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ABSTRACT 

BIOLOGICAL SCIENCES 

BANKS, MARA E. B.S. CLARK ATLANTA UNIVERSITY, 2003 

IDENTIFICATION OF MECHANISM(S) BY WHICH THE COMPLEX 

SPHINGOLIPID, C2-CERAMIDE, INFLUENCES CYPl A1 INDUCTION BY 3- 

METIIYLCHOLANTHRENE 

Advisor: Dr. Juarine Stewart 

Thesis dated July 2005 

Both sphingolipids and Cytochrome P450s play vital roles in cellular survival. 

Sphingolipids facilitate cell growth, differentiation and signaling. P450s, in general, aid 

in xenobiotic transformation, vascular autoregulation in the brain and the formation of 

sterols like cholesterol and steroids. CYPl A1 acts on polycyclic aromatic hydrocarbons 

making them more soluble and easier for cell secretion. Earlier studies in this laboratory 

had found that the complex sphingolipid, C2-ceramide, modulates CYPl A1 induction by 

3-Methylcholanthrene. Using Western Blot analysis, confocal microscopy, and 

Electrophoretic Mobility Shift Assays, we have determined the mechanism C2-ceramide 

uses for this modulation. Electrophoretic Mobility Shift Assays and Western Blots 



Analysis revealed no significant change in 3MC-AhR-ARNT triplex binding to cypl a1 

XREl or AhR and ARNT protein concentrations in the presence of C2-cerarnide, 

respectively. It is the ability of C2-ceramide to form large stable pores in the plasma 

membrane, allowing more 3MC to enter, that modulates CYPlAl induction by 3MC. 
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CHAPTER 1 

INTRODUCTION 

Biotransformation 

Biotransformation is defmed as the process by which a foreign compound, 

xenobiotic, is subjected to chemical change(s) by living organisms (1-3). The purpose of 

this process is to reduce the amount of compounds that are potentially toxic in the body. 

A final product of biotransformation is a compound that is chemically distinct fiom and 

usually more hydrophilic than the parent compound. The major organs that are involved 

in biotransformation reactions are the liver (most important), kidneys, lungs, intestine, 

skin, and testes. Biotransformation reactions occur in two main phases: I and 11. 

Phase I enzymes are usually located in the endoplasmic reticulum and are 

membrane bomd. Phase I1 enzymes typically have a cytosolic localization (1-3). Phase I 

reactions typically combine nonpolar compounds, such as polycyclic aromatic 

hydrocarbons, with a h t i o n a l  group like carboxyl (-COOH), hydroxyl (-OH), amino 

(-NH2) or thiol (-SH). The addition of one of these groups occurs through either 

oxidation, reduction or hydrolysis reactions (1 -2). These reactions prime the xenobiotic 

for Phase I1 reactions. Phase I1 consists of conjugation reactions that link the product 

fiom Phase I with water soluble moieties and make the foreign compound more easily 

excretable. The types of Phase I1 reactions include: acetylation, methylation, and sulfate, 

amino acid, and glucuronic acid conjugation (1 -2). There are several factors that affect 

the efficiency of biotransformation reactions. These factors are: nutrition, age, sex, 



species, genetics, dose, presence of disease and enzyme induction or inhibition (1 -4). 

Biotransfonnation may cause the bioactivation of xenobiotics. This occurs when the 

resulting compound is more reactiveltoxic than the starting compound. 

Cytochrome P450s 

Cytochrome P450s are a superfamily of proteins containing heme groups that 

catalyze the metabolism of drugs, pesticides, environmental pollutants and some 

endogenous compounds (5-8). P450s are involved in the beginning stage of 

biotransformation. They add a hydroxyl or oxygen group to hydrophobic substrates, such 

as polycyclic aromatic hydrocarbons (PAH), to form a compound that can be made more 

soluble in later stages of biotransformation. These biotransformation metabolites are 

usually then excreted from cells. A disadvantage of biotransformation is that some PAHs 

are made into more reactive compounds that become mutageniclcarcinogenic. Many of 

these mutagenic compounds are made in the first stage of biotransformation by P450 

enzymes (8 - 1 0). 

