
Logics for Databasesand Information Systems

Edited byJan Chomicki, Gunter SaakeMonmouth University / University of Magdeburg

Kluwer Academic PublishersBoston/Dordrecht/London

Contents

1Introduction to Logics for Databases and Information Systems 1Jan Chomicki and Gunter SaakeReferences 42A Logic Primer 5Stefan Conrad2.1 Introduction 52.2 First-Order Logic (FOL) 62.2.1 Syntax 62.2.2 Semantics 72.2.3 Proof Theory 102.3 Modal Logics 132.3.1 Kripke Semantics 152.3.2 Axiomatization of Modal Logics 162.3.3 Temporal Structures 182.4 Logic Programming 202.4.1 Herbrand Models 212.4.2 Fixpoint Semantics 222.4.3 SLD-Resolution 222.4.4 Negation 242.5 Conclusion 26References 273Temporal Logic in Information Systems 31Jan Chomicki and David Toman3.1 Introduction 323.2 Temporal Databases 33v

vi LOGICS FOR DATABASES AND INFORMATION SYSTEMS3.2.1 Abstract Temporal Databases 343.2.2 Relational Database Histories 363.3 Temporal Queries 363.3.1 Abstract Temporal Query Languages 373.3.2 Expressive Power 413.3.3 Space-e�cient Encoding of Temporal Databases 443.3.4 Concrete Temporal Query Languages 463.3.5 Evaluation of Abstract Query Languages using Compilation 473.3.6 SQL and Derived Temporal Query Languages 483.4 Temporal Integrity Constraints 533.4.1 Notions of constraint satisfaction 533.4.2 Temporal Integrity Maintenance 543.4.3 Temporal Constraint Checking 563.5 Multidimensional Time 583.5.1 Why Multiple Temporal Dimensions? 593.5.2 Abstract Query Languages for Multi-dimensional Time 593.5.3 Encoding of Multi-dimensional Temporal Databases 613.6 Beyond First-order Temporal Logic 623.7 Conclusion 65References 654The Role of Deontic Logic in the Speci�cation of Information Systems 71J.-J. Ch. Meyer, R.J. Wieringa, and F.P.M. Dignum4.1 Introduction: Soft Constraints and Deontic Logic 724.1.1 Integrity Constraints for Information Systems 724.1.2 Deontic logic and violations of constraints 734.1.3 The Paradoxes of Deontic Logic 744.2 Standard Deontic Logic (SDL) 764.3 The Paradoxes of Deontic Logic 774.3.1 Some Well-Known Paradoxes 784.3.2 The Paradoxes in SDL 794.3.3 Contrary-to-Duty Imperatives 804.4 A Diagnosis of the Problems 814.5 A Solution to the 'Ought-to-Be' Version of the Chisholm Paradox: S5O(n) 834.6 Ought-to-Do: The Dynamic Perspective 844.6.1 A Logic of Ought-to-Do: a Deontic Logic Based on Dynamic Logic 864.6.2 The Paradoxes in PDeL 874.6.3 A Solution to the `Ought-to-Do' Version of the Chisholm Paradox inPDeL 894.7 An Integrated Logic of Ought-to-Be and Ought-to-Do Constraints 934.7.1 Anderson's Reduction to Modal Alethic Logic Related to SDL 934.7.2 Integrating S5O(n) with PDeL 954.8 Applications 964.8.1 Modeling norms for the external environment 97

Contents vii4.8.2 Modeling norms for the UoD 984.8.3 Modeling norms for the system 1014.8.4 Modeling norms for the speci�cation 1024.8.5 Case study 1034.9 Discussion and Conclusion 108References 1085A Logic for Programming Database Transactions 117Anthony J. Bonner and Michael Kifer5.1 Introduction 1185.2 Overview and Introductory Examples 1225.2.1 Simple Transactions 1245.2.2 Rules and Non-deterministic Transactions 1265.2.3 Transaction Bases 1275.2.4 Constraints 1295.3 Syntax 1315.4 Elementary Operations 1325.4.1 State Data Oracles 1325.4.2 State Transition Oracles 1335.4.3 Examples 1345.4.4 The Pragmatics of Oracles 1365.5 Model Theory 1375.5.1 Path Structures and Models 1385.5.2 Execution as Entailment 1415.6 Proof Theory 1445.6.1 Inference 1465.6.2 Execution as Deduction 1485.6.3 Example: Inference with Uni�cation 1505.7 Related Work 1515.7.1 Declarative Languages for Database Transactions 1515.7.2 Logics for Reasoning about Programs 153References 1616Logics for Specifying Concurrent Information Systems 167Hans-Dieter Ehrich, Carlos Caleiro, Amilcar Sernadas, and Grit Denker6.1 Introduction 1686.2 Overview 1696.3 Local Logic L 1726.4 Distributed Logics 1756.5 Reduction 1806.6 Extended Example 1846.7 Related Work 187

viii LOGICS FOR DATABASES AND INFORMATION SYSTEMS6.8 Concluding Remarks 190References 1927Evolving Logical Speci�cation in Information Systems 199Stefan Conrad, Jaime Ramos, Gunter Saake, and Cristina Sernadas7.1 Introduction 2007.2 Motivation and Language 2027.3 Syntax and Semantics of the Logic 2087.3.1 Signatures 2097.3.2 Terms and Formulae 2107.3.3 Pre-interpretation structures 2117.3.4 Satisfaction 2137.3.5 Speci�cations and Theories 2157.4 Translation of Language into Logic 2157.5 Using the Logical Framework 2187.5.1 A Hilbert calculus 2197.5.2 An invariant calculus 2217.6 Concluding Remarks 224References 2258Description Logics for Conceptual Data Modeling 229Diego Calvanese, Maurizio Lenzerini and Daniele Nardi8.1 Introduction 2308.2 Description Logics 2328.2.1 Syntax and Semantics of the Logic ALCQI 2328.2.2 Knowledge Bases in ALCQI 2348.3 Semantic Data Models 2358.3.1 The Entity-Relationship Model 2368.3.2 Formalizing Entity-Relationship Schemata in Description Logics 2398.3.3 Extending the Expressiveness of the Modeling Language 2428.4 Object-Oriented Data Models 2448.4.1 An Object-Oriented Data Model 2458.4.2 Formalizing Object-Oriented Schemata in Description Logics 2478.4.3 Extending the Expressiveness of the Modeling Language 2518.5 Support for Data Modeling 2538.5.1 Reasoning Tasks in Data Modeling 2538.5.2 Realization of Reasoning 2568.6 Conclusions 258References 2599Integrity Constraints: Semantics and Applications 265

Contents ixP. Godfrey, J. Grant, J. Gryz, and J. Minker9.1 Introduction 2659.2 Background 2689.3 Semantics of Integrity Constraints 2729.3.1 Examples of What Integrity Constraints can Express 2739.3.2 Model Semantics 2759.3.3 Extensions to the Basic Model 2789.4 Reasoning with Integrity Constraints 2799.4.1 Eliminating Integrity Constraints 2809.4.2 Model Elimination 2819.4.3 Residue Method 2829.5 Applications of Integrity Constraints 2859.5.1 Semantic Query Optimization 2859.5.2 Cooperative Answering 2879.5.3 Combining Databases and Resolving Inconsistencies 2919.5.4 View Updates 2939.5.5 Additional Applications 2959.6 Conclusion and Future Directions 297References 29910Logical Approaches to Incomplete Information: A Survey 309Ron van der Meyden10.1 Introduction 30910.2 Sources of Inde�niteness 31110.3 A Semantic Framework for Incomplete Databases 31310.3.1 The Relational Model 31410.3.2 Incomplete Database Semantics 31610.3.3 Notions of Query Answer 31810.4 Algebraic Models of Nulls 32010.5 Logical Databases 32410.6 Complexity of Queries 32810.7 Negative Information 33310.8 Integrity Constraints 33610.9 Updates of Incomplete Databases 33810.10Other Issues 34110.10.1 Inapplicable Attributes 34110.10.2Constraints 34110.10.3Object Oriented Databases 34210.10.4Design of inde�nite databases 34310.10.5Dealing with Query Complexity 34310.10.6Modal and Non-standard Logics 34410.11Incomplete Information in Current Technology 345References 347

x LOGICS FOR DATABASES AND INFORMATION SYSTEMS11Declarative Frameworks for Inheritance 359Laks V.S. Lakshmanan and Krishnaprasad Thirunarayan11.1 Introduction 35911.2 Motivation for Inheritance 36311.2.1 The AI Perspective 36311.2.2 The OO Perspective 36411.3 Main Issues and Problems 36511.4 Logic-based Approaches to Inheritance 36911.4.1 What can a Logic Do for Inheritance? 36911.4.2 Overview of Logics for Inheritance 36911.4.3 Overview of ORLog 37211.4.4 Overview of Inheritance Theories for Knowledge Representation 37411.5 Research Directions 384References 38712On Logical Foundations of Active Databases 391Georg Lausen and Bertram Lud�ascher and Wolfgang May12.1 Introduction 39212.2 Basics of Active Rules 39212.2.1 Terminology 39212.2.2 Fundamental Properties 39512.3 Research on Foundations of Active Rules 39512.3.1 Production Rules 39612.3.2 Declarative Rules 39712.3.3 Extending Declarative Rules by States 39812.3.4 Further Work 39812.3.5 Bibliographic Notes 40012.4 A Deductive State-Oriented Core Language 40112.4.1 Basic Execution Model 40212.4.2 Syntax 40312.4.3 Semantics 40412.4.4 Transitions, Termination and Transactions 40612.4.5 Compile-Time vs. Run-Time Properties 40712.5 A Framework for Active Rules 40912.5.1 Signature 40912.5.2 User-De�ned vs. System-De�ned Rules 41012.5.3 Enforcing Termination 41312.5.4 Expressive Power and Normal Forms 41412.6 Conclusion 416References 418Index 425

LIST OF CONTRIBUTORS xiContributors
Anthony BonnerUniversity of TorontoDepartment of Computer Science10 King's College RoadToronto, ONCanada M5S 3G4e-mail: bonner@cs.toronto.eduCarlos CaleiroDepartment of MathematicsInstituto Superior T�ecnicoAv. Rovisco Pais1096 LisboaPortugale-mail: ccal@math.ist.utl.ptDiego CalvaneseDip. di Informatica e SistemisticaUniversita` di Roma \La Sapienza"Via Salaria 113, I-00198 Roma, Italye-mail:calvanese@dis.uniroma1.itJan ChomickiDepartment of Computer ScienceMonmouth UniversityWest Long Branch, NJ 07764U.S.A.e-mail:chomicki@moncol.monmouth.eduStefan ConradUniversity of MagdeburgComputer SciencePostfach 4120D-39016 Magdeburg

Germanye-mail: s.conrad@acm.orgGrit DenkerAbteilung DatenbankenTechnische Universit�at BraunschweigPostfach 3329D-38023 BraunschweigGermanye-mail: G.Denker@tu-bs.deFrank DignumTechnical UniversityFaculty of Mathematics and Com-puter ScienceP.O. Box 5135600 MB Eindhovene-mail: dignum@win.tue.nlHans-Dieter EhrichAbteilung DatenbankenTechnische Universit�at BraunschweigPostfach 3329D-38023 BraunschweigGermanye-mail: HD.Ehrich@tu-bs.deParke GodfreyU.S. Army Research Laboratory2800 Powder Mill RoadAdelphi, Maryland 20783-1197U.S.A.e-mail: godfrey@arl.mil

xii LOGICS FOR DATABASES AND INFORMATION SYSTEMSJohn GrantComputer and Information SciencesDepartmentTowson UniversityTowson, MD 21252U.S.A.e-mail:jgrant@towson.eduJarek GryzDepartment of Computer ScienceYork UniversityNorth York, Ontario M3J 1P3Canadae-mail: jarek@cs.yorku.caMichael KiferDepartment of Computer ScienceSUNY at Stony BrookStony Brook, NY 11794-4400U.S.A.e-mail: kifer@cs.sunysb.eduLaks V.S. LakshmananConcordia UniversityDepartment of Computer Science1400 De Maisonneuve Boulevard WestMontreal, QuebecCANADA H3G 1M8e-mail: laks@cs.concordia.caGeorg LausenUniversit�at FreiburgInstitut f�ur InformatikAm Flughafen 17D-79110 FreiburgGermanye-mail: lausen@informatik.uni-freiburg.deMaurizio LenzeriniDip. di Informatica e Sistemistica

