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Abstract—A pre-release version of Microsoft Windows 

Vista was examined to determine the external security 
exposure and to identify how the networking components have 
changed from previous versions of Microsoft Windows. 
Changes in the networking stack, network services, and core 
protocols are enumerated and their effect on the external 
security of the system is analyzed. 
 

Index Terms—Computer network security, Computer 
security, Operating systems. 
 

I. INTRODUCTION 
INDOWS Vista is Microsoft’s much anticipated new 
client operating system. When released, it is due to 

replace Windows XP as Microsoft’s premier desktop 
operating system. Windows Vista represents a significant 
departure from previous Windows systems both in terms of 
its emphasis on security and its many new features. As 
security has grown in importance, Microsoft has paid 
increasingly more attention to it, evidenced by the 
significant resource investment that has been made. 
Windows Vista provides Microsoft with its first opportunity 
to introduce security into the design process of the core  
operating system itself. Microsoft has also chosen Windows 
Vista as the platform on which to introduce many newly 
developed technologies. 
 
The Windows Vista network stack is particularly interesting 
because many of its components are new. The TCP/IP 
network stack itself has been rewritten and is one of Vista’s 
largest departures from previous versions of Windows. The 
new stack was written to allow easier maintenance, 
important new performance enhancements, and improved 
stability [30]. It integrates support for IPv6 and IPv4 into a 
single network stack and provides IPv6 support in the 
default configuration for the first time in the history of 
Windows. Many other new protocols are implemented and 
supported in Vista, either as part of the network stack or as 
separate components of the Windows operating system. 
These new protocols support features such as topology 
discovery, server-less name resolution, and NAT traversal. 
Even SMB, one of Microsoft’s oldest technologies, 
received a revision with the introduction of the SMB2 

 
 
1 Tim Newsham conducted this research under contract with Symantec. 

variant. The amount of new code present in Windows Vista 
provides many opportunities for new defects. Each new 
protocol comes with its own collection of security 
implications that will need to be understood and considered. 
 
Note that we have made an effort to discover public sources 
that may document or otherwise describe the new 
technologies in Windows Vista. In some cases, however, 
we may have overlooked these sources or new sources may 
have been published since this paper was written. It is not 
our intent to mislead the reader or to provide incomplete 
information. 
 
Symantec evaluated the security of the network stack of 
public pre-release versions of Microsoft’s Windows Vista 
operating system. Our investigation was broad and shallow, 
aiming to provide timely intelligence on the new system by 
covering as many aspects of the network stack as was 
practical in a small amount of time. Because of the limited 
amount of time given to the project, our analysis did not 
penetrate very deeply into any one aspect of the network 
stack and was forced to omit some key components. When 
omissions were made, we attempted to cover the most 
common configurations and components that were most 
likely to come under attack. We performed our analysis on 
the public beta builds 5231, 5270, and 5384 of Windows 
Vista. Since Windows Vista is still a work in progress, we 
expect many of our results to be invalidated by changes 
made prior to its public release.  
 
The remainder of this paper will detail our analysis of the 
Windows Vista network stack. The discussion is ordered 
according to network layer. In section II we discuss link 
layer protocols. Section III covers network layer protocols 
and section IV covers transport layer protocols. Section V 
covers the Windows Firewall, a component whose design 
cuts across many protocol layers. Section VI covers the 
servers and clients that operate at the application layer. 
Finally, sections VIII and IX present our conclusions and 
suggestions for future work. 

II. LINK LAYER PROTOCOLS 
Windows Vista supports protocols at the Link Layer for 
transporting IP and IPv4 packets, for performing address 
resolution and auto configuration tasks, and for providing 
topology information for network diagnostics. For 
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transporting IPv4 and IPv6 packets, Windows Vista uses 
protocols such as Ethernet, PPP, and PPPoE. In support of 
the IPv4 and IPv6 protocols, Vista supports ancillary 
protocols such as the Address Resolution Protocol (ARP) 
and Neighbor Discovery (ND), which are necessary to 
support the transmission of IPv4 and IPv6 packets. 
Windows Vista also introduces support for the new Link 
Layer Topology Discovery (LLTD) protocol which is used 
to provide network maps to assist in diagnosing networking 
problems. 
 
We analyzed the ancillary support protocols ARP and ND 
to determine how they responded to redirection attacks. We 
also performed a cursory analysis of the undocumented 
LLTD protocol. As with all link layer protocols, attacks 
against these protocols are limited to the local network. In 
the interest of time, we did not perform an analysis of 
Ethernet due to its simplicity nor of PPP or PPPoE since 
those protocols are typically used on private links to which 
an attacker will be unlikely to have access. Analysis of PPP 
and PPPoE may be warranted in the future. 
 

A. Address Resolution 
The ARP[27] and ND[24] protocols provide Ethernet 
address resolution for IPv4 and IPv6, respectively. ARP 
operates at the link layer and provides mechanisms for 
querying the link layer address of an IPv4 node and for 
propagating address changes to other hosts on the link. ND 
is implemented using ICMPv6[5] packets above the IPv6 
layer but provides necessary services to transmit packets at 
the link layer:  querying for the link layer address of an 
IPv6 node, propagating address changes, and auto-
configuring addresses and routes. ND makes use of well-
defined IPv6 multicast addresses[14] with fixed link-layer 
addresses[6] to avoid bootstrapping problems. Both 
protocols are integral to the operation of the IP network 
stack and are enabled during installation. 
 
ARP is susceptible to a redirection attack when an attacker 
sends a “gratuitous-ARP” packet (normally used to 
propagate address changes) to a target host [Appendix II]. 
After receiving such a packet, the target will forward future 
packets to the attacker’s node rather than the intended 
target. We observed that the Windows Vista stack will 
accept the information in a gratuitous ARP packet sent to 
the broadcast link address or to the host’s link address and 
create a new entry in the host’s ARP table or overwrite an 
existing entry. When an existing ARP table entry is 
overwritten, no warnings are displayed to the user or logged 
in the system event log.  
 
When processing an ARP packet that contains the same IP 
address as the host, the Windows Vista stack will log the 
address conflict in the system event log but will not 
otherwise notify the user of the conflict. After logging the 
conflict, the Windows Vista networking stack marks its 
network interface as having a conflict and stops initiating 
packets from that interface, effectively rendering the 
interface useless. Oddly enough, pre-existing connections 

on the host are not affected. The interface remains in this 
state until it is reset by reacquiring a DHCP lease. 
 
The Neighbor Discovery implementation is much more 
robust to redirection attacks than the ARP implementation. 
We observed that the Windows Vista ignored all unsolicited 
ND responses [Appendix III]. However, it did update the 
neighbor table when receiving ND responses during the 
Probe phase of neighbor discovery. Two factors contribute 
to increase the practicality of redirection attacks:  ND table 
entries timeout fairly quickly and the ND module keeps an 
address in the Probe phase for a significant amount of time. 
Taken together these factors make it easy to perform a 
redirection attack against ND by sending out spoofed ND 
replies periodically or in response to a legitimate request2. 
 
ARP packets are sent in Ethernet frames, but ND 
communicates using ICMPv6. However, ND is prima facie 
not vulnerable to remote attack since link-local addresses 
are used and the network stack verifies that an ND packet 
has a hop count of 255 before processing its contents. The 
hop count is decremented each time a packet is forwarded 
and discarded when its count reaches zero. Since 255 is its 
maximum value, ND packets cannot be received from a 
remote network with a hop count of 2553. 

B. LLTD 
The Link Layer Topology Discovery protocol is a newly 
developed protocol designed by Microsoft for discovering 
hosts on the local network. LLTD is a core component in 
Microsoft’s network diagnostic strategy. By providing 
high-quality topology information to end users, Microsoft 
hopes to make it easier for users to manage their home 
networks. 
 
LLTD is implemented in Windows Vista as two 
components: 

• a client program, which initiates and directs 
topology discovery 

• a server (“responder”), implemented as a kernel 
driver, which responds to requests. 

 
The client program is invoked when a user requests that a 
network map be generated from the networking control 
panel. The responder is configured during installation and is 
always running unless explicitly disabled. 
 
We are unaware of any public documentation of the LLTD 
protocol. We performed a cursory analysis of the protocol 
and were able to decode many of the protocol fields 
[Appendix IV]. Figure 1 shows data from a typical LLTD 
packet decoded according to our best efforts. LLTD packets 
are transmitted using Ethernet type 0x88d9. The first 14 
bytes of the figure represent the Ethernet header. 
Immediately following the Ethernet header are four bytes 
containing a version number, a flag field, and a message 
 

2 The IETF has defined SEND[1] as a way to provide secured Neighbor 
Discovery. 

3 Tunneling protocols may provide a way around this restriction. We 
have not investigated any ND attacks used in conjunction with tunneling. 
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type. We observed types varying from 0 to 9. The header 
contains several MAC address fields and a few unknown 
field types. The majority of the packet is made up of type-
length-value encoded fields. TLV encoding allows easy 
decoding even without a full understanding of the packet 
format. Appendix IV contains a more detailed analysis of 
the protocol. 
 

 

Figure 1:  Encoding of a typical LLTD packet. 

 
We were able to construct an LLTD request that elicited a 
response from all LLTD responders. The response received 
back from each LLTD responder contains important 
information such as the name, Ethernet, IPv4 and IPv6 
address of the host. We were not able to cause LLTD 
responders to generate other traffic on our behalf, although 
we know LLTD has this functionality[9]. The ability to 
cause other hosts to generate traffic on an attacker’s behalf 
is often a useful tool in a denial-of-service attack. While 
some smarter switches may prevent it, in many cases an 
attacker can already saturate a link and forge source 
addresses without this mechanism. 

III. NETWORK LAYER 
 
Microsoft chose to rewrite the Windows Vista IP stack 
rather than derive it from the previous Windows XP stack. 
This new stack integrates support for IPv4 and IPv6 into a 
single network stack and, according to Microsoft, is easier 
to maintain, boasts increased performance, and is more 
stable than their previous network stack[30].  
 
Windows Vista is the first Windows operating system to 
enable IPv4[28] and IPv6[7] during installation. The Vista 
stack integrates IPv4 and IPv6 into a single network stack 

where previous implementations offered a separate IPv6 
stack as an optional component. Both stacks share many 
implementation characteristics as a result of this tight 
integration.  
 
The inclusion of IPv6 support in Windows Vista is a major 
departure for Microsoft. IPv6 provides a lot of 
functionality, backed by a lot of code that has not been tried 
by extensive use in a hostile environment. To make matters 
worse, many of the defenses relied on to protect today’s 
IPv4 networks either do not yet support IPv6 or are 
similarly immature. As IPv6 sees wider deployment, we 
expect that attackers will heavily scrutinize this protocol. 
 

A. IP Behavior 
We measured implementation characteristics of the IPv4 
protocol layer and compared them to previous 
implementations. The characteristics we measured were IP 
ID generation and IP fragment reassembly behavior. We 
observed that the Windows Vista stack generates IP packet 
identifiers (used in fragment reassembly) sequentially 
[Appendix V]. This behavior is identical to that of the 
Windows XP stack. Sequential IDs can be used to measure 
the network activity of a host. When two packets are 
received from a host, the amount of traffic that was sent in 
the intervening time is the difference between the IDs in 
each packet. Sequential IDs are also useful in counting 
hosts behind a NAT firewall[4]. 
 
The Windows Vista networking stack behaved differently 
than the previous XP stack and other popular networking 
stacks when reassembling IPv4 fragments [Appendix VI]. 
Vista strictly discards all packets containing fragments with 
partial overlaps. In cases of total overlap, newer fragments 
are discarded in favor of previously received fragments. 
The Windows XP stack would allow partial overlaps and 
had a more complicated reassembly behavior. As a result of 
these differences, identical traffic sent to XP and Vista 
targets may be interpreted differently. Ambiguities in the 
interpretation of traffic provide opportunities for confusing 
network intrusion detection devices unless handled 
appropriately[25]. 

B. IP Protocols 
Unlike the Windows XP stack, the Windows Vista stack 
responds to received packets containing an unhandled 
protocol type with an ICMP error message. We were able to 
make use of this behavior to enumerate the IP protocols that 
are configured during installation of Windows Vista 
[Appendix VII]. In build 5270, there was a response for 
both IPv4 and IPv6. However, in build 5384, we find that 
the ICMP error messages are no longer sent for IPv4. As 
such, it was necessary to turn off the firewall to update that 
protocol list. 
 
The following IPv4 protocols are configured on a Windows 
Vista host: ICMP, IGMP, IPv4, TCP, UDP, IP6, GRE, ESP, 
AH, 43, 44, 249, and 251 (GRE and 249 are new with 
5384). The following IPv6 protocols are configured: IPv4, 

ff ff ff ff ff ff   dst (broadcast) 
00 c0 9f d2 0c f8   src 
88 d9         type (LLTD) 
 
01 01 00 01      version 1, ??, msg type 1 
ff ff ff ff ff ff   mac (dst) 
00 c0 9f d2 0c f8   mac (src) 
00 00 00 0c 
00 0c 9f d2 0c f8   mac 
00 c0 9f d2 0c f8   mac 
 
01 06 00 00 00 00    Type 1, Value 0 
00 00 
02 04 00 00 00 00   Type 2, Value: 0 
03 04 00 00 00 06   Type 3, Value: 6 
0c 04 00 0f 42 40   Type 12, Value 0x0f4240 
0a 08 00 00 00 00   Type 10, Value 0x369e99  
00 36 9e 99 
0b 04 00 02 62 5a   Type 1, Value 0x026251 
0f 12 61 00 63 00   Type 15, “acervista”  
65 00 72 00 76 00  
69 00 73 00 74 00  
61 00   
14 04 80 00 00 00   Type 20, value 0x80000000 
00           Type 0, End of TLVs. 

Figure 0 
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TCP, UDP, IPv6, ICMPv6, ESP, AH and 251 (IPv4 is new 
with 5384). IPv6 handles header options as protocol 
payloads and the IPv6 stack supports the Hop-By-Hop, 
Route, Fragment, and Destination options. These protocols 
represent core  (IGMP, ICMP, TCP, UDP and ICMPv6), 
tunneling (IPv4, IP6), and security (ESP and AH) protocols.  
 
Four protocols configured in Windows Vista are not 
commonly used: protocols 43, 44, and 249 in IPv4, and 
protocol 251 in IPv4 and IPv6. Protocols 43 and 44 
coincide with the values used to represent IPv6 Route and 
Fragment options; we believe that their presence in the IPv4 
stack is likely an oversight caused by the integration of the 
IPv4 and IPv6 stacks. In build 5270, we observed that 
sending random data to the host over protocol 43 causes the 
host to become unresponsive for a long period of time and 
that sending random data over protocol 44 causes Vista to 
crash with a blue screen. This is consistent with an 
implementation that does not expect to receive these 
protocol types over IPv4. This behavior has since been 
resolved in build 5384.  
 
