Logics for Databases
and Information Systems

Edited by
Jan Chomicki, Gunter Saake
Monmouth University / University of Magdeburg

Kluwer Academic Publishers
Boston/Dordrecht/London

Contents

1
Introduction to Logics for Databases and Information Systems

Jan Chomicki and Gunter Saake

References

2
A Logic Primer

Stefan Conrad

2.1 Introduction

2.2 First-Order Logic (FOL)
2.2.1 Syntax
2.2.2 Semantics
2.2.3 Proof Theory

2.3 Modal Logics
2.3.1 Kripke Semantics
2.3.2 Axiomatization of Modal Logics
2.3.3 Temporal Structures

2.4 Logic Programming
2.4.1 Herbrand Models
2.4.2 Fixpoint Semantics
2.4.3 SLD-Resolution
2.4.4 Negation

2.5 Conclusion

References

3
Temporal Logic in Information Systems

Jan Chomicki and David Toman
3.1 Introduction
3.2 Temporal Databases

31

32
33

vi LOGICS FOR DATABASES AND INFORMATION SYSTEMS

3.2.1 Abstract Temporal Databases
3.2.2 Relational Database Histories
3.3 Temporal Queries
3.3.1 Abstract Temporal Query Languages
3.3.2 Expressive Power
3.3.3 Space-efficient Encoding of Temporal Databases
3.3.4 Concrete Temporal Query Languages
3.3.5 Evaluation of Abstract Query Languages using Compilation
3.3.6 SQL and Derived Temporal Query Languages
3.4 Temporal Integrity Constraints
3.4.1 Notions of constraint satisfaction
3.4.2 Temporal Integrity Maintenance
3.4.3 Temporal Constraint Checking
3.5 Multidimensional Time
3.5.1 Why Multiple Temporal Dimensions?
3.5.2 Abstract Query Languages for Multi-dimensional Time
3.5.3 Encoding of Multi-dimensional Temporal Databases
3.6 Beyond First-order Temporal Logic

3.7 Conclusion

References

4
The Role of Deontic Logic in the Specification of Information Systems
J.-J. Ch. Meyer, R.J. Wieringa, and F.P.M. Dignum
4.1 Introduction: Soft Constraints and Deontic Logic
4.1.1 Integrity Constraints for Information Systems
4.1.2 Deontic logic and violations of constraints
4.1.3 The Paradoxes of Deontic Logic
4.2 Standard Deontic Logic (SDL)
4.3 The Paradoxes of Deontic Logic
4.3.1 Some Well-Known Paradoxes
43.2 The Paradoxes in SDL
4.3.3 Contrary-to-Duty Imperatives
4.4 A Diagnosis of the Problems

45 A Solution to the 'Ought-to-Be’ Version of the Chisholm Paradox: S50,

4.6 Ought-to-Do: The Dynamic Perspective
4.6.1 A Logic of Ought-to-Do: a Deontic Logic Based on Dynamic Logic
4.6.2 The Paradoxes in PDeL
4.6.3 A Solution to the ‘Ought-to-Do’ Version of the Chisholm Paradox in

PDeL

4.7 An Integrated Logic of Ought-to-Be and Ought-to-Do Constraints
4.7.1 Anderson’s Reduction to Modal Alethic Logic Related to SDL
4.7.2 Integrating S50 () with PDel

4.8 Applications
4.8.1 Modeling norms for the external environment

34
36
36
37
41
44
46
47
48
53
53
54
56

58

59
61

62
65

65

71

72
72
73
74
76

77
78
79
80
81
83

84
86
87

89
93
93
95

96
97

Contents

4.8.2 Modeling norms for the UoD

4.8.3 Modeling norms for the system
4.8.4 Modeling norms for the specification
485 Case study

4.9 Discussion and Conclusion

References

5
A Logic for Programming Database Transactions

Anthony J. Bonner and Michael Kifer
5.1 Introduction
5.2 Overview and Introductory Examples
5.2.1 Simple Transactions
5.2.2 Rules and Non-deterministic Transactions
5.2.3 Transaction Bases
5.2.4 Constraints
5.3 Syntax
5.4 Elementary Operations
5.4.1 State Data Oracles
5.4.2 State Transition Oracles
5.4.3 Examples
5.4.4 The Pragmatics of Oracles
5.5 Model Theory
5.5.1 Path Structures and Models
5.5.2 Execution as Entailment
5.6 Proof Theory
5.6.1 Inference
5.6.2 Execution as Deduction
5.6.3 Example: Inference with Unification
5.7 Related Work
5.7.1 Declarative Languages for Database Transactions
5.7.2 Logics for Reasoning about Programs

References

6
Logics for Specifying Concurrent Information Systems

Hans-Dieter Ehrich, Carlos Caleiro, Amilcar Sernadas, and Grit Denker
6.1 Introduction
6.2 Overview
6.3 Local Logic L
6.4 Distributed Logics
6.5 Reduction
6.6 Extended Example
6.7 Related Work

vii

98
101
102
103

108

108

117

118
122
124
126
127
129
131
132
132
133
134
136
137
138
141
144
146
148
150
151
151
153

161

167

168
169
172
175
180
184
187

viii LOGICS FOR DATABASES AND INFORMATION SYSTEMS
6.8 Concluding Remarks

References

7
Evolving Logical Specification in Information Systems

Stefan Conrad, Jaime Ramos, Gunter Saake, and Cristina Sernadas
7.1 Introduction
7.2 Motivation and Language
7.3 Syntax and Semantics of the Logic
7.3.1 Signatures
7.3.2 Terms and Formulae
7.3.3 Pre-interpretation structures
7.3.4 Satisfaction
7.3.5 Specifications and Theories
7.4 Translation of Language into Logic
7.5 Using the Logical Framework
7.5.1 A Hilbert calculus
7.5.2 An invariant calculus
7.6 Concluding Remarks

References

8
Description Logics for Conceptual Data Modeling

Diego Calvanese, Maurizio Lenzerini and Daniele Nardi

8.1 Introduction

8.2 Description Logics
8.2.1 Syntax and Semantics of the Logic ALCQT
8.2.2 Knowledge Bases in ALCQT

8.3 Semantic Data Models
8.3.1 The Entity-Relationship Model
8.3.2 Formalizing Entity-Relationship Schemata in Description Logics
8.3.3 Extending the Expressiveness of the Modeling Language

8.4 Object-Oriented Data Models
8.4.1 An Object-Oriented Data Model
8.4.2 Formalizing Object-Oriented Schemata in Description Logics
8.4.3 Extending the Expressiveness of the Modeling Language

8.5 Support for Data Modeling
8.5.1 Reasoning Tasks in Data Modeling
8.5.2 Realization of Reasoning

8.6 Conclusions

References

9
Integrity Constraints: Semantics and Applications

190

192

199

200
202
208
209
210
211
213
215
215
218
219
221
224

225

229

230
232
232
234
235
236
239
242
244
245
247
251
253
253
256

258

259

265

Contents

P. Godfrey, J. Grant, J. Gryz, and J. Minker

9.1 Introduction

9.2 Background

9.3 Semantics of Integrity Constraints
9.3.1 Examples of What Integrity Constraints can Express
9.3.2 Model Semantics
9.3.3 Extensions to the Basic Model

9.4 Reasoning with Integrity Constraints
9.4.1 Eliminating Integrity Constraints
9.4.2 Model Elimination
9.4.3 Residue Method

9.5 Applications of Integrity Constraints
9.5.1 Semantic Query Optimization
9.5.2 Cooperative Answering
9.5.3 Combining Databases and Resolving Inconsistencies
9.5.4 View Updates
9.5.5 Additional Applications

9.6 Conclusion and Future Directions

References

10

Logical Approaches to Incomplete Information: A Survey
Ron van der Meyden

10.1
10.2
10.3

10.4
105
10.6
10.7
10.8
10.9

Introduction
Sources of Indefiniteness

A Semantic Framework for Incomplete Databases
10.3.1 The Relational Model

10.3.2 Incomplete Database Semantics

10.3.3 Notions of Query Answer

Algebraic Models of Nulls

Logical Databases

Complexity of Queries

Negative Information

Integrity Constraints

Updates of Incomplete Databases

10.100ther Issues

10.10.1 Inapplicable Attributes

10.10.2 Constraints

10.10.3 Object Oriented Databases
10.10.4 Design of indefinite databases
10.10.5 Dealing with Query Complexity
10.10.6 Modal and Non-standard Logics

10.11Incomplete Information in Current Technology

References

ix

265
268
272
273
275
278
279
280
281
282
285
285
287
291
293
295

297

299

309

309
311

313
314
316
318

320
324
328
333
336
338

341
341
341
342
343
343
344

345

347

X LOGICS FOR DATABASES AND INFORMATION SYSTEMS

11

Declarative Frameworks for Inheritance
Laks V.S. Lakshmanan and Krishnaprasad Thirunarayan

11.1
11.2

11.3
11.4

115

Introduction

Motivation for Inheritance

11.2.1 The Al Perspective

11.2.2 The OO Perspective

Main Issues and Problems

Logic-based Approaches to Inheritance

11.4.1 What can a Logic Do for Inheritance?
11.4.2 Overview of Logics for Inheritance
11.4.3 Overview of ORLog

11.4.4 Overview of Inheritance Theories for Knowledge Representation

Research Directions

References

12

On Logical Foundations of Active Databases
Georg Lausen and Bertram Luddscher and Wolfgang May

12.1
12.2

12.3

Introduction

Basics of Active Rules

12.2.1 Terminology

12.2.2 Fundamental Properties

Research on Foundations of Active Rules
12.3.1 Production Rules

12.3.2 Declarative Rules

12.3.3 Extending Declarative Rules by States
12.3.4 Further Work

12.3.5 Bibliographic Notes

12.4 A Deductive State-Oriented Core Language

12.4.1 Basic Execution Model

12.4.2 Syntax

12.4.3 Semantics

12.4.4 Transitions, Termination and Transactions
12.45 Compile-Time vs. Run-Time Properties

12.5 A Framework for Active Rules

12.6

12.5.1 Signature

12.5.2 User-Defined vs. System-Defined Rules
12.5.3 Enforcing Termination

12.5.4 Expressive Power and Normal Forms

Conclusion

References

Index

359

359

363
363
364
365
369
369
369
372
374

384

387

391

392
392
392
395
395
396
397
398
398
400
401
402
403
404
406
407
409
409
410
413
414

416

418
425

Contributors

Anthony Bonner

University of Toronto
Department of Computer Science
10 King’s College Road

Toronto, ON

Canada M5S 3G4

e-mail: bonner@cs.toronto.edu

Carlos Caleiro

Department of Mathematics
Instituto Superior Técnico

Av. Rovisco Pais

1096 Lisboa

Portugal

e-mail: ccal@math.ist.utl.pt

Diego Calvanese

Dip. di Informatica e Sistemistica
Universita' di Roma “La Sapienza”
Via Salaria 113, I-00198 Roma, Italy

e-mail:calvanese@dis.uniromal.it

Jan Chomicki

Department of Computer Science
Monmouth University

West Long Branch, NJ 07764
U.S.A.

e-mail:
chomicki@moncol.monmouth.edu

Stefan Conrad
University of Magdeburg
Computer Science
Postfach 4120

D-39016 Magdeburg

LIST OF CONTRIBUTORS xi

Germany
e-mail: s.conrad@acm.org

Grit Denker

Abteilung Datenbanken

Technische Universitat Braunschweig
Postfach 3329

D-38023 Braunschweig

Germany

e-mail: G.Denker@tu-bs.de

Frank Dignum

Technical University

Faculty of Mathematics and Com-
puter Science

P.O. Box 513

5600 MB Eindhoven

e-mail: dignum@win.tue.nl

Hans-Dieter Ehrich

Abteilung Datenbanken

Technische Universitat Braunschweig
Postfach 3329

D-38023 Braunschweig

Germany

e-mail: HD.Ehrich@tu-bs.de

Parke Godfrey

U.S. Army Research Laboratory
2800 Powder Mill Road
Adelphi, Maryland 20783-1197
U.S.A.

e-mail: godfrey@arl.mil

xii LOGICS FOR DATABASES AND INFORMATION SYSTEMS

John Grant Universita‘ di Roma “La Sapienza”
Computer and Information Sciences Via Salaria 113, I-00198 Roma, Italy
Department e-mail: lenzerini@dis.uniromal.it
Towson University
Towson, MD 21252 Bertram Ludascher
U.S.A. Universitdt Freiburg
e-mail:jgrant@towson. edu Institut fir Informatik

Am Flughafen 17
Jarek Gryz D-79110 Freiburg
Department of Computer Science Germany
York University e-mail: ludaesch@informatik.
North York, Ontario M3J 1P3 uni-freiburg.de
Canada
e-mail: jarek@cs.yorku.ca Wolfgang May

