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Abstract. In computer system design, we distinguish between closed and open systems. A
closed system is a system whose behavior is completely determined by the state of the system. An
open system is a system that interacts with its environment and whose behavior depends on this
interaction. The ability of temporal logics to describe an ongoing interaction of a reactive program
with its environment makes them particularly appropriate for the specification of open systems.
Nevertheless, model-checking algorithms used for the verification of closed systems are not
appropriate for the verification of open systems. Correct model checking of open systems should
check the system with respect to arbitrary environments and should take into account uncertainty
regarding the environment. This is not the case with current model-checking algorithms and tools.
In this paper we introduce and examine the problem of model checking of open systems (mod-
ule checking, for short). We show that while module checking and model checking coincide
for the linear-time paradigm, module checking is much harder than model checking for the
branching-time paradigm. We prove that the problem of module checking is EXPTIME-complete
for specifications in CTL and is 2EXPTIME-complete for specifications in CTL?. This bad news
is also carried over when we consider the program-complexity of module checking. As good
news, we show that for the commonly-used fragment of CTL (universal, possibly, and always
possibly properties), current model-checking tools do work correctly, or can be easily adjusted to
work correctly, with respect to both closed and open systems.

1 Introduction

In computer system design, we distinguish between closed and open systems [HP85]. A closed system
is a system whose behavior is completely determined by the state of the system. An open system is
a system that interacts with its environment and whose behavior depends on this interaction. As an
example to closed and open systems, we can think of two drink-dispensing machines. One machine,
which is a closed system, repeatedly boils water, makes an internal nondeterministic choice, and
serves either coffee or tea. The second machine, which is an open system, repeatedly boils water,
asks the environment to choose between coffee and tea, and deterministically serves a drink according
to the external choice [Hoa85]. Both machines induce the same infinite tree of possible executions.
Nevertheless, while the behavior of the first machine is determined by internal choices solely, the
behavior of the second machine is determined also by external choices, made by its environment.
Formally, in a closed system, the environment can not modify any of the system variables. In contrast,
in an open system, the environment can modify some of the system variables.

Designing correct open systems is not an easy task. The design has to be correct with respect to
any environment, and often there is much uncertainty regarding the environment [FZ88]. Therefore, in
the context of open systems, formal specification and verification of the design has great importance.
Traditional formalisms for specification of systems relate the initial state and the final state of a system
[Flo67, Hoa69]. In 1977, Pnueli suggested temporal logics as a suitable formalism for reasoning about
the correctness of nonterminating systems [Pnu77]. The breakthrough that temporal logics brought to
the area of specification and verification arises from their ability to describe an ongoing interaction



of a reactive module with its environment [HP85]. This ability makes temporal logics particularly
appropriate for the specification of open systems.

Two possible views regarding the nature of time induce two types of temporal logics [Lam80]. In
linear temporal logics, time is treated as if each moment in time has a unique possible future. Thus,
linear temporal logic formulas are interpreted over linear sequences and we regard them as describing
the interaction of the system with its environment along a single computation. In branching temporal
logics, each moment in time may split into various possible futures. Accordingly, the structures
over which branching temporal logic formulas are interpreted are infinite trees, and they describe
the possible interactions of a system with its environment. In both paradigms, we can describe the
design in some formal model, specify its required behaviour with a temporal logic formula, and check
formally that the model satisfies the formula. Hence the name model checking for the verification
methods derived from this viewpoint.

