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The B3LYP method augmented with a damped empirical dispersion term (�f(R)C6/R6) is shown to

yield structures and cohesive energies, for a representative set of molecular crystals, in excellent

agreement with experimental data. Vibrational lattice modes of crystalline urea are also reported to be

very close to experiment. The role of the damping function in scaling the dispersion contribution has

been analyzed as well as the relevance of the BSSE in the prediction of structure and cohesive energy.
Introduction

Ab initio modelling of molecular crystals is of interest for crystal

structure prediction, relative stability of different polymorphs,

crystal growth and supramolecular chemistry with relevant

applications in many fields as crystal engineering and pharma-

ceutical industry. The critical issue in molecular crystals

simulation is the proper description of noncovalent interactions

between molecules (i.e. hydrogen bonding, dispersive inter-

actions, dipolar effects, etc.) that dictate the crystalline structure

and the thermodynamic properties controlling phase transitions.

In this respect, density functional theory (DFT) methods have

been widely used in the ab initio modelling of molecular crystals

but it has been shown that they often fail to adequately describe

dispersive interactions. To overcome this problem, different

strategies have been proposed to improve current DFT methods:

(i) fully ab-initio approaches (i.e. non-empirical), (ii) the

reparameterization of existing functionals and (iii) the inclusion

of empirical terms. Recently, this latter approach has been the

subject of a renewed interest and several attempts have been

reported to use pair-wise attraction terms of the form �f(R)Cn/R
n

(n ¼ 6, 7, 8, .) for both molecular complexes1–12 and extended

systems.13–18 The proposed corrections differ in the form of

the damping function f(R) and the atom–atom dispersion

coefficients Cn.

In this work, we focus on the empirical �f(R)C6/R6 correction

to DFT methods recently proposed by Grimme3,4 for molecular

systems. Grimme defined a general set of parameters and used an

optimized scaling factor to adjust the dispersion correction for

each DFT method. The model has been demonstrated to be

successful in dealing with small molecular adducts, p-stacking,

and large complexes (e.g. DNA base pairs) of interest for
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Torino, Via P. Giuria 7, 10129, Torino, Italy. E-mail: bartolomeo.
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biological systems.5–7,12 The present aim is to use the Grimme

empirical model in combination with the B3LYP19–21 hybrid

method (hereafter referred to as B3LYP-D) and assess the

transferability of such a model to the case of molecular crystals.

Hybrid functionals and, in particular, the B3LYP methods, have

been demonstrated to give accurate results for energetics,

structure and vibrational properties of molecules22 and solids.23

They give better results than LDA and GGA functionals and are

still slightly superior than the recently proposed mGGA

functionals, although recently, some of us have shown that

B3LYP fails to give the correct structure of crystalline urea with

large deviations from experiment (up to 5%) for the lattice

parameters because of the missing contribution of dispersive

forces.24

The Grimme empirical model has been implemented in the

CRYSTAL code, a periodic ab initio program based on an atom-

centered (Gaussian) basis set. In this respect, our approach is

similar to that recently adopted by Feng and Li16 where they used

the B3LYP functional combined with a different empirical

dispersion correction to predict the cohesive energy of organic

molecular crystals. Here, at difference with ref. 16, we also assess

the B3LYP-D model chemistry in predicting the fully relaxed

crystalline structure and the vibrational frequencies at theG point.

Results are first reported for the cohesive energy of a set of 14

molecular crystals ranging from hydrogen bonded to dispersion

bonded crystals (i.e. NH3, acetylene, CO2, urea, urotropine,

propane, benzene, naphthalene, formamide, formic acid, 1,4-

dichlorobenzene, 1,4-dicianobenzene, succinic anhydride and

boric acid). Among them, six molecular crystals have then been

fully optimised. Finally, for crystalline urea, the vibrational

lattice modes at the G point are also reported. A systematic

comparison with available experimental results is carried out to

assess the accuracy of the computed results. Since Gaussian-type

basis sets were used in the present work, particular attention has

been paid to the basis set dependence and the role of the basis set

superposition error (BSSE).
Computational details

All B3LYP-D calculations have been carried out by using

a development version of the periodic ab-initio code

CRYSTAL06.25 According to ref. 3 and 4 an atom–atom
CrystEngComm, 2008, 10, 405–410 | 405
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additive damped empirical potential of the form �f(R)C6/R6

were used to include long-range dispersion contributions to the

computed ab initio DFT total energy and gradients at the

B3LYP19–21 level of theory:

EB3LYP–D ¼ EB3LYP + EDisp

where EDisp is the empirical term

EDisp ¼ �s6

X

g

X

ij

0
fdmp

�
Rij;g

� Cij
6

R6
ij;g

Here, the summation is over all atom pairs and g lattice vectors

with the exclusion of the i¼ j contribution (i.e. self-interaction)

for g¼ 0, Cij
6 is the dispersion coefficient for the pair of atoms

i and j, s6 is a scaling factor that depends on the adopted DFT

method (s6¼ 1.05 for B3LYP4) and Rij,g is the interatomic

distance between atoms i in the reference cell and j in the

neighbouring cells at distance |g|. A cutoff distance of 25.0 Å was

used to truncate the summation over lattice vectors which

corresponds to an estimated error of less than 0.02 kJ mol�1 on

computed cohesive energies with respect to larger cutoffs. A

damping function was used to avoid near-singularities for small

interatomic distances:

fdmp

�
Rij;g

�
¼ 1

1 þ e�dðRij;g=Rvdw � 1Þ

where Rvdw is the sum of atomic van der Waals radii and

d determines the steepness of the damping function (d¼ 20).4 The

role of the damping functions is crucial and will be further

discussed below. Van der Waals radii and atomic C6 coefficients

were taken from Table 1 of ref. 4. From the latter, the Cij
6

dispersion coefficients were computed by using a geometric mean.

B3LYP calculations were carried out by using two different

molecular all-electron basis sets, namely: the standard

6-31G(d,p)26 and a TZP basis set devised by Ahlrichs and

co-workers27 with the latter being quite effective to reduce BSSE in

calculations on molecular crystals.28 The level of accuracy in

evaluating the Coulomb and exchange series is controlled by five

thresholds,25 for which values of 10�7, 10�7, 10�7, 10�7, 10�16 were

used for the Coulomb and the exchange series. The DFT

exchange–correlation contribution is evaluated by numerical

integration over the cell volume.29 Radial and angular points of

the atomic grid are generated through Gauss–Legendre and

Lebedev quadrature schemes. A grid pruning was adopted, as

discussed in ref 29. In the present study a (75,974)p grid has been

used that contains 75 radial points and a variable number of

angular points, with a maximum of 974 on the Lebedev surface in

the most accurate integration region. The condition for the SCF

convergence was set to 10�7 on the energy difference between two

subsequent cycles. The shrinking factor of the reciprocal space net

for each system was set to define a mesh of points in the irreducible

Brillouin zone for which the total energies are fully converged.

Starting from the experimental crystal structures and fixing the

symmetry, a full relaxation of both lattice parameters and atomic

coordinates by means of analytical energy gradients30–32 was

carried out. The geometry optimisation is performed by means of

a quasi-Newton algorithm in which the quadratic step (BFGS

Hessian updating scheme) is combined with a linear one
406 | CrystEngComm, 2008, 10, 405–410
(parabolic fit) as proposed by Schlegel. Convergence is tested on

the RMS and the absolute value of the largest component of the

gradients and the estimated displacements. The threshold for the

maximum force, the RMS force, the maximum atomic displace-

ment, and the RMS atomic displacement on all atoms have been

set to 0.00045, 0.00030, 0.00180 and 0.00120 a.u., respectively.

The optimisation is considered complete when the four

conditions are simultaneously satisfied. The crystal symmetry was

maintained during the whole optimisation process.

The cohesive energy was computed as:

DE ¼ E(bulk)/Z � E(mol)

where E(bulk) is the total energy of the unit cell and must be

referred to the number, Z, of molecules in the unit cell, and

E(mol) is the total energy of the isolated molecule in the gas

phase. Computed data were corrected for the BSSE through the

counterpoise method.33 Computed cohesive energies were

compared with lattice energies estimated from experimental

sublimation energies34 by adding a constant contribution of

2RT35 (i.e. �DE ¼ DH0
sub(T) + 2RT) to approximate the

zero-point energy and thermal corrections to 298 K.

