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a b s t r a c t

A significant amount of energy is consumed to maintain thermal comfort in buildings, a huge portion of
which is lost through windows. Smart coating, thin films with spectrally selective properties on the
surface of glass, is the innovative solution to the problem. Thermochromic smart windows change their
color and optical properties in response to temperature variations. The performance, materials, coating
technologies and energy modeling of thermochromic windows are reviewed in the present study. The
effect of doping vanadium dioxide (VO2) coatings with different dopants such as tungsten, fluorine, gold
nanoparticles and etc. is elaborated. Various deposition techniques, specifically hybrid chemical vapor
deposition (AA/APCVD) and physical vapor deposition (PVD) methods are elucidated. Different dopants
and techniques show different results on metal to semiconductor transition (MST) and the critical
temperature. The “change in visible and infra-red transmission and reflectance” is the touchstone of
performance for the different afforded chromogenic intelligent windows.

& 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

A significant amount of energy is consumed for maintaining
thermal comfort in buildings. The energy used to maintain
thermal comfort in buildings is mostly exploited to keep HVAC
devices running. The building energy consumption in developed
countries accounts for 20–40% of the total energy use. About 41%
of primary energy the U.S. (as the second largest consumer of
world energy representing 19% of global consumption), consumed
in 2010 was for buildings sector. Consequently, this amount
ll rights reserved.

le: +60176617504.
accounted for 7% of global energy use in 2010. Approximately
60% of all used energy in building sector was consumed for space
heating, space cooling, lighting and ventilation in 2010 [1]. Build-
ings in China, as the largest consumer of world energy, consumed
26% of total primary energy in 2006; the figure is anticipated to
rise to more than 30% by 2020 [2]. The building energy consump-
tion is even more dominant in hot and humid regions, using one-
third to half of the electricity produced in some countries [3–5].

In addition, building sector was the culprit of around 40%, 18%
and 8% of energy-related carbon dioxide emissions in 2010 for the
US, China and worldwide, respectively [1,6]. Therefore, energy
saving measures should be taken in order to reduce buildings
energy losses and CO2 emissions.

There are two approaches in building energy saving strategies,
the active strategies and the passive ones. Improving HVAC
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Nomenclature

TC Thermochromic
EC Electrochromic
TCW Thermochromic window
ECW Electrochromic window
SPD Suspended particle device
MST Metal to semiconductor transition

ΔT Change in transmittance
Tt Transition temperature (critical temperature)
PVD Physical vapor deposition
CVD Chemical vapor deposition
APCVD Atmospheric pressure chemical vapor deposition
AACVD Aerosol assisted chemical vapor deposition
ΔR Change in reflectance
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systems and building lighting can actively increase the building's
energy efficiency, whereas measures amending the properties and
thermal performance of building envelopes such as adding
thermal insulation to wall, using cool coatings on roofs and coated
window glazing are among the passive methods. Any building
element, such as wall, roof and fenestration which separates the
indoor from outdoor is called building envelope [7–10].

Windows are known as one of the most energy inefficient
components of buildings [11]. Preventing these losses by improving
the windows thermal performance will result in reduced electricity
costs and less greenhouse gas emissions. While controlling trans-
mitted Infrared (IR) radiation, an ideal window should be capable of
sufficient transmission of visible light [12]. The most significant
parameters influencing the heat transfer through windows include
outdoor conditions, shading, building orientation, type and area of
window, glass properties and glazing characteristics [13]. Improving
glazing characteristics of windows such as thermal transmittance and
solar parameters is the most important criterion to be considered in
building windows standards [14]. Several international standards have
been published to evaluate the performance of windows and glasses
in building in order to achieve minimum requirement by considering
energy performance improvement of building. ISO 10291:1994 [15],
ISO 12567:2005 [16,17], ISO 9050:2003 [18], and ISO 14438:2002 [19]
are the examples of such standards.

Based on international standard (ISO 9050) [18], light transmit-
tance, solar direct transmittance, total solar energy transmittance,
ultraviolet transmittance and related glazing factors are the essential
parameters for determining the light and energy performance of
glazing in building. Some studies have been done based on this
standard (or its European equivalent EN 410) [20] in order to
determine the optical properties of coated glass products [21], model-
ing the solar energy transmittance of windows by considering to the
angular behavior, and calculate the solar control parameters [22].

Generally, international standards specify the criteria and the
essential characteristics to be considered worldwide. International
standards can apply directly or modify based on the local condi-
tions. There are many international and local standards related to
the energy and lighting performance of windows, some of which
are tabulated in Table 1.

The thermal dynamics and lighting potential of glazing should be
considered in building energy calculations. Energy efficiency in
building envelopes is generally calculated based on the ratio of the
temperature difference across a building compartment and the heat
flux (R-value) or the rate of heat transfer through a building element
at certain conditions (U-factor). In cold climates, low U-factors or
high R-values prevent heat from escaping from buildings, and in hot
climates, they prevent heat from entering buildings [23,24].
2. Smart windows

Smart windows, defined as the type of windows that partially
block the unwanted solar radiation, can help building to maintain
higher energy performance levels. The energy performance can be
improved by increasing heat gain in cold weather and decreasing
it in hot weather by adopting windows’ radiative and thermal
properties dynamically [25]. Adding controllable absorbing layer
on the surface of the glass can change the optical properties of the
glass by controlling the incident solar heat flux [26]. Therefore,
smart windows lead to reduced HVAC energy consumption and
size and electric demand of the building [11,27,28].

