
IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID 1

Personalized QoS-Aware Web Service
Recommendation and Visualization
Xi Chen, Member, IEEE, Zibin Zheng, Student Member, IEEE, Xudong Liu,

Zicheng Huang, and Hailong Sun, Member, IEEE

Abstract—With the proliferation of Web services, effective QoS-based approach to service recommendation is becoming more
and more important. Although service recommendation has been studied in recent literature, the performance of existing ones is
not satisfactory, since (1) previous approaches fail to consider the QoS variance according to users’ locations; and (2) previous
recommender systems are all black boxes providing limited information on the performance of the service candidates. In this
paper, we propose a novel collaborative filtering algorithm designed for large scale Web service recommendation. Different from
previous work, our approach employs the characteristic of QoS and achieves considerable improvement on the
recommendation accuracy.To help service users better understand the rationale of the recommendation and remove some of
the mystery, we use a recommendation visualization technique to show how a recommendation is grouped with other choices.
Comprehensive experiments are conducted using more than 1.5 million QoS records of real world Web service invocations. The
experimental results show the efficiency and effectiveness of our approach.

Index Terms—Service recommendation, QoS, collaborative filtering, self-organizing map, visualization

—————————— ——————————

1 INTRODUCTION

eb services are software components designed to
support interoperable machine-to-machine interac-
tion over a network. The adoption of Web services

as a delivery mode in business has fostered a new para-
digm shift from the development of monolithic applica-
tions to the dynamic set-up of business process. In recent
years, Web services have attracted wide attentions from
both industry and academia, and the number of public
Web services is steadily increasing.

When implementing service-oriented applications,
service engineers (also called service users) usually get a
list of Web services from service brokers or search en-
gines that meet the specific functional requirements. They
need to identify the optimal one from the functionally
equivalent candidates. However, it is difficult to select
the best performing one, since service users usually have
limited knowledge of their performances. Effective ap-
proaches to service selection and recommendation are
urgently needed.

Quality-of-Service (QoS) is widely employed to
represent the non-functional performance of Web services
and has been considered as the key factor in service selec-
tion [33], [34], [35]. QoS is defined as a set of user-
perceived properties, including response time, availabili-
ty, reputation, etc. Currently, it’s not practical for users to
acquire QoS information by evaluating all the service

candidates, since conducting real world Web service in-
vocations is time-consuming and resource-consuming.
Moreover, some QoS properties (e.g., reputation and re-
liability) are difficult to be evaluated, since long-duration
observation and a number of invocations are required.
Besides client-side evaluation, it’s impractical to acquire
QoS information from service providers or third-party
communities, because service QoS performance is sus-
ceptible to the uncertain Internet environment and user
context (e.g., user location, user network condition, etc.).
Therefore, different users may observe quite different
QoS performance of the same Web service, and QoS val-
ues evaluated by one user cannot be used directly by
another in service selection and recommendation.

The objective of this paper is to make personalized
QoS-based Web service recommendations for different
users and thus help them select the optimal one among
the functional equivalents. Several previous work [19],
[20], [22], [29] has applied collaborative filtering (CF) to
Web service recommendation. These CF-based Web ser-
vice recommender systems work by collecting user ob-
served QoS records for different Web services and match-
ing together users who share the same information needs
or same tastes. Users of a CF system share their judg-
ments and opinions on Web services, and in return, the
system provides useful personalized recommendations.
However, three unsolved problems of the previous work
affect the performance of current service recommender
systems. The first problem is that the existing approaches
fail to recognize the QoS variation with users’ physical
locations. After the analysis of a real world Web service
dataset1, which contains 1.5 millions service invocation
results of 100 public services evaluated by users from
more than twenty contries, we discover that some QoS

1 http://www.wsdream.net
xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————
 Xi Chen, Xudong Liu, Zicheng Huang, and Hailong Sun are with the

Schoold of Computer Science and Engineering, Beihang University, Beijing
China. E-mail:bargittachen@gmail.com; {liuxd, huangzc, sunhl}@
act.buaa.edu.cn.

 Zibin Zheng is with the Department of Computer Science and Engineering,
The Chinese University of HongKong, Shatin, Hong Kong, China. E-mail:
zbzheng@cse.cuhk.edu.hk

Manuscript received Aug.15th,2010

W

Digital Object Indentifier 10.1109/TSC.2011.35 1939-1374/11/$26.00 © 2011 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

properties like response time and availability highly re-
late to the users’ physical locations. For example, the re-
sponse time of a service observed by users who are close-
ly located with each other usually fluctuates mildly
around a certain value, while it sometimes varies signifi-
cantly between users far away from each other.

The second problem is the online time complexity of
memory-based CF recommender systems [20], [29]. The
increasing number of Web services and users will pose a
great challenge to current systems. With O(mn) time com-
plexity where m is the number of services and n the num-
ber of users, exisiting systems cannot generate recom-
mendations for tens of thousands users in real time.

The last problem is that current Web service recom-
mender systems are all black boxes, providing a list of
ranked Web services with no transparency into the rea-
soning behind the recommendation results [19], [20], [22],
[29], [36]. It is less likely for users to trust a recommenda-
tion when they have no knowledge of the underlying ra-
tionale. The opaque recommendation approaches prevent
the acceptance of the recommended services. Herlocker et
al. [5] mention that explanation capabilities is an impor-
tant way of building trust in recommender systems, since
users are more likely to trust a recommendation when
they know the reason behind it.

To address the first two problems, we propose an in-
novative CF algorithm for QoS-based Web service rec-
ommendation. To address the third problem and enable
an improved understanding of the Web service recom-
mendation rationale, we provide a personalized map for
browsing the recommendation results. The map explicitly
shows the QoS relationships of the recommended Web
services as well as the underlying structure of the QoS
space by using map metaphor such as dots, areas and
spatial arrangement.

The main contributions of this work are threefold:
 Firstly, we combine the model-based and memo-

ry-based CF algorithms for Web service recom-
mendation, which significantly improves the rec-
ommendation accuracy and time complexity
compared with previous service recommendation
algorithms.

 Secondly, we design a visually rich interface to
browse the recommended Web services, which
enables a better understanding of the service per-
formance.

 Finally, we conduct comprehensive experiments
to evaluate our approach by employing real
world Web service QoS dataset. More than 1.5
millions real world Web service QoS records from
more than 20 countries are used in our experi-
ments.

The remainder of this paper is organized as follows:

Section 2 describes the recommendation approach in de-
tail. Section 3 presents the method for recommendation
visualization. Section 4 and 5 show the experiments of the
recommendation and visualization respectively. Section 6
discusses the related work, and Section 7 concludes the
paper with a summary and a description of future work.

Fig. 1. Alice’s situational problem.

2 THE RECOMMENDATION APPROACH
2.1 A Motivating Scenario

In this section, we present an online service searching
scenario to show the research problem of this paper. As
Fig. 1 depicts, Alice is a software engineer working in
India. She needs an email validation service to filter
emails. After searching a service registry located in U.S.,
she gets a list of recommended services in ascending or-
der of the service average response time. Alice tries the
first two services provided by a Canadian company and
finds that the response time is much higher than her ex-
pectation. She then realizes that the service ranking is
based on the evaluation conducted by the registry in U.S.,
and the response time of the same service may vary great-
ly due to the different user context, such as user location,
user network conditions, etc. Alice then turns to her col-
leagues in India for suggestion. They suggest her try ser-
vice k provided by a local company though ranked lower
in the previous recommendation list. After trying it, Alice
thinks that service k has a good performance and meets
her requirements.

