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Abstract—With the proliferation of Web services, effective QoS-based approach to service recommendation is becoming more 
and more important. Although service recommendation has been studied in recent literature, the performance of existing ones is 
not satisfactory, since (1) previous approaches fail to consider the QoS variance according to users’ locations; and (2) previous 
recommender systems are all black boxes providing limited information on the performance of the service candidates. In this 
paper, we propose a novel collaborative filtering algorithm designed for large scale Web service recommendation. Different from 
previous work, our approach employs the characteristic of QoS and achieves considerable improvement on the 
recommendation accuracy.To help service users better understand the rationale of the recommendation and remove some of 
the mystery, we use a recommendation visualization technique to show how a recommendation is grouped with other choices. 
Comprehensive experiments are conducted using more than 1.5 million QoS records of real world Web service invocations. The 
experimental results show the efficiency and effectiveness of our approach. 
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1 INTRODUCTION

eb services are software components designed to 
support interoperable machine-to-machine interac-
tion over a network. The adoption of Web services 

as a delivery mode in business has fostered a new para-
digm shift from the development of monolithic applica-
tions to the dynamic set-up of business process. In recent 
years, Web services have attracted wide attentions from 
both industry and academia, and the number of public 
Web services is steadily increasing.  

When implementing service-oriented applications, 
service engineers (also called service users) usually get a 
list of Web services from service brokers or search en-
gines that meet the specific functional requirements. They 
need to identify the optimal one from the functionally 
equivalent candidates.  However, it is difficult to select 
the best performing one, since service users usually have 
limited knowledge of their performances. Effective ap-
proaches to service selection and recommendation are 
urgently needed.  

Quality-of-Service (QoS) is widely employed to 
represent the non-functional performance of Web services 
and has been considered as the key factor in service selec-
tion [33], [34], [35]. QoS is defined as a set of user-
perceived properties, including response time, availabili-
ty, reputation, etc. Currently, it’s not practical for users to 
acquire QoS information by evaluating all the service 

candidates, since conducting real world Web service in-
vocations is time-consuming and resource-consuming. 
Moreover, some QoS properties (e.g., reputation and re-
liability) are difficult to be evaluated, since long-duration 
observation and a number of invocations are required. 
Besides client-side evaluation, it’s impractical to acquire 
QoS information from service providers or third-party 
communities, because service QoS performance is sus-
ceptible to the uncertain Internet environment and user 
context (e.g., user location, user network condition, etc.). 
Therefore, different users may observe quite different 
QoS performance of the same Web service, and QoS val-
ues evaluated by one user cannot be used directly by 
another in service selection and recommendation.   

The objective of this paper is to make personalized 
QoS-based Web service recommendations for different 
users and thus help them select the optimal one among 
the functional equivalents. Several previous work [19], 
[20], [22], [29] has applied collaborative filtering (CF) to 
Web service recommendation. These CF-based Web ser-
vice recommender systems work by collecting user ob-
served QoS records for different Web services and match-
ing together users who share the same information needs 
or same tastes. Users of a CF system share their judg-
ments and opinions on Web services, and in return, the 
system provides useful personalized recommendations. 
However, three unsolved problems of the previous work 
affect the performance of current service recommender 
systems. The first problem is that the existing approaches 
fail to recognize the QoS variation with users’ physical 
locations. After the analysis of a real world Web service 
dataset1, which contains 1.5 millions service invocation 
results of 100 public services evaluated by users from 
more than twenty contries, we discover that some QoS 
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properties like response time and availability highly re-
late to the users’ physical locations. For example, the re-
sponse time of a service observed by users who are close-
ly located with each other usually fluctuates mildly 
around a certain value, while it sometimes varies signifi-
cantly between users far away from each other. 

The second problem is the online time complexity of 
memory-based CF recommender systems [20], [29]. The 
increasing number of Web services and users will pose a 
great challenge to current systems. With O(mn) time com-
plexity where m is the number of services and n the num-
ber of users, exisiting systems cannot generate recom-
mendations for tens of thousands users in real time. 

The last problem is that current Web service recom-
mender systems are all black boxes, providing a list of 
ranked Web services with no transparency into the rea-
soning behind the recommendation results [19], [20], [22], 
[29], [36]. It is less likely for users to trust a recommenda-
tion when they have no knowledge of the underlying ra-
tionale. The opaque recommendation approaches prevent 
the acceptance of the recommended services. Herlocker et 
al. [5] mention that explanation capabilities is an impor-
tant way of building trust in recommender systems, since 
users are more likely to trust a recommendation when 
they know the reason behind it. 

To address the first two problems, we propose an in-
novative CF algorithm for QoS-based Web service rec-
ommendation. To address the third problem and enable 
an improved understanding of the Web service recom-
mendation rationale, we provide a personalized map for 
browsing the recommendation results. The map explicitly 
shows the QoS relationships of the recommended Web 
services as well as the underlying structure of the QoS 
space by using map metaphor such as dots, areas and 
spatial arrangement.  

The main contributions of this work are threefold:  
 Firstly, we combine the model-based and memo-

ry-based CF algorithms for Web service recom-
mendation, which significantly improves the rec-
ommendation accuracy and time complexity 
compared with previous service recommendation 
algorithms.  

 Secondly, we design a visually rich interface to 
browse the recommended Web services, which 
enables a better understanding of the service per-
formance. 

 Finally, we conduct comprehensive experiments 
to evaluate our approach by employing real 
world Web service QoS dataset. More than 1.5 
millions real world Web service QoS records from 
more than 20 countries are used in our experi-
ments.   

 
The remainder of this paper is organized as follows:  

Section 2 describes the recommendation approach in de-
tail. Section 3 presents the method for recommendation 
visualization. Section 4 and 5 show the experiments of the 
recommendation and visualization respectively. Section 6 
discusses the related work, and Section 7 concludes the 
paper with a summary and a description of future work.  

 
Fig. 1. Alice’s situational problem. 

