Top-down and bottom-up are classic exam-
ples of tree traversals. The center-of-mass computation for cells
in Barnes-Hut and other n-body methods are performed using a
bottom-up walk over the spatial decomposition tree. This traversal
can be expressed using an ordered iterator. For a balanced tree, the
amount of parallelism decreases exponentially as the computation
advances up the tree, as can be seen in Figure 13(a).

Sparse MVM: The key operation in iterative linear system
solvers like the conjugate-gradient method and GMRES is sparse
matrix-vector multiplication (MVM), y = Ax, in which the matrix
A is an N ×N sparse matrix and x and y are dense vectors. Such
a matrix can be viewed as a graph with N nodes in which there is
a directed edge from node i to node j with weight Aij if Aij is
non-zero. This algorithm can be expressed using unordered itera-
tion over the nodes of the graph. The inspector-executor method is
used to produce efficient communication schedules on distributed-
memory machines, as discussed in Section 4.3. Compile-time coor-
dination is possible on shared-memory machines since the operator
is a reader for A and x, and it is trivial to determine that each
iteration writes into a different element of y.

5.2.2 Data-driven local computation algorithms

In these algorithms, there is an initial set of active nodes, and per-
forming an activity may cause other nodes to become active, so
nodes become active in an unpredictable, data-driven fashion. Ex-
amples include the preflow-push algorithm [12] for the maxflow
problem, AI message-passing algorithms such as belief propaga-
tion and survey propagation [44], Petri nets, and discrete-event sim-
ulation [33, 49]. In other algorithms, such as some approaches to
solving spin Ising models [57], the pattern of node updates is de-
termined by externally-generated data such as random numbers.

Although graph topology is typically less important for data-
driven algorithms than it is in topology-driven ones, it can neverthe-
less be useful for reasoning about certain algorithms. For example,
belief propagation is an exact inference algorithm on trees, but it is
an approximate algorithm when used on general graphs because of
the loopy propagation problem [44]. Grid structure is exploited in
spin Ising solvers as well to reduce synchronization [57].

Preflow-push algorithm: This maxflow algorithm is the archety-
pal example of a data-driven local computation operator. Active
nodes are nodes that have excess in-flow at intermediate stages of
the algorithm. The algorithm also maintains at each node a value
called height, which is a lower bound on the distance of that node
to the sink. Two operations, push and relabel, are performed at ac-
tive nodes to update the flow and height values respectively until
termination. The algorithm is unordered.

Event-driven simulation: In the literature, there are two ap-
proaches to parallel event-driven simulation, called conservative
and optimistic event-driven simulation [49]. Conservative event-
driven simulation reformulates the algorithm so that in addition to
sending data messages, processing stations also send out-of-band
messages to update time at their neighbors. Each processing sta-
tion can operate autonomously without fear of deadlock, and there
is no need to maintain an ordered event list. This is an example of
algorithm reformulation that replaces an ordered work-set with an
unordered work-set. In contrast, Timewarp [33] is an optimistic par-
allel implementation of event-driven simulation. It can be viewed
as an application-specific implementation of ordered set iterators
as described in Section 4.1, with two key differences. First, threads
are allowed to work on new events created by speculative activities



that have not yet committed. This increases parallelism but opens
up the possibility of cascading roll-backs. Second, instead of the
global commit queue in the implementation of Section 4.1, there
are periodic sweeps through the network to update “global virtual
time” [33]. Both of these features can be implemented in a general-
purpose way in a system like Galois, but more study is needed to
determine if this is worthwhile.

5.2.3 Discussion

Solving fixpoint equations: Iterative methods for computing solu-
tions to systems of equations can usually be formulated in both
topology-driven and data-driven ways. A classic example is itera-
tive dataflow analysis in compilers. Systems of dataflow equations
can be solved by iterating over all the equations using a Jacobi or
Gauss-Seidel formulation until a fixed point is reached; these are
topology-driven approaches. Alternately, the classic worklist algo-
rithm processes an equation only if its inputs have changed; this is
a data-driven approach [1]. The underlying graph in this applica-
tion is the control-flow graph, and for flow-sensitive problems, the
dataflow values are implemented as labels on nodes or edges.

Speeding up local computation algorithms: Local computation
algorithms can often be made more efficient by a preprocessing step
that coarsens the graph, since this speeds up the flow of information
across the graph. The multigrid method for solving linear systems
is a classic example. This idea is also used in dataflow analysis
of programs [1]. An elimination-based dataflow algorithm is used
first to coarsen the graph. If the resulting graph is a single node,
the solution to the dataflow problem is read off by inspection;
otherwise, iterative dataflow analysis is applied to the coarse graph.
In either case, the solution for the coarse graph is interpolated back
into the original graph. One of the first hybrid dataflow algorithms
along these lines was Allen and Cocke’s interval-based algorithm
for dataflow analysis. This algorithm finds and collapses intervals,
which are single-entry, multiple-exit loop structures in the control-
flow graph of the program.