Universitat Freiburg
Michael Kifer Institut fir Informatik
Department of Computer Science Am Flughafen 17
SUNY at Stony Brook D-79110 Freiburg
Stony Brook, NY 11794-4400 Germany
U.S.A. e-mail: may@informatik.
e-mail: kifer@cs.sunysb.edu uni-freiburg.de
Laks V.S. Lakshmanan John-Jules Ch. Meyer
Concordia University Utrecht University
Department of Computer Science Dept of Computer Science
1400 De Maisonneuve Boulevard West Padualaan 14, De Uithof
Montreal, Quebec P.O. Box 80089, 3508 TB Utrecht
CANADA H3G 1M8 The Netherlands
e-mail: laks@cs.concordia.ca e-mail: jj@cs.ruu.nl
Georg Lausen Jack Minker
Universitdt Freiburg Department of Computer Science and
Institut fiir Informatik UMIACS
Am Flughafen 17 University of Maryland
D-79110 Freiburg College Park, MD 20742
Germany U.S.A.
e-mail: lausen@informatik. e-mail: minker@cs.umd.edu

uni-freiburg.de

Daniele Nardi
Maurizio Lenzerini Dip. di Informatica e Sistemistica
Dip. di Informatica e Sistemistica Universita‘ di Roma “La Sapienza”

Via Salaria 113, I-00198 Roma, Italy

e-mail: nardi@dis.uniromal.it

Jaime Ramos

Department of Mathematics
Instituto Superior Técnico

Av. Rovisco Pais

1096 Lisboa

Portugal

e-mail: jabr@math.ist.utl.pt

Gunter Saake

University of Magdeburg
Computer Science

Postfach 4120

D-39016 Magdeburg

Germany

e-mail:
saake@iti.cs.uni-magdeburg.de

Amilcar Sernadas
Department of Mathematics
Instituto Superior Técnico
Av. Rovisco Pais

1096 Lisboa

Portugal

e-mail: acs@math.ist.utl.pt

Cristina Sernadas
Department of Mathematics
Instituto Superior Técnico
Av. Rovisco Pais

1096 Lisbhoa

LIST OF CONTRIBUTORS xiii

Portugal
e-mail: css@math.ist.utl.pt

Krishnaprasad Thirunarayan
Dept. of Computer Science and Engi-
neering

Wright State University

Dayton, OH 45435.

U.S.A.

e-mail: tkprasad@cs.wright.edu

David Toman

University of Toronto
Department of Computer Science
10 King’s College Road

Toronto, ON

Canada M5S 3G4

e-mail: david@cs.toronto.edu

Ron van der Meyden
Computing Sciences,

University of Technology, Sydney
Australia

e-mail: ron@socs.uts.edu.au

Roel Wieringa

Free University

Faculty of Mathematics and Computer
Science

De Boelelaan 1081

1081 HV Amsterdam

The Netherland

e-mail: roelw@cs.vu.nl

8 DESCRIPTION LOGICS FOR
CONCEPTUAL DATA MODELING

Diego Calvanese,
Maurizio Lenzerini

and Daniele Nardi

Abstract: The article aims at establishing a logical approach to class-based
data modeling. After a discussion on class-based formalisms for data model-
ing, we introduce a family of logics, called Description Logics, which stem from
research on Knowledge Representation in Artificial Intelligence. The logics of
this family are particularly well suited for specifying data classes and relation-
ships among classes, and are equipped with both formal semantics and inference
mechanisms. We demonstrate that several popular data modeling formalisms,
including the Entity-Relationship Model, and the most common variants of
object-oriented data models, can be expressed in terms of specific logics of the
family. For this purpose we use a unifying Description Logic, which incorpo-
rates all the features needed for the logical reformulation of the data models
used in the various contexts. We also discuss the problem of devising reason-
ing procedures for the unifying formalism, and show that they provide valuable
supports for several important data modeling activities.

229

230 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

8.1 INTRODUCTION

Data modeling is the activity of specifying the structure of the data to be
managed within an application. In the last two decades, data modeling has
been the subject of a large body of work in several areas, including Databases,
Information Systems, Software Engineering, and Knowledge Representation.
In particular, recent approaches to conceptual data modeling advocate the
use of abstract formalisms for describing data, mostly based on the notion
of class [HK87]. In this paper, we concentrate on such class-based formalisms
for data modeling, with the aim of demonstrating that they can be profitably
reconstructed within a logical framework. We argue that the reasoning tech-
niques available in the logical framework provide valuable support for the data
modeling activity.

Generally speaking, a class denotes a subset of the domain of discourse,
and a class-based representation formalism allows one to express several kinds
of relationships and constraints (e.g. subclass constraints) holding among
classes [MM92]. Moreover, class-based formalisms aim at taking advantage
of the class structure in order to provide various information, such as whether
an element belongs to a class, whether a class is a subclass of another class, and
more generally, whether a given constraint holds among a given set of classes.

Two main families of class-based formalisms for data modeling are addressed
in this paper. The first one originates in the field of databases and in particular
from the work on semantic data models (see e.g. [HK87]). The second one arises
from the work on types in programming languages and object-oriented systems
(see e.g. [KL89]).

In the past, there have been several attempts to establish relationships
among class-based formalisms used in knowledge representation (e.g. semantic
networks and frames [Leh92; Sow91]) and the above two families of class-based
formalisms. One significant aspect of this work is the identification of reason-
ing problems, where one can take advantage of techniques for reasoning on
hierarchical structures that have been developed in different areas.

The relationship between frame-based languages and types has been ad-
dressed in [BHR90; LNS91; Bor92], while in [BS92; PSS92; Bor95; ACS96]
frame-based languages are used to enrich the deductive capabilities of data
models. The analysis of the above cited works makes it clear that, although a
number of steps have been accomplished, several difficulties arise in identifying
a common framework, which is expressive enough to capture the essential fea-
tures of various class-based formalisms, while still providing techniques for the
associated reasoning problems. Other formalisms have been recently proposed
with the aim of integrating the object-oriented and the logic programming
paradigms. A notable example of this effort is F-Logic [KLW95], which pro-

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 231

vides an elegant framework equipped with a sound and complete resolution
based proof procedure. However, the goal of these proposals is to provide a
sophisticated environment for computing with objects, rather than a system
supporting reasoning over a conceptual specification. For this reason, they
cannot be easily compared to the approach proposed here.

In this paper, we make a step towards a unified view of class-based lan-
guages by establishing a relationship between semantic and object-oriented
data models, rephrasing them in terms of the knowledge representation frame-
work of Description Logics. Specifically, building on the results of [CLN94],
we present a class-based representation formalism, of the family of Description
Logics [SS91; DLNNO91], and show that it is able to capture the most popular
data modeling formalisms presently used in Databases and Information System
Analysis, providing powerful reasoning techniques.

In Description Logics, structured knowledge is described by means of so
called concepts and roles, which denote unary and binary predicates, respec-
tively. Starting from a set of atomic symbols one can build complex concept
and role expressions by applying suitable constructors which characterize a De-
scription Logic. Formally, concepts are interpreted as subsets of a domain and
roles as binary relations over that domain, and all constructors are equipped
with a precise set-theoretic semantics. The most common constructors include
boolean operators on concepts, and quantification over roles. For example, the
concept PersonlVchild.Male, denotes the set of individuals that are instances
of the concept Person and are connected through the role child only to in-
stances of the concept Male, while the concept JIchild denotes all individuals
that are connected through role child to some individual. Further constructors
that have been considered important include more general forms of quantifi-
cation, number restrictions, which allow one to state limits on the number of
connections that an individual may have via a certain role, and constructors
on roles, such as intersection, concatenation and inverse. A Description Logic
knowledge base, expressing the intensional knowledge about the modeled do-
main, is built by stating inclusion and/or equality assertions between concepts,
which have to be satisfied by the models of the knowledge base. The assertions
are used to specify necessary and/or necessary and sufficient conditions for in-
dividuals to be instances of certain concepts. Reasoning on such knowledge
bases includes detecting inconsistencies in the knowledge base itself, determin-
ing whether a concept can be populated in a model of the knowledge base, and
checking subsumption, i.e. whether all instances of a concept are necessarily
also instances of another concept in all models of the knowledge base.

The Description Logic we propose, called ALCQZ, features a rich combi-
nation of constructors, including qualified number restrictions, inverse roles
and inclusion assertions of a general form. We show that these features make

232 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

ALCQT powerful enough to provide a unified framework for object-oriented
languages and semantic data models. This is done by establishing a precise cor-
respondence with the Entity Relationship model [Che76], and with an object-
oriented language in the style of [AK89]. Moreover, we demonstrate that the
formalism proposed in this paper provides important features that are currently
missing in each family, although their relevance has often been stressed.

Because of the expressive power of ALCQZ, the computational complexity
of reasoning becomes high, but the relevant reasoning tasks remain nonetheless
decidable. We consider this feature very important, because it makes this
language an actual knowledge representation and data modeling language and
not simply a formal framework for comparing apparently different approaches.

The paper is organized as follows. In the next section we present the De-
scription Logic ALCQZ. In Sections 8.3, and 8.4 we deal with semantic data
models and object-oriented data models, respectively, showing that their basic
features are captured by knowledge bases in ALCQZ. Section 8.5 describes
how reasoning in ALC QT supports data modeling. The final section contains
some concluding remarks.

8.2 DESCRIPTION LOGICS

The basic elements of Description Logics are concepts and roles, which denote
classes and binary relations, respectively. Arbitrary concept and role expres-
sions (in the following simply called concepts and roles) are formed by starting
from two sets of atomic concepts and atomic roles and applying concept and
role constructors.

8.2.1 Syntax and Semantics of the Logic ALC QT

We introduce now the Description Logic ALCQZ, in which concepts and roles
are formed according to the following syntax:

c,c' — A|-C|Cnc | cuc |
VR.C | 3R.C | F*"R.C | 3°"R.C
R — P | P
where, A and P, denote atomic concepts and atomic roles respectively, C' and

R denote arbitrary concepts and roles, and n denotes a positive integer. We
also use the following abbreviations to increase readability:

— for AN-A where A is any atomic concept

T for AU-A where A is any atomic concept
F="R.C for F="R.CT13Is"R.C

32"R for 3F="R.T (similarly for 3" R and 3="R)

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 233

Among the constructors used in forming concept expressions we find the basic
set operators, namely set complement (=), union (), and intersection (M) that
are denoted as negation, disjunction, and conjunction, respectively. Description
Logics admit a restricted form of quantification which is realized through so
called quantified role restrictions, that are composed by a quantifier (existential
or universal), a role and a concept expression. Quantified role restrictions allow
one to represent, the relationships existing between the objects in two classes,
and the forms considered in ALCQZ are general enough to capture the most
common ways of establishing such relationships. For example, one can charac-
terize the set of objects all of whose children are male as Vchild.Male, as well
as the set of objects that have at least one male child as Ichild.Male. Number
restrictions are used to constrain the number of instances that are in a cer-
tain relationship. For example, 3=2child.Male characterizes the set of parents
with exactly two male children. The form used here (called qualified number
restrictions [HB91]) is a very general one, allowing one to pose restrictions on
the number of instances connected through a certain role, counting only those
objects that satisfy a certain condition. Observe that the restricted forms of
cardinality restrictions where the involved number is equal to 1, express func-
tionality (35! R) and existence constraints (32! R). Finally, in ALCQT we have
one role constructor, namely inverse role, that allows us to denote the inverse
of a given relation. One can for example state with 3<2child™ that someone
has at most two parents, by making use of the inverse of role child. It is worth
noticing, that in a language without the inverse of roles, in order to express such
a constraint one must make use of two distinct roles (e.g. child and parent)
that cannot be put in the proper relation to each other.

From the semantic point of view, concepts are interpreted as subsets of
a domain and roles as binary relations over that domain. An interpretation
T = (AL,I) over a set A of atomic concepts and a set P of atomic roles
consists of a nonempty finite set AZ (the domain of Z) and a function -~ (the
interpretation function of 7) that maps every atomic concept A € A to a subset
AT of AT (the set of instances of A) and every atomic role P € P to a subset
PT of ATxAT (the set of instances of P). The interpretation function can
then be extended to arbitrary concepts and roles as follows: (#S denotes the
cardinality of the set .S)

(-O) = AT\C?
(Cc,ncyt = clncy
(C,ucy)t = ctuc?
(VR.C)? = {oe AT |Y0.(0,0) e RT -0 € C?}
(3R.C)" = {oe AT |30.(0,0) € R Ao € CT}

234 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

(FZ"R.C)YE = {oe AT |#{0' | (0,0') € RT Ao € CT} > n}
(Fs"R.0)" = {oe AT |#{0' | (0,0') € R* Ao € C*} < n}
(P = {(0,0) € ATxAT | (d',0) € PT}

Notice that 32" R.C is equivalent to R.C.