The remaining protocols, 249 and 251, are within the 
unassigned range[16]. Thus far we have not been able to 
elicit any responses when sending data to a Vista host using 
these protocol numbers, identify the service or driver 
making use of this protocol, or find any reference to this 
protocol online. 
 
Analysis of all three exceptional protocols was light; further 
investigation will likely be rewarding. We also found it 
surprising that the network stack appears to support 
tunneling of IPv4 in IPv4 packets and IPv6 in IPv6, but we 
did not have time to verify that these features were 
functional or to explore their security implications. 
 

C. Defects 
We tested the stability of the Windows Vista TCP/IP stack 
using a suite of historic attacks and using random fault 
injection. Our testing uncovered several defects in earlier 
builds that leave the system vulnerable to denial-of-service 
attacks and possibly worse. These defects appear to be fixed 
by build 5384. We observed that Windows Vista is 
vulnerable to several historical packet-level attacks against 
the TCP/IP stack [Appendix VIII]. These well-known 
vulnerabilities have since been remedied in all popular 
network stacks. Two of the vulnerabilities observed in 
Windows Vista build 5231 have been addressed in build 
5270; the other was addressed in 5384. 
 
The first attack, called “Blat,” sends a TCP SYN packet to 
the target with an urgent pointer that points beyond the end 
of the packet. The effect this has on a Vista target is to 
cause the IPv4 stack to become unresponsive for a few 
seconds (the IPv6 stack continues to run independently). 
This vulnerability has been addressed by build 5270. 
 
The second attack, called “Land,” sends a TCP SYN packet 
to the target’s address using the same source and 

destination address and ports. This can cause a target to 
reply to itself. The effect this attack has on a Vista target is 
to cause the IPv4 stack to become unresponsive for a few 
seconds. This vulnerability has been addressed by build 
5270. 
 
The third attack, called “Opentear,” sends a flood of 
improperly formatted UDP fragment packets to the target 
from a large number of forged source addresses. The effect 
this has on a Vista target is to cause the entire machine to 
be unresponsive until the flood of packets subsides4. This 
vulnerability was present in the 5231 and 5270 builds, but 
has been addressed as of build 5384. 
 
In our testing we also discovered a number of new 
instabilities in the Windows Vista network stack that were 
present in earlier builds. To test for new vulnerabilities, we 
flooded the target host with randomly generated malformed 
traffic. We isolated and analyzed any packets that caused 
undesirable behavior on the target [Appendix IX]. This 
analysis uncovered three vulnerabilities in the network 
stack.  
 
When a Vista target received an IP packet for protocol 43, 
the host crashed with a blue screen. Sending the target a 
protocol 44 packet caused the system to become 
unresponsive for a large amount of time. The presence of 
these protocols was also uncovered in our protocol 
enumeration testing. The last vulnerability involved the 
processing of IP options. When an option was received with 
an option length of zero, the machine locked up completely 
until reset. The Windows Vista stack likely enters an 
infinite loop while processing the option when it attempts to 
advance ahead by zero bytes and repeatedly processes the 
same IP option. 
 
All three of these defects were fixed in build 5384. The 
presence, however, of these vulnerabilities is consistent 
with a rewrite of the network stack and suggests that 
Microsoft has repeated some of the mistakes others have 
made in the past and introduced some new vulnerabilities of 
their own. We believe that other defects are likely present 
in the stack and that further research in this area should be 
fruitful. 
 

D. Tunneling Protocols 
Windows Vista employs IPv6 transition technologies that 
allow IPv6 to be used in an IPv4 environment that has 
limited or no IPv6 infrastructure[19]. These protocols are 
configured when Windows Vista is installed and are 
available on all Vista hosts unless explicitly disabled. We 
investigated the new Teredo protocol, deferring analysis of 
the ISATAP protocol due to time constraints. 
 
Teredo[20][15] is an IPv4-IPv6 transition technology that 
allows IPv6 traffic to be tunneled in IPv4 UDP packets in 

 
4 The Opentear attack was performed across a 100Mb/s Ethernet. The 

effect may be less pronounced if bandwidth is limited. 
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unmanaged networks. Windows Vista will enable Teredo 
tunneling as a last resort if there are no neighboring IPv6 
routers or ISATAP servers. We expect this to be the most 
common environment among Windows Vista users until 
IPv6 sees wider deployment. 
 
Teredo works by carrying IPv6 packets inside of UDP 
packets sent over IPv4 networks. What makes Teredo 
unique is its NAT traversal features. Teredo hosts establish 
and maintain a connection to one of a set of public Teredo 
servers. The IPv6 address assigned to a Teredo host 
encodes the public Teredo server that assigned it, as well as 
the public address and port assigned to the host (i.e. its 
address as seen outside of the NAT). A NAT-protected host 
can establish a direct connection to another such host with 
the assistance of the peer’s Teredo server. The host can 
notify its peer that it wants to establish a connection by 
sending the packet to the peer’s Teredo server, which is 
forwarded on to the peer host. The two peers may then send 
packets to each other, opening up mutual holes in their 
NAT gateways for return traffic to flow through. The two 
peers can maintain these NAT mappings indefinitely by 
periodically exchanging traffic.  
 
Teredo restores global addressability and routing to hosts 
using private IPv4 addresses. This is a huge benefit to 
functionality but also has some serious security 
implications. Many individuals and companies use private 
addresses as a key part of their defense strategy and may 
find their Vista hosts externally reachable to an unexpected 
degree, unless strict egress filtering is in place. 
 
In addition to Teredo, Vista supports ISATAP, 6to4, and 
6over4. Surprisingly, Windows Vista seems to support the 
encapsulation of IPv4 packets in IPv4 packets (protocol 4) 
and IPv6 in IPv6 packets (protocol 41). We did not get the 
opportunity to investigate these tunneling technologies 
further, but expect them to provide leverage in performing 
network attacks. Further investigation will likely be fruitful. 

IV. TRANSPORT 
Windows Vista supports the TCP and UDP transport 
protocols over IPv4 and IPv6. We investigated the 
implementation characteristics of these protocols. 
 

A. UDP 
We tested the stability of the UDP transport protocol using 
random fault injection and did not observe any defects. We 
did notice that the Vista networking stack replied to UDP 
packets sent to unbound UDP ports with an ICMP 
unreachable error. The earlier Windows XP networking 
stack did not exhibit this behavior when Windows Firewall 
was active (the default configuration). This behavior allows 
the host to be “pinged” for aliveness and for the 
enumeration of UDP services even when Windows Firewall 
is active. We notice that the Vista stack seems to rate-limit 
both ICMPv4 and ICMPv6 error messages, which limits the 

rate at which UDP testing can be done. It might be 
interesting to evaluate the rate-limiting algorithm. 
 

B. TCP 
We tested the stability of the TCP transport using random 
fault injection and did not observe any defects. We also 
measured Windows Vista’s TCP ISN generation, 
“fingerprint” and segment reassembly behaviors and 
observed several behavioral differences from the earlier 
Windows XP stack. 
 
The choice of the Initial Sequence Number used when 
establishing a TCP connection has a profound impact on the 
security of a TCP connection[3][23][26]. We measured 
Windows Vista’s ISN generation and observed that 
generation is done by random increment but appears 
random in practice [Appendix X]. When connections are 
made using the same connection identifiers (source and 
destination addresses and ports), each successive 
connection has an ISN that is only slightly larger than the 
previous connection. However, if connections having 
different identifiers are made, the sequence numbers appear 
uncorrelated. This is consistent with the generation 
algorithm recommended by RFC 1948[1], which generates 
ISN values by adding a system-wide counter to a secret 
hash of the connection identifier. This generation scheme 
offers strong protection against TCP attacks relying on poor 
ISN generation.  
 
There are many network stack fingerprinting methods that 
identify an operating system through its network stack 
implementation details[12]. We looked at the TCP behavior 
measured by the nmap[11] utility. We observed that the 
Windows Vista networking stack behaves distinctly 
differently than the previous Windows XP version and 
other popular network stacks. We also observed differences 
between different Windows Vista builds, suggesting that 
the TCP stack is being actively developed. The details of 
these differences are noted in Appendix XI. Because all 
incoming TCP traffic is filtered by the Windows Firewall, 
these differences are observable only if a firewall exception 
is configured. 
 
We measured the TCP reassembly behavior of Windows 
Vista. When reassembling a TCP stream, Windows Vista 
resolved any conflicts in overlapping TCP segments by 
preferring data received in earlier segments over data 
received in later segments [Appendix XII]. This behavior 
differs from the behavior observed in the earlier Windows 
XP networking stack. As a result of these differences, 
identical traffic sent to XP and Vista targets may be 
interpreted differently. Ambiguities in the interpretation of 
traffic provide opportunities for confusing network 
intrusion detection devices unless handled 
appropriately[25]. 
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V. FIREWALL 
Windows Firewall provides protection against attacks by 
filtering out protocol requests before they are processed. 
Windows Vista configures Windows Firewall during 
installation; unless explicitly disabled, Windows Firewall is 
running on all Windows Vista machines. We measured the 
firewall configuration of a Windows Vista machine after 
installation and after several common configuration 
changes. We also note methods that could be used to detect 
the presence of a Windows Vista host even when protected 
by Windows Firewall. 
 

A. Configuration 
In its default configuration, Windows Vista 5384 has two 
firewall exceptions. One was for “Remote Assistance” (the 
msra.exe program) [Appendix XIII]. This exception is 
active only when msra.exe is running (used when 
requesting remote assistance). However, msra.exe is not 
usually running. The other default exception was for 
“Network Discovery.” Freshly installed Vista hosts will 
respond to LLTD requests, making it apparently the only 
service available by default. 
 
Despite the protection of Windows Firewall, Windows 
Vista 5384 still processes TCP packets to inactive TCP 
ports, returning RST packets. It also processes IPv6-based 
UDP requests to inactive UDP ports, returning ICMPv6 
unreachable errors. This error reporting allows for 
enumeration of the services in question and for remote 
aliveness testing as previously noted. Interestingly though, 
the 5270 build had eliminated the TCP RST responses that 
were seen in the 5231 build. 
 
The earlier Windows Vista 5231 build had several firewall 
deficiencies that were addressed in the 5270 build. In 
addition to the RSTs sent for inactive ports, Vista 5231 
allowed access to some TCP ports running RPC services 
(135 and some ports in the ephemeral port range) even 
though no exceptions were approved by the user or reported 
in the control panel. 
 
Several common Windows configuration changes introduce 
filtering exceptions into the Windows Firewall 
configuration. Examples are turning on File and Print 
sharing (CIFS), opting into People Near Me, using 
Windows Collaboration, or enabling Windows Media 
Sharing. The user must authorize these changes by using 
the Windows Vista consent mechanism. The Teredo service 
also adds and removes exceptions from the firewall 
configuration while running, although without the user’s 
consent. The details of these firewall configuration changes 
can be found in Appendix XIII.  
 
We observed that the Windows Firewall APIs[21] and the 
Windows Firewall control panel did not always reflect the 
exceptions that were allowed through the firewall and did 
not report data consistent with each other. When exceptions 
were added to the firewall configuration, they were not 

always listed as active in data returned from the firewall 
API. When an exception was added for File and Printer 
Sharing, ICMP echoes were accepted by the firewall, but 
this change was not reflected in the control panel. 
 
The Windows Firewall does not appear to distinguish 
between IPv4 and IPv6 exceptions. An attacker may be able 
to use an existing exception intended for an IPv4 port to 
allow traffic in to an IPv6 port, or vice-versa. Due to a lack 
of time, we did not explore this possibility. 
 

B. Discovery 
Windows Vista hosts protected by Windows Firewall can 
be discovered in several ways even though ICMP echoes 
(pings) are filtered. Hosts on the same network can 
effectively “ping” a host by querying for the host’s 
hardware address using the ARP or ND protocols or by 
requesting all neighbors to respond to an LLTD request. 
Detection using LLTD is particularly attractive because it 
returns the host’s Ethernet, IPv4 and IPv6 addresses, and 
host name. Hosts that are not on the same local network can 
elicit responses from a Windows Vista host remotely using 
routable IPv4 and IPv6 packets. As previously mentioned, 
Windows Vista responds to TCP packets sent to inactive 
TCP ports and to IPv6-based UDP packets sent to inactive 
UDP ports even when the firewall is enabled. It also 
responds to packets received using an unhandled protocol 
or with certain malformed fields[13] with ICMP errors. 
Windows Vista may be running Teredo, unbeknownst to its 
user, with firewall exceptions that allow a remote user to 
interact with it and elicit responses. 

C. Tunneling 
The tunneling protocols supported by Windows Vista have 
implications to firewalls protecting Vista hosts. If not 
blocked, tunnels may provide an attacker with an avenue to 
bypass all firewall restrictions. The tunneling protocols may 
also provide avenues for bypassing the Windows Firewall. 
Due to time constraints we did not explore tunnel-based 
attacks.  
 

VI. NETWORK SERVERS 

A. Active UDP Ports 
We applied standard techniques to enumerate the network 
services using the UDP and TCP transports over IPv4 and 
IPv6 in Windows Vista [Appendix XIV]. We observed that 
Windows Firewall blocked access to all TCP services 
unless otherwise configured by the user5. However, in build 
5384 (but not the earlier 5270) TCP services over both IPv4 
and IPv6 could be mapped since RSTs were generated for 
ports with no service: 

• MS-RPC (135) 
• NBT (139) (IPv4 only) 
• SMB (445) 

 
5 In the 5270 and 5384 builds. The earlier 5231 build allowed port 

scanning even when Windows Firewall was enabled. 
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• Six ephemeral ports (49152-49157) 
 
Access to the UDP services were also blocked, but because 
Windows Vista replied to IPv6-based UDP packets sent to 
unused ports with ICMPv6 errors, the UDP services for 
IPv6 could still be enumerated. 
 
The UDP ports that were found to be active over IPv6 were: 

• NTP (123) 
• ISAKMP (500) 
• UPnP (1900) 
• Web Services Discovery (3702) 
• Link Local Multicast Name Resolution (5355) 
• Two ephemeral ports (49767, 62133) 

 
Because of the nature of UDP active port enumeration it is 
not possible to distinguish which of these active ports were 
being used as clients and which were being used as servers. 
It is likely that at least NTP is being used a client. 
 
More details on active ports in the three Vista builds 
evaluated can be found in Appendix XIV. 
 

B. RPC Services 
 
Unlike the 5270 build, the earlier Vista 5231 build allowed 
remote enumeration of TCP services, and we document the 
results of such enumeration in Appendix XIV. The previous 
version also allowed unfiltered access to a few RPC 
services. We were able to enumerate the RPC interfaces 
supported on these TCP ports using a brute-force 
enumeration technique.  
 
