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Abstract Spectrum sensing is one of the most important tasks of each cognitive radio net-
work. Cooperation among secondary users, by increasing the sensing accuracy can improve
the network throughput, but also increases the energy consumption of cognitive radio net-
work. In this paper, we propose the reliable data combining method for cooperative spectrum
sensing, according to which the fusion center by using two threshold values, makes the final
decision only if it is confident enough in validity of received local data. Otherwise, an addi-
tional sensing will be performed. Throughput maximization problems under interference
constraints are formulated for both soft and hard fusion schemes and the optimal sensing
time and threshold values are obtained. Simulations show that for all SNRs, higher absolute
throughput and also higher throughput per energy consumption are accessible, rather than
conventional cooperative sensing. Moreover, for a large range of SNRs the less energy is
consumed.

Keywords Cooperative sensing · Energy consumption · Energy detection ·
Fusion scheme · Throughput

1 Introduction

Current wireless communication networks are following the fixed spectrum assignment pol-
icy. According to the federal communications commission (FCC) report, major portions of
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licensed spectrum is underutilized across time and space [1]. The limited spectrum resources,
low spectrum efficiency and growing demands for spectrum, reveal the need for dynamic
spectrum management. Cognitive radio (CR) is an emerging advanced radio technology that
enables a secondary user (SU), intelligently monitor its radio frequency environment to detect
both busy and idle communication channels and move into idle channels, while avoiding busy
ones [2]. This technology increases the spectrum efficiency by adapting its operating charac-
teristics based on idle channel conditions and engaging in communication through them [3].

At any CR network, normally the following operations are performed, spectrum sensing,
spectrum decision, spectrum sharing and spectrum mobility [4]. Spectrum sensing which
aims at detecting idle frequency channels at a specific time or location, is considered as the
most important function of CR [5]. Spectrum sensing is done by different techniques like
matched filter detection, cyclostationary based detection and energy detection. In this paper
we consider energy detection, which is a simple method with low computational cost and
free from prior knowledge of primary user (PU) signal [6]. If each SU performs sensing by
itself, fading and shadowing effects may degrade the detection performance. Cooperative
spectrum sensing has been proposed as a solution for such harmful effects [7,8].

In CR networks, the fusion scheme which is applied at the FC to make the final decision,
plays a decisive role in the performance of cooperative spectrum sensing [9]. It affects the
probabilities of missed detection and false alarm, which determine the amount of interfer-
ence and CR network throughput, respectively [9,10]. There are two commonly used fusion
schemes in cooperative spectrum sensing, soft fusion and hard fusion. In Soft fusion, the
observation of any SU is forwarded to a common receiver often called fusion center (FC),
through a control channel and then all the observations are fused together to make the final
decision. In hard fusion, each SU makes a binary local decision regarding the presence of
PU and sends its decision to the FC, in which the final decision is made. It is well known that
soft fusion scheme for cooperative spectrum sensing, outperforms the hard fusion one, but at
the cost of more bandwidth requirement for the control channel and more communications
overhead [11–13]. Nevertheless, in the case of participating a large number of SUs in the
cooperation, it is shown that the performance of hard fusion can be as good as soft fusion [14].

Cooperative spectrum sensing can reduce both the general false alarm and missed detec-
tion probabilities, resulting in throughput improvement and better immunity of PUs against
interference. On the other hand, as the number of SUs increases, the network energy con-
sumption is also increased, which is a critical factor in battery powered sensor networks. This
paper presents the so called reliable data combining (RDC) method, for both soft and hard
fusion schemes which aims at joint enhancing the network throughput and energy efficiency,
while sufficient protection of PUs is guaranteed. In the proposed method the sensing process
is performed again, whenever the local decisions or observations gathered in the FC, are not
reassuring for making the final decision.