There are a myriad of isoforms of cytochrome P450s known (1 1 - 12). CYP 1 A1 is 

a 58 kDa isoform of P450 that is induced by aromatic hydrocarbons. The cyplal gene is 

located on chromosome 15 at 15q22q24. It is comprised of 7 exons 260 1 base pairs long 

that translate into 512 amino acids. CYPlAl has a region of 40-500 amino acids that is 

homologous to other P450 isoforms that confers function and gives the protein an overall 

alpha helical structure. CYP 1 A1 is bound to the membrane of the endoplasmic reticulum 

(13). Although the endogenous substrate of CYPl A1 is unknown, it is known to 

metabolize many dioxins and PAHs, such as the carcinogen and environmental pollutant 



3 
rnethylcholanthrene (3MC) (Figure 1)(5,14,15). Thus, this enzyme system is critical in 

environmental carcinogenesis. 

Figure 1. Structure of 3-methylcholanthrene 

An induction pathway of CYP1 A1 by polycyclic aromatic hydrocarbons has 

been elucidated. A ligand, e.g. PAH, enters a cell and binds to an aryl hydrocarbon 

receptor (AhR). Binding of a PAH to AhR releases hsp90, which stabilizes AhR in the 

cytoplasm. The ligand-AhR duplex moves to and translocates across the nuclear 

membrane and binds aryl-hydrocarbon receptor nuclear translocator, ARNT. This triplex 

then becomes a transcription factor which binds to one of many xenobiotic responsive 
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elements (XREs) on the cyplal gene. Binding to the XRE activates transcription (16- 

1 8) (Figure 2). 

Sphingolipids 

Sphingolipids are a large class of lipids that are essential to structure, function and 

overall cellular integrity (1 9). There are approximately 300 types of sphingolipids 

present in various cell types. These lipids are found in membranes, with the plasma 

membrane having the highest concentration and the nuclear membrane containing the 

lowest (1 9-20). Sphingolipids facilitate numerous cellular functions including signaling, 

apoptosis, and growth. Other cellular functions of sphingolipids are immune recognition, 

modulation of protein phosphorylation and membrane fluidity. Many important second 

messengers in signal transduction, such as inositol phosphates, diacylglycerol and 

leukotrienes, are sphingolipid breakdown products and metabolites (19). 

Sphingolipid biosynthesis begins with the synthesis of 3-ketosphinganine from 

palmitoyl CoA and serine via serine palmitoyltransferase. 3-Ketosphinganine reductase 

then acts on 3.-ketosphinganine to form sphinganine. Ceramide synthase utilizes a proton 

from NADPH to create dihydroceramide from sphinganine. A desaturase then acts on the 

dihydroceramide to make ceramide which is modified to form the various types of 

sphingolipids (Figure 3). 
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Figure 2. Schematic representation of the signal transduction pathway for CYPl A1 

induction by a PAH 
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Sphingolipids differ from most biological phospholipids in containing long, 

largely saturated acyl chains, allowing them to readily pack tightly together. This 

property gives sphingolipids much higher melting temperatures (T,) than membrane 

glycerophospholipids, which are rich in kinked unsaturated acyl chains (21). With this 

property in mind, Dr. Kai Simons and colleagues developed the "raft hypothesis" (22). It 

postulates the existence of lateral assemblies (microdomains), termed rafts, of 

sphingolipids and cholesterol. It also predicts that these rafts float in 

glycerophospholipid-rich environments, associating with specific proteins, such as 

glycosylphosphatidylinositol (GP1)-anchored proteins (22-24). 