8.2.2 Knowledge Bases in ALC QT

Using concept expressions of ALCQZ, intensional knowledge about classes and
relations can be expressed through a knowledge base. An ALCQT knowledge
base is constituted by a finite set of assertions of the following form:

A < C (inclusion assertion)

A = C (equality assertion)

where A is an atomic concept and C is an arbitrary ALC Q7 concept expression.

An inclusion assertion A < C specifies (by means of C') only necessary con-
ditions for an object to be an instance of the concept A, and thus corresponds
naturally to the constraints imposed on classes by a schema expressed in a
traditional database model. In such models an object can never be inferred to
be an instance of a certain class, unless this is explicitly stated. In contrast,
an equality assertion specifies both necessary and sufficient conditions for the
instances of the class, and thus corresponds to the concept of view used in
databases. Observe, however, that views are usually not considered to be part
of the schema, but are built on top of it in order to define how the data present
in the schema is used [BDNS94] (see [CDGL95] for a different “view” on this
aspect).

We pose no restrictions at all on the form of the assertions in a knowledge
base. In particular:

1. Each atomic concept may appear more than once on the left side of an
assertion.

2. The assertions may contain (terminological) cycles, i.e. the concept in the
right part of an assertion may refer (either directly or indirectly) to the
atomic concept in the left part of the assertion.

Both these assumptions have a strong impact on the expressiveness of our
formalism, although this is paid by an increased computational complexity of
reasoning. Making assumption (1) is equivalent to allowing for the use of so
called free inclusion assertions [BDS93], which have the form C; < Cs, with

Cy and Cy arbitrary concept expressions. Assumption (2) is seldom made in

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 235

existing concept-based knowledge representation systems, since terminological
cycles increase the computational complexity of reasoning [Baa96], and can be
interpreted under different semantics [Neb91; Sch94; DGL94]. From a data
modeling perspective it is however unrealistic to assume the absence of cycles.

The semantics of a knowledge base is specified through the notion of satisfac-
tion of assertions. An interpretation Z satisfies the inclusion assertion A < C
if AT C C7, and it satisfies the equality A = C if AT = CT. An interpretation
is a model of a knowledge base if it satisfies all terminological assertions in it.

The fundamental reasoning tasks considered in the context of Description
Logics at the intensional level (which is the only one we address here) are
knowledge base satisfiability, concept satisfiability, and logical implication. A
knowledge base I is satisfiable if it admits a model; a concept C' is satisfiable
in K if £ admits a model in which C has a nonempty interpretation; K logically
implies an an inclusion assertion C; < C5 if in all models of K the interpretation
of (7 is a subset of the interpretation of Cs.

We would like to remark that we are restricting our attention to finite inter-
pretations (and thus models), which are the only ones of interest in data model-
ing. The assumption of dealing with finite structures is, however, by no means
common in Description Logics, and needs to be taken explicitly into account
when devising reasoning procedures [CLN94; Cal96a]. In fact, the constructs
present in ALCQZ, and in particular functionality, inverse roles and cycles in
the knowledge base may interact in such a way that a knowledge base admits no
finite model, although it admits one with an infinite domain [CKV90; CLN94].
In other words, ALCQT lacks the finite model property, and reasoning in the
finite and in the unrestricted case are different.

8.3 SEMANTIC DATA MODELS

Semantic data models were introduced primarily as formalisms for database
schema design. They provide a means to model databases in a much richer way
than traditional data models supported by Database Management Systems, and
are becoming more and more important because they are adopted in most of the
recent database and information system design methodologies and Computer
Aided Software Engineering tools.

A rich variety of semantic data models have been introduced with various
degrees of expressiveness (see [HK87] for an extensive survey). They provide
by means of classes an explicit representation of objects with their attributes
and the relationships to other objects. An important feature of semantic data
models is the possibility to specify subtype/supertype relationships (also called
is-a) which provide for the inheritance of properties.

236 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

For simplicity of presentation, we concentrate our attention on one of the
most widespread semantic data models, which has by now become a standard,
extensively used in the design phase of commercial applications, namely the
Entity-Relationship (ER) model. The ER model was introduced in [CheT76],
and subsequently several variants and extensions have been proposed, which
differ in minor aspects in expressiveness and in notation [Teo89; BCN92; Tha92;
Tha93]. In the ER model the domain of interest is modeled by means of an ER
schema, usually represented in a graphical notation which is particularly useful
for an easy visualization of the data dependencies. However, in the following
we introduce a first-order formalization, which includes the most important
features present in the different variants and makes it possible to establish a
precise correspondence with Description Logics.

8.3.1 The Entity-Relationship Model

The basic elements of the ER model are entities, relationships, and attributes.
An entity set (or simply entity) denotes a set of objects, called its instances,
that have common properties. Elementary properties are modeled through at-
tributes, whose values belong to one of several predefined domains, such as
Integer, String, or Boolean. Properties that are due to relations to other
entities are modeled through the participation of the entity in relationships. A
relationship set (or simply relationship) denotes a set of tuples (also called its
instances), each of which represents an association among a different combina-
tion of instances of the entities that participate in the relationship. Since each
entity can participate in a relationship more than once, the notion of ER-role is
introduced, which represents such a participation and to which a unique name
is assigned. The arity of a relationship is the number of its ER-roles. Cardinal-
ity constraints can be attached to an ER-role in order to restrict the number
of times each instance of an entity is allowed to participate via that ER-role
in instances of the relationship. Such constraints can be used to specify both
existence dependencies and functionality of relations [CK86]. They are often
used only in a restricted form, where the minimum cardinality is either 0 or 1
and the maximum cardinality is either 1 or occ. Cardinality constraints in the
form considered here have been introduced already in [Abr74] and subsequently
studied in [GM84; LN90; Fer91; YPS94; Tha92; CL94b; CL94a]. Additionally,
so called is-a relations are used to represent inclusion assertions between enti-
ties, and therefore the inheritance of properties from a more general entity to
a more specific one. We do not consider keys in our formalization, which are
essential for a mapping of ER schemas into relational schemas, but lose their
relevance when reasoning on a conceptual specification. For a treatment of

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 237

reasoning on keys in a logic based framework see [BW97; CDGL95]. We define
now in a more formal way syntax and semantics of ER schemata.

An ER schema S is constructed starting from pairwise disjoint sets of entity
symbols, relationship symbols (each with an arity), ER-role symbols, attribute
symbols, and domain symbols. Each domain symbol D has an associated pre-
defined basic domain DB?, and we assume the basic domains to be pairwise
disjoint. For each entity symbol a set of attribute symbols is defined, and to
each such attribute a unique domain symbol is associated. Each relationship
symbol of arity k has k associated ER-role symbols, each with an associated
entity symbol, and defines a relationship between these entities. We assume
that each ER-role symbol belongs to a unique relationship, thus determining
also a unique entity. The cardinality constraints are represented by two func-
tions c¢ming, from ER-role symbols to nonnegative integers, and c¢mazs, from
ER-role symbols to positive integers union the special symbol co. is-a relations
between entities are modeled by means of a binary relation <s. We do not
need to make any special assumption on the form of <g, such as requiring that
it is acyclic or injective.

In the commonly accepted graphical ER notation, entities are represented
as boxes, whereas relationships are represented as diamonds. An attribute is
shown as a circle attached to the entity for which it is defined. ER-roles are
graphically depicted by connecting the relationship to the participating entities
and labeling the connection with the associated cardinality constraints. An is-a
relation between two entities is denoted by an arrow from the more specific to
the more general entity.

Example 1 Figure 8.1 shows a simple ER schema modeling the situation at
an university. The entity Course represents courses which enroll students and
are taught by professors. Cardinality constraints are used to impose limits on
the number of students that may be enrolled in a course (between 10 and 50)
and on the number of courses that each student may attend (between 3 and 6),
and to express that each course is taught by exactly one professor, who in turn
must teach at least one course. The entities AdvCourse and GradStudent are
specializations of Course and Student, respectively. n

The semantics of an ER schema can be given by specifying which database
states are consistent with the information structure represented by the schema.
Formally, a database state B corresponding to an ER schema S is constituted
by a nonempty finite set A8, assumed to be disjoint from all basic domains,
and a function -2 that maps

m every domain symbol D to the corresponding basic domain DB,

m every entity E to a subset EB of AB,

238 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

Tof Tby
TEACHING Professor
(1,1) (1,00)

Student

A

AdvCourse degree/String O—— GradStudent

Figure 8.1 An ER schema

m every attribute A to a partial function AB from AB to the union, for all
domains D, of DB? and

m every relationship R to a set RB of labeled tuples over AB.

A labeled tuple over a domain AB is a function from a set of ER-roles to AB.
The labeled tuple T that maps ER-role U; to o;, for ¢ € {1,...,k}, is de-
noted [Uy:o1,...,Ux:0k]. We also write T'[U;] to denote o;, and call it the
Uj-component of T. The elements of EB, AP and RE are called instances of
E, A, and R respectively.

A database state is considered acceptable if it satisfies all integrity con-
straints that are part of the schema. This is captured by the notion of legal
database state. A database state B is legal for an ER schema S, if it satisfies

the following conditions:

m For each pair of entities Fy, Fy> with E; <s FEs, it holds that E]B C Ef.

m For each entity E, if E has an attribute A with domain D, then for each
instance e € EB, AB(e) is defined and in DB>.

m For each relationship R of arity k& between entities Ey, ..., E, to which
R is connected by means of ER-roles Uy, .. ., Uy respectively, all instances
of R are of the form [U;:eq,..., Uy:er], where e; € EB fori e {1,... k}.

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 239

m For each ER-role U associated to relationship R and entity E, and for
each instance e of E, it holds that

eming(U) < #{r € RP | r[U] = e} < cmazs(U).

Notice that an is-a relation is interpreted as set containment between the
extensions of the involved entities. In addition, it is worth emphasizing that
the definition of database state reflects the usual assumption that database
states are finite structures (see also [CKV90]). In fact, the basic domains are
not required to be finite, but for each legal database state for a schema, only
the finite set of values of attributes of elements of A® is actually of interest.

8.3.2 Formalizing Entity-Relationship Schemata in Description Logics

We now show that the semantics of the ER model can be captured in De-
scription Logics, by defining a translation ¢ from ER schemata to ALCQT
knowledge bases, and then establishing a correspondence between legal data-
base states and models of the derived knowledge base.

The knowledge base ¢(S) derived from an ER schema S is defined as follows:
It contains an atomic concept ¢(A) for each domain symbol, entity symbol, or
relationship symbol A in S, an atomic role ¢(P) for each attribute symbol or
ER-role symbol P in S, and the set of assertions of ¢(S) contains the following
elements:

m For each pair of entities F;, Fy such that F; <gs Fs, the assertion
P(B1) = ¢(Es).

m For each entity F with attributes A;,..., Ay with domains Dy,..., Dy
respectively, the assertion

O(E) X Yo(A1).6(D1) 1+ 1Y6(44).0(Ds) 1
3=1g(Ar) M-+ 131G (An).

m For each relationship R of arity k between entities F1, ..., Ey, to which R
is connected by means of ER-roles Uy, ..., Uy respectively, the assertions

¢(R) = Vo(U1).¢(Er) M- NIYG(Uy).p(Ep) M
I NN 37Uk

V(6(U))".6(R), forie{l,....k).

BN
=
A

m For each ER-role U associated to relationship R and entity F,

240 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

TEACHING = VTof.Course 13~ 'Tof MVTby.Professor M3~ Tby
ENROLLING < VEin.Course M3~ 'Ein M VEof.Student M3~ 'Eof
Course = VTof .TEACHING M 3I=!Tof™ N
VEin ™ .ENROLLING M 32!°Ein~ M 3<*°Ein~
AdvCourse j Course
Professor =< VTby .TEACHING
Student =< VEof .ENROLLING M 3>®Eof M 3<°Eof"

GradStudent = Student I1Vdegree.String M3~ degree.

Figure 8.2 The knowledge base corresponding to the ER schema in Figure 8.1

— if m = eming(U) # 0, the assertion

G(E) = " (o(U)) "
— if n = cmazs(U) # oo, the assertion

$(E) < F<"(o(U))".

m For each pair of symbols C;,Cy such that C is either a relationship or a
domain symbol, C5 is either an entity, a relationship, or a domain symbol,
and C; # Oy, the assertion

$(C1) = —¢(Ca). (8.1)

Example 1 (cont.) We illustrate the translation on the ER schema of Fig-
ure 8.1. The knowledge base that captures its semantics is shown in Figure 8.2,
where the disjointness assertions (8.1) are omitted for brevity. m

Regarding the transformation provided above we observe the following;:

m Since an ER schema expresses only necessary conditions for objects of
the domain to be instances of entities, the translation makes only use of
inclusion assertions, while equality assertions are not necessary.

m Each relationship is reified, i.e. is modeled by means of a concept, whose
instances represent the tuples of the relationship. The assertions enforce
that for each role ¢(U) of the relationship each such instance is connected

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 241

to exactly one object that represents the U-component of the correspond-
ing tuple.

m Both inverse roles and number restrictions are exploited to capture the
semantics of ER schemata. More precisely, functionality of the roles asso-
ciated to the ER-roles is needed to represent the fact that each instance of
a relationship is connected via each ER-role to exactly one instance of the
associated entity, while we use number restrictions on the corresponding
inverse roles to represent cardinality constraints of the ER schema.

