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Abstract. Two real-time strain imaging concepts and systems are presented. Both systems are
based on a conventional ultrasound scanner that is connected to a PC with an A/D converter card
for real-time data acquisition of rf data. Differential strain between successively acquired rf frames
are estimated using phase root seeking. The first concept uses a special real-time implementation
of manual elastography. In the second concept, denoted ‘vibrography’, the static compression is
replaced by low-frequency axial vibration of the probe, still operating in quasistatic acquisition
mode. The properties of both concepts are discussed with regard to noise and motion artefacts,
and it is shown, using simulations and phantom experiments, that both imaging concepts yield the
same kind of strain images. Vibrography has the advantage that no manual compression has to be
applied, total compression can be very low and some motion artefacts are better suppressed.

1. Introduction

In the past, two different concepts for imaging the elasticity have been proposed. In the
early 1990s a technique called elastography was described by Ophir et al (1991). With this
technique the tissue is compressed and the tissue strain resulting from this compression is
imaged. Since its invention this concept has been proposed for elasticity imaging of a wide
range of different applications, including the prostate (Lorenz et al 1998, 1999), the breast
(Krüger et al 1998, Garra et al 1997) and IVUS (Céspedes et al 1997). Another elasticity
imaging concept is sonoelasticity imaging (Lerner et al 1990, Gao et al 1995), where the
amplitude of motion produced by propagating low-frequency shear-waves is imaged using a
technique which is similar to conventional Doppler. In this technique, information about the
elastic tissue properties is derived from the Doppler signal.

The method of static strain imaging, i.e. elastography, has been adapted by many
groups for different applications. The most promising concept, however, suffers from some
disadvantages: first of all, since its invention elastography has been an off-line technique.
Furthermore, relatively large compressions of the tissue are needed in comparison to the small
vibration amplitudes used in sonoelasticity imaging.

We have recently proposed a new system for real-time strain imaging (Pesavento et al
1999b). The strain estimation concept introduced with this system is similar to the method
proposed by Ophir et al. In this paper we discuss in detail the strain estimation concept used
for this system, particularly its real-time properties, and extend the real-time concept to the use
of a low-frequency, low-amplitude axial vibration instead of using static axial compression.

0031-9155/00/061423+13$30.00 © 2000 IOP Publishing Ltd 1423



1424 A Pesavento et al

The system set-up of the real-time system containing a conventional US (ultrasound) scanner
and a PC for realtime strain estimation is explained in section 2. In section 3 the signal models
for conventional real-time strain imaging and the new vibrography concept are derived. The
digital signal processing strategies are explained in section 4, including the phase root seeking
algorithm for fast and accurate strain estimation (Pesavento and Ermert 1998). In sections 5
and 6 the performance of both concepts with regard to noise and motion artefacts is compared.

2. System set-up

The developed real-time system uses a conventional US scanner (Kretz Combison 330) and
operates with two different transducers: a 7.5 MHz transrectal probe for prostate examination
and a 7.5 MHz abdominal sector scanner. The rf data are directly sampled into the PC memory
by a PCI digital acquisition card (GaGeTM 6012) with a sampling frequency of 30 MHz and 12
bit resolution. The data acquisition is done independently from the CPU by the PCI acquisition
card, hence it does not take any calculation time. Using the transrectal probe, every frame is
acquired at 10 frames per second. Using the abdominal probe every second frame is acquired at
15 frames per second. Regions of interest of approximately 2.2 cm×2.6 cm for the transrectal
probe and 3.5 cm × 4.0 cm for the abdominal probe are selected for calculating strain images,
that have a size of 88×92 pixels for the abdominal probe and 66×68 pixels for the transrectal
probe. For this purpose the rf data of two successive frames in the PC memory are used as pre-
and post-compression images. Strain images are displayed colour-coded or grey- scaled on the
PC without scan conversion. The acquired rf data and the calculated strain images are stored
in ring buffers for additional off-line processing. Limited by the memory of the PentiumTM III
450 MHz desktop PC (128 MB RAM), the rf data of up to 150 frames and 520 strain images
are stored in cine buffers.