We model finite-state closed systems by programs. We model finite-state open systems by reactive
programs (modules, for short). A module is simply a program with a partition of the states into two
sets. One set contains system states and corresponds to locations where the system makes a transition.
The second set contains environment states and corresponds to locations where the environment makes
a transition3. Consider the module M presented on the right. It has
three system states (boil, tea, and coffee), and it has one environ-
ment state (choose). It models the second drink-dispensingmachine
described above. When M is in the system state boil, we know ex-
actly what its possible next states are. It can either stay in the state
boil or move to the state choose. In contrast, when M is in the
environment state choose, there is no certainty with respect to the
environment and we can not be sure that both tea and coffee are
possible next states. For example, it might be that for some users
of the machine, coffee is not a desirable option. If we ignore the
partition ofM ’s states to system and environment states and regard
it as a program P , then it models the first drink-dispensing machine
described above.
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To see the difference between the semantics of programs and modules, let us consider two questions.
Is it always possible for the first machine to eventually serve tea? This is equivalent to asking whetherP satisfies the CTL formula AGEF tea, and the answer is yes. Is it always possible for the second
machine to eventually serve tea? Here, the answer is no. Indeed, if the environment always choose
coffee, the second machine will never serve tea. Suppose now that we check with current model-
checking tools whether it is always possible for the second machine to eventually serve tea, what
will be the answer? Unfortunately, model-checking tools do not distinguish between closed and open
systems. They regard M as a program and answer yes.

As discussed in [MP92], when the specification is given in linear temporal logic, there is indeed
no need to worry about uncertainty with respect to the environment; since all the possible interactions
of the system with its environment have to satisfy a linear temporal logic specification in order for M
to satisfy the specification, the program P and the moduleM satisfy exactly the same linear temporal
logic formulas. From the example above we learn that when the specification is given in branching
temporal logic, we do need to take into account the uncertainty about the environment. There is a need
to define a different model-checking problem for open systems, and there is a need to adjust current
model-checking tools to handle open systems correctly.

3 A similar way for modelling open systems is suggested in [LT88, Lar89]. There, Larsen and Thomsen use
Modal Transition Systems, where some of the transitions are admissible and some are necessary, in order to
specify processes loosely, allowing a refinement ordering between processes.



We now specify formally the problem of model checking of open systems (module checking, for
short). As with usual model checking, the problem has two inputs. A module M and a temporal logic
formula  . For a module M , let VM denote the unwinding of M into an infinite tree. We say that M
satisfies  iff  holds in all the trees obtained by pruning from VM subtrees whose root is a successor
of an environment state. The intuition is that each such tree corresponds to a different (and possible)
environment. We want  to hold in every such tree since, of course, we want the open system to
satisfy its specification no matter how the environment behaves. For example, an environment for the
second drink-dispensing machine is an infinite line of thirsty people waiting for their drinks. Since
each person in the line can either like both coffee and tea, or like only coffee, or like only tea, there
are many different possible environments to consider. Each environment induces a different tree. For
example, an environment in which all the people in line do not like tea, induces a tree that has the left
subtree of all its choose nodes pruned. Similarly, environments in which the first person in line like
both coffee and tea induce trees in which the first choose node has two successors4 .

We examine the complexity of the module-checking problem for linear and branching temporal
logics. Recall that for the linear paradigm, the problem of module checking coincides with the problem
of model checking. Hence, the known complexity results for LTL model checking remain valid. As
we have seen, for the branching paradigm these problems do not coincide. We show that the problem
of module checking is much harder. In fact, it is as hard as satisfiability. Thus, CTL module checking
is EXPTIME-complete and CTL? module checking is 2EXPTIME-complete, both worse than the
PSPACE complexity we have for LTL. Keeping in mind that CTL model checking can be done in
linear time [CES86] and CTL? model checking can be done in polynomial space [EL85], this is really
bad news. We also show that for CTL and CTL?, the program complexity of module checking (i.e.,
the complexity of this problem in terms of the size of the module, assuming the formula is fixed),
is PTIME-complete, worse than the NLOGSPACE complexity we have for LTL. As the program
complexity of model checking for both CTL and CTL? is NLOGSPACE [BVW94], this is bad news
too.

As a consolation for the branching-time paradigm, we show that from a practical point of view, our
news is not that bad. We show that in the absence of existential quantification, module checking and
model checking do coincide. Thus, 8CTL module checking can be done in linear time, and its program
complexity is NLOGSPACE. More consolation can be found in “possibly” and “always possibly”
properties. These classes of properties are considered an advantage of the branching paradigm. While
being easily specified using the CTL formulasEF� andAGEF�, these properties can not be specified
in LTL [EH86]. We show that module checking of the formulas EF� and AGEF� can be done in
linear time (though the problems are PTIME-complete).

