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In spite of the benefits, one of the most challenging issues for implementing optimization under uncertainty, 
such as the use of robust design approach, is associated with the intensive computational demand of 
uncertainty propagation, especially when the simulation programs are computationally expensive.  In this 
paper, an efficient approach to uncertainty propagation via the use of metamodels is presented. Metamodels, 
created through computer simulations to replace expensive simulation programs, are widely used in 
simulation-based design. Different from existing techniques that apply sample-based methods to metamodels 
for uncertainty propagation, our method utilizes analytical derivations to eliminate the random errors as well 
as to reduce the computational expenses of sampling.   In this paper, we provide analytical formulations for 
mean and variance evaluations via a variety of metamodels commonly used in engineering design 
applications.  The benefits of our proposed techniques are demonstrated through the robust design for 
improving vehicle handling.  In addition to the improved accuracy and efficiency, our proposed analytical 
approach can greatly improve the convergence behavior of optimization under uncertainty. 

Nomenclature 

Rx : Random variables 

( )pR Rx :  Joint probability density function (PDF) of random variables 
( )i ip x :  Individual (marginal) probability density function 

( )yµ x , 2 ( )yσ x : Response mean and Variance 

( )iB x : Multivariate tensor-product basis function 

( )il lh x : Univariate basis function 

bN : Number of multivariate basis functions 

1,ilC , 
1 22,i i lC : Univariate integrals involved in analytical uncertainty propagation 

1.   INTRODUCTION 
Development of efficient methods for uncertainty propagation has gained much attention in recent years due to 

the increasing awareness of the importance of nondeterministic optimization.  By uncertainty propagation, we mean 
that the impact of input uncertainty on the variation of a model output (response) is studied. Despite the 
advancement of methods for uncertainty propagation, the rising fidelity of engineering analyses has significantly 
increased the computational expenses of simulation-based design and creates the barrier for applying 
nondeterministic optimization to real engineering design applications. 

One difficulty with the conventional statistical approach to uncertainty propagation is that it relies heavily on 
the use of data sampling to generate probabilistic distributions of a system output.  Monte Carlo simulation, a 
random simulation based approach is very expensive.  Even reduced sampling techniques, like Latin Hypercube 
Sampling (Box et al. 1978) and Taguchi’s orthogonal array (Phadke 1989), can still require a large amount of 
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samples for complex systems.  In practice, the mean-value based approximation methods (Parkinson, et al. 1993) 
that use Taylor series expansions to estimate the first two moments (mean and variance) of a system response have 
been used widely because of their simplicity. However, for nonlinear response functions, Taylor expansion is 
generally not sufficiently accurate (Wu, et. al, 1990), especially when the parameter uncertainty is large.   In recent 
years, reliability analysis based approaches to uncertainty analysis have gained a lot of promises (Du and Chen 
2003, Tu et al. 1999), where the concept of the Most Probable Point is utilized to generate the cumulative 
distribution function of a model output via a serial of limit state values.  They generally provide better accuracy 
compared to mean-value based approximations and better efficiency compared to sampling-based methods.  
However, for problems that require expensive high-fidelity engineering analyses that may take hours or even days 
for a single simulation, the use of reliability analysis based methods is still not affordable. 

Because the direct use of data sampling methods is very expensive, an alternative approach that is being widely 
considered is the use of metamodels to replace the expensive simulation models (Chen et al. 1997; Delaurentis and 
Mavris, 2000), either over the space of all variables or that of the random variables only.  Data sampling is then 
performed using metamodels.   Studies show that when samples are used to estimate the performance mean and 
variance in metamodel-based design optimization, the performance functions tend to be noisy causing problems for 
optimization convergence (Padmanabhan and Batill, 2000).  Some of the metamodeling techniques such as Kriging 
(Sachs, et al., 1989) require more computational resources than the others (for example, polynomial response 
surfaces).  Applying sample-based methods could still be inefficient for these relatively expensive matamodels in 
optimization under uncertainty   