Universita` di Roma \La Sapienza"Via Salaria 113, I-00198 Roma, Italye-mail: lenzerini@dis.uniroma1.itBertram Lud�ascherUniversit�at FreiburgInstitut f�ur InformatikAm Flughafen 17D-79110 FreiburgGermanye-mail: ludaesch@informatik.uni-freiburg.deWolfgang MayUniversit�at FreiburgInstitut f�ur InformatikAm Flughafen 17D-79110 FreiburgGermanye-mail: may@informatik.uni-freiburg.deJohn-Jules Ch. MeyerUtrecht UniversityDept of Computer SciencePadualaan 14, De UithofP.O. Box 80089, 3508 TB UtrechtThe Netherlandse-mail: jj@cs.ruu.nlJack MinkerDepartment of Computer Science andUMIACSUniversity of MarylandCollege Park, MD 20742U.S.A.e-mail: minker@cs.umd.eduDaniele NardiDip. di Informatica e SistemisticaUniversita` di Roma \La Sapienza"

LIST OF CONTRIBUTORS xiiiVia Salaria 113, I-00198 Roma, Italye-mail: nardi@dis.uniroma1.itJaime RamosDepartment of MathematicsInstituto Superior T�ecnicoAv. Rovisco Pais1096 LisboaPortugale-mail: jabr@math.ist.utl.ptGunter SaakeUniversity of MagdeburgComputer SciencePostfach 4120D-39016 MagdeburgGermanye-mail:saake@iti.cs.uni-magdeburg.deAm��lcar SernadasDepartment of MathematicsInstituto Superior T�ecnicoAv. Rovisco Pais1096 LisboaPortugale-mail: acs@math.ist.utl.ptCristina SernadasDepartment of MathematicsInstituto Superior T�ecnicoAv. Rovisco Pais1096 Lisboa

Portugale-mail: css@math.ist.utl.ptKrishnaprasad ThirunarayanDept. of Computer Science and Engi-neeringWright State UniversityDayton, OH 45435.U.S.A.e-mail: tkprasad@cs.wright.eduDavid TomanUniversity of TorontoDepartment of Computer Science10 King's College RoadToronto, ONCanada M5S 3G4e-mail: david@cs.toronto.eduRon van der MeydenComputing Sciences,University of Technology, SydneyAustraliae-mail: ron@socs.uts.edu.auRoel WieringaFree UniversityFaculty of Mathematics and ComputerScienceDe Boelelaan 10811081 HV AmsterdamThe Netherlande-mail: roelw@cs.vu.nl

8 DESCRIPTION LOGICS FORCONCEPTUAL DATA MODELINGDiego Calvanese,Maurizio Lenzeriniand Daniele Nardi
Abstract: The article aims at establishing a logical approach to class-baseddata modeling. After a discussion on class-based formalisms for data model-ing, we introduce a family of logics, called Description Logics, which stem fromresearch on Knowledge Representation in Arti�cial Intelligence. The logics ofthis family are particularly well suited for specifying data classes and relation-ships among classes, and are equipped with both formal semantics and inferencemechanisms. We demonstrate that several popular data modeling formalisms,including the Entity-Relationship Model, and the most common variants ofobject-oriented data models, can be expressed in terms of speci�c logics of thefamily. For this purpose we use a unifying Description Logic, which incorpo-rates all the features needed for the logical reformulation of the data modelsused in the various contexts. We also discuss the problem of devising reason-ing procedures for the unifying formalism, and show that they provide valuablesupports for several important data modeling activities.

229

230 LOGICS FOR DATABASES AND INFORMATION SYSTEMS8.1 INTRODUCTIONData modeling is the activity of specifying the structure of the data to bemanaged within an application. In the last two decades, data modeling hasbeen the subject of a large body of work in several areas, including Databases,Information Systems, Software Engineering, and Knowledge Representation.In particular, recent approaches to conceptual data modeling advocate theuse of abstract formalisms for describing data, mostly based on the notionof class [HK87]. In this paper, we concentrate on such class-based formalismsfor data modeling, with the aim of demonstrating that they can be pro�tablyreconstructed within a logical framework. We argue that the reasoning tech-niques available in the logical framework provide valuable support for the datamodeling activity.Generally speaking, a class denotes a subset of the domain of discourse,and a class-based representation formalism allows one to express several kindsof relationships and constraints (e.g. subclass constraints) holding amongclasses [MM92]. Moreover, class-based formalisms aim at taking advantageof the class structure in order to provide various information, such as whetheran element belongs to a class, whether a class is a subclass of another class, andmore generally, whether a given constraint holds among a given set of classes.Two main families of class-based formalisms for data modeling are addressedin this paper. The �rst one originates in the �eld of databases and in particularfrom the work on semantic data models (see e.g. [HK87]). The second one arisesfrom the work on types in programming languages and object-oriented systems(see e.g. [KL89]).In the past, there have been several attempts to establish relationshipsamong class-based formalisms used in knowledge representation (e.g. semanticnetworks and frames [Leh92; Sow91]) and the above two families of class-basedformalisms. One signi�cant aspect of this work is the identi�cation of reason-ing problems, where one can take advantage of techniques for reasoning onhierarchical structures that have been developed in di�erent areas.The relationship between frame-based languages and types has been ad-dressed in [BHR90; LNS91; Bor92], while in [BS92; PSS92; Bor95; ACS96]frame-based languages are used to enrich the deductive capabilities of datamodels. The analysis of the above cited works makes it clear that, although anumber of steps have been accomplished, several di�culties arise in identifyinga common framework, which is expressive enough to capture the essential fea-tures of various class-based formalisms, while still providing techniques for theassociated reasoning problems. Other formalisms have been recently proposedwith the aim of integrating the object-oriented and the logic programmingparadigms. A notable example of this e�ort is F-Logic [KLW95], which pro-

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 231vides an elegant framework equipped with a sound and complete resolutionbased proof procedure. However, the goal of these proposals is to provide asophisticated environment for computing with objects, rather than a systemsupporting reasoning over a conceptual speci�cation. For this reason, theycannot be easily compared to the approach proposed here.In this paper, we make a step towards a uni�ed view of class-based lan-guages by establishing a relationship between semantic and object-orienteddata models, rephrasing them in terms of the knowledge representation frame-work of Description Logics. Speci�cally, building on the results of [CLN94],we present a class-based representation formalism, of the family of DescriptionLogics [SS91; DLNN91], and show that it is able to capture the most populardata modeling formalisms presently used in Databases and Information SystemAnalysis, providing powerful reasoning techniques.In Description Logics, structured knowledge is described by means of socalled concepts and roles, which denote unary and binary predicates, respec-tively. Starting from a set of atomic symbols one can build complex conceptand role expressions by applying suitable constructors which characterize a De-scription Logic. Formally, concepts are interpreted as subsets of a domain androles as binary relations over that domain, and all constructors are equippedwith a precise set-theoretic semantics. The most common constructors includeboolean operators on concepts, and quanti�cation over roles. For example, theconcept Personu8child.Male, denotes the set of individuals that are instancesof the concept Person and are connected through the role child only to in-stances of the concept Male, while the concept 9child denotes all individualsthat are connected through role child to some individual. Further constructorsthat have been considered important include more general forms of quanti�-cation, number restrictions, which allow one to state limits on the number ofconnections that an individual may have via a certain role, and constructorson roles, such as intersection, concatenation and inverse. A Description Logicknowledge base, expressing the intensional knowledge about the modeled do-main, is built by stating inclusion and/or equality assertions between concepts,which have to be satis�ed by the models of the knowledge base. The assertionsare used to specify necessary and/or necessary and su�cient conditions for in-dividuals to be instances of certain concepts. Reasoning on such knowledgebases includes detecting inconsistencies in the knowledge base itself, determin-ing whether a concept can be populated in a model of the knowledge base, andchecking subsumption, i.e. whether all instances of a concept are necessarilyalso instances of another concept in all models of the knowledge base.The Description Logic we propose, called ALCQI, features a rich combi-nation of constructors, including quali�ed number restrictions, inverse rolesand inclusion assertions of a general form. We show that these features make

232 LOGICS FOR DATABASES AND INFORMATION SYSTEMSALCQI powerful enough to provide a uni�ed framework for object-orientedlanguages and semantic data models. This is done by establishing a precise cor-respondence with the Entity Relationship model [Che76], and with an object-oriented language in the style of [AK89]. Moreover, we demonstrate that theformalism proposed in this paper provides important features that are currentlymissing in each family, although their relevance has often been stressed.Because of the expressive power of ALCQI, the computational complexityof reasoning becomes high, but the relevant reasoning tasks remain nonethelessdecidable. We consider this feature very important, because it makes thislanguage an actual knowledge representation and data modeling language andnot simply a formal framework for comparing apparently di�erent approaches.The paper is organized as follows. In the next section we present the De-scription Logic ALCQI. In Sections 8.3, and 8.4 we deal with semantic datamodels and object-oriented data models, respectively, showing that their basicfeatures are captured by knowledge bases in ALCQI. Section 8.5 describeshow reasoning in ALCQI supports data modeling. The �nal section containssome concluding remarks.8.2 DESCRIPTION LOGICSThe basic elements of Description Logics are concepts and roles , which denoteclasses and binary relations, respectively. Arbitrary concept and role expres-sions (in the following simply called concepts and roles) are formed by startingfrom two sets of atomic concepts and atomic roles and applying concept androle constructors.8.2.1 Syntax and Semantics of the Logic ALCQIWe introduce now the Description Logic ALCQI , in which concepts and rolesare formed according to the following syntax:C;C 0 �! A j :C j C u C 0 j C t C 0 j8R.C j 9R.C j 9�nR.C j 9�nR.CR �! P j P�where, A and P , denote atomic concepts and atomic roles respectively, C andR denote arbitrary concepts and roles, and n denotes a positive integer. Wealso use the following abbreviations to increase readability:? for A u :A where A is any atomic concept> for A t :A where A is any atomic concept9=nR.C for 9�nR.C u 9�nR.C9�nR for 9�nR.> (similarly for 9�nR and 9=nR)

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 233Among the constructors used in forming concept expressions we �nd the basicset operators, namely set complement (:), union (t), and intersection (u) thatare denoted as negation, disjunction, and conjunction, respectively. DescriptionLogics admit a restricted form of quanti�cation which is realized through socalled quanti�ed role restrictions, that are composed by a quanti�er (existentialor universal), a role and a concept expression. Quanti�ed role restrictions allowone to represent the relationships existing between the objects in two classes,and the forms considered in ALCQI are general enough to capture the mostcommon ways of establishing such relationships. For example, one can charac-terize the set of objects all of whose children are male as 8child.Male, as wellas the set of objects that have at least one male child as 9child.Male. Numberrestrictions are used to constrain the number of instances that are in a cer-tain relationship. For example, 9=2child.Male characterizes the set of parentswith exactly two male children. The form used here (called quali�ed numberrestrictions [HB91]) is a very general one, allowing one to pose restrictions onthe number of instances connected through a certain role, counting only thoseobjects that satisfy a certain condition. Observe that the restricted forms ofcardinality restrictions where the involved number is equal to 1, express func-tionality (9�1R) and existence constraints (9�1R). Finally, in ALCQI we haveone role constructor, namely inverse role, that allows us to denote the inverseof a given relation. One can for example state with 9�2child� that someonehas at most two parents, by making use of the inverse of role child. It is worthnoticing, that in a language without the inverse of roles, in order to express sucha constraint one must make use of two distinct roles (e.g. child and parent)that cannot be put in the proper relation to each other.From the semantic point of view, concepts are interpreted as subsets ofa domain and roles as binary relations over that domain. An interpretationI = (�I ; �I) over a set A of atomic concepts and a set P of atomic rolesconsists of a nonempty �nite set �I (the domain of I) and a function �I (theinterpretation function of I) that maps every atomic concept A 2 A to a subsetAI of �I (the set of instances of A) and every atomic role P 2 P to a subsetP I of �I��I (the set of instances of P). The interpretation function canthen be extended to arbitrary concepts and roles as follows: (]S denotes thecardinality of the set S)(:C)I = �I n CI(C1 u C2)I = CI1 \ CI2(C1 t C2)I = CI1 [CI2(8R.C)I = fo 2 �I j 8o0. (o; o0) 2 RI ! o0 2 CIg(9R.C)I = fo 2 �I j 9o0. (o; o0) 2 RI ^ o0 2 CIg