2 Preliminaries

The logic CTL? combines both branching-time and linear-time operators. Formulas of CTL? are
defined with respect to a set AP of atomic propositions. A path quantifier, either E (“for some
path”) or A (“for all paths”), can prefix a path formula composed of an arbitrary combination of the
linear-time operators F (“eventually”), G (“always”), X (“next time”), and U (“until”).

The semantics of CTL? is defined with respect to a program P = hAP;W;R;w0; Li, where AP
is the set of atomic propositions,W is a set of states, R � W �W is a transition relation that must
be total (i.e., for every w 2 W there exists w0 2 W such that R(w;w0)), w0 is an initial state, andL : W ! 2AP maps each state to a set of atomic propositions true in this state. A path of P is an
infinite sequence w0; w1; : : : of states such that for every i � 0, we have R(wi; wi+1). The notation

4 Readers familiar with game theory can view module checking as solving an infinite game between the system
and the environment. A correct system is then one that has a winning strategy in this game.



P j= ' indicates that the formula ' holds at state w0 of the program P . A formal definition of the
relation j= can be found in [Eme90].

The logic CTL is a restricted subset of CTL? in which the temporal operators must be immediately
preceded by a path quantifier. Thus, for example, the CTL? formula' = AGF (p^EXq) is not a CTL
formula. Adding a path quantifier, say A, before the F temporal operator in ' results in the formulaAGAF (p ^ EXq), which is a CTL formula. The logics 8CTL and 8CTL?, known as the universal
fragments of CTL and CTL?, respectively, allow only universal quantification of path formulas. Thus,
all the occurrences of the path quantifier E should be under an odd number of negations. The formula' above is therefore not a 8CTL? formula. Changing the path quantifierE in' to the path quantifierA
results in the formula AGF (p^AXq), which is a 8CTL? formula. The logic LTL is a linear temporal
logic. Its syntax does not allow any path quantification. Formulas of LTL are interpreted over paths
in a program. The notation P j=  indicates that the LTL formula  holds in all the paths of the
program P .

A closed system is a system whose behavior is completely determined by the state of the system. We
model a closed system by a program. An open system is a system that interacts with its environment
and whose behavior depends on that interaction. We model an open system by a module M =hAP;Ws;We; R;w0; Li, where AP;R;w0, and L are as in programs, Ws is a set of system states, We
is a set of environment states, and we often use W to denote Ws [We.

For each state w 2 W , let succ(w) be the set of w’s R-successors; i.e., succ(w) = fw0 :R(w;w0)g. Consider a system statews and an environment statewe. Whenever a module is in the statews, all the states in succ(ws) are possible next states. In contrast, when the module is in statewe, there
is no certainty with respect to the environment transitions and not all the states in succ(we) are possible
next states. The only thing guaranteed is that not all the environment transitions are impossible, since
the environment can never be blocked. For a state w 2 W , let step(w) denote the set of the possible
sets of w’s next successors during an execution. By the above, step(ws) = fsucc(ws)g and step(we)
contains all the nonempty subsets of succ(we).

An infinite tree is a set T � IN� such that if x � c 2 T where x 2 IN� and c 2 IN, then also x 2 T ,
and for all 0 � c0 < c, we have that x � c0 2 T . In addition, if x 2 T , then x � 0 2 T . The elements
of T are called nodes, and the empty word � is the root of T . Given an alphabet �, a �-labeled tree
is a pair hT; V i where T is a tree and V : T ! � maps each node of T to a letter in �. A moduleM can be unwound into an infinite tree hTM ; VM i in a straightforward way. When we examine a
specification with respect to M , it should hold not only in hTM ; VMi (which corresponds to a very
specific environment that does never restrict the set of its next states), but in all the trees obtained by
pruning from hTM ; VMi subtrees whose root is a successor of a node corresponding to an environment
state. Let exec(M ) denote the set of all these trees. Formally, hT; V i 2 exec(M ) iff the following
holds:

– � 2 T and V (�) = w0.
– For all x 2 T with V (x) = w, there exists fw0; : : : ; wng 2 step(w) such that T \ INjxj+1 =fx � 0; x � 1; : : : ; x � ng and for all 0 � c � n we have V (x � c) = wc.