The optimum soft fusion data combining is the Chair–Varshney rule, which is based on log-
likelihood ratio test and needs the channel state information [15]. For widely used energy
detection spectrum sensing, various soft combining schemes, like square-law combining
(SLC) and square-law selection (SLS) are explained over AWGN, Rayleigh and Nakagami-
m channels [16–18]. In [19], the authors optimize a linear combination of local statistics
measured by SUs, for minimizing the interference to PU, while enhancing the spectrum effi-
ciency. In [20], a weighted combining method for cooperative spectrum sensing is proposed.
In [11], a maximum ratio combining method (MRC) is adopted. It needs prior knowledge of
the channels gains and assigns greater weights to local energy statistics with higher SNRs.
The equal gain combining (EGC) scheme is considered in [21]. Based on EGC, the local
observed energies after passing through the control channel, will be multiplied by an identical
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weights, which are assigned based on the number of cooperative SUs and then added together
at the FC. The performance of this scheme is near-optimal and independent of channel infor-
mation, thus it is a tradeoff between complexity and performance and widely used as an
soft fusion technique [11]. From energy consumption point of view, the recent work [22],
indicates the better performance of EGC rather than other soft combining schemes.

Regarding the hard combining scheme, various fusion rules have been considered in the
literature. Counting rule or K out of N rule, is investigated in [23–25]. In this case, the FC
votes in favor of PU activity if at least K out of N SUs, have made decision on the activity of
PU. As the special cases of counting rule, Ghasemi and Sousa [26] adopts the OR fusion rule
cooperative spectrum sensing. In [23], the AND rule is also investigated. The optimization
of counting rule is considered in [9] to minimize the sum of missed detection and false alarm
probability. It is shown that the entitled HALF-VOTING rule is optimal. Authors of [10]
aim at adopting the counting rule to maximize throughput, while the sensing accuracy is
guaranteed. In [27], based on hard fusion scheme, the throughput maximization of an energy
limited CR network is studied. Recently, a method for linear combination of local decisions
is proposed in [28] and the performance of K out of N fusion rule under erroneous reporting
channels is investigated in [29].

With the goal of performance enhancement, choosing a number of SUs for cooperation,
known as sensing user selection, has attracted much attention in the literature. It is shown
in [23] and [30] that cooperation of all SUs, no matter what combination scheme applied
at the FC, is not necessarily meant to achieve the maximum performance. According to the
results of [23], selecting a subset of SUs with highest SNRs, leads to a lower false alarm
and missed detection probabilities. In [30], a sensing user selection scheme is presented to
minimize the average detection Bayesian risk. A cluster-based method is considered in [31],
in which all the SUs are divided into clusters. In each cluster, a cluster head with the best
reporting channel condition forwards the local information to the FC.

Censoring method is a different user selection scheme, which mainly aims at reducing
overhead [32]. In this method, based on two threshold values, only SUs with sufficient
informative data are allowed to send their observations or decisions to the FC. In [33],
the authors show that the censoring method reduces the required bandwidth of the control
channel. The energy efficiency capability of censoring method, which is a vital factor in
battery powered cognitive sensor networks, is demonstrated in [34]. Moreover, The works
[35] and more recently [36], adopt the MAJORITY fusion rule based on the censoring method.

The aforementioned works, basically used single threshold cooperation methods at the FC
to decide about PU activity. Such methods can’t carefully create a balance between the two
detection error probabilities, false alarm and missed detection, especially when the dynamic
range of PU signal is high or the PU signal characteristics are unknown to the FC, which
is often the case in CR networks [37]. For example, in the case of K out of N rule, the
single threshold K, determines the error probabilities. When a very weak PU signal has to be
detected, the number of local decisions in favor of its presence, may fall below the specific
K and thus, the FC wrongly declares its absence (missed detection). By using a smaller
K the probability of missed detection decreases, but also at the same time the probability
of false alarm increases. If the CR network has enough information about the PU signal
characteristics, a smaller threshold can be selected for a PU with a lower tolerable signal level,
in order to reduces the missed detection probability and as a result, reduces the interference
to PU. For a PU with high interference tolerance, a larger threshold is suitable, since it
decreases the false alarm probability and lets the CR network to communicate with higher
throughput. However, with the lack of sufficient knowledge about the PU, the performance
of such methods may be degraded.
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Unlike the previous works, we propose in our method to take advantage of using two
thresholds for data combining at the FC. When the test statistics exceeds the upper threshold,
the presence of PU is declared as the final decision and when it is less than the lower
threshold, the absence of PU is declared. In the case of falling the test statistics between
two thresholds, the sensing result is considered invalid and another sensing process will be
carried out. So the proposed RDC method has a non periodic cooperative spectrum sensing
strategy. The conventional periodic sensing method can be regarded as a special case of the
proposed method, when all the test statistics are reliable or both thresholds are the same at
the FC.

