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Abstract. In computer system design, we distinguish between closed and open systems. A
closed systemis a system whose behavior is completely determined by the state of the system. An
open systemis a system that interacts with its environment and whose behavior depends on this
interaction. The ability of temporal logicsto describean ongoinginteraction of areactive program
with its environment makes them particularly appropriate for the specification of open systems.
Nevertheless, model-checking algorithms used for the verification of closed systems are not
appropriate for the verification of open systems. Correct model checking of open systems should
check the system with respect to arbitrary environments and should take into account uncertainty
regarding the environment. Thisis not the casewith current model-checking algorithms and tools.
In this paper we introduce and examine the problem of model checking of open systems (mod-
ule checking, for short). We show that while module checking and model checking coincide
for the linear-time paradigm, module checking is much harder than model checking for the
branching-time paradigm. We prove that the problem of modul e checking is EXPTIME-complete
for specificationsin CTL and is 2EXPTIME-complete for specificationsin CTL*. This bad news
is also carried over when we consider the program-complexity of module checking. As good
news, we show that for the commonly-used fragment of CTL (universal, possibly, and always
possibly properties), current model-checking tools do work correctly, or can be easily adjusted to
work correctly, with respect to both closed and open systems.

1 Introduction

In computer system design, we distingui sh between closed and open systems[HP85]. A closed system
is a system whose behavior is completely determined by the state of the system. An open systemis
a system that interacts with its environment and whose behavior depends on this interaction. As an
example to closed and open systems, we can think of two drink-dispensing machines. One machine,
which is a closed system, repeatedly boils water, makes an internal nondeterministic choice, and
serves either coffee or tea. The second machine, which is an open system, repeatedly boils water,
asks the environment to choose between coffee and tea, and deterministically serves adrink according
to the external choice [Hoa85]. Both machines induce the same infinite tree of possible executions.
Nevertheless, while the behavior of the first machine is determined by interna choices solely, the
behavior of the second machine is determined also by external choices, made by its environment.
Formally, in a closed system, the environment can not modify any of the system variables. In contrast,
in an open system, the environment can modify some of the system variables.

Designing correct open systems is not an easy task. The design has to be correct with respect to
any environment, and often thereis much uncertainty regarding the environment [FZ88]. Therefore, in
the context of open systems, formal specification and verification of the design has great importance.
Traditional formalismsfor specification of systemsrelate theinitial state and thefina state of asystem
[Flo67, Hoab9]. In 1977, Pnudli suggested temporal logicsas asuitableformalism for reasoning about
the correctness of nonterminating systems [Pnu77]. The breskthrough that temporal logics brought to
the area of specification and verification arises from their ability to describe an ongoing interaction



of a reactive module with its environment [HP85]. This ability makes temporal logics particularly
appropriate for the specification of open systems.

Two possible views regarding the nature of time induce two types of temporal logics[Lam80]. In
linear tempora logics, timeistreated as if each moment in time has a unique possible future. Thus,
linear temporal logicformulas areinterpreted over linear sequences and we regard them as describing
the interaction of the system with its environment al ong a single computation. In branching temporal
logics, each moment in time may split into various possible futures. Accordingly, the structures
over which branching tempora logic formulas are interpreted are infinite trees, and they describe
the possible interactions of a system with its environment. In both paradigms, we can describe the
design in some formal model, specify itsrequired behaviour with atemporal logicformula, and check
formally that the modd satisfies the formula. Hence the name model checking for the verification
methods derived from thisviewpoint.

We model finite-state closed systems by programs. We model finite-state open systems by reactive
programs (modules, for short). A moduleis ssimply a program with a partition of the states into two
sets. One set contains system states and corresponds to |ocations where the system makes atransition.
The second set contai nsenvironment states and correspondsto | ocationswhere the environment makes
atransition®. Consider the module M presented on theright. It has

three system states (boil, tea, and coffeg), and it has one environ-
ment state (choose). It model sthe second drink-di spensingmachine
described above. When M isin the system state boil, we know ex-
actly what its possible next states are. It can either stay in the state
boil or move to the state choose In contrast, when M isin the
environment state choose, there is no certainty with respect to the
environment and we can not be sure that both tea and coffee are
possible next states. For example, it might be that for some users
of the machine, coffee is not a desirable option. If we ignore the
partition of M’'s statesto system and environment states and regard
it asaprogram P, then it model sthefirst drink-dispensing machine
described above.