Intuitively, each tree in exec(M ) corresponds to a different behaviour of the environment. Note that
a single environment state with more than one successor suffices to make exec(M ) infinite. We will
sometimes view the trees in exec(M ) as 2AP -labeled trees, taking the label of a node x to beL(V (x)).
Which interpretation is intended will be clear from the context.

Given a moduleM and a CTL? formula  , we say that M satisfies  , denotedM j=r  , if all the
trees in exec(M ) satisfy . The problem of deciding whetherM satisfies is called module checking5 .

5 A different problem where a specification is checked to be correct with respect to any environment is discussed
in [ASSSV94]. There, all the states of the module are system states, and the formula should hold in all
compositions that contain the module as a component.



We use M j=  to indicate that when we regard M as a program (thus refer to all its states as system
states), then M satisfies  . The problem of deciding whether M j=  is the usual model-checking
problem [CE81, QS81]. Let A 7! B denote that A implies B but B does not necessarily imply A. It
is easy to see that M j=r  7!M j=  7!M 6j=r : :
Indeed,M j=r  requires all the trees in exec(M ) to satisfy  . On the other hand,M j=  means that
the tree hTM ; VMi satisfies  . Finally,M 6j=r : only tells us that there exists some tree in exec(M )
that satisfies  .

We can define module checking also with respect to linear-time specifications. We say that a
module M satisfies an LTL formula  iff M j=r A .

3 Module Checking for Branching Temporal Logics

We have already seen that for branching temporal logics, the model checking problem and the module
checking problem do not coincide. In this section we study the complexity of CTL and CTL? module
checking. We show that not only the problems do not coincide but also their complexities do not
coincide, and in a very significant manner.

Theorem 1.

(1) The module-checking problem for CTL is EXPTIME-complete.
(2) The module-checking problem for CTL? is 2EXPTIME-complete.

Proof (sketch): We start with the upper bounds. Consider a CTL formula  and a set D � IN with a
maximal element k. Let AD;: be a Büchi tree automaton that accepts exactly all the tree models of: with branching degrees in D. By [VW86b], such AD;: of size O(2k�j j) exists.

Given a module M = hAP;Ws;We; R;w0; Li, we define a Büchi tree automaton AM that
accepts the set of all trees in exec(M ). Intuitively, AM guesses which subtrees of hTM ; VM i are
pruned. Formally, AM = h2AP ;D;W; �; w0;W i where D and � are as follows.

– D = Sw2Wsfjsucc(w)jg [Sw2Wef1; : : : ; jsucc(w)jg.
– For every w 2 W , � 2 2AP , and d 2 D, we have hw1; : : : ; wdi 2 �(w; �; d) iff L(w) = � andfw1; : : : ; wdg 2 step(w).

Since the acceptance condition only requires AM not to get stuck (note that � is partial), it is easy
to see that L(AM) = exec(M ). Since for every environment state w, the set step(w) considers all
possible subsets of succ(w), the size ofAM is exponential in maxw2Wefjsucc(w)jg, thus exponential
in the size of M .

By the definition of satisfaction, we have that M j=r  iff all the trees in exec(M ) satisfy  . In
other words, if no tree in exec(M ) satisfies : . This can be checked by testing L(AM )\ L(AD;: )
for emptiness. Equivalently, we have to test L(AM � AD;: ) for emptiness. By [VW86b], the
nonemptiness problem of Büchi tree automata can be solved in quadratic time, which gives us an
algorithm of time complexity 2O(jMj+k�j j). We can, however, do better. By [VW86a], the number of
states in the automaton AD;: is 2O(j j) and is independent of k. Also, the automaton AM has the
same number of states as M . The fact that the sizes of these automata are exponential in k and M
originates from a special structure where all subsets of a certain tuple in the transition relation are
possible tuples too. Therefore, the algorithm in [VW86b] can be implemented to testL(AM �AD;: )
for emptiness in time polynomial in jM j � 2j j.

