
Robust Undecidability of

Timed and Hybrid Systems? ??

Thomas A. Henzinger1 Jean-Fran�cois Raskin1;2

1 Department of Electrical Engineering and Computer Sciences

University of California at Berkeley, CA 94720-1770, USA
2 D�epartement d'Informatique, Facult�e des Sciences

Universit�e Libre de Bruxelles, Belgium

ftah,jfrg@eecs.berkeley.edu

Abstract. The algorithmic approach to the analysis of timed and hybrid

systems is fundamentally limited by undecidability, of universality in the

timed case (where all continuous variables are clocks), and of emptiness in

the rectangular case (which includes drifting clocks). Traditional proofs

of undecidability encode a single Turing computation by a single timed

trajectory. These proofs have nurtured the hope that the introduction

of \fuzziness" into timed and hybrid models (in the sense that a system

cannot distinguish between trajectories that are su�ciently similar) may

lead to decidability. We show that this is not the case, by sharpening

both fundamental undecidability results. Besides the obvious blow our

results deal to the algorithmicmethod, they also prove that the standard

model of timed and hybrid systems, while not \robust" in its de�nition

of trajectory acceptance (which is a�ected by tiny perturbations in the

timing of events), is quite robust in its mathematical properties: the

undecidability barriers are not a�ected by reasonable perturbations of

the model.

1 Introduction

The main limitations of the algorithmic method for analyzing timed and hy-

brid systems �nd their precise expression in two well-publicized undecidabil-

ity results. First, the universality problem for timed automata (does a timed

automaton accept all timed words?) is undecidable [AD94]. This implies that

timing requirements which are expressible as timed automata cannot be model

checked. Consequently, more restrictive subclasses of timing requirements have

been studied (e.g., Event-Clock Automata [AFH94], Metric Interval Temporal

? A preliminary version of this paper appeared in the Proceedings of the Third Interna-

tional Workshop on Hybrid Systems: Computation and Control (HSCC 00), Lecture

Notes in Computer Science 1790, Springer-Verlag, 2000, pp. 145{159.
?? This research was supported in part by the DARPA (NASA) grant NAG2-1214, the

DARPA (Wright-Patterson AFB) grant F33615-C-98-3614, the ARO MURI grant

DAAH-04-96-1-0341, and the NSF CAREER award CCR-9501708.

Logic [AFH96], Event-Clock Logic [RS99]). Second, the emptiness/reachability

problem for rectangular automata (does a rectangular automaton accept any

timed word, or equivalently, can a rectangular automaton reach a given loca-

tion?) is undecidable [HKPV95]. While several orthogonal undecidability re-

sults are known for hybrid systems, it is the rectangular reachability problem

which best highlights the essential limitations of the algorithmic approach to

systems with continuous dynamics. This is because the rectangular automaton

model is the minimal generalization of the timed automaton model capable of

approximating continuous dynamics (using piecewise linear envelopes). It fol-

lows that rectangularity as an abstraction is insu�cient for checking invariants

of hybrid systems, and further loss of information is necessary (e.g., initialization

[HKPV95], discretization [HK97]).

Both central undecidability results have been proved by encoding each com-

putation of some Turing-complete machine model as a trajectory of a timed

or hybrid system. The encodings are quite fragile: given a deterministic Turing

machine M with empty input, one constructs either a timed automaton that

rejects the single trajectory which encodes the halting computation of M (ren-

dering universality undecidable), or a rectangular automaton that accepts that

single trajectory (rendering emptiness/reachability undecidable). However, if the

speci�ed trajectory is perturbed in the slightest way, it no longer properly en-

codes the desired Turing computation. This has led researchers to conjecture

[Fra99] that undecidability is due to the ability of timed and hybrid automata

to di�erentiate real points in time with in�nite precision. Consequently, one

might hope that a more realistic, slightly \fuzzy" model of timed and hybrid

systems might not su�er from undecidability.1 In a similar vein, in [GHJ97] it is

conjectured that unlike timed automata, robust timed automata, which do not

accept or reject individual trajectories but bundles (\tubes") of closely related

trajectories, can be complemented.

In this paper, we refute these conjectures. In doing so, we show that the

sources of undecidability for timed and hybrid systems are structural, robust,

and intrinsic to mixed discrete-continuous dynamics, rather than an artifact of

a particular syntax or of the ability to measure time with arbitrary precision.

We redo both undecidability proofs by encoding each Turing computation not

as a single trajectory but as a trajectory tube of positive diameter. This requires

considerable care and constitutes the bulk of this paper. As corollaries we obtain

the following results:

Robust timed and rectangular automata Robust automata introduce

\fuzziness" semantically, by accepting tubes rather than trajecto-

ries [GHJ97]. We prove that universality is undecidable for robust

timed automata (since emptiness is decidable, it follows that they are not

1 Note that \fuzziness," as meant here, is fundamentally distinct from \discretiza-

tion," which is known to lead to decidability in many cases. Intuitively, fuzziness

preserves the density of the time domain, while discretization does not. Mathemati-

cally, discretization is performed with respect to a �xed real � > 0 representing �nite

precision, while fuzziness quanti�es over � > 0 existentially.