Our objective in this work is to develop an efficient approach to uncertainty propagation via the use of 
metamodels.   Different from existing techniques that apply sample-based methods to metamodels, our method 
utilizes analytical derivations to reduce the computational expenses and to improve the accuracy by eliminating the 
random errors of statistical sampling.   Our focus in this work is on deriving the first two moments (mean and 
variance) of a system response in optimization under uncertainty.  Analytical formulations are provided for a variety 
of commonly used metamodels, such as the polynomial (Box et al. 1978), the Kriging (Sacks, et al., 1989; Currin, et. 
al, 1991), the Radial Basis Functions (Hardy, 1971; Dyn, et al., 1986), and the MARS (Friedman, 1991).  We show 
that even though the function forms of these metamodels vary significantly, they all follow the form of multivariate 
tensor-product basis functions for which the analytical results of univariate integrals can be combined to evaluate the 
multivariate integrals in uncertainty propagation.  Our paper is organized as follows.  In Section 2, we lay out the 
general formulations for uncertainty propagation and introduce the concept of tensor-product basis functions.  In 
Section 3, we provide detailed analytical derivations for various types of metamodels.  In Section 4, we illustrate our 
approach and its advantages using the robust design for improving vehicle handing as an example.  Section 5 is the 
closure of this paper. 

2. MATHEMATICAL BACKGROUND 
 

2.1   Formulations in Uncertainty Propagation  
 

Various formulations are used for optimization under uncertainty.  Robust Design (Chen et al., 1996) is a widely 
used paradigm where the emphasis is on improving the quality of a product through minimizing the effect of 
variation (noises) without eliminating the causes.  A detailed comparison of various nonlinear programming based 
robust design formulations is provided in Du and Chen, 2002.  As observed, the formulation selected is often a 
tradeoff between the accuracy required for uncertainty assessments, e.g., probability of constraint being feasibility, 
and the computational needs.  In many practical applications, the first two moments of a performance distribution 
(mean and variance) are widely used to form a robust design objective and to assess the constraint feasibility under 
uncertainty. 

Given a response ( )y f= x , where x are input variables that can be deterministic or stochastic (i.e., subject to 
randomness), associated with either design variables or noise variables, the response mean and variance are defined 
by: 

 
 ( ) ( ) ( )y f p dµ = ∫ R R Rx x x x , (2.1) 
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 2 2( ) [ ( ) ( )] ( )y yf p dσ µ= −∫ R R Rx x x x x , (2.2) 
where R is the set of random variables. Here, it is assumed that the random variables are statistically independent, 
i.e., their joint probability density function (PDF) is a product of individual or marginal PDF of all variables, i.e., 

( ) ( )l l
l

p p x
∈

= ∏R
R

x . Both the response mean and variance are functions of input variables x.  When there are 

multiple random variables, the integrations in Eqs.1-2 involve multivariate integrals which are very computationally 
expensive.  As introduced in Section 1, applying advanced sampling approaches directly to a model for uncertainty 
propagation is not practically feasible for problems with time-consuming model evaluations; random errors cannot 
be avoided even applied to easy-to-compute metamodels.  We find that if a function can be expressed as a tensor-
product basis function (c.f., Hastie, et al., 2001), then the analytical results of univariate integrals can be combined 
to evaluate the multivariate integrals in Eqs.2.1-2.2 for uncertainty propagation.  As it will be disclosed later, most 
of the commonly used metamodels all follow the form of  multivariate tensor-product basis functions for which the 
formulations of mean and variance can be analytically derived.  The concept of tensor product basis function is first 
introduced next. 
 
2.2   Tensor Product Basis Functions 

A multivariate tensor-product basis functions ( )iB x  is defined as a product of M univariate basis functions 

( )il lh x , i.e., 

 
1

( ) ( ), 1,2,...,
M

i il l b
l

B h x i N
=

= =∏x . (2.3)  

For instance B(x)=x1x2 can be rewritten  as B(x)=h1(x1)h2(x2), where h1(x1)= x1 and h2(x2)= x2  . Note here ( )il lh x  
could be equal to 1. Then a special category of functions, called tensor-product basis functions, can be defined as a 
linear expansion of these multivariate basis functions, i.e., 
 

0 0
1 1 1

( ) ( ) [ ( )]
b bN N M

i i i il l
i i l

f a a B a a h x
= = =

= + = +∑ ∑ ∏x x , (2.4)  

where ai (i =0, 1,..., Nb) are constant coefficients. Many commonly used metamodels, i.e., polynomial regression 
model, MARS, RBF (with Gaussian basis functions), Kriging, can be expressed as tensor-product basis functions, 
with details shown in Sections 3.2-3.5. 

. 

3. Analytical Formulations of Uncertainty Propagation via Metamodels 
In this section, we first derive the generalized formulations for uncertainty propagation based on the concept of 

tensor product basis functions.  We then illustrate the analytical derivations of function mean and variance for a set 
of commonly used metamodeling techniques. 