The proof is similar for CTL?. Here, following [ES84, EJ88], we have that AD;: is a Rabin tree

automaton with 2k�2j j
states and 2j j pairs. By [EJ88, PR89], and again, using the restricted structures



of the automata AD;: and AM , checking the emptiness of L(AM � AD;: ) can then be done in

time jM jO(j j) � 22O(j j)
.

It remains to prove the lower bounds. To get an EXPTIME lower bound for CTL, we reduce CTL
satisfiability, proved to be EXPTIME-complete in [FL79], to CTL module checking. Given a CTL
formula  , we construct a moduleM and a CTL formula ' such that the size of M is quadratic in the
length of  , the length of ' is linear in the length of  , and  is satisfiable iff M 6j=r :'.

Consider a CTL formula  . For simplicity, let us first assume that  has a single atomic propositionq. Let n be the number of existential quantifiers in plus 1. By the sufficient branching-degree property
of CTL,  is satisfiable iff there exists a f;; fqgg-labeled tree of branching degree n that satisfies  
[Eme90]. Let Pn be a clique with n states. By the above,  is satisfiable iff there exists a possibility
to label an unwinding of Pn such that the resulted f;; fqgg-labeled tree satisfies  . This simple
idea, due to [Kup95], is the key to our reduction. We define a module Mn such that each tree inexec(Mn) corresponds to a f;; fqgg-labeling of hTPn ; VPni. We then define ' such that there exists
a tree satisfying ' in exec(Mn) iff there exists a f;; fqgg-labeling of hTPn ; VPni that satisfies  .
It follows that  is satisfiable iff M 6j=r :'. Let [n] = f1; : : : ; ng, [n]0 = f10; : : : ; n0g, and letMn = hAP;Ws;We; R;w; Li, where,

– AP = fghost, qg.
– Ws = [n].
– We = [n]0 [ fheaven,hell g.
– R = fhi; ji : i; j 2 [n]g [ fhi; i0i : i 2 [n]g[([n]0 � fheaven,hell g) [ fhheaven,heavenig [fhhell,hell ig.
– w = 1.
– For all i 2 [n], we have L(i) = ; and L(i0) =fghostg. Also, L(heaven) = fqg and L(hell ) =;.

q
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That is, the system states of Mn induce the clique Pn. In addition, each system state has a ghost:

an environment state with two successors, one labeled with q and one not labeled with q. Intuitively,
the ability of the ghost i0 to take an environment transition to heaven in Mn, corresponds to the ability
of a node associated with the state i in hTPn ; VPni to be labeled with q. Thus, each tree in exec(Mn)
indeed corresponds to a f;; fqgg-labeling of hTPn ; VPni. We now have to define ' such that whenever
the formula  refers to q, the formula ' will refer to EXEXq. Indeed, since heaven is the only state
labeled with q, then a system state satisfiesEXEXq iff the transition of its ghost to heaven is enabled.
In addition, path quantification in ' should be restricted to computations of Pn. That is, to paths that
never meet a ghost. To do this, we define a function f : CTL? formulas ! CTL? formulas such thatf(�) restricts path quantification to paths that never visit a state labeled with ghost. We define f
inductively as follows.

– f(q) = q.
– f(:�) = :f(�).
– f(�1 _ �2) = f(�1) _ f(�2).
– f(E�) = E((G:ghost) ^ f(�)).
– f(A�) = A((Fghost) _ f(�)).
– f(X�) = Xf(�).



– f(�1U�2) = f(�1)Uf(�2).
For example, f(EqU (AFp)) = E((G:ghost)^ (qU (A((Fghost)_Fq)))). We can now define '

as f( ) withEXEXq replacing q. Note that we first apply f and only then do the replacement. When is a CTL formula, the formula f( ) is not necessarily a CTL formula. Still, it has a restricted syntax:
its path formulas have either a single linear-time operator or two linear-time operators connected by a
Boolean operator. By [BG94], formulas of this syntax have a linear translation to CTL.