The problem that Alice faces is to find a service that
meets both functional and non-functional requirements.
The current way of finding a suitable Web service is ra-
ther inefficient, since Alice needs to try the recommended
services one by one. To address this challenge, we pro-
pose a more accurate approach to service recommenda-
tion with consideration of the region factor. Moreover, we
try to provide a more informative and user-friendly inter-
face for browsing the recommendation results rather than
a ranked list. By this way, users are able to know more
about the overall performance of the recommended ser-
vices, and thus trust the recommendations.

The basic idea of our approach is that users closely lo-
cated with each other are more likely to have similar ser-
vice experience than those who live far away from each
other. Inspired by the success of Web 2.0 websites that
emphasize information sharing, collaboration and interac-
tion, we employ the idea of user-collaboration in our Web
service recommender system. Different from sharing in-
formation or knowledge on blogs or wikis, users are en-
couraged to share their observed Web service QoS per-
formance with others in our recommender system. The
more QoS information the user contributes, the more ac-

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CHEN ET AL.: PERSONALIZED QOS-AWARE WEB SERVICE RECOMMENDATION AND VISUALIZATION 3

curate service recommendations the user can obtain, since
more user characteristics can be analyzed from the user
contributed information.

Based on the collected QoS records, our recommenda-
tion approach is designed as a two-phase process. In the
first phase, we divide the users into different regions
based on their physical locations and historical QoS expe-
rience on Web services. In the second phase, we find simi-
lar users for the current user and make QoS prediction for
the unused services. Services with the best predicted QoS
will be recommended to the current user. These two
phases are presented in Section 2.2 and Section 2.3 respec-
tively, and the time complexity analysis of the proposed
algorithm is presented in Section 2.4.

2.2 Phase 1: Region Creation
In Web service recommender system, users usually pro-
vide QoS values on a small number of Web services. Tra-
ditional memory-based CF algorithms suffer from the
sparse user-contributed dataset, since it’s hard to find
similar users without enough knowledge of their service
experience. Different from existing methods, we employ
the correlation between users’ physical locations and QoS
properties to solve this problem. In this paper, we focus
on the QoS properties that are prone to change and can be
easily obtained and objectively measured by individual
users, such as response time and availability. To simplify
the description of our approach, we use response time
(also called round-trip time (RTT)) to describe our ap-
proach.

We assume that there are n users and m services. The
relationship between users and services is denoted by an
n m matrix R. Each entry Ri,j of the matrix represents the
RTT of service j observed by user i, and is the symbol
of no RTT value. Each user i (i {1,2,…,n}) is associated
with a row vector Ri. representing his/her observed RTT
values on different Web services. The user a (a {1,2,…,n})
is called the active user or current user if he/she has pro-
vided some RTT records and needs service recommenda-
tions.

We define a region as a group of users who are closely
located with each other and likely to have similar QoS
profiles. Each user is a member of exactly one region. Re-
gions need to be internally coherent, but clearly different
from each other. The region creation phase is designed as
a three-step process. In the first step, we put users with
similar IP addresses into a small region and extract region
features. In the second step, we calculate the similarity
between different regions. In the last step, we aggregate
highly correlated regions to form a certain number of
large regions. Details of these three steps are presented in
Section 2.2.1 to Section 2.2.3 respectively.

2.2.1 Region Feature Extraction
For each region, we use region center as the main feature
to reflect the average performance of Web services ob-
served by region users. Region center is defined as the
median vector of all the RTT vectors associated with the
region users. The element i of the center is the median
RTT value of service i observed by users from the region.

Median is the numeric value separating the higher half of
a sample from the lower half.

Besides the average Web service quality observed by
the region users, we also pay attention to the fluctuation
of the service performance. From large number of QoS
records, we discover that the service response time usual-
ly varies from region to region. Some services have unex-
pected long response time or even unavailable to some
regions. Inspired by the three-sigma rule [40] which is
often used to test outlier, we use similar method to dis-
tinguish services with unstable performance to different
regions and regard them as region-sensitive services,
which is another important region feature besides the
region center.

The set of non-zero RTTs of service s, R. s={R1,s, R2,s,…,
Rk,s },1 k n, collected from users of all regions is a sample
from the population of service s response time. To esti-
mate the mean and the standard deviation of the pop-
ulation, we use two robust measures: median and median
absolute deviation (MAD) [32]. MAD is defined as the
median of the absolute deviations from the sample's me-
dian.

MAD = mediani(|Ri,s-medianj(Rj,s)|)

i = 1,…,k, j = 1,…,k
Based on the median and MAD, the two estimators can be
calculated by:

)(ˆ ,Sii Rmedian i = 1,…,k

)(ˆ ,Sii RMAD i = 1,…,k

Definition1 (Region-Sensitive Service) Let R.s={R1,s,
R2,s,…, Rk,s},1 k n, be the set of RTTs of service s pro-
vided by users from all regions. Service s is a sensitive
service to region M iff
,where)(ˆ .si Rmedian ,)(ˆ .sRMAD and region(u) func-

tion defines the region of user u.
Definition2 (Region Sensitivity) The sensitivity of re-

gion M is the fraction between the number of sensitive
services in region M over the total number of services.

Definition3 (Sensitive Region) Region M is a sensitive
region iff its region sensitivity exceeds the sensitivity thre-
shold .

By the above definitions, we can identify services with
drastically fluctuating response time and those regions
where the fluctuation occurs, which is an important fea-
ture for service QoS prediction and recommendation. We
detail how to set in Section 4.3.

2.2.2 Region Similarity Computation
Determining whether two regions are similar is a key step
before region aggregation. The similarity of two regions
M and N is measured by the similarity of their region cen-
ters m and n. Pearson Correlation Coefficient (PCC) is
widely used in recommender systems to calculate the
similarity of two users [2]. PCC value ranges from -1 to 1.
Positive PCC value indicates that the two users have simi-

(1)

(2)

(3)

))()ˆ3ˆ((,., MjregionRRR sjssj

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

lar preferences, while negative PCC value means that the
two user preferences are opposite. PCC computes the
similarity between two regions M and N based on Eq.(4).

,
)()(

)()(
),(

)()(

2
.,

)()(

2
.,

.,
)()(

.,

mSnSs
nsn

mSnSs
msm

nsn
mSnSs

msm

RRRR

RRRR
nmSim

where S(n) S(m) is the set of co-invoked services by users
from region M and N, Rm,s is the RTT value of service s
provided by region center m. .mR and .nR represent the
average RTT of all the services of center m and n respec-
tively. Because PCC only considers the RTT difference of
the co-invoked services by both regions, it often overes-
timates the similarity of the two regions that are not simi-
lar, but happen to have a few co-invoked services with
very similar RTTs [13]. Intuitively, we hypothesize that
the accuracy of prediction can be improved if we add a
correlation significance weighting factor that can devalue
the overestimated similarity. We use the following ad-
justed PCC equation to calculate the similarity between
two regions:

),,(
|)()(|
|)()(|),(nmSim

nSmS
nSmSnmmSi

where |S(m) S(n)| is the number of Web services in-
voked by users either in region M or region N. The expe-
riment which compares the result with (Eq. (5)) and with-
out (Eq. (4)) the significance weighting is shown in Sec-
tion 4.6.

2.2.3 Region Aggregation
Each region formed by users’ physical locations at the
outset always has a very sparse QoS dataset, since users
only use a small number of Web services and provide
limited QoS records. In this case, it is difficult to find
similar users and predict the QoS values of the unused
Web services for the active user. To solve this problem,
we propose a region aggregation method based on the
region features. As shown in Algorithm 1, the region ag-
gregation approach is a bottom-up hierarchical clustering
algorithm [16]. The input is a set of small regions r1,…,rl.
Each region consists of users with similar locations. The
algorithm successively aggregates pairs of the most simi-
lar non-sensitive regions until the stopping criterion (line
16) is met. The result is stored as a list of aggregates in A.

