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Abstract—The emergence of socio-technical systems charac-
terized by significant user collaboration poses a new challenge
for system adaptation. People are no longer just the “users”
of a system but an integral part. Traditional self-adaptation
mechanisms, however, consider only the software system and
remain unaware of the ramifications arising from collaboration
interdependencies. By neglecting collective user behavior, an
adaptation mechanism is unfit to appropriately adapt to evolution
of user activities, consider side-effects on collaborations during
the adaptation process, or anticipate negative consequence upon
reconfiguration completion.

Inspired by existing architecture-centric system adaptation
approaches, we propose linking the runtime software architecture
to the human collaboration topology. We introduce a mapping
mechanism and corresponding framework that enables a system
adaptation manager to reason upon the effect of software-level
changes on human interactions and vice versa. We outline the
integration of the human architecture in the adaptation process
and demonstrate the benefit of our approach in a case study.

Index Terms—collaboration topology, software architecture,
runtime mapping, architecture reconfiguration, dynamic adap-
tation

I. Introduction

In 2006, Northrop et al. [1] identified Ultra-Large-Scale

(ULS) systems as the major future software engineering chal-

lenge. Among the defining characteristics of ULS systems are

decentralized control, conflicting and changing requirements,

continuous evolution, heterogeneous and dynamic system el-

ements, ubiquitous failures, and erosion of the people/system

boundary. This paper focuses primarily on the implication of

that last aspect on system (self-) adaptation. People are no

longer just the “users” of a system but an integral part [1] p13.

Consequently human interactions are highly relevant to the

design and adaptation of ULS systems ([1] p31ff). We believe

that this is true not only for ULS systems but also for tradi-

tional medium and large-scale systems. Any system heavily

relying upon significant user collaboration needs to explicitly

address human interaction implications during design-time and

runtime.

Among the many adaptation approaches, architecture-driven

techniques appear to be the most applicable to systems ex-

hibiting ULS characteristics. Kramer and Magee [2] argue

that an architecture-based approach provides (i) concepts and

principles applicable across domains, (ii) sufficient abstraction

from the algorithmic and network level while still capturing

dynamic change, and (iii) scalability through hierarchical

composition, thereby facilitating the specification of systems

of systems. In addition, architecture-driven adaptation tech-

niques are among the earliest [3] and continuously relevant

approaches [4] as demonstrated by successful application to

mobile environments [5], robotics systems [6], and adaptive

service compositions [7].

Current architecture-driven adaptation mechanisms, how-

ever, consider only the software system and remain unaware of

the ramifications arising from collaboration interdependencies.

A system neglecting the collective user behavior might suffer

from some of the following example weaknesses:

• The system is unable to support the efficient operation

and evolution of user behavior. For example, failing

to provide appropriate coordination mechanisms when

groups of users change their behavior from sequential

resource access to simultaneous resource access.

• Conversely, the system cannot anticipate the conse-

quences of particular software adaptations. Disregarding,

for example, user proximity, user role, or user capacity

might result in reconfigurations that jeopardize a team’s

performance due to increasing the likelihood of informa-

tion overload, information delay, information scarcity, or

resource access conflicts.

• Likewise, the system is unable to reason about side-effects

during the software reconfiguration process. A database

schema update, for example, might have the implicit

assumption that humans are in a state of quiescence

upon commencing an update, potentially interrupting all

ongoing interactions.

• The system remains unaware of users becoming bot-

tlenecks. Unavailable or overloaded users slow down

critical processes when they are responsible for manually

triggering key tasks.

We propose linking the system’s software architecture to

human interactions. Specifically we describe the system’s users
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in terms of human components and collaboration connectors

along with their means of communication and coordination.

To this end, we apply the human Architecture Description

Language (hADL) introduced in our previous work [8] for

specifying a system’s underlying collaboration topology, and

the eXtensible Architecture Description Language (xADL [9])

for specifying the software architecture. Explicit non-trivial

design-time mappings between hADL and xADL elements

allow, during runtime, the matching of software component

(and connector) instances to users and their interactions.

Adaptation rules can subsequently utilize the hADL model,

for example, for prioritizing the replication of components

associated with key collaborators.

The main contributions of this paper are

• a model for mapping from software architecture to human

collaboration patterns and vice versa

• a framework for detecting runtime software architecture

changes and reflecting those changes in the human collab-

oration topology according to the predefined mappings.

• a discussion on integrating human architecture and soft-

ware architecture for system adaptation.

• a case study demonstrating the benefit of turning soft-

ware architecture-centric self-adaptation strategies to be

collaboration-aware.