2

complementable), and that emptiness/reachability is undecidable for robust

rectangular automata.

Open rectangular automata Open automata introduce \fuzziness" syntac-

tically, by restricting all guard and di�erential-inclusion intervals to open

sets. We prove that emptiness/reachability is undecidable for open rectan-

gular automata. The universality problem for open timed automata is, to

our knowledge, still open.

A main impact of these results is, of course, negative: they deal a serious

blow to our ability for analyzing timed and hybrid systems automatically, much

more so than the previously known results, which rely on questionable, \frag-

ile" modeling assumptions (one trajectory may be accepted even if all slightly

perturbed trajectories are rejected, and vice versa). There is, however, also a

positive interpretation of our results: they show that the \standard" model for

timed and hybrid systems, with its fragile de�nition of trajectory acceptance,

does not give rise to a fragile theory but, on the contrary, is very robust with

respect to its mathematical properties (such as decidability versus undecidabil-

ity). For further decidability/undecidability results about the standard model of

hybrid systems, we refer the reader to [AMP95,BT99].

2 Trajectories, Tubes, and Hybrid Automata

In this paper, we consider �nite trajectories only. A trajectory over an alphabet�

is an element of the language (��R+)�, where R+ stands for the set of positive

reals excluding 0. Thus, a trajectory is a �nite sequence of pairs from � � R+.

We call the �rst element of each pair an event, and the second element the time-

gap of the event. The time-gap of an event represents the amount of time that

has elapsed since the previous event of the trajectory. For a trajectory � , we

denote its length (i.e., the number of pairs in �) by len(�), and its projection

onto �� (i.e., the sequence of events that results from removing the time-gaps)

by untime(�). We assign time-stamps to the events of a trajectory: for the i-th

event of � , the time-stamp is de�ned to be t
�
(i) =

P
1�j�i �j , where �j is the

time-gap associated with the j-th event of � .

Metrics on trajectories. Let the set of all trajectories be denoted Traj. Assum-

ing that trajectories cannot be generated and recorded with in�nite precision,

in order to get an estimate of the amount of error in the data that represents

a trajectory, we need a metric on Traj. Here we de�ne, as an example, one par-

ticular metric d; in [GHJ97], it is shown that all reasonable metrics de�ne the

same topology on trajectories. Given two trajectories � and � 0, we de�ne:

{ d(�; � 0) =1 if untime(�) 6= untime(� 0);

{ d(�; � 0) = maxfjt
�
(i)� t

�
0(i)j : 1 � i � len(�)g if untime(�) = untime(� 0).

Thus, only two trajectories with the same length and the same sequence of events

have a �nite distance, and �nite errors may occur only in measuring time. The

3

metric measures the maximal di�erence in the time-stamps of any two corre-

sponding events: two timed words are close to each other if they have the same

events in the same order, and the times at which these events occur are not very

di�erent. For instance, for �1 = (a; 1)(a; 1)(a; 1) and �2 = (a; 0:9)(a; 1:2)(a; 1:2),

we have d(�1; �2) = 0:3.

Given a metric, we use the standard de�nition of open sets. Formally, for the

metric d, a trajectory � , and a positive real � 2 R+, de�ne the d-tube around

� of diameter � to be the set T (�; �) = f� 0 : d(�; � 0) < �g of all trajectories at

a d-distance less than � from � . A d-open set O, called a d-tube, is any subset

of Traj such that for all trajectories � 2 O, there is a positive real � 2 R+ with

T (�; �) � O. Thus, if a d-tube contains a trajectory � , then it also contains all

trajectories in some neighborhood of � . Let the set of all d-tubes be denoted

Tube.

From trajectory languages to tube languages. A trajectory language is any

subset of Traj; a tube language [GHJ97] is any subset of Tube. Every trajectory

language L induces a tube language [L], which represents a \fuzzy" rendering

of L. In [L] we wish to include a tube i� su�ciently many of its trajectories

are contained in L. We de�ne \su�ciently many" as any dense subset, in the

topological sense.

For this purpose we review some simple de�nitions from topology. A set S

of trajectories is closed if its complement Sc = Traj � S is open. The closure S

of a set S of trajectories is the least closed set containing S, and the interior

Sint is the greatest open set contained in S. The set S0 of trajectories is dense

in S i� S � S0. Formally, given a trajectory language L, the corresponding tube

language is de�ned as [L] = fO 2 Tube : O � Lg: Thus, a tube O is in [L] if

for each trajectory � 2 O there is a sequence of trajectories with limit � such

that all elements of this sequence are in L. Equivalently, L must be dense in O;

that is, for every trajectory � 2 O and for every positive real � 2 R+, there is a

trajectory � 0 2 L such that d(�; � 0) < �. Since the tubes in [L] are closed under

subsets and union, the tube language [L] can be identi�ed with the maximal

tube in [L], which is the interior L
int

of the closure of L.