Windows Vista allows several services to share a single 
process. Due to a limitation of the RPC library, all RPC 
services in the same process are accessible via the same 
RPC endpoints. There are techniques to avoid providing 
unexpected network access to RPC services that were 
intended for local use, but these remedies rely on 
programmer diligence ([18] and section 4.11 of [17]). We 
observed that the available TCP ports answered to several 
RPC interfaces that should not have been reachable. We 
also observed that some of the interfaces were callable 
without any authentication. One such call, ServerAlive2 in 
the OXIDResolver interface, provided the host’s name on 
demand. Windows Vista 5271 does not expose any of these 
services, but should an exception be added to the firewall 
configuration to allow access to any RPC services, we 
expect these issues to resurface. 
 

C. File Sharing 
Computer users with several machines commonly turn on 
File and Printer Sharing and we expect many Windows 
Vista users will do this. Windows Vista supports the SMB 
protocol and introduces the new SMB2[9] variant.  
 
SMB2 is a new implementation of the SMB protocol that 
provides a clean slate for Microsoft. It eliminates many of 

the legacy SMB calls that were no longer used. It supports 
high-performance marshalling with fixed header sizes and 
better alignment rules. Finally, it provides larger field 
widths for many of the protocol fields to ensure support for 
larger disks and faster computers in the future. SMB2 is the 
preferred protocol when supported by both client and server 
(two Windows Vista hosts, for example), but support is 
included for legacy interoperability. 
 
We performed some random fault injection of the SMB2 
protocol to the stability of the new implementation. We also 
enumerated the named pipes that are accessible without 
authentication over the file-sharing protocol since these act 
as another transport mechanism. 
 
We performed random fault injection on an SMB2 
connection between two Windows Vista hosts by 
corrupting the data stream with a proxy. No resulting 
defects were discovered through this testing. We suspect 
that the protocol exchange is being protected by signatures, 
which would provide some immunity to network-based 
random fault injection by rejecting altered messages after 
minimal processing. Protocol-aware directed testing may 
prove more effective. There was some instability in the 
SMB implementation in the earlier Windows Vista 5321 
build. We observed that sending a single string to port 445 
was sufficient to cause the machine to crash with a blue 
screen. This defect had been addressed as of the 5270 build. 
 
File sharing allows remote access to named pipes. These 
pipes are often used as a transport mechanism for 
application protocols. We enumerated the named pipes that 
were accessible over an anonymous connection to the 
“IPC$” share and found that we were able to open the 
netlogon, lsarpc, and samr pipes without any 
authentication [Appendix XV]. When using SMB2 we were 
also able to open the protected_storage pipe, which 
wasn’t accessible via the legacy SMB protocol, suggesting 
that the two protocols are handled by different 
implementations. All of these pipes are aliases and refer to 
the pipe named “lsass.”  This pipe is used as a transport 
for several RPC-based interfaces, which we enumerated. 
We found that we were able to call several of the interfaces 
without any further authentication. The details of these RPC 
interfaces are given in Appendix XV. 
 

VII. UNSOLICITED TRAFFIC 
Windows Firewall offers protection against attacks aimed at 
servers by limiting the number of hosts that can interact 
with a server and the number of servers that can be 
accessed. However, it does nothing to protect against 
replies to traffic initiated from a Windows host. Similarly, 
many enumeration techniques will provide a list of services, 
but will not indicate which clients may be active. To 
enumerate clients and measure the exposure of a Windows 
Vista 5270 host to client attacks, we observed the 
unsolicited traffic initiated by a Windows Host during 
system startup, login, stasis and shutdown [Appendix XVI]. 



SYMANTEC ADVANCED THREAT RESEARCH 8 

These unsolicited requests provide opportunities for well-
placed adversaries to interact with the system despite the 
protections afforded by the Windows Firewall. 
 
Most of the requests originating from a Windows Vista are 
standard such as address auto-configuration (DHCP) and 
support protocols (ARP, ND, DNS and NBNS). Some of 
the more noteworthy protocols in use are the newer 
protocols Web Service Discovery, Link Local Multicast 
Name Resolution, IPv6, and Teredo. All of the traffic we 
observed was unauthenticated, providing little resistance to 
malicious attack. Although most of the requests we 
observed were intended for the local network, a few 
requests were sent off-site to the public Internet, most 
notably DNS lookups and communication to a Teredo 
server. These protocols are most likely to be attacked.  
 
When using the earlier Windows Vista 5231 build we 
observed that the host posted information back to a public 
Microsoft server during shutdown!  This behavior had been 
removed as of the Windows 5270 build. The complete list 
of protocols we observed can be found in XVI. 
 

VIII. CONCLUSION 
The network stack in Windows Vista was rewritten from 
the ground up. In deciding to rewrite the stack, Microsoft 
has removed a large body of tried and tested code and 
replaced it with freshly written code, complete with new 
corner cases and defects. This may provide for a more 
stable networking stack in the long term, but stability will 
suffer in the short term. Despite the claims of Microsoft 
developers[30], the Windows Vista network stack as it 
exists today is less stable than the earlier Windows XP 
stack. We have identified several implementation flaws in 
the 5270 Windows Vista build and even more in earlier 
builds, though these have been fixed in 5384. While it is 
reassuring that Microsoft is finding and fixing these defects, 
we expect that vulnerabilities will continue to be discovered 
for some time. A networking stack is a complex piece of 
software that takes many years to mature. 
 
Microsoft also chose Vista as a platform to introduce new 
protocols and new implementations of old protocols. IPv6 
is enabled during installation for the first time in Windows 
Vista. The IPv6 protocol is not new, but it has yet to see 
widespread deployment. To support the process of 
transitioning from IPv4 networks to IPv6 networks and to 
increase the usefulness of peer-to-peer technologies, 
Microsoft has also enabled IPv6 tunneling support in 
Windows Vista. These tunneling protocols restore global 
addressability to hosts behind NAT firewalls, increasing the 
exposure of many users. In support of peer-to-peer 
communications, Microsoft Vista supports new server-less 
name-resolution protocols such as PNM and PNRP. Taken 
together, these technologies provide mechanisms to 
discover and deliver payloads between peers. These 
features are critical to the success of Microsoft’s peer-to-
peer initiative but are also the same features that attackers 

need to deliver malicious content to their victims. As these 
technologies see wider deployment, we expect IPv6 and the 
new peer-to-peer protocols to play an increasing role in the 
delivery of malicious payloads. 
 
The SMB2 protocol introduces more new code into the 
Windows Vista environment. SMB2 is based heavily on the 
mature SMB protocols, but the new code provides new 
opportunities for defects as evidenced by the defect we 
found. This protocol is not available without manual 
configuration, but the service it provides is useful enough to 
be configured often. The exposure of this protocol is 
partially mitigated by the firewall since, when enabled, 
access is typically restricted to the local network. Due to 
this restriction, we don’t expect this protocol to be widely 
used in remote attacks against home users. 
 
Firewalls and IDSs will have to consider the presence of 
new Vista machines on their networks. If left unhandled 
and unchecked, IPv6 and its accompanying transition 
technologies allow an attacker access to hosts on private 
internal networks outside of the prevue of the administrator. 
Unwanted access can be prevented by analysis of IPv6 
protocols in the firewall or IDS or by completely blocking 
all IPv6 protocols. Implementation-specific behavior of the 
new Vista stack allows an attacker to create ambiguous 
traffic that may be improperly interpreted by a passive 
intrusion detection device. IDSs will have to faithfully 
replicate Vista’s behavior when analyzing data destined for 
Vista hosts. IDSs will also have to analyze new protocols 
and new versions of existing protocols or face being blind 
to their traffic. 

IX. FUTURE WORK 
We performed a fairly broad and shallow analysis of the 
networking technologies available in Windows Vista. Some 
significant omissions in our analysis should be investigated. 
Our work highlights many interesting implementation 
features, but does not penetrate very deeply into the subject 
matter. This provides a wealth of opportunities for future 
work at all layers of the network stack. 
 
At the link layer, we did not investigate the Ethernet, PPP, 
or PPPoE protocols or any of the link-layer tunneling 
protocols, nor did we investigate all of the features of the 
ND protocol. While we did look into the LLTD protocol, 
we barely scratched the surface. There are fields of the 
protocol we did not fully decode and we were unable to 
exercise all of the protocol’s features. The stability of the 
protocol should also be tested further to look for any 
implementation flaws. 
 
At the network layer, we did not look into the 
fragmentation behavior of the IPv6 protocol, the ICMP and 
ICMP6 protocols, or into the ISATAP or 6to4 tunneling 
protocols. Tunneling protocols often invalidate some of the 
design decisions of other protocols. An analysis of attacks 
that could be performed in conjunction with tunneling 
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protocols is likely to be fruitful. All the tunneling protocols 
should also be tested more thoroughly for implementation 
flaws. Although we performed some fault injection against 
the IPv6 protocol, we believe the tools we used were sub-
par and encourage further fault-injection testing of IPv6. 
The defects we observed in IPv4 while performing fault 
injection were isolated but not fully analyzed. A deeper 
analysis could determine whether any of these defects could 
be used for more interesting attacks than denial of service. 
 
At the higher levels of the protocol stack, we left the 
LLMNR and PNRP protocols completely untouched. These 
protocols need to be analyzed, and their security 
implications should be understood and tested for 
implementation flaws. The SMB2 protocol was covered 
lightly, but could also benefit from a deeper analysis and 
better fault-injection testing. The firewall could also use 
more testing. Of particular interest is determining how the 
firewall behaves when the same port is reused in IPv4 and 
IPv6 by different programs. It may prove possible to bypass 
the firewall restriction intended for an IPv4-based transport 
by using the same port number over an IPv6-based 
transport, or vice versa. 
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APPENDIX I – TESTED VERSIONS 
All tests were performed against Windows Vista CTP Beta releases. The following versions were tested: 
 

• Windows Vista CTP Build 5231 x86 (Beta 2, September 2005) 
• Windows Vista CTP Build 5231 x64 
• Windows Vista CTP Build 5270 x86 (Beta 2, December 2005) 
• Windows Vista CTP Build 5270 x64 
• Windows Vista CTP Build 5384 x86 (Beta 2, May 2006) 
• Windows Vista CTP Build 5384 x64 

 
Test machines were configured as stand-alone machines and not as a member of any managed network or Microsoft domain. We 
expect this setup to be typical of home users running Windows Vista. 
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APPENDIX II – ARP SPOOFING 
We observed that Vista hosts will accept gratuitous ARP replies and overwrite existing ARP table entries with the data contained 
in the replies. Vista hosts are also vulnerable to a denial-of-service attack when they receive a gratuitous ARP for their own 
address. 
 
We used the arpspoof tool from the dsniff[30] suite for our testing. Testing was performed using a Linux host as the attacker 
and two Vista 5270 machines acting as the target (that gratuitous ARPs were sent to) and the victim (whose ARP entry was being 
spoofed). (Testing could be performed using a single Vista host and any other host by performing the test once with Vista as the 
target and once with Vista as the victim). Our hosts were 10.200.200.1 (attacker), 10.200.200.124 (target), and 
10.200.200.123 (victim). 
 
We used a targeted gratuitous ARP with the following command line: 
 
linux# arpspoof –t 10.200.200.124 10.200.200.123 

 
We observed that an ARP entry for 10.200.200.123 was created on 10.200.200.124 (using the “arp –a” command to 
list the ARP entries). As expected, traffic from 10.200.200.124 to 10.200.200.123 was directed towards the attacking 
host (10.200.200.1). If we first created a legitimate ARP entry on the target (i.e. by pinging the victim), we observed that the 
ARP entry was overwritten when the gratuitous ARP was received. No warning message or error log is generated when the ARP 
entry is overwritten. 
 
We repeated the tests using a broadcast gratuitous ARP: 
 
linux# arpspoof 10.200.200.123 

 
In this situation, the effect on the target was identical. However, when the victim host received the gratuitous ARP, it became 
confused. No warning was presented to the user (as is done in Windows XP when this situation occurs), but an error was logged 
in the event log: 
 

 The system detected an address conflict for IP address 10.200.200.1 with the system 
having network hardware address 00-04-E2-0B-41-21. Network operations on this system 
may be disrupted as a result. 

 
Indeed, network operation was disrupted. The networking stack did not allow new connections to be made from the machine. For 
example, running “ping 10.200.200.1” resulted in an error 1232 (ERROR_HOST_UNREACHABLE). Existing TCP 
connections were not affected. This condition persisted until the network interface was reset by releasing and renewing the 
DHCP lease. 
 
The denial-of-service attack was also observed to occur when a gratuitous ARP was directed at the victim: 
 
linux# arpspoof –t 10.200.200.123 10.200.200.123 
 

Because Vista accepted all gratuitous ARP requests we did not perform testing of forged replies to ARP requests. Any replies 
will be processed in the same manner as gratuitous ARPs are processed, with the latter replies overwriting any earlier reply. 
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APPENDIX III – NEIGHBOR DISCOVERY SPOOFING 
We observed that Windows Vista hosts will not process unsolicited Neighbor Discovery replies. However, it is still possible to 
perform a redirect attack by sending spoofed replies in response to actual queries or by blindly sending out responses 
periodically. 
 
We performed our testing with the ndspoof.py script that was constructed specifically for the purpose. Testing was performed 
from a Linux host using two Windows Vista hosts as a target (receiving the spoofed ND replies) and a victim (the address being 
spoofed). The hosts involved were fe80::204:e2ff:fe0b:4121 (attacker, with MAC address 00:04:E2:0B:41:21), 
fe80::214:c2ff:fed5:7e96 (target), and fe80::2c0:9fff:fed2:cf8 (victim). 
 
The ndspoof.py script was used to send ND response packets in a targeted manner with the following command line: 
 
linux# ndspoof.py –a fe80::204:e2ff:fe0b:4121 –m 00:04:E2:0B:41:21 –t 
fe80::214:c2ff:fed5:7e96 fe80::2c0:9fff:fed2:cf8 

 
This causes ndspoof.py to periodically send ND packets with the solicit flag set directly to the target host. The 
ndspoof.py script was also used to send packets without the solicit flag to the all-nodes multicast address using the following 
command line: 
 
linux# ndspoof.py –a fe80::204:e2ff:fe0b:4121 –m 00:04:E2:0B:41:21 
fe80::2c0:9fff:fed2:cf8 

 
The state of the neighbor table was monitored on the victim host using the command line: 
 
vista> netsh interface ipv6 show neighbors 

 
We observed that sending ND packets did not cause a passive target to make any changes to its neighbor table. However, if the 
target was actively establishing a connection to the victim while ndspoof.py was sending targeted replies to it, it would use 
the information in the reply to update its table. Untargeted replies sent to broadcast or sent without the solicited bit set had no 
affect. 
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APPENDIX IV – LINK LAYER TOPOLOGY DISCOVERY PROTOCOL 
 
We observed an exchange of LLTD packets between several Windows Vista machines. This exchange of packets, initiated by 
the hpvista machine, resulted in the following network map: 
 

 
 
All packets are sent using the Ethernet type 0x88d9. Most packets are sent by the initiating host to the Ethernet broadcast 
address. The Ethernet payload contains some regularities: 

• The first byte is always 1. This may be a version number. 
• The second byte is either 0 or 1. 
• The third byte is always zero. This may be the most-significant byte of a larger field. 
• The fourth byte ranges from 0 to 9. This is likely the LLTD message type. The previous byte may be part of this field. 
• The next six bytes contain an Ethernet address which is often the same as the destination address in the Ethernet header. 
• The next six bytes contain an Ethernet address which is often the same as the source address in the Ethernet header. 
• Ethernet addresses often appear elsewhere in the packet. 
• Many packets contain a portion that is encoded using a Type-Length-Value encoding. This is fortunate in that TLV-

encoded fields can be extracted without knowledge of the field type encoding. 
 