Rafts are thought to form by self-association of sphingolipids (lipid-lipid 

interactions) because of their long, mostly saturated hydrocarbon chains. The interaction 

between glycosphingolipids can be enhanced by hydrogen bonds between their head 

groups. Voids between the hydrocarbon chains caused by the rather bulky head groups 

are filled by cholesterol, which might also participate in the hydrogen bonding to the 

sphingolipids. Sphingolipids, specifically glycosphingolipids and sphingomyelin, have a 

higher gel to liquid transition temperature than do glycerophospholipids. Sphingolipids 

thus exhibit stronger lateral cohesion that is thought to be a consequence of van der 

Waals interactions (22). 

Biochemically, the components of lipid rafts are characterized by their 

insolubility in the detergent Triton X-100 at 4OC, forming detergent insoluble glycolipid- 

enriched complexes (DIGS) that are enriched in cholesterol, glycosphingolipids, 



sphingomyelin, and saturated glycerophospholipids (23). Glycosphingolipids are 

insoluble by themselves, and sphingomyelin is resistant to detergent extraction in the 

presence of cholesterol. In contrast, the majority of the cell's glycerophospholipids are 

soluble in Triton X- 1 00 (25). 

The integrity of rafts depends on the presence of both cholesterol and 

sphingomyelin. Lipid rafts bind proteins, such as GPI-anchored and transmembrane 

proteins, as well as doubly acylated tyrosine kinases of the Src family, which have been 

found to associate with rafts and are incorporated into DIGs. The membrane protein 

caveolin, also found in DIGs, localizes to caveolae (plasma membrane structures 

enriched in cholesterol and sphingomyelin containing a variety of distinct proteins) and to 

post-Golgi transport vesicles binding cholesterol, which alludes to its association with the 

DIGs (22,26). 

HepG2 

HepG2 cells are cancerous human hepatocytes that were obtained fiom a 

Caucasian male 15 years of age (27). HepG2 are epithelial cells that express insulin and 

insulin-like growth factor I1 (IGF 11) receptors. They have a karyotype range fiom 50-60 

chromosomes and a rearranged chromosome 1 (27). These cells have been well 

characterized and are used predominantly in drug metabolism studies. HepG2 cells are 

useful in our studies because they have been shown in various studies to express the 

induction of CYP 1Al by aromatic hydrocarbons. 



Rationale 

Preliminary studies in our laboratory have shown that in HepG2 cells, 3MC 

increased CYPlAl activity 20-30 fold. However, this induction was significantly 

suppressed by the inhibitors of sphingolipid synthesis, Fumonisin B1 (FBI) 

and intracellular serine proteinase (ISP 1). Neither of these compounds affected basal 

CYP 1 A 1 activity (28). Subsequent studies have shown that induction of CYP 1 A1 activity 

by 3MC that was inhibited by ISP1 was restored by the addition of C2-ceramide to cells 

(Figure 4). Therefore, these studies uncovered a requirement for complex sphingolipids 

during the induction of CYPlAl by polycyclic aromatic hydrocarbons. We have also 

shown that C2-ceramide causes a synergistic induction of CYPl A1 when used in 

conjunction with 3MC in either the presence or absence of a sphingolipid synthesis 

inhibitor (Figure 4 & 5). This study examined whether complex sphingolipids modulate 

CYPl A1 induction by 3MC via a specific mechanism. The specific aims of this study 

were to: 

1: To determine whether C2-ceramide modulates ARNT andlor AhR 

concentrations in the PAH induction pathway of CYPlA1. 

2: To determine whether C2-ceramide affects 3MC-AhR-ARNT 

binding to XREs on the CYPlAl gene. 

3: To determine whether C2-ceramide enhances cellular uptake of 

3MC. 



Figure 4. Modulation of CYPlAl activity. 
CYP1 A1 activity in HepG2 cells treated with 3-Methylcholanthrene (M), 
M + Ispl (I), or M+I+C2-ceramide (C2). Untreated (U) cells were used 
as the control. 