We will de�ne the semantics of a robust hybrid automaton with trajectory

set L to be the tube set [L]. This has the e�ect that a robust hybrid automaton

cannot generate (or accept) a particular trajectory when it refuses to generate

(rejects) su�ciently many surrounding trajectories. Neither can the automaton

refuse to generate a particular trajectory when it may generate su�ciently many

surrounding trajectories.

Timed and rectangular automata. An interval has the form (a; b), [a; b],

(a; b], or [a; b), where a 2 Q [f�1g, b 2 Q [f1g, and a � b if I is of the form

[a; b], and a < b otherwise. We say that the interval I is open if it is of the form

(a; b), and closed if it is of the form [a; b]. We write Rect for the set of intervals.

4

A rectangular automaton [HKPV95] is a tuple A = h�;Q;Q0; Qf
; C; E;Ev;

Init;Pre;Reset;Post;Flowi2, where (i) � is a �nite alphabet of events; (ii) Q is

a �nite set of locations; (iii) Q0 � Q is a set of start locations; (iv) Q
f
� Q

is a set of accepting locations; (v) C is a �nite set of real-valued variables; (vi)

E � Q�Q is a �nite set of edges; (vii) Ev : E ! � is a function that associates

with each edge e a letter of the alphabet �; (viii) Init : Q0 ! C ! Rect is a

function that associates with each start location q0 2 Q0 and variable x 2 C

an interval I that contains the possible initial values of this variable when the

control of the automaton starts in location q0; (ix) Pre : E ! C ! Rect is a

function that associates with each edge e and variable x an interval I such that

the value of x must lie in I before crossing the edge e; (x) Post : E ! C ! Rect is

a function that associates with each edge e and each variable x an interval I such

that the value of x must lie in I after crossing the edge e; (xi) Reset : E ! 2C

is a function that associates with each edge e a subset of variables that are

reset when crossing e; if a variable x belongs to the set Reset(e) then the value,

after crossing the edge e, of x is taken nondeterministically from the interval

Post(e; x); (xii) Flow : Q ! C ! Rect is a function that associates with each

location q and variable x an interval I such that the �rst derivative of x when

the control is in location q lies within I .

Timed automata are a syntactic subset of rectangular automata. A rect-

angular automaton A is a timed automaton [AD94] if the function Flow of A

is such that for all locations q 2 Q, and for all variables x 2 C, we have

Flow(q; x) = [1; 1]; that is, every continuous variable is a clock. The timed au-

tomaton A is open if all intervals used in the functions Init, Pre, and Post are

open. Similarly, a rectangular automaton A is open if all intervals used in the

functions Init, Pre, Post, and Flow are open.

A rectangular automaton A de�nes a labeled transition system with an in�-

nite state space S, the in�nite set of labels R+[�, and the transition relation R.

Each transition with label � correspond to an edge step whose event is � 2 �.

Each transition with label � 2 R+ corresponds to a time step of duration �. The

states and transitions of A are de�ned as follows. A state (q;x) of A consists of

a discrete part q 2 Q and a continuous part x 2 Rn. The state space S � Q�Rn

is the set of all states of A. The state (q;x) is an initial state of A if q 2 Q0

and x 2 Init(q)3. For each edge e = (q1; q2) of A, we de�ne the binary relation

!e� S2 by (q1;x) !
e (q2;y) i� x 2 Pre(e), y 2 Post(e), and for every coordi-

nate i 2 f1; : : : ; ng with i 62 Reset(e), we have x
i
= y

i
. For each event � 2 �,

we de�ne the edge-step relation !�� S2 by s1 !
� s2 i� s1 !

e s2 for some edge

e 2 E with Ev(e) = �. For each positive real � 2 R+, we de�ne the binary time-

step relation !�

� S2 by (q1;x) !
� (q2;y) i� q1 = q2 and y�x

�

2 Flow(q1). The

transition relation R � S � S is de�ned by R = f!ej e 2 Eg [f!�j � 2 R+g.

2 It is often convinient to annotate locations with variable constraints, so-called invari-

ant conditions. Our results extend straight-forwardly to rectangular automata with

invariant conditions.
3 To simplify notations, we note x 2 Init(q) instead of x 2 Init(q; x).

5

Class of Automata Emptiness/Reachability Universality

Timed Automata [AD94] Decidable Undecidable

Rectangular Automata [HKPV95] Undecidable Undecidable

Fig. 1. Known decidability and undecidability results for timed/rectangular automata.

x := 0x := 0

a

x 2 (1; 2)

a

a a

a a

a a

x = 1

x < 1

a

a a

a

a

(b)

(c)

(a)

q2

q0

q1

q3

x 2 [1; 2]

Fig. 2. The timed automata A1, A2, and A3.

Trajectory acceptance and reachable locations. We now de�ne the tra-

jectory language and the reachable locations of a rectangular automaton A. A

run of the automaton A is a �nite path (q0;x0) !
�0 (q0;y0) !