Using this knowledge and some guess work we can partially decode packets. The following is a best-guess decoding of a typical 
LLTD packet: 

• Ethernet 
o ff ff ff ff ff ff  - dest = broadcast 
o 00 c0 9f d2 0c f8  - src 
o 88 d9         - type = LLTD 

• LLTD 
o 01           - version 1 
o 01           -  
o 00 01         - type 1 
o ff ff ff ff ff ff  - dst 
o 00 c0 9f d2 0c f8  - src 
o 00 00 00 0c 
o 00 0c 9f d2 0c f8  - mac address 
o 00 c0 9f d2 0c f8  - mac address 
o Array of TLV entries 
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 01 06 00 00 00 00 00 00     - Type 1, Length 6, Value 0 
 02 04 00 00 00 00        - Type 2, Length 4, Value: 0 
 03 04 00 00 00 06        - Type 3, Length 4, Value: 6 
 0c 04 00 0f 42 40        - Type 12, Length 4, Value 0x0f4240 
 0a 08 00 00 00 00 00 36 9e 99 - Type 10, Length 8, Value 0x369e99 
 0b 04 00 02 62 5a        - Type 1, Length 4, Value 0x026251 
 0f 12 61 00 63 00 65 00 72 00 76 00 69 00 73 00 74 00 61 00 - Type 15, 

Length 12, Value Unicode 'acervista'  
 14 04 80 00 00 00         - Type 14, Length 4, value 0x80000000 
 00                 - Type 0, End of TLVs. 

 
Type 1 is used to represent an Ethernet address, type 7 is used to represent an IP address, type 8 is used to represent an IPv6 
address, and type 15 is used to represent a Unicode string. 
 
Apparently, packets are first sent out by the originating host to solicit a response from hosts with LLTD responders. After an 
initial exchange, the LLTD initiator may cause responders to send out packets or to reply to them. Some packets are sent out with 
bogus Ethernet destination addresses. This is probably done to detect the presence of Ethernet switching. 
 
We were able to craft LLTD packets and elicit responses from LLTD responders on the network. However, we were unable to 
cause LLTD responders to forward packets on our behalf. The lltd.py script sends out a broadcast query made up of NUL 
bytes. It then parses the return values and prints the contents of the decoded packet. The returned packet typically contains the 
responder’s Ethernet, IPv4, and IPv6 addresses as well as its host name. An example invocation of lltd.py that elicited two 
responses is: 
 
linux# lltd.py 
1 0 0 00:04:e2:0b:41:21 ff:ff:ff:ff:ff:ff 
'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0
0\x00\x00\x00\x00\x00\x00\x00\x00\x00' 
 
1 1 1 00:14:a4:3c:d3:6b ff:ff:ff:ff:ff:ff 
LLTDsub1(mac1='\x00\x04\xe2\x0bA!', val=2L, mac2='\x00\x04\xe2\x0bA!', 
data='\x01\x06\x00\x14\xa4<\xd3k\x02\x04\x00\x00\x00\x00\x03\x04\x00\x00\x00G\x04\x0
1\x01\x07\x04\n\xc8\xc8}\x08\x10\xfe\x80\x00\x00\x00\x00\x00\x00\x02\x14\xa4\xff\xfe
<\xd3k\t\x02\x00$\n\x08\x00\x00\x00\x00\x006\x9e\x99\x0b\x04\x00\x02bZ\x0c\x04\x00\x
08=`\r\x04\xff\xff\xff\xd4\x0f\x12a\x00c\x00e\x00r\x00v\x00i\x00s\x00t\x00a\x00\x14\
x04\x80\x00\x00\x00\x17\x08\x00\x00\x00\x00\x00Cj=\x00') 
  0000:  01 06 00 14 a4 3c d3 6b 02 04 00 00 00 00 03 04  .....<.k........ 
  0016:  00 00 00 47 04 01 01 07 04 0a c8 c8 7d 08 10 fe  ...G........}... 
  0032:  80 00 00 00 00 00 00 02 14 a4 ff fe 3c d3 6b 09  ............<.k. 
  0048:  02 00 24 0a 08 00 00 00 00 00 36 9e 99 0b 04 00  ..$.......6..... 
  0064:  02 62 5a 0c 04 00 08 3d 60 0d 04 ff ff ff d4 0f  .bZ....=`....... 
  0080:  12 61 00 63 00 65 00 72 00 76 00 69 00 73 00 74  .a.c.e.r.v.i.s.t 
  0096:  00 61 00 14 04 80 00 00 00 17 08 00 00 00 00 00  .a.............. 
  0112:  43 6a 3d 00                                      Cj=. 
1 '00:14:a4:3c:d3:6b' 
2 '\x00\x00\x00\x00' 
3 '\x00\x00\x00G' 
4 '\x01' 
7 '10.200.200.125' 
8 'fe80::214:a4ff:fe3c:d36b' 
9 '\x00$' 
10 '\x00\x00\x00\x00\x006\x9e\x99' 
11 '\x00\x02bZ' 
12 '\x00\x08=`' 
13 '\xff\xff\xff\xd4' 
15 u'acervista' 
20 '\x80\x00\x00\x00' 
23 '\x00\x00\x00\x00\x00Cj=' 
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1 1 1 00:14:c2:d5:7e:96 ff:ff:ff:ff:ff:ff 
LLTDsub1(mac1='\x00\x04\xe2\x0bA!', mac2='\x00\x04\xe2\x0bA!', 
data='\x01\x06\x00\x14\xc2\xd5~\x96\x02\x04\x00\x00\x00\x00\x03\x04\x00\x00\x00\x06\
x07\x04\n\xc8\xc8{\x08\x10\xfe\x80\x00\x00\x00\x00\x00\x00\x02\x14\xc2\xff\xfe\xd5~\
x96\n\x08\x00\x00\x00\x00\x006\x9e\x99\x0b\x04\x00\x02bZ\x0c\x04\x00\x0fB@\x0f\x0eh\
x00p\x00v\x00i\x00s\x00t\x00a\x00\x14\x04\x80\x00\x00\x00\x17\x08\x00\x00\x00\x00\x0
17\xe0d\x00') 
  0000:  01 06 00 14 c2 d5 7e 96 02 04 00 00 00 00 03 04  ......~......... 
  0016:  00 00 00 06 07 04 0a c8 c8 7b 08 10 fe 80 00 00  .........{...... 
  0032:  00 00 00 00 02 14 c2 ff fe d5 7e 96 0a 08 00 00  ..........~..... 
  0048:  00 00 00 36 9e 99 0b 04 00 02 62 5a 0c 04 00 0f  ...6......bZ.... 
  0064:  42 40 0f 0e 68 00 70 00 76 00 69 00 73 00 74 00  B@..h.p.v.i.s.t. 
  0080:  61 00 14 04 80 00 00 00 17 08 00 00 00 00 01 37  a..............7 
  0096:  e0 64 00                                         .d. 
1 '00:14:c2:d5:7e:96' 
2 '\x00\x00\x00\x00' 
3 '\x00\x00\x00\x06' 
7 '10.200.200.123' 
8 'fe80::214:c2ff:fed5:7e96' 
10 '\x00\x00\x00\x00\x006\x9e\x99' 
11 '\x00\x02bZ' 
12 '\x00\x0fB@' 
15 u'hpvista' 
20 '\x80\x00\x00\x00' 
23 '\x00\x00\x00\x00\x017\xe0d' 
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APPENDIX V – IP ID GENERATION 
We monitored packets sent out from a Windows Vista machine and observed that IP IDs are generated sequentially. The 
ipid.py script was used to observe packets sent out from a Windows Vista machine while traffic was generated on the Vista 
machine to several hosts. We observed that the packets had an ID field that incremented from one packet to another, independent 
of destination host: 
 
linux# ipid.py 10.200.200.123 
00d0    10.200.200.123 -> 64.65.64.17 proto 6 
00d1    10.200.200.123 -> 64.65.64.17 proto 6 
00d2    10.200.200.123 -> 10.200.200.1 proto 6 
00d3    10.200.200.123 -> 10.200.200.1 proto 6 
00d4    10.200.200.123 -> 10.200.200.1 proto 6 
00d5    10.200.200.123 -> 10.200.200.1 proto 6 
00d6    10.200.200.123 -> 10.200.200.1 proto 6 
00d7    10.200.200.123 -> 10.200.200.1 proto 6 
00d8    10.200.200.123 -> 10.200.200.1 proto 6 
00d9    10.200.200.123 -> 10.200.200.1 proto 6 
00da    10.200.200.123 -> 10.200.200.1 proto 6 
00db    10.200.200.123 -> 64.4.25.80 proto 17 
00dc    10.200.200.123 -> 10.200.200.1 proto 1 
00dd    10.200.200.123 -> 10.200.200.1 proto 1 

 
This behavior is identical to the ID generation employed in the earlier Windows XP stack. 
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APPENDIX VI – IP FRAGMENT REASSEMBLY 
 
Vista’s networking stack behaves differently than earlier versions in Windows XP or Windows 2000 when reassembling IPv4 
Fragments. We observed that Vista was very strict in discarding IP packets with partially overlapping fragments. However, the 
stack did not discard packets with fragments that completely overlapped one another. 
 
We performed our testing by sending out several out-of-order fragments of a UDP packet that contained conflicting data. The 
fragments were constructed such that the UDP header was sent once unambiguously with checksums disabled (using the 
distinguished value of zero). We then observed the payloads of the reassembled packets that were delivered to the application 
layer on the target machine.  
 
All tests were performed using the fragorder.py tool. Fragorder listens for UDP packets to a special test network address 
and replies with a series of fragments of a UDP packet. The host being tested must be primed by adding a static ARP entry for 
the bogus test address which points to the MAC address that fragorder.py is running on (i.e. arp –s 10.200.200.199 
00-04-e2-0b-41-21). To test a host, netcat is used to send out a packet to elicit a fragment, and the results received by 
netcat are recorded (i.e. nc –u 10.200.200.99 999 and hitting the Enter key to initiate each test).  
 

A. Test 1 
Seven fragments were sent out with 16 bytes of data each (the fragment containing 1s also had the 8-byte UDP header, and the 
fragment containing 6s had a trailing newline). Each fragment overlapped at least one other fragment by 8 bytes. The following 
diagram indicates how the fragments’ data overlapped: 
 

Fragment #1                  2222222222222222 
Fragment #2                                         5555555555555555 
Fragment #3                                                 6666666666666666\n 
Fragment #4                                 4444444444444444 
Fragment #5                                 oooooooooooooooo 
Fragment #6                          3333333333333333 
Fragment #7 hhhhhhhh1111111111111111 

 
After reassembly, the resulting UDP payload received was: 
 

Ethereal       11111111111111112222222233333333444444445555555566666666 
Linux RedHat8    no data received 
Windows XP     no data received 
Windows Vista    no data received 
 

B. Test 2 
Six fragments were sent out with 16 bytes of data each (the fragment containing 1s also had the 8-byte UDP header, and the 
fragment containing 6s had a trailing newline). All fragments but the one containing the header overlapped at least one other 
fragment by 8 bytes. The following diagram indicates how the fragments’ data overlapped: 
 

Fragment #1                                          5555555555555555 
Fragment #2                                                  6666666666666666\n 
Fragment #3                                  4444444444444444 
Fragment #4                                  oooooooooooooooo 
Fragment #5                          3333333333333333 
Fragment #6  hhhhhhhh1111111111111111 

 
After reassembly, the resulting UDP payload received was: 
 

Ethereal       11111111111111113333333333333333444444445555555566666666 
Linux RedHat8    11111111111111113333333333333333oooooooo5555555566666666 
Windows XP     no data received 
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Windows Vista    no data received 
 

C. Test 3 
Six fragments were sent out with 16 bytes of data each (the fragment containing 1s also had the 8-byte UDP header, and the 
fragment containing 6s had a trailing newline), except Fragment #5 which was shortened to 8 bytes. The following diagram 
indicates how the fragments’ data overlapped: 
 

Fragment #1                                          5555555555555555 
Fragment #2                                                  6666666666666666\n 
Fragment #3                                  4444444444444444 
Fragment #4                                  oooooooooooooooo 
Fragment #5                          33333333 
Fragment #6  hhhhhhhh1111111111111111 

 
After reassembly, the resulting UDP payload received was: 
 

Ethereal       11111111111111113333333344444444444444445555555566666666 
Linux RedHat8    111111111111111133333333oooooooooooooooo5555555566666666 
Windows XP     11111111111111113333333344444444555555555555555566666666 
Windows Vista    no data received 

 

D. Test 4 
Five fragments were sent out with 16 bytes of data each (the fragment containing 1s also had the 8-byte UDP header, and the 
fragment containing 6s had a trailing newline). None of the fragments overlapped any other with the exception of fragments #2 
and #3 which completely overlapped each other. The following diagram indicates how the fragments’ data overlapped: 
 

Fragment #1                                                  6666666666666666\n 
Fragment #2                                  4444444444444444 
Fragment #3                                  oooooooooooooooo 
Fragment #4                          33333333 
Fragment #5  hhhhhhhh1111111111111111 

 
After reassembly, the resulting UDP payload received was: 
 

Ethereal       11111111111111113333333344444444444444446666666666666666 
Linux RedHat8    111111111111111133333333oooooooooooooooo6666666666666666 
Windows XP     11111111111111113333333344444444444444446666666666666666 
Windows Vista    11111111111111113333333344444444444444446666666666666666 

 

E. Test 5 
Test 5 repeats Test 3 but without any conflict between overlapping fragments. Six fragments were sent out with 16 bytes of data 
each (the fragment containing 1s also had the 8-byte UDP header, and the fragment containing 6s had a trailing newline) except 
Fragment #5 which was shortened to 8 bytes. The following diagram indicates how the fragments’ data overlapped: 
 

Fragment #1                                          4444444466666666 
Fragment #2                                                  6666666666666666\n 
Fragment #3                                  4444444444444444 
Fragment #4                                  4444444444444444 
Fragment #5                          33333333 
Fragment #6  hhhhhhhh1111111111111111 

 
After reassembly, the resulting UDP payload received was: 
 

Ethereal       11111111111111113333333344444444444444446666666666666666 
Linux RedHat8    11111111111111113333333344444444444444446666666666666666 
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Windows XP     11111111111111113333333344444444444444446666666666666666 
Windows Vista    no data received 

 

F. Analysis 
These tests indicate that Windows Vista discards packets that contain fragments with partial overlaps (whether or not there is a 
conflict in these fragments). This might be done at fragment-receive time by noting an overlap with existing fragments, or at 
reassembly time by noting whether there was any overlap. In at least some cases, ICMPv4 reassembly timeout messages were 
sent after approximately 41 seconds. 
 