Figure 5. Synergistic induction of CYP 1 A l activity by 3MC+C2-ceramide. 
CYPlAl activity was assessed after HepG2 cells were either untreated (U) 
or treated with Methylcholanthrene (M), Methylcholanthrene and C2-ceramide 
(M+C2) or C2-ceranide alone (C2). 



CHAPTER 2 

EXPERIMENTAL PROTOCOLS 

Specific Aim 1: To determine whether C2-ceramide modulates ARNT and/or 

AhR concentrations in the PAH induction pathway of CYPlAl. 

To investigate this specific aim, HepG2 cells were grown and treated with 3MC, 

3MC+C2-ceramide or C2-ceramide alone. The amount of ARNT and AhR present in the 

cell after each treatment was assessed via Western Blot analysis. The methods used are 

described below. 

Western Blot Analysis. Cell lysate preparation for AhR and ARNT western blots were 

prepared according to Pollenz (29). Cells were rinsed twice with PBS and 500 01 lysis 

buffer was added directly to the confluent plates. The resulting lysate was transferred to a 

1.5 ml microcentrifiage tube (29). The lysate was then boiled for 10 min Protein 

concentration was determined using the Bradford method (30). Loading samples were 

prepared containing 10 mg protein and l x  loading buffer [60 mM Tris-HC1, pH 6.8,25% 

glycerol, 2% SDS, 14.4 mM 2b-mercaptoethanol, and 0.1% bromophenol blue]. 

Protein samples were subjected to electrophoresis in a denaturing polyacrylamide 

gel. The resolving gel was 10% acry1amide:bisacrylamide (29: 1) and the stacking gel was 

5% acry1amide:bisacrylamide (29:l). The gel was run with a constant current of 120 volts 

for 2 h. The gel was transferred to a PVDF membrane (Millipore Bedford, MA) for 1 h 

at 350 mA with the cold pack and prechilled transfer buffer [0.025 M tris base, 0.192M 

glycine, 20% methanol, and 0.1 % SDS] using the "sandwich" method. After this process, 

the membrane was immersed in blocking buffer [PBS, 0.1% Tween-20, and 5% bovine 



serum albumin, (BSA)] and blocked for 1 h at room temperature. 

Primary antibodies for AhR and ARNT (Abcam, Great Britain) at 1:5000 and 

1: 236 dilutions, respectively, were used. The membrane was then washed three times 

for 5 inin with PBS-T [PBS with 1% tween-201 and blocked for 5 min The membrane 

was then incubated with the secondary antibody, horse radish peroxidase (HRP)- 

conjugated anti-goat IgG (Sigma, St. Louis, MO) at 1 :320,000 dilution in 5% fatty acid- 

free BSA for 1 h at room temperature on an orbital shaker. The membrane was then 

washed with PBS-T three times for 10 min each. The membrane was developed by film 

exposure to detect the chemiluminescent substrate, Amersham ECL plus kit (Piscataway, 

NJ). The membrane was exposed to the chemiluminescent substrate for 5 min and then to 

the film for 1 min. The film was developed to display bands formed. Densitometric 

analysis was used to determine the relative amount of protein present in each lane. 

Specific Aim 2: To determine whether C2-ceramide affects 3MC-AhR-ARNT 

binding to XREs on the CYPlAl gene. 

To investigate this aim, the electromobility mobility shift assay (EMSA) was used to 

determine whether C2-ceramide enhances 3MC-AhR-ARNT triplex binding to XRE 1. 