There is a wide range of modern intelligent glazing options for
energy saving purposes including Low-e coatings [29,30], micro
blinds, dielectric/metal/dielectric (D/M/D) films [31,32], and
switchable reflective devices including electrochromic windows
(ECW) [33–35], gasochromic windows [36], liquid crystal glazing
[11], Suspended-Particle Devices (SPD) [37] and thermochromic
windows (TCW).

Low emissivity (low-E) coatings are spectrally selective films
that are aimed to let the visible light pass through and block the IR
and UV wavelengths which generally create heat [10]. Because of
its high IR-reflectance, this type of glazing has been developed
greatly, and many have studied their different properties during
the last two decades [30,38–40]. Typically, there are two types of
low-e coatings, the tin oxide based hard coating and the silver
based soft coating with higher IR reflectance and lower transmit-
tance than the other one. However, the visible transmittance of
hard coatings can boost up with anti-reflecting property of silicon
dioxide [29].

D/M/D films on glass exhibit great energy saving effects by
reflecting the IR radiation by their reflective metal film and
transmitting visible and near IR radiation through the two antire-
flective dielectric coatings [41]. Design, fabrication and properties
of D/M/D films have been studied thoroughly by many researchers
focusing on the optimization [31,32,42–45]. Beside the optimized
performance, cost of these films in terms of their material and the
fabrication technique is also important [41].

The switchable reflective devices (also called dynamic tintable
windows) are categorized in to passive and active systems. In
passive devices, the switching process is activated automatically
in accordance with the environmental conditions. This environ-
mental factor can be light in case of photochromic windows; or
temperature and heat in thermochromic windows (TCW). Alterna-
tively, the active systems require an external triggering mechanism
to perform the modulation. For instance, electricity is the actuating
signal in electrochromic windows (ECW). The active switchable
glazing systems offer supplementary options compared to the
passive systems whereas their dependency on power supply and
wiring should be reckoned with as a drawback. Chromic materials,
liquid crystals, and suspended particle windows are the three most
common active-controlled intelligent windows [11]. The latter two
share the disadvantage of their dependency on an electric field to
be maintained when a transparent mode is desired; resulting in
excessive electricity consumption. This is not the case in EC glazing
that wants electricity only for transition [46]. However, chromic
materials are classified into four types: electrochromic (EC), gaso-
chromic, photochromic and thermochromic (TC). The first two
belong to active glazing, responding to electricity and hydrogen
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gas, respectively, as a function of solar irradiation [11,47]. Smart
windows are apt to glazing the cooling load demanding buildings
with large solar gain [48], though providing a see-throughmode is a
must in any application.

The EC effect which was first explained in 1969 is a character-
istic of a device which varies its optical properties when an
external voltage triggers the EC material. The EC device modulates
its transmittance in visible and near IR when a low DC potential is
applied [34,49].

It is usually consisted of several layers deposited on glass. The
glass substrates are usually coated with transparent conducting
films with natural colors-mostly tin oxide doped with either
indium (ITO) or fluorine (FTO). The three major deposited layers
cover the coated glass substrate as follows: The Electrochromic film
(cathodic electro-active layer with reversible transmittance mod-
ulation characteristic) which gets a darker color when the external
circuit transfers electrons into the EC lattice to compensate for the
positive ions injected from the adjacent ion storage layer; Ion
conductor (ion conducting electrolyte); and Ion storage layer
(anodic electro-active layer) that becomes darker while releasing
positive ions [33,34,50–52].

The electro-active layers (also named electrochromics) switch
between their oxidized and reduced forms causing variations in
their optical properties and colors as well. Ideally, it is desired that
electrochromics act more reflective rather than absorptive in their
colored state compared with their bleached mode [49].

EC windows should provide daylight while acting as a barrier
to heat. Obviously, this type of window is not capable of providing
Table 1
Energy and lighting performance standards of windows.

Name Description

ASTM E−2141-06 Standard test methods for assessing the durability of absorptive el

ISO 9050:2003 Glass in building—determination of light transmittance, solar direc
transmittance and related glazing factors

ISO 10291:1994 Glass in building—determination of steady-state U values (therma
ISO 10292:1994 Glass in building—calculation of steady-state U values (thermal tra
ISO 10293:1997 Glass in building—determination of steady-state U values (therma
EN 1096-1:2012 Glass in building—coated glass—Part 1: definitions and classificati
EN 1096-2:2012 Glass in building—coated glass—Part 2: requirements and test me
EN 1096-3:2012 Glass in building—coated glass—Part 3: requirements and test me
EN 1096-4:2004 Glass in building—coated glass—Part 4: evaluation of conformity/P
EN ISO
14438:2002

Glass in building—determination of energy balance value—calcula

BS EN 14449-
1:2005

Glass in building. Laminated glass and laminated safety glass. Eval

BS EN 14179-
2:2005

Glass in building. Heat-soaked thermally-toughened soda lime silic

BS EN 1748-1-
2:2004

Glass in building. Special basic products. Borosilicate glasses. Evalu

BS EN 12337-
2:2004

Glass in building—chemically strengthed soda lime silicate glass—

BS EN 14178-
2:2004

Glass in building—basic alkaline earth silicate glass products—eva

BS EN 1096 Coated glass
BS EN 12898:
2001

Glass in building, determination of the emissivity

BS EN 410: 1998 Glass in building—determination of luminous and solar characteris
BS EN 673: 1998 Glass in building: determination of thermal transmittance (value).
BS EN ISO 12567 Thermal performance of windows and doors
BS EN ISO
14438:2002

Glass in building. Determination of energy balance value. Calculati

ES ISO 12567-
1:2012

Thermal performance of windows and door—determination of the
and doors

ES ISO 12567-
2:2012

Thermal performance of windows and door—determination of the
other projecting windows

ES ISO
14438:2012

Glass in building. Determination of energy balance value. Calculati
both effects simultaneously [35]. The EC function can be controlled
by thermal load, temperature and sunlight. The latter is stated to
be the best governing parameter, especially from the comfort
point of view [53–56]. All the more, self-powered EC windows are
also developed using semitransparent PV cells, which provide the
required activating electricity [57–65].