= Even when the ER schema is acyclic, the resulting knowledge base con-
tains cycles.

m By means of the inverse constructor, a binary relationship could be
treated in a simpler way by choosing a traversal direction and mapping
the relationship directly to a role.

In order to show that the translation preserves the semantics of the ER
schema we define a mapping between database states corresponding to the ER
schema and finite interpretations of the knowledge base derived from it. Due to
reification of relationships, this mapping is however not one-to-one and we first
need to characterize those interpretations of the knowledge base that directly
correspond to database states.

We say that an interpretation Z of the knowledge base ¢(S) derived from
an ER schema S is relation-descriptive, if for every relationship R of S, with
ER-roles Uy, ..., Uy, for every d,d’ € (¢(R))*, we have that

(N\ (va" e AT (d,d") € (¢(U:)" & (d',d") € (¢(U:))")) » d=d.
1<i<k

Intuitively, the condition states that there are no two instances of a concept
corresponding to a relationship that represent the same tuple. Notice that this
condition is implicit in the semantics of the ER model (where the extension
of a relationship is a set of tuples), while it does not necessarily hold once
relationships are reified. It also cannot be imposed in ALCQZ by suitable
assertions. However, when reasoning on the knowledge base corresponding to
an ER schema, it is sufficient to restrict the attention to relation-descriptive
models. Indeed, if a concept expression C of the knowledge base ¢(S) obtained
from an ER schema S is satisfiable in ¢(S), then there is a relation-descriptive
model of ¢(S) in which C has a nonempty extension [Cal96b]. This can be
exploited since relation-descriptive models of an ALC Q7 knowledge base ¢(S)
can be put in correspondence with legal database states for S. More precisely,

242 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

the correspondence can be established by defining two mappings as and (s as
follows:

® g is a mapping from database states corresponding to S to relation-
descriptive interpretations of ¢(S), with the following properties (let B
be a database state and 7 = as(B)):

— If B is a legal database state, then 7 is a model of ¢(S).

— A7 is the union of AB, the set of (reified) tuples, and the set of
domain values that appear in B as a value of some attribute.

— For each entity E, (¢(E))* = EB.

m (s is a mapping from relation-descriptive interpretations of ¢(S) to da-
tabase states corresponding to S, with the following properties (let Z be
an interpretation of ¢(S) and B = Bs(7)):

— If 7 is a model of ¢(S), then B is a legal database state.

— AP s the set of all objects in AZ that are not instances of any atomic
concept corresponding to a relationship or a basic domain.

— For each entity E, EB = (¢(E))*.

The existence of the mappings as and g, allows us to reduce the problem of
checking properties that hold for an ER schema to the problem of reasoning on
the corresponding ALC Q7 knowledge base [Cal96b]. Indeed, given a relation-
descriptive model Z of ¢(S) in which a concept ¢(E) corresponding to an entity
E is satisfiable, 8s(Z) is a legal database state in which entity E is populated.
Conversely, applying as to such a legal database state, we obtain a suitable
model of ¢(S).

8.3.3 Extending the Expressiveness of the Modeling Language

Semantic data models in general, and the ER model in particular, do not pro-
vide several features and modeling primitives which would prove useful in order
to represent complex dependencies between data. The richness of constructs
that is typical of Description Logics, and the correspondence between the two
formalisms established in the previous section, makes it possible however, to
add such constructs to the basic model and take them fully into account when
reasoning on a schema. We provide now several meaningful examples of possi-
ble additions to the basic ER model that arise as a natural consequence of the
correspondence with ALCQT.

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 243

8.3.3.1 Arbitrary Boolean Constructs on Entities. The only direct
relationship between entities that can be expressed in the basic ER model is
the is-a relation. A common extension is by so called generalization hierarchies
(see e.g. [BCNO2]), which allow one to express that the extension of an entity
should be the disjoint union of the extensions of other entities. Such construct
can easily be translated by making use of union and negation of Description
Logics.

Example 1 (cont.) The fact that each professor is either an associate or a
full professor can be expressed by a simple generalization hierarchy stating
that the entity Professor is the generalization of the two entities AssProf
and FullProf. We can translate this hierarchy in ALCQZ by adding to the
assertions in Figure 8.2 the following:

Professor j AssProf U FullProf
AssProf j Professor 1 —FullProf
<

FullProf Professor -

In general, each level in a generalization hierarchy expressing that entity E

is the generalization of the disjoint entities F, ..., E, can be translated to the
following assertions:
P(E) =X ¢(Er)U---Ug(Ey)
¢(Er) = O(E) N —¢(Ez) M—¢(Es) M- T =¢(Ey)
G(Ex) = G(BE)N=¢(E3) M=¢(Eg) M-+ N =p(Ey)
¢(En1) =2 o(E)N—¢(Ey)
P(En) = $(E)

More generally, exploiting the possibility to construct general boolean ex-
pressions in ALCQT we can make use of arbitrary boolean combinations of
entities in a schema, thus expressing in particular disjointness and disjunction
of entities, which are forms of negative and incomplete knowledge [DL93].

8.3.3.2 Refinement of Properties along an ISA Hierarchy. Another
important extension that should be considered is the possibility to specify more
complex forms of refinement of properties of entities along ISA hierarchies, than
the mere addition of attributes. This is already an essential feature of the more
recent object-oriented models. In particular, cardinality constraints could be
refined by restricting the range of values, and the participation in relationships

244 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

can be restricted. One may require for specific instances of an entity that the
objects they are related to via a certain relationship belong to a more specific
entity than the one directly associated to the ER-role. Such forms of constraints
can be naturally expressed in ALC Q7 by making use of universal quantification
over roles.

Example 1 (cont.) The following assertion imposes that advanced courses
are followed by at least 5 and at most 15 students (thus refining the limits that
hold for arbitrary courses), and that all these students are graduate:

AdvCourse < 3>°Ein~ M 3I<YEin~ MVEin .VEof.GradStudent .

8.3.3.3 Definitions of Classes by Means of Complex Properties. In
the ER model (and more generally in semantic data models) one can spec-
ify only necessary conditions that the instances of entities (or more generally
classes) must satisfy. This means that in a database that conforms to the
schema one cannot deduce that a certain object is an instance of an entity un-
less this fact is explicitly stated. When modeling a complex domain, however,
in order to capture more precisely the intended semantics, one would like to
be able to define classes of objects through necessary and sufficient conditions,
or even to state just sufficient conditions for an object to be an instance of a
class. By using the different types of assertions of ALCQZ such conditions can
be easily imposed and become part of the schema. In addition, the availability
of the various constructors allows one to express relatively complex conditions.

Example 1 (cont.) A sufficient condition for a student to be considered grad-
uate is that he has a degree. This can be specified by the following assertion,
which is used together with the assertion in Figure 8.2 that specifies the nec-
essary conditions.

Student 1 Jdegree < GradStudent -

8.4 OBIJECT-ORIENTED DATA MODELS

Object-oriented data models have been proposed with the goal of devising da-
tabase formalisms that could be integrated with object-oriented programming
systems [Kim90]. They are the subject of an active area of research in the
Database field, and are based on the following features:

m They rely on the notion of object identifier at the extensional level (as
opposed to traditional data models which are value-oriented) and on the
notion of class at the intensional level.

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 245

m The structure of the classes is specified by means of typing and inheri-
tance.

As in the previous section, we introduce a language for specifying object-
oriented schemata, which includes the common features of object-oriented data
models, and discuss its relationship with other class-based formalisms by show-
ing that schemata expressed in this language can be correctly represented as
knowledge bases in ALCOT.

8.4.1 An Object-Oriented Data Model

We define a simple object-oriented language in the style of the most popular
models featuring complex objects and object identity. Although we do not refer
to any specific formalism, our model is inspired by the one presented in [AK89],
where a formal characterization is presented, but embodies the basic features
of the static part of the ODMG standard [CB97]. We recall that we restrict
our attention to the structural component of object-oriented models and do
not consider those aspects related to the definition of methods associated to
the classes.

An object-oriented schema is defined over a finite set of class names, denoted
by the letter C' and a finite set of attribute names, denoted by the letter A. An
object-oriented S schema is a finite set of class declarations of the form:

Class Cis-a C,...,Cy type-is T,

with exactly one such declaration for each class C', and where T' denotes a type
expression built according to the following syntax:

T — C|
Union T3, ..., Ty End |
Set-of T |
Record A1: Ty, ..., Ay: Ty End.

Example 2 Figure 8.3 shows a fragment of the object-oriented schema corre-
sponding to the Entity-Relationship schema of Figure 8.1. L]

Each class declaration imposes constraints on the instances of the class it
refers to. The is-a part of a class declaration allows one to specify inclusion
between the sets of instances of the involved classes, while the type-is part
specifies through a type expression the structure assigned to the objects that
are instances of the class.

246 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

Class Teacher type-is Class Course type-is

Union Professor, GradStudent Record

End enrolls: Set-of Student,

taughtby: Teacher

Class GradStudent is-a Student type-is End

Record T

degree: String
End

Figure 8.3 An object-oriented schema

The meaning of an object-oriented schema is given by specifying the char-
acteristics of an instance of the schema. The definition of instance makes use
of the notions of object identifier and value.

Let us first characterize the set of values that can be constructed from a set
of symbols, called object identifiers. Given a finite set O of symbols, the set Vo
of values over O is inductively defined as follows:

. OCVo.

m Ifog,..., vg € Vo then {jvr,..., v} € Vo.

3 3

m Ifoug,..., vg € Vo then [Aq:vq,.. ., Ap:vg] € Vo.

m Nothing else is in Vp.
A database instance J of a schema S is constituted by

m a finite set O7 of object identifiers;

®m a mapping 77 assigning to each class name a subset of O ;

m a mapping p7 assigning a value in Vps to each object in O7.

Although the set Vps of values that can be constructed from a set O of object
identifiers is infinite, for a database instance one needs only to consider a finite
subset of V7, since finite are the structures that can be stored in a database.
For an object-oriented schema S and an instance J of S, this finite set is called
the set V7 of active values with respect to J, and is constituted by the union
of

m the set @7 of object identifiers and

m the set of values assigned by p7 to the elements of O, including those
values that are not explicitly associated with object identifiers, but are
used to form other values. m

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 247

The interpretation of type expressions in J is defined through an interpre-
tation function -7 that assigns to each type expression a subset of Vps such
that the following conditions are satisfied:

¢y = #7(C)
(Union T4,...,Tx End)? = 7Y U -~ U T/
(Set-of T)Y = {{vr,..., v} | k> 0,0, € T,
fori e {1,...,k}}
(Record Ay:Ty,..., Ap: Ty End)? = {[Ar:v1,..., Ap:op] | B >k,

v; €TY, forie {1,...,k},
vj € Voo, for je {k+1,...,h}}.

Notice that the instances of a class of type record may have more compo-
nents than those specified in the type of the class. Thus we are using an
open semantics for records, which is typical of object-oriented data models (see
e.g. [AK89)).

In order to characterize object-oriented data models we define which in-
stances are admissible for a schema. A database instance J of an object-
oriented schema & is said to be legal (with respect to S) if for each declaration

Class C is-a C,...,C, type-is T

in S, it holds that C7 C CY for each i € {1,...,n}, and that p7 (CY) C T7.
Therefore, for a legal database instance, the type expressions that are present

in the schema determine the (finite) set of active values that must be considered.

The construction of such values is limited by the depth of type expressions.

8.4.2 Formalizing Object-Oriented Schemata in Description Logics

We establish a relationship between ALC Q7T and the object-oriented language
presented above. This is done by providing a mapping from object-oriented
schemata into ALCQT knowledge bases. Since the interpretation domain for
an ALC QT knowledge base consists of atomic objects, whereas each instance of
an object-oriented schema is assigned a possibly structured value (see the defi-
nition of V»), we need to explicitly represent some of the notions that underlie
the object-oriented language. In particular, while there is a correspondence be-
tween concepts and classes, one must explicitly account for the type structure
of each class. This can be accomplished by introducing in ALCQZ a con-
cept AbstractClass, to represent the classes, and two concepts RecType and
SetType to represent the corresponding types. The associations between classes
and types induced by the class declarations, as well as the basic characteristics

248 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

of types, are modeled by means of roles: the (functional) role value models the
association between classes and types, and the role member is used for specifying
the type of the elements of a set. Moreover, the concepts representing types are
assumed to be mutually disjoint, and disjoint from the concepts representing
classes. These constraints are expressed by suitable inclusion assertions in the
knowledge base.