When  has more than one atomic proposition, the reduction is very similar. Then, for  overfq1; : : : ; qmg, we havem heavens, one for each atomic proposition,and we associate with each system
state m ghosts, again, one for each atomic propositions. We can now replace a proposition qi in  
withEXEXqi in '. The obtained module has n+ nm+m+ 1 states and it has n2 + 3nm+m+ 1
transitions.

The proof is the same for CTL?. Here, we do a reduction from satisfiability of CTL?, proved to be
2EXPTIME-hard in [VS85]. ut

We note that the problem of CTL module checking is EXPTIME-complete (and the one for CTL? is
2EXPTIME-complete) even when we restrict ourselves to modules in which all states are environment
states. To see this, note we could have defined Mn as the clique Pn, adding a transition from each
state to heaven. We could then force each node of a tree in exec(Mn) to have as children at least its n
successors in Pn (this can be enforced by the formula, having [n] as atomic propositions, and having
formulas likeAG(1 ! EX2 ^EX3) conjuncted with the original formula), and replace q in  withEXq in '. The price of using only environment states is that now the length of ' is quadratic in the
length of  .

Moreover, module checking for CTL is EXPTIME-complete even for modules of a fixed size.
To see this, note that the size of Mn depends on the number of atomic propositions in  and on
the minimum branching degree of models of  . Proving that the satisfiability problem for CTL is
EXPTIME-hard, Fisher and Lander reduce acceptance of a word x by a linear-space alternating
Turing machine to satisfiability of a CTL formula  x [FL79]. A somewhat different reduction, which
considers a fixed Turing machine that accepts an EXPTIME-complete problem, results in  x of length
polynomial in jxj, but with a fixed number of atomic propositions, which, if satisfiable, has models
with branching degree 2. Such  x induces, for all x, modules of a fixed size.

4 The Program Complexity of Module Checking

When analyzing the complexity of model checking, a distinction should be made between complexity
in the size of the input structure and complexity in the size of the input formula; it is the complexity in
size of the structure that is typically the computational bottleneck [LP85]. In this section we consider
the program complexity [VW86a] of module checking; i.e., the complexity of this problem in terms of
the size of the input module, assuming the formula is fixed. It is known that the program complexity
of LTL, CTL, and CTL? model checking is NLOGSPACE [VW86a, BVW94]. This is very significant
since it implies that if the system to be checked is obtained as the product of the components of
a concurrent program (as is usually the case), the space required is polynomial in the size of these
components rather than of the order of the exponentially larger composition.

We have seen that for CTL and CTL?, module checking is much harder than model checking. We
now claim that when we consider program complexity, module checking is still harder.

Theorem 2. The program complexity of CTL and CTL? module checking is PTIME-complete.

Proof (sketch): Since the algorithms given in the proof of Theorem 1 are polynomial in the size of
the module, membership in PTIME is immediate.



We prove hardness in PTIME by reducing the Monotonic Circuit Value Problem (MCV), proved
to be PTIME-hard in [Gol77], to module checking of the CTL formula EFp. In the MCV problem,
we are given a monotonic Boolean circuit � (i.e., a circuit constructed solely of AND gates and OR
gates), and a vector hx1; : : : ; xni of Boolean input values. The problem is to determine whether the
output of � on hx1; : : : ; xni is 1.

Let us denote a monotonic circuit by a tuple � = hG8; G9; Gin; gout; T i, where G8 is the set
of AND gates, G9 is the set of OR gates, Gin is the set of input gates (identified as g1; : : : ; gn),gout 2 G8[G9 [Gin is the output gate, and T � G�G denotes the acyclic dependencies in �, that
is hg; g0i 2 T iff the output of gate g0 is an input of gate g.