Earlier versions, such as Windows XP, used a different reassembly strategy. Overlapping fragments are allowed in some 
instances and are dealt with by trimming the left-hand side (from high- to low-byte offset) from more recently received 
fragments. 
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APPENDIX VII – IP PROTOCOL ENUMERATION 
The Windows Vista network stack responds to unknown IP protocols by sending back an ICMP packet indicating that the 
protocol is unreachable. This is for both IPv4 and IPv6 in build 5270 and for IPv6 in build 5384. This differs from the behavior 
of the Windows XP stack, which does not return such notification. This mechanism can be used to remotely “ping” a Vista 
machine, even if filtering is enabled. It can also be used to enumerate all of the IP protocols serviced by the target machine. We 
constructed a tool, proto.py which enumerates protocols using this method. When run against a Vista 5270 machine the 
results were: 
 
linux# proto.py 10.200.200.123 
1 icmp ICMP 
2 igmp IGMP 
4 ipencap IP-ENCAP          (IPv4 over IPv4) 
6 tcp TCP 
17 udp UDP 
41 ipv6 IPv6             (IPv6 over IPv4) 
43 ipv6-route IPv6-Route      (IPv6 Route option) 
44 ipv6-frag IPv6-Frag       (IPv6 Fragment option) 
50 ipv6-crypt IPv6-Crypt      (IPSEC ESP) 
51 ipv6-auth IPv6-Auth       (IPSEC AH) 
251 ?? ?? 

 
(Under 5270 sending packets to protocol #43 caused the Vista target to blue screen, so this protocol was avoided by the test 
program. Sending packets to protocol #44 also caused problems and was also skipped.) 
 
For Vista 5384, we temporarily turned off the firewall to update this enumeration, since IPv4 packets no longer produced 
Protocol Unreachable messages. We found the same result, but with two additional items: 
47 gre GRE 
249 ?? ?? 

Those protocols could have been added by 5384, or were previously masked by the Windows firewall. 
 
We repeated the same process for IPv6 with another tool, proto6.py When run against a Vista 5270 machine, the results 
were: 
 
linux# proto6.py fe80::214:c2ff:fed5:7e96%4 00:14:c2:d5:7e:96 
0 ip IP                 (IPv6 Hop-by-Hop option) 
6 tcp TCP 
17 udp UDP 
41 ipv6 IPv6              (IPv6 over IPv6) 
43 ipv6-route IPv6-Route       (IPv6 Route option) 
44 ipv6-frag IPv6-Frag        (IPv6 Fragment option) 
50 ipv6-crypt IPv6-Crypt       (IPSEC ESP) 
51 ipv6-auth IPv6-Auth        (IPSEC AH) 
58 ipv6-icmp IPv6-ICMP        (ICMPv6) 
60 ipv6-opts IPv6-Opts        (IPv6 destination option) 
251 ?? ?? 

 
Running against Vista 5384 added one item: 
4 ipencap IP-ENCAP          (IPv4 over IPv6) 

So, it appears that support was added for IPv4 nodes on IPv6-only networks. The results were the same with the firewall off. 
Unavailable protocols (actually, Next Header values) yield ICMPv6 parameter problem messages pointing to the Next Header 
field. 
 
All of the reported protocols are standard protocols for TCP/IP, TCP/IP6 except for Protocols 249 and 251, which are in the 
reserved range. 
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APPENDIX VII – HISTORICAL STACK ATTACKS 
We tested the Vista networking stack using a suite of historical network stack attack tools. While most modern networking stacks 
have long since fixed their handling of these deviant packets, we observed that the Vista 5231 stack is affected by three of these 
attacks, and the 5270 stack is affected by one. 
 
The “Blat” attack sends a flood of SYN packets having an invalid urgent pointer that points past the end of the packet, each from 
a different forged source address. Performing this attack against the Vista stack causes the network stack to become irresponsive 
for a few seconds. After a few seconds, all affects of the attack seem to wear off. While the IPv4 stack is irresponsive, the IPv6 
stack continues to perform properly. 
 
The “Land” attack sends a SYN packet with the forged source address of the target using the same source and destination ports. 
This causes the target host to respond back to itself. Sending this single packet to an open port of the Vista stack causes the stack 
to become unresponsive for a few seconds. After a few seconds all affects of the attack seem to wear off. While the IPv4 stack is 
irresponsive, the IPv6 stack continues to perform properly. 
 
The “Opentear” attack sends a flood of improperly fragmented UDP packets, each from a different forged source address. While 
packets are received, the entire Vista system becomes unresponsive. The affects of the attack disappear as soon as the packet 
stream stops. Tests were performed over a local 100Mbit Ethernet link; the attack may have less effect over a slower link. 
 
The Vista 5270 stack seems to address all of these issues except the “Opentear” attack which still have the same effect. Opentear 
was addressed by 5384. 
 

A. Tests 
The following tests were performed against a target Vista host. When attack programs took an argument to specify a source 
address, the attack was run using both the real address of the attacking machine and using an unassigned address from the subnet.  
 
All tests were performed over a single 100Mbit Ethernet subnet from a Linux host running Fedora Core 2. The original exploits 
were used. The exploits had to be modified to send packets out over a raw socket (using a modified pcap with 
pcap_write() functionality) whenever the exploit relied on fragmented traffic. The changes were necessary because the 
Linux kernel does not allow control of the fragment offset field of the IP header when using SOCK_RAW.  
 
The following command lines were used to invoke the attack from target host 10.200.200.1 to victim host 10.200.200.123. 
Whenever a port number was given, it was against an open TCP or UDP port. When no open ports were available (as is the case 
with TCP ports for a freshly installed Vista machine), we created an exception in the Windows Firewall configuration on the 
target host. 
 
linux# blat 10.200.200.1 10.200.200.123 445 100 0 
linux# blat 10.200.200.1 10.200.200.123 445 100 1 
linux# boink 10.200.200.1 10.200.200.123 400 500 
linux# bonk 10.200.200.1 10.200.200.123 
linux# land 10.200.200.123 445 
linux# naptha 10.200.200.123 
linux# neptune –s 10.200.200.99 –t 10.200.200.123 –p 445 –a 1000 
linux# newtear 10.200.200.1 10.200.200.123 
linux# opentear 10.200.200.123 
linux# pingexploit 10.200.200.1 10.200.200.123 
linux# syndrop 10.200.200.1 10.200.200.123 
linux# synk4 10.200.200.1 10.200.200.123 400 500 
linux# teardrop 10.200.200.1 10.200.200.123 
 

The effects of the attack against our Vista target were: 
 

Attack                     
     Observed Effect 
blat (SYN flood with optional URG flag, from separate IP addresses) IP stack becomes unresponsive for a few seconds 

in the 5231 stack. In the 5270 stack the attack has  
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no effect, even when directed at an open TCP 
port. 

boink (strangely fragmented UDP) no effect 
bonk (strangely fragmented UDP) no effect 
land (SYN from self) IP stack becomes unresponsive for 5 seconds with 
 the 5231 stack!  IPv6 is still responsive. sniffer 
 seems to temporarily hang too. The 5270 stack is 
 not affected by this attack. 
naptha (random fragments) no effect 
neptune (SYN flood)                    
 no effect 
newtear (strangely fragmented UDP) no effect 
opentear (flood of strangely fragmented UDP) 5231 and 5270: machine console is completely  
  locked up for the duration of the flood,  but  
  recovers instantly when it is terminated. The  
  machine is still responsive to pings during the  
  duration of the attack. 5384: no effect 
pingexploit (oversized fragmented ICMP ping packet) no effect 
syndrop (SYN packet in fragments)  no effect (they have an intentionally bogus  
  checksum?!) 
synk4 (SYN flood) no effect 
teardrop no effect 

 
These tests were repeated against a Windows XP host (with port 445 left unfiltered) and no effects were observed. 
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APPENDIX IX – RANDOM FAULT INJECTION OF IP 
 
We used the ISIC[10] suite of tools to perform random fault injection of the Ethernet, IP, ICMP, UDP, and TCP protocols on the 
Vista 5270 build. (The version of ISIC we used was modified because of limitations in the SOCK_RAW interface in Linux). 
When a vulnerability was found, ISIC was altered to stop generating that type of packet so that additional issues could be found 
without triggering known crash conditions. We found three issues, all at the IP layer, each of which seem to be fixed as of the 
5384 build. Malformed traffic to higher protocol layers was handled properly; performance degradation was the only noticeable 
effect when a large amount of traffic was sent to the machine. 
 
All testing was done using the ISIC tools. A fixed random seed (-r) was used and any observed issue narrowed down by using 
the skip (-k) and packet count (-p) flags until a single packet was isolated. The three issues found to cause crashes were6: 
 
linux# isic -s 10.200.200.1 -d 10.200.200.123 -m 1 -r 1 -p 1018 -k 1017 

 
This command causes a packet of type IP_PROTO_ROUTING (43) with a random payload to be sent to the target. The problem 
was reproduced in the crash1.py script. Upon reception of this packet, the target crashes with a blue screen. This protocol 
number is used to carry optional headers for IPv6 and is not usually used in conjunction with IPv4. 
 
linux# isic -s 10.200.200.1 -d 10.200.200.123 -m 100 -r 1 -p 13399 -k 13398 

 
This command causes a packet of type IP_PROTO_FRAGMENT (44) with a random payload to be sent to the target. The 
problem was reproduced in the crash2.py script. Upon reception of this packet, the target becomes partially unresponsive. 
The machine will still respond after a long delay, and if a ping flood is sent to the machine, it will recover sooner. This protocol 
number is used to carry optional headers for IPv6 and is not usually used in conjunction with IPv4. 
 
linux# isic -s 10.200.200.1 -d 10.200.200.123 -m 1000 -r 1 -k 142595 -p 142596 

 
This command causes a packet with a malformed IP option to be sent to the target. The option has an unknown type and a length 
field of zero. The problem was reproduced using the crash3.py script. Upon reception of this packet, the target becomes 
locked up until reset. The target is likely advancing zero bytes to get to the next option in the header and entering an infinite 
loop. 

 
6 ISIC’s packet generation is endian-specific. These tests were run on a little-endian machine (Linux/IA32). ISIC will generate different packets on big-endian 

hosts given these same arguments. The Python scripts constructed to reproduce these issues should work identically on all platforms. 
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APPENDIX X – TCP INITIAL SEQUENCE NUMBER GENERATION  
We observed the initial sequence number (ISN) generation of the Windows Vista stack for the 5270 build by sending SYN 
packets to an opened port and observing the sequence number in the returned SYN+ACK packet. A custom utility, isn.py, was 
used for this testing. The utility sends SYN packets to port 445 of the target (which must be accepted in Windows Firewall) 
either over IPv4 or IPv6. The source packet of each request was chosen sequentially with either 1 or 100 repeated requests from 
the same port. When sending a single request from each source port, the sequence numbers appear to be evenly distributed across 
the entire space: 
 
linux# isn 1 
src port 3340 5ad81d4d  (delta 1524112717) 
src port 3341 d3bd2a61  (delta 2028277012) 
src port 3342 39553588  (delta 1704463143) 
src port 3343 468b81bf  (delta 221662263) 
src port 3344 03c8b144  (delta 3174903685) 
src port 3345 302a1713  (delta 744580559) 
src port 3346 9f4198a7  (delta 1863811476) 
src port 3347 25ff265d  (delta 2260569526) 
src port 3348 e97ef158  (delta 3279932155) 
src port 3349 ddb800de  (delta 4097380230) 
src port 3350 107cf021  (delta 851767107) 
src port 3351 5dbb8f79  (delta 1295949656) 
src port 3352 2f9b161e  (delta 3521087141) 
src port 3353 8bde781d  (delta 1547919871) 
src port 3354 1baf75c5  (delta 2412838312) 
src port 3355 acd5e355  (delta 2435214736) 
src port 3356 6782370c  (delta 3131855799) 
src port 3357 87e32d3e  (delta 543225394) 
src port 3358 37fa3f02  (delta 2954301892) 
src port 3359 8c51ef71  (delta 1415032943) 
src port 3360 d584571a  (delta 1228040105) 

 
However, when sending multiple requests using the same source port (which causes the TCP connection identifier to remain 
unchanged across requests), we observe that the ISN is being randomly incremented based on an internal timer: 
 
linux# isn 
src port 3340 
58570d02  (delta 1482099970) 
58575cf6  (delta 20468) 
5857b7b7  (delta 23233) 
58581ef0  (delta 26425) 
585888b1  (delta 27073) 
5858f68a  (delta 28121) 
58591ee0  (delta 10326) 
58592ee0  (delta 4096) 
5859a6de  (delta 30718) 
585a050b  (delta 24109) 
585a050b  (delta 0) 
585a050b  (delta 0) 
585a050b  (delta 0) 
585a140b  (delta 3840)  
[…] 
avg dseq 000037bd 
 
src port 3341 
d151b6f2  (delta 2028280697) 
d1521f06  (delta 26644) 
d1526ecc  (delta 20422) 
d1529983  (delta 10935) 
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d152a983  (delta 4096) 
d152fbd1  (delta 21070) 
d153629d  (delta 26316) 
d153629d  (delta 0) 
d153629d  (delta 0) 
d153629d  (delta 0) 
d153719d  (delta 3840) 
d153bc47  (delta 19114) 
d15425ca  (delta 27011)  
[…] 
avg dseq 00003346 

 
Repeating these results with an additional “6” argument causes the tests to be performed with IPv6 instead of IPv4. The results 
are substantially the same as the results above and are omitted.  
 
The Vista 5270 stack appears to be using random increments in its ISN generation while using the technique described in RFC 
1948 to maintain a separation between the ISN generation of connections with different connection identifiers. This is typically 
done by adding the value of a secret hash of the connection identifier to a global ISN counter. This is the same behavior seen in 
the Windows XP stack, except that Windows XP seems to increment the ISN counter more often or by larger increments. 
 
A rough measure of the strength of the ISN generation can be taken by making a state-space plot of the ISN deltas[33]. The 
values of (x[n] – x[n-1]), (x[n-1] – x[n-2]), (x[n-2] – x[n-3]) from a sequence, x, of ISN values are plotted in three dimensions. 
Patterns in this plot are often apparent for weaker generation schemes. The state-space plot of the Windows Vista generator, 
when different source ports are used, is shown below. The plot for Windows XP looks substantially similar and is not given. 
Note that the plot appears uniformly distributed across the available space, indicating the strength of the generator. 
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APPENDIX XI – STACK FINGERPRINT 
We used the nmap[11] and its OS fingerprinting signature database to look at the behavior of the Vista stack and the earlier 
Windows XP stack. We tested both builds 5231 and 5270 and noticed changes between them as well as distinctive changes from 
the earlier Windows XP networking stack. 
 