For crystalline urea, vibrational frequencies at the G point29

were computed, within the harmonic approximation, by diago-

nalizing the mass-weighted Hessian matrix. Second derivatives

are calculated numerically by using analytical first derivatives and

finite displacements of the atomic positions. A three-point

formula was used with a step amplitude equal to 0.001 Å.

Results and discussions

Cohesive energies

The cohesive energy of a set of molecular crystals ranging from

dispersion bonded to hydrogen bonded crystals (i.e. NH3,

acetylene, CO2, urea, urotropine, propane, benzene, naphtha-

lene, formamide, formic acid, 1,4-dichloro-benzene, 1,4-diciano-

benzene, succinic anhydride and boric acid) have been computed

at the B3LYP/6-31G(d,p) level of theory without and with

the Grimme empirical dispersion correction (i.e. B3LYP-D

Grimme). The atomic positions of the crystalline structures were

fully relaxed at the B3LYP/6-31G(d,p) level by fixing the cell

parameters at their experimental values. The results are shown in

Fig. 1 where BSSE corrected cohesive energies are compared to

the experimental lattice energies while Table 1 reports a statis-

tical analysis on the computed data. The full set of results along

with references to the crystallographic data of the studied

systems, is reported as ESI.†

As can be seen from Fig. 1, the dispersion correction is crucial

to arrive at a reasonable agreement with experiment. In fact, the

pure B3LYP method gives results that are rather poor. The

cohesive energies are generally underestimated and in many

cases, mainly for dispersion bonded molecular crystals (e.g.

propane, C6H6, naphthalene, ...) they becomes repulsive. Large

positive deviations from experiment are observed for all systems,

with a mean absolute deviation (MAD) of 54.4 kJ mol�1 and

a maximum error of 107.0 kJ mol�1 for naphthalene. The

inclusion of the dispersion term in the original parameterization

proposed by Grimme leads to a dramatic improvement and

a good agreement with experimental data. Computed results are
This journal is ª The Royal Society of Chemistry 2008
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Fig. 1 Comparison between BSSE corrected cohesive energies and experimental lattice energies for the studied systems. Reported results are obtained

at the B3LYP/6-31G(d,p) level and augmented with the original Grimme empirical dispersion correction (B3LYP-D Grimme) and with the modified

version proposed in the present work (B3LYP-D* pw).

Table 1 Statistical analysis on the computed cohesive energies (in kJ
mol�1) for the studied molecular crystals at the B3LYP/6-31G(d,p) level
of theory and combined with the original Grimme empirical dispersion
correction (B3LYP-D Grimme) and the present modified version
(B3LYP-D* pw) with respect to experimental data

B3LYP B3LYP-D (Grimme) B3LYP-D* (pw)

MDb 54.4 �8.0 0.4
MADc 54.4 9.5 5.5
Mind 10.6 �27.7 �13.0
Maxe 107.0 5.4 11.8

a The full set of data is reported in Table S1 (ESI†). b Mean deviation.
c Mean absolute deviation. d Minimum deviation. e Maximum deviation.
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now less spread and the MAD decreases to 9.5 kJ mol�1.

However, a clear tendency to overestimate the cohesive energy

(MD ¼ �8.0 kJ mol�1) is observed, especially for hydrogen

bonded molecular crystals. This aspect cannot be undervalued

because it could affect the geometry optimization of the crys-

talline structure leading to underestimated lattice parameters, as

will be discussed later on. The overestimation can be explained

by considering two aspects. On the one hand, at variance with

molecular complexes for which the empirical term was cali-

brated, in molecular crystals the intermolecular contacts are

shorter and the overlap between charge density distributions is

larger. This feature is controlled by the damping function that is

probably too short-range for crystalline systems. On the other

hand, the original parametrization by Grimme contains the s6

scaling factor that rescales the whole contribution that, for

B3LYP, is increased by a factor of 1.05.4 The results shown in

Fig. 1 then indicate that the overall effect is an unbalanced

estimation of the dispersion contribution. To overcome this

problem, we followed the strategy suggested by Jurecka et al.7

Instead of rescaling the whole �f(R)C6/R6 empirical correction,

we rescaled the adopted atomic van der Waals radii that enter in

the form of the damping function to make it active in a more
This journal is ª The Royal Society of Chemistry 2008
long-range region, thus decreasing the dispersion contribution.