Given a monotonic circuit � = hG8; G9; Gin; gout; T i and an input vector x = hx1; : : : ; xni, we
construct a module M�;x = hf0; 1g; G8; G9 [Gin; R; gout; Li, where

– R = T [ fhg; gi : g 2 Ging.
– For g 2 G8 [G9, we have L(g) = 1. For gi 2 Gin, we have L(gi) = xi.

Clearly, the size of M�;x is linear in the size of �. Intuitively, each tree in exec(M�;x) corresponds
to a decision of � as to how to satisfy its OR gates (we satisfy an OR gate by satisfying any nonempty
subset of its inputs). It is therefore easy to see thatM�;x j=r EF0 iff there exists no V 2 exec(M�;x)
such that V j= AG1, which holds iff the output of � on x is 0. ut

Recall that for a CTL formula  , checking that a module M satisfies  reduces to testing empti-
ness of the automaton AM � AD;: . Checking nonemptiness of a Büchi tree automaton can be
reduced to calculating a �-calculus expression of alternation depth 2 [Rab69, VW86b]. As such, it
can be implemented, using symbolic methods, in tools that handle fixed-point calculations (e.g., SMV
[BCM+90, McM93]).

5 Pragmatics

How bad is our news? In this section we show that from a pragmatic point of view, it is not that
bad. We show that in the absence of existential quantification, module checking and model checking
coincide, and that in the case where there is only a limited use of existential quantification, module
checking can still be done in linear time.

5.1 Module Checking for Universal Temporal Logics

Lemma 3. For universal branching temporal logics, the module checking problem and the model
checking problem coincide.

Proof: Given a module M and a 8CTL? formula  , we prove that M j=r  iff M j=  . Assume
first that M j=r  . Then, all trees in exec(M ) satisfy  . Thus, in particular, hTM ; VMi satisfies  andM j=  . Assume now that M j=  . The relation fhw;wi : w 2Wg is a simulation relation between
any tree in exec(M ) andM . Therefore, by [GL94], all trees in exec(M ) satisfy  , andM j=r  . ut

Theorem 4 now follows from the known complexity results for 8CTL and 8CTL? model checking
[CES86, SC85, BVW94].

Theorem 4.

(1) The module-checking problem for 8CTL is in linear time.
(2) The module-checking problem for 8CTL? is PSPACE-complete.
(3) The program complexity of module checking for 8CTL and 8CTL? is NLOGSPACE-complete.

It follows from the above theorem that the module-checking problem for LTL is PSPACE-complete
and its program complexity is NLOGSPACE-complete.



5.2 Module Checking of “Possibly” and “Always Possibly” Properties

We have seen that, for each fixed CTL formula  , checking that a moduleM satisfies can be checked
in time polynomial in the size of M . Sometimes, we can do even better. Some CTL formulas have a
special structure that enables us to module-check them in time linear in the size of M . In this section
we show that “possibly” and “always possibly” properties, by far the most popular properties specified
in CTL and not specifiable in 8CTL, induce such formulas.

Consider the CTL formula EF send. The formula states that it is possible for the system to
eventually send a request. We call properties of this form possibly properties. Consider now the CTL
formulaAGEF send. The formula states that in all computations, it is always possible for the system
to eventually send a request. We call properties of this form always possibly properties. It is easy to
see that possibly and always possibly properties can not be specified in linear temporal logics, nor in
universal branching logics [EH86].

Theorem 5. Module checking of possibly and always possibly properties can be done in linear running
time.

Proof (sketch): We describe an efficient algorithm that module-checks these properties. For sim-
plicity, we assume that system and environment states are labeled with atomic propositions s and e,
respectively. Consider a module M = hAP;Ws;We; R;w0; Li and a propositional assertion �. By
definition, M j=r EF� iff there exists no tree hT; V i 2 exec(M ) all of whose nodes satisfy :�.
We say that a state w 2 W is safe iff such a tree hT; V i can not have w as its root. We check thatM j=r EF� by checking that w0 is safe. In order to be safe, a state w should satisfy one of the
following:

1. w j= �,
2. w is a system state that has a safe successor, or
3. w is an environment state all of whose successors are safe.