To get a fingerprint, we turned off Windows Firewall and used the following command line: 
 
linux# nmap -sT -p 445,999 -O 10.200.200.124 
Starting nmap 3.81 ( http://www.insecure.org/nmap/ ) at 2005-12-28 13:09 HST 
Interesting ports on 10.200.200.124: 
PORT    STATE  SERVICE 
445/tcp open   microsoft-ds 
999/tcp closed garcon 
MAC Address: 00:C0:9F:D2:0C:F8 (Quanta Computer) 
No exact OS matches for host (If you know what OS is running on it, see 
http://www.insecure.org/cgi-bin/nmap-submit.cgi). 
TCP/IP fingerprint: 
SInfo(V=3.81%P=i686-pc-linux-gnu%D=12/28%Tm=43B31B36%O=445%C=999%M=00C09F) 
TSeq(Class=TR%IPID=I%TS=100HZ) 
T1(Resp=Y%DF=Y%W=2000%ACK=S++%Flags=AS%Ops=MWNNNT) 
T2(Resp=Y%DF=Y%W=0%ACK=S%Flags=AR%Ops=) 
T3(Resp=Y%DF=Y%W=0%ACK=O%Flags=AR%Ops=) 
T4(Resp=Y%DF=Y%W=0%ACK=O%Flags=R%Ops=) 
T5(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=) 
T6(Resp=Y%DF=Y%W=0%ACK=O%Flags=R%Ops=) 
T7(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=) 
PU(Resp=Y%DF=N%TOS=0%IPLEN=164%RIPTL=148%RID=E%RIPCK=E%UCK=E%ULEN=134%DAT=E) 

 
Uptime 0.130 days (since Wed Dec 28 10:02:20 2005) 
 
Nmap finished: 1 IP address (1 host up) scanned in 7.064 seconds 

 
The nmap signature for Longhorn and the previous Windows Vista 5231 build is: 
 
Fingerprint Microsoft Windows Longhorn eval build 4051 
Class Microsoft | Windows || general purpose 
TSeq(Class=TR%gcd=<6%IPID=I%TS=100HZ) 
T1(DF=Y%W=0%ACK=S++%Flags=AR%Ops=) 
T2(Resp=Y%DF=Y%W=0%ACK=S%Flags=AR%Ops=) 
T3(Resp=Y%DF=Y%W=0%ACK=O%Flags=AR%Ops=) 
T4(DF=Y%W=0%ACK=O%Flags=R%Ops=) 
T5(DF=Y%W=0%ACK=S++%Flags=AR%Ops=) 
T6(DF=Y%W=0%ACK=O%Flags=R%Ops=) 
T7(DF=Y%W=0%ACK=S++%Flags=AR%Ops=) 
PU(DF=N%TOS=0%IPLEN=164%RIPTL=148%RID=E|F%RIPCK=E%UCK=E%ULEN=134%DAT=E) 
 

The primary difference between the 5270 build and the earlier 5231 build is that 5270 will accept SYN packets with the ECN bit 
set (listed as test T1 in the signature). The signature for the 5384 build is almost identical to 5270 except that T1 has DF=N; this 
suggests that the stack is reaching a more stable state. 
 
The following table summarizes our observations of the test packets sent out by nmap during fingerprinting and their elicited 
response. These observations where made by running nmap with the fingerprinting option (-O) while running Ethereal[8] on the 
target host. 
 
#   dport   Sent to target                  Reply from Vista 
-   -----   -----------------               ---------------- 
T1  open    SYN+ECN+W3072+opts              RST+ACK+W0,seq+1 (vista 5231) 
                           SYN+ACK+W8192,seq+1,opts2 (vista 5270) 
T2  open    NULL+W1024+opts                 RST+ACK+W0,seq 
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T3  open    FIN+SYN+PSH+URG+W3072+opts      RST+ACK+W0,seq+2 
T4  open    ACK+W4096+opts                  RST,seq=0 
T5  close   SYN+W3072+opts                  RST+ACK+W0,seq+1 
T6  close   ACK+W3072+opts                  RST+W0,seq=0 
T7  close   FIN+PSH+URG+W4096+opts          RST+ACK+W0,seq=0 

 
opts = (20byte) 03 03 0a 01 02 04 01 09 08 0a 3f 3f 3f 3f 00 00 00 00 00 00 
        WScale 10, NOP, MSS 265, TS 0x3f3f3f3f tsecr 0, EOL 
opts2 = (20byte) 02 04 05 b4 03 03 08 01 01 01 08 0a 00 11 ed 42 3f 3f 3f 3f 
     MSS 1460, WScale 256, NOP, NOP, NOP, TS 0x0011ed42 tsecr 0x3f3f3f3f 

 
All tests consisted of a single TCP packet with some standard options. The first four tests were sent to an open port, and the last 
three to a closed port. The packets had different TCP flags and window sizes. The responses differed in the flags field and the 
sequence number. 
 
Running the same tests against a Windows XP machine gives substantially different results. First, it should be noted that a 
Windows XP SP2 box does not have any reachable open ports. These tests were performed after disabling the firewall. The 
nmap signature for Windows XP is: 
 
Fingerprint Microsoft Windows 2003 Server or XP SP2 
Class Microsoft | Windows | 2003/.NET | general purpose 
Class Microsoft | Windows | NT/2K/XP | general purpose 
TSeq(Class=TR%gcd=<6%IPID=I) 
T1(DF=Y%W=402E|FB8B%ACK=S++%Flags=AS%Ops=MNWNNT) 
T2(Resp=Y%DF=N%W=0%ACK=S%Flags=AR%Ops=) 
T3(Resp=Y%DF=Y%W=402E|FB8B%ACK=S++%Flags=AS%Ops=MNWNNT) 
T4(DF=N%W=0%ACK=O%Flags=R%Ops=) 
T5(DF=N%W=0%ACK=S++%Flags=AR%Ops=) 
T6(DF=N%W=0%ACK=O%Flags=R%Ops=) 
T7(DF=N%W=0%ACK=S++%Flags=AR%Ops=) 
PU(DF=N%TOS=0%IPLEN=B0%RIPTL=148%RID=E%RIPCK=E|F%UCK=E|F%ULEN=134%DAT=E) 

 
But our observations indicated that XP SP2 didn’t answer most of the test probes: 
 
#   dport   Sent to target                  Reply from Vista 
-   -----   -----------------               ---------------- 
T1  open    SYN+ECN+W307                    SYN+ACK+W16430+opts2,seq+1 
T2  open    NULL+W1024+opts                 no response 
T3  open    FIN+SYN+PSH+URG+W3072+opts      no response 
T4  open    ACK+W4096+opts                  no response 
T5  close   SYN+W3072+opts                  no response 
T6  close   ACK+W3072+opts                  no response 
T7  close   FIN+PSH+URG+W4096+opts          no response 
 
Opts2 = (20byte) 02 04 05 b4 01 03 03 00 01 01 08 0a 00 00 00 00 00 00 00 
        MSS 1460, NOP, Wscale 0, NOP, NOP, TS 0 tsecr 0 

 
This indicates that Windows XP is much more strict in not replying to strange packets. Windows XP and Vista 5270 will accept 
a SYN packet with the ECN bit set, while the 5231 build would not. 
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APPENDIX XII – TCP SEGMENT REASSEMBLY 
Vista’s networking stack behaves differently than earlier versions in Windows XP or Windows 2000 when reassembling TCP 
segments. Vista uses a policy that prefers previously received data to later received data. This preference is enforced on a byte-
by-byte basis and not across entire segments.  
. 
We performed our testing by sending out several out-of-order segments in a TCP stream that contained conflicting data. We then 
observed the stream data that were delivered to the application layer on the target machine. Tests were performed using the 
segorder.py tool. Segorder.py listens for SYN packets sent to a test address. After receiving a SYN, it performs the 
three-way handshake to establish a connection with the sender followed by some overlapping segments and finally a RST packet. 
The host being tested must be primed by adding a static ARP entry for the bogus test address which points to the MAC address 
that segorder.py is running on (i.e. arp –s 10.200.200.199 00-04-e2-0b-41-21). To test a host, netcat is 
used to connect to the test address, and the results received by netcat are recorded (i.e. nc 10.200.200.99 999).  
 

A. Test Data 
Seven segments containing ambiguous data were sent out with four bytes of data each. Each segment overlapped at least one 
other segment by two bytes. The following diagram indicates how the segments’ data overlapped: 
 

Segment #1        2222 
Segment #2              5555 
Segment #3                6666 
Segment #4            4444 
Segment #5            oooo 
Segment #6          3333 
Segment #7      1111 
 

After reassembly the resulting TCP stream received was: 
 

Ethereal       111133335555 
Linux RedHat8    11112233445566 
Windows 2000    11112244445566 
Windows XP     11112244445566 
Windows Vista    11222244555566 
 

B. Analysis 
Windows Vista resolved all conflicts by preferring bytes from segments that were received earliest. This behavior differs from 
the behavior of earlier versions such as Windows 2000 and Windows XP which seem to process segments in the order they are 
received by first trimming any excess from the left and then using the rest of the segment in its entirety, overwriting any existing 
data.
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APPENDIX XIII – WINDOWS FIREWALL CONFIGURATION 
We measured the Windows Firewall configuration on a clean 5270 machine and noted the changes that occurred when 
configuration changes were made to the Windows Vista system. We performed our testing by noting the settings in the Windows 
Firewall control panel under the Exceptions tab and Advanced tab. Although we constructed a program printout of this 
information in a uniform manner using documented APIs, we noticed that its output did not always agree with the information in 
the control panel or the observed behavior. The control panel wasn’t completely accurate either – we noticed that after turning on 
File and Print Sharing we were able to ping the machine with ICMP echoes even though the “Allow incoming echo request” 
option remained unchecked in the control panel. 
 
On a clean installation we were unable to reach any TCP services or elicit any replies from UDP services. In the 5231 build we 
received ICMP port unreachable messages when sending packets to unopened TCP ports, but in the later 5270 build no ICMP 
responses were elicited. Both 5231 and 5270 builds returned ICMP port unreachable messages when receiving packets on 
unopened UDP ports. This allows the machine’s aliveness to be tested and UDP services to be enumerated. 
 
When a user changes the Windows Firewall configuration, Windows Vista typically asks for the user’s consent via the consent 
mechanism before making the change. There are instances when firewall configuration changes are made without any user 
consent. These exceptions are noted explicitly. 
 
The Windows Firewall configuration on a clean installation of Windows Vista 5270 contains a single exception: 

• Remote Assistance 
o Service: C:\Windows\System32\msra.exe 
o Scope: Any computer (including those on the Internet) 

The msra executable is not running by default and this rule does not increase exposure except when msra is running. 
 
If file or print sharing is turned on, the following exception is added to the firewall configuration: 

• File and Printer Sharing 
o TCP ports 139, 445 
o UDP ports 137, 138 
o Scope: My network (subnet only) 

Although not reported by the Windows Firewall control panel, we noticed that ICMP Echo messages were processed after File 
and Print Sharing was enabled. 
 
If a user opts in to People Near Me in the network control panel, the following exceptions are added to the firewall configuration: 

• Collaboration Infrastructure (People Near Me) 
o Service: C:\Windows\System32\p2phost.exe 
o Scope: Any computer (including those on the Internet) 

• Collaboration Infrastructure (PNRP) 
o UDP port 3540 
o Scope: Any computer (including those on the Internet) 

 
Opting in to People Near Me causes starts p2phost but this service is not restarted when the user reboots or logs back in. While 
p2phost is active, it listens on an ephemeral TCP port (such as 49161) and uses UDP port 3702 and a couple of ephemeral 
UDP ports for IPv4 (such as 51940 and 51943) and IPv6 (such as 59141 and 51944). All these ports will be exposed while 
p2phost is running. 
 
If a user invokes Windows Collaboration, Windows Vista will direct the user to opt in to People Near Me (see the earlier 
exceptions related to PNM) and to accept the following firewall exceptions: 

• Ad-hoc Meetings 
o Service: C:\Program Files\AdHocMeetings\SpacesContainer.exe 
o Scope: My network (subnet only) 

• Ad-hoc Meetings (P2P Grouping) 
o TCP port 3587 
o Scope: My network (subnet only) 

 
The SpacesContainer.exe binary is the Windows Collaboration program. While running, it listens on UDP port 3702 and 
an ephemeral port for IPv4 (such as 54744) and IPv6 (such as 54745). 
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While Teredo is running, it occasionally registers Windows Firewall exceptions without the user’s consent. These exceptions 
may be later removed or may persist while Teredo is running. 

• Teredo 
o UDP port 3544 
o Scope: Any computer (including those on the Internet) 

• Teredo 
o UDP port 61587 
o Scope: Any computer (including those on the Internet) 

 
Any number of Teredo exceptions may be present; most exceptions will be for ephemeral ports such as 61587, although an 
exception for the standard Teredo port (UDP 3544) or a configured Teredo client port is typically present. 
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APPENDIX XIV – EXPOSED SERVICES 
We used traditional port-scanning techniques to identify exposed TCP and UDP services running on a default Windows Vista 
installation. 
 
Running nmap[11] against a clean installation of Vista 5270 reported that all TCP ports over IPv4 were filtered. Running the 
same scan on the earlier 5231 beta gave the following results: 
 
linux# nmap –P0 -sT -p1-65535 10.200.200.127 
 
Starting nmap 3.81 ( http://www.insecure.org/nmap/ ) at 2005-12-06 11:05 HST 
Interesting ports on 10.200.200.127: 
(The 65526 ports scanned but not shown below are in state: closed) 
PORT      STATE    SERVICE 
135/tcp   open     msrpc               
139/tcp   filtered netbios-ssn 
445/tcp   filtered microsoft-ds 
3500/tcp  filtered unknown 
49152/tcp filtered unknown                       
49153/tcp open     unknown                       
49154/tcp open     unknown                       
49155/tcp filtered unknown                 
49156/tcp filtered unknown              
MAC Address: 00:14:C2:D5:7E:96 (Unknown) 
 
Nmap finished: 1 IP address (1 host up) scanned in 1297.027 seconds 

 
However, with the more recent build 5384, RSTs were generated for unserviced ports yielding: 
 
Interesting ports on 192.168.0.200: 
(The 65527 ports scanned but not shown below are in state: closed) 
PORT      STATE    SERVICE 
135/tcp   filtered msrpc 
139/tcp   filtered netbios-ssn 
445/tcp   filtered microsoft-ds 
49152/tcp filtered unknown 
49153/tcp filtered unknown 
49154/tcp filtered unknown 
49155/tcp filtered unknown 
49156/tcp filtered unknown 
49157/tcp filtered unknown 
MAC Address: 00:C0:9F:D2:0C:F8 (Quanta Computer) 
 
Nmap finished: 1 IP address (1 host up) scanned in 92.517 seconds 

So, 3500 went away and 49157 appeared. In addition, no ports are open any longer. With the firewall off, we can see these nine 
ports are open. 
 