The proposed method is different from censoring method, although they both use two
thresholds for detection. The censoring mechanism is applied at each SU locally and only
informative local sensing data are sent to the FC. Therefore, the final decision is always made
at the FC with the participation of a subset of SUs. In contrast, the RDC method basically
is not a user selection mechanism. In this method all the local sensing data are sent to the
FC and participate in cooperative sensing. The final decision may be made at the FC or not,
depending on the test statistics and thresholds values.

Throughout this paper we refer to EGC and counting rule fusion schemes as the conven-
tional sensing methods, in contrast to the RDC method. We adjust the thresholds and sensing
time to maximize throughput conditioned on the PUs being protected and show that the RDC
method not only increases the network throughput, but also is an energy efficient method in
comparison with the conventional sensing methods.

The reminder of this paper is organized as follows. In Sect. 2 the system model for both
soft and hard fusion schemes is presented. Section 3 formulates the network throughput and
energy consumption. The performance analysis of the proposed method is given in Sect. 4.
Section 5 deals with the simulation results followed by conclusion in Sect. 6.

2 System Model

We assume that the CR network is composed of M SUs and a FC. Each SU with a built
in energy detector, estimates the average energy of PU signal during sensing. In soft fusion
scheme, this estimated value is sent usually without further processing to the FC, unlike hard
fusion in which one bit local decision, regarding the existence of PU is sent. Based on the
received information from all SUs, either a final decision is made by FC or another sensing
process is performed. The received signal at each SU can be represented by the following
binary hypothesis test problem:

xi [n] =
{

zi [n] H0

si [n] + zi [n] H1
, i = 1, 2, . . . , M, n = 1, 2, . . . , N . (1)

where N is the sample size which is equal to the product of sensing time τ and sampling
frequency fs . Hypothesis H0 indicates inactivity of PU and H1 is a hypothesis which indi-
cates PU activity. xi [n] is the received signal sample by i th SU at sample time n · si [n] is
the transmitted signal of PU and zi [n] is the additive noise, which we model both as i.i.d
Circularly Symmetric Complex Gaussian (CSCG) random variables with zero means and
variances σ 2

s,i and σ 2
z,i respectively.

In cooperative spectrum sensing, any frame duration generally consists of sensing, report-
ing and transmission phases, each one cause delay in the system. Sensing time, reporting
delay, asynchronous SUs and asynchronous reporting are mentioned as the cooperative sens-
ing delay overhead [6]. Reporting delay is the time needed for local sensing results to be
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Fig. 1 Schematic illustration of
RDC method
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sent to the FC. Asynchronous SUs referred to SUs which operate in the sensing phase,
asynchronously. Asynchronous reporting occurs when the local sensing results of all SUs,
don’t received by the FC concurrently. We assume that the system is perfectly synchronized.
Thus, a fixed time overhead is added by the reporting phase. Consequently, without loss of
generality the reporting delay is assumed to be zero [8].

In conventional cooperation, the sensing phases are occurred regularly with period T ,
where T is the frame duration. Local sensing results are reported to the FC in which a
final decision always is made in favor of H0 or H1, regardless of reliability of its received
information. Such a method may be associated with misleading results in the detection of PU
status which can either reduce the spectrum efficiency or cause interference to PU. We propose
the RDC cooperative sensing method which is schematically illustrated in Fig. 1. To enhance
the performance of conventional sensing, after gathering all local sensing data, the possible
output of FC is in favor of either H0, H1 or Hs . We mean by Hs that an additional sensing
phase should be implemented in a case where there is doubt about the reliability of data. This
additional sensing may occur in successive until a set of reliable data gathered. We would
expect an increase in detection accuracy. Furthermore due to energy consumption at each
additional sensing, the performance evaluation of RDC method from energy consumption
point of view will be considered. In the following we analytically investigate the RDC method
and derive the related probabilities for both hard and soft fusion schemes. For simplicity we
assume that all SUs have same SNR, γ [26]. In practice, when distance between two SUs
is small rather than distance between SU and primary transmitter, for example when the CR
and primary networks are located far from each other, all SUs nearly experience identical
SNR [9].