The remainder of this paper is structured as follows. Sec-

tion II and III provide a motivation scenario and a discussion of

related work, respectively. Section IV summarizes background

information, an overview of our approach, and the architecture

mapping rationale. Section V details the design-time mapping

specification and the runtime mapping process. We discuss the

application of our framework for collaboration-aware system

self-adaptation in Section VI. A case study in Section VII

demonstrates actual adaptation benefits. Finally, Section VIII

gives an outlook on future work and concludes this paper.

II. Motivating Scenario

Monitoring and safety systems range in scope from a

small security team handling an office building to thousands

of personnel in back offices and on site at geographically

distributed locations to secure critical infrastructure. These

systems tightly interweave people and software components

and hence need co-adaptation of collaboration structures and

software architectures. In the building monitoring case, back

office operators utilize high definition video streams, floor

plans, building sensor feeds, occupancy logs, and communica-

tion channels with on-site security staff. Reassigning observa-

tion tasks among team members, reacting to non-responding

team members, or adding new team members are examples of

collaboration-driven adaptations that result in changes to the

underlying software structure.

The adaptation mechanism needs to react to software-level

events such as failing components, congested data links, and

emergence of new information sources. At the same time it

requires maintenance of various QoS metrics such as accept-

able video delay, video stream availability, and bandwidth cost

through continuous adaptation of video relay replication and

video stream rerouting.

In the presence of scarce resources, the adaptation mech-

anism has to prioritize the adaptation of particular relays

and video streams. To this end, it requires awareness of the

collaboration topology and user roles. Consider the software

architecture in Figure 1 consisting of components for Stream-

ingServers, VideoSources, GUIs for each role, and connectors

for coordinating video publishing, subscribing, and deliver-

ing activities. This architecture may serve as the underlying

communication infrastructure for two, quite distinct collabo-

ration topologies (Fig. 2 and Fig. 3). The publish/subscribe

human architecture in Figure 2 specifies the following human

components: FieldAgents provide video streams (PubStreams),

whereas Backoffice Agents, Assistants, and Team leaders sub-

scribe to video streams (SubStreams). VideoPubSub collabo-

ration connectors—typically but not necessarily implemented

as software entities—manage video stream publication and

subscription. Video feeds may be replicated across multiple

VideoPubSub connectors in accordance with the software

architecture. All users have access to a WallScreen (a collab-

oration object of type Shared Artifact) for displaying relevant

video streams. The collaboration topology in Figure 3 lacks

such a flat organizational hierarchy and instead features a

pipes/filters-style collaboration structure. Individual agents re-

ceive their video feeds as deemed relevant by their predecessor.

A Backoffice Agent, for example, routes a PipeStream to an

Assistant. Ultimately only the Team leader has access to the

WallScreen.

Suppose an adaptation mechanism reconfigures the soft-

ware architecture to maintain system reliability by avoiding

individual StreamingServers from becoming overloaded. Si-

multaneously, it should ensure that the team leader has (the

most) reliable streams. Without a mapping between software

and collaboration structure, it would be unable to make an

informed decision between adaptation action “replicate team

leader video streams” (suitable for the human architecture in

Fig. 2) or action “equal component replication along the video

relay chain” (suitable for the human architecture in Fig. 3).

We will be using these configurations throughout the paper for

explaining the mapping process at runtime and design-time,

the adaptation process, and the final evaluation.

III. RelatedWork

Our work builds on the insights of architecture-based adap-

tation research. As early as 1999, Orzeiy et al. [3] outlined

the process for reflecting runtime changes in an architec-

tural model as the basis for dynamic adaptation. Subsequent

work focused predominately on architecture-based adaptation

techniques such as the Rainbow framework [10], the K-

Component Architecture Meta-model [11], Model-based de-

velopment [12], or Object-oriented design adaptation [13]. In

line with such previous work, our framework also features

an architecture runtime manager and the adaptation mecha-

nism follows the feedback loop described by the autonomic
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Fig. 1. Software Architecture: Surveillance Video Monitoring.

Fig. 2. Collaboration Architecture: Publish/Subscribe-style Surveillance Team. Information flows from left to right along collaboration links. Each link
connects two collaboration actions (3-letter abbreviated: send, forward, receive, display).

Fig. 3. Collaboration Architecture: Pipes/Filters-style Surveillance Team. Information flows from left to right along collaboration links. Each link connects
two collaboration actions (3-letter abbreviated: send, forward, receive, display).

computing MAPE-K model: Monitoring, Analysis, Planning,

Execution, and Knowledge.

As we pointed out in the introduction, these techniques

focus exclusively on adapting the software architecture. User

preferences and user context drive adaptation in mobile scenar-

ios (e.g., the MADAM architecture model [5]) but the applied

techniques still remain unaware of collaboration dependencies.

The novel aspect of our research is mapping the human

architecture (hADL) to the software architecture (xADL) at

designtime and runtime. As we will demonstrate in Section VI,

having two distinct, but constantly synchronized views on the

system gives rise to unique adaptation opportunities.