2 THE RECOMMENDATION APPROACH 
2.1 A Motivating Scenario 

In this section, we present an online service searching 
scenario to show the research problem of this paper. As 
Fig. 1 depicts, Alice is a software engineer working in 
India. She needs an email validation service to filter 
emails. After searching a service registry located in U.S., 
she gets a list of recommended services in ascending or-
der of the service average response time. Alice tries the 
first two services provided by a Canadian company and 
finds that the response time is much higher than her ex-
pectation. She then realizes that the service ranking is 
based on the evaluation conducted by the registry in U.S., 
and the response time of the same service may vary great-
ly due to the different user context, such as user location, 
user network conditions, etc. Alice then turns to her col-
leagues in India for suggestion. They suggest her try ser-
vice k provided by a local company though ranked lower 
in the previous recommendation list. After trying it, Alice 
thinks that service k has a good performance and meets 
her requirements.  

The problem that Alice faces is to find a service that 
meets both functional and non-functional requirements. 
The current way of finding a suitable Web service is ra-
ther inefficient, since Alice needs to try the recommended 
services one by one. To address this challenge, we pro-
pose a more accurate approach to service recommenda-
tion with consideration of the region factor. Moreover, we 
try to provide a more informative and user-friendly inter-
face for browsing the recommendation results rather than 
a ranked list. By this way, users are able to know more 
about the overall performance of the recommended ser-
vices, and thus trust the recommendations.  

The basic idea of our approach is that users closely lo-
cated with each other are more likely to have similar ser-
vice experience than those who live far away from each 
other. Inspired by the success of Web 2.0 websites that 
emphasize information sharing, collaboration and interac-
tion, we employ the idea of user-collaboration in our Web 
service recommender system. Different from sharing in-
formation or knowledge on blogs or wikis, users are en-
couraged to share their observed Web service QoS per-
formance with others in our recommender system. The 
more QoS information the user contributes, the more ac-
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curate service recommendations the user can obtain, since 
more user characteristics can be analyzed from the user 
contributed information.   

Based on the collected QoS records, our recommenda-
tion approach is designed as a two-phase process. In the 
first phase, we divide the users into different regions 
based on their physical locations and historical QoS expe-
rience on Web services. In the second phase, we find simi-
lar users for the current user and make QoS prediction for 
the unused services. Services with the best predicted QoS 
will be recommended to the current user. These two 
phases are presented in Section 2.2 and Section 2.3 respec-
tively, and the time complexity analysis of the proposed 
algorithm is presented in Section 2.4.  

2.2 Phase 1: Region Creation 
In Web service recommender system, users usually pro-
vide QoS values on a small number of Web services. Tra-
ditional memory-based CF algorithms suffer from the 
sparse user-contributed dataset, since it’s hard to find 
similar users without enough knowledge of their service 
experience. Different from existing methods, we employ 
the correlation between users’ physical locations and QoS 
properties to solve this problem. In this paper, we focus 
on the QoS properties that are prone to change and can be 
easily obtained and objectively measured by individual 
users, such as response time and availability. To simplify 
the description of our approach, we use response time 
(also called round-trip time (RTT)) to describe our ap-
proach. 

We assume that there are n users and m services. The 
relationship between users and services is denoted by an 
n m matrix R. Each entry Ri,j of the matrix represents the 
RTT of service j observed by user i, and  is the symbol 
of no RTT value. Each user i (i {1,2,…,n}) is associated 
with a row vector Ri. representing his/her observed RTT 
values on different Web services. The user a  (a {1,2,…,n}) 
is called the active user or current user if he/she has pro-
vided some RTT records and needs service recommenda-
tions.  

We define a region as a group of users who are closely 
located with each other and likely to have similar QoS 
profiles. Each user is a member of exactly one region. Re-
gions need to be internally coherent, but clearly different 
from each other. The region creation phase is designed as 
a three-step process. In the first step, we put users with 
similar IP addresses into a small region and extract region 
features. In the second step, we calculate the similarity 
between different regions. In the last step, we aggregate 
highly correlated regions to form a certain number of 
large regions. Details of these three steps are presented in 
Section 2.2.1 to Section 2.2.3 respectively. 

2.2.1 Region Feature Extraction 
For each region, we use region center as the main feature 
to reflect the average performance of Web services ob-
served by region users. Region center is defined as the 
median vector of all the RTT vectors associated with the 
region users. The element i of the center is the median 
RTT value of service i observed by users from the region. 

Median is the numeric value separating the higher half of 
a sample from the lower half. 

Besides the average Web service quality observed by 
the region users, we also pay attention to the fluctuation 
of the service performance. From large number of QoS 
records, we discover that the service response time usual-
ly varies from region to region. Some services have unex-
pected long response time or even unavailable to some 
regions. Inspired by the three-sigma rule [40] which is 
often used to test outlier, we use similar method to dis-
tinguish services with unstable performance to different 
regions and regard them as region-sensitive services, 
which is another important region feature besides the 
region center. 

The set of non-zero RTTs of service s, R. s={R1,s, R2,s,…, 
Rk,s },1 k n, collected from users of all regions is a sample 
from the population of service s response time. To esti-
mate the mean  and the standard deviation  of the pop-
ulation, we use two robust measures: median and median 
absolute deviation (MAD) [32]. MAD is defined as the 
median of the absolute deviations from the sample's me-
dian. 

 
MAD = mediani(|Ri,s-medianj(Rj,s)|)                                

i = 1,…,k,  j = 1,…,k 
Based on the median and MAD, the two estimators can be 
calculated by:  

)(ˆ ,Sii Rmedian  i = 1,…,k 

)(ˆ ,Sii RMAD  i = 1,…,k 

Definition1 (Region-Sensitive Service) Let R.s={R1,s, 
R2,s,…, Rk,s},1 k n, be the set of RTTs of service s pro-
vided by users from all regions. Service s is a sensitive 
service to region M iff    
,where )(ˆ .si Rmedian , )(ˆ .sRMAD  and region(u) func-

tion defines the region of user u. 
Definition2 (Region Sensitivity) The sensitivity of re-

gion M is the fraction between the number of sensitive 
services in region M over the total number of services. 

Definition3 (Sensitive Region) Region M is a sensitive 
region iff its region sensitivity exceeds the sensitivity thre-
shold . 