To seethedifference between the semantics of programsand modul es, | et usconsider two questions.
Isit always possiblefor thefirst machine to eventually serve tea? Thisis equivalent to asking whether
P satisfies the CTL formula AG F F'tea, and the answer is yes. Is it always possible for the second
machine to eventually serve tea? Here, the answer is no. Indeed, if the environment always choose
coffee, the second machine will never serve tea. Suppose now that we check with current model-
checking tools whether it is aways possible for the second machine to eventually serve tea, what
will be the answer? Unfortunately, model -checking tools do not distinguish between closed and open
systems. They regard M as a program and answer yes.

As discussed in [MP92], when the specification is given in linear temporal logic, there is indeed
no need to worry about uncertainty with respect to the environment; since al the possibleinteractions
of the system with its environment have to satisfy alinear temporal logic specification in order for A/
to satisfy the specification, the program P and themodule M satisfy exactly the same linear temporal
logic formulas. From the example above we learn that when the specification is given in branching
tempora logic, we do need to take into account the uncertainty about the environment. Thereisaneed
to define a different model -checking problem for open systems, and there is a need to adjust current
model -checking toolsto handle open systems correctly.

3 A similar way for modelling open systems is suggested in [LT88, Lar89]. There, Larsen and Thomsen use
Modal Transition Systems, where some of the transitions are admissible and some are necessary, in order to
specify processesloosely, allowing a refinement ordering between processes.



We now specify formally the problem of model checking of open systems (module checking, for
short). Aswith usual model checking, the problem has two inputs. A module M and atemporal logic
formula . For amodule M, let Vj; denote the unwinding of M into an infinite tree. We say that M
satisfies ¢ iff ¢ holdsin all the trees obtained by pruning from V4, subtrees whose root is a successor
of an environment state. The intuitionis that each such tree corresponds to a different (and possible€)
environment. We want ¢ to hold in every such tree since, of course, we want the open system to
satisfy its specification no matter how the environment behaves. For example, an environment for the
second drink-dispensing machine is an infinite line of thirsty people waiting for their drinks. Since
each person in the line can either like both coffee and tea, or like only coffee, or like only tea, there
are many different possible environmentsto consider. Each environment induces a different tree. For
example, an environment in which all the peoplein line do not liketea, induces a tree that has the | eft
subtree of al its choose nodes pruned. Similarly, environments in which the first person in line like
both coffee and teainduce trees in which the first choose node has two successors®.

We examine the complexity of the module-checking problem for linear and branching temporal
logics. Recall that for the linear paradigm, the problem of modul e checking coincideswith the problem
of model checking. Hence, the known complexity results for LTL model checking remain valid. As
we have seen, for the branching paradigm these problems do not coincide. We show that the problem
of module checking is much harder. In fact, it is as hard as satisfiability. Thus, CTL module checking
is EXPTIME-complete and CTL* module checking is 2EXPTIME-complete, both worse than the
PSPACE complexity we have for LTL. Keeping in mind that CTL model checking can be done in
linear time [CES86] and CTL* model checking can be donein polynomial space [EL85], thisisredly
bad news. We aso show that for CTL and CTL*, the program complexity of module checking (i.e.,
the complexity of this problem in terms of the size of the module, assuming the formulais fixed),
is PTIME-complete, worse than the NLOGSPACE complexity we have for LTL. As the program
complexity of model checking for both CTL and CTL* is NLOGSPACE [BVW9], thisis bad news
too.

Asaconsolation for the branching-time paradigm, we show that from apractica point of view, our
news is not that bad. We show that in the absence of existential quantification, module checking and
model checking do coincide. Thus, YCTL module checking can bedonein linear time, and itsprogram
complexity is NLOGSPACE. More consolation can be found in “possibly” and “aways possibly”
properties. These classes of properties are considered an advantage of the branching paradigm. While
being easily specified usingthe CTL formulas £ F'¢ and AG F F'¢, these properties can not be specified
in LTL [EH86]. We show that module checking of the formulas £ F¢ and AGEF¢ can be donein
linear time (though the problems are PTIM E-compl ete).