Note that linking of the xADL and hADL architecture

models should not be mistaken for the three-layer architecture

model [14], typically applied for self-adaptation in the robotics

domain [6]. The three-layer model describes a strict hierarchi-

cal separation of goal management, change management, and

change execution. In contrast, we propose to apply software

architecture and human architecture simultaneously across all

steps of the MAPE-K model.

Enhancing software architecture models with domain spe-

cific properties enables analysis beyond structural consistency.

Edwards and Medvidovic [15] apply multi-model composition

in their XTEAM framework to simulate reliability, power

consumption, and performance. Di Ruscio et al. [16] utilize

model mapping and transformation techniques for integrat-

ing multiple architecture concerns (e.g., fault tolerance and

activity flow). The SASSY framework [17] provides service
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activity schemas and service sequence scenarios to specify

QoS requirements in service-oriented architectures. Finally,

Bhave et al. [18] augment software architectures with phys-

ical properties and behavioral annotations, thus enabling an

integrated specification of cyber-physical systems such as

quadrotors. The main difference compared to our approach

is the extremely tight coupling of the various architectural

views such that no separate mapping and tracing is foreseen

or required during runtime.

The business process modeling domain traditionally in-

cluded some aspects of human involvement. Business Process

Model and Notation BPMN [19] consists of constructs for

describing activities in business processes, their dependencies,

artifacts, and involved events. BPMN processes typically map

to BPEL, the Business Process Execution Language, for

execution. The BPEL4People [20] extension utilizes human

tasks for integrating users into otherwise Web-service based

workflows. Human tasks support assignment to generic roles,

ownership delegation, and coordination mechanisms such as

four eyes, nomination, or escalation. Both languages pri-

marily target service-oriented architectures with limited or

no support for other common architectural styles such as

Peer-to-Peer, Components and Connectors (C2), or Publish-

Subscribe. Likewise, support for collaboration is limited to

isolated execution of individual task items from a work list.

Dynamic patterns for joint work on shared artifacts, publish-

subscribe information distribution, organizational control, or

request routing in social networks and thus also the patterns’

adaptation implications [21] remain outside the scope of

BPMN and BPEL. The Human-provided Service framework

(HpS) [22] offers more flexible user collaboration but lacks

support for structural patterns at the human level and the

software level.

As a final note for clarification and caution: we cannot

rely on insights from Conway’s Law [23] or socio/technical

congruence [24] when describing the mapping between col-

laboration structure and software architecture. We model the

structure of the users’ organization rather than the developers’

organization.

IV. Approach

A. Background

We first proposed linking software architecture and human

collaboration models in our 2012 ICSE New Ideas and Emerg-

ing Results track paper [25]. It describes the general idea

and approach to achieve co-adaptation and introduces basic

concepts. In this paper we focus in detail on the models

and mechanism for reflecting runtime software architecture

changes in collaboration topologies and how to apply these

synchronized views for sophisticated system adaptation.

The co-adaptation of software architecture and human col-

laboration requires models for specifying the involved runtime

elements and their relations. Components and connectors

are the primary building blocks of a software architecture.

Components are the loci of computation and data manage-

ment whereas connectors facilitate and control the interactions

between components. Based upon Malone and Crowston’s

observation that human collaboration and software systems

share similar coordination requirements [26], we argue for

a similar distinction among humans according to work-

focused and coordination-focused roles. Along these lines

we recently introduced the human Architecture Description

Language (hADL) for describing collaboration topologies in

terms of human components and collaboration connectors [8]

(see Fig. 2 and Fig. 3 for examples). Software architecture and

human architecture models are thus the core artifacts of our

approach.
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Fig. 4. Reflecting software architecture changes in the human architecture
for collaboration-aware system adaptation.

B. Mapping and Adaptation Overview

Given the software architecture and human architecture

description, a software architect specifies at design-time how

software elements map to collaboration elements and vice-

versa. Software architecture-centric events are the primary

source for creating a runtime view of the overall system. Our

approach aims to leverage these events as much as possible for

inferring the collaboration topology (Fig. 4 middle). The map-

ping specification identifies configurations where software-

centric events are insufficient. An event, for example, may

describe a new link between an AgentGUI component and a

StreamingServer component hosting multiple video streams.

While such an event provides sufficient information at the

software architecture level, additional information is required

to unambiguously connect the respective human agent to a

particular SubStream. We thus embed not only software archi-

tecture but also human architecture and mapping specification

in the software artifacts (Fig. 4 left).

System adaptation typically requires additional domain-

specific events besides architecture-centric changes. While

independent from the software architecture and collaboration

topology, such information describes runtime software and col-

laboration elements in further detail. Eventually, an adaptation
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manager utilizes the runtime software architecture, runtime

mapping, and collaboration topology in each adaptation step

(monitoring, analysis, planning, and execution) to detect and

react to critical situations (Fig. 4 right).