By the above definitions, we can identify services with 
drastically fluctuating response time and those regions 
where the fluctuation occurs, which is an important fea-
ture for service QoS prediction and recommendation. We 
detail how to set  in Section 4.3. 

2.2.2 Region Similarity Computation 
Determining whether two regions are similar is a key step 
before region aggregation. The similarity of two regions 
M and N is measured by the similarity of their region cen-
ters m and n. Pearson Correlation Coefficient (PCC) is 
widely used in recommender systems to calculate the 
similarity of two users [2]. PCC value ranges from -1 to 1. 
Positive PCC value indicates that the two users have simi-

(1) 

(2) 

(3) 

))()ˆ3ˆ(( ,., MjregionRRR sjssj
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lar preferences, while negative PCC value means that the 
two user preferences are opposite. PCC computes the 
similarity between two regions M and N based on Eq.(4). 
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where S(n) S(m) is the set of co-invoked services by users 
from region M and N, Rm,s is the RTT value of service s 
provided by region center m. .mR and .nR represent the 
average RTT of all the services of center m and n respec-
tively. Because PCC only considers the RTT difference of 
the co-invoked services by both regions, it often overes-
timates the similarity of the two regions that are not simi-
lar, but happen to have a few co-invoked services with 
very similar RTTs [13]. Intuitively, we hypothesize that 
the accuracy of prediction can be improved if we add a 
correlation significance weighting factor that can devalue 
the overestimated similarity. We use the following ad-
justed PCC equation to calculate the similarity between 
two regions: 
 

),,(
|)()(|
|)()(|),( nmSim

nSmS
nSmSnmmSi  

 
where |S(m) S(n)| is the number of Web services in-
voked by users either in region M or region N. The expe-
riment which compares the result with (Eq. (5)) and with-
out (Eq. (4)) the significance weighting is shown in Sec-
tion 4.6. 

2.2.3 Region Aggregation 
Each region formed by users’ physical locations at the 
outset always has a very sparse QoS dataset, since users 
only use a small number of Web services and provide 
limited QoS records. In this case, it is difficult to find 
similar users and predict the QoS values of the unused 
Web services for the active user. To solve this problem, 
we propose a region aggregation method based on the 
region features. As shown in Algorithm 1, the region ag-
gregation approach is a bottom-up hierarchical clustering 
algorithm [16]. The input is a set of small regions r1,…,rl. 
Each region consists of users with similar locations. The 
algorithm successively aggregates pairs of the most simi-
lar non-sensitive regions until the stopping criterion (line 
16) is met. The result is stored as a list of aggregates in A. 

 
Algorithm 1. Region Aggregation 

in: regions r1,…,rl 

    out: result list A 
1: for n 1 to l - 1 
2:       for i n + 1 to N 
3:           C[n][i].sim SIM(rn,ri)  
4:           C[n][i].index i 
5:       end for 
6:      I[n].sensitivity ISSENSITIVE(rn)  

7:       if I[n].sensitivity=0 
8:           then I[n].aggregate 1  
9:       else I[n].aggregate 0  

10:       P[n] priority queue for C[n] sorted on sim  
11: end for 
12: calculate the sensitivity and aggregate of I[l] 
13: A [] 
14: while true 
15:            k1 argmax{k:I[k].aggregate=1}P[k].MAX().sim 
16:            if  k1=null or  sim<  
17:                then return A 
18:            k2 P[k1].MAX().index 
19:            A.APPEND(<k1, k2>) and comput k1 center 
20:            I[k2].aggregate 0  
21:            P[k1] [] 
22:            I[k1].sensitivity ISSENSITIVE(k1)  
23:            if  I[k1].sensitivity=1 
24:                then  I[k1].aggregate 0 
25:                         for each i with I[i].aggregate=1 
26:                               P[i].DELETE(C[i][k1]) 
27:                               P[i].DELETE(C[i][k2]) 
28:                         end for 
29:            else 
30:                   for each i with I[i].aggregate=1  i k1 
31:                         P[i].DELETE(C[i][k1]) 
32:                         P[i].DELETE(C[i][k2]) 
33:                         C[i][k1].sim SIM(i, k1)  
34:                         P[i].INSERT(C[i][k1])  
35:                         C[k1][i].sim SIM(i, k1)  
36:                         P[k1].INSERT(C[k1][i])  
37:                   end for 
38: end while 
 Step 1. Initialization (lines 1 12):  

1. Compute the similarity between each two re
gions using Eq. (5), store the similarity and the
similar region index in the similarity matrix C. 

2. Calculate the sensitivity of each region and
identify whether it can be aggregated. Store the
result in the indicator vector I. I[k].sensitivity 
indicates whether region k is sensitive, and
I[k].aggregate indicates whether region k can be
aggregated.

3.    Use a set of priority queues P to sort the rows 
of C in decreasing order of the similarity. Func-
tion P[k].MAX() returns the index of the region 
that is most similar to region k. 
 

 Step 2. Aggregation (lines 13-38): 
1.    In each iteration, select the two most similar 

and non-sensitive regions from the priority 
queues if their similarity exceeds threshold , 
otherwise return A. 

2.   Aggregate the selected two regions and store 
their region index in result list A. Use the 
smaller region index of the two as the new re-
gion index and compute the new region center. 
Mark the indicator vector I of the aggregated 
region. 

3.   Calculate the sensitivity of the new region and 
set indicator I. If it is sensitive and cannot be 

(4) 

(5) 
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aggregated, remove this region from other re-
gions’ priority queues. Otherwise, update the 
elements of both priority queues and similarity 
matrix related to the aggregated two regions. 
Repeat the above three steps. 

2.3 Phase 2: QoS Value Prediction 
After the phase of region aggregation, thousands of users 
are clustered into a certain number of regions based on 
their physical locations and historical QoS similarities. 
The service experience of users in a region is represented 
by the region center. With the compressed QoS data, 
searching neighbors and making predictions for an active 
user can be computed quickly. Traditionally, the QoS 
prediction methods need to search the entire dataset [20], 
[29], which is rather inefficient. In our approach, similari-
ty between the active user and users of a region is com-
puted by the similarity between the active user and the 
region center. Moreover, it is more reasonable to predict 
the QoS value for active users based on their regions, for 
users in the same region are more likely to have similar 
QoS experience on the same Web service, especially on 
those region-sensitive ones. To predict the RTT value for 
the active user a on an unused service s, we take the fol-
lowing steps: 

 Find the region of user a by IP address. If no ap-
propriate region is found, the active user will be 
treated as a member of a new region. 