Algorithm 1. Region Aggregation

in: regions r1,…,rl

 out: result list A
1: for n 1 to l - 1
2: for i n + 1 to N
3: C[n][i].sim SIM(rn,ri)
4: C[n][i].index i
5: end for
6: I[n].sensitivity ISSENSITIVE(rn)

7: if I[n].sensitivity=0
8: then I[n].aggregate 1
9: else I[n].aggregate 0

10: P[n] priority queue for C[n] sorted on sim
11: end for
12: calculate the sensitivity and aggregate of I[l]
13: A []
14: while true
15: k1 argmax{k:I[k].aggregate=1}P[k].MAX().sim
16: if k1=null or sim<
17: then return A
18: k2 P[k1].MAX().index
19: A.APPEND(<k1, k2>) and comput k1 center
20: I[k2].aggregate 0
21: P[k1] []
22: I[k1].sensitivity ISSENSITIVE(k1)
23: if I[k1].sensitivity=1
24: then I[k1].aggregate 0
25: for each i with I[i].aggregate=1
26: P[i].DELETE(C[i][k1])
27: P[i].DELETE(C[i][k2])
28: end for
29: else
30: for each i with I[i].aggregate=1 i k1
31: P[i].DELETE(C[i][k1])
32: P[i].DELETE(C[i][k2])
33: C[i][k1].sim SIM(i, k1)
34: P[i].INSERT(C[i][k1])
35: C[k1][i].sim SIM(i, k1)
36: P[k1].INSERT(C[k1][i])
37: end for
38: end while
 Step 1. Initialization (lines 1 12):

1. Compute the similarity between each two re
gions using Eq. (5), store the similarity and the
similar region index in the similarity matrix C.

2. Calculate the sensitivity of each region and
identify whether it can be aggregated. Store the
result in the indicator vector I. I[k].sensitivity
indicates whether region k is sensitive, and
I[k].aggregate indicates whether region k can be
aggregated.

3. Use a set of priority queues P to sort the rows
of C in decreasing order of the similarity. Func-
tion P[k].MAX() returns the index of the region
that is most similar to region k.

 Step 2. Aggregation (lines 13-38):
1. In each iteration, select the two most similar

and non-sensitive regions from the priority
queues if their similarity exceeds threshold ,
otherwise return A.

2. Aggregate the selected two regions and store
their region index in result list A. Use the
smaller region index of the two as the new re-
gion index and compute the new region center.
Mark the indicator vector I of the aggregated
region.

3. Calculate the sensitivity of the new region and
set indicator I. If it is sensitive and cannot be

(4)

(5)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CHEN ET AL.: PERSONALIZED QOS-AWARE WEB SERVICE RECOMMENDATION AND VISUALIZATION 5

aggregated, remove this region from other re-
gions’ priority queues. Otherwise, update the
elements of both priority queues and similarity
matrix related to the aggregated two regions.
Repeat the above three steps.

2.3 Phase 2: QoS Value Prediction
After the phase of region aggregation, thousands of users
are clustered into a certain number of regions based on
their physical locations and historical QoS similarities.
The service experience of users in a region is represented
by the region center. With the compressed QoS data,
searching neighbors and making predictions for an active
user can be computed quickly. Traditionally, the QoS
prediction methods need to search the entire dataset [20],
[29], which is rather inefficient. In our approach, similari-
ty between the active user and users of a region is com-
puted by the similarity between the active user and the
region center. Moreover, it is more reasonable to predict
the QoS value for active users based on their regions, for
users in the same region are more likely to have similar
QoS experience on the same Web service, especially on
those region-sensitive ones. To predict the RTT value for
the active user a on an unused service s, we take the fol-
lowing steps:

 Find the region of user a by IP address. If no ap-
propriate region is found, the active user will be
treated as a member of a new region.

 Identify whether service s is sensitive to the spe-

cific region. If it is region-sensitive, then the pre-
diction is generated from the region center, be-
cause the service performance observed by users
from this region is significantly different from
others.

scentersa RR ,,
ˆ

 Otherwise, use Eq. (5) to compute the similarity

between the active user and each region center
that has evaluated service s, and find up to k most
similar centers {c1, c2,…, ck}. We discuss how to
choose k (also called top-k) in Section 4.4.

 If the active user’s region center has the RTT val-

ue of s, the prediction is computed using Eq. (7).

,
),(

),()(ˆ
1

1 .,
,, k

j j

k

j jcsc
scentersa

camSi

camSiRR
RR jj

where is the RTT of service s provided by cen-
ter cj, and is the average RTT of center cj . The
prediction is composed of two parts. One is the
RTT value of the region center of the active user
Rcenter,s ,which denotes the average QoS observed
by this region users. The other part is the norma-
lized weighted sum of the deviations of the ser-
vice s RTT from the average RTT observed by the
k most similar neighbors.

 Otherwise, we use the service s RTTs observed by
the k neighbors to compute the prediction as Eq.
(8) shows. The more similar the active user a and
the neighbor cj are, the more weighting the RTT of
cj will carry in the prediction.

k

j j

k

j jsc
sa

camSi

camSiR
R j

1

1 ,
,

),(

),(
ˆ

Note that previous CF-based Web service recommen-
dation algorithms [20] [29] use Eq. (9), a rating aggregate
method commonly adopted in recommender systems [13]
[15], to predict the missing QoS value.

k

j j

k

j jcsc
asa

camSi

camSiRR
RR jj

1

1 .,
.,

),(

),()(ˆ

However, it is not applicable in our context, since this

equation is based on the idea that each user’s rating range
is subjective and comparatively fixed (e.g., critical users
always rate items with lower ratings), whereas the range
of RTT varies largely from service to service. The average
RTT of all services provided by user a cannot reveal the
performance of a specific Web service. Instead, we turn to
the RTT profile of the region center and use its RTT of
service s to predict the missing value (Eq. (7)).

2.4 Time Complexity Analysis
We discuss the worst-case time complexity of the pro-
posed algorithm. Since there are two phases in our algo-
rithm: the offline phase for region creation and the online
phase for the QoS value prediction, we analyze their time
complexity separately. We assume the input is a full ma-
trix with n users and m services.

2.4.1 Offline Time Complexity
In Section 2.2.1, the time complexity of calculating the
median and MAD of each service is O(nlogn). For m ser-
vices, the time complexity is O(mnlogn). With MAD and
median, we identify the region-sensitive services from the
service perspective. Since there are at most n records for
each service, the time complexity of each service is O(n)
using definition 1. Therefore, the total time complexity of
region-sensitive service identification is O(mnlogn + mn) =
O(mnlogn).

The time complexity of region aggregation (see Algo-
rithm 1) is analyzed as follows.

We assume there are l0 regions at the beginning. Since
there are at most m intersecting services for two regions,
the time complexity of the region similarity is O(m) using
Eq.(5), and the complexity for computing similarity ma-
trix C is O(l02m) (lines 1-10 of Algorithm 1).

The aggregation of two regions will execute at most l0-
1 times (lines 14-38), in case that all regions are non-
sensitive, extremely correlate to each other and finally
aggregate into one region. In each iteration, we first com-
pare at most l0-1 heads of the priority queues to find the
most similar pairs (line 15). Since the number of regions
that can be aggregated decreases with iteration, the real
search time will be less than l0-1 in the following itera-

(6)

(8)

(9)

(7)

sc j
R ,

.jcR

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

tions. For the selected pair of regions, we calculate the
new center and update their similar regions. Because the
number of users involved in the two regions are uncertain,
we use the number of all users as the upper bound and
the complexity is O(mnlogn) .The insertion and deletion of
a similar region is O(logl0), since we employ the priority
queue to sort similar regions. Thus, the time complexity
of Algorithm 1 is O(l02(logl0+mnlogn))=O(l02 mnlogn).