Two modes of compression are used to produce tissue strains: a manual linear compression
throughout the scanning procedure or low-frequency vibration using a vibrating transducer,
still operating in quasistatic mode. Limited by the frame rate of strain imaging, vibration
frequencies between 0.5 Hz and 5 Hz are currently used. In the following we denote the
former mode ‘static strain imaging’ and the later mode ‘vibrography’. The low-frequency
vibration of the transducers is produced by a stepping motor with a fixed transducer. A hand-
held applicator will be used in the future.

3. Signal models

Similar to the data model for flow estimation, we use the terms ‘slow time, fast time’ throughout
this paper. The time axis origin of the fast time t is reset each time the transducer fires. Hence
the fast time variable denotes the time of flight and corresponds to the depth dependence of the
echo signals. The slow time domain is denoted with capital letters. T is used to describe time-
dependent variations in both rf frames and strain images. Likewise, the slow time frequency
domain variables are denoted with capital letters (e.g. �) and fast time frequency domain
variables are denoted with small letters (e.g. ω). Since very low-frequency vibrations and
very slow compressions are used, the quasistatic assumption holds: the moment, at which a
specific A-line is imaged, described by a slow time T0 is assumed to be constant through the
entire A-line, neglecting the fact that the deeper parts of the A-line are imaged later due to the
time-of-flight of the excited ultrasonic pulse. A compression leads to the following rf echo
data:

x(t, T ) = x ′
(
t +

∫ t

t ′=0
ε(t, T ) dt ′

)
(1)
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where x ′(t) is the echo data of the examined tissue recorded at slow time T , without vibration,
and ε(t, T ) is the slow time-dependent strain inside the tissue due to the applied vibration. Its
fast time dependence is due to its spatial variation. Assuming a mechanically linear medium
and a reversible sinusoidal compression of the tissue with the frequency �ν , this strain can be
modelled as follows:

εν(t, T ) = εE(t) cos(�νT ). (2)

The slow time dependence of εν(t) is due to its spatial variation. In comparison to (2), for
static strain imaging, the linearly increasing applied strain leads to a spatially varying strain of

εs(t, T ) = ε0(t)T . (3)

Echo data are acquired at a constant frame rate 1/�T yielding

xm(t) = x(t,m�T ) (4)

where m denotes the index of the frame.

4. Real-time strain estimation

A signal processing algorithm for strain estimation should reconstruct the amplitude εE(t) of
the slow time-dependent strain εν(t, T ) in vibrography or the speed of compression ε0(t) in
static strain imaging. Again, note that the fast time dependence expresses depth dependence.
Real-time strain estimation can be divided into the following parts: estimation of differential
strain images εm(t) and estimation of εE(t) or ε0(t) from differential strain images. Differential
strain images εm(t) are defined by

εm(t) = ε(t,m�T )− ε(t, (m− 1)�T ). (5)

They can be estimated from two successively acquired rf data items xm−1(t) and xm(t).
Differential strain images εm(t) can be considered as a sampled and filtered version of ε(t, T ).
The estimation of the differential strain is the most time-consuming part of strain estimation.
Therefore axial displacements between xm−1(t) and xm(t) are estimated using the phase root
seeking technique (Pesavento and Ermert 1998, Pesavento et al 1999a, b). This algorithm is
a fast alternative to the widely used cross-correlation method. It is more accurate than other
fast techniques, like curve-fitting methods (de Jong et al 1990). To estimate subsample time-
shifts, the echo data are interpolated by a linear interpolation of the corresponding baseband
signals (Pesavento et al 1999a). Interpolation is important for the estimation of subsample time
shifts with high accuracy. In contrast to the search of the maximum of the cross-correlation
function, phase root seeking finds the root of the phase of the correlation function of the
analytic echo signals by a Newton iteration approach. After a small number of iterations
(usually two to three), the algorithm converges. Note that in contrast to other concepts for
displacement estimation that are evaluating the phase, including those used in Doppler imaging
or sonoelasticity imaging, this concept does not rely on narrow-band signal characteristics. In
fact, as is shown later, the accuracy of phase root seeking and other correlation techniques
increases with increasing signal bandwidth.