2.1 Soft Fusion

The test statistic for local spectrum sensing based on energy detection can be written as:

TSi = 1

Nσ 2
z

N∑
n=1

∣∣x2
i [n]∣∣, i = 1, 2, . . . , M (2)

where
∣∣x2

i [n]∣∣ is the received signal energy. T Si is a normal random variable which its mean
and variance are 1 and 1

N under hypothesis H0, and (1+γ ) and 1
N (1+γ )2 under hypothesis

H1, respectively [38]. In the case of soft fusion, each SU forwards T Si to the FC in order to
performs the average of local received data as:

TS = 1

M

M∑
i=1

TSi (3)

It can be verified that T S has a normal distribution with mean 1 and variance 1
NM under

hypothesis H0 and mean (1+γ ) and variance 1
NM (1+γ )2 under hypothesis H1. For soft fusion

we compare T S with two thresholds λ1 and λ2 where 0 ≤ λ1 ≤ λ2. If it locates between the
two thresholds, the sensing data is considered as unreliable and another spectrum sensing
phase is requested by FC. When it is smaller than λ1, PU is declared as inactive. Otherwise,
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the activity of PU is declared. This process may be repeated until a reliable data received.
The final decision Ds , can be formulated as:

Ds =
⎧⎨
⎩

0 TS < λ1

additional sensing λ1 ≤ TS < λ2

1 TS ≥ λ2

(4)

where the bits 0 and 1 represent inactivity and activity of PU, respectively. General false
alarm and detection probabilities can be obtained as:

QFs = Pr(TS ≥ λ2|H0) = Q
(
(λ2 − 1)

√
M τ fs

)
(5)

QDs = Pr(TS ≥ λ2|H1) = Q

(
(λ2 − γ − 1)

√
M τ fs

γ + 1

)
(6)

And, general missed detection (QMs) and opportunity (QOs) probabilities become:

QMs = Pr(TS < λ1|H1) = 1 − Q

(
(λ1 − γ − 1)

√
M τ fs

γ + 1

)
(7)

QOs = Pr(TS < λ1|H0) = 1 − Q
(
(λ1 − 1)

√
M τ fs

)
(8)

QMs denotes the probability of not distinguishing activity of a really active PU and QOs is the
probability of detecting a really idle spectrum, which gives the CR network an opportunity
to engages in communication. Furthermore, the probabilities of making no decision by the
FC or equivalently, probabilities of performing additional spectrum sensing in the absence
(δ0s) and presence (δ1s) of PU are:

δ0s = Pr(λ1 ≤ � < λ2|H0) = 1 − QOs − QFs (9)

δ1s = Pr(λ1 ≤ � < λ2|H1) = 1 − QMs − QDs (10)

2.2 Hard Fusion

In this fusion scheme, each SU compares its test statistic with a predefined threshold λ to
make a binary local decision, based on energy detection. The local false alarm and detection
probabilities can be obtained as:

Pf (τ, λ) = Pr(TSi ≥ λ|H0) = Q
(
(λ − 1)

√
τ fs

)
(11)

Pd(τ, λ) = Pr(TSi ≥ λ|H1) = Q

(
(λ − γ − 1)

√
τ fs

γ + 1

)
(12)

Suppose that biε{0, 1} is the decision of i th SU where 0 and 1 represent the absence
and presence of PU, respectively. The FC compares � = ∑M

i=1 bi as the sum of all local
decisions, with two integer values k1 and k2 where 0 ≤ k1 ≤ k2 ≤ M . We will choose this
values based on the sensing performance requirements. The final decision Dh , is concluded
at the FC according to the following rule:

Dh =
⎧⎨
⎩

0 0 ≤ � < k1

additional sensing k1 ≤ � < k2

1 k2 ≤ � ≤ M
(13)

If � falls between k1 and k2, the FC dose not trust its received information and conse-
quently, does not vote decisively in favor of H0 or H1. Instead, it gives the CR network a