The function of gasochromic devices is also based on electro-
chromism in EC windows. The main difference is that instead of
DC voltage, a hydrogen gas (H2) is applied to switch between
colored and bleached states. Compared to their counterpart,
gasochromic devices are cheaper and simpler because only one
EC layer is enough and the ion conductor and storage layers are
not needed anymore. Although, gasochromic devices exhibit some
merits such as better transmittance modulation, lower required
voltage, staying lucid in the swap period, and adjustability of any
middle state between transparent and entirely opaque; only a few
numbers of EC materials can be darkened by hydrogen. Further-
more, strict control of the gas exchange process is another issue
[66].

Commonly used in wrist watches, LC technology is getting
more popular as a means of protecting privacy in some interior
applications such as bathrooms, conference halls and fitting rooms
in stores. Two transparent conductor layers, on plastic films
squeeze a thin liquid crystal layer, and the whole set is pressed
between two layers of glass. Normally, the liquid crystal molecules
are situated in random and unaligned orientations scattering light
and cloaking the view to provide the interior space with privacy.
When the power is switched on the two conductive layers provide
Country

ectrochromic coatings on sealed insulating glass units International
[11]

t transmittance, total solar energy transmittance, ultraviolet International
[22]

l transmittance) of multiple glazing—Guarded hot plate method International
nsmittance) of multiple glazing International
l transmittance) of multiple glazing- Heat flow meter method International
on European
thods for class A, B and S coatings European
thods for class C and D coatings European
roduct standard European
tion method (ISO 14438:2002) European

uation of conformity/product standard British

ate safety glass. Evaluation of conformity/product standard British

ation of conformity. Product standard British

evaluation of conformity/Product standard British

luation of conformity/Product standard British

British
British

tics of glazing British
Calculation method British

British
on method British

rmal transmittance by the hot box method—complete windows Ethiopian

rmal transmittance by the hot box method—roof windows and Ethiopian

on method–calculation method Ethiopian



Table 2
Comparison between different smart windows.

Smart
windows

Activation Colour Advantages Disadvantages Thermal
performance

Optical performance Application

Photochromic Light Bleach No activation
electricity, No
foggy effect,
Automatic

Manufacturing
difficulties for large
sizes, limited
application,

UV protector, darken and
lighten at sunlight and dusk

Sunglasses, Supramolecular chemistry,
data storage

Cannot reduce heat
gain,
More darker in the
winter than the
summer

TC Heat Colored High energy
saving, No
activation
electricity

No outside visibility,
manufacturing
difficulties for large
sizes

Reflecting
heat gain

Reflecting infrared light Duracell battery state indicators,
Thermochromic paints, Thermochromic
papers are used for thermal printers,
thermochromism polymer

EC Voltage/
current

Colored Energy saving Activation electricity is
needed

Control the
amount of
heat

Reversibly changing color
when a burst of charge is
applied, control the amount
of light

Electrochromic devices such as windows
and smart glasses, Automobile industry

Liquid Crystal Voltage Bleach Control privacy No energy saving, No
outside visibility,
Activation electricity is
needed

High heat
gain

Transmit incident light Electrooptical devices, hyperspectral
imaging

Suspended
Particle

Current Bleach Instantaneous
control of light,

Limited in size,
Activation electricity is
needed

Energy
saving

UV protector, Reduction of
infrared light,

Polaroid camera, Windows

Outside
visibility,
Have wide
range of
transmittance

Fig. 1. Comparison of electric lighting energy and cooling energy between different
glazing types [24].
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an electric field via their electrodes. The field causes the crystal
molecules to be positioned in an aligned direction causing a
change in transmittance [67,68]. The LC technology suffers from
the disadvantage of high power demand in transparent mode,
resulting in an electricity usage of 5–20 W/m2. These devices have
problems, in long term UV stability and high cost disadvantages as
well [11]. The technology using liquid crystals in intelligent
windows is called Polymer dispersed liquid crystals (PDLC).

SPDs have many things in common with LC devices: they are
both fast in switching between phases, high electricity consump-
tive and dependent on an electric field. They consist of the liquid
like active layer formed by adsorbing dipole needle-shaped or
spherical particles (molecular particles), i.e. mostly polyhalide,
suspended in an organic fluid or gel sandwiched between two
sheets of glass coated with transparent conductive films. Normally,
the device is in the dark reflective state because of the random
pattern of the active layer's light absorbing particles. When the
electric field is applied, the particles will align resulting in the
clear transmissive state. As soon as the power turns off the device
switches to its dark state. Typically, the transmission of SPDs varies
between 0.79–0.49 and 0.50–0.04, with 100 to 200 ms switching
time and 65–220 V AC requirements [11]. The critical comparison
between different smart windows is summarized in Table 2.