More formally, the knowledge base ¢)(S) corresponding to an object-oriented
schema S contains the predefined atomic concepts AbstractClass, RecType,
and SetType, and one concept 1(C) for each class name C in S. It contains
also the predefined atomic roles value and member, and one atomic role ¢)(A)
for each attribute name A in S.

Before specifying the set of assertions of 1(S) we specify how the function
1) maps each type expression into a concept expression as follows:

m Every class C is mapped into an atomic concept (C).

m Every type expression Union T, ..., T End is mapped into ¢ (T7) U --- U
(1)

m Every type expression Set-of T' is mapped into SetType [Vmember.y)(T).

m Every attribute A is mapped into an atomic role ¢ (A), and every type
expression Record A;:Ty,..., Ar: Tx End is mapped into
RecType M V(A1) 0(Th) M 3= (A1) m---N
Vap(Ag).p(Ty) M 3= p(Ay).

Using ¢ we define the knowledge base ¢)(S) corresponding to S as constituted
by the inclusion assertions

AbstractClass =< 3 'value
RecType =< Vvalue.—
n

SetType Vvalue.— 1 —RecType

and for each class declaration
Class C is-a C,...,C, type-is T
in &, an inclusion assertion
$(C) < AbstractClassM(Cy) M --- M (C,) MVvalue)(T).
Example 2 (cont.) We illustrate the translation on the fragment of object-

oriented schema in Figure 8.3. The corresponding ALC Q7T knowledge base is
shown in Figure 8.4. n

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 249

Course j AbstractClass I
Vvalue.(RecType [37 enrolls M 3= taughtby N
Venrolls.(SetType I Vmember.Student) M
Vtaughtby.Teacher)
Teacher = AbstractClass I Vvalue.(GradStudent L Professor)
GradStudent j AbstractClass [1 Student I1
Vvalue.(RecType MVdegree.String M3~ degree)
AbstractClass =< 3 'value
RecType = Vvalue.l
SetType = Vvalue.l I —RecType

Figure 8.4 The ALC QT knowledge base corresponding to the object-oriented schema in
Figure 8.3

Some remarks on the above translation are in order.

m As for the ER model the resulting knowledge base contains inclusion
assertions, but not equality assertions.

m The relationship between a class and the associated type expression is rei-
fied, i.e. explicitly represented through the role value. Moreover, the type
structure of each class is represented in terms of the concepts RecType
and SetType, that explicitly characterize records and sets, respectively.
The record attributes are directly mapped into functional roles, while set
elements are associated to a set through the role member.

m Inverse roles are not needed for the formalization of object-oriented data
models.

m The use of number restrictions is limited to the value 1, which corresponds
to existence constraints and functionality.

Below we discuss the effectiveness of the translation . First of all ob-
serve that the knowledge base 1 (S) resulting from the translation of an object-
oriented schema S may admit models that do not have a direct counterpart
among legal database instances of S. More precisely, by characterizing the in-
terpretations as directed labeled graphs [CLN97], one finds that the concepts
that translate type expressions involving record and set structures admit cer-
tain cyclic models in which values, which have a tree-like structure, have no

direct counterpart.

250 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

value a a9

1

[1

C RecType RecType ecType
as

Figure 8.5 A model containing cycles

Example 3 Consider the object-oriented schema &, containing a single class
declaration

Class C type-is Record a; : Record as : Record as : C' End End End
which is translated to

C < AbstractClassll
Vvalue.(RecType M3~ 1a; M
Va;.(RecType M 3~tay M
Vas.(RecType M3~ a3 MVasz.C))).

Figure 8.5 shows a model of (S) represented as a graph. For clarity, we
have named the instances of C', and hence of AbstractClass, with o and the
instances of RecType with v. Observe the two different types of cycles in the
graph. The cycle involving individuals 09, v3, v4, and vs does not cause any
problems since it contains an arc labeled with value, which is not part of the
structure constituting a complex value. In fact, v3 represents the record value
[a:: [az: [as: 02]]]]]- On the other hand, the cycle involving v, and v, represents
(together with oo connected via az to vy) a record of infinite depth. n

To establish the correspondence between legal instances of object-oriented
schemata and finite interpretation of their translations one needs to unfold
“bad” cycles of the form above (which do not include any individual corre-
sponding to an object identifier) into finite trees of depth bound by the size
of the object-oriented schema. More precisely, let 7 be a finite interpretation
of ¥(S). We call unfolded version of Z the interpretation obtained by unfold-
ing the bad cycles in Z and generating new individuals only for the instances
of RecType and SetType occurring in the unfolded cycles. For a nonnegative
integer m, we call m-unfolded version of 7, denoted as Z;,,,, the interpretation

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 251

obtained by truncating at depth m each infinite tree generated in the process
of unfolding.

The correctness of (S) can now be established by showing that, for every
object-oriented schema S of depth m, there exist two mappings:

B qg, from instances of S into finite interpretations of ¢(S), and

m «,, from active values of instances of S into domain elements of the finite
interpretations of ¥(S)

which provide the desired correspondence between the interpretation struc-
tures. In particular, as and «, can be defined in such a way that: (i) if J is
a legal instance of S, then as(J) is a finite model of ¢(S), and (ii) for each
type expression T of S and each active value v € V7, v € TY if and only if
a,(v) € (p(T))*s).

Conversely, one can define two mappings:

m [, from finite interpretations of ¢(S) into instances of S, and

m [, from domain elements of the m-unfolded versions of the finite inter-
pretations of ¢(S) into active values of instances of S,

such that: (i) for each finite model Z of ¢(S), Bs(Z) is a legal instance of S,
and (ii) for each concept ¢ (T"), which is the translation of a type expression T
of 8§, and each d € AT, d € ((T))*= if and only if B,(d) € TPs(7),
Similarly to the ER model, the existing of the above mappings allows us
to reduce the problem of checking properties of classes in an object-oriented
schema to the problem of reasoning on the corresponding knowledge base.

8.4.3 Extending the Expressiveness of the Modeling Language

The ability to represent any object-oriented schema as a Description Logic
knowledge base makes it feasible to consider several extensions of the object-
oriented formalism useful for the purpose of conceptual modeling. First of all,
the same considerations developed for the ER model with regard to the use
of arbitrary boolean constructs on classes can be applied also in the object-
oriented setting, which provides disjunction but does not admit any form of
negation. Second, one can analogously exploit the ability of expressing class
definitions in addition to the inclusion statements that are typical of object-
oriented modeling languages [BN94]. However, there are several additional
features that can be specifically addressed in the framework of object-oriented
languages, as shown below.

252 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

8.4.3.1 Cardinality Constraints. Cardinality Constraints that are typi-
cal of semantic data models become expressible in object-oriented schemata.

Example 2 (cont.) We can specify numerical restrictions in the definition of
a course, which can enroll between 2 and 30 students.

Course j AbstractClassTl
Vvalue.(RecType M3~ lenrolls M3~'taughtby I
Venrolls.(SetType I Vmember.Student N
322member M I<3%member) M
Vtaughtby.Teacher) n

Notice that, the usage of cardinality restrictions in the example above actually
corresponds to the ability to constrain the cardinality of sets.

8.4.3.2 General Restrictions on the Values of Attributes. The usage
in object-oriented modeling languages of constructs corresponding to quanti-
fied role restrictions is limited to the translation of record and set structures.
Adding general forms of quantified role restrictions amounts to admitting more
flexible structures, whose closer counterpart are possibly frames in knowledge
representation systems (see e.g. [BS85; CLN94]). In a frame structure one can
for example specify that a slot, which is the counterpart of a record attribute,
can have restrictions on the number and type of fillers. In addition, instead of
introducing set types explicitly for those attributes whose values are sets, one
can directly use multivalued attributes and express the constraints on the type
and the number of instances using the constructors of ALCQT.

Example 4 We can specify, that a graduate student must have at least one
degree, but maybe more, and express the relationship between courses and
students by means of the attribute enrolls which we now consider multivalued.

GradStudent = Student I ddegree

Course = Venrolls.Student M 32%2enrolls 3<*%enrollsm
Vtaughtby.(Professor Ll GradStudent) M3~ taughtby m

8.4.3.3 Inverse of Roles. We have already observed that inverse roles are
not necessary for the formalization of object-oriented data models. However, by
admitting inverse of roles in the language one gains the ability to put constraints
using a relation in both directions, as it is customary in semantic data models.

Example 2 (cont.) We can state that each professor should teach at least
one course by means of the assertion:

Professor j Jtaughtby .Course u

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 253

Indeed, the possibility of referring to the inverse of an attribute is often ruled
out in object-oriented models. However, this strongly limits the expressive
power of the data model, as pointed out in recent papers (see e.g. [AGO91]).
On the other hand, we recall that inverse roles have been included in the ODGM
standard [CB97].

8.5 SUPPORT FOR DATA MODELING

The logical formalization of data models in terms of Description Logics is a first
step towards the development of logic-based modeling tools that can support
the database designer in his activity, by taking over certain tasks that in tradi-
tional CASE tools are left to the responsibility of the designer. In this section
we first discuss the tasks that can be performed by a Description Logic system
by relying on its reasoning capabilities, thus identifying the essential reasoning
services that the system should provide. We then briefly discuss a technique
for reasoning on ALC QT knowledge bases. Finally, we discuss how reasoning
in ALCQT does indeed capture the reasoning services for the semantic and
object-oriented schemata described in the paper.

8.5.1 Reasoning Tasks in Data Modeling

Traditional database modeling tools support the designer with a user friendly
graphical environment and provide means to access different kinds of repos-
itories that store information associated to the elements of the developed
schemata. However, these tools do not provide any support for higher level
activities related to managing the complexity of schemata. In particular, the
burden of checking relevant properties of schemata, such as consistency or re-
dundancy, is left to the responsibility of the designer.

There are different ways in which ALCQ7 knowledge bases may enter the
database modeling process and may be used by a system to support this activity.

m A knowledge base may be the result of a direct translation by a CASE
tool from a database schema expressed in one of the traditional (object-
oriented or semantic) data models. Notice that due to the expressiveness
of ALC QT several additional constraints that cannot be directly expressed
in the source data model may be expressed by the designer and included in
the knowledge base, in order to be considered by the reasoning procedures.

m A knowledge base may be constructed and managed by the design tool in
a way completely transparent to the designer in order to perform various
kinds of checks on the schemata.

254 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

SUPERVISING =< VSby.Professor 13~ 'Sby IVSof.GradStudent 3~ Sof
Professor < 3%'Tby~ .VTof.AdvCourse I1VSby .SUPERVISING M 3<’Sby~
GradStudent < 322Ein~ .VEof.AdvCourse 1 3<*Ein~.VEof.AdvCourse I
VSof ~.SUPERVISING M 3~'Sof ~
AdvCourse = VEof .VEin.GradStudent

Figure 8.6 An inconsistent extension of the knowledge base shown in Figure 8.2

m ALCQT may be used as a unifying formalism in which to express schemata
in different data models for the purpose of integration. In this case,
additional assertions may be added to those resulting from the individual
schemata in order to express so called interschema constraints [CL93;
Hul97].

Once a formalization of a schema in terms of ALC QT is provided, the check-
ing of properties which ensure correctness and optimality of a design, can be
turned into reasoning tasks in ALCQZ. Such properties are addressed in the
following.

8.5.1.1 Schema Consistency. A schema is consistent, if there is a
(nonempty) database that satisfies (all constraints specified in) the schema.
Although the problem of checking schema consistency arises already in rela-
tively simple data models (e.g. the ER model without is-a relations [LN90]), it
becomes much more difficult to solve if the expressiveness of the formalism is
increased.