 
 Identify whether service s is sensitive to the spe-

cific region. If it is region-sensitive, then the pre-
diction is generated from the region center, be-
cause the service performance observed by users 
from this region is significantly different from 
others. 

scentersa RR ,,
ˆ

 
 Otherwise, use Eq. (5) to compute the similarity 

between the active user and each region center 
that has evaluated service s, and find up to k most 
similar centers {c1, c2,…, ck}. We discuss how to 
choose k (also called top-k) in Section 4.4. 

 
 If the active user’s region center has the RTT val-

ue of s, the prediction is computed using Eq. (7).  

,
),(

),()(ˆ
1

1 .,
,, k

j j

k

j jcsc
scentersa

camSi

camSiRR
RR jj

 
where        is the RTT of service s provided by cen-
ter cj, and      is the average RTT of  center cj .  The 
prediction is composed of two parts. One is the 
RTT value of the region center of the active user 
Rcenter,s ,which denotes the average QoS observed 
by this region users. The other part is the norma-
lized weighted sum of the deviations of the ser-
vice s RTT from the average RTT observed by the 
k most similar neighbors. 

 

 Otherwise, we use the service s RTTs observed by 
the k neighbors to compute the prediction as Eq. 
(8) shows. The more similar the active user a and 
the neighbor cj are, the more weighting the RTT of 
cj will carry in the prediction. 

k

j j

k

j jsc
sa

camSi

camSiR
R j

1

1 ,
,

),(

),(
ˆ  

Note that previous CF-based Web service recommen-
dation algorithms [20] [29] use Eq. (9), a rating aggregate 
method commonly adopted in recommender systems [13] 
[15], to predict the missing QoS value.  

k

j j

k

j jcsc
asa

camSi

camSiRR
RR jj

1

1 .,
.,

),(

),()(ˆ

 
However, it is not applicable in our context, since this 

equation is based on the idea that each user’s rating range 
is subjective and comparatively fixed (e.g., critical users 
always rate items with lower ratings), whereas the range 
of RTT varies largely from service to service. The average 
RTT of all services provided by user a cannot reveal the 
performance of a specific Web service. Instead, we turn to 
the RTT profile of the region center and use its RTT of 
service s to predict the missing value (Eq. (7)).  

2.4 Time Complexity Analysis 
We discuss the worst-case time complexity of the pro-
posed algorithm. Since there are two phases in our algo-
rithm: the offline phase for region creation and the online 
phase for the QoS value prediction, we analyze their time 
complexity separately. We assume the input is a full ma-
trix with n users and m services.  

2.4.1 Offline Time Complexity 
In Section 2.2.1, the time complexity of calculating the 
median and MAD of each service is O(nlogn). For m ser-
vices, the time complexity is O(mnlogn). With MAD and 
median, we identify the region-sensitive services from the 
service perspective. Since there are at most n records for 
each service, the time complexity of each service is O(n) 
using definition 1. Therefore, the total time complexity of 
region-sensitive service identification is O(mnlogn + mn) = 
O(mnlogn). 

The time complexity of region aggregation (see Algo-
rithm 1) is analyzed as follows. 

We assume there are l0 regions at the beginning. Since 
there are at most m intersecting services for two regions, 
the time complexity of the region similarity is O(m) using 
Eq.(5), and the complexity for computing similarity ma-
trix C is O(l02m) ( lines 1-10 of Algorithm 1). 

The aggregation of two regions will execute at most l0-
1 times (lines 14-38), in case that all regions are non-
sensitive, extremely correlate to each other and finally 
aggregate into one region. In each iteration, we first com-
pare at most l0-1 heads of the priority queues to find the 
most similar pairs (line 15). Since the number of regions 
that can be aggregated decreases with iteration, the real 
search time will be less than l0-1 in the following itera-

(6) 

(8) 

(9) 

(7) 

sc j
R ,

.jcR
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tions. For the selected pair of regions, we calculate the 
new center and update their similar regions. Because the 
number of users involved in the two regions are uncertain, 
we use the number of all users as the upper bound and 
the complexity is O(mnlogn) .The insertion and deletion of 
a similar region is O(logl0), since we employ the priority 
queue to sort  similar regions. Thus, the time complexity 
of Algorithm 1 is O(l02(logl0+mnlogn))=O(l02 mnlogn). 

As the above steps are linearly combined, the total 
time complexity of the offline part is O(l02 mnlogn). 

2.4.2 Online Time Complexity  
Let l1 be the number of regions after the phase of region 
creation. To predict the QoS value for an active user, O(l1) 
similarity calculations between the active user and region 
centers are needed, each of which takes O(m) time. There 
for, the time complexity of similarity computation is 
O(l1m). 

For each service the active user has not evaluated, the 
QoS value prediction complexity is O(l1), because at most 
l1 centers are employed in the prediction as Eq.(7) and 
Eq.(8) state. There are at most m services without QoS 
values, so the time complexity of the prediction for an 
active user is O(l1m). Therefore, the time complexity for 
the online phase including similarity computation and 
missing value prediction is O(l1m) O(m) (l1 is rather 
small compared to m or n). Compared to the memory-
based CF algorithm used in previous work with O(mn) 
online time-complexity, our approach is more efficient 
and well suited for large dataset. 

3 RECOMMENDATION VISUALIZATION 
Conventionally, CF-based Web service recommender sys-
tems employ the predicted QoS mainly in two ways. 1) 
When users query a service with specific functionality, 
the one with the best predicted QoS is recommended to 
them. 2) Top-k best-performing services are recommend-
ed to help users discover potential services. While this 
kind of recommendation is useful, it is not obvious to 
users why certain services are recommended. More than a 
service list ranked by predicted QoS as recommendation, 
we need to develop an exploratory recommendation tool 
that provides valuable insight into the QoS space and 
enables an improved understanding of the overall per-
formance of Web services.  