Shown in Fig. 1, clear glass, tinted glass, reflective glass and
three chromogenic fenestration technologies are compared
regarding to their cooling and electric lighting energy. As it is
observed EC and TC windows demand the lowest cooling energy;
and as previously reported ECWs require less energy for lighting
than TCWs [69]. However, the necessity of wiring in EC glazing and
the better ability of TCWs to maintain the visible transmission
(when doped properly) [70] besides their simple structure [71]
have given TCWs a cutting edge as a low-priced [72] alternative to
the other counterparts.

Different technologies such as electrochromic, gasochromic,
liquid crystal and suspended particle devices have been widely
reviewed neglecting the TCWs [11,37,46,73]. As a result, there was
a need to review thermochromic windows comprehensively. The
following sections address the application of TC thin films in
fenestration. Part 3 introduces thermochromism, TCWs, their
structure, and their performance. Part 4 discusses TC materials,
the dopants and the nanoparticles. In part 5 thin film deposition
and fabrication techniques are addressed. In part 6 the energy
modelings done on TCW are discussed. And lastly, in part 7 there
will be a conclusion covering the whole papers reviewed.
3. Thermochromic windows (TCW)

In the first glance, the word “Thermochromic” might seem
strange. But the word originates from the Greek roots: “Thermos”
meaning warm or hot; and “Chroma” which means color. Generally,



Fig. 2. Sequential color switching of a thermochromic laminated glass [4].

Fig.3. Schematic representation of thermochromic materials applied as an intelligent windows coating [77].

Fig. 4. The spectral transmittance of perfect TCW in cold and hot weather
conditions (adopted from [81]).

Fig. 5. Typical transmittance change (ΔT) and reflectance change (ΔR) of thermo-
chromic films through MST (adapted from [91]).

Table 3
The Ideal optical performance of thermochromic windows (adapted from [91]).

State Monoclinic/cold (ToTt) Rutile/hot (T4Tt)

Wavelength Visible (%) NIR (%) Visible (%) NIR (%)
Transmittance (T) 60–65 80 60–65 15
Reflectance (R) 17 12 17 77
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thermochromic (TC) materials change color in response to tempera-
ture variations. Thermochromic window, an example of which is
shown in Fig. 2, is a type of glass with TC materials that can reduce
the energy demand of buildings by changing the device's reflectance
and transmission properties and reducing the unwanted solar energy
gain [74,75].

The TC thin film is initially in its monoclinic state (cold state) at
lower temperatures (usually room temperature). Monoclinic
materials behave as semiconductors, less reflective especially in
near-IR (NIR) radiation. As the temperature becomes higher than a
certain point, the TC material changes its nature from monoclinic
to rutile state. This phenomenon is called metal to semiconductor
transition (MST). In rutile state (hot state) the material acts like a
semi-metal, reflecting a wide range of solar radiation [76] (Fig. 3).

As illustrated in Fig. 4, the majority of heat gain in solar
spectrum takes place at NIR range (800–1200 nm) [78–80].

The red line (line 1) indicates the transmittance of perfect TCW
in cold state. Visible light should be transmitted and near infrared
radiation should be reflected. Long-wave radiation is also reflected
back to indoor. This transmittance approach leads to reduction of
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solar heat gain and is apt in nearly all climates. The blue line (line
2) indicates the transmittance of perfect TCW in hot state. Visible
and near infrared radiation are transmitted, while long-wave
infrared is reflected to inside. This transmittance mode is suitable
in low temperature climates where solar heat gain is desired.
Therefore, in high temperatures TCWs reduce NIR and far-IR
transmittance, while in low temperatures they allow these parts
of solar radiation to pass [82] (Fig. 5).The MST is fully reversible,
co-occurred with large variations in electrical and optical proper-
ties in NIR range [83]. Transition temperature of pure vanadium
dioxide as the most common TC material in TCWs is about 68 1C
which is considered a high temperature. In order to make this type
of glazing feasible, the MST temperature (Tt) should decrease to
near the ambient temperature. Doping metal ions into the lattice
of TC materials can alter Tt [84,85]. The size and charge [84,86,87]
of dopant ion, film's strain [88,89] as well as the variations in
electron carrier density are the determinant factors prevailing on
the fall or rise of Tt [90].

The ideal spectral behavior of TCWs is presented in Table 3. The
visible transmission and reflectance should be equal in both sides
of transition while the infra-red variations are from 0% to 65%. The
change in transmittance (ΔT%) and reflectance (ΔR%) can be
formulated in Eqs. (1) and (2) [92]:

ΔT%¼ ðTh−TcÞ � 100 ð1Þ

ΔR%¼ ðRh−RcÞ � 100 ð2Þ
where Th is transmittance at hot state, Tc is transmittance at cold
state, Rh is reflectance at hot state and Rc is reflectance at
cold state.

The most critical weakness of VO2 coatings is their low
transmittance in visible range (Tvis). Many studies have reported
values between 40% and 50%, which is well below the acceptable
value of 60% [93,94]. The reported values of transmittance and
reflectance measured before and after Tt for VO2 coatings are
presented in Table 4.