This procedure is also physically sound because it includes the

dispersion contribution only in the regions where the B3LYP

method does not contribute to the intermolecular interactions.

Another crucial aspect is the van der Waals radius of hydrogen.

Its value is more delicate because it determines the penetration of

the damping function in balancing the dispersion contribution

for hydrogen bonded and dispersion bonded molecular crystals

and was subjected to a larger rescaling than the other atomic

species. Therefore, we propose to modify the original Grimme

model setting the s6 scaling factor to 1.00 and applying a scaling

factors of 1.05 and 1.30 to the atomic van der Waals radii of

heavy atoms and hydrogen of Table 1 in ref. 4, respectively.

Proposed scaling factors were determined from a manual

procedure by progressively increasing the atomic van der Waals

radii and trying to find the best agreement between computed

and experimental data. For the sake of conciseness, details on the

calibration strategy are reported as ESI.† The results for the

present correction (i.e. hereafter referred to as B3LYP-D*)

applied to the studied molecular crystals are also reported in

Fig. 1 and analyzed in Table 1. The adopted rescaling procedure

leads to an enhanced agreement with respect to experimental

data (MAD ¼ 5.5 kJ mol�1) and to a better balance in the

performance of the B3LYP-D* model chemistry between

hydrogen bonded and dispersion-bonded molecular crystals

(MD ¼ 0.4 kJ mol�1). It is worthy of note that, for some of the

systems studied in the present work, the B3LYP-D* results agree

with those recently reported by Feng and Li,16 even if they used

a different form of the damping function and calculations were

carried out with a 6-21G(d,p) basis set.

Structural results

We expect our modification of the Grimme model based on

energetics to be reasonable. However, the comparison of the

computed cohesive energy with experiment can be questionable
CrystEngComm, 2008, 10, 405–410 | 407
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in two respects: (i) the accuracy of the reference calorimetric data

that can have error bars larger than �4.0 kJ mol�1; and (ii) the

adopted approximation to derive the lattice energy by adding

a constant contribution (i.e. 2RT) to take ZPE and thermal

corrections into account. We then extended the assessment not

only to energetics but also to structural information. In fact,

accurate low temperature crystallographic data are available for

comparison. Among studied molecular crystals, six systems were

selected to be fully optimized. Optimized lattice parameters and

corresponding cohesive energies are gathered in Table 2. As

already pointed out by Jurecka et al.7 for molecular complexes,

the BSSE is very important. When using small basis sets, as the

6-31G(d,p), it artificially gives binding energy where there is none

and it may partly compensate for the missing dispersion attrac-

tive interaction, thus yielding structures in fortuitous agreement

with experiment.28 This implies that inclusion of the empirical

dispersion correction has to be carefully checked to avoid an

underestimation of the lattice constants. Therefore, to reduce the

BSSE, a TZP basis set27 was used. For the simplest studied

molecular crystals (i.e. NH3, C2H2, CO2) calculations were

performed with both the original Grimme model and its modified

version proposed in the present work.

From the results reported in Table 2, it can be seen that at the

B3LYP level of theory: (i) lattice parameters are largely over-

estimated with a maximum deviation of 30% for crystalline

benzene, while the cohesive energies are definitely under-

estimated; (ii) the use of the TZP basis set dramatically reduces

the BSSE with respect to 6-31G(d,p). As a consequence,
Table 2 Computed lattice parameters (in Å), unit cell volume (in Å3) and coh
level of theory and B3LYP augmented with the original (B3LYP-D) and modi
experimental data

B3LYP B3LYP-D (G

6-31G(d,p) TZP 6-31G(d,p)
NH3 a 5.200 (3.0)a 5.256 (4.1) 4.718 (�6.5)

V 140.6 (9.3) 145.2 (12.9) 105.0 (�18.1
DE �27.1 [15.9]b �23.8 [4.7] �48.7 [21.4]

C2H2 cubic a 6.156 (1.0) 6.634 (8.7) 5.637 (�7.5)
V 233.2 (3.1) 292.0 (29.0) 179.2 (�20.8
DE �4.4 [11.6] �4.4 [0.9] �26.0 [15.8]

CO2 a 5.708 (1.5) 5.894 (4.8) 5.422 (�3.6)
V 186.0 (4.5) 204.7 (15.1) 159.4 (�10.4
DE �3.8 [13.6] �6.2 [2.3] �24.1 [18.0]