Similar results are observed when using IPv6. This test was performed using a custom-written tcpscan utility, which works 
with both IPv4 and IPv6 addresses. Running tcpscan against Vista 5270 reported that all TCP ports were filtered (i.e. the 
connection timed out). The same scan against the earlier Vista 5231 gave the following results: 
 
linux# tcpscan -p 1-65535 fe80::214:c2ff:fed5:7e96%6 
135 open 
445 Connection timed out 
3500 Connection timed out 
49152 Connection timed out 
49153 Connection timed out 
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49154 Connection timed out 
49155 Connection timed out 
49156 Connection timed out 

 
Interestingly, in build 5231, TCP ports 49153 and 49154 are filtered when reached over IPv6 but not when reached over IPv4. 
TCP over IPv6 experienced the same reversion in behavior as TCP over IPv4, so we got the following useful result, even with 
the firewall on: 
 
135 Connection timed out 
445 Connection timed out 
49152 Connection timed out 
49153 Connection timed out 
49154 Connection timed out 
49155 Connection timed out 
49156 Connection timed out 
49157 Connection timed out 

 
Again, 3500 disappeared and 49157 appeared, as compared to build 5231. We also see that port 139 was available only over 
IPv4. 
 
Vista 5384 did not respond on any UDP ports over IPv4, but using nmap to scan a clean Vista 5270 install gives the following 
results: 
 
linux# nmap -sU -p1-65535 10.200.200.123 
Interesting ports on 10.200.200.123: 
(The 65526 ports scanned but not shown below are in state: closed) 
PORT      STATE         SERVICE 
123/udp   open|filtered ntp 
137/udp   open|filtered netbios-ns 
138/udp   open|filtered netbios-dgm 
500/udp   open|filtered isakmp 
1900/udp  open|filtered UPnP 
3544/udp  open|filtered unknown 
3702/udp  open|filtered unknown 
4500/udp  open|filtered sae-urn 
5355/udp  open|filtered unknown 
49672/udp open|filtered unknown 
Nmap finished: 1 IP address (1 host up) scanned in 19.492 seconds 
 

With the firewall off on 5384, we see that ports 3544 and 49672 no longer appear but there are a couple variable ephemeral 
ports. There appears to be a trend towards removing UDP services. 
 
The earlier 5231 build had similar results with a few extra ports open: 
 
linux# nmap –P0 -sU -p1-65535 10.200.200.127 
 
Starting nmap 3.81 ( http://www.insecure.org/nmap/ ) at 2005-12-09 15:17 HST 
Interesting ports on 10.200.200.127: 
(The 65524 ports scanned but not shown below are in state: closed) 
PORT      STATE         SERVICE 
123/udp   open|filtered ntp 
137/udp   open|filtered netbios-ns 
138/udp   open|filtered netbios-dgm 
500/udp   open|filtered isakmp 
1900/udp  open|filtered UPnP 
3544/udp  open|filtered unknown 
3702/udp  open|filtered unknown 
4500/udp  open|filtered sae-urn 
49152/udp open|filtered unknown 
57431/udp open|filtered unknown 
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57437/udp open|filtered unknown 
MAC Address: 00:14:C2:D5:7E:96 (Unknown) 
 
Nmap finished: 1 IP address (1 host up) scanned in 18.810 seconds 

 
We performed a UDP scan using a custom written tool called udpscan. The udpscan tool works with both IPv4 and IPv6. 
Unlike for UDP over IPv4, UDP over IPv6 for 5384 still responds with an error on closed ports, so in one scan we can see: 
 
123 opened or filtered 
500 opened or filtered 
1900 opened or filtered 
3702 opened or filtered 
5355 opened or filtered 
49230 opened or filtered 
49235 opened or filtered 
 

However, a separate scan shows that the two high-numbered ephemeral ports can vary. 
 
The IPv6 UDP scan for Vista 5270 reported: 

 
linux# udpscan -p 1-65535 fe80::214:c2ff:fed5:7e96%4 
123 opened or filtered 
500 opened or filtered 
1900 opened or filtered 
3702 opened or filtered 
5355 opened or filtered 

 
While the IPv6 UDP scan for Vista 5231 reported: 
 
linux# udpscan -p 1-65535 fe80::214:c2ff:fed5:7e96%6 
123 opened or filtered 
500 opened or filtered 
1900 opened or filtered 
3540 opened or filtered 
3702 opened or filtered 
53662 opened or filtered 

 
In Vista 5384, the UDP ports reachable over IPv6 were a strict subset of those reachable over IPv4 (in particular 137, 138, and 
4500 are not present). In build 5231 the changes were more drastic with less ports available, and, more interestingly, 3540 and 
53662 are available only in IPv6. The 53662 port was being used for Teredo tunneling when this scan was performed.  
 
There were no externally reachable TCP ports in Vista 5270 and 5384. The only externally reachable TCP ports in Vista 5231 
are the MSRPC endpoint mapper (on port 135) and two MSRPC-based services on port 49154 and 49155. None of the open 
UDP ports elicited a response, but many were listening. 
 
We enumerated the RPC services in Vista 5231 using the epdump.py utility available in the dcerpc suite. Querying the 
endpoint mapper gave the following results: 
 
linux$ epdump.py -T -p 135 10.200.200.127 
0a74ef1c-41a4-4e06-83ae-dc74fb1cdd53 1.0:  
  LPC: IUserProfile2 
  LPC: OLEC0ADE9115F00429FACDBF8C0EFCB 
  LPC: senssvc 
 
0b6edbfa-4a24-4fc6-8a23-942b1eca65d1 1.0: Spooler function endpoint 
  LPC: spoolss 
 
0b7edbfa-4b24-4fd6-9a23-952b1eca65d1 1.0: Spooler function endpoint 
  LPC: spoolss 
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12345678-1234-abcd-ef00-0123456789ab 1.0: IPSec Policy agent endpoint 
  LPC: LRPC-7270c5b1e46331efec 
 
12345778-1234-abcd-ef00-0123456789ac 1.0:  
  LPC: CastleLsa 
  LPC: LRPC-44eac19cded0a9fea7 
  LPC: audit 
  LPC: protected_storage 
  LPC: securityevent 
  path: \PIPE\protected_storage 
  path: \pipe\lsass 
  tcp 49155 
 
1ff70682-0a51-30e8-076d-740be8cee98b 1.0:  
  LPC: IUserProfile2 
  LPC: OLEC0ADE9115F00429FACDBF8C0EFCB 
  LPC: senssvc 
  path: \PIPE\atsvc 
 
24019106-a203-4642-b88d-82dae9158929 1.0:  
  LPC: LRPC-0bd58ea0f222a8df72 
  path: \pipe\6f7e04f732ea9f64 
 
2eb08e3e-639f-4fba-97b1-14f878961076 1.0:  
  LPC: IUserProfile2 
  LPC: OLEC0ADE9115F00429FACDBF8C0EFCB 
 
2fb92682-6599-42dc-ae13-bd2ca89bd11c 1.0: Fw APIs 
  LPC: eventlog 
  path: \pipe\eventlog 
 
367abb81-9844-35f1-ad32-98f038001003 2.0:  
  tcp 49156 
 
378e52b0-c0a9-11cf-822d-00aa0051e40f 1.0:  
  LPC: IUserProfile2 
  LPC: OLEC0ADE9115F00429FACDBF8C0EFCB 
  LPC: senssvc 
  path: \PIPE\atsvc 
 
3c4728c5-f0ab-448b-bda1-6ce01eb0a6d5 1.0: DHCP Client LRPC Endpoint 
  LPC: DNSResolver 
  LPC: OLE66311F0901B64FE1B553CE7C99B5 
  LPC: dhcpcsvc 
  tcp 49153 
 
3c4728c5-f0ab-448b-bda1-6ce01eb0a6d6 1.0: DHCPv6 Client LRPC Endpoint 
  LPC: DNSResolver 
  LPC: OLE66311F0901B64FE1B553CE7C99B5 
  LPC: dhcpcsvc 
  LPC: dhcpcsvc6 
  tcp 49153 
 
4b112204-0e19-11d3-b42b-0000f81feb9f 1.0:  
  LPC: W32TIME_ALT 
  path: \PIPE\DAV RPC SERVICE 
  path: \PIPE\W32TIME_ALT 
 
76f226c3-ec14-4325-8a99-6a46348418af 1.0:  
  LPC: WMsgKRpc011FE90 
  LPC: WMsgKRpc0123AD1 
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  LPC: WindowsShutdown 
  path: \PIPE\InitShutdown 
 
7ea70bcf-48af-4f6a-8968-6a440754d5fa 1.0: NSI server endpoint 
  LPC: DNSResolver 
  LPC: OLE66311F0901B64FE1B553CE7C99B5 
  tcp 49153 
 
86d35949-83c9-4044-b424-db363231fd0c 1.0:  
  LPC: IUserProfile2 
  LPC: OLEC0ADE9115F00429FACDBF8C0EFCB 
  LPC: senssvc 
  path: \PIPE\atsvc 
  tcp 49154 
 
a398e520-d59a-4bdd-aa7a-3c1e0303a511 1.0: IKE/Authip API 
  LPC: AudioClientRpc 
  LPC: Audiosrv 
  LPC: IUserProfile2 
  LPC: OLEC0ADE9115F00429FACDBF8C0EFCB 
  LPC: SECLOGON 
  LPC: keysvc 
  LPC: keysvc2 
  LPC: senssvc 
  LPC: trkwks 
  path: \PIPE\atsvc 
  path: \PIPE\srvsvc 
  path: \PIPE\wkssvc 
  path: \pipe\keysvc 
  path: \pipe\trkwks 
  tcp 49154 
 
ae33069b-a2a8-46ee-a235-ddfd339be281 1.0: Spooler base remote object endpoint 
  LPC: spoolss 
 
b58aa02e-2884-4e97-8176-4ee06d794184 1.0:  
  LPC: AudioClientRpc 
  LPC: Audiosrv 
  LPC: IUserProfile2 
  LPC: OLEC0ADE9115F00429FACDBF8C0EFCB 
  LPC: SECLOGON 
  LPC: keysvc 
  LPC: keysvc2 
  LPC: senssvc 
  LPC: trkwks 
  path: \PIPE\atsvc 
  path: \PIPE\srvsvc 
  path: \PIPE\wkssvc 
  path: \pipe\keysvc 
  path: \pipe\trkwks 
  tcp 49154 
 
c9ac6db5-82b7-4e55-ae8a-e464ed7b4277 1.0: Impl friendly name 
  LPC: AudioClientRpc 
  LPC: AudioClientRpc 
  LPC: Audiosrv 
  LPC: Audiosrv 
  LPC: CastleLsa 
  LPC: IUserProfile2 
  LPC: IUserProfile2 
  LPC: IUserProfile2 
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  LPC: IUserProfile2 
  LPC: IUserProfile2 
  LPC: LRPC-44eac19cded0a9fea7 
  LPC: LRPC-6368ba464290b26ef6 
  LPC: OLEC0ADE9115F00429FACDBF8C0EFCB 
  LPC: OLEC0ADE9115F00429FACDBF8C0EFCB 
  LPC: OLEC0ADE9115F00429FACDBF8C0EFCB 
  LPC: OLEC0ADE9115F00429FACDBF8C0EFCB 
  LPC: SECLOGON 
  LPC: SECLOGON 
  LPC: audit 
  LPC: keysvc 
  LPC: keysvc 
  LPC: keysvc2 
  LPC: keysvc2 
  LPC: protected_storage 
  LPC: securityevent 
  LPC: senssvc 
  LPC: senssvc 
  LPC: senssvc 
  path: \PIPE\atsvc 
  path: \PIPE\atsvc 
  path: \PIPE\protected_storage 
  path: \PIPE\wkssvc 
  path: \PIPE\wkssvc 
  path: \pipe\keysvc 
  path: \pipe\keysvc 
  path: \pipe\lsass 
  tcp 49154 
  tcp 49154 
 
d95afe70-a6d5-4259-822e-2c84da1ddb0d 1.0:  
  LPC: WMsgKRpc011FE90 
  LPC: WindowsShutdown 
  path: \PIPE\InitShutdown 
  tcp 49152 
 
dd490425-5325-4565-b774-7e27d6c09c24 1.0: Base Firewall Engine API 
  LPC: eventlog 
  path: \pipe\eventlog 

 
The following is a summary of the services bound to a network interface as reported by the endpoint mapper. When several RPC 
services share the same process, they will share the same endpoints. As a result, there may be interfaces bound to a network port 
that are not registered with the endpoint mapper. 
 
12345778-1234-abcd-ef00-0123456789ac 1.0: 
  tcp 49155 
367abb81-9844-35f1-ad32-98f038001003 2.0: 
  tcp 49156 
3c4728c5-f0ab-448b-bda1-6ce01eb0a6d5 1.0: DHCP Client LRPC Endpoint 
  tcp 49153 
3c4728c5-f0ab-448b-bda1-6ce01eb0a6d6 1.0: DHCPv6 Client LRPC Endpoint 
  tcp 49153 
7ea70bcf-48af-4f6a-8968-6a440754d5fa 1.0: NSI server endpoint 
  tcp 49153 
86d35949-83c9-4044-b424-db363231fd0c 1.0: 
  tcp 49154 
a398e520-d59a-4bdd-aa7a-3c1e0303a511 1.0: IKE/Authip API 
  tcp 49154 
b58aa02e-2884-4e97-8176-4ee06d794184 1.0: 



SYMANTEC ADVANCED THREAT RESEARCH 37 

  tcp 49154 
c9ac6db5-82b7-4e55-ae8a-e464ed7b4277 1.0: Impl friendly name 
  tcp 49154 
d95afe70-a6d5-4259-822e-2c84da1ddb0d 1.0: 
  tcp 49152 
 

We wrote a tool, identify.py (also part of the dcerpc suite), that attempts to brute-force the interfaces actually available 
over a network port. The tool sends malformed requests to a port using a large list of known UUIDs. It is able to distinguish 
which interfaces are available by the error message sent back. Using this tool, we were able to enumerate most RPC services that 
were bound to a port. Additionally, the error message indicates which services require authentication. Not all interfaces available 
on a network port are actually usable; there are RPC mechanisms for blocking requests arriving over the network ([17] and 
section 4.11 of [15]). This is useful for services that do not wish to be available over the network but share a process with another 
service that uses a network transport. 
 