The QoS space visualization of all Web services on a 
map will reveal the rationale behind QoS-based service 
recommendations. QoS space visualization is more than a 
picture or method of computing. It transforms the infor-
mation of high dimensional QoS data into a visual form 
enabling service users to observe, browse, and under-
stand the information. 

We draw the QoS map by two steps: dimension reduc-
tion step and map creation step. In the first step, we 
create a two-dimensional representation of the high di-
mensional QoS space by using self-organizing map 
(SOM), and each Web service is mapped to a unique two-
dimensional coordinates. In the second step, we create a 
geographic-like QoS map based on the SOM training re- 

 
Fig. 2. Mapping QoS space to the two-dimensional output space of 
SOM. Each QoS vector is mapped to the BMU with closest Eucli-
dean distance. 

sults. We detail the two drawing steps in section 3.1 and 
3.2 respectively. 

3.1 SOM Training 
The SOM [8] is a popular unsupervised artificial neural 
network that has been successfully applied to a broad 
range of areas, such as medical engineering, document 
organization and speech recognition. When SOM is used 
for information visualization, it can be viewed as a map-
ping of a high dimensional input space to a lower dimen-
sional output space (usually one or two dimensions). 

The output space of SOM is a network of neurons lo-
cated on a regular, usually two-dimensional grid. Each 
neuron is equipped with a prototype vector which has the 
same dimension of the input space. The neurons are con-
nected to adjacent ones by a neighborhood relation indi-
cating the structure of the map such as a rectangular or 
hexagonal lattice. After the training phase, data points 
close to each other in the input space are mapped onto the 
nearby neurons. With this topology preserving projection 
property, SOM is frequently employed in data survey 
applications to help visualize the inherent structure of 
high-dimensional complex data. 

The principal goal of using SOM in our context is to 
transform the QoS data employed by CF into a two-
dimensional discrete map in a topologically ordered fa-
shion. In this context, the QoS map is to show the simi-
larity of RTT variance of different Web services. Intuitive-
ly, the input of the SOM is the QoS matrix containing all 
the services (rows) and their respective QoS values pro-
vided by all users (columns). However, since the data set 
is rather sparse and the number of QoS values varies from 
service to service, the original data set cannot reveal the 
underlying structure of the QoS space. To address this 
problem, the QoS set derived from region centers is em-
ployed to train the SOM.  

Let l denote the dimension of the input space (QoS da-
ta) and q = [q1, q2,…, ql]T denote an input pattern (QoS vec-
tor of a service). The prototype of neuron j is denoted by  

 

j = [ j1, j2,…, jl]T , j=1,2,…, k, 
 

where k is the total number of neurons in the network.  
The SOM is trained iteratively. In each training step, a 

(10) 
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QoS vector q is randomly chosen from the input dataset. 
The Euclidean distance between q and all prototypes is 
calculated. The neuron with the prototype closest to q is 
chosen as the best-matching unit (BMU) as Fig.2 depicts. 
Let i(x) be the index of BMU, we determine i(x) by apply-
ing 

||||minarg)( jj
qxi , j=1,2,…, k. 

Then the prototype of BMU and those of BMU’s 
neighbors are adapted to move closer to the input vector 
q in the input space. Given the prototype j(n) of neuron 
j at time n, the updated vector j(n + 1) of this neuron at 
time n+1 is defined by: 
 

j(n + 1) = j(n) + (n)hj,i(n)(q - j(n)), 
 

where (n) is the learning rate function, and hj,i(n) is the 
neighborhood function which determines how strongly 
the neurons are connected with each other. The common-
ly used Gaussian neighborhood function is defined as: 

)
)(2
||||

exp()( 2, n
rr

nh ij
ij

 
,where rj is the location of neuron j, and (n)is the neigh-
borhood radius at time n. Both (n) and hj,i(n) decrease 
monotonically with time. 

The map is usually trained in two phases [4]: a rough 
training phase that neurons are topologically ordered 
with relatively large initial neighborhood radius and 
learning rate; a convergence phase to fine tune the map 
with small initial neighborhood radius and learning rate. 
After the training of SOM, services with similar QoS are 
mapped onto the same neuron or nearby neurons. The 
mapping result of the QoS data reflects the QoS similari-
ties between services. 

3.2 Map Creation 
The direct approach to Web service QoS map is to assign 
each Web service a distinct portion of the two-
dimensional display area, and put services with similar 
QoS performance next to each other. With the training 
result, we first assign each service unique coordinates by 
randomly distributing them within the cell boundary of 
the corresponding neuron. Then the Voronoi diagram [21], 
[30] is used to form a base map in which each service cor-
responds to a unique polygon. 

When applied to a large set of services, base map alone 
is insufficient and will quickly become too complex to 
reveal the underlying data relationships. A generalized 
map explicitly telling the cluster information is needed. 
We apply hierarchical clustering method [16] to cluster 
Web services based on their QoS similarity and form a 
generalized map by merging service polygons belonging 
to the same cluster. The topological preserving feature of 
SOM guarantees that services belong to the same cluster 
are usually neighboring polygons on the map.  

We put Web service recommendations on the map by 
using the predicted QoS values. For those functionally 
equivalent services, the one with the best predicted QoS 

will be marked on the map. We also highlight the top-k 
best performing services to help users find potential ones. 
Section 5 provides the detail of the map implementation. 

4 EXPERIMENTS 
In this section, we give a comprehensive study on the 
QoS prediction performance of our proposed algorithm.  

4.1 Experimental Setup 
We adopt a real world Web service QoS performance da-
taset2 for the experiment. The dataset contains about 1.5 
million Web service invocation records of 100 Web ser-
vices from more than 20 countries. The RTT records are 
collected by 150 computer nodes from the Planet-Lab3, 
which are distributed over 20 countries. For each com-
puter node, there are 100 RTT profiles, and each profile 
contains the RTT records of 100 services. We randomly 
extract 20 profiles from each node, and obtain 3000 users 
with RTTs ranging from 2 to 31407 milliseconds. 