Some local computation algorithms can be sped up by period-
ically computing and exploiting global information. The global-
relabel heuristic in preflow-push is an example of such an oper-
ation. Preflow-push can be sped up by periodically performing a
breadth-first search from the sink to update the height values [12].
In the extreme, global information can be used in every iteration.
For example, iterative linear solvers often precondition the matrix
iterations with another matrix that is obtained by a graph coarsen-
ing computation such as incomplete LU or Cholesky factorization.

5.3 Reader algorithms

An operator that reads a graph without modifying it in any way is
a reader operator for that graph. Operators that perform multiple
traversals over a fixed graph are a particularly important category.
Each traversal maintains its own state, which is updated during the
traversal, so the traversals can be performed concurrently. Force
computation in n-body algorithms like Barnes-Hut [6] is an exam-
ple. The force calculation is an unordered iteration over particles
that computes the force on each particle by making a top-down
traversal of a prefix of the tree. This step is completely parallel since
each particle can be processed independently. The only shared data
structure in this phase is the octree, which is not modified.

Another classic example is ray-tracing. Each ray is traced
through the scene. If the ray hits an object, new rays may be
spawned to account for reflections and refraction; these rays must
also be processed. After the rays have been traced, they are used to
construct the rendered image.

The key concern in implementing such algorithms is exploiting
locality. One approach to enhancing locality in algorithms such as
ray-tracing is to “chunk” similar work together. Rays that will prop-

agate through the same portion of the scene are bundled together
and processed simultaneously by a given processor. Because each
ray requires the same scene data, this approach can enhance cache
locality. A similar approach can be taken in Barnes-Hut: particles
in the same region of space are likely to traverse similar parts of
the octree during the force computation and thus can be processed
together to improve locality [59].

In some cases, reader algorithms can be more substantially
transformed to further enhance locality. In ray-tracing, bundled rays
begin propagating through the scene in the same direction but may
eventually diverge. Rather than using an a priori grouping of rays,
groups can be dynamically updated as rays propagate through a
scene, maintaining locality throughout execution [53].

5.4 Discussion

Some irregular applications have multiple phases, and each phase
may use a different operator. N-body methods like Barnes-Hut are
good examples; the tree-building phase uses a refinement morph
whereas the force computation phase uses a reader operator since
it does not modify the spatial decomposition tree. This is discussed
in more detail in Section 6.1.

The structural analysis of algorithms presented in this section is
different from the many efforts in the literature to identify paral-
lelism patterns, such as the work of Mattson et al. [45], Snir’s Par-
allel Processing Patterns [36] and the Berkeley motifs [51]. These
approaches place related algorithms into categories (dense linear
algebra, n-body methods, etc.), whereas this paper proposes struc-
tural decompositions of irregular algorithms. For example, n-body
methods fall into a single category in the Berkeley motifs whereas
we distinguish between the operators in the different phases of n-
body methods. To use a biological metaphor, existing approaches
produce classifications like the Linnaean taxonomy in biology,
whereas the approach in this paper is more like molecular biology,
producing “genetic profiles” of algorithms. On the other hand, ex-
isting classifications are broader in scope than ours since they seek
to categorize implementation mechanisms such as whether task-
queues or the master-worker approach is used to distribute work.

6. Case studies of applications
In this section, we present experimental results for three algorithms
introduced previously: Barnes-Hut n-body simulation, Delaunay
mesh refinement and inclusion-based points-to analysis. These al-
gorithms were implemented using the Galois system, and illustrate
how the principles of tao-analysis (in particular, Section 4.3) can
be used to optimize performance.

We used two machines for our experimental results. The first
contains two quad-core Intel Xeon X5570 processors for a total of
eight cores. The second contains four six-core Intel Xeon X7540
processors for a total of 24 cores. Both run Linux 2.6.32.

6.1 Barnes-Hut n-body simulation

Barnes-Hut shows how tao-analysis can be used to leverage compile-
time optimizations even though the Galois system uses optimistic
parallelization as its baseline. Figure 13(a) shows the parallelism
profile for one time-step of the algorithm. There are four phases,
each with a different structural classification.

1. Tree build: The first phase builds the spatial decomposition
tree top-down by inserting particles into the tree and splitting
nodes as needed so there is one particle per leaf node (topology:
tree, operator: refinement morph, active nodes: topology-driven
and unordered). Note that the parallelism profile is similar to
the parallelism profiles of other refinement morphs shown in
Figure 10.