2 Préiminaries

The logic CTL* combines both branching-time and linear-time operators. Formulas of CTL* are
defined with respect to a set AP of atomic propositions. A path quantifier, either £ (“for some
path”) or A (“for al paths’), can prefix a path formula composed of an arbitrary combination of the
linear-time operators /' (“eventudly”), G (“always’), X (“next time”), and U (“until”).

The semantics of CTL* is defined with respect to aprogram P = (AP, W, R, wo, L), where AP
isthe set of atomic propositions, W isa set of states, R C W x W isatransition relation that must
be total (i.e, for every w € W there exists w’ € W such that R(w, w’)), wo is an initia state, and
L W — 247 maps each state to a set of atomic propositionstrue in this state. A path of P isan
infinite sequence wo, wy, . . . of states such that for every i > 0, we have R(w;, w;+1). The notation

4 Readers familiar with game theory can view module checking as solving an infinite game between the system
and the environment. A correct system is then one that has awinning strategy in this game.



P |= ¢ indicates that the formula ¢ holds at state wq of the program P. A forma definition of the
relation = can be found in [Eme90].

Thelogic CTL isarestricted subset of CTL* inwhich thetempora operators must beimmediately
preceded by apath quantifier. Thus, for example, theCTL* formulay = AGF(pA EX¢q)isnotaCTL
formula. Adding a path quantifier, say A, before the F' temporal operator in ¢ resultsin the formula
AGAF(p A EXq), whichisaCTL formula The logics VCTL and YCTL*, known as the universal
fragmentsof CTL and CTL*, respectively, allow only universal quantification of path formulas. Thus,
all the occurrences of the path quantifier £ should be under an odd number of negations. The formula
¢ aboveisthereforenot aVCTL* formula. Changing the path quantifier £ in ¢ to the path quantifier A
resultsin theformula AGF (p A AX ¢), whichisaVCTL* formula. Thelogic LTL isalinear temporal
logic. Its syntax does not allow any path quantification. Formulas of LTL are interpreted over paths
in a program. The notation P |= v indicates that the LTL formula ¢ holdsin dl the paths of the
program P.

A closed systemisasystemwhose behavior iscompletely determined by the state of the system. We
model a closed system by a program. An open system is a system that interacts with its environment
and whose behavior depends on that interaction. We model an open system by a module M =
(AP, W, W,, R, wo, L), where AP, R, wo, and L areasin programs, W, isaset of system states, 1V,
isaset of environment states, and we often use 1 to denote W, U ..

For each state w € W, let suce(w) be the set of w's R-successors; i.e., suce(w) = {w' :
R(w,w")}. Consider asystem state w, and an environment state w. . Whenever amoduleisinthe state
ws, al the statesin suce(w, ) are possiblenext states. |n contrast, when themoduleisin state w., there
isno certainty with respect to theenvironment transitionsand not all thestatesin suce(w, ) arepossible
next states. The only thing guaranteed isthat not all the environment transitions are impossible, since
the environment can never be blocked. For astate w € W, let step(w) denote the set of the possible
sets of w’s next successors during an execution. By the above, step(w;) = {suce(w,)} and step(w,)
contains all the nonempty subsets of suce(we ).

Aninfinitetreeisaset 7' C IN* suchthatif z - ¢ € T wherez € IN* andc € IN, thenadsoz € T,
andfordl 0 < ¢’ < ¢, wehavethat = - ¢’ € T. Inaddition, if x € T, then x - 0 € T. The elements
of 1" are called nodes, and the empty word ¢ isthe root of 7". Given an aphabet X, a X'-labeled tree
isapar (T,V) where T isatreeand V : T — X maps each node of 7" to aletter in . A module
M can be unwound into an infinite tree (Thy, Vas) in a straightforward way. When we examine a
specification with respect to M, it should hold not only in (Tas, Vas) (which corresponds to a very
specific environment that does never restrict the set of its next states), but in al the trees obtained by
pruning from (T, Var) subtreeswhoseroot isasuccessor of anode corresponding to an environment
state. Let exec(M) denote the set of all these trees. Formally, (T, V') € exec(M ) iff the following
holds:

—eeTandV(e) = wo.
— For al € T with V(z) = w, there exists {wy, . .., w,} € step(w) such that 7' N INleI+L —
{r-0,z-1, ...,z -n}tandforadl 0< ¢ <nwehaveV(z-¢c) = w,.