We divide the 3000 users into two groups, one as train-
ing users and the rest as active (test) users. To simulate 
the real situation, we randomly remove a certain number 
of RTT records of the training users to obtain a sparse 
training matrix. We also remove some records of the ac-
tive users, since active users usually only have invoked a 
small number of Web services in reality. 

To evaluate the prediction performance, we compare 
our approach with user-based CF algorithm using PCC 
(UPCC) [20], item-based CF algorithm using PCC (IPCC) 
[11], and WSRec [29] which combines UPCC and IPCC. 

We use Mean Absolute Error (MAE), the well-known 
statistical accuracy metric, to measure the prediction ac-
curacy. MAE is the average absolute deviation of predic-
tions to the ground truth data. For all test services and 
test users: 

, ,
,

ˆ| |
,

u s u s
u s

R R
MAE

L
 

where Ru,s denotes the actual RTT of Web service s ob-
served by user u,       denotes the predicted RTT value, 
and L denotes the number of predicted values. Smaller 
MAE indicates better prediction accuracy. 

4.2 Prediction Evaluation 
In this experiment, we randomly remove 90% and 80% 
RTTs of the initial training matrix to generate two sparse 
matrices with density 0.1 and 0.2 respectively. We vary 
the number of RTT values given by active users from 10, 
20 to 30, and name them given 10, given 20, and given 30 
respectively. The removed records of active users are 
used to study the prediction accuracy. In this experiment, 
we set =0.3, =0.8, top-k=10. To get a reliable error esti-
mate, we use 10 times 10-fold cross-validation [31] to eva-
luate the prediction performance and report the average 
MAE value. 

Table 1 shows the prediction performance of different  
 

2 http://www.wsdream.net 
3 http://www.planet-lab.org 

(11) 

(12) 

(13) 

(14) 

suR ,
ˆ
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TABLE 1 Prediction Performance Comparison 

Method Density = 0.1 Density = 0.2 
Given 10 Given 20 Given 30 Given 10 Given 20 Given 30 

IPCC 1179.32 1170.73 1160.45 1104.02 1094.63 1086.08 
UPCC 1280.95 1145.80 1085.85 1167.84 846.54 674.32 
WSRec 976.01 805.60 772.34 968.69 788.37 742.15 

Our Method 643.26 622.02 617.20 466.12 457.21 451.88
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Fig. 3. Impact of thresholds  and . (a) Impact on the number of regions. (b) Impact on the prediction performance (MAE).

methods employing the 0.1 and 0.2 density training ma-
trix. We observe that our method significantly improves 
the prediction accuracy, and outperforms others consis-
tently. The performance of UPCC, WSRec and our ap-
proach enhances significantly with the increase of matrix 
density as well as the number of QoS values provided by 
active users (given number). On the contrary, there is on-
ly a slight improvement of IPCC. The original idea of 
IPCC is to match items with similar user ratings and 
combine them to recommendations. Apparently, it is not 
appropriate to apply this idea to our context, because 
even services provided by the same company are hardly 
to have similar response times to different users. 

4.3 Impact of  and  
The two thresholds  and  in the phase of region creation 
play a very important role in determining the number of 
regions and thus impact the final performance of our ap-
proach. As shown in Algorithm 1, only those regions with 
similarity higher than  and sensitivity less than  are able 
to be aggregated. In this experiment, we study the impact 
of  and  on a sparse matrix with 2700 training users and 
300 active users. We set density=0.2, given=10 and em-
ploy all the neighbors with positive PCC for QoS predic-
tion. We vary the two thresholds  and  both from 0.1 to 
0.9 with a step of 0.1. Fig. 3 shows how  and  affect 
the number of regions and the final performance. It shows 
that lower  and higher  result in fewer regions, but few-
er regions does not necessarily mean better prediction 
accuracy. For this dataset, better prediction accuracy is 
achieved with higher  and .  
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Fig. 4. The distribution of region sensitivity. 

Note that the optimal value of  is related to the sensi-
tivity of the original regions at the outset. Fig. 4 shows the 
distribution of the region sensitivity before aggregation. It 
shows that the sensitivity of most regions (81.3%) is less 
than 0.1, while the sensitivity of a few regions (4.67%) is 
around 0.8. Higher  and  allow very similar regions 
with high sensitivity to be aggregated and achieve good 
performance in this experiment. 

Fig. 5 (a) shows the relation between  and prediction 
accuracy with training matrix density 0.2, 0.5 and 1. We 
employ all the neighbors with positive PCC values for 
QoS prediction and set =1, so that we do not consider the 
factor of sensitivity in region aggregation. Similarity be-
comes the single factor. Obviously, for denser matrix,  

(a) (b) 
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Fig. 5. Parameters impact on prediction performance (MAE). (a) Impact of region similarity  (b) Impact of Top-K (c) Impact of the training 
matrix density (d) Impact of the given number (e) Significance weighting Impact with changing density (f) Significance weighting Impact with 
changing given number

with higher  we obtain a set of coherent regions and bet-
ter prediction is obtained.  

4.4 Impact of Top-k 
Top-k determines how many neighbors are employed in 
the phase of QoS prediction which relates to the predic-
tion accuracy. We employ a training matrix of density 0.3, 
and set =0.2, =0.8. After the model building phase, we 
obtain 39 regions. To study the impact of neighborhood 
size, we vary top-k from 5 to 40 with a step of 5. Fig. 5 (b) 

shows the result with given number from 10 to 30. The 
trends of the three curves are the same that MAE decreas-
es sharply with an increasing neighborhood size at the 
beginning, and then stays around a certain value. As top-
k grows, more regions are selected in the QoS prediction, 
while those later added regions are usually less similar 
and make little contribution to the final result. 

4.5 Data Sparseness 
This experiment investigates the impact of data sparse-

(a) (b) 

(c) (d) 

(e) (f) 
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ness on the prediction accuracy. We examine the impact 
from two aspects: the density of training matrix and the 
number of QoS values given by active users (given num-
ber). We divide the experiment into two parts and use 10 
times 10 fold cross-validation to assess the prediction re-
sults and report the average MAE.  