Besides low luminance visibility, low energy-saving efficiency
also makes application of VO2 coatings limited. The change in
Table 4
Transmittance and reflectance values reported for various VO2 coatings before and afte

Thermochromic coating

[95]: 280 nm tungsten-vanadium co-sputtered thin films on glass substrates by magn
sputtering, Tc¼20 1C,Th¼70 1C

[96]: RF reactive sputtered VO2 thin films, Tc¼26 1C,Th¼90 1C
[97]: deposited VO2 thin films by CVD
[98]: sputter deposited VO2 thin films, Tc¼20 1C,Th¼80 1C
[99]: RF reactive sputtered VO2 thin films, Tc¼20 1C,Th¼90 1C
[100]: RF sputtered CeO2–VO2 bilayers on SiO2 substrates, Tc¼25 1C,Th¼100 1C
[101]: 50 nm VO2 thin films by the sol–gel process
[102]: VO2 films produced by reactive e-beam evaporation
[103]: 70 nm deposited VO2 films by APCVD, Tc¼25 1C,Th¼65 1C
[104]: 40 nm ZnO-doped VO2 thin films
[105]: VO2 thin films sputtered onto corning glass, Tc¼25 1C,Th¼100 1C
[72]: 50 nm VO2 thin films, Tc¼22 1C,Th¼100 1C
[106]: RF sputtered VO2 thin films with anti reflecting coating, Tc¼20 1C,Th¼90 1C
[76]:
� 80 nm thick VO2 films prepared by APCVD, Tc¼25 1C,Th¼80 1C

� 80 nm thick Tungsten–doped VO2 films prepared by APCVD, Tc¼25 1C,Th¼40 1C

1: Measured at 2500 nm wavelength

2: Measured at 1500 nm wavelength
3: Measured at 1000 nm wavelength
transmittance before and after Tt at 2500 nm known as the
switching efficiency (ηT) is the benchmark of energy-saving effi-
ciency. This value is influenced by doping [107,108], microstruc-
ture [80,95,109–111], and film thickness [80,88]. The most
paramount factor among them is film thickness that affects
switching efficiency most significantly. However, increasing the
film thickness has an adverse effect on Tvis. As it is observed in
Table 4, the ideal film thickness is between 40 and 80 nm.
Choosing the most suitable dopant (for reducing Tt and improving
Tvis), the most appropriate coating technology (to acquire the
optimum thickness and sufficient TC transition), adding efficient
anti reflecting coating (to increase Tvis) and reducing the coating
costs are the crucial steps to overcome the limited application of
TWCs. In the following sections these factors will be discussed.
4. Thermochromic materials and dopants

Comparatively, almost all inorganic materials exhibit color
change with temperature. Electronic properties of such materials
at different temperatures cause this thermochromic effect.
Though, some TC materials exhibit more drastic color and property
changes with temperature. Some of the most renowned TC
materials and their corresponding transition temperature are
introduced in Table 5.

The TC materials for glazing purposes, their properties and
fabrication are not new in glazing industry, having been studied by
the early 1970s [115,116]. The most promising TC material for
windows is vanadium dioxide (VO2). It is known to be in four
polymorphic forms: monoclinic VO2(M) and rutile VO2(R) and two
metastable forms VO2(A) and VO2(B) by monoclinic to rutile
transition temperature of 68 1C [117]. VO2 TCWs suffer from low
luminous transmittance, the drawback which could be solved by
fluorination [118] or applying SiO2 anti-reflective (AR) coating
[82,119]. Using ZrO2 coating with its appropriate refractive index is
reported to enhance the luminous transmittance while maintain-
ing the TC switching [120]. The most popular materials used in TC
coatings, and their corresponding effects are presented in Table 6.
r transition temperature.

Below Tt (Cold) Above Tt (Hot) ηT

(%)
Tvis
(%)

Rvis

(%)
TIR1

(%)
RIR

1

(%)
Tvis
(%)

Rvis

(%)
TIR1

(%)
RIR

1

(%)

etron 41 6 60 14 41 8 12 30 48

38 – 67 – 48 – 10 – 47
78 – – – 74 – – –

38 – 72 – 44 – 10 – 62
– – 59 – – – 5 – 54
37 24 59 25 20 15 3 43 56
20 – 60 – 35 – 5 – 55
48 – – – – – – – –

– – 192 – – – 112 – 182

60 38 85 10 65 32 32 30 53
38 – – – 32 – – – –

50 42 76 20 55 39 20 41 56
55 – 523 – 50 – 333 – 193

65 20 80 10 65 20 50 13 30

55 30 64 14 55 28 28 30 36

Tvis: Visible transmittance TIR: Infra-red
transmittance

Rvis: Visible reflectance RIR: Infra-red reflectance



Table 5
Thermochromic materials.

TC material Tt
(1C)

Cold state
color

Hot state
color

Reason of transition

Cuprous mercury iodide (Cu2HgI4) [112] 55 Bright red Dark brown Cu(I)–Hg(II) charge transfer
Silver mercury iodide (Ag2HgI4) [112] 47–

51
Yellow Orange Cu(I)–Hg(II) charge transfer

Mercury(II) iodide 126 Red Pale yellow Reversible change transition
Bis (dimethylammonium) tetrachloronickelate
[113]

110 Raspberry-
red

Blue

Bis (diethylammonium) tetrachlorocuprate
[112]

52–
53

Bright green Yellow Relaxation of the hydrogen bond an change of arrangement of the copper atom's
d-orbitals d

Nickel sulfate 155 Green Yellow
Chromium(III) oxide: aluminium(III) oxide
(1:9) [114]

400 Red Grey Changes in its crystal field

chromium-rich pyropes 80 Green
normally reddish-purplish 80 Green
titanium dioxide White Yellow
zinc oxide White Yellow
indium(III) oxide Dark yellow Yellow

brown
Lead(II) oxide Dark yellow Yellow

brown

Table 6
Effect of some materials on the thermochromic coatings.