 
3.1  Generalized UP Formulations in the Form of Tensor Product Basis Function  

 
By substituting into Eq. 2.1 the expression of the tensor-product function (Eq.2.4), the performance mean as a 

function of input variable x can be written as: 

 

{ }
{ }

0

1 1

0

1

0 1,

1

( ) ( ) [ ( ) ] [ ( )] [ ( ) ]

[ ( ) ( ) ] ( )

[ ( )],

b

b

b

N M

y l l l i il l l l l

il l l

N

i il l l l l il l

i l l

N

i il il l

i l l

f p x dx a a h x p x dx

a a h x p x dx h x

a a C h x

µ
=∈ = ∈

= ∈ ∉

= ∈ ∉

= = +

= +

= +

∑∏ ∏ ∏∫ ∫

∑ ∏ ∏∫

∑ ∏ ∏

R R

R R

R R

x x

 (3.1) 

where, 
1,ilC  is the mean of the univariate basis function ( )il lh x , i.e., 

 
1, ( ) ( )il il l l l lC h x p x dx= ∫ . (3.2) 
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Similarly, if we substitute into Eq.2.2 the expressions of )(xyµ  (Eq.3.1) and the tensor-product function 
(Eq.2.4), we then derive the response variance as follows: 

 

{ }

1 2 1 2 1 2 1

2

2

1,
1 11

22

1,
1 11

1, 1, 2 , 1, 1,

( ) [ ( )] [ ( )] [ ( ) ]

[ ( )] [ ( ) ] [ ( )]

( ){ [ /(

b b

b b

N NM

Y i il l i il il l l l l
i il l l l

N NM

i il l l l l i il il l
i il l l l

i i i l i l i i l i l i
l l

a h x a C h x p x dx

a h x p x dx a C h x

a a C C C C C

σ
= == ∈ ∉ ∈

= == ∈ ∉ ∉

∈ ∈

= −

= −

=

∑ ∑∏ ∏ ∏ ∏∫

∑ ∑∏ ∏ ∏ ∏∫

∏ ∏

R R R

R R R

R R

x

{ }2 1 2

1 21 1

)] 1} [ ( ) ( )] .
b bN N

l i l l i l l
i i l

h x h x
= = ∉

−∑∑ ∏
R

 (3.3) 

It can be observed that both the mean and variance evaluations (Eqs.3.1 and 3.3) of a tensor product basis function 

depend on two common sets of quantities defined by univariate integrals, i.e., the mean of univariate basis function 

C1 and the inner product of two univariate basis functions C2, defined as: 

 
1 2 1 22, ( ) ( ) ( )i i l i l l i l l l l lC h x h x p x dx= ∫ .  (3.4) 

Once the basis functions and the distributions of the variables are fixed, the values of C1 and C2 can be derived 
analytically and used to evaluate the response mean/variance at any given design settings (i.e., for given values of 
design input x). In the case that the distributions of several variables are changed, only the C1 and C2 corresponding 
to these variables need to be re-evaluated. In the following subsections we illustrate the derivations of C1 and C2 for 
various types of metamodels. 

 
3.2 Derivations via Polynomial Metamodels 
 

All polynomial regression models can be transformed into the tensor product form. The most widely used 
second-order regression model is shown as: 

 2

0
1 1 1 1

( )
M M M M

i i ii i ij i j
i i i j i

f x x x xβ β β β
= = = = +

= + + +∑ ∑ ∑∑x . (3.5)  

For the above model, for any 0≤i, j≤M and j≠0, we define multivariate basis functions as 

 

2
( , )

0j

i j j

i j

x i
B x i j

x x i j

⎧ =
⎪= =⎨
⎪ <⎩ . (3.6)  

The univariate basis functions corresponding to variable xl are: 

 

( , )
2

1 none of ( , )
only one of ( , )  
both of ( , )

i j l l

l

i j l
h x i j l

x i j l

⎧ =
⎪= =⎨
⎪ =⎩ . (3.7)  

The polynomial model can be re-written as: 
 

0 ( , ) 0 ( , )
0 , , 0 0 , , 0 1

( )
M

ij i j ij i j l
i j M j i j M j l

f B hβ β β β
≤ ≤ ≠ ≤ ≤ ≠ =

= + = +∑ ∑ ∏x ,     (3.8)  

where 
0 j jβ β= . 