123



RDC Cooperative Spectrum Sensing Method

chance to run another sensing phase until a reliable result is obtained. Based on the proposed
rule, general probabilities of false alarm (QFh) and detection (Q Dh) can be obtained as:

QFh(k2, Pf ) = Pr(� ≥ k2|H0) =
M∑

l=k2

(
M
l

)
(Pf )

l(1 − Pf )
M−l (14)

QDh(k2, Pd) = Pr(� ≥ k2|H1) =
M∑

l=k2

(
M
l

)
(Pd)l(1 − Pd)M−l (15)

Also, general missed detection probability (QMh) and general opportunity probability
(QOh) are obtained as follows:

QMh(k1, Pd) = Pr(� < k1|H1) =
k1−1∑
l=0

(
M
l

)
(Pd)l(1 − Pd)M−l (16)

QOh(k1, Pf ) = Pr(� < k1|H0) =
k1−1∑
l=0

(
M
l

)
(Pf )

l(1 − Pf )
M−l (17)

The probabilities of additional sensing under hypothesis H0 and H1 can be obtained as:

δ0h = Pr(k1 ≤ � < k2|H0) = 1 − QOh − QFh (18)

δ1h = Pr(k1 ≤ � < k2|H1) = 1 − QMh − QDh (19)

3 Throughput and Energy Consumption

By considering Fig. 1, when PU is absent and the FC distinguishes it correctly, the achievable
throughput for both hard and soft fusion methods can be represented as:

R0 = P(H0)(T − τ) · QO

T · QO + (1 − QF − QO)τ + T · QF
r0 = P(H0)(T − τ) · QO

τ + (T − τ) · (QO + QF )
r0 (20)

In the presence of PU, if the FC wrongly declares its absence, the achievable throughput
becomes:

R1 = P(H1)(T − τ) · QM

T · QM + (1 − QM − Q D)τ + T · Q D
r1 = P(H1)(T − τ) · QM

τ + (T − τ) · (QM + Q D)
r1 (21)

where r0 and r1 are the network throughputs in the absence and presence of PU, respectively.
The average network throughput is:

R = R0 + R1 (22)

Since the CR technology has been designed specially to improve the spectrum efficiency,
it is more advantageous when PU inactivity occurs most of the time i.e. P(H0) � P(H1).
On the other hand, r1 is usually very smaller than r0 due to PU interference. So, we can
neglect the second term of (22) and approximate the average throughput after normalization
as:

R ≈ (T − τ) · QO

τ + (T − τ) · (QO + QF )
(23)

In addition to throughput enhancement, we are also interested in studying the performance
of our method from energy consumption point of view. Based on the proposed method, the
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additional sensing phases, each of them with some energy consumption are executed for
reliability purpose. Denoting e0 and e1 as the network energy consumption in the absence
and presence of PU respectively, we have:

e0 = P(H0) · [es + P(H0 |H0 ) · et + P(Hs |H0 ) · es] = P(H0) · [es + QO · et + δ0 · es]
(24)

e1 = P(H1) · [es + P(H0 |H1 ) · et + P(Hs |H1 ) · es] = P(H1) · [es + QM · et + δ1 · es]
(25)

where es and et are the values of energy consumption during sensing and transmission phases,
respectively. The average network energy consumption is:

e = e0 + e1 (26)

Since P(H0) � P(H1), we can approximate e as follows:

e ≈ es + QO · et + δ0 · es (27)

4 Performance Analysis

We want to obtain the optimum values of detection parameters in order to maximize through-
put, while keeping PU protected against interference. For soft fusion the problem can be
formulated as:

Max Rs(τ, λ1, λ2) = (T − τ) · QOs(τ, λ1)

τ + (T − τ) · [QOs(τ, λ1) + QFs(τ, λ2)]
τ, λ1, λ2

(P1)

Subject to:

QMs(τ, λ1) ≤ α (28)

The missed detection probability is forced to be smaller than a predefined value α to
immune PU against interference. To solve the problem, it is concluded from (7) that:

λ1 = 1 + γ + 1 + γ√
M τ fs

Q−1(1 − QMs) (29)

Inserting λ1 into (8) leads to the following relation between opportunity and missed
detection probabilities:

QOs = 1 − Q[(1 + γ )Q−1(1 − QMs) + γ
√

M τ fs] (30)

Thus, QOs is an increasing function of QMs. Taking the partial derivative of Rs with
respect to QOs gives:

∂ Rs

∂ QOs
= (T − τ) · [τ + (T − τ)QFs]

[τ + (T − τ) · (QOs + QFs)]2 (31)

It is seen that ∂ Rs
∂ QOs

≥ 0. Since Rs is an increasing function of QOs, it is also an increasing
function of QMs. In the other words, the maximum throughput is attained when QMs(τ, λ1) =
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α. Thus the optimal lower threshold λ1opt , can be represented in terms of the optimal sensing
time τopt as:

λ1opt = 1 + γ + 1 + γ√
M τopt fs

Q−1(1 − α) (32)

The throughput can be represented as a function of τ and λ2:

Rs(τ, λ2) = (T − τ) · QOs(τ )

τ + (T − τ) · [QOs(τ ) + QFs(τ, λ2)] (33)

It can be seen that the throughput is maximized when QFs(τ, λ2) = 0. Therefore, the-
oretically for any sensing time the optimum value of λ2 is λ2opt = ∞. But in practice by
considering (5) and using the fact that Q(x) ≈ 0 for x ≥ 4, we can find λ2opt as:

λ2opt = 1 + 4√
M τopt fs

(34)

The problem (P1) can be represented as a simple unconstraint line search problem over
sensing time τ :

Max Rs(τ ) = (T − τ) · QOs(τ )

τ + (T − τ) · QOs(τ )
τ

(P2)

For hard fusion, suppose that each SU has already sent its binary decision to the FC, while
fulfilled the detection constraint Pd(τ, λ) ≥ β. The proof is straightforward to show that
throughput maximization occurs if Pd(τ, λ) = β. Briefly, since Pf (τ, λ) is an increas-
ing function of Pd(τ, λ) for any τ and λ, by setting Pd(τ, λ) to its minimum possible
value, Pf (τ, λ) takes also its minimum value which maximizes QOh(k1, Pf ) and minimizes
QFh(k2, Pf ) for any k1 and k2, as indicated by (14) and (17). Therefore, the throughput
is maximized because as mentioned before, it is an increasing function of QOh(k1, Pf )and
decreasing function of QFh(k2, Pf ). From Pd(τ, λ) = β we have:

λ = 1 + γ + 1 + γ√
τ fs

Q−1(β) (35)

and

Pf (τ ) = Q
(
γ
√

τ fs + (1 + γ )Q−1(β)
)

(36)

General probabilities of missed detection and false alarm can be written as:

QMh(k1) =
k1−1∑
l=0

(
M
l

)
βl(1 − β)M−l (37)

QFh(τ, k2) =
M∑

l=k2

(
M
l

)
Pf (τ )l(1 − Pf (τ ))M−l (38)

The problem is as follows:

Max Rh(τ, k1, k2) = (T − τ) · QOh(τ, k1)

τ + (T − τ) · [QOh(τ, k1) + QFh(τ, k2)]
τ, k1, k2

(P3)
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Subject to:

QMh(k1) ≤ α (39)

Similar to soft fusion it can be shown that for any sensing time, the throughput maxi-
mization is occurred when QMh(k1) = α and QFh(τ, k2) takes its minimum value. Solving
QMh(k1) = α gives:

k1opt =
⌊

Q−1
Mh(α)

⌋
(40)

where �x	 denotes the integer part of x . Also QFh(τ, k2) is minimum when k2 takes its
maximum value i.e. k2opt = M . The problem is now simplified as the following:

Max Rh(τ ) = (T − τ) · QOh(τ )

τ + (T − τ) · [QOh(τ ) + QFh(τ )]
τ

(P4)

5 Simulation Results

In this section, simulation results are presented to evaluate the performance of the proposed
RDC cooperative spectrum sensing method. By adjusting optimal detection parameters, we
compare the achievable throughput and corresponding energy consumptions of the proposed
method with the conventional sensing for various SNR values. α and β are set to 10−4 and
0.9, respectively. The number of SUs is 20, sampling frequency is 2M H z and frame duration
is 5ms.