Material Effect on MST Tt Film color

Pure VO2 crystals – 68 1C [117] Brown/yellow [122]
Un-doped VO2 films – 50–66 1C [89] Brown/yellow
Tungsten doping 23% ΔT at 20 1C [76] 1.56 at% Blue [76]

2500 nm [108] 25 1C [133] 2.7 mol%
Gold nanoparticle 35–40% ΔT and 10% 15–20 1C [134] Green/blue [124,125]

ΔR at 2500 nm [134] Varies in different temperatures
Fluorine doping 15 % ΔT and 5 % ΔR [127] 60 1C [127] Brown/yellow [127]

25 1C [28]
TiO2 21.2% IR–ΔT and 84% Vis–ΔT [130] 50–60 1C [128] Brown [92,128]

5–10% ΔT at
2500 nm [128]

CeO2 5–10% ΔT at 50–60 1C [128] Brown/yellow[128]
2500 nm [128]
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Fluorine and tungsten-doped VO2 are good choices for energy-
saving windows [108,121]. However, tungsten (W) by reducing the
Tt of VO2 to the ideal temperature of 25 1C at 2 at% (lowering the
Tt by 25 1C per dopant atomic percent incorporated) is the most
effective dopant ion for VO2 [76,122]. In another experiment, it is
shown that a 2.7 mol% content of WO3 has also made the film's
Tt drop to room temperature [123].

Gold nanoparticles have been used as dopant in recent studies.
It gives a pleasant green/blue color to the films and affects the MST
and Tt. However, because of its high price, gold doping cannot be
prevalent [124,125].

Fluorine doping of VO2 films have been done by PVD techni-
ques [28,121,126]. Incorporation of fluorine in the films using
AACVD gave the films a lighter color but still the unpleasant
yellow/brown color of un-doped film did not change [127].The
changes in transmission (15%) and reflectance (5%) are less than
those of tungsten-doped films. The key effect of fluorine is the
better transmission in the visible range. In contrast to previous
studies [28], it is reported that the transition temperature (∼60 1C)
did not change noticeably from the un-doped case [127].

Performed titanium dioxide (TiO2) and cerium dioxide (CeO2)
nanoparticles have been also used in producing VO2 films. By
utilizing these photocatalytic nanoparticles, films with both
photocatalytic and TC characteristics can be afforded. Through
MST, the transmittance changes insignificantly (5–10%) at
2500 nm, while the reflectance changes about 30%. The nanopar-
ticles used do not change the color of the film [128]. Moreover,
CeO2 can be used as a protective coating over VO2 films to plunge
the chemical deteriorations [129].

TiO2 is used to fabricate double- (or multi-) layered VO2 thin
films. The anti-reflection feature of TiO2 can enhance the visible
transmittance up to 84% [130]. Deposition of platinum (Pt) on VO2

films can improve the IR reflection while maintaining the TC
characteristic. Tt has been also lowered by 9.3 1C to around 58 1C.
Pt has depressed the visible transmittance which can be fortified
by adding SiO2 antireflection coating [131]. Earlier, SiO2 was used
to improve the luminous transmittance to 75% (in 700 nm)
compared with 33% of plain VO2 case. SiO2 has also lowered
Tt to 61 1C [132].

There are some materials which can be used as deposition
precursor. The most common precursors are vanadium alkoxides
[89,135–137] and oxovanadium reagents [138]. Vanadium chloride
should react with a source of oxygen (such as methanol or
ethanol) the product of which is V2O5; heating the product in a
reducing atmosphere results in deposition of VO2 [139]. Addition
of tetraoctyl ammonium boromide (TOAB) as surfactant to the
vanadium dioxide matrix can control the distribution, shape and
size of gold nanoparticles. It is reported that surfactant TOAB can
reduce Tt from 50–54 1C to 42–45 1C [140] and from 52 1C to 34 1C
[134].
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Surfactants are molecules, which can alter the structure of films
due to their ability to affect the surface tension of liquids and
deposition mechanism in hybrid CVD processes. Using surfactants
can decrease Tt of VO2 films [125,134,140].

Thermochromic coatings can also be used on surfaces other
thanwindow. For example, Karlessi et al. introduced TC coatings as
buildings external surfaces to reduce the heating and cooling loads
in winter and summer [109].
5. Thermochromic coating technologies

Deposition of TC thin films on different substrates by physical
vapor deposition (PVD), sputtering and sol–gel [28,74,121,141–
145] techniques was executed by the early 2000s. In particular,
VO2 as the most appropriate TC material had been deposited
using sol–gel [135,146–148], sputtering [71,80,149], pulsed laser
techniques and chemical vapor deposition methods (CVD).
These methods have been widely reviewed in previous studies
[87,94,150,151].

As it is mentioned before, doping VO2 films with tungsten can
enhance their TC property. The doping and production methods
include sputtering and PVD [28,141,152] sol–gel [74,135,144,146–
148], APCVD [76,79,89,122,153,154] and AACVD [155,156]. Despite
the technological developments in surface engineering, until now,
low visible light transmission, high transition temperatures, low
durability, poor transition performance, high deposition costs and
unpleasant visible colors did not let these techniques be
marketable.