Similar to the work of Ophir et al (1991), time shifts are estimated using a discrete number
of windows at discrete depths. The time shift τm,k of the kth window of two A-lines centred
around tk = k�T is estimated by the following iterative formula:

τm,k,0 = τm,k−1,L

τm,k,l = τm,k,l−1 +
1

ω0
arg

(
exp(−jω0τm,k,l−1)

∫ tk+Tw/2

tk−Tw/2
b∗
m(t)bm+1(t − τm,k,l−1) dt

)
(6)
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where bm(t) denotes the baseband data of xm(t), and l is an iteration index. L = 2 iterations are
used in this system. The quantity ω0 denotes the nominal centre frequency of the transducer.
Tw denotes the window length. Aliasing of the arg function in equation (6) can be successfully
avoided if the difference of the time delays of two successive windows is smaller than π/ω0,
which is usually valid for small transducer motion.

When applying equation (6) to digital signals the integral is replaced by a sum.
Furthermore, the post-compression signal has to be time shifted by a subsample time shift
(Céspedes et al 1995). This is done using linear interpolation of baseband signals. Hence
subsample time-shifts can be estimated. Baseband data bm(t) are obtained from the real-value
rf data in two steps directly after the data acquisition:

(a) The complex analytic signal am(t) is calculated by adding an imaginary part to the signal,
which is equal to its Hilbert transform. The Hilbert transform is calculated using a 14-point
FIR filter, designed by the signal processing toolbox of MATLABTM.

(b) To obtain the baseband signal, the analytic signal is multiplied by

bm(t) = am(t) exp(−jω0t). (7)

The windows for the time-shift estimation have a length of 0.93µs (28 samples). Window
overlaps of 50% are used. The differential strain sm(t) is estimated from the displacements
by a least-square estimator (Kallel and Ophir 1997) using nine displacements for strain
estimation.

The result, as given in equation (5), can be considered as a sampled and filtered version of
strain ε(t, T ). To reconstruct the quantity of interest εE(t) in the case of a vibrating transducer,
two steps have to be performed:

(a) To separate the excited frequency �ν component from broadband noise components due
to rf noise and motion artefacts, εm(t) has to be filtered using a narrow-band filter.

(b) The envelope has to be detected for the reconstruction of εE(t).

The latter task can be performed by calculating the absolute value of the analytic signal (analytic
in terms of slow time T ) of ε(t, T ). The analytic signal ε̃m(t)which is denoted ‘analytic strain
images’ throughout this paper, can also be obtained by filtering. Hence all three parts, the
reconstruction of ε(t, T ) from differential strains εm(t) described by equation (5), the narrow
band filtering operation for the separation of the frequency�ν and finally the calculation of the
analytic strain images can be performed by the implementation of the slow time filter function

H(�) = 2

1 − exp(−j�ν�T )
δ(�−�ν). (8)

This filter function directly reconstructs the analytic strain images ε̃m(t) from the differential
strain images εm(t). The first part of the filter inverts the filtering introduced by equation (5).
The analytic signal is calculated by suppressing negative frequency components. In a real-
time system, a digital implementation using low-order filters is preferred. A first-order
approximation of the filter described by (8) can be described by the following differential
equation

ε̃m(t) = k[εm(t)− p exp(−j�ν�T )εm−1(t)] − p exp( j�ν�T )ε̃m−1(t) (9)

with

k = 2

∣∣∣∣ 1 − p
[1 − exp(−j�ν�T )][1 − p exp(−2j�ν�T )]

∣∣∣∣. (10)

The filter is a first-order complex FIR filter cascaded by a first-order complex recursive filter.
The frequency response of the filter is presented in figure 1 (left) for �ν�T = 0.5 and
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Figure 1. Amplitude spectrum of a sinusoidal vibration (right) and frequency response of the filter
(left) for the reconstruction of the corresponding analytic signal.

p = 0.95. Figure 1 (right) shows a sketch of the amplitude spectrum of the vibration, which
has two delta peaks, at ±�ν . The filter described by equation (9) has been designed such that
the delta peak at −�ν is effectively suppressed.

In case of static strain imaging, a similar filter is used for the reconstruction of ε0(t):

ε̄m(t) = 1 − p
�T

εm(t)− pε̄m−1(t). (11)

ε̄m(t) is a real valued function, which is an estimator for ε0(t) in equation (3). Nevertheless, we
take the absolute value of ε0(t). Consequently, compressing the tissue or releasing it results in
the same strain images. With the filter described in equation (11), a noise reduction is achieved
by a recursive filtering of the strain images, which is similar to the multicompression approach
proposed by O’Donnell et al (1993). Here several successive strain images are averaged,
which can be mathematically described by a temporal FIR filter in a real-time system. Noise
is reduced at the expense of temporal resolution with regard to the slow time. With p = 0 no
filtering is applied.