C. The Case for an Explicit Architecture Mapping

Multiple generic, extensible, and domain-specific

architecture description languages already exist (e.g.,

ACME [27], xADL [9]) and one could argue that collaboration

structures should be embedded at the software architecture

level. There are multiple reasons, however, why a separate

human architecture model, and thus an explicit, non-trivial

mapping, is a better choice:

• Collaboration patterns are sufficiently independent from

their implementing software architecture style, and even

more so from the detailed software topology. For example,

a collaboration system for a rescue task force can be

realized as a peer-to-peer system for environments without a

communication infrastructure. Alternatively, the client/server

style is suitable when a reliable communication infrastructure

is available. A collaboration pattern based on supervisors

assigning tasks to workers and subsequently collecting their

feedback, however, remains in both cases the same. Similarly,

the same software architecture style supports different

collaboration patterns as demonstrated in the motivating

scenario in Section II.

• Software architectures are typically more fine-grained than

collaboration structures. Spreading collaboration structure

descriptions as annotations across software elements makes

it hard to obtain a clear picture of the overall human

architecture.

• Structural changes at the collaboration level rarely

correspond to structurally equivalent changes at the software

level and vice versa. Hence, collaboration changes would

remain unnoticed in the software structure, while software

topology changes would require additional analysis whether

the human architecture remained the same.

• Adaptation relevant properties potentially fit more naturally

with hADL elements and thus allow for devising more

understandable and manageable adaptation triggers, analysis

logic, and adaptation strategies.

• An explicit human architecture keeps the focus on the

user and team perspective and thus gives stake-holders an

additional model for communicating requirements during the

design process. This also enforces a structured approach to

explicitly defining adaptation and evolution capabilities at the

collaboration level.

V. The ArchitectureMapping Process

A. Design-Time Mapping Specification

Synchronizing software architecture and collaboration

topology at runtime requires the software architect to specify

how software elements map to collaboration elements and

vice versa. Our framework utilizes the eXtensible Architecture

Description Language (xADL [9]) for describing software

component types, connector types, interface types, and con-

tainment hierarchies. On the collaboration level, we apply

the human Architecture Description Language (hADL [8]) for

specifying human component types, collaboration connector

types, collaboration object types, collaboration action types,

and substructure patterns.

Large-scale systems are typically too dynamic and complex

for completely specifying all involved elements and their

precise wiring at design-time. Thus, we can neither a-priori

fully describe the runtime software structure in xADL nor

the collaboration topology in hADL. Consequently, we first

define templates that specify for xADL and hADL separately

how the various model elements are correctly assembled and

connected at runtime. For example, Figure 5 displays on the

left a software architecture blueprint for connecting video

sources, connectors, streaming server, and video sinks. The

dotted frames and lines represent individual templates. The

corresponding collaboration topology and templates for the

publish/subscribe (human) collaboration pattern are given on

the right. We subsequently need additional mapping informa-

tion to identify which xADL template corresponds to what

hADL template (dash-dotted lines in Figure 5).

In other words, a set of xADL, respectively hADL, tem-

plates behaves similar to a set of jigsaw pieces: we arrange

all pieces according to their shape (i.e., signatures/actions)

and obtain a valid overall picture (i.e., architecture). To know

which two xADL and hADL pieces go together and where

they are supposed to interlock within their respective puzzle,

we also need to define matching tabs/blanks (i.e., an Interlock

Point Pair). See for example the two jigsaw pieces for the

Mapping Specification 2 in Fig. 6 left.

Given a software architecture blueprint and collaboration

pattern as input, a complete software-to-collaboration mapping

specification thus consists of four main parts:

• a set of xADL elements (e.g., a StreamingServer component,

PublishVideo connector, SubscribeVideo connector, and links

from both connectors to the component). The specification

refers to the architecture blueprint elements and not the actual

element type definition. A type potentially occurs multiple

times in a template such as the ReceiveVideoAgent connector

and ReceiveVideoWallScreen connector which are both de-

rived from the ReceiveVideo connector type.

• a set of hADL elements (e.g., VideoPubSub collaboration

connector, SubStream collaboration object, and the link be-

tween).

• a set of Interlock Point Pairs defines the intersection of two

mappings in the software architecture, and where to locate the

corresponding interlink at the human architecture level.

A single interlock point pair identifies exactly one xADL

interface and exactly one hADL collaboration action. The

xADL interface establishes joint points of two xADL puzzle

pieces, the hADL action specifies the joint points between two

hADL puzzle pieces. Consider the mapping template x1h1 in

Fig. 5: the VideoSource’s sendPubStream interface pairs up

with the PubStream’s forward action.