Example 5 Consider augmenting the ER schema in Figure 8.1 with a new re-
lationship SUPERVISING, which is linked with role Sby to Professor and with
role Sof to GradStudent, each with suitable cardinality constraints. Addition-
ally we want to impose more realistic constraints on the relationship ENROLLING
between AdvCourse and GradStudent. These additional constraints, which
cannot be stated in the ER model, are expressed (together with the translation
of the relationship SUPERVISING) as assertions in ALCQZ in Figure 8.6. They
express that advanced courses may enroll only graduate students, and each
such student must be enrolled in at least 2 and at most 4 advanced courses.
We impose also that each professor must teach at least one advanced course.
The formalization above seems reasonable. It turns out, however, that the
knowledge base which is the union of the assertions in Figures 8.2 and 8.6 (and
of the disjointness assertions stemming from the translation of the ER schema)
is unsatisfiable. In order to understand why, one has to consider that the

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 255

cardinality constraints on the participation of an entity in a relationship pose
restrictions on the number of their instances. For example, they enforce that
in every legal database state, the number of instances of GradStudent is the
same as the number of instances (i.e. reified tuples) in SUPERVISING. When such
constraints appear along a cycle in the schema it may happen that they cannot
be satisfied together. For this to be the case, the assumption that the data-
base contains a finite number of objects is essential. In the example, one such
cycle is constituted by: AdvCourse, ENROLLING, GradStudent, SUPERVISING,
Professor, TEACHING, and back to AdvCourse. n

It is worth emphasizing, that situations like the one exemplified above are
not unusual in practice. They are generally difficult to discover until the data
base population stage, where handling them can be rather inconvenient.

8.5.1.2 Class Consistency. A class is consistent, if it has a nonempty
extension in some database that satisfies the schema. The inconsistency of a
class may be due to a design error or due to over-constraining. In any case,
the designer can be forced to remove the inconsistency, either by correcting the
error, or by relaxing some constraints, or by deleting the class, thus removing
redundancy from the schema. Observe also that while schema consistency
follows from consistency of all classes in the schema (in fact from consistency
of at least one class), the converse is in general not true.

8.5.1.3 Class Equivalence. Two classes are equivalent if they denote the
same set of instances in all databases that satisfy the schema. Determining
equivalence of two classes allows for their merging, thus reducing the complexity
of the schema. It is worth emphasizing that such an operation is in practice
a very difficult task. Moreover, the ability to introduce definitions, allows
for a hierarchical structuring of the schema which can be used to support a
refinement approach to schema design, while ensuring the overall consistency.

8.5.1.4 Class Subsumption. A class Cy is subsumed by a class Cs if in
all databases that satisfy the schema the extension of C4 is a subset of the
extension of Cy. Subsumption allows one to deduce properties for one class
from those of another one. It is also the basis for a classification of all the
classes that appear in a schema within a lattice. Such a classification, as in any

object-oriented approach, can be exploited in several ways within the modeling
process [BN94].

Example 6 Suppose we extend now the ER schema in Figure 8.1 as shown in
Figure 8.7, linking the relationship SUPERVISING, with role Sby to GradStudent
and with role Sof to Student. The cardinality constraints express that each

256 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

SUPERVISING =< VSby.GradStudent M 3~'Sby I1YVSof.Student 13~ 'Sof
GradStudent =< 35'Sby~ MVSby .SUPERVISING
=

Student 32'Sof ™ MVSof .SUPERVISING

Figure 8.7 An extension of the knowledge base shown in Figure 8.2 which forces equiva-
lence of two classes

student has at least one supervisor and that each graduate student supervises at
most one student. Now the constraints we have imposed force the two classes
Student and GradStudent to have the same number of instances, and since
the extension of GradStudent is a subset of the extension of Student (and
the domain is assumed to be finite), the two classes are in fact equivalent. We
can also say that Student is subsumed by GradStudent in this augmented
schema. Observe that this property may have consequences on other classes
in the schema. If, for example we introduce a new subclass BasicCourse of
Course, and require by means of

BasicCourse < CoursellVEin .VEof.-GradStudent 3*'Ein~

that basic courses enroll only students which are not graduate, and there should
be at least one enrolled student, then BasicCourse is inconsistent. [

8.5.1.5 Logical Consequence. A property is a logical consequence of a
schema if it holds in all databases that satisfy the schema. The properties that
should be considered are those of the same form as the constraints that can be
expressed in the schema definition language. Determining logical consequence
is at the basis of all types of reasoning that a Description Logic system can
provide. In particular, all reasoning tasks we have considered above can be
rephrased in terms of logical consequence. For example, a class A is inconsistent
in a schema if and only if the constraint A < — is a logical consequence of
the assertions in the schema. Logical consequence is useful on the one hand
to reduce the complexity of the schema by removing those constraints that
logically follow from other ones, and on the other hand it can be used to explicit
properties that are implicit in the schema, thus enhancing its readability.

8.5.2 Realization of Reasoning

In order to provide the above mentioned services, we first address the decid-
ability of the relevant reasoning tasks in ALCQZ knowledge bases, and then
illustrate how the method can be applied to perform reasoning tasks that are

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 257

specific to semantic data models and object-oriented schemata. In this way
reasoning can effectively support the designer in the data modeling activity.

8.5.2.1 Reasoning in ALCQZ. The richness of constructs available in
ALCQT, which in addition to the basic Description Logic constructs includes
inverse of roles, qualified number restrictions and cyclic assertions, makes rea-
soning on a knowledge base a nontrivial task. We recall that in a data modeling
setting we are interested in finite model reasoning.

First, we observe that all reasoning tasks can immediately be reduced to the
fundamental problem of checking the satisfiability of a single atomic concept.
In fact, a knowledge base K is satisfiable if and only if T is satisfiable in K,
and K implies the inclusion assertion C; < Oy if and only if C; M —C5 is not
satisfiable in . Moreover, it is sufficient to treat the satisfiability of an atomic
concept, since an arbitrary concept expression C' is satisfiable in /C, if and only
if a newly introduced atomic concept A is satisfiable in L U {A = C}.

Checking the satisfiability of a single atomic concept A in an ALC Q7 knowl-
edge base K can be done by exploiting the technique developed in [Cal96a]. The
method extends the one developed in [CLN94] for a simpler logic, and is based
on the construction of a particular system \Ilfé of linear inequations, and the
search for particular (acceptable) solutions of ¥4 (see [Cal96b] for full details).
The size of \Ilfé is in the worst case doubly exponential in the size of K, while
the search for acceptable solutions can be done in polynomial time in the size
of the system. Thus we obtain a decision procedure for all reasoning tasks that
works in deterministic double exponential time.

We notice that in the case discussed in [CLN94], where the schema contains
no equality assertions and certain constructs are used only in a restricted way
(negation is allowed only in front of atomic concepts, and all number restrictions
are non-qualified, i.e. of the form 3>" R or <" R) the size of the system can be
kept single exponential in the size of K. Such a case is of particular interest,
since the basic constructs of semantic and object-oriented data models can be
expressed in this language. A discussion on the optimization techniques for the
proposed framework is presented in [CL94a].

8.5.2.2 Reasoning in Semantic and Object-Oriented Data Models.
The decidability of reasoning in ALC QT together with the characterization of
semantic and object-oriented data models developed in Sections 8.3.2 and 8.4.2
provides a method to reason in these data models.

In particular, the consistency of an entity E in an ER schema can be
rephrased as the problem of checking whether the concept corresponding to
E is satisfiable in the translation of the schema. Analogously, subtyping in
object-oriented schemata, i.e. checking whether a type denotes a subset of an-

258 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

other type in every legal instance of a schema can be accomplished by checking
whether subsumption between the translated type expressions follows from the
translation of the schema. Moreover, type consistency, i.e. checking whether a
type is consistent in a legal instance of the schema, can be reduced to concept
consistency.

A number of attempts have been previously made to characterize reasoning
problems and devise reasoning techniques for semantic [CFP84; LN90; D1.93;
HKS87] and object-oriented data models [AK89; BS92; BN94]. There is also
significant work on reasoning about dependencies in the relational model (see
e.g. [CFP84; CK86; GM85; CKV90; AHV95]), although it has no tight rela-
tionship to the framework addressed here.

With respect to reasoning on Entity-Relationship schemata, previous
work [CTF88; LN90] addressed less expressive formalisms, and therefore the
reasoning techniques for Description Logics can provide extensions towards a
a significantly more expressive framework. Similar considerations apply with
respect to the proposals to perform type consistency and inheritance reasoning
on object-oriented data models. As an example, the type consistency and type
subsumption algorithms in [BN94] for an expressive object-oriented formalism,
which allows for the definition of classes by means of necessary and sufficient
conditions, could further be extended in order to take into account also union
types and inverse attributes.

By identifying reasoning in ALCQZ as the basis for reasoning on semantic
and object-oriented data models we are able to combine the features of the two
approaches, while retaining the decidability of the reasoning problems. More-
over, the combination of two language constructs is for the first time taken into
consideration with regard to reasoning in data models, namely negation and
disjunction. Clearly, such a generality leads to a high computational complex-
ity and in order to make the proposed approach feasible in a practical setting
further analysis is required, that is beyond the scope of the present paper.
Nonetheless, the proposed approach does provide a uniform basis for reasoning
on semantic and object-oriented data models.

8.6 CONCLUSIONS

In this paper we have presented a unified view of the formalisms for conceptual
data modeling, by adopting the language of Description Logics as a common
basis. Such logics, which originated from the formalization of frame-based
systems and semantic networks, provide enough expressive power to give a
translation of the most popular semantic and object-oriented data modeling
languages. A feature of Description Logics is that both the expressiveness of
the language and the associated reasoning capabilities can be related to the set

REFERENCES 259

of constructs that are admitted in the language. Therefore, the comparison of
data modeling formalisms has been done in terms of the constructs that are
needed in order to enable the translation in Description Logics.

The use of Description Logics as a framework for data modeling has a num-
ber of consequences that we have addressed in the paper. First of all, it shows
that semantic and object-oriented data modeling formalisms have several com-
monalities and a few distinguishing features. Second, we have seen how both
modeling frameworks can be enriched by including several constructs of De-
scription Logics, thus providing additional expressive capabilities. Third, we
have discussed how the reasoning methods developed for Description Logics
can provide the basic reasoning services that are needed to support the data
modeling process.

Acknowledgments

This work has been partly funded by ESPRIT LTR Project “Foundations of Dataware-
house Quality (DWQ)” No.22469, and by Progetto Strategico “Informatica nella Pub-
blica Amministrazione” ;| Sottoprogetto PROGRESS of the Italian Research Council.

References

[Abr74] J. R. Abrial. Data semantics. In J. W. Klimbie and K. L. Koffeman,
editors, Data Base Management, pages 1 59. North-Holland Publ.
Co., Amsterdam, 1974.

[ACS96] Alessandro Artale, Francesca Cesarini, and Giovanni Soda. Describ-
ing database objects in a concept language environment. I[EEE
Transactions on Knowledge and Data Engineering, 8(2):345 351,
1996.

[AGO91] A. Albano, G. Ghelli, and R. Orsini. A relationship mechanism for
strongly typed Object-Oriented database programming languages.
In Proc. of the 17th Int. Conf. on Very Large Data Bases (VLDB-
91), pages 565 575, 1991.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison Wesley Publ. Co., Reading, Massachussetts,
1995.

[AK89] Serge Abiteboul and Paris Kanellakis. Object identity as a query
language primitive. In Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, pages 159 173, 1989.

[Baa96] Franz Baader. Using automata theory for characterizing the seman-

tics of terminological cycles. Annals of Mathematics and Artificial
Intelligence, 18:175-219, 1996.

260 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

[BCN92]

[BDNS94]

[BDS93]

[BHR90]

[BNO4]

[Bor92]

[Bor95]

[BS85]

[BS92]

[BW97]

[Cal96a]

[Cal96b]

[CB97]

Carlo Batini, Stefano Ceri, and Sham B. Navathe. Conceptual Data-
base Design, an Entity-Relationship Approach. Benjamin and Cum-
mings Publ. Co., Menlo Park, California, 1992.

Martin Buchheit, Francesco M. Donini, Werner Nutt, and Andrea
Schaerf. Terminological systems revisited: Terminology = schema
+ views. In Proc. of the 12th Nat. Conf. on Artificial Intelligence
(AAAI-94), pages 199 204, 1994.

Martin Buchheit, Francesco M. Donini, and Andrea Schaerf. Decid-
able reasoning in terminological knowledge representation systems.
Journal of Artificial Intelligence Research, 1:109 138, 1993.

K. H. Blasius, U. Hedstiick, and C.-R. Rollinger, editors. Sorts and
Types in Artificial Intelligence. Number 418 in Lecture Notes in
Artificial Intelligence. Springer-Verlag, 1990.

Sonia Bergamaschi and Bernhard Nebel. Acquisition and valida-
tion of complex object database schemata supporting multiple in-
heritance. Applied Intelligence, 4(2):185-203, 1994.

Alexander Borgida. From type systems to knowledge representation:
Natural semantics specifications for description logics. Journal of
Intelligent and Cooperative Information Systems, 1(1):93-126, 1992.
Alexander Borgida. Description logics in data management. [EEFE
Transactions on Knowledge and Data Engineering, 7(5):671 682,
1995.

Ronald J. Brachman and James G. Schmolze. An overview of the KL-
ONE knowledge representation system. Cognitive Science, 9(2):171
216, 1985.