5. Noise performance

There are two major sources of noise in strain imaging: noise on rf data and decorrelation noise
caused by transverse tissue motion and speckle decorrelation. Decorrelation may result from
the applied compression or other motion sources. Its amount is closely related to the correlation
coefficient of pre- and post-compression images. Hence, in a real-time system, where lateral
motion tracking algorithms cannot be performed due to their computational complexity,
decorrelation noise is rather a technical problem: in order to obtain high correlations between
pre- and post- compression images, the differential strain has to be small, which means that
either the applied strain has to be low or its has to be tracked very fast using high frame
rates 1/�T , which is a technical demand. In a real-time system, however, the user has an
immediate feedback and the amount of applied strain can be adjusted such that decorrelation
noise is minimized, but this is easier in a system with a high-frame rate.

In this section we focus on the influence of rf noise, since this noise is significantly
influenced by the applied filters in both vibrography and static strain imaging and determines
the lower bound of noise in the strain images. To obtain the stochastic properties of the noise
of the strain estimation, simulations have been performed in order to investigate the slow time
behaviour of the noise on differential strain images, which serve as the input for the filters in
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both vibrography and static strain imaging. The slow time behaviour can be described by the
autocovariance function, which describes variance and correlation of the noise of two arbitrary
differential strain images εm(t) and εn(t).

For the simulation, echo signals were simulated as described in Pesavento et al (1999a).
The echo signals have a Gaussian power spectrum with a centre frequency of 7.5 MHz and
a relative bandwidth of 66%. The sampling frequency is 30 MHz. Noise with a rectangular
spectrum within the transducer’s bandwidth was added to the signals leading to SNR ranging
from 10 dB to 30 dB. The differential strain between two images was chosen to be less than
0.5%.

It can be shown that the normalized autocorrelation function, which can be obtained by
normalizing the autocovariance function to its variance, can be approximated by

c(�,m) = corr(εm(t), εm+�m(t)) =




1 for �m = 0

−0.5 for |�m| = 1

0 for |�m| > 1.

(12)

The same autocorrelation function is obtained when filtering white noise with a filter described
by equation (5).

The variance of the strain can be compared to its theoretical lower bound, the Cramer–Rao
lower bound (CRLB). Expressions for the CRLB for strain estimation have been derived in
Schultheiss and Weinstein (1979) and Friedlander (1984):

σ 2
ε � 24π

T 3
G

{ ∫ ∞

0

2ω2C2
XX(ω)/

2
NN(ω)

1 + 2CXX(ω)/CNN(ω)
dω

}−1

. (13)

In this expression, TG denotes the total observation time used for the estimation of a differential
strain value. TG is determined by both the window length TW used for time delay estimation
and the order of the least-squares estimator used for the estimation of strain from time delays.
CXX(ω) denotes the power spectrum of the echo-signals and CNN(ω) denotes the noise
spectrum. For rectangular spectra, this expression approximately reduces to

σ 2
ε � 3

T 3
Gπ

3f 2
0 BSNRω0

(14)

where B denotes the bandwidth and SNR denotes the signal to noise ratio CXX(ω)/CNN(ω).
Figure 2 compares the mean square error of strain estimation to its CRLB for differential
strains. The simulation has been performed using strains of 0.25% and 1%. The signal-to-
noise ratio of the echo data was adjusted to 20 dB. This figure shows that using the estimator
for differential strains described above, the CRLB can almost be reached for low strains. The
window length TW , used for the generation of this figure is TW = 0.53 µs. The windows used
for time-delay estimation have an overlap of 75%.

The power spectrum of the noise on differential strain images can be derived from the
covariance function:

Cεε(�) = σ 2
ε

2
|1 − exp(−j��T )|2. (15)

Again σ 2
ε denotes the variance of differential strain images. The filter described by equation (9)

leads to the power spectrum of the analytic strain:

Cε̄ε̄(�) = |k|2σ 2
ε |1 − exp(−j��T )|2|1 − p exp[−j(� +�ν)�T ]|2

2|1 − p exp[−j(�−�ν)�T ]|2 . (16)

Hence

Cε̄ε̄(�ν) = 2σ 2
ε . (17)
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Figure 2. Comparison of the mean square error of the differential strain estimation to its Cramer–
Rao lower bound as a function of observation length for 0.25% strain and 1.0% strain.