Nuclear Extraction. After treatment with 3MC, 3MC-t-C2-ceramide or C2-ceramide for 

18 h, cells were rinsed twice and harvested with PBS. The samples were pelleted at 

12000 rpm for 3min and the supernatant was removed. Nuclear extraction was done 

according to the instructions in the Pierce NE-PER Nuclear and Cytoplasmic Extraction 

Reagent kit (3 1). Briefly, a hypotonic solution was added to the pelleted samples and the 



samples were incubated for 10 min on ice. Next, lysis buffer was added and the samples 

were vortexed and incubated again on ice for 1 min. Samples were then centrifuged for 5 

min at 13000 rpm. The supernatant was removed and nuclear extraction buffer was 

added. Samples were incubated on ice for a total of 40 min with vortexing at 10 min 

intervals. After incubation, samples were centrifuged for 10 min at 13000 rpm. The 

supernatant was collected and stored at -80°C until needed. Protein concentration was 

determined by the Bradford method (30). 

DNA Labeling Oligonucleotide primers, fonvard:5'-TCGAGCTGGGGGCATT 

GCGTGACATTAC-3' and reverse:3'-TCGAGGTATGTCACGCAATGCCCCCAGC -5' 

were purchased from Operon (Valencia, CA). The biotin labeling reaction consisted of 25 

ul of ddH20, 10 ul of 5X Terminal Deoxynucleotidyl Transferase (TdT), 5 ul of unlabeled 

olionucleotide(1 uM), 5 ul of Biotin-N4-CTP(5uM) and 5 ul of diluted TdT(2UIul). The 

final reaction volume was 50 ul. The reaction was incubated at 37OC for 30 min then 

stopped with the addition of 2.5 ul of 0.2M EDTA. The labeled DNA was extracted using 

a 24: 1 chloroform:isoamyl alcohol solution. After centrihging the samples for 2 min at 

13000 rpm, the top aqueous phase containing the labeled oligonucleotides was removed. 

The labeled forward and reverse oligonucleotides were combined and allowed to anneal 

for 2 h at room temperature (32). 

Binding Reactions The binding reactions contained 3 ul of 1 OX binding buffer, ddH20, 

10 ug of HepG2 nuclear extract, 1.5 ul of poly (dI-dC) and 2 ul of labeled 

oligonucleotide. Reactions were incubated for 20 rnin at room temperature. Gel loading 

buffer (5 ul) was added and the total reaction volume was applied to the gel (33). 



The gel was a 6% nondenaturing gel of 40: 1 acry1amide:bisacrylamide. It 

consisted of 2 ml of 10X TBE [890mM Tris base, 890mM boric acid, 20mM EDTA], 2.5 

ml of 29: lacrylamide:bisacrylamide, 2 ml of acrylamide, 1.25ml80% gylcerol, 300 ul of 

10%APS, 20ul of TEMED and 32 ml of ddHzO. After polymerizing for 2 h, the gel was 

pre-run in 0.5X TBE for 1 h at 200V. Samples were loaded and the gel ran at 200V at 

4°C until the dye was three-fourths down the gel. The samples were then transferred to a 

positively charged nylon membrane for 1 h at 360mA at 4OC. After the transfer, the 

membrane was placed under an ultraviolet light to hybridize the transferred DNA to the 

membrane. The membrane was then washed three times with 1X wash buffer, 

equilibrated with substrate-equilibration buffer and band shifts were detected via 

chemiluminesence (3 3). 

Specific Aim 3: T o  deternine whether C2-ceramide enhances cellular uptake of 

3MC. 

3MC uptake by HepG2 cells was determined by use of both a radiolabled assay and 

confocal microscopy. The goal of these experiments was to determine whether C2- 

ceramide enhances 3MC uptake by HepG2 cells. 

Radiolabled Assay. [ 3 ~ ] ~ ~  (+I- C2-ceramide) was added to cell culture media once the 

cells had reached confluency. The amount of 3MC that traversed the plasma membrane 

was determined by measuring the amount detected in harvested cells. HepG2 cells were 

grown in labeled 3MC for 0.25,0.5, 1,4 and 18 h, after which the cells were detached 

from the plate by trypsinization (0.025% for approximately 5 min), The loosed cells 



were then pipetted into centrifuge tubes and centrifuged at 2500 rpm for 5 min to pellet 

the cells. The resultant supernatant was removed. The cells were washed again by 

resuspension in 1 ml of 0.1 M sodium phosphate(pH 7.6) and pelleting. The pelleted 

cells were homogenized in 0.1 M sodium phosphate(pH 7.6) to release cell contents. An 

aliquot of this homogenate was assayed by liquid scintillation counting to determine the 

amount of the labeled 3MC that went into the cell or was attached to or trapped in the cell 

membrane. 