For instance, in an attempt to decrease Tt by doping Sn on VO2

films using PVD, it was reported that the un-doped films showed
much lower Tt [141]. Even the recent production of w-doped VO2

and V2O5 films prepared by sputtering has not shown good
switching performance [110]. There have been some efforts to
optimize the TC switching of films by controlling the deposition
conditions. The best results are 76% for ΔT and 75% for ΔR; though,
Tt was still high [80].

Reactive sputtering is the most widely PVD method used to
produce thermochromic thin films by means of ion beam sputter-
ing [157], DC magnetron sputtering [152,158,159] and RF magne-
tron sputtering [78,160,161].

On the other hand, chemical vapor deposition (CVD) shows
potential in manufacturing glasses in commercial scale. Specifi-
cally, atmospheric pressure chemical vapor deposition (APCVD) is
well matched with float-glass mass production lines. The deposi-
tion rates of VO2 films are noticeably fast in this method [76]. By
the same token, the resulting physical properties such as durability
and adhesion make this method more suitable [91]. There have
been many researches investigating various CVD techniques and
doping effects [76,79,122,162].

In a study conducted by Binions et al. [89] APCVD method was
used to produce tungsten-doped VO2 films by reaction of vanadyl
acetylacetonate and tungsten hexachloride with oxygen. It is
reported that tungsten doping causes a considerable drop in Tt
as well as a great change in near infra-red optical properties [75].
The film thickness was also found to influence the transmission
[89] and extent of TC switching [89,136]. The film thickness can be
adjusted by changing the deposition time [134].

Using APCVD, TiO2 on VO2 on SiO2-coated glass and VO2 on
TiO2 on SiO2-coated glass have been grown and compared. In both
cases, the Tt did not change significantly. The ΔT% in the first
multilayer film was 92% noticeably more than that of the case of
VO2 over TiO2 (71%). The two films showed ΔR% of 55% and −55%,
respectively [92]. In another study, two deposition methods were
used: low pressure metal-organic CVD (MOCVD), and argon
annealing of VO2 (B) films by MOCVD. It was found that the film
microstructure regulates the MST markedly [111].

Manning et al. [79,122] used water, vanadium and tungsten
sources to prepare VO2 thin films by CVD. The resulting films had
the disappointing transmission of 11% to 40%. As previously
suggested, the acceptable transmission level should be above
60% so that the window's optical properties can live up to the
building's aesthetical and lighting standards [152].

Vernardou et al. [162] have studied the aftereffect of doping
monoclinic VO2 by atmospheric-pressure direct liquid injection
metal-organic CVD (DLI-MOCVD). It was shown that Tt of
tungsten-doped VO2 drops from 60 1C to 35 1C. Aerosol assisted
CVD (AACVD) is also another deposition process reducing V2O3 to
V2O5 [155]. However, the AACVD techniques do not feature good
mechanical properties and can be easily removed from the
surfaces [163].

Hybrid atmospheric pressure and aerosol assisted (AA/APCVD)
method can be used to prepare VO2 thin films with reduced
transition temperatures [124,134]. In this technique, the multi-
functional feature of AACVD is mixed with the mechanical sturdi-
ness of APCVD [124]. This method has been also used to prepare
gold doped VO2 films. Due to the surface plasmon resonance (SPR)
bands, the gold nanoparticles change the color of films from
unpleasant yellow/brown color to more appealing green/blue
colors. In addition, it reduces the Tt and causes a surge in
reflectance. The hybrid method results in more adherent films
compared with AACVD films. As MST takes place, a 10% change in
reflectance and 30–40% change in transmittance is observed at
2500 nm. The reason for this change may be the metallic nature of
gold nanoparticles [140]. Hybrid AA/APCVD is also used to prepare
VO2 films by using a suspension of TiO2 and CeO2 [128].

Blackman et al. [76] used Water, vanadium chloride, and
tungsten chloride for synthesizing tungsten-doped VO2 thin films
by APCVD. Among the different afforded un-doped films, the
optical properties of which having been measured between
300 nm to 2500 nm wavelengths, the 80 nm-thick films showed
the best performance with 60% transmission at 570 nm (visible
range) and 35% change in transmission at 2500 nm (far infra-red
range) through transition. Testing the tungsten doped films, the
effect of different tungsten atomic percentages on reducing Tt has
been evaluated. As it was previously reported [157], by increasing
the tungsten content Tt changes (linearly [108]) approximately by
-20 1C/at% until 3 at% after which the reduction will be pseudo
linearly. In addition, the powdery yellow/brown color of films can
change to more adhering, more transparent and bluer/greener
films by adjusting the vanadium precursor to water ratio and
increasing the tungsten content of films to more than 2.5 at%.

In choosing the deposition technique, several factors should be
taken into mind including the limitations of the material to be
deposited, substrate material, deposition rate, the cost of required
equipments, scalability, environmental considerations and the
desired film features such as thickness, micro structure, mechanical
strength, and optical, thermal and thermochromic performance.

In the first glance, comparing the different VO2 coating meth-
ods results in baffling outcomes. Compared to other techniques,
PVD methods require expensive equipments and high vacuum
pressure. In addition, they are time and energy consumptive and
suffer from low film growth rates. To the contrary, PVD methods
are more suitable for synthesizing ultra thin films, require lower
temperatures, are more environmentally-friendly, compatible to a
wider range of substrates and more convenient for developing
multi-layer thin films [150,164]. On the other hand, CVD is
believed to have the potential for producing glass in commercial
scale, due to its compatibility to float-glass production line [165]
and fast deposition rates [165,166]. However, PVD and CVD
are considered as energy consuming techniques and are not
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cost-efficient. Gao et al. reviewed solution processes for VO2 films
preparation and concluded that these methods are cheap, suitable
for scaling up and easy to be utilized in practical applications. In
contrast, the film characteristics such as thickness and microstruc-
ture are not precisely controllable by solution based methods [94].