• the MappingType determines how many instances of the
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Fig. 5. Example mappings between video streaming architecture blueprint (xADL) and publish/subscribe collaboration pattern (hADL). Mapping 1, for
example, consists of xADL element set x1 and hADL element set h1. Mappings for Assistant and Teamleader and corresponding xADL elements are omitted
for sake of clarity.

xADL elements may map to how many instances of the hADL

elements. In many cases a simple one-to-one mapping will

be insufficient. A xADL template instance (e.g., a Stream-

ingServer incl. Connectors) may represent multiple hADL

elements (e.g., VideoPubSub collaboration connectors incl.

SubStreams). Hence, the following mapping types exist: exact

1-to-1 such as the VideoSource to FieldAgent+PubStream

(e.g., x1h2 in Fig. 5), aggregating 1-to-M (e.g., x3h3 in Fig. 5),

replicating N-to-1 for providing the same video stream on

many servers, or a combination thereof (N-to-M).

Note that the mapping specification includes only elements

that are needed to maintain an unambiguous mapping to col-

laboration elements. Thus, a software architect typically omits

software elements irrelevant to the collaboration topology and

vice versa (e.g., the link between the AgentGUI component

and the SubscribeVideo connector). For the example in Fig-

ure 5, a total of 13 mapping definitions link the software

architecture and the collaboration structure (including the six

mappings for Assistant and Teamleader not shown).

Our framework leverages software architecture-centric

events as much as possible. However, we determine the need

for additional disambiguation events already at design-time

when we derive from the mapping specification that software-

level events won’t allow for conclusive mapping execution

at runtime. At runtime, the link between a VideoSource

component and a PublishVideo connector, for example, maps

1-to-M to the PubStream-to-VideoPubSub link (mapping x5h5

in Fig. 5). Here we need a disambiguation event to define

which VideoPubSub (among the many hosted by the Stream-

ingServer) the hADL link should connect to. Applying the

jigsaw analogy: non 1-to-1 mappings result in stacked puzzle

pieces, for example, mapping instances 1a and 1b in Figure 6.

A new mapping instance 4 needs to decide whether linking

its hADL piece to mapping 1a or 1b. A disambiguation event

merely needs to identify any one xADL element involved in

the completed hADL piece 4x and any one hADL element

from the targeted, existing hADL piece 1a.

Identifying at design-time where disambiguation events are

required is straightforward: every Interlock PointPair involved

in a 1-to-M or N-to-M mapping highlights the need for a

corresponding disambiguation event. The developer can then

select from the hADL and xADL sets which information

will be provide in the disambiguation event. Before system

deployment, type information from xADL and hADL models

and disambiguation event requirements become embedded in

the software artifacts. The exact means (e.g., through source

code annotations, middleware configuration, or sensor con-

figuration) remains outside the scope of this paper (see, for

example, [28], [3], [6]).
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Fig. 6. Utilizing interlock point pair definitions to insert hADL and xADL
mappings correctly.

B. Runtime Template Matching and Execution

At runtime, the Software Architecture Manager receives sys-

tem events describing the type and identity of newly deployed

software elements, their wiring, respectively their termination,

and translates them into software architecture change events

(i.e., new/deleted component/connector/link) (Fig. 7 1).

For removal of existing elements, the Mapping Template

Matcher takes these architecture change events and merely

retrieves the respective mapping instance (Fig. 7 2a). For new

elements, however, it determines a set of candidate mappings

(Fig. 7 2b). Each xADL element type is potentially part of
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Fig. 7. Artifacts and Steps involved in the Mapping Template Matching process.

multiple mapping definitions (e.g., the link between Stream-

ingServer and ReceiveVideo connectors is of the same type for

AgentGUI, AssistantGUI, TeamLeaderGUI, and WallScreen),

but ultimately only part of a single mapping instance. The

Mapping Template Matcher keeps adding architecture change

events to mapping candidates until at least one candidate

contains all required xADL elements (Fig. 7 3a). All re-

maining candidates are discarded. Matching of interlock point

pairs with existing neighboring mappings selects the correct

mapping in case of multiple simultaneously fulfilled mapping

candidates (Fig. 7 3b).

For each completed mapping specification and sufficient

disambiguation data, the Mapping Template Matcher dis-

patches collaboration change events for each mapped hADL

element (Fig. 7 4a). When adding new elements, a runtime

mapping instance stores references to all involved xADL

and hADL instances. 1-to-M mappings typically accumulate

multiple hADL reference sets, respectively N-to-1 multiple

xADL reference sets, and N-to-M multiples of both. The

Mapping Template Matcher also records interlock point pair

instances to track neighboring mapping instances (Fig. 7 4b).

Ultimately, the Human Architecture Manager processes the

collaboration change events to maintain a consistent view of

the collaboration topology.