Based on Eqns. 3.2 and 3.4, the values of C1 and C2 are derived for the polynomial function, respectively as: 

 

1,( , )

2 2 2

1 none of ( , )

( ) only one of ( , )

( ) both of ( , )

i j l l l l l l

l l l l l l

i j l

C x p x dx i j l

x p x dx i j l

µ

µ σ

⎧ =
⎪
⎪= = =⎨
⎪

= + =⎪⎩

∫
∫   (3.9) 
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1 1 2 2

1 1 2 2

1 1 2 2

2 2 2
2,( , ) ( , ) 1 1 2 2

3 2 3
,3 1 1 2 2

4

1 none of ( , , , )

( ) only one of ( , , , )

( ) only two of ( , , , )

( ) 3 only three of ( , , , )

( )

l l l l l

i j i j l l l l l l l

l l l l l l l l

l l l

i j i j l

x p x dx i j i j l

C x p x dx i j i j l

x p x dx i j i j l

x p x

µ

µ σ

µ µσ µ

=

= =

= = + =

= + + =

∫
∫
∫

2 2 4
,4 ,3 1 1 2 24 6 all of ( , , , )l l l l l l ldx i j i j lµ µ µ µ σ µ

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪

= + + + =⎪⎩∫

 (3.10) 

Here, lµ  and 2

lσ  are the mean and variance of input variable xl; ,l nµ  (n = 3, 4) is the nth centered moment of xl, 

i.e., , ( ) ( )n

l n l l l lx p x dxµ µ= −∫ . The values of lµ , 2
lσ , ,3lµ , and ,4lµ  depend on the type of input distributions. 

For uniform distributions, we can derive 2 2 / 3l lσ δ= , ,3 0lµ = , 4

, 4 / 5l lµ δ= ; for normal distributions,  we 

obtain ,3 0lµ = , 4

, 4 3l lµ σ= . 
Noting that many items of C1 and C2 are equal to 1, we can further expand the mean (Eq. 3.1) and the variance 

(Eq. 3.2) as: 

 
2

0

, ,

( ) ( ) ,
y i i ii i ij i j i ij j i ij i j

i i i j j i i j i j j i

x x xµ β β µ β σ β µ µ β β µ β
∈ ∈ ∈ ∈ ≥ ∉ ∈ ∉ ∉ ≥

= + + + + + +∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑
R R R R R R R R

x  (3.11) 

 

2 2 4 2 2 2

,4 ,3

,

2 2

( ) ( 2 ) ( )

( ) ,

M

y ii i i ij i j i ii i ij j ij j ii i

i i j j i i j j

i ii i ij j ij j i

i j j

x

x

σ β µ σ β σ σ β β µ β µ β β µ

β β µ β µ β σ

∈ ∈ ∈ ≥ ∈ ∈ ∉

∈ ∈ ∉

= − + + + + +

+ + + +

∑ ∑∑ ∑ ∑ ∑

∑ ∑ ∑

R R R R R R

R R R

x

 (3.12) 

where ji ijβ β=  if i j> .    
 
 

3.3 Derivations via Kriging Model 
The Kriging method is a widely used metamodeling technique due to its capability of capturing nonlinear 

behaviors.  A Kriging model (Sacks, et al., 198; Currin, et al.,1999) with a constant global trend (i.e., Ordinary 
Kriging) can be written as: 
 1

0
1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
N

T T
i i

i

f rβ β β β κ−

=

= + − = + = +∑x r x R y r x κ x , (3.13)  

where 1
0( )β−= −κ R y  is a N×1 vector (N is the number of sample points) and iκ is its ith element.  The Kriging 

model follows the form of a multivariate correlation function which can be defined to be a product of univariate 

correlation functions, i.e., 
1

( , ) ( , )
M

l l l
l

t uρ ρ
=

=∏t u , where lρ  is the correlation function for lth dimension. The correlation 

between x and a sample point xi, can be expressed as: 
1

( ) ( , ) ( , )
M

i i l l il
l

r x xρ ρ
=

= =∏x x x . Let ( ) ( , )il l l l ilh x x xρ= , the Kriging 

model is then transformed into a tensor-product function: 
 

1 1

ˆ( ) ( )
MN

i il l
i l

f h xβ κ
= =

= +∑ ∏x . (3.14) 

Many different one-dimensional correlation functions are used with Kriging metamodeling (see, e.g., Currin, et. 
al., 1991; Sacks, et. al., 1989). In this study, we focus on the commonly used Gaussian correlation function, with the 
expression of 2( ) exp ( )il l l l ilh x x xθ⎡ ⎤= − −⎣ ⎦ .