Intuitively, each tree in exzec(M ) corresponds to a different behaviour of the environment. Note that
asingle environment state with more than one successor suffices to make exec(M) infinite. We will
sometimesview thetreesin exec(M ) as 247 -|abel ed trees, taking thelabel of anode z tobe L(V ().
Which interpretation is intended will be clear from the context.

Givenamodule M and aCTL* formulav, we say that M satisfies ¢, denoted M =, ¢, if al the
treesin exec( M) satisfy 1. The problem of decidingwhether M satisfies v iscalled modulechecking®.

5 A different problem where a specification is checked to be correct with respect to any environment is discussed
in [ASSSV94]. There, al the states of the module are system states, and the formula should hold in all
compositionsthat contain the module as a component.



Weuse M = ¢ toindicate that when we regard A as a program (thusrefer to al its states as system
states), then M satisfies . The problem of deciding whether A/ |= ¢ is the usua model-checking
problem [CE81, QS81]. Let A — B denotethat A implies B but B does not necessarily imply A. It
is easy to see that
ME v—=ME¢—MIE .

Indeed, M k=, ¢ requiresall thetreesin exec(M ) to satisfy . Ontheother hand, M |= « meansthat
thetree (T, Var) satisfies+. Finaly, M £, -+ only tellsusthat there exists sometreein exzec(M )
that satisfies .

We can define module checking also with respect to linear-time specifications. We say that a
module M satisfiesan LTL formulay iff M |, Av.

3 Module Checking for Branching Temporal Logics

We have aready seen that for branching temporal logics, the model checking problem and the module
checking problem do not coincide. In this section we study the complexity of CTL and CTL* module
checking. We show that not only the problems do not coincide but also their complexities do not
coincide, and in a very significant manner.

Theorem 1.

(1) The module-checking problemfor CTL is EXPTIME-complete.
(2) The module-checking problemfor CTL* is 2EXPTIME-compl ete.

Proof (sketch): We start with the upper bounds. Consider aCTL formula+y and aset D C IN witha
maximal element k. Let Ap -, be aBichi tree automaton that accepts exactly all the tree models of
—) with branching degrees in D. By [VW86h], such Ap -, of size O(2F1¥]) exists.

Given a module M = (AP, W,, W,, R, wo, L), we define a Blchi tree automaton .4, that
accepts the set of al trees in ezec(M). Intuitively, Ay guesses which subtrees of (T, Var) are
pruned. Formally, Ay = (24F D, W, 6, wo, W) where D and é are as follows.

- D= UwEWS{ suce(w)| U Uwewe{l, ooy |suce(w)|}.
— Forevery w € W, 0 € 24P, and d € D, wehave (w, ..., wq) € §(w, 0, d) iff L(w) = ¢ and
{wy, ..., wq} € step(w).

Since the acceptance condition only requires .4, not to get stuck (notethat ¢ ispartial), itis easy
to see that L(Axr) = exec(M). Since for every environment stete w, the set step(w) considers dl
possiblesubsets of suce(w), thesize of Ay isexponentia in maxy ew. {|suee(w)|}, thusexponentia
inthesizeof M.

By the definition of satisfaction, we havethat M |=, « iff all thetreesin exec(M) satisfy . In
other words, if no treein exec(M ) satisfies —¢. This can be checked by testing £(.Ar) N L(Ap ~y)
for emptiness. Equivalently, we have to test L(Ay x Ap -y) for emptiness. By [VW86h], the
nonemptiness problem of Biichi tree automata can be solved in quadratic time, which gives us an
agorithm of time complexity 2°UMI+%1¥D) \We can, however, do better. By [VW864], the number of
states in the automaton Ap ., is 2°U¥D and isindependent of k. Also, the automaton A, has the
same number of states as M. The fact that the sizes of these automata are exponentia in & and M
originates from a specia structure where all subsets of a certain tuple in the transition relation are
possibletuplestoo. Therefore, thea gorithmin [VW86b] can beimplemented totest £(Aar x Ap ~y)
for emptiness in time polynomia in | M| « 2!¥1.