Urotropine a 7.327 (5.8) 7.453 (7.6)
V 393.4 (18.3) 414.0 (24.5)
DE �15.3 [21.8] �13.5 [4.3]

Urea a 5.675 (2.0) 5.841 (5.0)
c 4.682 (0.0) 4.710 (0.5)
V 150.8 (3.9) 160.7 (10.7)
DE �66.1 [32.8] �67.9 [6.8]

C6H6 a 8.592 (16.7) n/a
b 8.674 (�7.5) n/a
c 8.588 (28.1) n/a
V 640.0 (38.4) n/a
DE �5.8 [8.9] n/a

a Percentage deviation from experimental data in parentheses. b BSSE correcti
experimental data are reported in Table S1 (ESI†).

408 | CrystEngComm, 2008, 10, 405–410
computed lattice constants are even more overestimated and for

benzene geometry optimization did not find any minimum; (iii)

the comparison between the two adopted basis sets confirms that

the BSSE corrected cohesive energies show a small basis set

dependence.

As expected from previous discussion, the inclusion of the

empirical dispersion correction in the original proposal by

Grimme causes a marked underestimation of the lattice para-

meters, up to �7.5% with the 6-31G(d,p) basis set, while

a significant improvement is obtained for the cohesive energy,

although not properly balanced. In fact, for NH3 which is

dominated by hydrogen bonding, the cohesive energy is over-

estimated by �10 kJ mol�1. This confirms that the sum of BSSE

and dispersion correction adds too much attraction between the

molecule so that it is very delicate when a small basis set is

adopted. The TZP basis set reduces the BSSE to less than 10% of

the cohesive energy although it demonstrates that the original

Grimme model still tends to overestimate the dispersion contri-

bution, as shown before.

Instead, the use of the modified B3LYP-D* model chemistry

leads to better balanced results for both lattice constants and

cohesive energies as well as for hydrogen bonded and dispersion

bonded molecular crystals. B3LYP-D*/TZP data nicely agree

with experiment with remarkably small deviations (�1%) on the

lattice parameters for two quite different molecular crystals as

urea and benzene. For cubic acetylene, the deviation is slightly

larger but it decreases to �0.6% when the extrapolated value of

the lattice constant at 0 K (i.e. 5.998 Å) is used. Computed unit
esive energies (in kJ mol�1) of the studied molecular crystals at the B3LYP
fied (B3LYP-D*) Grimme empirical dispersion correction as compared to

rimme) B3LYP-D* (pw) Exp.c

TZP 6-31G(d,p) TZP
4.806 (�4.8) 4.908 (�2.8) 4.974 (�1.5) 5.048

) 111.0 (�13.7) 118.2 (�8.1) 123.1 (�4.3) 128.6
�47.7 [6.1] �41.8 [18.3] �39.3 [5.6] �36.0

5.758 (�5.5) 5.820 (�4.5) 5.963 (�2.2) 6.094
) 190.9 (�15.7) 197.1 (�12.9) 212.0 (�6.3) 226.3

�24.0 [1.0] �22.4 [14.3] �20.6 [1.0] �28.5

5.477 (�2.6) 5.491 (�2.4) 5.561 (�1.1) 5.624
) 164.3 (�7.7) 165.6 (�6.9) 172.0 (�3.3) 177.9

�28.8 [3.0] �22.6 [17.0] �25.8 [2.9] �31.1

6.855(�1.0) 6.872 (�0.8) 6.927
322.1 (�3.1) 324.5 (�2.4) 332.4
�93.8 [34.5] �96.5 [7.0] �79.9

5.457 (�1.9) 5.537 (�0.5) 5.565
4.644 (�0.9) 4.669 (�0.3) 4.684
138.2 (�4.7) 143.1 (�1.3)
�104.3 [37.3] �106.8 [8.1] �103.6

7.343 (�0.2) 7.365 (0.1) 7.360
9.193 (�1.9) 9.361 (�0.2) 9.375
6.578 (�1.9) 6.680 (�0.3) 6.703
444.1 (�4.0) 460.6 (�0.4) 462.5
�48.2 [20.1] �46.5 [1.9] �49.8

on (in kJ mol�1) is reported in square brackets. c Details and references to

This journal is ª The Royal Society of Chemistry 2008
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cell volumes favourably compare with those obtained by

Neumann and Perrin14 for a larger set of molecular crystals by

using a similar dispersion correction term at the PW91 level of

theory within a planewave/pseudopotential theoretical frame.