234 LOGICS FOR DATABASES AND INFORMATION SYSTEMS(9�nR.C)I = fo 2 �I j]fo0 j (o; o0) 2 RI ^ o0 2 CIg � ng(9�nR.C)I = fo 2 �I j]fo0 j (o; o0) 2 RI ^ o0 2 CIg � ng(P�)I = f(o; o0) 2 �I��I j (o0; o) 2 P IgNotice that 9�1R.C is equivalent to 9R.C.8.2.2 Knowledge Bases in ALCQIUsing concept expressions of ALCQI, intensional knowledge about classes andrelations can be expressed through a knowledge base. An ALCQI knowledgebase is constituted by a �nite set of assertions of the following form:A _� C (inclusion assertion)A := C (equality assertion)where A is an atomic concept and C is an arbitraryALCQI concept expression.An inclusion assertion A _� C speci�es (by means of C) only necessary con-ditions for an object to be an instance of the concept A, and thus correspondsnaturally to the constraints imposed on classes by a schema expressed in atraditional database model. In such models an object can never be inferred tobe an instance of a certain class, unless this is explicitly stated. In contrast,an equality assertion speci�es both necessary and su�cient conditions for theinstances of the class, and thus corresponds to the concept of view used indatabases. Observe, however, that views are usually not considered to be partof the schema, but are built on top of it in order to de�ne how the data presentin the schema is used [BDNS94] (see [CDGL95] for a di�erent \view" on thisaspect).We pose no restrictions at all on the form of the assertions in a knowledgebase. In particular:1. Each atomic concept may appear more than once on the left side of anassertion.2. The assertions may contain (terminological) cycles, i.e. the concept in theright part of an assertion may refer (either directly or indirectly) to theatomic concept in the left part of the assertion.Both these assumptions have a strong impact on the expressiveness of ourformalism, although this is paid by an increased computational complexity ofreasoning. Making assumption (1) is equivalent to allowing for the use of socalled free inclusion assertions [BDS93], which have the form C1 _� C2, withC1 and C2 arbitrary concept expressions. Assumption (2) is seldom made in

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 235existing concept-based knowledge representation systems, since terminologicalcycles increase the computational complexity of reasoning [Baa96], and can beinterpreted under di�erent semantics [Neb91; Sch94; DGL94]. From a datamodeling perspective it is however unrealistic to assume the absence of cycles.The semantics of a knowledge base is speci�ed through the notion of satisfac-tion of assertions. An interpretation I satis�es the inclusion assertion A _� Cif AI � CI , and it satis�es the equality A := C if AI = CI . An interpretationis a model of a knowledge base if it satis�es all terminological assertions in it.The fundamental reasoning tasks considered in the context of DescriptionLogics at the intensional level (which is the only one we address here) areknowledge base satis�ability, concept satis�ability, and logical implication. Aknowledge base K is satis�able if it admits a model; a concept C is satis�ablein K if K admits a model in which C has a nonempty interpretation; K logicallyimplies an an inclusion assertion C1 _� C2 if in all models of K the interpretationof C1 is a subset of the interpretation of C2.We would like to remark that we are restricting our attention to �nite inter-pretations (and thus models), which are the only ones of interest in data model-ing. The assumption of dealing with �nite structures is, however, by no meanscommon in Description Logics, and needs to be taken explicitly into accountwhen devising reasoning procedures [CLN94; Cal96a]. In fact, the constructspresent in ALCQI, and in particular functionality, inverse roles and cycles inthe knowledge base may interact in such a way that a knowledge base admits no�nite model, although it admits one with an in�nite domain [CKV90; CLN94].In other words, ALCQI lacks the �nite model property, and reasoning in the�nite and in the unrestricted case are di�erent.8.3 SEMANTIC DATA MODELSSemantic data models were introduced primarily as formalisms for databaseschema design. They provide a means to model databases in a much richer waythan traditional data models supported by Database Management Systems, andare becoming more and more important because they are adopted in most of therecent database and information system design methodologies and ComputerAided Software Engineering tools.A rich variety of semantic data models have been introduced with variousdegrees of expressiveness (see [HK87] for an extensive survey). They provideby means of classes an explicit representation of objects with their attributesand the relationships to other objects. An important feature of semantic datamodels is the possibility to specify subtype/supertype relationships (also calledis-a) which provide for the inheritance of properties.

236 LOGICS FOR DATABASES AND INFORMATION SYSTEMSFor simplicity of presentation, we concentrate our attention on one of themost widespread semantic data models, which has by now become a standard,extensively used in the design phase of commercial applications, namely theEntity-Relationship (ER) model. The ER model was introduced in [Che76],and subsequently several variants and extensions have been proposed, whichdi�er in minor aspects in expressiveness and in notation [Teo89; BCN92; Tha92;Tha93]. In the ER model the domain of interest is modeled by means of an ERschema, usually represented in a graphical notation which is particularly usefulfor an easy visualization of the data dependencies. However, in the followingwe introduce a �rst-order formalization, which includes the most importantfeatures present in the di�erent variants and makes it possible to establish aprecise correspondence with Description Logics.8.3.1 The Entity-Relationship ModelThe basic elements of the ER model are entities, relationships, and attributes.An entity set (or simply entity) denotes a set of objects, called its instances,that have common properties. Elementary properties are modeled through at-tributes, whose values belong to one of several prede�ned domains, such asInteger, String, or Boolean. Properties that are due to relations to otherentities are modeled through the participation of the entity in relationships. Arelationship set (or simply relationship) denotes a set of tuples (also called itsinstances), each of which represents an association among a di�erent combina-tion of instances of the entities that participate in the relationship. Since eachentity can participate in a relationship more than once, the notion of ER-role isintroduced, which represents such a participation and to which a unique nameis assigned. The arity of a relationship is the number of its ER-roles. Cardinal-ity constraints can be attached to an ER-role in order to restrict the numberof times each instance of an entity is allowed to participate via that ER-rolein instances of the relationship. Such constraints can be used to specify bothexistence dependencies and functionality of relations [CK86]. They are oftenused only in a restricted form, where the minimum cardinality is either 0 or 1and the maximum cardinality is either 1 or 1. Cardinality constraints in theform considered here have been introduced already in [Abr74] and subsequentlystudied in [GM84; LN90; Fer91; YPS94; Tha92; CL94b; CL94a]. Additionally,so called is-a relations are used to represent inclusion assertions between enti-ties, and therefore the inheritance of properties from a more general entity toa more speci�c one. We do not consider keys in our formalization, which areessential for a mapping of ER schemas into relational schemas, but lose theirrelevance when reasoning on a conceptual speci�cation. For a treatment of

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 237reasoning on keys in a logic based framework see [BW97; CDGL95]. We de�nenow in a more formal way syntax and semantics of ER schemata.An ER schema S is constructed starting from pairwise disjoint sets of entitysymbols, relationship symbols (each with an arity), ER-role symbols, attributesymbols, and domain symbols. Each domain symbol D has an associated pre-de�ned basic domain DBD , and we assume the basic domains to be pairwisedisjoint. For each entity symbol a set of attribute symbols is de�ned, and toeach such attribute a unique domain symbol is associated. Each relationshipsymbol of arity k has k associated ER-role symbols, each with an associatedentity symbol, and de�nes a relationship between these entities. We assumethat each ER-role symbol belongs to a unique relationship, thus determiningalso a unique entity. The cardinality constraints are represented by two func-tions cminS , from ER-role symbols to nonnegative integers, and cmaxS , fromER-role symbols to positive integers union the special symbol1. is-a relationsbetween entities are modeled by means of a binary relation �S . We do notneed to make any special assumption on the form of �S , such as requiring thatit is acyclic or injective.In the commonly accepted graphical ER notation, entities are representedas boxes, whereas relationships are represented as diamonds. An attribute isshown as a circle attached to the entity for which it is de�ned. ER-roles aregraphically depicted by connecting the relationship to the participating entitiesand labeling the connection with the associated cardinality constraints. An is-arelation between two entities is denoted by an arrow from the more speci�c tothe more general entity.Example 1 Figure 8.1 shows a simple ER schema modeling the situation atan university. The entity Course represents courses which enroll students andare taught by professors. Cardinality constraints are used to impose limits onthe number of students that may be enrolled in a course (between 10 and 50)and on the number of courses that each student may attend (between 3 and 6),and to express that each course is taught by exactly one professor, who in turnmust teach at least one course. The entities AdvCourse and GradStudent arespecializations of Course and Student, respectively.The semantics of an ER schema can be given by specifying which databasestates are consistent with the information structure represented by the schema.Formally, a database state B corresponding to an ER schema S is constitutedby a nonempty �nite set �B, assumed to be disjoint from all basic domains,and a function �B that mapsevery domain symbol D to the corresponding basic domain DBD ,every entity E to a subset EB of �B,

238 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

AdvCourse
Course

Professor
Student

GradStudentdegree/String
ENROLLING(10,50)Ein (3,6)EofTEACHING(1,1)Tof (1,1)Tby

6 6
Figure 8.1 An ER schemaevery attribute A to a partial function AB from �B to the union, for alldomains D, of DBD , andevery relationship R to a set RB of labeled tuples over �B.A labeled tuple over a domain �B is a function from a set of ER-roles to �B.The labeled tuple T that maps ER-role Ui to oi, for i 2 f1; : : : ; kg, is de-noted [U1: o1; : : : ; Uk: ok]. We also write T [Ui] to denote oi, and call it theUi-component of T . The elements of EB, AB, and RB are called instances ofE, A, and R respectively.A database state is considered acceptable if it satis�es all integrity con-straints that are part of the schema. This is captured by the notion of legaldatabase state. A database state B is legal for an ER schema S, if it satis�esthe following conditions:For each pair of entities E1; E2 with E1 �S E2, it holds that EB1 � EB2 .For each entity E, if E has an attribute A with domain D, then for eachinstance e 2 EB, AB(e) is de�ned and in DBD .For each relationship R of arity k between entities E1; : : : ; Ek, to whichR is connected by means of ER-roles U1; : : : ; Uk respectively, all instancesof R are of the form [U1: e1; : : : ; Uk: ek], where ei 2 EBi , for i 2 f1; : : : ; kg.

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 239For each ER-role U associated to relationship R and entity E, and foreach instance e of E, it holds thatcminS(U) �]fr 2 RB j r[U] = eg � cmaxS(U):Notice that an is-a relation is interpreted as set containment between theextensions of the involved entities. In addition, it is worth emphasizing thatthe de�nition of database state re
ects the usual assumption that databasestates are �nite structures (see also [CKV90]). In fact, the basic domains arenot required to be �nite, but for each legal database state for a schema, onlythe �nite set of values of attributes of elements of �B is actually of interest.8.3.2 Formalizing Entity-Relationship Schemata in Description LogicsWe now show that the semantics of the ER model can be captured in De-scription Logics, by de�ning a translation � from ER schemata to ALCQIknowledge bases, and then establishing a correspondence between legal data-base states and models of the derived knowledge base.The knowledge base �(S) derived from an ER schema S is de�ned as follows:It contains an atomic concept �(A) for each domain symbol, entity symbol, orrelationship symbol A in S, an atomic role �(P) for each attribute symbol orER-role symbol P in S, and the set of assertions of �(S) contains the followingelements:For each pair of entities E1; E2 such that E1 �S E2, the assertion�(E1) _� �(E2):For each entity E with attributes A1; : : : ; Ah with domains D1; : : : ; Dhrespectively, the assertion�(E) _� 8�(A1).�(D1) u � � � u 8�(Ah).�(Dh) u9=1�(A1) u � � � u 9=1�(Ah):For each relationship R of arity k between entities E1; : : : ; Ek , to which Ris connected by means of ER-roles U1; : : : ; Uk respectively, the assertions�(R) _� 8�(U1).�(E1) u � � � u 8�(Uk).�(Ek) u9=1�(U1) u � � � u 9=1�(Uk)�(Ei) _� 8(�(Ui))�.�(R); for i 2 f1; : : : ; kg:For each ER-role U associated to relationship R and entity E,

240 LOGICS FOR DATABASES AND INFORMATION SYSTEMSTEACHING _� 8Tof.Course u 9=1Tof u 8Tby.Professor u 9=1TbyENROLLING _� 8Ein.Course u 9=1Ein u 8Eof.Student u 9=1EofCourse _� 8Tof�.TEACHING u 9=1Tof� u8Ein�.ENROLLING u 9�10Ein� u 9�50Ein�AdvCourse _� CourseProfessor _� 8Tby�.TEACHINGStudent _� 8Eof�.ENROLLING u 9�3Eof� u 9�6Eof�GradStudent _� Student u 8degree.String u 9=1degree:Figure 8.2 The knowledge base corresponding to the ER schema in Figure 8.1{ if m = cminS(U) 6= 0, the assertion�(E) _� 9�m(�(U))�:{ if n = cmaxS(U) 6=1, the assertion�(E) _� 9�n(�(U))�:For each pair of symbols C1; C2 such that C1 is either a relationship or adomain symbol, C2 is either an entity, a relationship, or a domain symbol,and C1 6= C2, the assertion�(C1) _� :�(C2): (8.1)Example 1 (cont.) We illustrate the translation on the ER schema of Fig-ure 8.1. The knowledge base that captures its semantics is shown in Figure 8.2,where the disjointness assertions (8.1) are omitted for brevity.Regarding the transformation provided above we observe the following:Since an ER schema expresses only necessary conditions for objects ofthe domain to be instances of entities, the translation makes only use ofinclusion assertions, while equality assertions are not necessary.Each relationship is rei�ed, i.e. is modeled by means of a concept, whoseinstances represent the tuples of the relationship. The assertions enforcethat for each role �(U) of the relationship each such instance is connected