The proof issimilar for CTL*. Here, following [ES84, EJ88], we have that Ap -, isaRabin tree
automatonwith 2% 2"*' states and 21¥! pairs. By [EJ88, PR89], and again, using the restricted structures



of the automata Ap -, and Ay, checking the emptiness of £(Ay x Ap -y) can then be done in
time M [OU¥D 4 227D

It remains to prove the lower bounds. To get an EXPTIME lower bound for CTL, we reduce CTL
satisfiability, proved to be EXPTIME-complete in [FL79], to CTL module checking. Given a CTL
formula ¢, we construct amodule M and a CTL formula ¢ such that the size of M isquadraticin the
length of ¢, the length of ¢ islinear in thelength of ¢, and ¥ issatisfiableiff M £, —¢.

Consider aCTL formulat. For simplicity, let usfirst assumethat ¢ hasasingleatomic proposition
q. Let n bethenumber of existential quantifiersin > plus1. By the sufficient branching-degree property
of CTL, ¢ is satisfiable iff there exists a {0, {¢} }-labeled tree of branching degree n that satisfies ¢
[EmeQ0]. Let P, be acliquewith n states. By the above, « is satisfiable iff there exists a possibility
to label an unwinding of P, such that the resulted {0}, {¢} }-labeled tree satisfies ¢). This simple
idea, due to [Kup95], is the key to our reduction. We define a module M,, such that each treein
exec(M,,) correspondsto a {{}, {¢} }-labeling of (7, , Vp, ). We then define ¢ such that there exists
atree satisfying ¢ in exec(M,) iff there exists a {0, {¢} }-labeling of (T, , Vp,) that satisfies .
It follows that + is satisfiable iff M [, —p. Let [n] = {1,...,n}, [n) = {2,...,n'}, and It
M, = (AP, W,, W, R, w, L), where,

— AP = {ghogt, g}.
- W = [n].
— W. = [n]’ U {heaven,hdll }.

- R={{i,j) 147 € ]} U{{E ) i e [nju
([n] x {heavenhdl }) U {(heavenheaven)} U
{(hell,hel }}.

—w=1

S— S—
— Fordl i € [n],wehave L(i) = § and L(¢/) = A //

{ghost}. Also, L(heaven) = {¢} and L(hell)
0.

The reactive module M3

That is, the system states of A/, induce the clique P,,. In addition, each system state has a ghost:
an environment state with two successors, one labeled with ¢ and one not labeled with ¢. Intuitively,
the ability of the ghost ¢’ to take an environment transition to heaven in M,,, corresponds to the ability
of anode associated with the state i in (Tp, , Vi, ) to be labeled with ¢. Thus, each treein exec(M,, )
indeed correspondstoa {{, {¢} }-labelingof (7, , Vp, ). We now have to define ¢ such that whenever
the formula refersto ¢, theformula ¢ will refer to £ X £ X ¢. Indeed, since heaven isthe only state
labeled with ¢, then asystem state satisfies /X I X ¢ iff thetransition of itsghost to heaven isenabl ed.
In addition, path quantification in ¢ should be restricted to computationsof P,,. That is, to paths that
never meet a ghost. To do this, we define afunction f : CTL* formulas — CTL* formulas such that
f(€) restricts path quantification to paths that never visit a state labeled with ghost. We define f
inductively as follows.

- fla) = ¢

= J(=¢) = = f(©).

= f(&1V &) = f(&) V f(&2).

- J(E¢) = E((Gghost) A f(£)).
— J(AE) = A((Fghost) V f(&)).
- J(X&) = X f(©).