Confocal Microscopy. HepG2 cells were plated on 4 well glass slides (Nunc Lab Tek I1 

CC2 treated) at a density of 2 . 0 ~ 1 0 ~  cellslrnl. One how prior to treatment, cells were fed 

DMEM without fetal bovine serum. Treatment times were 1 min, 5 min, 30 min, lh  and 

2h. After treatment, cells were rinsed twice with PBS and fixed using a 3% formaldehyde 

solution for 10 min. Fixed cells were kept in PBS+10% FBS until staining. The cells 

were stained with 50ul of Sytox Green (1:10,000) and 300ul of Alexa Fluor 568 

phalloidin (Molecular Probes, Eugene, OR) for 10 min and 30 min, respectively. Once 

the cells were stained, the slides were mounted using Flouromount-G (Southern 

Biotechnology Assoicates, Birmingham, AL) and observed using a Zeiss ISM 5 10 

Confocal Microscope. 



CHAPTER 3 

RESULTS 

Western blot analysis for AhR [Figure 61 and ARNT [Figure 71 showed no 

significant change in protein concentration either between treatment groups or over a 4 h 

time period. However, there were fluctuations within untreated and treated groups over 

the 4 h time period. 

Electromobility mobility shift assay [Figure 81 results showed a shift in untreated, 

3MC, 3MC +C2 ceramide and C2 ceramide treatment groups. However, the shift was 

more intense in 3MC and 3MC +C2 ceramide than in untreated. Between 3MC and 3MC 

+C2 ceramide treatments, there was no significant difference in intensity of the shift. C2 

ceramide treatment only resulted in a slight shift. 

Permeability studies using [ 3 ~ ]  3MC showed that between [ 3 ~ ]  3MC treated and 

[ 3 ~  3MCf C2 ceramide treated cells, there was more [ 3 ~ ]  3MC accumulation in the 

cells in the presence of C2-ceramide [Figure 101, A time course permeability study was 

done using 1 3 ~ ]  3MC and revealed consistent [ 3 ~ ]  3MC accumulation with C2-ceramide 

treatment over 1 3 ~ ]  3MC treatment alone over a time period of 4 h [Figure 1 I]. 

Confocal microscopy was used to confirm the movement of 3MC into HepG2 

cells. These studies yielded similar results to the permeability studies [Figure 121. 3MC 

treatment alone showed 3MC entrance into cells. However, in the presence of C2 

ceramide, significantly more 3MC was present in the cells. 3MC uptake within HepG2 

cells occurred within 1 min of treatment. Another noticeable feature was that 3MC 
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accumulation was not dispersed throughout the cells. Small "pockets" or possibly 

vesicles containing 3MC were seen aggregating around the nucleus. 

Shift + 

Figure 6. Electrophoretic mobility shift assay results. 
Actual gel and graphical depiction ef shifted band intensity. 



Figure 7. AhR western blot 



Figure 8. AFWT western blot 



Figure 9. C2-ceramide enhances cell membrane permeability to 3-Methylcholanthrene. 
HepG2 cells were treated with either ['EI] Methylcholanthrene or with 
['HI Methylcholanthrene and C2-ceramide. The amount of [ 3 ~ ]  Methylcholanthrene 
incorporated into cells was assessed at the end of 18 h. 