Figure 3. Power spectra of the noise on the analytic signal due to rf noise after filtering for different
vibration frequencies.

In figure 3 three examples are plotted for the power spectrum for �ν�T/2π = 0.15,
�ν�T/2π = 0.25 and �ν�T/2π = 0.35. It can be noticed that the shape of the power
spectrum is relatively independent of �ν�T , except for �ν�T → 0 or �ν�T → π . The
variance of the noise can be found by combining equations (5) and (9) to give

σ 2
ε̄ = 2σ 2

ε

1 − p
1 + p

1 + p2[1 − 2 cos(2�ν�T )] + p3[cos(3�ν�T )− cos(�ν�T )]

[1 − cos(�ν�T )][1 + p2 − 2p cos(2�ν�T )]
. (18)

Figure 4 shows this variance as a function of�ν for different p. For large values of p, the
variance is almost constant in a wide range of �ν , �ν = 0.3/�T is, however, always a good
choice. In this case the variance can be approximated by

σ 2
ε̄ ≈ σ 2

ε (1 − p). (19)
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Figure 4. Variance of the noise on the analytic signal due to rf noise after filtering as a function of
vibration frequency. The variance is normalized to the variance of single differential strain images
(input of the filter).

In the case of static strain imaging, the noise power spectrum is

Cε̄ε̄(�) = σ 2
ε

(1 − p)2
�T 2

1 − cos(��T )

1 + p2 − 2p cos(��T )
(20)

and the variance is

σ 2
ε̄ = σ 2

ε

(1 − p)2
�T 2(1 + p)

≈ σ 2
ε (1 − p)2

2�T 2
. (21)

In both cases, static strain imaging and vibrography, the time TH until the brightness of an
image pixel reaches half of its maximum value after a compression with constant ε0(t) or
constant vibration amplitude εE(t) has been applied, depends in the same way on p and �T :

TH = �T ln(0.5)

ln(p)
≈ 0.693

�T

1 − p . (22)

This time, which we refer to as the ‘half-life period’, can be considered as a measure of
integration time, during which differential strain images are averaged by the filters described
in equations (9) or (11).

A comparison of the noise performance of static strain imaging and vibrography is difficult,
since the constraints, which limit the amounts of applied strains, are different. In both cases,
unless the differential strain exceeds certain limits, the generated noise is independent of the
applied strain. Hence the signal-to-noise ratio can be increased by increasing the amount of
applied strain, i.e. the speed of the linearly increasing strain ε0(t) in static strain imaging or
the amplitude εE(t) of the vibration in vibrography.

However, this increase is limited by different constraints: in both cases the differential
strain should not significantly exceed 0.5–1%. Larger differential strains increase decorrelation
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Table 1. Noise performances of vibrography and static strain imaging as a function of the signal-
to-noise differential strain image.

SNR Total strain S(t, T )

Static strain imaging SNRε(�ε)
T 2
H

(0.693�T )2
TH
�T
�ε �ε

�T
T

Vibrography SNRε(�ε)
TH

0.693�T 2�ε �ε cos
( 0.3T
�T

)

noise. This is the only constraint in vibrography. In static strain imaging other considerations
have to be taken into account: first, the total applied strain may be limited due to physiological
reasons. This is a limitation for ε0, since a linear increase has to be kept constant at
least during the settling time of the recursive filter, which may result in large total strains.
Second, the averaging of strain images during large total compressions in static strain imaging
may be inaccurate due to large displacements. Decorrelation effects can be reduced by
increasing the frame rate 1/�T of real-time differential strain imaging. The half-life period
TH can be kept constant during this increase of the frame rate, by adjusting p according to
equation (22).

In table 1 the noise performance of both vibrography and static strain imaging are compared
under the following assumption: the applied strain is chosen such that the slow temporal means
�ε of the absolute value of the differential strains are equal, e.g. 0.5%. This leads to a signal-
to-noise ratio SNRε of a single differential strain image. Table 1 shows how the signal-to-noise
ratios of vibrography and static strain imaging are related in respect this to SNRε . In addition,
the total applied strain during the half-life period TH is shown. In these formulae TH and the
inverse of the frame rate �T are used as parameters. The constant p is implicitly given by
equation (22) and �ν was set to 0.3/�T .