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 241to exactly one object that represents the U -component of the correspond-ing tuple.Both inverse roles and number restrictions are exploited to capture thesemantics of ER schemata. More precisely, functionality of the roles asso-ciated to the ER-roles is needed to represent the fact that each instance ofa relationship is connected via each ER-role to exactly one instance of theassociated entity, while we use number restrictions on the correspondinginverse roles to represent cardinality constraints of the ER schema.Even when the ER schema is acyclic, the resulting knowledge base con-tains cycles.By means of the inverse constructor, a binary relationship could betreated in a simpler way by choosing a traversal direction and mappingthe relationship directly to a role.In order to show that the translation preserves the semantics of the ERschema we de�ne a mapping between database states corresponding to the ERschema and �nite interpretations of the knowledge base derived from it. Due torei�cation of relationships, this mapping is however not one-to-one and we �rstneed to characterize those interpretations of the knowledge base that directlycorrespond to database states.We say that an interpretation I of the knowledge base �(S) derived froman ER schema S is relation-descriptive, if for every relationship R of S, withER-roles U1; : : : ; Uk, for every d; d0 2 (�(R))I , we have that(^1�i�k(8d00 2 �I. (d; d00) 2 (�(Ui))I $ (d0; d00) 2 (�(Ui))I))! d = d0:Intuitively, the condition states that there are no two instances of a conceptcorresponding to a relationship that represent the same tuple. Notice that thiscondition is implicit in the semantics of the ER model (where the extensionof a relationship is a set of tuples), while it does not necessarily hold oncerelationships are rei�ed. It also cannot be imposed in ALCQI by suitableassertions. However, when reasoning on the knowledge base corresponding toan ER schema, it is su�cient to restrict the attention to relation-descriptivemodels. Indeed, if a concept expression C of the knowledge base �(S) obtainedfrom an ER schema S is satis�able in �(S), then there is a relation-descriptivemodel of �(S) in which C has a nonempty extension [Cal96b]. This can beexploited since relation-descriptive models of an ALCQI knowledge base �(S)can be put in correspondence with legal database states for S. More precisely,

242 LOGICS FOR DATABASES AND INFORMATION SYSTEMSthe correspondence can be established by de�ning two mappings �S and �S asfollows:�S is a mapping from database states corresponding to S to relation-descriptive interpretations of �(S), with the following properties (let Bbe a database state and I = �S(B)):{ If B is a legal database state, then I is a model of �(S).{ �I is the union of �B, the set of (rei�ed) tuples, and the set ofdomain values that appear in B as a value of some attribute.{ For each entity E, (�(E))I = EB.�S is a mapping from relation-descriptive interpretations of �(S) to da-tabase states corresponding to S, with the following properties (let I bean interpretation of �(S) and B = �S(I)):{ If I is a model of �(S), then B is a legal database state.{ �B is the set of all objects in �I that are not instances of any atomicconcept corresponding to a relationship or a basic domain.{ For each entity E, EB = (�(E))I .The existence of the mappings �S and �S , allows us to reduce the problem ofchecking properties that hold for an ER schema to the problem of reasoning onthe corresponding ALCQI knowledge base [Cal96b]. Indeed, given a relation-descriptive model I of �(S) in which a concept �(E) corresponding to an entityE is satis�able, �S(I) is a legal database state in which entity E is populated.Conversely, applying �S to such a legal database state, we obtain a suitablemodel of �(S).8.3.3 Extending the Expressiveness of the Modeling LanguageSemantic data models in general, and the ER model in particular, do not pro-vide several features and modeling primitives which would prove useful in orderto represent complex dependencies between data. The richness of constructsthat is typical of Description Logics, and the correspondence between the twoformalisms established in the previous section, makes it possible however, toadd such constructs to the basic model and take them fully into account whenreasoning on a schema. We provide now several meaningful examples of possi-ble additions to the basic ER model that arise as a natural consequence of thecorrespondence with ALCQI.

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 2438.3.3.1 Arbitrary Boolean Constructs on Entities. The only directrelationship between entities that can be expressed in the basic ER model isthe is-a relation. A common extension is by so called generalization hierarchies(see e.g. [BCN92]), which allow one to express that the extension of an entityshould be the disjoint union of the extensions of other entities. Such constructcan easily be translated by making use of union and negation of DescriptionLogics.Example 1 (cont.) The fact that each professor is either an associate or afull professor can be expressed by a simple generalization hierarchy statingthat the entity Professor is the generalization of the two entities AssProfand FullProf. We can translate this hierarchy in ALCQI by adding to theassertions in Figure 8.2 the following:Professor _� AssProft FullProfAssProf _� Professoru :FullProfFullProf _� ProfessorIn general, each level in a generalization hierarchy expressing that entity Eis the generalization of the disjoint entities E1; : : : ; En can be translated to thefollowing assertions:�(E) _� �(E1) t � � � t �(En)�(E1) _� �(E) u :�(E2) u :�(E3) u � � � u :�(En)�(E2) _� �(E) u :�(E3) u :�(E4) u � � � u :�(En)...�(En�1) _� �(E) u :�(En)�(En) _� �(E)More generally, exploiting the possibility to construct general boolean ex-pressions in ALCQI we can make use of arbitrary boolean combinations ofentities in a schema, thus expressing in particular disjointness and disjunctionof entities, which are forms of negative and incomplete knowledge [DL93].8.3.3.2 Re�nement of Properties along an ISA Hierarchy. Anotherimportant extension that should be considered is the possibility to specify morecomplex forms of re�nement of properties of entities along ISA hierarchies, thanthe mere addition of attributes. This is already an essential feature of the morerecent object-oriented models. In particular, cardinality constraints could bere�ned by restricting the range of values, and the participation in relationships

244 LOGICS FOR DATABASES AND INFORMATION SYSTEMScan be restricted. One may require for speci�c instances of an entity that theobjects they are related to via a certain relationship belong to a more speci�centity than the one directly associated to the ER-role. Such forms of constraintscan be naturally expressed in ALCQI by making use of universal quanti�cationover roles.Example 1 (cont.) The following assertion imposes that advanced coursesare followed by at least 5 and at most 15 students (thus re�ning the limits thathold for arbitrary courses), and that all these students are graduate:AdvCourse _� 9�5Ein� u 9�15Ein� u 8Ein�.8Eof.GradStudent8.3.3.3 De�nitions of Classes by Means of Complex Properties. Inthe ER model (and more generally in semantic data models) one can spec-ify only necessary conditions that the instances of entities (or more generallyclasses) must satisfy. This means that in a database that conforms to theschema one cannot deduce that a certain object is an instance of an entity un-less this fact is explicitly stated. When modeling a complex domain, however,in order to capture more precisely the intended semantics, one would like tobe able to de�ne classes of objects through necessary and su�cient conditions,or even to state just su�cient conditions for an object to be an instance of aclass. By using the di�erent types of assertions of ALCQI such conditions canbe easily imposed and become part of the schema. In addition, the availabilityof the various constructors allows one to express relatively complex conditions.Example 1 (cont.) A su�cient condition for a student to be considered grad-uate is that he has a degree. This can be speci�ed by the following assertion,which is used together with the assertion in Figure 8.2 that speci�es the nec-essary conditions. Studentu 9degree _� GradStudent8.4 OBJECT-ORIENTED DATA MODELSObject-oriented data models have been proposed with the goal of devising da-tabase formalisms that could be integrated with object-oriented programmingsystems [Kim90]. They are the subject of an active area of research in theDatabase �eld, and are based on the following features:They rely on the notion of object identi�er at the extensional level (asopposed to traditional data models which are value-oriented) and on thenotion of class at the intensional level.

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 245The structure of the classes is speci�ed by means of typing and inheri-tance.As in the previous section, we introduce a language for specifying object-oriented schemata, which includes the common features of object-oriented datamodels, and discuss its relationship with other class-based formalisms by show-ing that schemata expressed in this language can be correctly represented asknowledge bases in ALCQI.8.4.1 An Object-Oriented Data ModelWe de�ne a simple object-oriented language in the style of the most popularmodels featuring complex objects and object identity. Although we do not referto any speci�c formalism, our model is inspired by the one presented in [AK89],where a formal characterization is presented, but embodies the basic featuresof the static part of the ODMG standard [CB97]. We recall that we restrictour attention to the structural component of object-oriented models and donot consider those aspects related to the de�nition of methods associated tothe classes.An object-oriented schema is de�ned over a �nite set of class names, denotedby the letter C and a �nite set of attribute names, denoted by the letter A. Anobject-oriented S schema is a �nite set of class declarations of the form:Class C is-a C1; : : : ; Ck type-is T;with exactly one such declaration for each class C, and where T denotes a typeexpression built according to the following syntax:T �! C jUnion T1; : : : ; Tk End jSet-of T jRecord A1:T1; : : : ; Ak:Tk End:Example 2 Figure 8.3 shows a fragment of the object-oriented schema corre-sponding to the Entity-Relationship schema of Figure 8.1.Each class declaration imposes constraints on the instances of the class itrefers to. The is-a part of a class declaration allows one to specify inclusionbetween the sets of instances of the involved classes, while the type-is partspeci�es through a type expression the structure assigned to the objects thatare instances of the class.

246 LOGICS FOR DATABASES AND INFORMATION SYSTEMSClass Teacher type-isUnion Professor, GradStudentEndClass GradStudent is-a Student type-isRecorddegree: StringEnd
Class Course type-isRecordenrolls: Set-of Student,taughtby: TeacherEnd

Figure 8.3 An object-oriented schemaThe meaning of an object-oriented schema is given by specifying the char-acteristics of an instance of the schema. The de�nition of instance makes useof the notions of object identi�er and value.Let us �rst characterize the set of values that can be constructed from a setof symbols, called object identi�ers. Given a �nite set O of symbols, the set VOof values over O is inductively de�ned as follows:O � VO.If v1; : : : ; vk 2 VO then fjv1; : : : ; vkjg 2 VO.If v1; : : : ; vk 2 VO then [[A1: v1; : : : ; Ak: vk]] 2 VO.Nothing else is in VO.A database instance J of a schema S is constituted bya �nite set OJ of object identi�ers;a mapping �J assigning to each class name a subset of OJ ;a mapping �J assigning a value in VOJ to each object in OJ .Although the set VOJ of values that can be constructed from a set OJ of objectidenti�ers is in�nite, for a database instance one needs only to consider a �nitesubset of VOJ , since �nite are the structures that can be stored in a database.For an object-oriented schema S and an instance J of S, this �nite set is calledthe set VJ of active values with respect to J , and is constituted by the unionof the set OJ of object identi�ers andthe set of values assigned by �J to the elements of OJ , including thosevalues that are not explicitly associated with object identi�ers, but areused to form other values.