 

For uniform distributions of input variables, we can prove that (details are omitted here but can be found in Jin 
2004): 
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 { }1,
1 ( 2 ) ( 2 )

2il il l il l
l l

C a bπ θ θ
δ θ

= Φ −Φ , (3.15)  

 ( )1 2 1 2 1 2 1 2

2
2,

1 exp ( ) / 2 ( ) ( )
2 2i i l l i l i l l i l i l l i l i l

l l

C x x a a b bπ θ θ θ
δ θ

⎡ ⎤ ⎡ ⎤⎡ ⎤= − − × Φ + −Φ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦
, (3.16) 

where 0il l l ila xµ δ= + −  and 0il l l ilb xµ δ= − − ; Φ(.) stands for the CDF of standard normal distributions. 
 
For normal distributions of input variables, it can be proved that: 

 2
1, 22

1 exp[ ( ) ]
2 12 1

l
il l il

l ll l

C x
θ

µ
σ θσ θ

= − −
++

, (3.17) 

 
1 2 1 2 1 2

2 2 2 2
2, 22

1 exp [( ) ( ) 2 ( ) ]
4 14 1

l
i i l l i l l i l l l i l i l

l ll l

C x x x x
θ

µ µ σ θ
σ θσ θ

⎧ ⎫
= − − + − + −⎨ ⎬

++ ⎩ ⎭

. (3.18) 

 
Substituting the expressions of C1 and C2 derived here (Eqns. 3.17 and 3.18) into the generalized formulations 

in Eqs.3.1 and 3.3, we then obtain the first and second moments in uncertainty propagation via Kriging models. The 
results evaluated by this analytical approach are generally highly accurate. However, if the correlation matrix R is 
ill-conditioned, large numerical errors could occur when σl, δl, or 

lθ  are very small. This is due to the loss of 

significant digits in the evaluation of 1 2 1 22, 1, 1,[ /( )] 1i i l i l i l
l

C C C −∏  in Eqn. 3.3: when σl, δl, or 
lθ  are very small, 

1 2 1 22, 1, 1,[ /( )]i i l i l i l
l

C C C∏  will be very close to 1 (e.g., if 0lθ = , then 
1 2 1 22, 1, 1, 1i i l i l i lC C C= = ); the subtraction of two nearly 

equal numbers would cause the canceling error. This canceling error will be largely magnified by the deteriorated 
accuracy of 

iκ  due to the ill-conditioned R.  Numerical approaches to reduce the canceling errors can be found in 
Jin’s (2004). 
 
 
3.4   Derivations via Gaussian RBF Model 

The Gaussian Radial Basis Function model (also called RBFN model) can be written as, 
 

1

ˆ( ) ( )
N

i i
i

y
φ

β λϕ
=

= +∑x x , (3.19) 

where, 
2

2

2 2
1 1

( )1
( ) exp ( ) exp .

2 2

MM
l il

i l il

l li i

x t
x tϕ

τ τ= =

−
= − − = −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∏x  If we define basis functions as 

2

2

( )
( ) exp

2
l il

il l
i

x t
h x

τ
⎡ ⎤−

= −⎢ ⎥
⎣ ⎦

, the RBF model is transformed into a tensor-product function: 

 
1 1

( ) [ ( )]
N M

i il l
i l

f h x
φ

β λ
= =

= +∑ ∏x . (3.20) 

Noting that the form of a Gaussian RBF model is similar to that of a Kriging model, except that the width iτ  is 
associated with each basis function instead of with each variable, the formulations can be derived in a similar way as 
shown in Section 3.3. 

 
For uniform distributions of inputs, it can be proved that  

 ( ) ( ){ }1, / /
2

i
il l l il i l l il i

l

C t t
τ π µ δ τ µ δ τ
δ

⎡ ⎤ ⎡ ⎤= Φ + − − Φ − −⎣ ⎦ ⎣ ⎦
, (3.21)

 ( )1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2

2 2 2
2, exp ( ) /(2 2 ) ( )/ ( )/

2
i i

i i l i l i l i i l l i i l i i l l i i l i i
l

a
C t t b a b aπ τ τ µ δ µ δ

δ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − + × Φ + − −Φ − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, (3.22) 

where,
1 2 1 2 1 2

2 2/i i i i i ia τ τ τ τ= + and 
1 2 1 2 2 1 1 2

2 2 2 2( ) /( )i i l i i l i i l i ib t tτ τ τ τ= + + . 