We first study the impact of training matrix density. 
We vary the density of the training matrix from 0.1 to 0.5 
with a step of 0.1, and set given=10. Fig. 5 (c) shows the 
experimental results. It shows that: (1) With the increase 
of the training matrix density, the performance of IPCC, 
UPCC and our method enhances indicating that better 
prediction is achieved with more QoS data. WSRec is not 
sensitive to the data sparseness, and it stays around a cer-
tain value. (2) Our method outperforms others consistent-
ly. 

To study the impact of given number on the prediction 
results, we employ the training matrix with density 0.3 
and vary the given number from 10 to 50 with a step of 10. 
Fig. 5 (d) shows the experimental results. It shows that 
the prediction performance of IPCC, UPCC and WSRec 
improves greatly with the growth of the given number, 
while our method enhances slightly. This observation 
indicates that our method is not sensitive to the value of 
given number.  It can achieve good prediction result even 
when the given number is rather small. 

4.6 Significance Weighting 
Significance weighting factor is added to devalue similar-
ity weights that are based on a small number of co-
invoked Web services. To study the impact of this factor, 
we implement two versions of the algorithm, one with the 
significance weighting (Eq. 5) and the other without (Eq. 
4). Since the overestimation of the similarity occurs when 
the active user and training users have few co-invoked 
services, we study the impact by varying the number of 
QoS provided by both the training users (training matrix 
density) and active users (given number) with two expe-
riments.  

In the first experiment, we employ 2700 training users, 
300 active users, set given=5, =0.2, =0.3, top-k=20. We 
vary the density of the training matrix from 0.1 to 0.5 with 
a step of 0.1. As Fig. 5 (e) shows, applying the significance 
weighting increases the accuracy of the prediction algo-
rithm in most cases. 

The other experiment is carried out with the same 
number of training users and active users. We set the 
density of the training matrix 0.05, =0.2, =0.3, top-k=10. 
We vary the given number from 10 to 50 by a step of 10. 
Fig. 5 (f) shows that the algorithm with the significance 
weighting consistently increases the accuracy of the pre-
diction by a relatively large amount. As the given number 
increases, the gap between the two becomes more ob-
vious. This is because with a sparse training matrix (den-
sity=0.05) and high given number, it is common for the 
active user to have neighbors that were based on tiny 
samples (two or three co-invoked services with similar 
QoS). In this case, overestimation of the similarity by Eq. 
(4) frequently leads to poor prediction accuracy. 

5 A MAP DISPLAY FOR RECOMMENDATION 
In this section, we demonstrate how to create a map 
showing the similarity of RTT variance of Web services, 
and how to put personalized Web service recommenda-
tions on the map for an active user. We use 2700 training 
users and set given=10, density=0.5. After the region ag-
gregation phase, 17 regions are formed. The input of SOM 
is a 100×17 RTT matrix containing 100 services (rows) and 
their respective performance on 17 regions (columns). 
Each Web service’s QoS (row) is an input vector. We train 
an SOM with neurons arranged in a 60×80 hexagonal lat-
tice. The prototypes of SOM are randomly initialized, and 
Gaussian function is adopted as the neighborhood func-
tion (see Eq. (13)). We train the SOM in two phases: a 
rough training phase with initial neighborhood width 15 
and learning rate 0.05; a fine tuning phase with initial 
neighborhood width 2 and learning rate 0.01. The training 
lengths of the two phases are 500 and 3000 epochs respec-
tively. The learning rate decreases linearly to zero during 
the training. 

        
 

Fig. 6. Base map creation. (a) 2D locations of services derived from 
SOM training. (b) Voronoi diagram of services based on the 2D loca-
tions. 

When the training process is completed, each service is 
mapped on to a neuron. We assign unique coordinates to 
each service by randomly distributing them within the 
boundaries of the corresponding neuron cell (see Fig. 6 
(a)). To create a geographic map, each point is assigned to 
a distinct portion of the map display by forming a Voro-
noi diagram (see Fig. 6(b)). After that, we adopt the hie-
rarchical clustering to the services based on their QoS 
similarities and obtained 42 clusters. We simplified the 
base map by merging the neighboring polygons if they 
are in the same cluster. By this way, we form a genera-
lized map highlighting the underlying structure of the 
QoS space. 

Labeling individual service is an integral part of the 
map creation. The goal is to help users identify the poten-
tial services with optimal QoS values. We use different 
label styles to mark services showing how strongly we 
recommend them. For example, the top 10 best perform-
ing services are labeled with 12-point boldface; services 
with good predicted QoS are labeled with 8-point non-
boldface; while dots indicate those services with poor 
predicted QoS values. Fig. 7 shows the final map for Web 
service recommendations. 

 

(a) (b) 
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Fig. 7. Final map with service recommendations. 

 RTT Cost Reputation 
WS1 1200 10 1 
WS2 1000 20 2 
… … … … 

WS100 800 50 5 
Fig. 8. Region center matrix. 

The map can also be created for one region to show the 
similarity of Web services based on a set of QoS proper-
ties. For example, we can employ three QoS properties: 
RTT, cost and reputation. RTT and cost are quantitative 
properties, while reputation is qualitative (usually 1-5 
starts). Each region center is a matrix composed of three 
column vector (RTT, Cost, Reputation) as Fig. 8 shows. 
Since different properties have different ranges, we first 
normalize each of them to [0, 1] by the following steps: 1) 
find the minimum Rmin and maximum Rmax value of the 
property; 2) For each original value R submitted by the 
user, the normalized value R’ is calculated by Eq. (15).  

minmax

min'
RR

RRR  

With the normalized values, each property will have 
equal weights in the SOM training. The map creation 
process is the same, and we can obtain a map reflecting 
the Web service QoS similarity of a specific region. 