Consider the monotone function f : 2W ! 2W where f(y) = � _ (s ^ EXy) _ (e ^ AXy). It
can be shown that w is safe iff w is in the least fixed-point of f . Therefore, we have that w is safe iffw j= �y:� _ (s ^EXy) _ (e ^AXy). Hence,M j=r EF� ,M j= �y:� _ (s ^EXy) _ (e ^AXy):

Now, M j=r AGEF� iff there exists no tree hT; V i 2 exec(M ) such that hT; V i has a subtreehT 0; V 0i all of whose nodes satisfy :�. We can therefore check that M j=r AGEF� by checking that
all the reachable states in M are safe. Hence,M j=r AGEF�,M j= �z:[�y:� _ (s ^EXy) _ (e ^AXy)] ^AXz:

So, we reduced module checking of possibly and always possibly properties to model checking of
an alternation-free �-calculus formula. As the latter can be done in linear running time [Cle93], we
are done. ut
Again, as our algorithms involve at most two simple fixed-point computations, they can be easily
implemented symbolically.

What about the space complexity of checking these properties? Is there a nondeterministic algo-
rithm that can check always possibly properties in logarithmic space? As the formula we used proving
Theorem 2 is EF�, the answer for possibly properties is no. Unsurprisingly, this is also the answer
for the more complicated always possibly properties, as we claim in the theorem below.



Theorem 6. Module checking of possibly and always possibly properties is PTIME-complete.

Proof (sketch): Membership in PTIME follows from Theorem 5. To prove hardness in PTIME, we
do the same reduction we did for CTL. ForEF�, we need no change. ForAGEF�we do the following
change. Instead a self loop, each state associated with an input gate now has a transition to the initial
state gout. Let us call the resulted moduleM 0�;x. It is easy to see thatM 0�;x j=r AGEF0 iff there exists
no V 2 exec(M 0�;x) such that V j= EFAG1, which holds iff the output of � on x is 0. ut
6 Discussion

The discussion of the relative merits of linear versus branching temporal logics is almost as early as
these paradigms [Lam80]. We mainly refer here to the linear temporal logic LTL and the branching
temporal logic CTL. One of the beliefs dominating this discussion has been “while specifying is
easier in LTL, model checking is easier for CTL”. Indeed, the restricted syntax of CTL limits its
expressive power and many important behaviors (e.g., strong fairness) can not be specified in CTL.
On the other hand, while model checking for CTL can be done in time O(jP j � j j) [CES86], it
takes time O(jP j � 2j j) for LTL [LP85]. Since LTL model checking is PSPACE-complete [SC85],
the latter bound probably cannot be improved. The attractive complexity of CTL model checking
have compensated for its lack of expressive power and branching-time model-checking tools that can
handle systems with more than 10120 states [Bro86, McM93, CGL93] are incorporated into industrial
development of new designs [BBG+94].

If we examine the history of this discussion more closely, we found that things are not that simple.
On the one hand, the inability of LTL to quantify computations existentially is considered by many
a serious drawback. In addition, the introduction of fair-CTL [CES86] and of many other extensions
to CTL [Lon93, BBG+94, BG94], have made CTL a basis for specification languages that maintain
the efficiency of CTL model checking and yet overcome many of its expressiveness limitations. On
the other hand, the computational superiority of CTL is also not that clear. For example, comparing
the complexities of CTL and LTL model checking for concurrent programs, both are in PSPACE
[VW86a, BVW94]. As shown in [Var95, KV95], the advantage that CTL enjoys over LTL disappears
also when the complexity of modular verification is considered.

In this work we questioned the computational superiority of the branching-time paradigm further.
We showed that when reasoning about open systems, the complexity of CTL model checking is
actually higher than that of LTL. Our results are summarized in the table below. All the complexities
in the table denote tight bounds.

Acknowledgments. We are grateful to Martin Abadi and Pierre Wolper for fruitful discussions on the
verification of reactive systems.
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