Tree Build
Summarize

Force Computation

Position Update

(a) Parallelism profile for 10,000 bodies

Threads

S
pe

ed
up

1
4

8

12

16

20

24

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

1 4 8 12 16 20 24 28 32

(b) Speedup for 1,000,000 bodies; sequential runtime is 122.2 s.

Figure 13. Parallelism profile and speedup for Barnes-Hut. All
inputs initialized using the Plummer model.

2. Summarize: The second phase computes the center-of-mass and
total mass of each internal node using a bottom-up walk of the
octree (tree, local computation, topology-driven and ordered).

3. Force computation: The third phase computes the force acting
upon each particle by traversing parts of the octree (tree, reader,
unordered).

4. Force update: The last phase moves each particle to a new po-
sition (set, local computation, topology-driven and unordered).

Figure 13(b) shows the speedup on the 24 core machine. Most
of the execution time is spent in the force computation phase. By
default, the Galois system would use speculative execution for this
phase, but tao-analysis reveals that it is possible to use compile-
time coordinated scheduling. Using this information, we can exe-
cute activities non-speculatively, taking advantage of reduced run-
time overheads. The machine supports simultaneous multithread-
ing (SMT), and we show a few data points with more than 24
threads, which correspond to adding SMT threads. Performance
scales well up to 24 threads. After that point, each additional SMT
thread improves performance slightly, which suggests that there is
room for locality improvements.

6.2 Delaunay mesh refinement

Figure 14 shows results for Delaunay mesh refinement on the 24
core machine. We take advantage of the cautious property of the op-
erator implementation to reduce some overheads of speculative ex-
ecution. As before, we show data points for additional SMT threads
as well. This application is floating-point intensive. Performance
scales well up to 24 threads, but after that point, SMT threads share
floating-point resources, which limits continued scalability.

6.3 Inclusion-based points-to analysis

Inclusion-based points-to analysis is an example of how properties
of operators can be used to reduce synchronization overheads. The
algorithm performs a context-insensitive, flow-insensitive analysis
that determines the variables that a pointer variable might point to
during the execution of a program. A pass through the program
generates a system of set constraints that implicitly defines the
points-to set for each variable in the program. These constraints
can be represented as a graph in which nodes represent variables,
and edges represent constraints. The process of solving these set
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Figure 14. Speedup for Delaunay mesh refinement. The input
is randomly generated. Initially, there are 1,999,998 triangles
(951,964 bad triangles). Sequential runtime is 22.2 s.
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Figure 15. Points-to analysis times. Horizontal line is performance
of the reference implementation. Best speedup over reference for
gimp and mplayer are 3.63 and 3.62 respectively.

constraints can be viewed in terms of the application of three graph
rewrite rules to the constraint graph [46].

Each rewrite rule adds edges to the graph but does not re-
move existing nodes or edges, so the operator is a strong refine-
ment morph. The baseline implementation described in Section 4.1
would acquire abstract locks on all the nodes participating in the
rewrite rule. However, because the operator is a strong refinement
morph, it is only necessary to acquire a lock on the node at which
the new edge is added, reducing synchronization costs.

Figure 15 shows the performance of this approach on the eight
core machine compared to a highly optimized sequential reference
implementation written by Hardekopf [24]. The results are for
two of the benchmarks from Hardekopf’s suite. This is the first
successful parallelization of Andersen-style points-to analysis.

7. Extensions to the amorphous data-parallelism
model

In this section, we discuss two kinds of parallelism that are not
exploited by the basic amorphous data-parallel execution model
described in Section 4.1: nested amorphous data-parallelism and
pipeline parallelism. We also discuss how the task-parallel execu-
tion model fits into our framework.

7.1 Nested amorphous data-parallelism

The pattern of parallelism described in this paper arises from ap-
plying an operator at multiple active nodes in a graph as shown
in Figure 4. Since the neighborhood of each activity is some re-
gion of the graph, an activity can itself be executed in parallel;
we call this parallelism intra-operator parallelism to distinguish it
from the first variety of parallelism that we can call inter-operator
parallelism. Inter-operator parallelism is the dominant parallelism
pattern in problems for which neighborhoods are small compared to
the overall graph since it is likely that most activities do not conflict;
in these problems, intra-operator parallelism is usually fine-grain,
instruction-level parallelism. Conversely, when each neighborhood
is a large part of the graph, activities are likely to conflict and intra-



operator parallelism may be more important. Inter/intra-operator
parallelism is an example of nested data-parallelism [8].