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 247The interpretation of type expressions in J is de�ned through an interpre-tation function �J that assigns to each type expression a subset of VOJ suchthat the following conditions are satis�ed:CJ = �J (C)(Union T1; : : : ; Tk End)J = TJ1 [� � � [TJk(Set-of T)J = ffjv1; : : : ; vkjg j k � 0; vi 2 TJ ;for i 2 f1; : : : ; kgg(Record A1:T1; : : : ; Ak:Tk End)J = f[[A1: v1; : : : ; Ah: vh]] j h � k;vi 2 TJi ; for i 2 f1; : : : ; kg;vj 2 VOJ ; for j 2 fk + 1; : : : ; hgg:Notice that the instances of a class of type record may have more compo-nents than those speci�ed in the type of the class. Thus we are using anopen semantics for records, which is typical of object-oriented data models (seee.g. [AK89]).In order to characterize object-oriented data models we de�ne which in-stances are admissible for a schema. A database instance J of an object-oriented schema S is said to be legal (with respect to S) if for each declarationClass C is-a C1; : : : ; Cn type-is Tin S, it holds that CJ � CJi for each i 2 f1; : : : ; ng, and that �J (CJ) � TJ .Therefore, for a legal database instance, the type expressions that are presentin the schema determine the (�nite) set of active values that must be considered.The construction of such values is limited by the depth of type expressions.8.4.2 Formalizing Object-Oriented Schemata in Description LogicsWe establish a relationship between ALCQI and the object-oriented languagepresented above. This is done by providing a mapping from object-orientedschemata into ALCQI knowledge bases. Since the interpretation domain foran ALCQI knowledge base consists of atomic objects, whereas each instance ofan object-oriented schema is assigned a possibly structured value (see the de�-nition of VO), we need to explicitly represent some of the notions that underliethe object-oriented language. In particular, while there is a correspondence be-tween concepts and classes, one must explicitly account for the type structureof each class. This can be accomplished by introducing in ALCQI a con-cept AbstractClass, to represent the classes, and two concepts RecType andSetType to represent the corresponding types. The associations between classesand types induced by the class declarations, as well as the basic characteristics

248 LOGICS FOR DATABASES AND INFORMATION SYSTEMSof types, are modeled by means of roles: the (functional) role value models theassociation between classes and types, and the role member is used for specifyingthe type of the elements of a set. Moreover, the concepts representing types areassumed to be mutually disjoint, and disjoint from the concepts representingclasses. These constraints are expressed by suitable inclusion assertions in theknowledge base.More formally, the knowledge base (S) corresponding to an object-orientedschema S contains the prede�ned atomic concepts AbstractClass, RecType,and SetType, and one concept (C) for each class name C in S. It containsalso the prede�ned atomic roles value and member, and one atomic role (A)for each attribute name A in S.Before specifying the set of assertions of (S) we specify how the function maps each type expression into a concept expression as follows:Every class C is mapped into an atomic concept (C).Every type expression Union T1; : : : ; Tk End is mapped into (T1) t � � � t (Tk).Every type expression Set-of T is mapped into SetTypeu8member. (T).Every attribute A is mapped into an atomic role (A), and every typeexpression Record A1:T1; : : : ; Ak:Tk End is mapped intoRecType u 8 (A1). (T1) u 9=1 (A1) u � � � u8 (Ak). (Tk) u 9=1 (Ak):Using we de�ne the knowledge base (S) corresponding to S as constitutedby the inclusion assertionsAbstractClass _� 9=1valueRecType _� 8value.?SetType _� 8value.?u :RecTypeand for each class declarationClass C is-a C1; : : : ; Cn type-is Tin S, an inclusion assertion (C) _� AbstractClassu (C1) u � � � u (Cn) u 8value. (T):Example 2 (cont.) We illustrate the translation on the fragment of object-oriented schema in Figure 8.3. The corresponding ALCQI knowledge base isshown in Figure 8.4.

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 249Course _� AbstractClass u8value.(RecType u 9=1enrolls u 9=1taughtby u8enrolls.(SetType u 8member.Student) u8taughtby.Teacher)Teacher _� AbstractClass u 8value.(GradStudent t Professor)GradStudent _� AbstractClass u Student u8value.(RecType u 8degree.String u 9=1degree)AbstractClass _� 9=1valueRecType _� 8value.?SetType _� 8value.?u :RecTypeFigure 8.4 The ALCQI knowledge base corresponding to the object-oriented schema inFigure 8.3Some remarks on the above translation are in order.As for the ER model the resulting knowledge base contains inclusionassertions, but not equality assertions.The relationship between a class and the associated type expression is rei-�ed, i.e. explicitly represented through the role value. Moreover, the typestructure of each class is represented in terms of the concepts RecTypeand SetType, that explicitly characterize records and sets, respectively.The record attributes are directly mapped into functional roles, while setelements are associated to a set through the role member.Inverse roles are not needed for the formalization of object-oriented datamodels.The use of number restrictions is limited to the value 1, which correspondsto existence constraints and functionality.Below we discuss the e�ectiveness of the translation . First of all ob-serve that the knowledge base (S) resulting from the translation of an object-oriented schema S may admit models that do not have a direct counterpartamong legal database instances of S. More precisely, by characterizing the in-terpretations as directed labeled graphs [CLN97], one �nds that the conceptsthat translate type expressions involving record and set structures admit cer-tain cyclic models in which values, which have a tree-like structure, have nodirect counterpart.

250 LOGICS FOR DATABASES AND INFORMATION SYSTEMSo1 v1 v2o2 v3 v4 v5CC RecType RecType RecType RecTypeRecTypea1 a1a2 a2a3a3value value
Figure 8.5 A model containing cyclesExample 3 Consider the object-oriented schema S, containing a single classdeclarationClass C type-is Record a1 : Record a2 : Record a3 : C End End Endwhich is translated toC _� AbstractClassu8value.(RecTypeu 9=1a1 u8a1.(RecTypeu 9=1a2 u8a2.(RecTypeu 9=1a3 u 8a3.C))):Figure 8.5 shows a model of (S) represented as a graph. For clarity, wehave named the instances of C, and hence of AbstractClass, with o and theinstances of RecType with v. Observe the two di�erent types of cycles in thegraph. The cycle involving individuals o2, v3, v4, and v5 does not cause anyproblems since it contains an arc labeled with value, which is not part of thestructure constituting a complex value. In fact, v3 represents the record value[[a1: [[a2: [[a3: o2]]]]]]. On the other hand, the cycle involving v1 and v2 represents(together with o2 connected via a3 to v1) a record of in�nite depth.To establish the correspondence between legal instances of object-orientedschemata and �nite interpretation of their translations one needs to unfold\bad" cycles of the form above (which do not include any individual corre-sponding to an object identi�er) into �nite trees of depth bound by the sizeof the object-oriented schema. More precisely, let I be a �nite interpretationof (S). We call unfolded version of I the interpretation obtained by unfold-ing the bad cycles in I and generating new individuals only for the instancesof RecType and SetType occurring in the unfolded cycles. For a nonnegativeinteger m, we call m-unfolded version of I, denoted as Ijm, the interpretation

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 251obtained by truncating at depth m each in�nite tree generated in the processof unfolding.The correctness of (S) can now be established by showing that, for everyobject-oriented schema S of depth m, there exist two mappings:�S , from instances of S into �nite interpretations of (S), and�v , from active values of instances of S into domain elements of the �niteinterpretations of (S)which provide the desired correspondence between the interpretation struc-tures. In particular, �S and �v can be de�ned in such a way that: (i) if J isa legal instance of S, then �S(J) is a �nite model of (S), and (ii) for eachtype expression T of S and each active value v 2 VJ , v 2 TJ if and only if�v(v) 2 ((T))�S(J).Conversely, one can de�ne two mappings:�S , from �nite interpretations of (S) into instances of S, and�v , from domain elements of the m-unfolded versions of the �nite inter-pretations of (S) into active values of instances of S,such that: (i) for each �nite model I of (S), �S(I) is a legal instance of S,and (ii) for each concept (T), which is the translation of a type expression Tof S, and each d 2 �Ijm , d 2 ((T))Ijm if and only if �v(d) 2 T �S(I).Similarly to the ER model, the existing of the above mappings allows usto reduce the problem of checking properties of classes in an object-orientedschema to the problem of reasoning on the corresponding knowledge base.8.4.3 Extending the Expressiveness of the Modeling LanguageThe ability to represent any object-oriented schema as a Description Logicknowledge base makes it feasible to consider several extensions of the object-oriented formalism useful for the purpose of conceptual modeling. First of all,the same considerations developed for the ER model with regard to the useof arbitrary boolean constructs on classes can be applied also in the object-oriented setting, which provides disjunction but does not admit any form ofnegation. Second, one can analogously exploit the ability of expressing classde�nitions in addition to the inclusion statements that are typical of object-oriented modeling languages [BN94]. However, there are several additionalfeatures that can be speci�cally addressed in the framework of object-orientedlanguages, as shown below.

252 LOGICS FOR DATABASES AND INFORMATION SYSTEMS8.4.3.1 Cardinality Constraints. Cardinality Constraints that are typi-cal of semantic data models become expressible in object-oriented schemata.Example 2 (cont.) We can specify numerical restrictions in the de�nition ofa course, which can enroll between 2 and 30 students.Course _� AbstractClassu8value.(RecTypeu 9=1enrollsu 9=1taughtbyu8enrolls.(SetTypeu 8member.Studentu9�2memberu 9�30member) u8taughtby.Teacher)Notice that, the usage of cardinality restrictions in the example above actuallycorresponds to the ability to constrain the cardinality of sets.8.4.3.2 General Restrictions on the Values of Attributes. The usagein object-oriented modeling languages of constructs corresponding to quanti-�ed role restrictions is limited to the translation of record and set structures.Adding general forms of quanti�ed role restrictions amounts to admitting more
exible structures, whose closer counterpart are possibly frames in knowledgerepresentation systems (see e.g. [BS85; CLN94]). In a frame structure one canfor example specify that a slot, which is the counterpart of a record attribute,can have restrictions on the number and type of �llers. In addition, instead ofintroducing set types explicitly for those attributes whose values are sets, onecan directly use multivalued attributes and express the constraints on the typeand the number of instances using the constructors of ALCQI.Example 4 We can specify, that a graduate student must have at least onedegree, but maybe more, and express the relationship between courses andstudents by means of the attribute enrollswhich we now consider multivalued.GradStudent _� Studentu 9degreeCourse _� 8enrolls.Studentu 9�2enrollsu 9�30enrollsu8taughtby.(Professort GradStudent) u 9=1taughtby8.4.3.3 Inverse of Roles. We have already observed that inverse roles arenot necessary for the formalization of object-oriented data models. However, byadmitting inverse of roles in the language one gains the ability to put constraintsusing a relation in both directions, as it is customary in semantic data models.Example 2 (cont.) We can state that each professor should teach at leastone course by means of the assertion:Professor _� 9taughtby�.Course

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 253Indeed, the possibility of referring to the inverse of an attribute is often ruledout in object-oriented models. However, this strongly limits the expressivepower of the data model, as pointed out in recent papers (see e.g. [AGO91]).On the other hand, we recall that inverse roles have been included in the ODGMstandard [CB97].8.5 SUPPORT FOR DATA MODELINGThe logical formalization of data models in terms of Description Logics is a �rststep towards the development of logic-based modeling tools that can supportthe database designer in his activity, by taking over certain tasks that in tradi-tional CASE tools are left to the responsibility of the designer. In this sectionwe �rst discuss the tasks that can be performed by a Description Logic systemby relying on its reasoning capabilities, thus identifying the essential reasoningservices that the system should provide. We then brie
y discuss a techniquefor reasoning on ALCQI knowledge bases. Finally, we discuss how reasoningin ALCQI does indeed capture the reasoning services for the semantic andobject-oriented schemata described in the paper.8.5.1 Reasoning Tasks in Data ModelingTraditional database modeling tools support the designer with a user friendlygraphical environment and provide means to access di�erent kinds of repos-itories that store information associated to the elements of the developedschemata. However, these tools do not provide any support for higher levelactivities related to managing the complexity of schemata. In particular, theburden of checking relevant properties of schemata, such as consistency or re-dundancy, is left to the responsibility of the designer.There are di�erent ways in which ALCQI knowledge bases may enter thedatabase modeling process and may be used by a system to support this activity.A knowledge base may be the result of a direct translation by a CASEtool from a database schema expressed in one of the traditional (object-oriented or semantic) data models. Notice that due to the expressivenessofALCQI several additional constraints that cannot be directly expressedin the source data model may be expressed by the designer and included inthe knowledge base, in order to be considered by the reasoning procedures.A knowledge base may be constructed and managed by the design tool ina way completely transparent to the designer in order to perform variouskinds of checks on the schemata.