VI. Utilizing hADL for System Self-Adaptation

Correlating software architecture and human architecture

offers immense opportunities for sophisticated system sensing,

monitoring, analysis, and adaptation (Fig. 8). A system archi-

tect utilizes insight into the underlying collaboration pattern

at design-time for selecting the appropriate adaptation events,

metrics, triggers, and strategies. Later at runtime, the human

architecture serves as the data source for exactly those events,

metrics, and triggers. Human to software mapping instances

subsequently identify the exact software elements requiring

reconfiguration.

In this section, we discuss the exemplary application of the

runtime human architecture model and its mapping to software

architecture elements for system self-adaptation. In line with

the motivating scenario, we focus on two exemplary non-

functional system requirements and the respective high-level

Fig. 8. Collaboration-aware system adaptation process.

adaptation approach:

1) Quality: video streams should be available in high resolu-

tion: ⇒ limiting the maximum bandwidth usage per Stream-

ingServer component and host.

2) Resilience: system failures should have limited impact on

the team’s monitoring ability (especially the team leader):

⇒ replicating StreamingServer components and strategically

routing streams to avoid single points of failure.

Such adaptation goals require introducing domain-specific

data sources. We include xADL hosts that group collocated

components and connectors. They also keep track of available

bandwidth capacity and consumption. Capturing and process-

ing such additional data remains completely independent of

the xADL-to-hADL mapping process.

Sensing

Both architecture views may become carriers of sensor data

such as bandwidth constraints. To this end, we extended xADL

and hADL with capabilities to store arbitrary system proper-

ties. We thus gain the ability to associate sensor data with

a particular xADL element, hADL element, or combination

thereof.

59



Video stream bandwidth is an excellent example for a

collaboration level property that is relevant for software

level adaptation. The software architecture by itself offers no

straightforward means for specifying which components, con-

nectors, and links carry a particular video stream. Capturing

bandwidth for individual StreamingServer components pro-

vides little assistance in determining how to rewire publishers

and subscribers to remain within given bandwidth thresholds.

Tracking bandwidth usage for individual hADL PubStreams or

Substreams, on the other hand, provides promptly the number

of consumers, the role of consumers, and via runtime mapping

instance data, also the software elements’ bandwidth usage.

Tracking a host’s bandwidth capacity and utilization

complements human architecture-centric bandwidth changes.

Hence, changes in (i) video stream bandwidth usage, (ii) a

stream’s subscription base, and (iii) available host bandwidth

may serve as triggers for system adaptation.

Monitoring

Software system monitoring oversees structural and property

changes in the software architecture and human architecture.

Monitoring can thus enable reassessment of a component’s

bandwidth usage upon the stream’s bandwidth fluctuations as

well as changes in the stream’s subscriber base.

A system architect applies the mapping specification when

creating the monitoring logic to reason how to accurately

derive a component’s properties. In the case of the Stream-

ingServer’s bandwidth usage, the architect aggregates the

bandwidth properties of all associated PubStreams and Sub-

Streams multiplied by their subscriber base. Ultimately, mon-

itoring output consists of high-level events and facts such as

component bandwidth usage.

Analysis

Software system analysis determines the impact of high-level

events such as components exceeding a given bandwidth

threshold. Similar to monitoring, system analysis accesses

hADL and xADL structures for determining high-level system

metrics used later in the planning phase for deciding what

adaptation strategies are most suitable. The analysis step

ultimately decides whether adaptation is necessary or not.

When a component exceeds its granted bandwidth quota,

system analysis collects system properties such as the remain-

ing bandwidth across all hosts. Collaboration-aware algorithms

may additionally consider whether the affected component

serves streams mainly to the Team leader in a publish/sub-

scribe structure. For the pipes/filter case, an algorithm may

determine whether the component becomes a single point of

failure when serving streams at the same hop distance from

the video source.

For our scenario, system analysis will trigger an adaptation

request for a StreamingServer component, supplying informa-

tion on hosts with sufficient bandwidth capacity, and — de-

pending on the underlying collaboration pattern — determines

the component’s tendency towards team leader subscriptions

or single-point-of-failure, respectively.e.

Planning

The goal of keeping a component’s or host’s bandwidth usage

below a particular threshold applies to the software level and is

therefore independent of the underlying collaboration pattern.

To this end, the system supports the following fine-grained

adaptation actions plans:

1) Replicate the stream at another component and move a

(subset of) subscription(s).

2) Move a stream including all subscriptions to another

component.

3) Move a subscription to another component already serv-

ing the particular stream.

4) Drop a subscription.

The former two plans require a host with sufficient remaining

bandwidth (hostsAvail), whereas the latter two plans apply

when the available bandwidth across all available hosts is

exhausted (hostsFull).