6 RELATED WORK 
In this section, we discuss related work regarding CF and 
Web service recommendation. 

6.1 Collaborative Filtering 
Collaborative Filtering is firstly proposed by Rich [18] 
and widely used in commercial recommender systems, 
such as Amazon.com [11]. The basic idea of CF is to pre-
dict and recommend the potential favorite items for a 
particular user by leveraging rating data collected from 
similar users. Formally, a CF domain consists of n users 
{u1, u2,…, un}, m items {i1, i2,…, im}, and users’ ratings on 
items, which is often denoted by a user-item matrix. Each 
entry rx,y (1 x n, 1 y m)  in this matrix represents user 
x’ s rating on item y. The rating score usually has a fixed 
range, like 1-5. Since users only express their preference 
on a small number of items, the matrix is very sparse in 
reality.  

Essentially, CF is based on processing the user-item 
matrix. Breese et al. [2] divided the CF algorithms into 
two broad classes: memory-based algorithms and model-
based algorithms. 

Memory-based algorithms such as user-based KNN 
[13] [15] use the entire user-item matrix when computing 
recommendations. These algorithms are easy to imple-
ment, require little or no training cost, and can easily take 
new users’ ratings into account. However, memory-based 
algorithms cannot cope well with large number of users 
and items, since their online performance is often slow.  

Alternatively, model-based algorithms, such as K-
means clustering [26], Bayesian model [3], etc. learn the 
model from the dataset using statistical and machine 
learning techniques. These model-based algorithms can 
quickly generate recommendations and achieve good 
online performance. However, the model must be per-
formed anew when new users or items are added to the 
matrix.   

(15) 
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6.2 Web Service Recommendation 
Web service discovery is a hot topic which plays a crucial 
role in the area of services computing [33]. Some syntactic 
and semantic based Web service search engines have 
been proposed in recent literature. Dong et al. [37] found 
that the traditional key word-based Web service search 
was insufficient, and they provided a similarity search 
algorithm for Web services underlying the Woogle search 
engine. Liu et al. [38] investigated the similarity mea-
surement of Web services and designed a graph-based 
search model to find Web services with similar operations. 
Recommendation techniques have been used in recent 
research projects to enhance Web service discovery. Meh-
ta et al. [14] found that semantics and syntax were inade-
quate to discover a service that meets user requirements. 
They added two more dimensions of service description: 
quality and usage pattern. Based on this service descrip-
tion, they propose the service mediation architecture. 
Blake and Nowlan [1] computed a Web service recom-
mendation score by matching strings collected from the 
user’s operational sessions and the description of the Web 
services. Based on this score, they judged whether a user 
is interested in the service. Maamar et al. [12] proposed a 
model for the context of Web service interactions and 
highlighted the resource on which the Web service per-
formed. Zhao et al. [17] provided a way to model services 
and their linkages by semantic algorithm. Based on the 
input keywords, users can get a set of recommendations 
with linkages to the query. Previous work mainly focused 
on providing a mechanism to formalize users’ preference, 
resource and the description of Web services, and rec-
ommendations are generated based on the predefined 
semantic models. Different from these methods, our rec-
ommendations are generated by mining the QoS records 
that are automatically collected from interactions between 
users and services. 

Limited work has been done to apply CF to Web ser-
vice recommendation. Shao et al. [20] proposed a user-
based CF algorithm to predict QoS values. Zheng et al. 
[29] combined the user-based and item-based CF algo-
rithm to recommend Web services. However, since nei-
ther of the two approaches recognized the different cha-
racteristic between Web service QoS and user ratings, the 
prediction accuracy of these methods was unsatisfactory. 
Sreenath and Singh [22] and Rong et al. [19] applied the 
idea of CF in their systems, and used MovieLens data [15] 
for experimental analysis. However, using the movie da-
taset to study Web service recommendation is not con-
vincing. 

Different from these existing methods, which suffer 
from low prediction accuracy, we propose an effective CF 
algorithm for Web service recommendation with consid-
eration of the region factor. Comprehensive experiments 
conducted with real QoS records show that our method 
outperforms others consistently. 

There are several SOM-based methods to visualize data 
structure. U-Matrix [25] is the most popular one that dis-
plays the local distance structures of the input vectors. 
U*-Matrix [24], an enhancement of U-Matrix, combines 
the density and distance information for visualization. 

Color assignment is also employed to show the approx-
imate cluster structures [6] [9]. To exploit data topology in 
visualization, Tasdemir and Merényi [23] introduced a 
weighted Delaunay triangulation. Different from our ap-
proach which clusters the Web services to form a genera-
lized map, data clusters can be computed by applying 
clustering techniques to the trained prototypes, and clus-
ters can be visualized on top of the map [21] [27]. 

7 CONCLUSION AND FUTURE WORK 
In this paper, we have presented an innovative approach 
to Web service recommendation and visualization. Dif-
ferent from previous work, our algorithm employs the 
characteristic of QoS by clustering users into different 
regions. Based on the region feature, a refined nearest-
neighbor algorithm is proposed to generate QoS predic-
tion. The final service recommendations are put on a map 
to reveal the underlying structure of QoS space and help 
users accept the recommendations. Experimental results 
show that our approach significantly improves the pre-
diction accuracy than the existing methods regardless of 
the sparseness of the training matrix. We also demon-
strate that the online time complexity of our approach is 
better than the traditional CF algorithms.  

In this paper, our recommendation approach consi-
dered the correlation between QoS records and users’ 
physical locations by using IP addresses, which has 
achieved good prediction performance. In some cases, 
however, users in the same physical locations may ob-
serve different QoS performance of the same Web service. 
Besides the user physical location, we will investigate 
more contextual information that influences the client-
side QoS performance, such as the workload of the serv-
ers, network conditions and the activities that users carry 
out with Web services (e.g., Web services are used alone 
or in composition). More investigations on the distribu-
tion of RTT and the correlation between different QoS 
properties such as RTT and availability will be conducted 
in our future work. 

For the visualization of the recommendation results, 
we plan to add more user interactions such as searching 
Web services on the QoS map, zooming in and zooming 
out. Graphic map like google map will be combined to 
help users navigate their similar users and Web service 
providers on the map.  

User acceptance rate of the recommendation is a key 
indicator of the effectiveness of the recommender system. 
We will collect more user feedbacks of the recommenda-
tion to help improve the prediction accuracy of our Web 
service recommendation algorithm. 
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