The quotient TH/�T can be considered as a measure of the number of averaged strain
images. Table 1 shows the following: the merit of the averaging is higher for static strain
imaging, since the SNR is proportional to the square of the half-life period or the number
of averaged strain images. In vibrography, the SNR is proportional to the half-life period or
the number of averaged strain images. However, in static strain imaging, this gain in SNR is
only achieved by a higher total strain than for a single differential strain image, whereas in
vibrography the gain in SNR is achieved by an averaging of repeatedly acquired differential
strain images. For fixed, but relatively large,�T , static strain imaging may be preferred, since
the total strain has to be low anyway to avoid decorrelation. However, application of slow
continuously increasing strain poses some technical problems. For small �T , vibrography
can reach high SNR without significant total strain.

Note, that if the total strain or the strain velocity ε0 is to be kept fixed the SNR cannot
be increased by increasing the frame rate in static strain imaging. In this case, increasing the
frame rate results in a decrease of �ε, and SNRs is proportional to �ε2.

In vibrography this is the case, since the number of averaged strain images is increased
through an increase of�ν . Total strain is always constant for vibrography, when changing the
frame rate.

5.1. Motion artefacts

Table 2 shows the resulting SNR after filtering for 1/�T = 7.5 Hz, 1/�T = 15 Hz and
TH = 0.8 s. The fundamental frequency of the periodic triangular motion was assumed to be
1 Hz for blood flow and 0.2 Hz for respiration. Table 2 shows that the SNR of vibrography
is between 10 and 20 dB better than the values for static strain imaging with respect to the
suppressions of motion artefacts.
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Table 2. Comparison of signal-to-noise ratios concerning strain noise generated by a low-frequency
vibrating tissue motion for both vibrography and static strain imaging.

1/�T = 7.5 Hz 1/�T = 15 Hz

Respiration Blood flow Respiration Blood flow

Static strain imaging −38.3 dB −41.0 dB −38.1 dB −39.7 dB
Vibrography −22.6 dB −31.5 dB −16.3 dB −24.7 dB

Strain images can be corrupted by motion artefacts, caused by motion inside the tissue
itself. One problem is the increase of decorrelation noise due to these kinds of motion. This
problem can be reduced by the use of high frame rates, i.e. small�T , which ensures coherence
between pre- and post-compression images. Another problem is the presence of differential
strains which are caused by tissue motion itself. This tissue motion is correctly measured by
the displacement estimation; however, it is superimposed on strains which are caused by the
applied compressions. Differential strain images are created from displacement images by
filtering along the fast time axis. Hence differential strain images have the same slow time
behaviour as displacement images and thus the tissue motion itself. In this paper we consider
two cases: in a general-purpose approach, the tissue motion is regarded to be white noise with
respect to its slow time behaviour. This is a reasonable approach for motion caused by any
unknown source, e.g. muscle motion or motion of the patient. In this case, the power spectrum
of the noise introduced into the differential strain images can be described by equation (15) and
hence it possesses the same slow time behaviour as noise created by rf noise. The influence
of the described filters is summarized in table 1. In cases in which tissue motion caused by
the blood flow or respiration is the main source of motion artefacts, the resulting noise has
an almost periodic slow time behaviour. The fundamental frequency is about 1 Hz for blood
flow and 0.1–0.2 Hz for respiratory motion. Those are relatively low frequencies compared
to typical vibration frequencies between 2–3 Hz applied for our system, which has a frame
rate of 1/�T = 7.5 Hz. Consequently, these motions are better suppressed by the filters
used in vibrography in comparison to static strain imaging. To show this, the influence of a
triangular periodic motion on the strain signal-to-noise ratio was analysed using simulations.
In these simulations a sinusoidal vibration is superposed by a periodic triangular motion and
filtered by (9) or (11). With these simulations the performances of vibrography and static strain
imaging for the suppression of the periodic triangular motion are compared. Since we are only
interested in a direct comparison of the two methods, motions of an arbitrary amplitude may
be chosen. The amplitude of the applied compressions and the amplitude of the triangular
motion was chosen such that the average resulting differential strain of each component equals
�ε.