Given the system analysis’ output, planning determines the

best adaptation strategy. The particular underlying collabora-

tion pattern constrains how to best perform system reconfig-

uration while achieving resilience. The runtime collaboration

topology determines the applicable set of hosts, components,

streams, and subscriptions as input to the adaptation strategies.

Due to page constraints we need to limit our discussion

of suitable collaboration-aware adaptation strategies to the

publish/subscribe pattern.

1) When hostsAvail, try separating StreamingService com-

ponents dedicated to the team leader from regular user

components, i.e., a combination of relocating team

leader subscriptions to a streaming component serving

primarily team leaders and likewise relocating regular

subscriptions to components serving regular users.

2) When hostsFull, try relocating any team leader sub-

scriptions to an existing stream at another component,

otherwise rank streams by their number of subscriptions,

and recommend regular subscribers of the most popular

streams (i.e., the actual users) to drop their subscription.

The last strategy highlights the potential use of collaboration

topologies to include the relevant users in the adaptation of

the system when automatic reconfigurations no longer suffice.

Again the user selection is collaboration pattern specific:

users pull video stream according to a set of properties such

as location, quality, or relevance in the publish/subscribe

pattern. Hence, recommendations target primarily the stream

subscribers to reduce their selection. On the other hand,

the pipes/filter pattern has users push video streams to the

next consumer. Here recommendations address the stream

publishers to be more selective what to forward.

Execution

Enforcing adaptation plans is domain and infrastructure de-

pendent. Research in the domain of autonomic computing and

adaptive systems has focused on the execution of software

changes for more than a decade (e.g., [6] for architecture-based

reconfiguration). On the other hand, autonomous mechanisms

and techniques for achieving desired reconfigurations on the

collaboration level are limited to a few niche domains (e.g.,

automatic task management in Amazon Mechanical Turk).
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It will require extensive research for evaluating reliability,

timeliness, quality, user acceptance, and associated privacy

concerns of such adaptation plans. We thus believe that the

aspect of actively adapting the human collaboration structure

(through autonomic actions, recommendations, or combina-

tions thereof) cannot be sufficiently addressed in the scope

of this paper. Nevertheless, we provide a case study in the

next section demonstrating the effectiveness approach limited

to software system adaptation.

VII. Case Study

In this section we evaluate the added benefit of integrat-

ing detailed human architecture knowledge in the adaptation

process for a particular scenario. Specifically we are inter-

ested in the achievable reliability improvement when applying

adaptation strategies tailored to the underlying collaboration

topology compared to collaboration-unaware adaptation. In the

following, we focus on the publish-subscribe style collabora-

tion topology of the motivating example detailed in Figure 2.

The scenario setup consists of 20 remote high definition

video streams at 20 Mbit/s that are randomly connected to

nine StreamingServer components; three components per host,

three hosts in total (see Fig. 9 for an schematic overview

of the software architecture). Agents subsequently subscribe

at StreamingService components to receive the desired video

streams. The number of subscriptions affects a component’s

reliability, respectively failure probability. For sake of sim-

plicity we assume a StreamingServer’s failure rate p f ail to be

0.05 for no subscriptions, linearly increasing to 0.10 when

reaching the bandwidth threshold of 150 Mbit/s. Exceeding

this threshold triggers adaptation in the form of moving

subscriptions (including source streams) among components

or spawning new components as long as a host’s load remains

within a 400 Mbit/s bandwidth limit.

Vid1

SSvr1 SSvr3 SSvr4 SSvr8 SSvr SSvr

Vid2 Vid3 Vid18 Vid19

... ... ...

... Vid20

Agent

2

Agent

3

Agent

4

Agent

5

Agent

6

Agent

1

3 Hosts, each  

400Mbit/s max

20 Video 

sources, each 

stream 20Mbit/s

6 Agents + 

1 Leader, each

4 subscriptions 

(=total 80Mbit/s)

Leader

StreamingServer 

component

(dynamic deployed )

Fig. 9. Schematic case study configuration (omitting connectors, interfaces,
and most links). Dotted lines depict streams to the team leader.

Starting with no subscribers, we gradually increase the

number of subscribing agents to six. Each new agent randomly

selects two components and chooses two streams each (4

streams total). In-between the regular agent subscriptions, a

single team leader connects to a single stream from a randomly

selected component for ultimately a total of 4 streams. We

assume that sufficient network bandwidth is available.

The adaptation manager observes the component load while

the number of subscriptions increases. The collaboration-

aware adaptation strategy focuses on moving leader subscrip-

tions to reduce component load as outlined in the previous

section. The baseline collaboration-unaware strategy selects

subscriptions randomly.

We measure a strategy’s impact by determining the average

reliability of leader associated streams (dotted lines in Fig. 9).