- J(&U¢&) = f(&)U f(&2)-

Forexample, f(EqU(AFp)) = E((G—ghost) A (¢U (A((Fghost)V Fq)))). We can now define ¢
as f(y) with EX E X ¢ replacing ¢. Note that wefirst apply f and only then do the replacement. When
¢ isaCTL formula, theformula f(+) isnot necessarily aCTL formula Still, it has arestricted syntax:
its path formul as have either a single linear-time operator or two linear-time operators connected by a
Boolean operator. By [BG94], formulas of this syntax have alinear trandationto CTL.

When 1 has more than one atomic proposition, the reduction is very similar. Then, for ¢ over
{91, . .., qm }, wehave m heavens, onefor each atomic proposition, and we associate with each system
state m ghosts, again, one for each atomic propositions. We can now replace a proposition ¢; in
with £ X E X ¢; in¢. The obtained module has n + nm + m 4 1 statesand it has n? + 3nm + m + 1
transitions.

The proof isthe same for CTL*. Here, we do areduction from satisfiability of CTL*, proved to be
2EXPTIME-hard in [V S85]. O

We notethat the problem of CTL modul e checkingis EXPTIME-complete (and theonefor CTL* is
2EXPTIME-compl ete) even when we restrict ourselves to modul esin which all states are environment
dtates. To see this, note we could have defined M,, as the clique P,,, adding a transition from each
state to heaven. We could then force each node of atreein exec(M,, ) to have as children at least itsn
successors in P, (this can be enforced by the formula, having [»] as atomic propositions, and having
formulaslike AG(1 — EX2 A EX3) conjuncted with the original formula), and replace ¢ in ¢ with
EXq in . The price of using only environment states isthat now the length of ¢ is quadratic in the
length of .

Moreover, module checking for CTL is EXPTIME-complete even for modules of a fixed size.
To see this, note that the size of M,, depends on the number of atomic propositionsin i and on
the minimum branching degree of models of . Proving that the satisfiability problem for CTL is
EXPTIME-hard, Fisher and Lander reduce acceptance of a word « by a linear-space aternating
Turing machine to satisfiability of aCTL formula v, [FL79]. A somewhat different reduction, which
considersafixed Turing machine that accepts an EXPTIME-complete problem, resultsin +,. of length
polynomial in |z|, but with a fixed number of atomic propositions, which, if satisfiable, has models
with branching degree 2. Such . induces, for al x, modules of afixed size.

4 The Program Complexity of Module Checking

When analyzing the complexity of model checking, a distinction should be made between complexity
inthe size of theinput structure and complexity in the size of theinput formulg; it isthe complexity in
size of the structurethat is typically the computational bottleneck [LP85]. In this section we consider
the program complexity [VW864a] of modul e checking; i.e., thecomplexity of thisproblemin terms of
the size of the input module, assuming the formulais fixed. It is known that the program complexity
of LTL, CTL, and CTL* modd checking isNLOGSPACE [VW86a, BVW94]. Thisisvery significant
since it implies that if the system to be checked is obtained as the product of the components of
a concurrent program (as is usually the case), the space required is polynomial in the size of these
components rather than of the order of the exponentialy larger composition.

We have seen that for CTL and CTL*, modul e checking is much harder than model checking. We
now claim that when we consider program complexity, module checking is still harder.

Theorem 2. The program complexity of CTL and CTL* module checking is PTIME-complete.

Proof (sketch): Since the algorithms given in the proof of Theorem 1 are polynomia in the size of
the module, membership in PTIME isimmediate.



We prove hardness in PTIME by reducing the Monotonic Circuit Value Problem (MCV), proved
to be PTIME-hard in [Gol 77], to module checking of the CTL formula £ F'p. In the MCV problem,
we are given a monotonic Boolean circuit « (i.e., acircuit constructed solely of AND gates and OR
gates), and a vector {z1, ..., #,) of Boolean input values. The problem is to determine whether the
output of & on (1, ..., z,) isl.

Let us denote a monotonic circuit by atuple o = (Gv, Ga, Gy, gour, T), Where Gy is the set
of AND gates, (G5 is the set of OR gates, (+;,, isthe set of input gates (identified as g1, . .., ¢n),
Jout € Gy UG3 UG, istheoutput gate, and 7' C G x G denotes the acyclic dependencies in «, that
is{g,¢") € T iff theoutput of gate ¢’ isan input of gate g.