�0 (q1;x1) !
�1

(q1;y1) : : : !
�n (q

n+1;xn+1) in the transition system of A that alternates be-

tween time steps and edge steps. The run is initial if q0 2 Q0 and x0 2 Init(q0),

and accepting if q
n
2 Q

f
. The trajectory � = (�0; �0)(�1; �1) : : : (�n; �n) is ac-

cepted by the rectangular automaton A if A has an initial and accepting run

(q0;x0) !
�0 (q0;y) !

�0 (q1;x1) !
�1 : : : !�n (q

n+1;xn+1). The trajectory �

leads to location q
n+1. A location q of A is reachable if there exists an trajec-

tory � accepted by A that leads to q. We denote by L(A) the set of trajectories

accepted by A.

The trajectory-emptiness problem for a rectangular automaton A is to de-

cide whether or not L(A) is empty. The trajectory-universality problem for a

rectangular automaton A is to decide whether or not L(A) contains all trajec-

tories over the alphabet �. The location-reachability problem for a rectangular

automaton A is to decide if a given location of A is reachable. Note that the

trajectory-emptiness problem for a class of rectangular automaton is decidable

i� the location-reachability problem is decidable. The previously known results

about these problems are summarized in the table of Figure 1.

Tube acceptance and robustly reachable locations. The rectangular au-

tomaton A accepts the set [L(A)] of tubes [GHJ97]. The following examples il-

6

Class of Automata Robust Emptiness/Robust Reachability Robust Universality

Timed Automata Decidable Undecidable

Rectangular Automata Undecidable Undecidable

Fig. 3. Decidability results about robust timed and rectangular automata.

lustrate tube acceptance. First, consider the timed automaton A1 of Figure 2(a).

This automaton accepts all trajectories over the unary alphabet fag which con-

tain two consecutive a events with a time-gap in the open interval (1; 2). This

property is invariant under su�ciently small perturbations of the time-stamps.

Hence the automaton A1 accepts precisely those tubes that consist of trajec-

tories in L(A1), and the maximal accepted tube is L(A1) itself. In the timed

automaton A2 of Figure 2(b), the open interval (1; 2) is replaced by the closed

interval [1; 2]. This changes the set of accepted trajectories but not the set of

accepted tubes: L(A1) � L(A2) but [L(A1)] = [L(A2)]. Notice that the \bound-

ary trajectories" accepted by A2, with two consecutive a's at a time-gap of 1

or 2 but no consecutive a's at a time-gap strictly between 1 and 2, are not ac-

cepted robustly, because there are arbitrarily small perturbations that are not

acceptable.

Let us now de�ne the notion of robust reachability. A location q of a rect-

angular automaton A is robustly reachable if there exists a tube O accepted by

A such that each trajectory in O leads to q. The automaton A3 of Figure 2(c)

illustrates this notion: the locations q0, q2, and q3 are robustly reachable, while

the location q1 is not robustly reachable.

The robust-emptiness problem for a rectangular automaton A is to decide

whether or not [L(A)] is empty. The robust-universality problem for a rectangular

automaton A is to decide whether or not [L(A)] contains all tubes over �. The

robust-reachability problem for a rectangular automaton A is to decide, given

a location q of A, if q is robustly reachable. In the following sections of this

paper, we will sharpen the known undecidability results about timed and hybrid

systems. We will show that the introduction of fuzziness into timed and hybrid

models via the notion of tubes (this fuzziness can be intuitively seen as the

semantic removal of equality) does not change the undecidability results. Our

results are summarized in the table of Figure 3; only the positive result was

previously known [GHJ97].

Some properties of robust timed automata. We recall some results pre-

sented in [GHJ97]. We will need these notions to establish our results. The �rst

proposition tells us that when we consider tube acceptance, we can restrict our

attention either to closed or to open timed automata.

Proposition 1. For every timed automaton A, we can construct a timed au-

tomaton A, called the closure of A, whose Pre;Post; Init functions use only closed

intervals, such that L(A) = L(A). Furthermore, we can construct an open timed

automaton Aint, called the interior of A, such that [L(A)] = [L(Aint)] = [L(A)].

7

The following proposition shows that for open timed automata, tube emptiness

coincides with trajectory emptiness.

Proposition 2. For every open timed automaton A and every trajectory � , if �

is accepted by A along some path, then there is a positive real � 2 R+ such that

all trajectories in the tube T (�; �) are accepted by A along the same path.

Before de�ning the tube complement of a timed automaton, we observe an im-

portant property of the trajectory languages that can be de�ned by timed au-

tomata.

Proposition 3. For every timed automaton A, there is no tube O such that both

L(A) and its complement L(A)c are both dense in O.

It follows that a tube cannot be accepted by both a timed automaton A and a

trajectory complement of A.

For de�ning the tube complement of a timed automaton A, it is not useful

to consider the boolean complement Tube� [L(A)] of the tube language [L(A)].

For [L(A)] is closed under subsets and union. Therefore, unless [L(A)] = ; or

[L(A)] = Tube, the boolean complement Tube� [L(A)] cannot be induced by any

trajectory language and, hence, cannot be accepted by any timed automaton.