The individual stream reliability rel(s) is determined by the

number of stream replicas and the component failure proba-

bility of the respective StreamingServer p f ail(comp).

rel(s) = 1 −

n∏

i=1

p f ail(comp(si)) where n = replica(s) (1)

Figure 10 compares the achieved average stream reliability

for both adaptation strategies as bandwidth usage increases.

The chart displays the reliability before and after adaptation

for each of the 12 performed reconfigurations (averaging data

from multiple experiment runs). The initial spike results from

the replication of the first leader subscription. Both adaptation

strategies cannot avoid degradation of reliability as the band-

width load on components and hosts increases. Collaboration-

aware adaptation, however, achieves consistently higher re-

liability through prioritizing leader subscriptions, averaging

0.972 compared to unaware adaptation at 0.952.

Fig. 10. Average Stream reliability for collaboration-(un)aware adaptation
for increasing bandwidth usage.

The adaptation strategies in this case study have been

kept simple on purpose, rewiring only the minimum number

of subscriptions to bring the bandwidth usage below the

threshold. As the results demonstrate, consideration of the

human architecture provides significant improvements already

for such a simple adaptation approach. We expect algorithms

performing even better when taking advantage of the full

extent of the collaboration topology.

VIII. Conclusions

We presented our approach for linking software architecture

and collaboration topology for enabling more sophisticated
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system adaptation. System adaptation remains unaware of

collaboration interdependencies without such mapping infor-

mation. To this end, we provided a software architecture to

human architecture mapping specification at design-time and

a framework for reflecting software architecture events in the

human architecture at runtime. We further make the case

for integrating the collaboration topology at all stages of the

MAPE-K adaptation cycle. Our case study demonstrates the

benefit of our approach.

Next steps will focus on supporting the mapping process

in detecting inconsistencies and incomplete coverage as the

prerequisite to providing adaptation guarantees. While our cur-

rent work focused primarily on adapting the software system,

future research will address the challenge of adapting also

the human architecture. We will investigate how autonomic

adaptation actions and recommendations can be combined

for achieving desirable system configurations. Simultaneously,

we propose applying the MAPE-K process on the human

architecture for addressing undesirable human collaboration

situations. A collaboration-centric adaptation mechanism may

observe, for example, how many users access the wall screen

and recommend a suitable access coordination mechanism.
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Menascé, “A modeling language for activity-oriented composition of
service-oriented software systems,” in Int. Conf. on Model Driven

Engineering Languages and Systems, MODELS ’09. Springer, 2009,
pp. 591–605.

[18] A. Bhave, D. Garlan, B. Krogh, A. Rajhans, and B. Schmerl, “Augment-
ing software architectures with physical components,” in Proceedings

of the Embedded Real Time Software and Systems Conference (ERTS2

2010), 2010.
[19] P. Wohed, W. van der Aalst, M. Dumas, A. ter Hofstede, and N. Russell,

“On the suitability of bpmn for business process modelling,” in Business

Process Management, Lecture Notes in Computer Science, Springer,
2006, vol. 4102, pp. 161–176.

[20] M. Ford, A. Endpoints, and C. Keller, “Ws-bpel extension for people
(bpel4people), version 1.0,” 2007.

[21] C. Dorn and R. N. Taylor, “Analyzing runtime adaptability of collabora-
tion patterns,” in International Conference on Collaboration Technolo-

gies and Systems (CTS). CO, USA: IEEE Computer Society, 2012.
[22] D. Schall, H.-L. Truong, and S. Dustdar, “Unifying human and software

services in web-scale collaborations,” IEEE Internet Computing, vol. 12,
no. 3, pp. 62–68, 2008.

[23] M. Conway, “How do committees invent,” Datamation, vol. 14, no. 4,
pp. 28–31, 1968.

[24] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M. Carley,
“Identification of coordination requirements: implications for the design
of collaboration and awareness tools,” in Proceedings of the 2006 20th

anniversary conference on Computer supported cooperative work, ser.
CSCW ’06. New York, NY, USA: ACM, 2006, pp. 353–362.

[25] C. Dorn and R. N. Taylor, “Co-adapting human collaborations and soft-
ware architectures,” in Proceedings of the 34th international conference

on Software engineering (ICSE), 2012, pp. 1277–1280.
[26] T. W. Malone and K. Crowston, “The interdisciplinary study of

coordination,” ACM Comput. Surv., vol. 26, pp. 87–119, March 1994.
[27] D. Garlan, R. Monroe, and D. Wile, “Acme: an architecture description

interchange language,” in Proceedings of the 1997 conference of the

Centre for Advanced Studies on Collaborative research, ser. CASCON
’97. IBM Press, 1997, pp. 7–.

[28] P. Oreizy, N. Medvidovic, and R. N. Taylor, “Architecture-based
runtime software evolution,” in International Conference on Software

engineering, ICSE ’98. Washington, DC, USA: IEEE, 1998, pp.
177–186.

62