CR network should sense very weak PU signals, thus the SNRs in the range from
−10 dB to −22 dB are considered in the simulations. Simulations are based on soft fusion,
unless otherwise stated. Fig. 2 shows the changes in network throughput as a function of sens-
ing time, for SNR = −16 dB. It is seen that the proposed method achieves higher throughputs
than conventional sensing at any sensing time. Moreover, it reaches the maximum value at a
lower sensing time. The optimal sensing time of the conventional and proposed method, are
about 1 and 0.5 ms, respectively.

In CR networks, the sensing time is usually occupies a small portion of the frame dura-
tion, to allows the SU have more time for communications. Thus, for fixed power SUs the
energy consumption of sensing phase is small rather than the transmission phase. In Fig.
3 the energy consumption of the proposed method is plotted versus sensing time for two
normalized sensing phase energy consumptions, es = 0.3 and es = 0.7. This quantities
have been normalized with respect to the total energy consumption, e. We use es = 0.7,
though it may seems impractical, to evaluate the performance of the proposed method in

Fig. 2 Throughput variations
over sensing time
(SNR = −16 dB)
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Fig. 3 Energy consumption
variations over sensing time
(SNR = −16 dB)

poor conditions. As we see, with increasing the energy consumption of sensing phase, the
total energy consumption of both methods increases. For es = 0.3, even though for each
specific sensing time, the energy consumption of the RDC method is slightly more than the
conventional one, but increasingly at the optimum sensing times, the RDC method consumes
less energy. In the case of es = 0.7, the energy consumption of RDC method grows more
rapidly than conventional method. This is reasonable, because in the RDC method the extra
sensing phases are carried out. In addition of separate investigation of either throughput or
energy consumption, we are interested to know that how much throughput is obtained for
a specific energy consumption, at different sensing times. This issue is addressed in Fig. 4,
which depicts the ratio of maximum throughput to the corresponding energy consumption. It
is observed that the throughput–energy ratio of the RDC method is higher than conventional
method even when the sensing energy consumption is high.

As a function of SNR, performance of the proposed method is evaluated for es = 0.2.
Figure 5 shows the maximum throughput and indicates that the maximum throughput of the
proposed method, is always higher than the conventional method for all SNR values. The
energy consumption is plotted versus SNR in Fig. 6. It demonstrates that the RDC method
consumes less energy for a wide ranges of SNRs up to −20 dB. At very low SNRs, like those

Fig. 4 Variations of
throughput–energy ratio over
sensing time (SNR = −16 dB)

Fig. 5 Max. achievable
throughput versus SNR
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Fig. 6 Energy consumption for
optimal spectrum sensing versus
SNR

Fig. 7 Ratio of Max. throughput
to corresponding energy
consumption versus SNR

Fig. 8 Ratio of Max. throughput
to corresponding energy
consumption versus SNR
(hard fusion)

below −20 dB, the energy consumption of RDC method will increase. Because at these SNRs
the unreliable situations occur many times and result in much additional sensing executions
that increase the energy consumption. In Fig. 7 the maximum achievable throughput per
energy consumption is plotted versus SNR. It shows the superiority of the proposed method
even at very low SNR values. In the case of hard fusion based RDC method, similar results
are obtained, which due to space consideration, we only present the maximum throughput
per energy consumption for hard fusion case, as depicted in Fig. 8. It can be seen that the
performance of the proposed method is better than conventional one, for both soft and hard
fusion schemes.

6 Conclusion

In this paper the RDC method for cooperative spectrum sensing in CR networks has been
addressed. When the collected data at the FC is located between the upper and lower thresh-
olds, it is regarded as the unreliable data and no final decision is made. In turn, an extra
sensing phase is performed. Sensing time, upper and lower thresholds have been optimized
for both soft and hard fusion schemes to maximize the network throughput with sufficient
protection of PUs against interference. The performance of the proposed method has been
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evaluated by simulations. The results show that it achieves not only higher throughput rather
than conventional method at all SNRs, but also consumes less energy for a wide range of
SNRs. In term of throughput per energy consumption, the performance of the RDC method
is always better than conventional sensing regardless of what type of hard or soft fusion
scheme, applied at the FC.
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