Given amonotonic circuit « = (G, G, Gin, gout, T') @d aninput vector X = (1, ..., z,), We
construct amodule M, x = ({0, 1}, Gv, G'3 U Gin, R, gous, L), Where

- R=TU{{g,9) 19 € Gin}.
— Forg € Gy U GGz, wehave L(g) = 1. For g; € G;,, Wwehave L(g;) = ;.

Clearly, thesize of M, x islinearinthesizeof «. Intuitively, each treein exec(M, x) corresponds
to adecision of « asto how to satisfy its OR gates (we satisfy an OR gate by satisfying any nonempty
subset of itsinputs). It istherefore easy to seethat M., x | EF0iff thereexistsno V' € exec(My x)
such that V' = AG'1, which holdsiff the output of « on x is 0. O

Recall that for a CTL formula v, checking that a module M satisfies ¢ reduces to testing empti-
ness of the automaton Ay x Ap . Checking nonemptiness of a Biichi tree automaton can be
reduced to calculating a p-calculus expression of aternation depth 2 [Rab69, VW86b]. As such, it
can be implemented, using symbolic methods, in toolsthat handl e fixed-point calculations (e.g., SMV
[BCM+90, McM93)).

5 Pragmatics

How bad is our news? In this section we show that from a pragmatic point of view, it is not that
bad. We show that in the absence of existential quantification, module checking and model checking
coincide, and that in the case where there is only a limited use of existential quantification, module
checking can till be donein linear time.

5.1 Module Checking for Universal Temporal L ogics

Lemma3. For universal branching temporal logics, the module checking problem and the model
checking problem coincide.

Proof: Given amodule M and a VCTL* formulay, we prove that M |, « iff M |= . Assume
firstthat M =, . Then, dl treesin ezec(M) satisfy . Thus, in particular, (T, Var) satisfies ¢ and
M = . Assume now that M |= +. Therdation {{w, w) : w € W} isasimulation relation between
any treein exec(M) and M. Therefore, by [GL94], al treesin exec(M) satisfy ¢, and M =, . O

Theorem 4 now followsfrom the known complexity resultsfor YCTL and YCTL* model checking
[CESS86, SC85, BVW94].

Theorem 4.

(1) The module-checking problemfor YCTL isinlinear time.
(2) The module-checking problemfor YCTL* is PSPACE-compl ete.
(3) The program complexity of module checking for YCTL and YCTL* is NLOGSPACE-compl ete.

It follows from the above theorem that the module-checking problem for LTL is PSPACE-complete
and its program complexity is NLOGSPACE-compl ete.



5.2 Module Checking of “Possibly” and “ Always Possibly” Properties

We have seen that, for each fixed CTL formula+, checking that amodule M satisfies > can be checked
in time polynomia in the size of M. Sometimes, we can do even better. Some CTL formulas have a
special structure that enables usto module-check them in timelinear inthe size of A . In thissection
we show that “ possibly” and “awayspossibly” properties, by far the most popul ar properties specified
in CTL and not specifiable in YCTL, induce such formulas.

Consider the CTL formula F F'send. The formula states that it is possible for the system to
eventualy send a request. We call properties of thisform possibly properties. Consider now the CTL
formula AG E F'send. The formulastates that in al computations, it is always possiblefor the system
to eventually send a request. We call properties of this form always possibly properties. It is easy to
see that possibly and always possibly properties can not be specified in linear temporal logics, nor in
universal branching logics[EH86].

Theorem 5. Modulechecking of possibly and always possi bly propertiescan bedoneinlinear running
time.

Proof (sketch): We describe an efficient algorithm that module-checks these properties. For sim-
plicity, we assume that system and environment states are labeled with atomic propositions s and e,
respectively. Consider a module M = (AP, W,, W,, R, wo, L) and a propositional assertion £. By
definition, M =, EF¢ iff there exists no tree (T, V) € exec(M) @l of whose nodes satisfy —¢.
We say that a state w € W is safeiff such atree (T, V') can not have w as its root. We check that
M =, EF¢ by checking that wo is safe. In order to be safe, a state w should satisfy one of the
following:

1wk,

2. wisasystem state that has a saf e successor, or
3. wisan environment state al of whose successors are safe.