Reported percentage deviations14 with respect to experiment for

cubic acetylene (extrapolated at 0 K), urotropine, urea and

benzene are: �0.4, �1.3, �3.1 and 0.7, respectively, very close to

the corresponding B3LYP-D*/TZP values of Table 2, i.e. �1.8,

�2.4, �1.3 and �0.4.

The overall results show that the modified Grimme model,

when used in combination with a triple-zeta basis set, is sound

and reliable.
Vibrational lattice modes of crystalline urea

As a further test for the validation of the empirical dispersion

correction, we considered the prediction of vibrational lattice

modes in molecular crystals that can be significantly affected by

the proper description of the intermolecular interactions. Table 3

reports the comparison between computed harmonic lattice

modes of crystalline urea and the experimental data at 0 K

derived through linear extrapolation of Raman data obtained at

100 and 298 K.36 Since there are two molecules in the unit cell, the

number of vibrational lattice modes (external modes) is 12,

corresponding to six translational (T, three of them are zero at

the G point) and six rotational (R, librations) degrees of freedom.

From Table 3 an overall agreement can be seen between

computed and experimental data. At the B3LYP level, all

frequencies are lower than the experimental ones due to over-

estimation of the cell parameters. The missing attractive

dispersive forces lead to softer vibrational lattice modes. For

comparison, we also reported data for the calculation at fixed

experimental cell. All values increase because of the constraint on

the cell that keeps the molecules closer to each other. When the

empirical dispersion correction is added the computed frequen-

cies slightly increase because the dispersion forces make the

intermolecular interactions stronger. This is more evident for the

E lattice modes that involve vibrations along the a and b lattice

parameters where the dispersion forces play a more relevant role

for the correct description of the crystalline structure.28 We
Table 3 Harmonic vibrational lattice modes (in cm�1) of crystalline urea
computed at the B3LYP/TZP level of theory for both fully relaxed and at
fixed experimental cell parameters and B3LYP/TZP combined with the
modified Grimme empirical dispersion correction (B3LYP-D*) of the
present work compared with experimental data36

Mode Typea,b B3LYP B3LYP (exp.) B3LYP-D* (pw) Exp.c

n1 B1 (Rz) 61 63 57 63
n2 A2 (Rz) 50 79 84 —
n3 E (Tx,y) 93 110 118 108
n4 A1 (Tz) 103 132 137 119
n5 E (Ry) 130 169 172 156
n6 E (Rx) 177 214 223 204

a Symmetry: E modes are infrared and Raman active, A1 and B1 modes
are Raman active and A2 modes are inactive. b Libration mode type: R ¼
rotational and T ¼ translational; The z axis is parallel to the c-axis, and
the x and y axes are inclined at 45� with respect to the a and
b crystallographic axes. c Values extrapolated at 0 K from Raman data at
298 and 100 K.

This journal is ª The Royal Society of Chemistry 2008
consider the computed data in fairly good agreement with

experiment with the small overestimation being likely due to

anharmonicity.
Conclusions

In this brief account, we reported on the implementation and

validation of the Grimme empirical dispersion correction4 as

combined to the B3LYP method for periodic systems. A

modification of the original parameterisation has been proposed

that allows to obtain an excellent agreement for cohesive energies

and structures of a representative set of molecular crystals and

a better balance between hydrogen bonded and dispersion

bonded molecular crystals. Vibrational lattice modes of crystal-

line urea have also been nicely reproduced.

The basis set dependence of the computed data has been

explored to investigate the role of the BSSE. It is shown that

BSSE deteriorates the results when small basis sets are adopted.

Therefore, larger basis sets as the Ahlrichs TZP one must

be adopted, although they can be more computationally

demanding. The cost of the calculation might be reduced by

combining the empirical correction with a pure GGA functional

like the B97-D originally proposed by Grimme.4 Work in under

way to implement it in the CRYSTAL06 code.

The overall results are then very promising and the application

of this empirical dispersion term deserves to be further

investigated.
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