Sonia Bergamaschi and Claudio Sartori. On taxonomic reasoning
in conceptual design. ACM Transactions on Database Systems,
17(3):385 422, 1992.

Alexander Borgida and Grant E. Weddell. Adding functional de-
pendencies to description logics. In Proc. of the 5th Int. Conf. on
Deductive and Object-Oriented Databases (DOOD-97), 1997.

Diego Calvanese. Finite model reasoning in description logics. In
Proc. of the 5th Int. Conf. on the Principles of Knowledge Represen-
tation and Reasoning (KR-96), pages 292-303. Morgan Kaufmann,
Los Altos, 1996.

Diego Calvanese. Unrestricted and Finite Model Reasoning in Class-
Based Representation Formalisms. PhD thesis, Dipartimento di In-
formatica e Sistemistica, Universita di Roma “La Sapienza”, 1996.
R.G.G Cattell and Douglas K. Barry, editors. The Object Database
Standard: ODMG 2.0. Morgan Kaufmann, Los Altos, 1997.

REFERENCES 261

[CDGLY5] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini.

[CFP84]

[Che76]

[CKS86]

[CKV90]

[CL93]

[CL94a]

[CL94b)]

[CLN94]

[CLN97]

Structured objects: Modeling and reasoning. In Proc. of the 4th
Int. Conf. on Deductive and Object-Oriented Databases (DOOD-95),
number 1013 in Lecture Notes in Computer Science, pages 229 246.
Springer-Verlag, 1995.

Marco A. Casanova, Ronald Fagin, and Christos H. Papadimitriou.
Inclusion dependencies and their interaction with functional depen-
dencies. Journal of Computer and System Sciences, 28(1):29-59,
1984.

P. P. Chen. The Entity-Relationship model: Toward a unified view
of data. ACM Transactions on Database Systems, 1(1):9-36, March
1976.

S. S. Cosmadakis and P. C. Kanellakis. Functional and inclusion
dependencies - A graph theoretical approach. In P. C. Kanellakis
and F. P. Preparata, editors, Advances in Computing Research, Vol.
3, pages 163-184. JAT Press, 1986.

S. S. Cosmadakis, P. C. Kanellakis, and M. Vardi. Polynomial-time
implication problems for unary inclusion dependencies. Journal of
the ACM, 37(1):15-46, January 1990.

Tiziana Catarci and Maurizio Lenzerini. Representing and using
interschema knowledge in cooperative information systems. Journal
of Intelligent and Cooperative Information Systems, 2(4):375-398,
1993.

Diego Calvanese and Maurizio Lenzerini. Making object-oriented
schemas more expressive. In Proc. of the 13th ACM SIGACT SIG-
MOD SIGART Sym. on Principles of Database Systems (PODS-94),
pages 243 254. ACM Press and Addison Wesley, 1994.

Diego Calvanese and Maurizio Lenzerini. On the interaction between
ISA and cardinality constraints. In Proc. of the 10th IEEE Int. Conf.
on Data Engineering (ICDE-94), pages 204 213. IEEE Computer
Society Press, 1994.

Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. A unified
framework for class based representation formalisms. In Proc. of the
4th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR-9/4), pages 109 120. Morgan Kaufmann, Los Altos,
1994.

Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Founda-
tions of class-based representation formalisms. Technical report, Di-
partimento di Informatica e Sistemistica, Universita di Roma “La
Sapienza”, 1997.

262 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

[CTF8S]

[DGLY4]

[DLY3]

Marco A. Casanova, Luiz Tucherman, and Antonio L. Furtado. En-
forcing inclusion dependencies and referencial integrity. In Proc. of
the 14th Int. Conf. on Very Large Data Bases (VLDB-88), pages
38 49, 1988.

Giuseppe De Giacomo and Maurizio Lenzerini. Concept language
with number restrictions and fixpoints, and its relationship with pu-
calculus. In Proc. of the 11th European Conf. on Artificial Intelli-
gence (ECAI-94), pages 411 415, 1994.

Giuseppe Di Battista and Maurizio Lenzerini. Deductive entity-
relationship modeling. IEEE Transactions on Knowledge and Data
Engineering, 5(3):439 450, 1993.

[DLNN91] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and

[Fer91]

[GMS4]

[GMS5]

[HBI1]

[HK87]

[Hul97]

[Kim90]

[KL8Y]

Werner Nutt. The complexity of concept languages. In Proc. of the
2nd Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR-91), pages 151 162. Morgan Kaufmann, Los Altos,
1991.

S. Ferg. Cardinality concepts in entity-relationship modeling. In
Proc. of the 10th Int. Conf. on the Entity-Relationship Approach
(ER-91), pages 1 30, 1991.

John Grant and Jack Minker. Numerical dependencies. In H. Gal-
laire, J. Minker, and J.-M. Nicolas, editors, Advances in Database
Theory II. Plenum Publ. Co., New York, 1984.

John Grant and Jack Minker. Inferences for numerical dependencies.
Theoretical Computer Science, 41:271-287, 1985.

Bernhard Hollunder and Franz Baader. Qualifying number re-
strictions in concept languages. Technical Report RR-91-03,
Deutsches Forschungszentrum fiir Kiinstliche Intelligenz (DFKI),
Kaiserslautern, Germany, 1991. An abridged version appeared in
Proc. of the 2nd Int. Conf. on the Principles of Knowledge Repre-
sentation and Reasoning (KR-91).

R. B. Hull and R. King. Semantic database modelling: Survey, ap-
plications and research issues. ACM Computing Surveys, 19(3):201
260, September 1987.

Richard Hull. Managing semantic heterogeneity in databases: A the-
oretical perspective. In Proc. of the 16th ACM SIGACT SIGMOD
SIGART Sym. on Principles of Database Systems (PODS-97), 1997.
Won Kim. Introduction to Object-Oriented Databases. The MIT
Press, 1990.

Won Kim and Frederick H. Lochovsky, editors. Object-Oriented Con-
cepts, Databases, and Applications. ACM Press and Addison Wesley,
New York, 1989.

[KLW95]

[Leh92]

[LNO]

[LNS91]

[MM92]

[Neb91]

[PSS92]

[Sch94]

[Sow91]

[SS91]

[Teo89]

[Tha92]

[Tha93]

[YPS94]

REFERENCES 263

Michael Kifer, Georg Lausen, and James Wu. Logical foundations of
Object-Oriented and frame-based languages. Journal of the ACM,
42(3), 1995.

Fritz Lehmann, editor. Semantic Networks in Artificial Intelligence.
Pergamon Press, Oxford, 1992.

Maurizio Lenzerini and Paolo Nobili. On the satisfiability of de-
pendency constraints in entity-relationship schemata. Information
Systems, 15(4):453-461, 1990.

Maurizio Lenzerini, Daniele Nardi, and Maria Simi, editors. Inher-
itance Hierarchies in Knowledge Representation and Programming
Languages. John Wiley & Sons, 1991.

R. Motschnig-Pitrik and J. Mylopoulous. Classes and instances.
Journal of Intelligent and Cooperative Information Systems, 1(1)
1992.

Bernhard Nebel. Terminological cycles: Semantics and computa-
tional properties. In John F. Sowa, editor, Principles of Semantic
Networks, pages 331-361. Morgan Kaufmann, Los Altos, 1991.
Barbara Piza, Klaus-Dieter Schewe, and Joachim W. Schmidt. Term
subsumption with type constructors. In Y. Yesha, editor, Proc. of the
Int. Conf. on Information and Knowledge Management (CIKM-92),
pages 449 456, 1992.

Klaus Schild. Terminological cycles and the propositional u-calculus.
In Proc. of the 4th Int. Conf. on the Principles of Knowledge Rep-
resentation and Reasoning (KR-94), pages 509 520. Morgan Kauf-
mann, Los Altos, 1994.

John F. Sowa, editor. Principles of Semantic Networks. Morgan
Kaufmann, Los Altos, 1991.

Manfred Schmidt-Schauf3 and Gert Smolka. Attributive concept
descriptions with complements. Artificial Intelligence, 48(1):1-26,
1991.

J. T. Teorey. Database Modeling and Design: The FEntity-
Relationship Approach. Morgan Kaufmann, Los Altos, 1989.

3

Bernhard Thalheim. Fundamentals of cardinality constraints. In
G. Pernoul and A. M. Tjoa, editors, Proc. of the 11th Int. Conf.
on the Entity-Relationship Approach (ER-92), pages 7 23. Springer-
Verlag, 1992.

Bernhard Thalheim. Fundamentals of the Entity Relationship Model.
Springer-Verlag, 1993.

Xian Ye, Christine Parent, and Stefano Spaccapietra. Cardinality
consistency of derived objects in DOOD systems. In Proc. of the 13th

264 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

Int. Conf. on the Entity-Relationship Approach (ER-94), number
881 in Lecture Notes in Computer Science, pages 278 295. Springer-
Verlag, 1994.

Index

accessibility relation, 15 behaviour, 172, 183

action, 169, 202, 392 class, 171
calling, 171, 176, 177, 181 communication, 171
enabling, 172, 176 frame, 187
external, 410 inherited, 191
internal, 393 local, 177
occurrence, 173, 176 non-rigid, 205
symbol, 170, 172, 181 rigid, 202, 204

action sort, 209 system, 171

action symbol, 209 axiom attribute, 205

active database, 392

active rule, 392, 409 B, 17 .

agent, 189 base formula in dyOSL, 210
logic, 189 base sort, 209

base term in dyOSL, 210
base variable in dyOSL, 210
behaviour, 167
axiom, 172, 183
concurrent, 167

aggregation, 275
ALBERT, 188, 200
ALCQT, 232
concept, role, 232
knowledge base, 234

> model, 168
reasoning, 257 object, 174

always operator, 210 of .nbjtic‘m 200

Anderson’s reduction, 86, 93 system, 176

answer approximation, 343

i belief revision, 338
assignment, 213

biquantified formula, 56

atom, 7 branching time logic, 19
ATSQL, 50 business policy, 97
attribute, 169, 202, 209, 236, 245
alteration, 187 c-table, 322, 327
inherited, 191 calling, 202
symbol, 172, 209 cardinality constraint, 233, 236, 237, 252
value, 172, 176, 187 certain answer, 318
auto-epistemic logic, 345 Chisholm set, 75, 80, 84, 89
automated deduction, 10 class, 169, 170, 174, 245
axiom, 170 axiom, 171

425

426 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

inheritance, 191
class-subclass hierarchy, 363
clause, 268-270, 273, 276, 278, 281-284

definite, 269

ground, 283

null, 283, 284
closed world assumption, 24, 270, 294, 334
closure

by consequence, 219

by entailment, 215
coalescing, 50
Codd table, 320, 326
combined complexity, 329
communication, 167, 168, 170, 177, 178,

184, 188

action, 171, 181

asynchronous, 172

axiom, 171

constraints, 184

event, 182

formula, 177

predicate, 176, 178, 181

protocol, 167

symbol, 183

synchronous, 171, 172
compilation of temporal queries, 47
completeness, 12, 220
completion, 221, 270
completion axiom, 325, 334
complex object, 342
complexity, 395, 399, 413
composite event, 393, 410, 413
concept, 232
conclusion, 9
concurrency, 168, 188

model, 173, 188, 190
concurrent

behaviour, 167, 188

events, 176

objects, 167

process, 167

system, 189

workflow, 167
condition, 392, 393
confluence, 395, 397, 409
conjunctive formula, 316
consequence, 220

logical, 9
consistency, 9, 254, 255
constant symbol, 6
constraint, 341
constraint satisfaction, 53, 57

potential, 54, 56
context function, 373
contrapositive reasoning, 378
cooperative answering, 287 291
coupling mode, 394, 400, 412
credulous semantics, 376, 378
CWA, 24, 270, 294
cycle

local, 405

negative, 405

D, 17
D4, 17
data complexity, 329
data domain, 33
data modeling, 253
data signature, 209
database
deductive, 266, 270-272, 278, 279,
291, 293, 294, 296, 297, 299
definite, 269, 277, 281
disjunctive, 269, 277 279, 281, 282,
291, 294, 299
distributed, 291
extensional (EDB), 270, 272
extensional (EDB), 293
heterogeneous, 291, 295
intensional (IDB), 270, 272
logic, 266, 268, 270, 275
multimedia, 298
normal, 270, 271, 274, 279, 281, 299
object-oriented, 267, 287, 296
object-relational, 267
relational, 265 267, 269, 272, 287,
293, 296, 299
stable, 271
stratified, 271, 292, 294
database evolution, 402 404, 406
database schema, 33
Datalog, 266, 269, 270, 275, 277, 291, 396
Datalog™, 396
Datalog™™, 396, 397, 415
Datalog; s, 64, 398, 402, 404, 413
inflationary Datalog™, 396, 415
noninflationary Datalog™, 397, 415
stratified Datalog™, 408, 416
XY-Datalog, 402, 416, 417
DB, 17
deduction, 266, 267
Deduction Theorem, 12
default, 325, 344
defeasible reasoning, 81