The identify.py script identified the following interfaces available on the open TCP ports: 
 
linux$ identify.py -p 135 -T 10.200.200.127 
00000136-0000-0000-c000-000000000046 0 0 ACCESS_DENIED ISCMLocalActivator 
000001a0-0000-0000-c000-000000000046 0 0 ACCESS_DENIED ISystemActivator 
0b0a6584-9e0f-11cf-a3cf-00805f68cb1b 1 1 ACCESS_DENIED localpmp 
1d55b526-c137-46c5-ab79-638f2a68e869 1 0 ACCESS_DENIED ??? 
412f241e-c12a-11ce-abff-0020af6e7a17 0 2 ACCESS_DENIED ISCM 
64fe0b7f-9ef5-4553-a7db-9a1975777554 1 0 ACCESS_DENIED ??? 
99fcfec4-5260-101b-bbcb-00aa0021347a 0 0 RANGE_ERROR IOXIDResolver 0-6 
afa8bd80-7d8a-11c9-bef4-08002b102989 1 0 ACCESS_DENIED rpcmgmt (ifids) 
b9e79e60-3d52-11ce-aaa1-00006901293f 0 2 ACCESS_DENIED IROT 
c6f3ee72-ce7e-11d1-b71e-00c04fc3111a 1 0 ACCESS_DENIED IMachineActivatorControl 
e1af8308-5d1f-11c9-91a4-08002b14a0fa 3 0 RANGE_ERROR epmapper 0-9 
e60c73e6-88f9-11cf-9af1-0020af6e72f4 2 0 ACCESS_DENIED ILocalObjectExporter 

 
linux$ identify.py -p 49153 -T 10.200.200.127 
18f70770-8e64-11cf-9af1-0020af6e72f4 0 0 ACCESS_DENIED ole32 (IOrCallback) 
3c4728c5-f0ab-448b-bda1-6ce01eb0a6d5 1 0 ACCESS_DENIED dhcpcsvc (RpcSrvDHCPC) 
3c4728c5-f0ab-448b-bda1-6ce01eb0a6d6 1 0 ACCESS_DENIED dhcpcsvc6 
7ea70bcf-48af-4f6a-8968-6a440754d5fa 1 0 ACCESS_DENIED nsisvc 
aa411582-9bdf-48fb-b42b-faa1eee33949 1 0 ACCESS_DENIED ??? 
afa8bd80-7d8a-11c9-bef4-08002b102989 1 0 ACCESS_DENIED rpcmgmt (ifids) 
c33b9f46-2088-4dbc-97e3-6125f127661c 1 0 ACCESS_DENIED ??? 
 
linux$ identify.py -p 49154 -T 10.200.200.127 
000001a0-0000-0000-c000-000000000046 0 0 ACCESS_DENIED ISystemActivator 
0a74ef1c-41a4-4e06-83ae-dc74fb1cdd53 1 0 ACCESS_DENIED taskeng (idletask) 
0d72a7d4-6148-11d1-b4aa-00c04fb66ea0 1 0 ACCESS_DENIED ICertProtect 
12b81e99-f207-4a4c-85d3-77b42f76fd14 1 0 ACCESS_DENIED seclogon (ISeclogon) 
18f70770-8e64-11cf-9af1-0020af6e72f4 0 0 ACCESS_DENIED ole32 (IOrCallback) 
1ff70682-0a51-30e8-076d-740be8cee98b 1 0 ACCESS_DENIED atsvc 
2eb08e3e-639f-4fba-97b1-14f878961076 1 0 ACCESS_DENIED ??? 
300f3532-38cc-11d0-a3f0-0020af6b0add 1 2 ACCESS_DENIED trkwks 
326731e3-c1c0-4a69-ae20-7d9044a4ea5c 1 0 ACCESS_DENIED profsvc (IUserProfile) 
378e52b0-c0a9-11cf-822d-00aa0051e40f 1 0 ACCESS_DENIED sasec 
3faf4738-3a21-4307-b46c-fdda9bb8c0d5 1 1 ACCESS_DENIED AudioSrv 
629b9f66-556c-11d1-8dd2-00aa004abd5e 3 0 ACCESS_DENIED SENSNotify 
63fbe424-2029-11d1-8db8-00aa004abd5e 1 0 ACCESS_DENIED SensApi 
68b58241-c259-4f03-a2e5-a2651dcbc930 1 0 ACCESS_DENIED ??? 
6bffd098-a112-3610-9833-46c3f87e345a 1 0 ACCESS_DENIED wkssvc 
86d35949-83c9-4044-b424-db363231fd0c 1 0 ACCESS_DENIED ??? 
a398e520-d59a-4bdd-aa7a-3c1e0303a511 1 0 ACCESS_DENIED IKEEXT 
afa8bd80-7d8a-11c9-bef4-08002b102989 1 0 ACCESS_DENIED rpcmgmt (ifids) 
b58aa02e-2884-4e97-8176-4ee06d794184 1 0 ACCESS_DENIED sysmain 
c386ca3e-9061-4a72-821e-498d83be188f 1 1 ACCESS_DENIED ??? 



SYMANTEC ADVANCED THREAT RESEARCH 38 

c9ac6db5-82b7-4e55-ae8a-e464ed7b4277 1 0 ACCESS_DENIED sysntfy 
f50aac00-c7f3-428e-a022-a6b71bfb9d43 1 0 ACCESS_DENIED ICatDBSvc 
 
linux$ identify.py -p 135 -T6 fe80::214:c2ff:fed5:7e96%6 
00000136-0000-0000-c000-000000000046 0 0 ACCESS_DENIED ISCMLocalActivator 
000001a0-0000-0000-c000-000000000046 0 0 ACCESS_DENIED ISystemActivator 
0b0a6584-9e0f-11cf-a3cf-00805f68cb1b 1 1 ACCESS_DENIED localpmp 
1d55b526-c137-46c5-ab79-638f2a68e869 1 0 ACCESS_DENIED ??? 
412f241e-c12a-11ce-abff-0020af6e7a17 0 2 ACCESS_DENIED ISCM 
64fe0b7f-9ef5-4553-a7db-9a1975777554 1 0 ACCESS_DENIED ??? 
99fcfec4-5260-101b-bbcb-00aa0021347a 0 0 RANGE_ERROR IOXIDResolver 0-6 
afa8bd80-7d8a-11c9-bef4-08002b102989 1 0 ACCESS_DENIED rpcmgmt (ifids) 
b9e79e60-3d52-11ce-aaa1-00006901293f 0 2 ACCESS_DENIED IROT 
c6f3ee72-ce7e-11d1-b71e-00c04fc3111a 1 0 ACCESS_DENIED IMachineActivatorControl 
e1af8308-5d1f-11c9-91a4-08002b14a0fa 3 0 RANGE_ERROR epmapper 0-9 
e60c73e6-88f9-11cf-9af1-0020af6e72f4 2 0 ACCESS_DENIED ILocalObjectExporter 

 
The exposure of shared-process servers gives some insight into what other services are running on the machine. This information 
can be used for fingerprinting purposes[31]. 
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APPENDIX XV – ANONYMOUS ACCESS TO NAMED PIPES 
We determined which named pipes were remotely accessible without providing authentication. This was done by first enabling 
file sharing on the remote machine (a prerequisite to remote access of named pipes). We then enumerated all of the named pipes 
locally using the pipelist.exe tool7. 
 
vista> pipelist > pipes.txt 
vista> type pipes.txt 
PipeList v1.01 
by Mark Russinovich 
http://www.sysinternals.com 
 
Pipe Name                                    Instances       Max Instances 
---------                                    ---------       ------------- 
InitShutdown                                      2               -1       
lsass                                             4               -1       
protected_storage                                 2               -1       
ntsvcs                                            2               -1       
scerpc                                            2               -1       
net\NtControlPipe1                                1                1       
plugplay                                          2               -1       
net\NtControlPipe2                                1                1       
Winsock2\CatalogChangeListener-350-0              1                1       
epmapper                                          2               -1       
Winsock2\CatalogChangeListener-208-0              1                1       
net\NtControlPipe3                                1                1       
LSM_API_service                                   2               -1       
net\NtControlPipe4                                1                1       
eventlog                                          2               -1       
5373d71f34c9a06b                                  2               -1       
Winsock2\CatalogChangeListener-3c0-0              1                1       
net\NtControlPipe5                                1                1       
net\NtControlPipe6                                1                1       
net\NtControlPipe7                                1                1       
net\NtControlPipe8                                1                1       
net\NtControlPipe9                                1                1       
net\NtControlPipe0                                1                1       
net\NtControlPipe10                               1                1       
Winsock2\CatalogChangeListener-42c-0              1                1       
atsvc                                             2               -1       
Winsock2\CatalogChangeListener-400-0              1                1       
89199f2923fa487c011aa0740144fd14                  1                1       
net\NtControlPipe11                               1                1       
3edbd0599284422b00a7783c0006fdbc                  1                1       
DAV RPC SERVICE                                   2               -1       
Winsock2\CatalogChangeListener-244-0              1                1       
wkssvc                                            3               -1       
srvsvc                                            3               -1       
browser                                           2               -1       
net\NtControlPipe12                               1                1       
net\NtControlPipe13                               1                1       
keysvc                                            2               -1       
net\NtControlPipe14                               1                1       
net\NtControlPipe15                               1                1       
net\NtControlPipe16                               1                1       
net\NtControlPipe17                               1                1       
trkwks                                            2               -1       
net\NtControlPipe18                               1                1       

 
7 The pipelist.exe tool was previously released online at www.sysinternals.com, but appears to no longer be available. 
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Winsock2\CatalogChangeListener-730-0              1                1       
W32TIME_ALT                                       2               -1       
INETINFO                                          2               -1       
SMTPSVC                                           2               -1       
SQLLocal\SQLEXPRESS                               2               -1       
MSSQL$SQLEXPRESS\sql\query                        2               -1       
Winsock2\CatalogChangeListener-234-0              1                1       
USearch                                           2              254       
a991e6c5c51e4d83011adbb40144fc68                  1                1       
1566e57c69534197011af1940144fc68                  1                1       
e174b15fda70473300cf78940006fdbc                  1                1       
95c9fc10b11d4e9400cf788c0006fdbc                  1                1       
PIPE_EVENTROOT\CIMV2SCM EVENT PROVIDER            2               -1       
net\NtControlPipe19                               1                1       
Winsock2\CatalogChangeListener-bac-0              1                1       
40abfd5a2fc5467e011ad70c0144fd14                  1                1       
9afc8331c39d458700a778440006fdbc                  1                1       
Winsock2\CatalogChangeListener-594-0              1                1    
 

We also enumerated the pipes in the 
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\lanmanserver\Parameters\NullSessionPipes registry key using 
regedit: 
 

• SQL\QUERY 
• SPOOLSS 
• netlogon 
• lsarpc 
• samr 
• browser 

 
We then established an anonymous connection to the IPC$ share of the target machine from another Windows host and used the 
trypipes.py script to establish connections to each of these named pipes to see which ones were actually reachable. When 
we ran the script from a Windows XP machine, we observed the following results: 
 
xp> net use \\10.200.200.123\ipc$ /u:”” ”” 
xp> c:\python24\python trypipes.py -m 10.200.200.123 pipes.txt 
\\10.200.200.123\PIPE\netlogon 
\\10.200.200.123\PIPE\lsarpc 
\\10.200.200.123\PIPE\samr 

 
Unexpectedly, we were able to access more pipes when running the same tests from another Vista machine: 
 
vista> c:\python24\python trypipes.py -m 10.200.200.123 pipes.txt 
\\10.200.200.123\PIPE\lsass 
\\10.200.200.123\PIPE\protected_storage 
\\10.200.200.123\PIPE\netlogon 
\\10.200.200.123\PIPE\lsarpc 
\\10.200.200.123\PIPE\samr 

 
These path names all refer to the same named pipe. The 
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Npfs\Aliases\lsass key lists the following names: 

• protected_storage 
• netlogon 
• lsarpc 
• samr 

 
We then enumerated the RPC services using these pipes (if any) by running the identify.py script from the dcerpc suite 
from a Vista host. The result was the same for all five pipe names: 
 
vista> c:\python24\python identify.py -P -f netlogon 10.200.200.123 
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11220835-5b26-4d94-ae86-c3e475a809de 1 0 error -1 ICryptProtect 
12345778-1234-abcd-ef00-0123456789ab 0 0 RANGE_ERROR LSA access (lsarpc) 0-95 
12345778-1234-abcd-ef00-0123456789ac 1 0 RANGE_ERROR samsrv 0-70 
3919286a-b10c-11d0-9ba8-00c04fd92ef5 0 0 RANGE_ERROR LSA DS access (lsarpc) 0-1 
afa8bd80-7d8a-11c9-bef4-08002b102989 1 0 RANGE_ERROR rpcmgmt (ifids) 0-5 
c681d488-d850-11d0-8c52-00c04fd90f7e 1 0 RANGE_ERROR efsrpc 0-25 
c9ac6db5-82b7-4e55-ae8a-e464ed7b4277 1 0 error -1 sysntfy 
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APPENDIX XVI – UNSOLICITED TRAFFIC 
 
We observed the network traffic of a clean installation of Windows Vista 5270 and 5231 during startup, in an idle period, and at 
shutdown. The machine was placed on a subnet with other Windows machines with a server that provided a DHCP lease and 
Internet connectivity. We observed that Windows Vista sent out a number of unsolicited protocol requests to other machines on 
the local network and elsewhere on the Internet. These observations were made by running Ethereal[8] on another host on the 
same network (a non-switching hub was used, but a switch could also be used if properly configured). The following is a 
summary of all traffic observed: 
 

• IPv6 ICMP neighbor and router solicitation messages and multicast notifications. 
• IPv4 ARP requests and responses 

o The first few arps were for the private address 169.254.126.150. When no reply was received, the machine 
started to use this address until a DHCP lease was acquired. 

• IGMP membership 
• LLMNR (Link Local Multicast Name Resolution, UDP 5355) traffic via IPv6 and IPv4 for 

o <hostname> 
o _ldap._tcp.dc._msdcs.<domain> 
o isatap, isatap.<domain> 
o wpad.<domain> 

• DHCP 
o Request address 
o Inform during shutdown 

• NBNS  
o registration <hostname> 
o registration WORKGROUP 
o lookup ISATAP 
o registration __MSBROWSE__ 
o lookup WPAD.<domain> 
o query WORKGROUP 
o (5231 build used to lookup SQM) 

• DNS 
o PTR lookup for <ip address>.in-addr.arpa 
o SRV lookup for _ldap._tcp.dc._msdcs.<domain> and _LDAP._TCP 
o A lookup for teredo.ipv6.microsoft.com 
o A lookup for isatap and isatap.<domain> 
o A lookup for time.windows.com 
o AAAA lookup for wpad.<domain> (during shutdown?) 
o (5231 build performed AAAA lookup for pnrpv2.ipv6.microsoft.com) 
o (5231 build performed AAAA and A lookup for sqm.msn.com) 

• Teredo (IPv6 tunneled in UDP) 
o ICMP router solicitations 
o ICMP ECHO to pnrpv2.ipv6.microsoft.com 
o And other unanalyzed traffic (perhaps normal Teredo maintenance traffic?) 

• EAPOL 802.1x Authentication (Ether type 0x888e) Start request 
• Windows Browser (UDP 138) announcement and backup list. 
• WSD (Web Services Discovery, UDP Port 3702 multicast traffic with XML SOAP payload) via IPv4 and IPv6. 
• (5231 build sent HTTP POST to port 80 of sqm.msn.com during shutdown) 

o POST /sqm/windows/sqmserver.dll 
 
 