As the above steps are linearly combined, the total
time complexity of the offline part is O(l02 mnlogn).

2.4.2 Online Time Complexity
Let l1 be the number of regions after the phase of region
creation. To predict the QoS value for an active user, O(l1)
similarity calculations between the active user and region
centers are needed, each of which takes O(m) time. There
for, the time complexity of similarity computation is
O(l1m).

For each service the active user has not evaluated, the
QoS value prediction complexity is O(l1), because at most
l1 centers are employed in the prediction as Eq.(7) and
Eq.(8) state. There are at most m services without QoS
values, so the time complexity of the prediction for an
active user is O(l1m). Therefore, the time complexity for
the online phase including similarity computation and
missing value prediction is O(l1m) O(m) (l1 is rather
small compared to m or n). Compared to the memory-
based CF algorithm used in previous work with O(mn)
online time-complexity, our approach is more efficient
and well suited for large dataset.

3 RECOMMENDATION VISUALIZATION
Conventionally, CF-based Web service recommender sys-
tems employ the predicted QoS mainly in two ways. 1)
When users query a service with specific functionality,
the one with the best predicted QoS is recommended to
them. 2) Top-k best-performing services are recommend-
ed to help users discover potential services. While this
kind of recommendation is useful, it is not obvious to
users why certain services are recommended. More than a
service list ranked by predicted QoS as recommendation,
we need to develop an exploratory recommendation tool
that provides valuable insight into the QoS space and
enables an improved understanding of the overall per-
formance of Web services.

The QoS space visualization of all Web services on a
map will reveal the rationale behind QoS-based service
recommendations. QoS space visualization is more than a
picture or method of computing. It transforms the infor-
mation of high dimensional QoS data into a visual form
enabling service users to observe, browse, and under-
stand the information.

We draw the QoS map by two steps: dimension reduc-
tion step and map creation step. In the first step, we
create a two-dimensional representation of the high di-
mensional QoS space by using self-organizing map
(SOM), and each Web service is mapped to a unique two-
dimensional coordinates. In the second step, we create a
geographic-like QoS map based on the SOM training re-

Fig. 2. Mapping QoS space to the two-dimensional output space of
SOM. Each QoS vector is mapped to the BMU with closest Eucli-
dean distance.

sults. We detail the two drawing steps in section 3.1 and
3.2 respectively.

3.1 SOM Training
The SOM [8] is a popular unsupervised artificial neural
network that has been successfully applied to a broad
range of areas, such as medical engineering, document
organization and speech recognition. When SOM is used
for information visualization, it can be viewed as a map-
ping of a high dimensional input space to a lower dimen-
sional output space (usually one or two dimensions).

The output space of SOM is a network of neurons lo-
cated on a regular, usually two-dimensional grid. Each
neuron is equipped with a prototype vector which has the
same dimension of the input space. The neurons are con-
nected to adjacent ones by a neighborhood relation indi-
cating the structure of the map such as a rectangular or
hexagonal lattice. After the training phase, data points
close to each other in the input space are mapped onto the
nearby neurons. With this topology preserving projection
property, SOM is frequently employed in data survey
applications to help visualize the inherent structure of
high-dimensional complex data.

The principal goal of using SOM in our context is to
transform the QoS data employed by CF into a two-
dimensional discrete map in a topologically ordered fa-
shion. In this context, the QoS map is to show the simi-
larity of RTT variance of different Web services. Intuitive-
ly, the input of the SOM is the QoS matrix containing all
the services (rows) and their respective QoS values pro-
vided by all users (columns). However, since the data set
is rather sparse and the number of QoS values varies from
service to service, the original data set cannot reveal the
underlying structure of the QoS space. To address this
problem, the QoS set derived from region centers is em-
ployed to train the SOM.

Let l denote the dimension of the input space (QoS da-
ta) and q = [q1, q2,…, ql]T denote an input pattern (QoS vec-
tor of a service). The prototype of neuron j is denoted by

j = [j1, j2,…, jl]T , j=1,2,…, k,

where k is the total number of neurons in the network.
The SOM is trained iteratively. In each training step, a

(10)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CHEN ET AL.: PERSONALIZED QOS-AWARE WEB SERVICE RECOMMENDATION AND VISUALIZATION 7

QoS vector q is randomly chosen from the input dataset.
The Euclidean distance between q and all prototypes is
calculated. The neuron with the prototype closest to q is
chosen as the best-matching unit (BMU) as Fig.2 depicts.
Let i(x) be the index of BMU, we determine i(x) by apply-
ing

||||minarg)(jj
qxi , j=1,2,…, k.

Then the prototype of BMU and those of BMU’s
neighbors are adapted to move closer to the input vector
q in the input space. Given the prototype j(n) of neuron
j at time n, the updated vector j(n + 1) of this neuron at
time n+1 is defined by:

j(n + 1) = j(n) + (n)hj,i(n)(q - j(n)),

where (n) is the learning rate function, and hj,i(n) is the
neighborhood function which determines how strongly
the neurons are connected with each other. The common-
ly used Gaussian neighborhood function is defined as:

)
)(2
||||

exp()(2, n
rr

nh ij
ij

,where rj is the location of neuron j, and (n)is the neigh-
borhood radius at time n. Both (n) and hj,i(n) decrease
monotonically with time.

The map is usually trained in two phases [4]: a rough
training phase that neurons are topologically ordered
with relatively large initial neighborhood radius and
learning rate; a convergence phase to fine tune the map
with small initial neighborhood radius and learning rate.
After the training of SOM, services with similar QoS are
mapped onto the same neuron or nearby neurons. The
mapping result of the QoS data reflects the QoS similari-
ties between services.

3.2 Map Creation
The direct approach to Web service QoS map is to assign
each Web service a distinct portion of the two-
dimensional display area, and put services with similar
QoS performance next to each other. With the training
result, we first assign each service unique coordinates by
randomly distributing them within the cell boundary of
the corresponding neuron. Then the Voronoi diagram [21],
[30] is used to form a base map in which each service cor-
responds to a unique polygon.

When applied to a large set of services, base map alone
is insufficient and will quickly become too complex to
reveal the underlying data relationships. A generalized
map explicitly telling the cluster information is needed.
We apply hierarchical clustering method [16] to cluster
Web services based on their QoS similarity and form a
generalized map by merging service polygons belonging
to the same cluster. The topological preserving feature of
SOM guarantees that services belong to the same cluster
are usually neighboring polygons on the map.

We put Web service recommendations on the map by
using the predicted QoS values. For those functionally
equivalent services, the one with the best predicted QoS

will be marked on the map. We also highlight the top-k
best performing services to help users find potential ones.
Section 5 provides the detail of the map implementation.

4 EXPERIMENTS
In this section, we give a comprehensive study on the
QoS prediction performance of our proposed algorithm.

4.1 Experimental Setup
We adopt a real world Web service QoS performance da-
taset2 for the experiment. The dataset contains about 1.5
million Web service invocation records of 100 Web ser-
vices from more than 20 countries. The RTT records are
collected by 150 computer nodes from the Planet-Lab3,
which are distributed over 20 countries. For each com-
puter node, there are 100 RTT profiles, and each profile
contains the RTT records of 100 services. We randomly
extract 20 profiles from each node, and obtain 3000 users
with RTTs ranging from 2 to 31407 milliseconds.