To sum up, both PVD and CVD methods are suitable for
experimental scale due to their scalability and superiority in terms
of controlling process parameters and film features. However, they
are restricted by the expensive machines and processes they
require, while solution processes do not suffer from these draw-
backs in industrial scale. There are two suggested approaches to
these shortcomings: (1) to modify the PVD and CVD methods and
to design more inexpensive equipments and coating processes (2)
to improve the solution based methods so that the film features
including visibility, micro structure, color, and film thickness can
be adjusted by controlling the process parameters.
6. Energy modeling of thermochromic windows

There are various software tools which have been used in
previous researches for window simulation including energy-10
[12], the window simulation tool Winsel [167], simulation tool
SOLENE [168], self developed simulation software (SDS) based on
the ASHRAE tables [13], DOE building energy simulation program
[169], TRNSYS building energy simulation program [66] and
simulation package Integrated ENergy Use Simulation (IENUS)
[27]. Different smart windows configurations have been also
simulated and modeled [167,170–175] for evaluating their energy
saving effect and optical performance.

Based on theory, TCWs are capable of curtailing the buildings
energy consumption by allowing visible day light, limiting unde-
sired solar gain in the hot seasons and allowing favorable solar
heat gain during the cold seasons. There a few number of studies
which modeled and calculated the energy performance of TCWs.
Saeli et al. modeled TCWs by energy plus software and demon-
strated the technology's energy saving effectiveness both in light-
ing and ventilation. The total energy consumption reduced more
for commercial windows (100% of wall area glazing) than the
residential case (25% of wall area glazing). Since high temperature
lets the window be longer in its rutile state, it was also discovered
that the technology works best in cities with warmer climates
[91]. They also compared TCWs with conventional glazing and
showed the effectiveness of TC coating in saving energy [176].

In another study Xu et al. compared the cooling energy
consumption of white glass and four Low-E glasses by using the
software TRNSYS 16 and showed the best performance was
attained by the double glass when the VO2 films were coated on
the inside surface of the outer pane with 85% energy saving
compared to white glass. However, the heating energy consump-
tion was the highest for TCWs [177]. The result of this study also
shows that TCWs are more suitable for cooling demand climates.

To the contrary, Ye et al. evaluated the energy consumption of
different windows by an energy analysis program “BuildingEnergy”
and showed that VO2 glazing has no apparent energy saving
benefit and solar control advantage over conventional glazing.
They concluded that, controlling the emissivity of the window is
more beneficial than regulating the solar transmissivity. It was also
concluded that, the energy saving effect of TCWs in summer is due
to low transmittance of solar radiation and the higher absorptivity
in the metal state results in higher energy consumptions which
consequently makes the phase transition useless to the energy
saving performance [151]. The inconsistency and scarcity of the
studies in modeling the energy performance of TCWs emphasizes
the necessity of more research in this field.
7. Conclusions

It's been decades since the time Vanadium dioxide thermo-
chromic coating was reported, however, TCWs have not been
commercialized due to shortcomings such as low luminance
visibility, unattractive colors, low energy-saving efficiency and
high coating costs. Nano technology, suitable dopants and adding
efficient anti reflecting coating can reduce transition temperature
(near room temperature) and improve visible transmittance (more
than 60%). Appropriate and cost-efficient coating technologies
provide optimum thickness (40–80 nm), sufficient thermochromic
transition (more than 50%) and reduces the coating costs.

The coatings can be doped with different nanoparticles. Each
dopant induces a special effect on the coating. Tungsten lowers the
transition temperature, gold nanoparticles bring more pleasant
film colors, fluorine increases the visible transmittance and tita-
nium dioxide adds self-cleaning and mechanical strength to the
films. The most common preparation methods are PVD, sol–gel
techniques, and CVD. CVD is fast and suitable for mass production.
AACVD and APCVD are the two most up-to-date deposition routes
having multifunctional characteristics and mechanical strength,
respectively. A prudent manner is to combine the qualities of both
methods by employing hybrid AA/APCVD. To recapitulate, both
PVD and CVD methods are suitable for experimental scale due to
their scalability and superiority in terms of controlling process
parameters and film features. However, they are restricted by the
expensive machines and processes they require, while solution
processes do not suffer from these drawbacks in industrial scale.
There are two suggested approaches to these shortcomings: (1) to
modify the PVD and CVD methods and to design more inexpensive
equipments and coating processes (2) to improve the solution
based methods so that the film features including visibility, micro
structure, color, and film thickness can be adjusted by controlling
the process parameters.

All in all, the major aims that must be reckoned with thermo-
chromic glazing are to maximize the change in infra-red (pre-
dominantly 800–1200 nm) Reflectivity and transmission, tapering
the transition temperature to near room temperature and main-
taining the proper visible transmission to conserve the lighting
energy. By the same token, the emissivity of the films should be
modulated. Since the emissivity of the coatings are high in both
monoclinic and rutile states, this technology does not work well in
cooler climates currently. In addition, the energy simulation of
thermochromic windows also highlights the fact that this type of
glazing is more efficient in warmer climates.

Finally, it should be mentioned that there are a few works
contributed to the energy modeling and heat transfer analysis of
thermochromic thin films. This can be emphasized in the future
attempts.
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