Thus, for every tube language L � Tube, we de�ne the tube complement of L to

be the set

L
c = fO 2 Tube : O \

[
L = ;g

of tubes that are disjoint from the tubes in L. The following proposition shows

that for every timed automaton A, the tube complement [L(A)]c is induced by

the trajectory complement L(A)c; that is, [L(A)c] = [L(A)]c.

Proposition 4. If L is a trajectory language and there is no tube O such that

both L and Lc are dense in O, then [L]c = [Lc].

For two timed automata A and B, we say that B is a tube complement of A i�

B accepts precisely the tubes that do not intersect any tube accepted by A; that

is, [L(B)] = [L(A)]c. From Propositions 3 and 4, it follows that every trajectory

complement of a timed automaton is also a tube complement (the converse is

generally not true). Since [L(A)]c = [L(Aint)]c = [L(Aint)c], in order to construct

tube complements, it would su�ce to construct trajectory complements of open

timed automata.4 This, however, is not possible, as we show in the next section.

3 The Robust-Universality Problem for Timed Automata

In this section, we show that the halting problem for two-counter machines can

be reduced to the robust-universality problem for timed automata. A two-counter

4 Similarly, since [L(A)]c = [L(A)]c = [L(A)c], it would su�ce to construct trajectory

complements of closed timed automata. This, however, is known to be impossi-

ble [AD94].

8

machine M is a triple hfb1; : : : ; bng; C;Di, where fb1; : : : ; bng are n instructions,

and C and D are two counters ranging over the natural numbers. Each instruc-

tion b
i
, 0 � i � n, has one of the three possible forms: (i) a conditional jump

instruction tests if a counter is 0 and then jumps conditionally to the next in-

struction; (ii) an increment/decrement instruction increments or decrements the

value of one of the two counters and then jumps nondeterministically to one of

two possible next instructions; (iii) a stop instruction puts an end to the machine

execution. A con�guration of a two-counter machine M is a triple
 = hi; c; di,

where i is the program counter indicating the current instruction, and c and

d are the values of the counters C and D. A computation of M is a �nite or

in�nite sequence
 =
0
1 : : : of con�gurations such that
0 = h0; 0; 0i, i.e. the

�rst instruction is b0, and the initial value of the two counters C and D is 0, and

for every

i+1 is a M -successor con�guration of

i
, for every i � 0. If
 is �nite

then its last con�guration contains a stop instruction. The halting problem for a

two-counter machine M is to decide whether or not the execution of M has at

least one computation that ends in a stop instruction. The problem of deciding

if a two-counter machine has a halting computation is undecidable.

Trajectory encoding of a two-counter machine computation. We re-

view how the undecidability of the universality problem for timed automata was

established by Alur and Dill [AD94] and explain why their proof does not trans-

late to the robust-universality problem. Given a two-counter machine M , the

set LUndecTraj (M) of trajectories is de�ned as follows: (�; �) 2 LUndecTraj (M) i� (i) � =

b
i0
cc0dd0b

i1
cc1dd1 : : : b

im
ccmddm such that hi0; c0; d0i; hi1; c1; d1i; : : : him; cm; dmi

is a halting computation of M ; (ii) for all j � 0, the time-stamp of b
ij
is j; (iii)

for all j � 1, (a) if c
j+1 = c

j
, then for every c with time-stamp t in the interval

(j; j + 1) there is a c with time-stamp t+ 1; (b) if c
j+1 = c

j
+ 1, then for every

c with time-stamp t in the interval (j + 1; j + 2), except the last one, there is a

c with time-stamp t� 1; (c) if c
j+1 = c

j
� 1, then for every c with time-stamp t

in the interval (j; j + 1), except the last one, there is a c with time-stamp t+1;

and (iv) the same requirements hold for d's. Then LUndecTraj (M) is nonempty i� M

has a halting computation. Furthermore, there exists a timed automaton that

accepts exactly the trajectories not in LUndecTraj (M). It follows that the universality

problem for timed automata is undecidable.

Note that the i-th con�guration is encoded in the interval [i; i+1). To enforce

the requirement that the number of c events in two successive con�gurations is

the same, every c in the �rst interval has a matching c at the exact distance 1,

and vice versa. This use of punctuality constraints has the following consequence.

Proposition 5. Let M be a two-counter machine, there is no tube O 2 Tube

such that O is dense in LUndecTraj (M); that is, [LUndecTraj (M)] = ;.

This has nurtured some hope that, by removing the possibility to specify punc-

tuallity constraints, timed automata might have a decidable robust-universality

problem. Unfortunately this is not the case. We next show that we can de�ne

a set LUndecTube (M) of trajectories which forms a tube and encodes halting compu-

tations of the given two-counter machine M . Furthermore the tube complement

9

of this tube language can be de�ned by a robust (open) timed automaton. The

undecidability of the robust-universality problem and the nonclosure under com-

plement of robust timed automata will follow.