We divide the 3000 users into two groups, one as train-
ing users and the rest as active (test) users. To simulate
the real situation, we randomly remove a certain number
of RTT records of the training users to obtain a sparse
training matrix. We also remove some records of the ac-
tive users, since active users usually only have invoked a
small number of Web services in reality.

To evaluate the prediction performance, we compare
our approach with user-based CF algorithm using PCC
(UPCC) [20], item-based CF algorithm using PCC (IPCC)
[11], and WSRec [29] which combines UPCC and IPCC.

We use Mean Absolute Error (MAE), the well-known
statistical accuracy metric, to measure the prediction ac-
curacy. MAE is the average absolute deviation of predic-
tions to the ground truth data. For all test services and
test users:

, ,
,

ˆ| |
,

u s u s
u s

R R
MAE

L

where Ru,s denotes the actual RTT of Web service s ob-
served by user u, denotes the predicted RTT value,
and L denotes the number of predicted values. Smaller
MAE indicates better prediction accuracy.

4.2 Prediction Evaluation
In this experiment, we randomly remove 90% and 80%
RTTs of the initial training matrix to generate two sparse
matrices with density 0.1 and 0.2 respectively. We vary
the number of RTT values given by active users from 10,
20 to 30, and name them given 10, given 20, and given 30
respectively. The removed records of active users are
used to study the prediction accuracy. In this experiment,
we set =0.3, =0.8, top-k=10. To get a reliable error esti-
mate, we use 10 times 10-fold cross-validation [31] to eva-
luate the prediction performance and report the average
MAE value.

Table 1 shows the prediction performance of different

2 http://www.wsdream.net
3 http://www.planet-lab.org

(11)

(12)

(13)

(14)

suR ,
ˆ

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

TABLE 1 Prediction Performance Comparison

Method Density = 0.1 Density = 0.2
Given 10 Given 20 Given 30 Given 10 Given 20 Given 30

IPCC 1179.32 1170.73 1160.45 1104.02 1094.63 1086.08
UPCC 1280.95 1145.80 1085.85 1167.84 846.54 674.32
WSRec 976.01 805.60 772.34 968.69 788.37 742.15

Our Method 643.26 622.02 617.20 466.12 457.21 451.88

0

0.5

1

00.51
0

10

20

30

40

50

60

miu
lambda

N
um

be
r

of
 r

eg
io

ns

10

15

20

25

30

35

40

45

50

0

0.5

1

0
0.5

1

400

500

600

700

800

900

1000

lambda
miu

M
A

E
500

550

600

650

700

750

800

850

900

Fig. 3. Impact of thresholds and . (a) Impact on the number of regions. (b) Impact on the prediction performance (MAE).

methods employing the 0.1 and 0.2 density training ma-
trix. We observe that our method significantly improves
the prediction accuracy, and outperforms others consis-
tently. The performance of UPCC, WSRec and our ap-
proach enhances significantly with the increase of matrix
density as well as the number of QoS values provided by
active users (given number). On the contrary, there is on-
ly a slight improvement of IPCC. The original idea of
IPCC is to match items with similar user ratings and
combine them to recommendations. Apparently, it is not
appropriate to apply this idea to our context, because
even services provided by the same company are hardly
to have similar response times to different users.

4.3 Impact of and
The two thresholds and in the phase of region creation
play a very important role in determining the number of
regions and thus impact the final performance of our ap-
proach. As shown in Algorithm 1, only those regions with
similarity higher than and sensitivity less than are able
to be aggregated. In this experiment, we study the impact
of and on a sparse matrix with 2700 training users and
300 active users. We set density=0.2, given=10 and em-
ploy all the neighbors with positive PCC for QoS predic-
tion. We vary the two thresholds and both from 0.1 to
0.9 with a step of 0.1. Fig. 3 shows how and affect
the number of regions and the final performance. It shows
that lower and higher result in fewer regions, but few-
er regions does not necessarily mean better prediction
accuracy. For this dataset, better prediction accuracy is
achieved with higher and .

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

Region sensitivity

N
um

be
r

of
 r

eg
io

ns

Fig. 4. The distribution of region sensitivity.

Note that the optimal value of is related to the sensi-
tivity of the original regions at the outset. Fig. 4 shows the
distribution of the region sensitivity before aggregation. It
shows that the sensitivity of most regions (81.3%) is less
than 0.1, while the sensitivity of a few regions (4.67%) is
around 0.8. Higher and allow very similar regions
with high sensitivity to be aggregated and achieve good
performance in this experiment.

Fig. 5 (a) shows the relation between and prediction
accuracy with training matrix density 0.2, 0.5 and 1. We
employ all the neighbors with positive PCC values for
QoS prediction and set =1, so that we do not consider the
factor of sensitivity in region aggregation. Similarity be-
comes the single factor. Obviously, for denser matrix,

(a) (b)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CHEN ET AL.: PERSONALIZED QOS-AWARE WEB SERVICE RECOMMENDATION AND VISUALIZATION 9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
350

400

450

500

550

600

Region similarity

M
A

E

density 0.2
density 0.5
density 1.0

5 10 15 20 25 30 35 40
750

800

850

900

950

1000

Top-K

M
A

E

Given 10
Given 20
Given 30

0.1 0.2 0.3 0.4 0.5
400

600

800

1000

1200

1400

Training matrix density

M
A

E

IPCC
UPCC
WSRec
Our method

10 20 30 40 50
400

600

800

1000

1200

1400

Given number

M
A

E

our method
IPCC
WSRec
UPCC

0.1 0.2 0.3 0.4 0.5
850

900

950

1000

Density of training matrix

M
A

E

prediction with adjusted PCC
prediction with PCC

10 20 30 40 50
820

840

860

880

900

920

940

Given number

M
A

E

prediction with significance weighting
prediction without significance weighting

Fig. 5. Parameters impact on prediction performance (MAE). (a) Impact of region similarity (b) Impact of Top-K (c) Impact of the training
matrix density (d) Impact of the given number (e) Significance weighting Impact with changing density (f) Significance weighting Impact with
changing given number

with higher we obtain a set of coherent regions and bet-
ter prediction is obtained.

4.4 Impact of Top-k
Top-k determines how many neighbors are employed in
the phase of QoS prediction which relates to the predic-
tion accuracy. We employ a training matrix of density 0.3,
and set =0.2, =0.8. After the model building phase, we
obtain 39 regions. To study the impact of neighborhood
size, we vary top-k from 5 to 40 with a step of 5. Fig. 5 (b)

shows the result with given number from 10 to 30. The
trends of the three curves are the same that MAE decreas-
es sharply with an increasing neighborhood size at the
beginning, and then stays around a certain value. As top-
k grows, more regions are selected in the QoS prediction,
while those later added regions are usually less similar
and make little contribution to the final result.

4.5 Data Sparseness
This experiment investigates the impact of data sparse-

(a) (b)

(c) (d)

(e) (f)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

ness on the prediction accuracy. We examine the impact
from two aspects: the density of training matrix and the
number of QoS values given by active users (given num-
ber). We divide the experiment into two parts and use 10
times 10 fold cross-validation to assess the prediction re-
sults and report the average MAE.

We first study the impact of training matrix density.
We vary the density of the training matrix from 0.1 to 0.5
with a step of 0.1, and set given=10. Fig. 5 (c) shows the
experimental results. It shows that: (1) With the increase
of the training matrix density, the performance of IPCC,
UPCC and our method enhances indicating that better
prediction is achieved with more QoS data. WSRec is not
sensitive to the data sparseness, and it stays around a cer-
tain value. (2) Our method outperforms others consistent-
ly.