Consider the monotone function f : 2% — 2% where f(y) = € V (s A EXy) V (e A AXy). It
can be shown that w is safeiff w isintheleast fixed-point of f. Therefore, we have that w is safe iff
wEpylV(isANEXy) V(e N AXy). Hence,

ME, EF¢E o ME pylV(sNEXy) V(e N AXy).

Now, M |, AGEF¢ iff thereexistsno tree (T, V) € exec(M) such that (T, V') has a subtree
(1", V") dl of whose nodes satisfy —¢. We can therefore check that M =, AGEF¢ by checking that
all thereachable statesin M are safe. Hence,

M, AGEFE S M vz pyéV (s NEXy) V(e NAXy) ] A AXz.

So, we reduced modul e checking of possibly and aways possibly propertiesto model checking of
an dternation-free p-calculus formula. As the latter can be done in linear running time [Cle93], we
are done.

a

Again, as our algorithms involve at most two simple fixed-point computations, they can be easily
implemented symbolically.

What about the space complexity of checking these properties? |s there a nondeterministic algo-
rithm that can check always possibly propertiesin logarithmic space? Asthe formulawe used proving
Theorem 2 is E'F'¢, the answer for possibly properties is no. Unsurprisingly, thisis aso the answer
for the more complicated always possibly properties, as we claim in the theorem bel ow.



Theorem 6. Module checking of possibly and always possibly properties is PTIME-compl ete.

Proof (sketch): Membership in PTIME follows from Theorem 5. To prove hardness in PTIME, we
do thesamereductionwedidfor CTL. For £ F'¢, weneed no change. For AG £ F'¢ wedo thefollowing
change. Instead a self loop, each state associated with an input gate now has atransition to the initial
state g,,¢- Let uscal theresulted module M, . Itiseasy toseethat M, , =, AGEFOiff thereexists
noV € exec(M/, ) suchthat V' |= EF'AG1, which holdsiff the output of « on = isO. O

6 Discussion

The discussion of the relative merits of linear versus branching temporal logicsis almost as early as
these paradigms [Lam80]. We mainly refer here to the linear temporal logic LTL and the branching
tempora logic CTL. One of the beliefs dominating this discussion has been “while specifying is
easier in LTL, model checking is easier for CTL". Indeed, the restricted syntax of CTL limits its
expressive power and many important behaviors (e.g., strong fairness) can not be specified in CTL.
On the other hand, while model checking for CTL can be done in time O(|P| * |¢|) [CES86], it
takes time O(|P| + 21¥l) for LTL [LP85]. Since LTL model checking is PSPACE-complete [SC85],
the latter bound probably cannot be improved. The attractive complexity of CTL model checking
have compensated for itslack of expressive power and branching-time model -checking toolsthat can
handle systems with more than 10'%° states [Bro86, McM 93, CGL 93] are incorporated into industrial
development of new designs [BBGt94].

If we examine the history of thisdiscussion more closely, we found that thingsare not that smple.
On the one hand, the inability of LTL to quantify computations existentially is considered by many
a serious drawback. In addition, the introduction of fair-CTL [CES86] and of many other extensions
to CTL [Lon93, BBGT94, BG94], have made CTL abasis for specification languages that maintain
the efficiency of CTL model checking and yet overcome many of its expressiveness limitations. On
the other hand, the computational superiority of CTL is also not that clear. For example, comparing
the complexities of CTL and LTL model checking for concurrent programs, both are in PSPACE
[VW86a, BVW94]. As shown in [Var95, KV 95], the advantage that CTL enjoysover LTL disappears
also when the complexity of modular verification is considered.

In thiswork we questioned the computational superiority of the branching-time paradigm further.
We showed that when reasoning about open systems, the complexity of CTL modd checking is
actualy higher than that of LTL. Our results are summarized in the table below. All the complexities
in the table denote tight bounds.

Acknowledgments. We are grateful to Martin Abadi and Pierre Wolper for fruitful discussionson the
verification of reactive systems.
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