254 LOGICS FOR DATABASES AND INFORMATION SYSTEMSSUPERVISING _� 8Sby.Professor u 9=1Sby u 8Sof.GradStudent u 9=1SofProfessor _� 9�1Tby�.8Tof.AdvCourse u 8Sby�.SUPERVISING u 9�2Sby�GradStudent _� 9�2Ein�.8Eof.AdvCourse u 9�4Ein�.8Eof.AdvCourse u8Sof�.SUPERVISING u 9=1Sof�AdvCourse _� 8Eof�.8Ein.GradStudentFigure 8.6 An inconsistent extension of the knowledge base shown in Figure 8.2ALCQI may be used as a unifying formalism in which to express schematain di�erent data models for the purpose of integration. In this case,additional assertions may be added to those resulting from the individualschemata in order to express so called interschema constraints [CL93;Hul97].Once a formalization of a schema in terms of ALCQI is provided, the check-ing of properties which ensure correctness and optimality of a design, can beturned into reasoning tasks in ALCQI. Such properties are addressed in thefollowing.8.5.1.1 Schema Consistency. A schema is consistent, if there is a(nonempty) database that satis�es (all constraints speci�ed in) the schema.Although the problem of checking schema consistency arises already in rela-tively simple data models (e.g. the ER model without is-a relations [LN90]), itbecomes much more di�cult to solve if the expressiveness of the formalism isincreased.Example 5 Consider augmenting the ER schema in Figure 8.1 with a new re-lationship SUPERVISING, which is linked with role Sby to Professor and withrole Sof to GradStudent, each with suitable cardinality constraints. Addition-ally we want to impose more realistic constraints on the relationship ENROLLINGbetween AdvCourse and GradStudent. These additional constraints, whichcannot be stated in the ER model, are expressed (together with the translationof the relationship SUPERVISING) as assertions in ALCQI in Figure 8.6. Theyexpress that advanced courses may enroll only graduate students, and eachsuch student must be enrolled in at least 2 and at most 4 advanced courses.We impose also that each professor must teach at least one advanced course.The formalization above seems reasonable. It turns out, however, that theknowledge base which is the union of the assertions in Figures 8.2 and 8.6 (andof the disjointness assertions stemming from the translation of the ER schema)is unsatis�able. In order to understand why, one has to consider that the

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 255cardinality constraints on the participation of an entity in a relationship poserestrictions on the number of their instances. For example, they enforce thatin every legal database state, the number of instances of GradStudent is thesame as the number of instances (i.e. rei�ed tuples) in SUPERVISING.When suchconstraints appear along a cycle in the schema it may happen that they cannotbe satis�ed together. For this to be the case, the assumption that the data-base contains a �nite number of objects is essential. In the example, one suchcycle is constituted by: AdvCourse, ENROLLING, GradStudent, SUPERVISING,Professor, TEACHING, and back to AdvCourse.It is worth emphasizing, that situations like the one exempli�ed above arenot unusual in practice. They are generally di�cult to discover until the database population stage, where handling them can be rather inconvenient.8.5.1.2 Class Consistency. A class is consistent, if it has a nonemptyextension in some database that satis�es the schema. The inconsistency of aclass may be due to a design error or due to over-constraining. In any case,the designer can be forced to remove the inconsistency, either by correcting theerror, or by relaxing some constraints, or by deleting the class, thus removingredundancy from the schema. Observe also that while schema consistencyfollows from consistency of all classes in the schema (in fact from consistencyof at least one class), the converse is in general not true.8.5.1.3 Class Equivalence. Two classes are equivalent if they denote thesame set of instances in all databases that satisfy the schema. Determiningequivalence of two classes allows for their merging, thus reducing the complexityof the schema. It is worth emphasizing that such an operation is in practicea very di�cult task. Moreover, the ability to introduce de�nitions, allowsfor a hierarchical structuring of the schema which can be used to support are�nement approach to schema design, while ensuring the overall consistency.8.5.1.4 Class Subsumption. A class C1 is subsumed by a class C2 if inall databases that satisfy the schema the extension of C1 is a subset of theextension of C2. Subsumption allows one to deduce properties for one classfrom those of another one. It is also the basis for a classi�cation of all theclasses that appear in a schema within a lattice. Such a classi�cation, as in anyobject-oriented approach, can be exploited in several ways within the modelingprocess [BN94].Example 6 Suppose we extend now the ER schema in Figure 8.1 as shown inFigure 8.7, linking the relationship SUPERVISING, with role Sby to GradStudentand with role Sof to Student. The cardinality constraints express that each

256 LOGICS FOR DATABASES AND INFORMATION SYSTEMSSUPERVISING _� 8Sby.GradStudent u 9=1Sby u 8Sof.Student u 9=1SofGradStudent _� 9�1Sby� u 8Sby�.SUPERVISINGStudent _� 9�1Sof� u 8Sof�.SUPERVISINGFigure 8.7 An extension of the knowledge base shown in Figure 8.2 which forces equiva-lence of two classesstudent has at least one supervisor and that each graduate student supervises atmost one student. Now the constraints we have imposed force the two classesStudent and GradStudent to have the same number of instances, and sincethe extension of GradStudent is a subset of the extension of Student (andthe domain is assumed to be �nite), the two classes are in fact equivalent. Wecan also say that Student is subsumed by GradStudent in this augmentedschema. Observe that this property may have consequences on other classesin the schema. If, for example we introduce a new subclass BasicCourse ofCourse, and require by means ofBasicCourse _� Courseu 8Ein�.8Eof.:GradStudentu 9�1Ein�that basic courses enroll only students which are not graduate, and there shouldbe at least one enrolled student, then BasicCourse is inconsistent.8.5.1.5 Logical Consequence. A property is a logical consequence of aschema if it holds in all databases that satisfy the schema. The properties thatshould be considered are those of the same form as the constraints that can beexpressed in the schema de�nition language. Determining logical consequenceis at the basis of all types of reasoning that a Description Logic system canprovide. In particular, all reasoning tasks we have considered above can berephrased in terms of logical consequence. For example, a class A is inconsistentin a schema if and only if the constraint A _� ? is a logical consequence ofthe assertions in the schema. Logical consequence is useful on the one handto reduce the complexity of the schema by removing those constraints thatlogically follow from other ones, and on the other hand it can be used to explicitproperties that are implicit in the schema, thus enhancing its readability.8.5.2 Realization of ReasoningIn order to provide the above mentioned services, we �rst address the decid-ability of the relevant reasoning tasks in ALCQI knowledge bases, and thenillustrate how the method can be applied to perform reasoning tasks that are

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 257speci�c to semantic data models and object-oriented schemata. In this wayreasoning can e�ectively support the designer in the data modeling activity.8.5.2.1 Reasoning in ALCQI. The richness of constructs available inALCQI, which in addition to the basic Description Logic constructs includesinverse of roles, quali�ed number restrictions and cyclic assertions, makes rea-soning on a knowledge base a nontrivial task. We recall that in a data modelingsetting we are interested in �nite model reasoning.First, we observe that all reasoning tasks can immediately be reduced to thefundamental problem of checking the satis�ability of a single atomic concept.In fact, a knowledge base K is satis�able if and only if > is satis�able in K,and K implies the inclusion assertion C1 _� C2 if and only if C1 u :C2 is notsatis�able in K. Moreover, it is su�cient to treat the satis�ability of an atomicconcept, since an arbitrary concept expression C is satis�able in K, if and onlyif a newly introduced atomic concept A is satis�able in K [fA := Cg.Checking the satis�ability of a single atomic concept A in an ALCQI knowl-edge base K can be done by exploiting the technique developed in [Cal96a]. Themethod extends the one developed in [CLN94] for a simpler logic, and is basedon the construction of a particular system 	AK of linear inequations, and thesearch for particular (acceptable) solutions of 	AK (see [Cal96b] for full details).The size of 	AK is in the worst case doubly exponential in the size of K, whilethe search for acceptable solutions can be done in polynomial time in the sizeof the system. Thus we obtain a decision procedure for all reasoning tasks thatworks in deterministic double exponential time.We notice that in the case discussed in [CLN94], where the schema containsno equality assertions and certain constructs are used only in a restricted way(negation is allowed only in front of atomic concepts, and all number restrictionsare non-quali�ed, i.e. of the form 9�nR or 9�nR) the size of the system can bekept single exponential in the size of K. Such a case is of particular interest,since the basic constructs of semantic and object-oriented data models can beexpressed in this language. A discussion on the optimization techniques for theproposed framework is presented in [CL94a].8.5.2.2 Reasoning in Semantic and Object-Oriented Data Models.The decidability of reasoning in ALCQI together with the characterization ofsemantic and object-oriented data models developed in Sections 8.3.2 and 8.4.2provides a method to reason in these data models.In particular, the consistency of an entity E in an ER schema can berephrased as the problem of checking whether the concept corresponding toE is satis�able in the translation of the schema. Analogously, subtyping inobject-oriented schemata, i.e. checking whether a type denotes a subset of an-

258 LOGICS FOR DATABASES AND INFORMATION SYSTEMSother type in every legal instance of a schema can be accomplished by checkingwhether subsumption between the translated type expressions follows from thetranslation of the schema. Moreover, type consistency, i.e. checking whether atype is consistent in a legal instance of the schema, can be reduced to conceptconsistency.A number of attempts have been previously made to characterize reasoningproblems and devise reasoning techniques for semantic [CFP84; LN90; DL93;HK87] and object-oriented data models [AK89; BS92; BN94]. There is alsosigni�cant work on reasoning about dependencies in the relational model (seee.g. [CFP84; CK86; GM85; CKV90; AHV95]), although it has no tight rela-tionship to the framework addressed here.With respect to reasoning on Entity-Relationship schemata, previouswork [CTF88; LN90] addressed less expressive formalisms, and therefore thereasoning techniques for Description Logics can provide extensions towards aa signi�cantly more expressive framework. Similar considerations apply withrespect to the proposals to perform type consistency and inheritance reasoningon object-oriented data models. As an example, the type consistency and typesubsumption algorithms in [BN94] for an expressive object-oriented formalism,which allows for the de�nition of classes by means of necessary and su�cientconditions, could further be extended in order to take into account also uniontypes and inverse attributes.By identifying reasoning in ALCQI as the basis for reasoning on semanticand object-oriented data models we are able to combine the features of the twoapproaches, while retaining the decidability of the reasoning problems. More-over, the combination of two language constructs is for the �rst time taken intoconsideration with regard to reasoning in data models, namely negation anddisjunction. Clearly, such a generality leads to a high computational complex-ity and in order to make the proposed approach feasible in a practical settingfurther analysis is required, that is beyond the scope of the present paper.Nonetheless, the proposed approach does provide a uniform basis for reasoningon semantic and object-oriented data models.8.6 CONCLUSIONSIn this paper we have presented a uni�ed view of the formalisms for conceptualdata modeling, by adopting the language of Description Logics as a commonbasis. Such logics, which originated from the formalization of frame-basedsystems and semantic networks, provide enough expressive power to give atranslation of the most popular semantic and object-oriented data modelinglanguages. A feature of Description Logics is that both the expressiveness ofthe language and the associated reasoning capabilities can be related to the set

REFERENCES 259of constructs that are admitted in the language. Therefore, the comparison ofdata modeling formalisms has been done in terms of the constructs that areneeded in order to enable the translation in Description Logics.The use of Description Logics as a framework for data modeling has a num-ber of consequences that we have addressed in the paper. First of all, it showsthat semantic and object-oriented data modeling formalisms have several com-monalities and a few distinguishing features. Second, we have seen how bothmodeling frameworks can be enriched by including several constructs of De-scription Logics, thus providing additional expressive capabilities. Third, wehave discussed how the reasoning methods developed for Description Logicscan provide the basic reasoning services that are needed to support the datamodeling process.AcknowledgmentsThis work has been partly funded by ESPRIT LTR Project \Foundations of Dataware-house Quality (DWQ)" No.22469, and by Progetto Strategico \Informatica nella Pub-blica Amministrazione", Sottoprogetto PROGRESS of the Italian Research Council.References[Abr74] J. R. Abrial. Data semantics. In J. W. Klimbie and K. L. Ko�eman,editors, Data Base Management, pages 1{59. North-Holland Publ.Co., Amsterdam, 1974.[ACS96] Alessandro Artale, Francesca Cesarini, and Giovanni Soda. Describ-ing database objects in a concept language environment. IEEETransactions on Knowledge and Data Engineering, 8(2):345{351,1996.[AGO91] A. Albano, G. Ghelli, and R. Orsini. A relationship mechanism forstrongly typed Object-Oriented database programming languages.In Proc. of the 17th Int. Conf. on Very Large Data Bases (VLDB-91), pages 565{575, 1991.[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations ofDatabases. Addison Wesley Publ. Co., Reading, Massachussetts,1995.[AK89] Serge Abiteboul and Paris Kanellakis. Object identity as a querylanguage primitive. In Proc. of the ACM SIGMOD Int. Conf. onManagement of Data, pages 159{173, 1989.[Baa96] Franz Baader. Using automata theory for characterizing the seman-tics of terminological cycles. Annals of Mathematics and Arti�cialIntelligence, 18:175{219, 1996.