6. Phantom studies

To demonstrate the described properties of the two methods, a phantom has been constructed
which consists of a sponge in which hard lesions have been included by injecting a 3% agar-agar
solution. The hard lesions is about 10 times stiffer than the surrounding sponge. Figure 5 shows
typical strain images obtained using the static strain imaging concept with manual application
of the compression using a hand-held transducer. The strain is displayed by grey-scale map.
Bright regions denote high strain, dark regions low strain. In the electronic version of the
paper, a colour coded video sequence is supplied to demonstrate the real-time behaviour. The
images shows the typical strain patterns around a hard lesion, simulated by FEM methods by
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Figure 5. Strain image of a hard inclusion in a soft sponge obtained in real-time using the static
strain imaging concept.

Figure 6. Normalized strain at a single image pixel versus slow time in the presence of a periodic
unwanted tissue motion of static strain imaging (left) and vibrography (right).

many authors (e.g. Chaturvedi et al 1998). The low SNR in the lower right and lower left
regions of the image are due to decorrelation noise caused by the use of a sector probe (Lorenz
et al 1998).

The influence of tissue motion is demonstrated in figure 6. The same cross section through
a hard lesion was imaged using the vibrography and the static strain imaging concept. A
defined strain was automatically applied using a stepping motor. In both cases, a 0.25 Hz
periodic triangular motion was superposed. This vibration simulates respiratory motion. In
vibrography, the vibration also was a periodic triangular motion of 2.25 Hz. The amplitude of
the strain in vibrography and the velocity of the increasing compression in static strain imaging
was chosen such that the means of the differential compression was 0.2 mm, which corresponds
to an average differential compression of approximately 0.4% between two images or 3% per
second for static strain imaging. The 0.25 Hz vibration that simulates respiratory motion has
the same amplitude. In both cases TH was equal to 0.8 s. The low-frequency vibration led to
low-frequency vibrations in the resulting strain images. Note, however that in vivo the source
of unwanted motion may be inside the imaged tissue and result in spatially varying motion
artefacts. Furthermore, in this case the amplitude of strain produced by the unwanted tissue
motion depends not only on the displacement but also on its spatial distribution. Hence the
presented experiment demonstrates only the slow time behaviour of motion artefacts. In figure 6
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Figure 7. Comparison of strain images of a hard inclusion obtained in real-time using vibrography
(left) and the static strain imaging concept (right).

the slow time variation of one image point is plotted against the slow time for both vibrography
and static strain imaging. As expected from the above simulations, for static strain imaging
the variation is much larger. Furthermore, there is a noticeable decay of the mean value for
the plot obtained with static strain imaging. This is due to the slowly changing location of the
image region that is observed by a specific image point with increasing compression.

Figure 7 compares two single images and demonstrates the equivalence of the strain images
for both techniques. In the electronic version of the paper, movies of the strain images are
supplied.

In this phantom experiment, the speed at which the compression was applied is relatively
large. However, the experiment shows that total compression of the order of 10% are not
uncommon in order to obtain a stable image for a few seconds.

7. Conclusion

In this paper, two real-time strain imaging concepts have been introduced and compared.
Simulations and in vitro studies on phantoms show that real-time strain images can be calculated
using a conventional desktop PCs. A major disadvantage of static strain imaging concepts
in some applications is that high compressions are necessary in order to obtain high-strain
SNR. This problem is more severe for real-time strain imaging, where longer periods of
constantly increasing compressions are necessary in order to obtain stable strain images for a
longer time. Vibrography overcomes this disadvantage by applying low-frequency vibrations
(0.1–20 Hz, depending on the frame rate 1/�T ). We have shown that the resulting strain
images are equivalent to conventional strain images. With this technique, high-SNR real-time
strain images which are stable over an infinite duration can be obtained with very low total
compressions which are of the order of 0.1%.

The noise performance of both concepts has been compared and shown to be different. In
both concepts increasing the frame rate at which differential strain images are acquired will
significantly increase the strain SNR, but in static strain imaging the speed of compression has
to be increased correspondingly in order to increase the SNR, which is limited by practical or
physiological reasons. Another argument for high frame rates is the fact that the coherence
between the rf frames is increased and thus decorrelation noise is decreased. Unwanted motion
of the tissue, e.g. vessel motion or respiratory motion, causes decorrelation of successive
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frames, but also strain artefacts due to the resulting, properly estimated, displacements. These
artefacts can better be suppressed using the technique of vibrography.
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