TIME (min) 

Figure 10. Timed uptake of [ 3 ~ ]  3MC by cells treated with 3MC alone or with 
3MC+C2-ceramide 



HepG2 Cells 

Figure 11. Confocatl micrographs of HepG2 cells after 5 minute treatments. 
Legend: Red - Cytoskeleton; Blue 3-Methylcholanthrene; Green - Nucleus 



CHAPTER 4 

DISCUSSION 

The goal of this study was to determine how the complex sphingolipid, C2- 

ceramide, caused the synergistic induction of CYPl A1 by 3-Methylcholanthrene. The 

specific aims of the study were to examine three steps in the known signal transduction 

pathway to determine whether C2-ceramide caused changes there that could account for 

its overall affect on CYPl A1 induction. Those steps are: 1) changes in the amounts of 

AhR and ARNT, two critical components of the signal transduction pathway; 2) changes 

in the binding of the transcription factor to the XREl of the cyplal gene; and 3) changes 

in the permeability of the plasma membrane to 3MC. 

The results of the experiments performed to determine possible modulations in 

the AhR and ARNT amounts showed no significant change in AhR and ARNT 

concentrations between untreated, 3MC, 3MC + C2 ceramide and C2-ceramide treatment 

g m q s  OP ever a 4 h treatmefit time (Figures 7 & 8). PAR is m indiscriainate receptor. It 

is a part of other enzyme transcription pathways. Examples of such enzymes are 

CYP 1 A2, CYP 1B 1, NADP(H)-oxidoreductase, GST-Ya and UDP-glucronosyltransferase 

(34). Other studies have shown that AhR is involved in cell cycle regulations and cell 

proliferation (35). Because AhR and ARNT are involved in several different signaling 

pathways, they are probably constitutively expressed. 

Studies on transcription factor binding to the cypl a1 gene (Figure 6) showed that 

there was no significant difference in binding between 3MC and 3MC +C2-ceramide 
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treated cells. Therefore, C2-ceramide does not seem to directly influence the 3MC- 

AhR-ARNT triplex binding to XREl of the cypl a1 gene to modulate CYPl A1 

transcription. Though C2-ceramide has been shown to cross the plasma membrane and 

incorporate into other organelle membranes (36), the nuclear envelope is a highly 

specialized membrane that contains the smallest portion of sphingolipids of any other 

cellular membrane. Because the nuclear envelope is so selective in what it is permeable 

to, C2-ceramide may be unable to cross it. Another possibility is that C2-ceramide is 

incorporated into other organelles or vesicles before it is able to reach the nuclear 

envelope. 

The final step examined was the possible enhanced permeability of the plasma 

membrane to 3MC in the presence of C2-ceramide. Such an enhancement would lead to a 

higher intracellular concentration of 3MC which could increase the rate of the signal 

transduction, resulting in the observed increased production of CYPlAl protein by 3MC 

in the presence of C2-ceramide. The results showed that C2-ceramide increases the 

permeability of the plasma membrane and ailows more 3MC to enter the ceii (Figure 12 

). Thus, it is at the beginning of the CYPlAl induction pathway that C2-ceramide has its 

effect. Short chain ceramides, specifically C2-ceramide, have been shown to form a 

hexagonal, non-bilayer, inverted micellar structure that disrupts phospholipid membranes 

(36). Other studies have shown that C2-cerarnide has the ability to form stable channels 

in membranes (37). 



SUMMARY 

In conclusion, it appears that the mechanism used by C2-ceramide to cause the 

synergistic induction of CYPl A1 by 3MC is its membrane pore-forming ability. This 

biophysical property of ceramide increases membrane permeability to 3MC, allowing 

more to enter cells. Though the elements that comprise the CYPl A1 induction pathway 

did not significantly change with C2-ceramide treatment, the increased amount of 3MC 

entering cells through C2-ceramide permeabilized membranes maximizes the usage of 

the CYP 1 A1 induction pathway. 
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Figure 12. CYP 1 A1 induction pathway with C2-cerarnide pore 
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