260 LOGICS FOR DATABASES AND INFORMATION SYSTEMS[BCN92] Carlo Batini, Stefano Ceri, and Sham B. Navathe. Conceptual Data-base Design, an Entity-Relationship Approach. Benjamin and Cum-mings Publ. Co., Menlo Park, California, 1992.[BDNS94] Martin Buchheit, Francesco M. Donini, Werner Nutt, and AndreaSchaerf. Terminological systems revisited: Terminology = schema+ views. In Proc. of the 12th Nat. Conf. on Arti�cial Intelligence(AAAI-94), pages 199{204, 1994.[BDS93] Martin Buchheit, Francesco M. Donini, and Andrea Schaerf. Decid-able reasoning in terminological knowledge representation systems.Journal of Arti�cial Intelligence Research, 1:109{138, 1993.[BHR90] K. H. Bl�asius, U. Hedst�uck, and C.-R. Rollinger, editors. Sorts andTypes in Arti�cial Intelligence. Number 418 in Lecture Notes inArti�cial Intelligence. Springer-Verlag, 1990.[BN94] Sonia Bergamaschi and Bernhard Nebel. Acquisition and valida-tion of complex object database schemata supporting multiple in-heritance. Applied Intelligence, 4(2):185{203, 1994.[Bor92] Alexander Borgida. From type systems to knowledge representation:Natural semantics speci�cations for description logics. Journal ofIntelligent and Cooperative Information Systems, 1(1):93{126, 1992.[Bor95] Alexander Borgida. Description logics in data management. IEEETransactions on Knowledge and Data Engineering, 7(5):671{682,1995.[BS85] Ronald J. Brachman and James G. Schmolze. An overview of the KL-ONE knowledge representation system. Cognitive Science, 9(2):171{216, 1985.[BS92] Sonia Bergamaschi and Claudio Sartori. On taxonomic reasoningin conceptual design. ACM Transactions on Database Systems,17(3):385{422, 1992.[BW97] Alexander Borgida and Grant E. Weddell. Adding functional de-pendencies to description logics. In Proc. of the 5th Int. Conf. onDeductive and Object-Oriented Databases (DOOD-97), 1997.[Cal96a] Diego Calvanese. Finite model reasoning in description logics. InProc. of the 5th Int. Conf. on the Principles of Knowledge Represen-tation and Reasoning (KR-96), pages 292{303. Morgan Kaufmann,Los Altos, 1996.[Cal96b] Diego Calvanese. Unrestricted and Finite Model Reasoning in Class-Based Representation Formalisms. PhD thesis, Dipartimento di In-formatica e Sistemistica, Universit�a di Roma \La Sapienza", 1996.[CB97] R.G.G Cattell and Douglas K. Barry, editors. The Object DatabaseStandard: ODMG 2.0. Morgan Kaufmann, Los Altos, 1997.

REFERENCES 261[CDGL95] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini.Structured objects: Modeling and reasoning. In Proc. of the 4thInt. Conf. on Deductive and Object-Oriented Databases (DOOD-95),number 1013 in Lecture Notes in Computer Science, pages 229{246.Springer-Verlag, 1995.[CFP84] Marco A. Casanova, Ronald Fagin, and Christos H. Papadimitriou.Inclusion dependencies and their interaction with functional depen-dencies. Journal of Computer and System Sciences, 28(1):29{59,1984.[Che76] P. P. Chen. The Entity-Relationship model: Toward a uni�ed viewof data. ACM Transactions on Database Systems, 1(1):9{36, March1976.[CK86] S. S. Cosmadakis and P. C. Kanellakis. Functional and inclusiondependencies - A graph theoretical approach. In P. C. Kanellakisand F. P. Preparata, editors, Advances in Computing Research, Vol.3, pages 163{184. JAI Press, 1986.[CKV90] S. S. Cosmadakis, P. C. Kanellakis, and M. Vardi. Polynomial-timeimplication problems for unary inclusion dependencies. Journal ofthe ACM, 37(1):15{46, January 1990.[CL93] Tiziana Catarci and Maurizio Lenzerini. Representing and usinginterschema knowledge in cooperative information systems. Journalof Intelligent and Cooperative Information Systems, 2(4):375{398,1993.[CL94a] Diego Calvanese and Maurizio Lenzerini. Making object-orientedschemas more expressive. In Proc. of the 13th ACM SIGACT SIG-MOD SIGART Sym. on Principles of Database Systems (PODS-94),pages 243{254. ACM Press and Addison Wesley, 1994.[CL94b] Diego Calvanese and Maurizio Lenzerini. On the interaction betweenISA and cardinality constraints. In Proc. of the 10th IEEE Int. Conf.on Data Engineering (ICDE-94), pages 204{213. IEEE ComputerSociety Press, 1994.[CLN94] Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. A uni�edframework for class based representation formalisms. In Proc. of the4th Int. Conf. on the Principles of Knowledge Representation andReasoning (KR-94), pages 109{120. Morgan Kaufmann, Los Altos,1994.[CLN97] Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Founda-tions of class-based representation formalisms. Technical report, Di-partimento di Informatica e Sistemistica, Universit�a di Roma \LaSapienza", 1997.

262 LOGICS FOR DATABASES AND INFORMATION SYSTEMS[CTF88] Marco A. Casanova, Luiz Tucherman, and Antonio L. Furtado. En-forcing inclusion dependencies and referencial integrity. In Proc. ofthe 14th Int. Conf. on Very Large Data Bases (VLDB-88), pages38{49, 1988.[DGL94] Giuseppe De Giacomo and Maurizio Lenzerini. Concept languagewith number restrictions and �xpoints, and its relationship with �-calculus. In Proc. of the 11th European Conf. on Arti�cial Intelli-gence (ECAI-94), pages 411{415, 1994.[DL93] Giuseppe Di Battista and Maurizio Lenzerini. Deductive entity-relationship modeling. IEEE Transactions on Knowledge and DataEngineering, 5(3):439{450, 1993.[DLNN91] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, andWerner Nutt. The complexity of concept languages. In Proc. of the2nd Int. Conf. on the Principles of Knowledge Representation andReasoning (KR-91), pages 151{162. Morgan Kaufmann, Los Altos,1991.[Fer91] S. Ferg. Cardinality concepts in entity-relationship modeling. InProc. of the 10th Int. Conf. on the Entity-Relationship Approach(ER-91), pages 1{30, 1991.[GM84] John Grant and Jack Minker. Numerical dependencies. In H. Gal-laire, J. Minker, and J.-M. Nicolas, editors, Advances in DatabaseTheory II. Plenum Publ. Co., New York, 1984.[GM85] John Grant and Jack Minker. Inferences for numerical dependencies.Theoretical Computer Science, 41:271{287, 1985.[HB91] Bernhard Hollunder and Franz Baader. Qualifying number re-strictions in concept languages. Technical Report RR-91-03,Deutsches Forschungszentrum f�ur K�unstliche Intelligenz (DFKI),Kaiserslautern, Germany, 1991. An abridged version appeared inProc. of the 2nd Int. Conf. on the Principles of Knowledge Repre-sentation and Reasoning (KR-91).[HK87] R. B. Hull and R. King. Semantic database modelling: Survey, ap-plications and research issues. ACM Computing Surveys, 19(3):201{260, September 1987.[Hul97] Richard Hull. Managing semantic heterogeneity in databases: A the-oretical perspective. In Proc. of the 16th ACM SIGACT SIGMODSIGART Sym. on Principles of Database Systems (PODS-97), 1997.[Kim90] Won Kim. Introduction to Object-Oriented Databases. The MITPress, 1990.[KL89] Won Kim and Frederick H. Lochovsky, editors. Object-Oriented Con-cepts, Databases, and Applications. ACM Press and Addison Wesley,New York, 1989.

REFERENCES 263[KLW95] Michael Kifer, Georg Lausen, and James Wu. Logical foundations ofObject-Oriented and frame-based languages. Journal of the ACM,42(3), 1995.[Leh92] Fritz Lehmann, editor. Semantic Networks in Arti�cial Intelligence.Pergamon Press, Oxford, 1992.[LN90] Maurizio Lenzerini and Paolo Nobili. On the satis�ability of de-pendency constraints in entity-relationship schemata. InformationSystems, 15(4):453{461, 1990.[LNS91] Maurizio Lenzerini, Daniele Nardi, and Maria Simi, editors. Inher-itance Hierarchies in Knowledge Representation and ProgrammingLanguages. John Wiley & Sons, 1991.[MM92] R. Motschnig-Pitrik and J. Mylopoulous. Classes and instances.Journal of Intelligent and Cooperative Information Systems, 1(1),1992.[Neb91] Bernhard Nebel. Terminological cycles: Semantics and computa-tional properties. In John F. Sowa, editor, Principles of SemanticNetworks, pages 331{361. Morgan Kaufmann, Los Altos, 1991.[PSS92] Barbara Piza, Klaus-Dieter Schewe, and Joachim W. Schmidt. Termsubsumption with type constructors. In Y. Yesha, editor, Proc. of theInt. Conf. on Information and Knowledge Management (CIKM-92),pages 449{456, 1992.[Sch94] Klaus Schild. Terminological cycles and the propositional �-calculus.In Proc. of the 4th Int. Conf. on the Principles of Knowledge Rep-resentation and Reasoning (KR-94), pages 509{520. Morgan Kauf-mann, Los Altos, 1994.[Sow91] John F. Sowa, editor. Principles of Semantic Networks. MorganKaufmann, Los Altos, 1991.[SS91] Manfred Schmidt-Schau� and Gert Smolka. Attributive conceptdescriptions with complements. Arti�cial Intelligence, 48(1):1{26,1991.[Teo89] J. T. Teorey. Database Modeling and Design: The Entity-Relationship Approach. Morgan Kaufmann, Los Altos, 1989.[Tha92] Bernhard Thalheim. Fundamentals of cardinality constraints. InG. Pernoul and A. M. Tjoa, editors, Proc. of the 11th Int. Conf.on the Entity-Relationship Approach (ER-92), pages 7{23. Springer-Verlag, 1992.[Tha93] Bernhard Thalheim. Fundamentals of the Entity Relationship Model.Springer-Verlag, 1993.[YPS94] Xian Ye, Christine Parent, and Stefano Spaccapietra. Cardinalityconsistency of derived objects in DOOD systems. In Proc. of the 13th

264 LOGICS FOR DATABASES AND INFORMATION SYSTEMSInt. Conf. on the Entity-Relationship Approach (ER-94), number881 in Lecture Notes in Computer Science, pages 278{295. Springer-Verlag, 1994.

Index

accessibility relation, 15action, 169, 202, 392calling, 171, 176, 177, 181enabling, 172, 176external, 410internal, 393occurrence, 173, 176symbol, 170, 172, 181action sort, 209action symbol, 209active database, 392active rule, 392, 409agent, 189logic, 189aggregation, 275Albert, 188, 200ALCQI, 232concept, role, 232knowledge base, 234reasoning, 257always operator, 210Anderson's reduction, 86, 93answer approximation, 343assignment, 213atom, 7ATSQL, 50attribute, 169, 202, 209, 236, 245alteration, 187inherited, 191symbol, 172, 209value, 172, 176, 187auto-epistemic logic, 345automated deduction, 10axiom, 170

behaviour, 172, 183class, 171communication, 171frame, 187inherited, 191local, 177non-rigid, 205rigid, 202, 204system, 171axiom attribute, 205B, 17base formula in dyOSL, 210base sort, 209base term in dyOSL, 210base variable in dyOSL, 210behaviour, 167axiom, 172, 183concurrent, 167model, 168object, 174of objects, 200system, 176belief revision, 338biquanti�ed formula, 56branching time logic, 19business policy, 97c-table, 322, 327calling, 202cardinality constraint, 233, 236, 237, 252certain answer, 318Chisholm set, 75, 80, 84, 89class, 169, 170, 174, 245axiom, 171 425

426 LOGICS FOR DATABASES AND INFORMATION SYSTEMSinheritance, 191class-subclass hierarchy, 363clause, 268{270, 273, 276, 278, 281{284de�nite, 269ground, 283null, 283, 284closed world assumption, 24, 270, 294, 334closureby consequence, 219by entailment, 215coalescing, 50Codd table, 320, 326combined complexity, 329communication, 167, 168, 170, 177, 178,184, 188action, 171, 181asynchronous, 172axiom, 171constraints, 184event, 182formula, 177predicate, 176, 178, 181protocol, 167symbol, 183synchronous, 171, 172compilation of temporal queries, 47completeness, 12, 220completion, 221, 270completion axiom, 325, 334complex object, 342complexity, 395, 399, 413composite event, 393, 410, 413concept, 232conclusion, 9concurrency, 168, 188model, 173, 188, 190concurrentbehaviour, 167, 188events, 176objects, 167process, 167system, 189work
ow, 167condition, 392, 393con
uence, 395, 397, 409conjunctive formula, 316consequence, 220logical, 9consistency, 9, 254, 255constant symbol, 6constraint, 341constraint satisfaction, 53, 57

potential, 54, 56context function, 373contrapositive reasoning, 378cooperative answering, 287{291coupling mode, 394, 400, 412credulous semantics, 376, 378CWA, 24, 270, 294cycle local, 405negative, 405D, 17D4, 17data complexity, 329data domain, 33data modeling, 253data signature, 209databasedeductive, 266, 270{272, 278, 279,291, 293, 294, 296, 297, 299de�nite, 269, 277, 281disjunctive, 269, 277{279, 281, 282,291, 294, 299distributed, 291extensional (EDB), 270, 272extensional (EDB), 293heterogeneous, 291, 295intensional (IDB), 270, 272logic, 266, 268, 270, 275multimedia, 298normal, 270, 271, 274, 279, 281, 299object-oriented, 267, 287, 296object-relational, 267relational, 265{267, 269, 272, 287,293, 296, 299stable, 271strati�ed, 271, 292, 294database evolution, 402{404, 406database schema, 33Datalog, 266, 269, 270, 275, 277, 291, 396Datalog:, 396Datalog::, 396, 397, 415Datalog1S , 64, 398, 402, 404, 413in
ationary Datalog:, 396, 415nonin
ationary Datalog:, 397, 415strati�ed Datalog:, 408, 416XY-Datalog, 402, 416, 417DB, 17deduction, 266, 267Deduction Theorem, 12default, 325, 344defeasible reasoning, 81