REFERENCES 427

definite answer property, 318 expressive power, 41, 395, 414
delta relation, 393, 398, 399, 405, 409, 410 extended relational theory, 325, 343
deontic logic, 17, 73 external environment, 98
Deontic S5, 94
derivation, 13 F-Logic, 370
Description Logic, 232 fact, 20
description logic, 342 false presupposition, 290
disjunctive answer, 319 finite model property, 235
disjunctive Datalog, 327 first-order logic, 6
disjunctive logic program, 327 interval-based, 46
distribution, 167, 175, 190 two-sorted, 40
domain, 8 fixpoint languages, 63
domain closure, 324 fixpoint semantics, 22
dynamic action logic, 102 floating conclusion problem, 383
dynamic behaviour, 200 FOL, 6
dynamic logic, 84, 86 Foops, 188
dynamic OSL, 201 formula, 7
dynamics, 199 atomic, 7, 269
dyOSI., 201, 208 clausal, see clause
closed, 7, 275
ECA rule, 392 function-free, 268
encoding, 44 ground, 268
constraint, 48 query, see query
interval-based, 44 frame, 15
entailment, 9 idealized, 17
entity, 236 reflexive, 16
Entity-Relationship model, 236 symmetric, 17
epistemic logic, 344 transitive, 16
equivalence, 255 frame rule, 404, 405, 407, 411, 416
evolution, 406, 414 function symbol, 6
transaction, 406, 414
transition, 406, 414 general subsumption, 382
EToILE, 188 generalized closed world assumption, 334
event, 173, 392 global invariant, 221
algebra, 393 global invariant rule, 222
composite, 393, 410, 413 GNOME, 168, 169, 188, 200
external, 392, 393, 409-411 goal, 23
interaction, 176 goal clause, 23
internal, 392, 393 ground term, 21
sharing, 177 GuLog, 370
event consumption mode, 393
event grove, 173 hard integrity constraints, 99
distributed, 175 Herbrand base, 21, 404
labelling, 174 Herbrand interpretation, 21
event structure, 173, 176, 188 Herbrand model, 21
evolution, 199, 202 Herbrand universe, 21
evolving algebra, 200 Hilbert calculus for dyOSL., 219
evolving temporal specification, 201 Hilbert system, 11
exception, 364 history, 36, 54
existential axioms, 11 Horn table, 323
Existential Generalization, 11 Horn-clause, 20

expression complexity, 330 hypothesis, 9

428 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

hypothetical query, 340

idle action, 210
implication, 235
inapplicable null, 341
incomplete information, 309
indefinite information, 309
information system, 167
concurrent, 167
distributed, 167, 169
inheritability, 373
of methods, 383
with negative links, 383
inheritance, 359, 363
formalization, 379
logics, 369
method, 371
multiple, 364
nonmonotonic, 366
structural, 370
inheritance net, 360, 364
integrity constraint, 72, 99, 265-308, 336,

343
denial, 274 276, 278 282, 294
domain, 273
functional dependency, 266, 273,
288, 296

inclusion dependency, 266, 274, 296
preference, 279
referential, 274
security, 296, 297
state, 278, 290
static, 279
temporal, 279
universal, 278
user, 279, 289, 297
interaction, 167, 180, 181
interpretation, 8, 233, 247
interpretation structure, 214
invariant, 218
global, 221
is-a, 235, 237, 243, 245
is-a, 360
is-not-a, 360

K, 16

K4, 16

KB, 17

knowledge base, 234
knowledge discovery, 290
Kripke frame, see frame
Kripke semantics, 15

L&O, 371

LowMm, 188

leap, 403, 405

LIFE, 370

life cycle, 173
distributed, 176

linear temporal logic, 18

literal, 20

liveness, 56

local invariant rule, 223

local stratification, 405

locality, 382

logic
default, 292
first-order, 6, 266, 268, 270, 271,

275, 292, 299

higher order, 299
many-sorted, 10
modal, 271, 279
non-classical, 267
non-monotonic, 271, 275, 294
temporal, 271

logic of knowledge, 17, 344

logic program, 20

logic programming, 20

logical consequence, 9, 256

logical database, 324

LOGIN, 370

many-sorted logic, 10
many-valued logic, 345
marked null, 321
MAUDE, 188
message, 172
meta formula, 211
meta sort, 209
meta term in dyOSL, 211
meta variables in dyOSL, 211
method, 169
blocking, 365
method inheritance, 371
method overloading, 387
mgu, 23
misconception, 287-291
mixed net, 364
modal
of first-order logic, 9
modal logic, 13, 76, 344
modal operator, 13
model, 235, 282
canonical, 281

Herbrand, 276
minimal, 276 279, 281, 282, 291,
294, 295
of modal logic, 15
perfect, 271, 294
stable, 278, 281, 294
unique, 271, 276
modeling
behaviour, 168
business process, 184
conceptual, 167, 168
data, 169
information systems, 187
object, 169
object-oriented, 188
Modus Ponens, 11, 16, 220
monotonic net, 364, 374
multi-modal logic, 20
multiple temporal dimensions, 58
mutation, 205
mutation action symbol, 209
mutation attribute symbol, 209
mutation event, 205
mutation sort, 209
mutator, 205

natural deduction, 12
necessitation, 16
negation, 270-272
as finite failure, 24
default, 270, 274, 275, 277, 278, 280,
281
in logic programs, 24
logical, 270, 278
negative information, 333
net effect, 410, 411
next operator, 18
non-first normal form, 342
non-monotonicity, 325, 335, 344
non-rigid axiom, 205
non-standard logic, 344
nonmonotonic net, 364, 375
normative position, 97
null value, 311, 320, 337, 341

object, 169
behaviour, 167, 174
class, 174
communication, 183
identity, 175
instance, 174
locality, 175

REFERENCES 429

logic, 172

model, 169

modeling, 169

reference, 179

semantics, 175

signature, 172, 209

specification, 172, 175, 188

specification language, 168, 169

system, 171, 175, 176, 188, 190
object behaviour, 200
object identifier, 209, 246
object oriented database, 342
object specification, 200
Object Specification Logic, 201
object-oriented data model, 245
obligation, 73
OBLOG, 168, 188, 200
observation in dyOSL, 212
observation symbol, 212
off-path preemption, 382
OOLP+, 371
OozE, 188
open world assumption, 326
OR-object, 324, 327, 342
ordered logic programs, 371
ORLog, 371, 372
OSL, 201, 208

dynamic, 201
ought-to-be, 81, 93
ought-to-do, 81, 84, 93
overriding, 365

paradoxes (of deontic logic), 74, 77-79, 87
parameter context, 393, 413
parameterized complexity, 330
past formula, 56
PDeL, 87, 89, 95
PDeL, 86
PDeL(>), 89
performative document, 101
permission, 73
polymorphism, 361
population, 211
positive existential formula, 316
possible answer, 318
possible world, 15
pre-interpretation structure, 211, 212
predicate, 172
calling, 167, 168, 178
communication, 176, 178, 181
enabling, 170
local, 175

430 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

locality, 177, 178

state, 172

symbol, 170
predicate logic, 6
predicate symbol, 6
premise, 9
process algebra, 85
production rule, 393, 394, 396, 415
program completion, 24
progressiveness, 403, 414
prohibition, 73
Prolog, 273, 299
proof, 11

in dyOSL, 221
proof theory, 10

quantificational axioms, 11
query, 268, 269, 289
answer to, 268, 287, 289, 291
empty, 288, 291
intensional, 289
caching, 299
closed, 265
folding, 295, 299
optimization, 295
semantic, 285 288, 290, 297

reasoning, 253

in ALCOTZ, 257

in data models, 257
recursion, 269, 271, 287
recursively indefinite database, 327
refutation, 10
relation

control, 410

delta, 393, 398, 399, 405, 409, 410

protocol, 410, 411
relation symbol, 6
relational model, 314
relationship, 236
residue, 280285, 288, 289
rigid axiom, 202, 204
role, 232, 236

rule, 266 270, 272, 273, 275, 276, 279

282, 286, 287, 293
A-monotonic, 413, 416
1-progressive, 404, 415, 416
body of

empty, 269
deductive, 279
definite, 269, 280
disjunctive, 271, 294, 299

guarded, 413, 416
head of, 269
empty, 269
Horn, 269
local, 404, 415, 416
normal, 270
progressive, 404
range-restricted, 269, 275

S4, 16
S5, 17
S50(n), 83, 95
safety, 55
satisfaction, 9, 15, 213
Dy, 177
D,, 178
L, 174
local, 177, 179
satisfiability, 9, 235
sceptical semantics, 375, 377
schema evolution, 225
scope, 27
SDL, 74, 76, 93
semantic mapping, 45

semantics, 265-267, 270, 272-279, 281,

282, 287 289, 291, 296
fixpoint, 396
Herbrand, 294
model, 271, 272, 275-278
stable, 271
well-supported, 271
stable, 25, 397
state-stratified, 405
stratified, 397
well-founded, 26, 271, 397
sentence, 7
set-oriented, 394, 397, 409
signature, 6
dyOSL, 209
SLD-resolution, 22
SLDNF refutation, 281
SL.I refutation, 282
slot symbol, 209
snapshot, 404, 406
view, 404
soft integrity constraints, 73, 99
sometime operator, 210
sort, 10
soundness, 12, 220
specification, 200
specification attribute symbol, 209
specification sort, 209

specifity, 382
speech act, 100
SQL/Temporal, 50
SQL/TP, 52
stable model, 25, 335
stable semantics, 25
state
final, 402, 406
initial, 402
intermediate, 402
object, 174
predicate, 172, 175, 186
term, 403
transition, 170
transition system, 173
variable, 169, 403
state formula, 211
state meta formula, 211
Statelog, 403
A-Statelog, 416
G-Statelog, 416
I-Statelog, 416
interpretation, 404
NF-Statelog, 414
normal form, 414
P-Statelog, 415
stratification, 24
stratified program, 335
stratum, 24
strict inheritance path, 374
strong dependency system, 337
strong representation system, 321
structural inheritance, 370
substitution, 23, 268, 282
ground, 268
inverse, 268
subsumption, 255, 282, 289
partial, 282, 284, 288
Switch Theorem, 12
synchronization, 213
system, 175
axiom, 171
behaviour, 176
concurrent, 189
denotational model, 175
development method, 188
distributed, 169, 189, 190
heterogeneous, 169
legacy, 169
object, 171, 188
object-oriented, 168
open, 167

REFERENCES

properties, 188
reactive, 167, 168

431

signature, 175, 180, 182, 183, 186

specification, 175, 186
transition, 173, 189

T, 16
Tarskian semantics, 7
tautology, 9
taxonomic hierarchy, 363
Templog, 64
temporal connective
first-order, 37
future, 38
multidimensional, 59
past, 38
second-order, 62
temporal data, 341
temporal database, 33
abstract, 34
concrete, 45
snapshot, 34
timestamp, 34
temporal domain, 403
interval-based, 44
point-based, 33
temporal logic, 18, 32, 39, 167, 189
anchored version, 214
branching, 189
Dy, 167, 176
D,, 167, 178
distributed, 167, 175, 190
for information systems, 189
L, 168, 172
linear, 189
local, 172
multidimensional, 60
n-agent, 190
partial order, 189
propositional, 172
reduction, 180, 183
temporal logic programming, 63
temporal ontology, 32
temporal query, 36
generic, 47
with explicit time, 40
with implicit time, 39
temporal relational algebra, 43
temporal trigger, 54
temporal unfolding, 51
term, 6
termination, 395, 406-408, 413

432 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

terminological logic, 342
theory in dyOSL, 215
timestamp view, 404
TQuel, 51
trace, 173
distributed, 176
transaction, 402, 406
transition, 402, 406
transition system, 173
distributed, 189
translation
LP to LT, 47
1.9 to ' with coalescing, 47
FOTL to 2-FOL, 41
trigger, 393, 401
TroOLL, 168, 169, 188, 200, 202
TSQL2, 51
tuple-oriented, 394, 397, 409
type, 245

unification, 23

unifier, 23

unique names assumption, 325
universal relation assumption, 341
universe, 8

Universe of Discourse, 72, 98
until operator, 18

UoD, see Universe of Discourse
update, 338

v-table, 322, 327
vacuous axioms, 11
valuation
for first-order logic, 8
for modal logic, 15
variable, 6
bound occurrence, 7
free occurrence, 7
view, 266-269
update, 281, 293-295
view update, 312, 339

weak dependency system, 338
weak representation system, 323
weak until operator, 210
well-founded model, 26, 335
well-founded semantics, 26

zombie path, 383