Tube encoding of a two-counter machine computation. To facilitate

the de�nition of LUndecTube (M), the undecidable tube language, we �rst introduce

some new notions. We call an open (closed) slot an open (closed) interval of

the real numbers. We de�ne the open (closed) slot between t1 and t2 as the set

ft j t1 < t < t2g (respectively, ft j t1 � t � t2g). Given two real numbers t1 and

t2 with t1 < t2, we say that (t3; t4) (respectively [t3; t4]) is the open (closed) slot

generated by t1 and t2 if both t1 + 1 = t3 and t2 + 1 = t4.

The main idea of LUndecTube (M) is that we encode the con�guration i within the

open interval (i; i+1), and the next con�guration i+1 will be encoded in the open

slot generated by the time of the beginning and the end of con�guration i. For

the encoding of the elements of a con�guration and their relation with the next

con�guration we also use open slots. For instance, we use the triple BInst �b
ji
�EInst

to encode that b
ji
is the instruction executed in the i-th con�guration; the letters

BInst and EInst are used as delimiters of the instruction, and to generate the slot

for the next instruction. Let us assume that t1 and t2 are the time-stamps of BInst

and EInst, respectively. Then the encoding of the next instruction has to take place

in the open slot (t1 +1; t2+1) generated by the slot for the current instruction.

As we use a dense time domain, this constraint can always be satis�ed. We will

proceed in the same way for the encoding of the values of the two counters.

The value of the counters C and D are encoded as follows: if the value of the

counter C is u in con�guration i, then the pair bc � ec is repeated u times in the

encoding of the con�guration i. If the counter C is unchanged from con�guration

i to con�guration i+1, we verify that the bc � ec sequences in con�guration i+1

appear exactly in the open slots de�ned by the bc �ec sequences in con�guration i.

Having the intuition underlying the language LUndecTube (M), we now de�ne it and

establish that the set of trajectories in LUndecTube (M) correspond to a non empty

set of tubes i� the machine M has a halting computation. The set of events

that we will use in the encoding is the following: (i) BConf and EConf are the

delimiters for the beginning and end of the encoding of a con�guration; (ii)

BInst and EInst are the delimiters for the begin and end of the encoding of the

instruction executed in a con�guration; (iii) b1; b2; : : : ; bn are used to represent

the n instructions; (iv) BC and EC are the delimiters for the encoding of the

value of the counter C in a con�guration; (v) BD and ED, for the counter D;

(vi) bc and ec are used to encode the value of the counter C; (vii) bd and ed,

for D. The trajectories of LUndecTube (M) agree with the following regular expression:

(BConf � BInst � (b1 j b2 j : : : j bn) � E
Inst � BC � (bc � c � ec)� � EC � BD � (bd � d � ed)� � ED � EConf)�.

Furthermore, if the con�guration i contains the sequence BInst �b
ji
�EInst, then the

con�guration i+1 contains the sequence BInst � b
ji+1

� EInst, where b
ji+1

is a valid

next instruction of b
ji
. The �rst con�guration is encoded in the open interval

(0; 1); that is, if the event BConf occurs at time t1 and the event EConf occurs at

time t2, then 0 < t1 < t2 < 1. The con�guration i+ 1 is always encoded in the

open slot de�ned by the con�guration i; that is, if the event BConf of con�guration

10

i occurs at time t1 and the event EConf occurs at time t2, then the encoding of

the con�guration i+1 takes place in the open slot (t1+1; t2+1). The encoding

of the instruction executed during the con�guration i+1 takes place in the slot

de�ned by the encoding of the instruction executed in con�guration i; that is, if

BInst and EInst appear at times t1 and t2 in encoding of con�guration i, then BInst

and EInst appear at times t3 and t4 in the encoding of con�guration i+1 with the

following (open) real-time constraint: t1 +1 < t3 < t4 < t2 +1. We only explain

in details the case when the counter C is incremented from con�guration i to

con�guration i+1. The other operations are left to the reader. If in con�guration

i the events BC and EC occur at times t1 and t2, respectively, then the events BC

and EC appear for con�guration i+1 within the open slot (t1+1; t2+1). For each

bc � ec sequence, such that bc occurs at time t1 and ec occurs at time t2, in the

encoding of con�guration i, there is exactly one sequence bc � ec sequence in the

encoding of con�guration i+ 1 that takes place in the open slot (t1 + 1; t2 + 1).

Conversely, each bc � ec that appears in the encoding of the con�guration i+ 1,

with the exception of the last, must lie in the open slot de�ned by the bc � ec

sequence of con�guration i. This requirement is noted RTc

3. Finally, the last b
c �ec

sequence in the encoding of con�guration i+1 appears in the slot generated by

the two events BC and EC if C = 0 in con�guration i, and appears in the slot

generated by the last ec event and EC event of con�guration i if C > 0 in that

con�guration.

The following proposition is a direct consequence of the use of strict inequal-

ities in the de�nition of the language LUndecTube (M).

Proposition 6. Let M be a two-counter machine, for every trajectory �1 that

belongs to LUndecTube (M), there exists a real � > 0 such that for every trajectory �2,

if d(�1; �2) < � then �2 2 LUndecTube (M).