To study the impact of given number on the prediction
results, we employ the training matrix with density 0.3
and vary the given number from 10 to 50 with a step of 10.
Fig. 5 (d) shows the experimental results. It shows that
the prediction performance of IPCC, UPCC and WSRec
improves greatly with the growth of the given number,
while our method enhances slightly. This observation
indicates that our method is not sensitive to the value of
given number. It can achieve good prediction result even
when the given number is rather small.

4.6 Significance Weighting
Significance weighting factor is added to devalue similar-
ity weights that are based on a small number of co-
invoked Web services. To study the impact of this factor,
we implement two versions of the algorithm, one with the
significance weighting (Eq. 5) and the other without (Eq.
4). Since the overestimation of the similarity occurs when
the active user and training users have few co-invoked
services, we study the impact by varying the number of
QoS provided by both the training users (training matrix
density) and active users (given number) with two expe-
riments.

In the first experiment, we employ 2700 training users,
300 active users, set given=5, =0.2, =0.3, top-k=20. We
vary the density of the training matrix from 0.1 to 0.5 with
a step of 0.1. As Fig. 5 (e) shows, applying the significance
weighting increases the accuracy of the prediction algo-
rithm in most cases.

The other experiment is carried out with the same
number of training users and active users. We set the
density of the training matrix 0.05, =0.2, =0.3, top-k=10.
We vary the given number from 10 to 50 by a step of 10.
Fig. 5 (f) shows that the algorithm with the significance
weighting consistently increases the accuracy of the pre-
diction by a relatively large amount. As the given number
increases, the gap between the two becomes more ob-
vious. This is because with a sparse training matrix (den-
sity=0.05) and high given number, it is common for the
active user to have neighbors that were based on tiny
samples (two or three co-invoked services with similar
QoS). In this case, overestimation of the similarity by Eq.
(4) frequently leads to poor prediction accuracy.

5 A MAP DISPLAY FOR RECOMMENDATION
In this section, we demonstrate how to create a map
showing the similarity of RTT variance of Web services,
and how to put personalized Web service recommenda-
tions on the map for an active user. We use 2700 training
users and set given=10, density=0.5. After the region ag-
gregation phase, 17 regions are formed. The input of SOM
is a 100×17 RTT matrix containing 100 services (rows) and
their respective performance on 17 regions (columns).
Each Web service’s QoS (row) is an input vector. We train
an SOM with neurons arranged in a 60×80 hexagonal lat-
tice. The prototypes of SOM are randomly initialized, and
Gaussian function is adopted as the neighborhood func-
tion (see Eq. (13)). We train the SOM in two phases: a
rough training phase with initial neighborhood width 15
and learning rate 0.05; a fine tuning phase with initial
neighborhood width 2 and learning rate 0.01. The training
lengths of the two phases are 500 and 3000 epochs respec-
tively. The learning rate decreases linearly to zero during
the training.

Fig. 6. Base map creation. (a) 2D locations of services derived from
SOM training. (b) Voronoi diagram of services based on the 2D loca-
tions.

When the training process is completed, each service is
mapped on to a neuron. We assign unique coordinates to
each service by randomly distributing them within the
boundaries of the corresponding neuron cell (see Fig. 6
(a)). To create a geographic map, each point is assigned to
a distinct portion of the map display by forming a Voro-
noi diagram (see Fig. 6(b)). After that, we adopt the hie-
rarchical clustering to the services based on their QoS
similarities and obtained 42 clusters. We simplified the
base map by merging the neighboring polygons if they
are in the same cluster. By this way, we form a genera-
lized map highlighting the underlying structure of the
QoS space.

Labeling individual service is an integral part of the
map creation. The goal is to help users identify the poten-
tial services with optimal QoS values. We use different
label styles to mark services showing how strongly we
recommend them. For example, the top 10 best perform-
ing services are labeled with 12-point boldface; services
with good predicted QoS are labeled with 8-point non-
boldface; while dots indicate those services with poor
predicted QoS values. Fig. 7 shows the final map for Web
service recommendations.

(a) (b)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CHEN ET AL.: PERSONALIZED QOS-AWARE WEB SERVICE RECOMMENDATION AND VISUALIZATION 11

Fig. 7. Final map with service recommendations.

 RTT Cost Reputation
WS1 1200 10 1
WS2 1000 20 2
… … … …

WS100 800 50 5
Fig. 8. Region center matrix.

The map can also be created for one region to show the
similarity of Web services based on a set of QoS proper-
ties. For example, we can employ three QoS properties:
RTT, cost and reputation. RTT and cost are quantitative
properties, while reputation is qualitative (usually 1-5
starts). Each region center is a matrix composed of three
column vector (RTT, Cost, Reputation) as Fig. 8 shows.
Since different properties have different ranges, we first
normalize each of them to [0, 1] by the following steps: 1)
find the minimum Rmin and maximum Rmax value of the
property; 2) For each original value R submitted by the
user, the normalized value R’ is calculated by Eq. (15).

minmax

min'
RR

RRR

With the normalized values, each property will have
equal weights in the SOM training. The map creation
process is the same, and we can obtain a map reflecting
the Web service QoS similarity of a specific region.

6 RELATED WORK
In this section, we discuss related work regarding CF and
Web service recommendation.

6.1 Collaborative Filtering
Collaborative Filtering is firstly proposed by Rich [18]
and widely used in commercial recommender systems,
such as Amazon.com [11]. The basic idea of CF is to pre-
dict and recommend the potential favorite items for a
particular user by leveraging rating data collected from
similar users. Formally, a CF domain consists of n users
{u1, u2,…, un}, m items {i1, i2,…, im}, and users’ ratings on
items, which is often denoted by a user-item matrix. Each
entry rx,y (1 x n, 1 y m) in this matrix represents user
x’ s rating on item y. The rating score usually has a fixed
range, like 1-5. Since users only express their preference
on a small number of items, the matrix is very sparse in
reality.

Essentially, CF is based on processing the user-item
matrix. Breese et al. [2] divided the CF algorithms into
two broad classes: memory-based algorithms and model-
based algorithms.

Memory-based algorithms such as user-based KNN
[13] [15] use the entire user-item matrix when computing
recommendations. These algorithms are easy to imple-
ment, require little or no training cost, and can easily take
new users’ ratings into account. However, memory-based
algorithms cannot cope well with large number of users
and items, since their online performance is often slow.

Alternatively, model-based algorithms, such as K-
means clustering [26], Bayesian model [3], etc. learn the
model from the dataset using statistical and machine
learning techniques. These model-based algorithms can
quickly generate recommendations and achieve good
online performance. However, the model must be per-
formed anew when new users or items are added to the
matrix.

(15)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

6.2 Web Service Recommendation
Web service discovery is a hot topic which plays a crucial
role in the area of services computing [33]. Some syntactic
and semantic based Web service search engines have
been proposed in recent literature. Dong et al. [37] found
that the traditional key word-based Web service search
was insufficient, and they provided a similarity search
algorithm for Web services underlying the Woogle search
engine. Liu et al. [38] investigated the similarity mea-
surement of Web services and designed a graph-based
search model to find Web services with similar operations.
Recommendation techniques have been used in recent
research projects to enhance Web service discovery. Meh-
ta et al. [14] found that semantics and syntax were inade-
quate to discover a service that meets user requirements.
They added two more dimensions of service description:
quality and usage pattern. Based on this service descrip-
tion, they propose the service mediation architecture.
Blake and Nowlan [1] computed a Web service recom-
mendation score by matching strings collected from the
user’s operational sessions and the description of the Web
services. Based on this score, they judged whether a user
is interested in the service. Maamar et al. [12] proposed a
model for the context of Web service interactions and
highlighted the resource on which the Web service per-
formed. Zhao et al. [17] provided a way to model services
and their linkages by semantic algorithm. Based on the
input keywords, users can get a set of recommendations
with linkages to the query. Previous work mainly focused
on providing a mechanism to formalize users’ preference,
resource and the description of Web services, and rec-
ommendations are generated based on the predefined
semantic models. Different from these methods, our rec-
ommendations are generated by mining the QoS records
that are automatically collected from interactions between
users and services.