REFERENCES 427de�nite answer property, 318delta relation, 393, 398, 399, 405, 409, 410deontic logic, 17, 73Deontic S5, 94derivation, 13Description Logic, 232description logic, 342disjunctive answer, 319disjunctive Datalog, 327disjunctive logic program, 327distribution, 167, 175, 190domain, 8domain closure, 324dynamic action logic, 102dynamic behaviour, 200dynamic logic, 84, 86dynamic OSL, 201dynamics, 199dyOSL, 201, 208ECA rule, 392encoding, 44constraint, 48interval-based, 44entailment, 9entity, 236Entity-Relationship model, 236epistemic logic, 344equivalence, 255evolution, 406, 414transaction, 406, 414transition, 406, 414Etoile, 188event, 173, 392algebra, 393composite, 393, 410, 413external, 392, 393, 409{411interaction, 176internal, 392, 393sharing, 177event consumption mode, 393event grove, 173distributed, 175labelling, 174event structure, 173, 176, 188evolution, 199, 202evolving algebra, 200evolving temporal speci�cation, 201exception, 364existential axioms, 11Existential Generalization, 11expression complexity, 330

expressive power, 41, 395, 414extended relational theory, 325, 343external environment, 98F-Logic, 370fact, 20false presupposition, 290�nite model property, 235�rst-order logic, 6interval-based, 46two-sorted, 40�xpoint languages, 63�xpoint semantics, 22
oating conclusion problem, 383FOL, 6Foops, 188formula, 7atomic, 7, 269clausal, see clauseclosed, 7, 275function-free, 268ground, 268query, see queryframe, 15idealized, 17re
exive, 16symmetric, 17transitive, 16frame rule, 404, 405, 407, 411, 416function symbol, 6general subsumption, 382generalized closed world assumption, 334global invariant, 221global invariant rule, 222Gnome, 168, 169, 188, 200goal, 23goal clause, 23ground term, 21GuLog, 370hard integrity constraints, 99Herbrand base, 21, 404Herbrand interpretation, 21Herbrand model, 21Herbrand universe, 21Hilbert calculus for dyOSL, 219Hilbert system, 11history, 36, 54Horn table, 323Horn-clause, 20hypothesis, 9

428 LOGICS FOR DATABASES AND INFORMATION SYSTEMShypothetical query, 340idle action, 210implication, 235inapplicable null, 341incomplete information, 309inde�nite information, 309information system, 167concurrent, 167distributed, 167, 169inheritability, 373of methods, 383with negative links, 383inheritance, 359, 363formalization, 379logics, 369method, 371multiple, 364nonmonotonic, 366structural, 370inheritance net, 360, 364integrity constraint, 72, 99, 265{308, 336,343denial, 274{276, 278{282, 294domain, 273functional dependency, 266, 273,288, 296inclusion dependency, 266, 274, 296preference, 279referential, 274security, 296, 297state, 278, 290static, 279temporal, 279universal, 278user, 279, 289, 297interaction, 167, 180, 181interpretation, 8, 233, 247interpretation structure, 214invariant, 218global, 221is-a, 235, 237, 243, 245is-a, 360is-not-a, 360K, 16K4, 16KB, 17knowledge base, 234knowledge discovery, 290Kripke frame, see frameKripke semantics, 15

L&O, 371Lcm, 188leap, 403, 405LIFE, 370life cycle, 173distributed, 176linear temporal logic, 18literal, 20liveness, 56local invariant rule, 223local strati�cation, 405locality, 382logic default, 292�rst-order, 6, 266, 268, 270, 271,275, 292, 299higher order, 299many-sorted, 10modal, 271, 279non-classical, 267non-monotonic, 271, 275, 294temporal, 271logic of knowledge, 17, 344logic program, 20logic programming, 20logical consequence, 9, 256logical database, 324LOGIN, 370many-sorted logic, 10many-valued logic, 345marked null, 321Maude, 188message, 172meta formula, 211meta sort, 209meta term in dyOSL, 211meta variables in dyOSL, 211method, 169blocking, 365method inheritance, 371method overloading, 387mgu, 23misconception, 287{291mixed net, 364modalof �rst-order logic, 9modal logic, 13, 76, 344modal operator, 13model, 235, 282canonical, 281

REFERENCES 429Herbrand, 276minimal, 276{279, 281, 282, 291,294, 295of modal logic, 15perfect, 271, 294stable, 278, 281, 294unique, 271, 276modelingbehaviour, 168business process, 184conceptual, 167, 168data, 169information systems, 187object, 169object-oriented, 188Modus Ponens, 11, 16, 220monotonic net, 364, 374multi-modal logic, 20multiple temporal dimensions, 58mutation, 205mutation action symbol, 209mutation attribute symbol, 209mutation event, 205mutation sort, 209mutator, 205natural deduction, 12necessitation, 16negation, 270{272as �nite failure, 24default, 270, 274, 275, 277, 278, 280,281in logic programs, 24logical, 270, 278negative information, 333net e�ect, 410, 411next operator, 18non-�rst normal form, 342non-monotonicity, 325, 335, 344non-rigid axiom, 205non-standard logic, 344nonmonotonic net, 364, 375normative position, 97null value, 311, 320, 337, 341object, 169behaviour, 167, 174class, 174communication, 183identity, 175instance, 174locality, 175

logic, 172model, 169modeling, 169reference, 179semantics, 175signature, 172, 209speci�cation, 172, 175, 188speci�cation language, 168, 169system, 171, 175, 176, 188, 190object behaviour, 200object identi�er, 209, 246object oriented database, 342object speci�cation, 200Object Speci�cation Logic, 201object-oriented data model, 245obligation, 73Oblog, 168, 188, 200observation in dyOSL, 212observation symbol, 212o�-path preemption, 382OOLP+, 371Ooze, 188open world assumption, 326OR-object, 324, 327, 342ordered logic programs, 371ORLog, 371, 372OSL, 201, 208dynamic, 201ought-to-be, 81, 93ought-to-do, 81, 84, 93overriding, 365paradoxes (of deontic logic), 74, 77{79, 87parameter context, 393, 413parameterized complexity, 330past formula, 56PDeL, 87, 89, 95PDeL, 86PDeL(�), 89performative document, 101permission, 73polymorphism, 361population, 211positive existential formula, 316possible answer, 318possible world, 15pre-interpretation structure, 211, 212predicate, 172calling, 167, 168, 178communication, 176, 178, 181enabling, 170local, 175

430 LOGICS FOR DATABASES AND INFORMATION SYSTEMSlocality, 177, 178state, 172symbol, 170predicate logic, 6predicate symbol, 6premise, 9process algebra, 85production rule, 393, 394, 396, 415program completion, 24progressiveness, 403, 414prohibition, 73Prolog, 273, 299proof, 11in dyOSL, 221proof theory, 10quanti�cational axioms, 11query, 268, 269, 289answer to, 268, 287, 289, 291empty, 288, 291intensional, 289caching, 299closed, 265folding, 295, 299optimization, 295semantic, 285{288, 290, 297reasoning, 253in ALCQI, 257in data models, 257recursion, 269, 271, 287recursively inde�nite database, 327refutation, 10relationcontrol, 410delta, 393, 398, 399, 405, 409, 410protocol, 410, 411relation symbol, 6relational model, 314relationship, 236residue, 280{285, 288, 289rigid axiom, 202, 204role, 232, 236rule, 266{270, 272, 273, 275, 276, 279{282, 286, 287, 293�-monotonic, 413, 4161-progressive, 404, 415, 416body ofempty, 269deductive, 279de�nite, 269, 280disjunctive, 271, 294, 299

guarded, 413, 416head of, 269empty, 269Horn, 269local, 404, 415, 416normal, 270progressive, 404range-restricted, 269, 275S4, 16S5, 17S5O(n), 83, 95safety, 55satisfaction, 9, 15, 213D0, 177D1, 178L, 174local, 177, 179satis�ability, 9, 235sceptical semantics, 375, 377schema evolution, 225scope, 27SDL, 74, 76, 93semantic mapping, 45semantics, 265{267, 270, 272{279, 281,282, 287{289, 291, 296�xpoint, 396Herbrand, 294model, 271, 272, 275{278stable, 271well-supported, 271stable, 25, 397state-strati�ed, 405strati�ed, 397well-founded, 26, 271, 397sentence, 7set-oriented, 394, 397, 409signature, 6dyOSL, 209SLD-resolution, 22SLDNF refutation, 281SLI refutation, 282slot symbol, 209snapshot, 404, 406view, 404soft integrity constraints, 73, 99sometime operator, 210sort, 10soundness, 12, 220speci�cation, 200speci�cation attribute symbol, 209speci�cation sort, 209

REFERENCES 431speci�ty, 382speech act, 100SQL/Temporal, 50SQL/TP, 52stable model, 25, 335stable semantics, 25state �nal, 402, 406initial, 402intermediate, 402object, 174predicate, 172, 175, 186term, 403transition, 170transition system, 173variable, 169, 403state formula, 211state meta formula, 211Statelog, 403�-Statelog, 416G-Statelog, 416I-Statelog, 416interpretation, 404NF-Statelog, 414normal form, 414P-Statelog, 415strati�cation, 24strati�ed program, 335stratum, 24strict inheritance path, 374strong dependency system, 337strong representation system, 321structural inheritance, 370substitution, 23, 268, 282ground, 268inverse, 268subsumption, 255, 282, 289partial, 282, 284, 288Switch Theorem, 12synchronization, 213system, 175axiom, 171behaviour, 176concurrent, 189denotational model, 175development method, 188distributed, 169, 189, 190heterogeneous, 169legacy, 169object, 171, 188object-oriented, 168open, 167

properties, 188reactive, 167, 168signature, 175, 180, 182, 183, 186speci�cation, 175, 186transition, 173, 189T, 16Tarskian semantics, 7tautology, 9taxonomic hierarchy, 363Templog, 64temporal connective�rst-order, 37future, 38multidimensional, 59past, 38second-order, 62temporal data, 341temporal database, 33abstract, 34concrete, 45snapshot, 34timestamp, 34temporal domain, 403interval-based, 44point-based, 33temporal logic, 18, 32, 39, 167, 189anchored version, 214branching, 189D0, 167, 176D1, 167, 178distributed, 167, 175, 190for information systems, 189L, 168, 172linear, 189local, 172multidimensional, 60n-agent, 190partial order, 189propositional, 172reduction, 180, 183temporal logic programming, 63temporal ontology, 32temporal query, 36generic, 47with explicit time, 40with implicit time, 39temporal relational algebra, 43temporal trigger, 54temporal unfolding, 51term, 6termination, 395, 406{408, 413

432 LOGICS FOR DATABASES AND INFORMATION SYSTEMSterminological logic, 342theory in dyOSL, 215timestamp view, 404TQuel, 51trace, 173distributed, 176transaction, 402, 406transition, 402, 406transition system, 173distributed, 189translationLP to LI , 47L
 to LI with coalescing, 47FOTL to 2-FOL, 41trigger, 393, 401Troll, 168, 169, 188, 200, 202TSQL2, 51tuple-oriented, 394, 397, 409type, 245uni�cation, 23uni�er, 23unique names assumption, 325universal relation assumption, 341universe, 8

Universe of Discourse, 72, 98until operator, 18UoD, see Universe of Discourseupdate, 338v-table, 322, 327vacuous axioms, 11valuationfor �rst-order logic, 8for modal logic, 15variable, 6bound occurrence, 7free occurrence, 7view, 266{269update, 281, 293{295view update, 312, 339weak dependency system, 338weak representation system, 323weak until operator, 210well-founded model, 26, 335well-founded semantics, 26zombie path, 383