Corollary 1. For every two-counter machine M with a halting computation,

[LUndecTube (M)] is a nonempty tube language.

Corollary 2. There is no tube O that is dense both in LUndecTube (M) and in

(LUndecTube (M))c.

Note also that by Proposition 6 and Corollary 2, we know that the tube se-

mantics of a timed automaton that accepts the complement of the trajectories

of LUndecTube (M), is exactly the complement of the tube language [LUndecTube (M)]. The

following lemma shows that it is possible to construct such a timed automaton.

Lemma 1. There exists a timed automaton A
M

that accepts exactly the trajec-

tories that are not in LUndecTube (M).

Proof. It is su�cient to show that for each of the requirements de�ning LUndecTube (M),

we can construct a timed automaton that accepts exactly the trajectories that

violate the requirement. The union of these automata is exactly what we are

looking for: the timed automaton that accepts the trajectory complement of

LUndecTube (M). Due to the lack of space, we just give here the automaton for the

complement of requirement RTc

3; the other requirements can be found in [HR99].

11

� � n fBCg � n fECg

b
c

x := 0

e
c y := 0

�;x � 1

� n fbcg

x > 1

b
c

e
c

y � 1

�

� n fecg y < 1

b

B
C

�

Fig. 4. A timed automaton for the negation of requirement RTc3

The timed automata for requirement RTc

3 is shown in Figure 4. This automaton

accepts exactly the trajectories which contain two adjacent con�gurations i and

i + 1 such that (i) the instruction executed in con�guration i increments the

counter C, that is b 2 IC , where IC is the subset of instructions that increment

the counter C; (ii) there is a sequence bc � ec in con�guration i that de�nes an

open slot in con�guration i+ 1 which does not contain the sequence bc � ec. ut

Combining Lemma 1 and Proposition 4, we obtain the following theorem.

Theorem 1. For every two-counter machine M , there exists a timed automa-

ton A
M

that accepts every tube i� the two-counter machine M has no halting

computation.

Corollary 3. The robust-universality problem for timed automata is undecid-

able.

As the robust-emptiness problem for timed automata is decidable, we obtain the

following:

Corollary 4. There is a tube language de�nable by a timed automaton whose

tube-complement is not de�nable by a timed automaton.

From these results we can derive the following result about the trajectory lan-

guages of open timed automata (already established in [Her98]):

Theorem 2. There is a trajectory language de�nable by an open timed automa-

ton which trajectory-complement is not de�nable by a timed automaton (open or

not).

Proof. By reductio ad absurdum. We have constructed a timed automaton A
M

that accepts the complement of the trajectories contained in LUndecTube (M). This

automaton A
M

de�nes a set L(A
M
) of trajectories such that [L(A

M
)] is exactly

the tube complement of [LUndecTube (M)]. By Proposition 1, there exists an open timed

12

automaton, namely, the interior of A
M
, denoted Aint

M
, such that [L(Aint

M
)] =

[L(A
M
)] = [LUndecTube (M)]c. By Lemma 4, if we were able to complement the open

automatonAint

M
, then we could obtain an automaton whose tube semantics would

be [LUndecTube (M)]. This, however, is impossible, as the robust-emptiness problem of

timed automata is decidable, which would allow us to decide the halting problem

for two-counter machines. ut

4 The Robust-Reachability Problem for Rectangular

Automata

In this section we investigate undecidable reachability problems and show that

they remain undecidable even when we remove equality from the speci�cation

formalism. In [HKPV95], it is shown that the formalism of rectangular automata

lies at the boundary between decidable hybrid formalisms and undecidable ones.

We show here that this boundary stays valid if we do not use equality. For this

purpose, we use another tube encoding of two-counter machines computations.

With each halting computation hi0; c0; d0i; hi1; c1; d1i; : : : ; hin; cn; dni, we asso-

ciate the tube

(b
ij
; t(j;0)); (B

C; t(j;1)); (b
c; t(j;2)); (e

c; t(j;3))(B
D; t(j;4))(b

d; t(j;5))(e
d; t(j;6))

with 0 � j � n and the following timing constraints. We just give the constraints

for the encoding of the value of counter C; the same requirements hold for the

counter D. Initially the value of the counter C is zero. To encode C = 0, we

require that if the events BC,bc, and ec are issued at times t1, t2, and t3, then

the following constraint is satis�ed: t1 +
1
2
< t2 < t3 < t1 +1. Let d1 denote the

distance that separates the events BC and bc, and let d2 denote the distance that

separates the events BC and ec in the encoding of the value of C in con�guration

i. In the same way, let d3 and d4 be those two distances in the encoding of the

value of C in con�guration i+ 1. Then we have the following requirements: (a)

if C is incremented between i and i + 1, then d1

2
< d3 < d4 < d2

2
; (b) if C is

decremented between i and i+1, then 2d1 < d3 < d4 < 2d2; (c) if C is unchanged

between i and i+1, then d1 < d3 < d4 < d2. We denote this trajectory language

LUndecOpenRect(M).

Lemma 2. The trajectory language LUndecOpenRect(M) is de�nable by an open rect-

angular automaton A
M
.