Limited work has been done to apply CF to Web ser-
vice recommendation. Shao et al. [20] proposed a user-
based CF algorithm to predict QoS values. Zheng et al.
[29] combined the user-based and item-based CF algo-
rithm to recommend Web services. However, since nei-
ther of the two approaches recognized the different cha-
racteristic between Web service QoS and user ratings, the
prediction accuracy of these methods was unsatisfactory.
Sreenath and Singh [22] and Rong et al. [19] applied the
idea of CF in their systems, and used MovieLens data [15]
for experimental analysis. However, using the movie da-
taset to study Web service recommendation is not con-
vincing.

Different from these existing methods, which suffer
from low prediction accuracy, we propose an effective CF
algorithm for Web service recommendation with consid-
eration of the region factor. Comprehensive experiments
conducted with real QoS records show that our method
outperforms others consistently.

There are several SOM-based methods to visualize data
structure. U-Matrix [25] is the most popular one that dis-
plays the local distance structures of the input vectors.
U*-Matrix [24], an enhancement of U-Matrix, combines
the density and distance information for visualization.

Color assignment is also employed to show the approx-
imate cluster structures [6] [9]. To exploit data topology in
visualization, Tasdemir and Merényi [23] introduced a
weighted Delaunay triangulation. Different from our ap-
proach which clusters the Web services to form a genera-
lized map, data clusters can be computed by applying
clustering techniques to the trained prototypes, and clus-
ters can be visualized on top of the map [21] [27].

7 CONCLUSION AND FUTURE WORK
In this paper, we have presented an innovative approach
to Web service recommendation and visualization. Dif-
ferent from previous work, our algorithm employs the
characteristic of QoS by clustering users into different
regions. Based on the region feature, a refined nearest-
neighbor algorithm is proposed to generate QoS predic-
tion. The final service recommendations are put on a map
to reveal the underlying structure of QoS space and help
users accept the recommendations. Experimental results
show that our approach significantly improves the pre-
diction accuracy than the existing methods regardless of
the sparseness of the training matrix. We also demon-
strate that the online time complexity of our approach is
better than the traditional CF algorithms.

In this paper, our recommendation approach consi-
dered the correlation between QoS records and users’
physical locations by using IP addresses, which has
achieved good prediction performance. In some cases,
however, users in the same physical locations may ob-
serve different QoS performance of the same Web service.
Besides the user physical location, we will investigate
more contextual information that influences the client-
side QoS performance, such as the workload of the serv-
ers, network conditions and the activities that users carry
out with Web services (e.g., Web services are used alone
or in composition). More investigations on the distribu-
tion of RTT and the correlation between different QoS
properties such as RTT and availability will be conducted
in our future work.

For the visualization of the recommendation results,
we plan to add more user interactions such as searching
Web services on the QoS map, zooming in and zooming
out. Graphic map like google map will be combined to
help users navigate their similar users and Web service
providers on the map.

User acceptance rate of the recommendation is a key
indicator of the effectiveness of the recommender system.
We will collect more user feedbacks of the recommenda-
tion to help improve the prediction accuracy of our Web
service recommendation algorithm.

ACKNOWLEDGMENT

This research is partly supported by China 863 program
(No.2007AA010301 & 2009AA01Z419), and the National
Natural Science Foundation of China (No. 60731160632 &
60903149).

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

CHEN ET AL.: PERSONALIZED QOS-AWARE WEB SERVICE RECOMMENDATION AND VISUALIZATION 13

REFERENCES

[1] M.B. Blake, and M.F. Nowlan. “A Web Service Recommender
System Using Enhanced Syntactical Matching,” Proceedings of
International Conference on Web Services, Salt Lake City, Utah,
USA, pp.575- 582, 2007

[2] J.S. Breese, D. Heckerman, and C. Kadie. “Empirical Analysis of
Predictive Algorithms for Collaborative Filtering,” Proceedings
of the 14th Conference on Uncertainty in Artificial Intelligence,
Madison, WI, USA, pp. 43-52, 1998.

[3] Y.H. Chen, and E.I. George. “A Bayesian Model for Collabora-
tive Filtering,” Proceedings of the Seventh Int’l Workshop Artificial
Intelligence and Statistics. http://www.stat.wharton.upenn.edu
/~edgeorge/Research_papers/Bcollab.pdf. 1999.

[4] S. Haykin. Neural Networks: A Comprehensive Foundation, Second
Edition, Prentice-Hall, Inc,New Jersey,1999

[5] J.L. Herlocker, J.A. Konstan, and J. Riedl. “Explaining Collabor-
ative Filtering Recommendations,” Proceedings of the ACM confe-
rence on Computer supported cooperative work, Philadelphia, Penn-
sylvania, USA, pp. 241-250, 2000.

[6] J.Himberg. “A SOM Based Cluster Visualization and its Appli-
cation for False Coloring,” Proceedings of IEEE-INNS-ENNS In-
ternational Joint Conference on Neural Networks, Como, Italy, vol.3,
pp.587-592, 2000, doi:10.1109/IJCNN.2000.861379

[7] Hsu, and S.K. Halgamuge. “Class Structure Visualization with
Semi-supervised Growing Self-organizing Maps,” Neurocomput-
ing, vol. 71, pp. 3124-3130, 2008.

[8] T. Kohonen. “The Self-organizing Map,” Proceedings of the IEEE,
vol.78, no.9, pp.1464-1480, 1990.

[9] S. Kaski, J. Venna, and T. Kohonen. “Coloring that Reveals
High-dimensional Structures in Data,” Proccedings of the Interna-
tional Conference on Neural Information Processing, Perth, WA, vol.
2, pp.729-734, 1999.

[10] J.A. Konstan, B.N. Miller, D. Maltz, J.L. Herlocker, L.R, Gordan,
and J.Riedl. “GroupLens: Applying Collaborative Filtering to
Usenet News,” Communications of the ACM, vol.40, no.3, pp.77-
87, 1997.

[11] G.Linden, B. Smith, and J. York. “Amazon.com Recommenda-
tions: Item-to-Item Collaborative Filtering,” IEEE Internet Com-
puting, vol. 7, no.1, pp. 76-80, 2003.

[12] Z. Maamar, S.K. Mostefaoui, and Q.H. Mahmoud. “Context for
Personalized Web Services,” Proceedings of the 38th Annual Ha-
waii International Conference, Hawaii, USA, pp. 166b-166b. 2005.

[13] M.R. McLaughlin and J.L. Herlocker. “A Collaborative Filtering
Algorithm and Evaluation Metric that Accurately Model the
User Experience,” Proceedings of the 27th annual international
ACM SIGIR conference, Sheffield, UK, pp. 329-336, 2004.

[14] B.Mehta, C. Niederee, A. Stewart, C. Muscogiuri, and E.J. Neu-
hold. “An Architecture for Recommendation Based Service
Mediation,” Semantics of a Networked World, vol.3226, pp.250-262,
2004.

[15] B.N. Miller, I.Albert, S.K. Lam, J. A. Konstan, and J. Riedl. “Mo-
vieLens Unplugged: Experiences with an Occasionally Con-
nected Recommender System,” Proceedings of ACM 2003 Inter-
national Conference on Intelligent User Interfaces, Miami, Florida,
USA, pp. 263-266, 2003.