The sparsity of the graph usually plays a major role in this bal-
ance between inter- and intra-operator parallelism. For many opera-
tors, neighborhoods include all the neighbors of the active node, so
if the graph is very densely connected, a single neighborhood may
encompass most of the graph and intra-operator parallelism is dom-
inant. An extreme case is the factorization of dense matrices: the
underlying graph is a clique, and each factorization step updates the
entire graph, as explained in Section 5.1.2, so the only parallelism
is intra-operator parallelism. In factorizing sparse matrices, inter-
operator parallelism dominates for the first few steps; after some
number of coarsening steps, the residual graph becomes dense
enough that most high-performance sparse matrix codes switch to
dense matrix techniques to exploit intra-operator parallelism [20].

7.2 Pipeline parallelism

In some applications, a data structure is produced incrementally by
a computation called the producer and read incrementally by an-
other computation called the consumer. If it is possible to overlap
the executions of the producer and consumer, the resulting paral-
lelism is called pipeline parallelism. The key problem in exploiting
pipeline parallelism is determining when the producer has com-
pleted all the modifications it will ever make to an element the
consumer wants to read. This problem is undecidable in general,
so one approach to exploiting pipeline parallelism is to execute the
consumer speculatively in parallel with the producer, rolling the
consumer back if the producer overwrites data read by the con-
sumer. This approach is unlikely to be practical since the consumer
cannot commit any work until the producer has finished execution.

Pipeline parallelism becomes practical if the producer is a
strong refinement morph since in that case, each iteration of the
producer may add new elements to the graph but it does not modify
elements that have already been produced. As long as the con-
sumer cannot test for the absence of an element, the producer and
consumer can be executed safely in parallel. This amorphous data-
parallel view of pipeline parallelism generalizes the standard view
of pipeline parallelism in which the shared data structure is re-
stricted to be a stream (sequence), as in StreamIt [21]; for example,
we can pipeline the execution of a client of points-to analysis in-
formation with the execution of the points-to analysis algorithm
described in Section 6.3 since the operator is a refinement morph.

7.3 Task parallel execution

Task parallel execution can be used to exploit amorphous data-
parallelism by using a divide-and-conquer formulation of algo-
rithms rather than an iterative formulation. Divide-and-conquer al-
gorithms are naturally data-centric since they partition the data
structure and execute the algorithm recursively on each partition;
intuitively, the division step is a way of clustering active nodes
based on their location in the data structure. If all data depen-
dences are subsumed by call/return control dependences, the re-
cursive calls can be executed safely in parallel. The Cilk project
has explored this approach to exploiting parallelism [9].

This approach obviously requires an efficient partitioner for
the data structure. Partitioning is straightforward for structured
and semi-structured topologies, so most task-parallelism studies
have focused on algorithms that deal with sets, sequences (ar-
rays), cliques (dense matrices), grids and trees. Partitioning general
graphs is more difficult, and for many algorithms, the partition-
ing step can be more expensive than the algorithm itself. Further-
more, ordered algorithms like event-driven simulation do not lend
themselves to a natural divide-and-conquer formulation. Therefore,
our view of task parallel execution is that it is a way of exploiting
amorphous data-parallelism in unordered algorithms that deal with

structured and semi-structured topologies: at each stage of the di-
vision process, activities whose neighborhoods lie entirely within a
partition are executed during the processing of that partition while
activities whose neighborhoods span partitions at that level can be
executed when returning from the recursive calls.

8. Conclusions
Dependence graphs have been used for more than thirty years by
the parallel programming community to reason about parallelism
in algorithms. In this paper, we argued that this program-centric
abstraction is inadequate for most irregular algorithms. To address
this problem, we proposed a data-centric formulation of algorithms
called the operator formulation, which led to a structural analysis of
algorithms called tao-analysis. Tao-analysis reveals that a general-
ized form of data-parallelism called amorphous data-parallelism is
ubiquitous in algorithms, and that depending on the tao-structure of
the algorithm, this parallelism may be exploited by compile-time,
inspector-executor or optimistic parallelization, thereby unifying
these seemingly unrelated parallelization techniques. Paralleliza-
tion of regular algorithms is just one special case, and tao-analysis
allows many application-specific optimizations to be generalized.
An extensive survey of key algorithms and experimental results
from three applications provided evidence for these claims.

Parallel programming today is burdened by abstractions like de-
pendence graphs that are inadequate for many algorithms and by a
plethora of application-specific optimizations and isolated mecha-
nisms. In many ways, this state of the art resembles alchemy rather
than a science like chemistry. To move forward, we need a sys-
tematic way of understanding parallelism and locality—a way to
generalize from specific cases and a way to apply generalizations
to specific cases. In short, we need a science of parallel program-
ming. We believe that the operator formulation and tao-analysis of
algorithms introduced in this paper are key elements of such a sci-
ence.
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