Proof. We sketch the proof by giving an open rectangular automaton to in-

crement the counter C. The automaton is given in Figure 6. To see that the

automaton checks exactly the desired constraints, we �rst establish bounds on

the values of the variables x and y at times t0, t1, t2, and t3 represented in

Figure 7. The bounds are given in the table of Figure 5. So at time t3, we have

x 2 (d1;+1) and y 2 (�1; d2). Now let us see the constraints that we obtain

on d3 and d4. First, by taking into account that x 2 (d1;+1) at t3 and the
ow

of x in q5 in included in the interval (�2; 0), we can deduce that d3 2 (d1
2
;+1).

13

t0 t1 t2 t3

Inf(x) 0 d1 d1 d1

Sup(x) 1 2� d1 + 1 d1 + d2 + 1 +1

Inf(y) �1 �1 �1 �1

Sup(y) 0 d1 d2 d2

Fig. 5. Inferior and superior bounds on the values of variables x and y.

� n I
C

a B
C

b
c

e
c

B
C

b
c

e
c

� n I
C

y > 0

x < 0

y := (�1; 0)
q0

q1 q2

q4q5

q6

x := (0; 1)

q3

Flow(q2; x) 2 (1; 2), Flow(q2; y) 2 (0; 1)

Flow(q3; x) 2 (0; 1), Flow(q3; y) 2 (0; 1)

Flow(q4; x) 2 (0; 1), Flow(q4; y) 2 (�1; 0)

Flow(q5; x) 2 (�2; 0), Flow(q5; y) 2 (�1;�2)

Flow(q6; y) 2 (�1;�2)

Fig. 6. Open rectangular automaton to check incrementation of counter C.

Second, by taking into account that y 2 (�1; d2) at t3 and that the
ow of y

in q5 is included in the interval (�1;�2), we obtain d3 2 (�1; d2
2
). As bc is

issued before ec, we have d3 < d4, and thus d1

2
< d3 < d4 <

d2

2
, as desired. ut

As a direct consequence of the last lemma, we have the following.

Theorem 3. The trajectory-emptiness and location-reachability problems for

open rectangular automata are undecidable.

The following proposition is a generalization to open rectangular automata of

Proposition 2.

Proposition 7. For every open rectangular automaton A and every trajectory � ,

if � is accepted by A along some path, then there is a positive real � 2 R+ such

that all trajectories in the tube T (�; �) are accepted by A along the same path.

This proposition implies that tube and trajectory emptiness coincide for open

rectangular automata, so we have the following theorem.

Theorem 4. The robust-emptiness and robust-reachability problems for rectan-

gular automata are undecidable.

References

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer

Science, 126:183{235, 1994.

14

a BC bc ec BC bc ec

t2 t3 t4 t6t0 t1

d1

d2

d3

d4

: : :

Fig. 7. Two successive encodings of the value of counter C.

[AFH94] R. Alur, L. Fix, and T.A. Henzinger. A determinizable class of timed au-

tomata, CAV 94: Computer-aided Veri�cation, LNCS 818, Springer Verlag, 1{13,

1994.

[AFH96] R. Alur, T. Feder, and T.A. Henzinger. The bene�ts of relaxing punctuality.

Journal of the ACM, 43(1):116{146, 1996.

[AMP95] E. Asarin, O. Maler, and A. Pnueli. Reachability analysis of dynamical

systems having piecewise-constant derivatives. Theoretical Computer Science, 138:65-

66, 1995.

[BT99] V. D. Blondel and J. N. Tsitsiklis. A survey of computational complexity

results in systems and control. To appear in Automatica, 1999.

[Fra99] M. Franzle. Analysis of Hybrid Systems: An ounce of realism can save an

in�nity of states, CSL'99: Computer Science Logic. LNCS 1683, Springer Verlag,

126{140, 1999.

[GHJ97] V. Gupta, T.A. Henzinger, and R. Jagadeesan. Robust timed automata,

HART 97: Hybrid and Real-time Systems. LNCS 1201, Springer-Verlag, 331{345,

1997.

[HK97] T.A. Henzinger and P.W. Kopke Discrete-time control for rectangular hy-

brid automata. ICALP 97: Automata, Languages, and Programming. LNCS 1256,

Springer-Verlag, 582{593, 1997.

[HKPV95] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What's decidable

about hybrid automata? In 27th Annual Symposium on Theory of Computing, ACM

Press, 373{382, 1995.

[HR99] T.A. Henzinger and J.-F. Raskin. Robust Undecidability of Timed and Hybrid

Systems. Technical Report of the Computer Science Department of the University of

California at Berkeley, UCB/CSD-99-1073, October 1999.

[Her98] P. Herrmann. Timed automata and recognizability. Information Processing

Letters, 65(6):313-318, 1998.

[RS99] J.-F. Raskin and P.-Y. Schobbens. The Logic of Event Clocks: Decidability,

Complexity, and Expressiveness. Journal of Automata, Languages and Combina-

torics, 4(3):247-284, 1999.

15