[16] C.D. Mining, P. Raghavan, and H. Schütze. An Introduction to
Information Retrieval, Cambridge University Press, Cambridge,
England, 2009.

[17] C. Zhao, C. Ma, Jing Zhang, Jun Zhang, L. Yi, and X. Mao.

“HyperService: Linking and Exploring Services on the Web,”
Proceedings of International Conference on Web Services, Miami, FL,
USA, pp. 17-24, 2010.

[18] E. Rich. “User modeling via Stereotypes,” Cognitive Science,
vol.3, no.4, pp.329-354 ,1979.

[19] W. Rong, K. Liu, and L. Liang. “Personalized Web Service
Ranking via User Group combining Association Rule,” Proceed-
ings of International Conference on Web Services, Los Angeles, CA,
USA, pp.445-452, 2009.

[20] L. Shao, J. Zhang, Y. Wei, J. Zhao, B. Xie, and H. Mei. “Persona-
lized QoS Prediction for Web Services via Collaborative Filter-
ing,” Proceedings of International Conference on Web Services, Salt
Lake City, Utah, USA, pp.439 446, 2007.

[21] A. Skupin. “A Cartographic Approach to Visualizing Confe-
rence Abstracts,” Computer Graphics and Applications, vol.22,
no.1, pp.50-58, 2002.

[22] R.M. Sreenath, and M.P. Singh. “Agent-based Service Selec-
tion,” Journal of Web Semantics. vol.1, no.3, pp. 261–279, 2003.
doi:10.1016/j.websem.2003.11.006.

[23] K.Tasdemir, and E. Merényi, E. “Exploiting Data Topology in
Visualization and Clustering of Self-Organizing Maps,” IEEE
Transactions on Neural Networks, vol.20, no.4, pp.549-562, 2009.

[24] A.Ultsch. “U*-Matrix: A Tool to Visualize Clusters in High
Dimensional Data,” Technical Report 36, CS Department, Phi-
lipps-University Marburg, Germany, 2004.

[25] A.Ultsch, and H.P. Siemon. “Kohonen’s Self-organizing Feature
Maps for Exploratory Data Analysis,” Proceedings of Internation-
al Neural Networks Conference, pp.305-308, 1990.

[26] L.H. Ungar and D.P. Foster. “Clustering Methods for Collabor-
ative Filtering,” Proceedings of the AAAI Workshop on Recommen-
dation Systems, 1998.

[27] J. Vesanto and E. Alhoniemi. “Clustering of the Self-Organizing
Map,” IEEE Transactions on Neural Networks, vol.11, no.3,
pp.586-600, 2000.

[28] J.Zhang, H. Shi, Y. Zhang. “Self-Organizing Map Methodology
and Google Maps Services for Geographical Epidemiology
Mapping,” Proceedings of Digital Image Computing: Techniques
and Applications, Melbourne, VIC, pp.229-235, 2009,
doi:10.1109/DICTA.2009.46.

[29] Z. Zheng, H. Ma, M.R. Lyu, and I. King. “WSRec: A Collabora-
tive Filtering Based Web Service Recommendation System,”
Proceedings of International Conference on Web Services, Los An-
geles, CA, USA, pp. 437-444, 2009.

[30] F. Aurenhammer. “Voronoi diagrams—A Survey of a funda-
mental Geometric Data Structure,” ACM Computing Surveys,
vol.23, no.3, pp.345-405, 1991.

[31] I.H.Witten, and Eibe Frank. Data Mining: Practical Machine
Learning Tools and Techniques, Second Edition. Elsevier Inc. 2005.

[32] P.J.Rousseeuw, and C. Croux. “Alternatives to the Median Ab-
solute Deviation,” Journal of the American Statistical Association,
vol.88, no.424, pp.1273-1283, 1993.

[33] L.-J. Zhang, J. Zhang, and H. Cai, Services Computing. Springer
and Tsinghua University Press, 2007.

[34] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient Algorithms for Web
Services Selection with End-to-end QoS Constraints,” ACM
Transactions on the Web, vol. 1, no. 1, pp. 1–26, 2007.

[35] S. Rosario, A. Benveniste, S. Haar, and C. Jard, “Probabilistic
QoS and Soft Contracts for Transaction-based Web Services Or-
chestrations,”IEEE Transactions on Services Computing, vol. 1, no.
4, pp. 187–200,2008.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

[36] X.Chen, X.Liu, Z. huang, and H. Sun, “RegionKNN: A Scalable
Hybrid Collaborative Filtering Algorithm for Personalized Web
Service Recommendation”, Proceedings of International Confe-
rence on Web Services, Miami, FL, USA, pp.9-16, 2010.

[37] X. Dong, A. Halevy, J. Madhavan, E.Nemes, and J. Zhang, “Si-
milarity Search for Web Services,” Proceedings of the 30th Interna-
tional Conference on Very Large Data Bases, Toronto, CA, pp.372-
383, 2004.

[38] X. Liu, G. Huang, and H. Mei, “Discovering Homogeneous
Web Service Community in the User-Centric Web Environ-
ment,” IEEE Transactions on Services Computing, vol. 2, no.2, pp.
167-181, 2009.

[39] E.M. Maximilien and M.P. Singh, “A Framework and Ontology
for Dynamic Web Services Selection,” IEEE Internet Computing,
vol. 8, no. 5, pp. 84-93, 2004.

[40] 68-95-99.7 rule, http://en.wikipedia.org/wiki/68-95-99.7_rule.

Xi Chen is a master student in the School of

Computer Science and Engineering, Bei-

hang University, Beijing, China. She re-

ceieved her B.S. degree in Information and

Computing science from Beijing Information

Technology Institute, Beijing, China, in 2008.

She received Google Excellence Scholar-

ship 2010. Her research interests include services computing, cloud

computing and data mining.

Zibin Zheng received his B.Eng. degree

and M.Phil. degree in Computer Science

from the Sun Yat-sen University, Guang-

zhou, China, in 2005 and 2007, respective-

ly. He is currently a Ph.D. candidate in the

department of Computer Science and En-

gineering, The Chinese University of Hong

Kong. He received SIGSOFT Distringuish Paper Award at

ICSE’2010, Best Student Paper Award at ICWS’2010, and IBM Ph.D.

Fellowship Award 2010-2011. He served as program committee

member of IEEE CLOUD’2009 and CLOUDCOMPUTING’2010 and

served as reviewer for international journal and conferences, includ-

ing TSE, TPDS, TSC, JSS, DSN, ICEBE, ISSRE, KDD, SCC,

WSDM, WWW, etc. His research interests include service computing,

software reliability engineering, and cloud computing.

Xudong Liu was born in 1965. He received

his Ph.D. in Computer Application Technolo-

gy from Beihang University, Beijing, China.

He is a professor and doctoral supervisor at

Beihang University. His research interests

mainly include middleware technology and

application, service oriented computing,

trusted network computing and network soft-

ware development.

Zicheng Huang is currently working toward

the Ph.D. in the School of Computer

Science and Engineering, Beihang Universi-

ty, Beijing, China. He received his B.S. de-

gree from Beihang University in 2004. His

research interests are in the areas of ser-

vices computing, business process man-

agement and social computing.

Hailong Sun is an Assistant Professor in

the School of Computer Science and

Engineering, Beihang University, Beijing,

China. He received his Ph.D. in Computer

Software and Theory from Beihang Uni-

versity in 2008, and B.S. degree in Com-

puter Science from Beijing Jiaotong Uni-

versity in 2001. His research interests

include services computing, peer-to-peer computing, grid/cloud

computing and distributed systems. He is a member of IEEE and

ACM.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