 
For normal distributions of inputs, it can be proved that  

 2 2 2
1, 2 2

1 exp[ ( ) /(2 2 )]
/ 1

il l il i l

l l

C tµ τ σ
σ τ

= − − +
+

, (3.23) 
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 1 2

1 2 2 1 1 2 1 2

1 21 2

2 2 2 2 2 2
2,

1exp [ ( ) ( ) ( ) ]
2

i i
i i j i j i j i j i j j i j i j

i i li i l

C t t t t
bb

τ τ
τ µ τ µ σ

⎧ ⎫⎪ ⎪= − − + − + −⎨ ⎬
⎪ ⎪⎩ ⎭

 , (3.24) 

where 
1 2 1 2 1 2

2 2 2 2 2( )i i l l i i i ib σ τ τ τ τ= + +  . 
 
3.5  Derivations via MARS Model 
 

A MARS model is a weighted sum of tensor spline basis functions, i.e.,  
 

0
1

( ) ( )
bN

i i
i

f a a B
=

= +∑x x , (3.25) 

where the tensor spline basis functions are defined as tensor products of univariate truncated power functions: 
 [ ]( ) ( )

i

q
i il l il

l

B s x t
+

∈

= −∏
K

x . (3.26) 

If we define a set of univariate basis functions: 

 
[ ]
1

( )
( )

i
il l q

il l il i

l
h x

s x t l
+

⎧ ∉⎪= ⎨
− ∈⎪⎩

K

K
, (3.27) 

then the MARS model is transformed into a tensor-product function: 
 

0
1 1

( ) [ ( )]
bN M

i il l
i l

f a a h x
= =

= +∑ ∏x . (3.28) 

The values of 
1C  and 

2C  can be evaluated respectively by: 

 
1

1

1,

1

( ) ( )

i
ubil q q

il l il l l l ilb

l
C

s x t p x dx l

∉⎧⎪= ⎨ − ∈⎪⎩ ∫
K

K
,  (3.29) 

 
1 2

1 1 2

1 2

2 1 2

2

1 2 1 2 1 2
2

1,

2,

1,

1 ,

,

,

( ) [( )( )] ( ) ,

i i

i l i i

i i l

i l i i

ubq q
i l i l l i l l i l l l l i ilb

l l

C l l
C

C l l

s s x t x t p x dx l l

⎧ ∉ ∉⎪
⎪

∈ ∉⎪⎪= ⎨
⎪ ∉ ∈
⎪
⎪ − − ∈ ∈⎪⎩ ∫

K K

K K

K K

K K

 (3.30) 

where 
1 max( , )il ilub s t= ∞ , 

1 min( , )il illb s t= ∞ , 
2 1 1 2 2

min[max( , ),max( , )]i l i l i l i lub s t s t= ∞ ∞  and 
2 1 1 2 2

max[min( , ),min( , )]i l i l i l i llb s t s t= ∞ ∞ . 
If 

2 2lb ub≥ , then
1 22, 0i i lC = . While the formulations above are general enough to be applied to different q, in the 

following we focus on a commonly used setting, i.e., q=1.  
  

For uniform distributions of input variables, it can be proved that: 
 1

1

2

1, [ ] ( )
2 2

a

a

ubil l
il il l lb i

l

s xC t x l
δ

= − ∈K , (3.31) 

 1 2 1 2 2

1 2 1 2 2 1 2

23

2,

( )
[ ] ( , )

2 3 2
a

a

i l i l i l i l l ubl
i i l i l i l l lb i i

l

s s t t xxC t t x l l
δ

+
= − + ∈ ∈K K , (3.32) 

where ( ) ( ) ( )b
af x f b f a= − ; 

1 1min[ , ]a l lub ub µ δ= +  and 
1 1max[ , ]a l llb lb µ δ= − ; 

2 2min[ , ]a l lub ub µ δ= +  and 

2 2max[ , ]a l llb lb µ δ= − . 
 

For normal distributions, it can be proved that: 
 1

1

2

1, 2

( )1{ ( ) exp[ ]} ( )
22

ubl il l l l l
il il ilb

l l l

t x x
C s l

µ µ µ
σ σ σπ
− − −

= Φ − − ∈K , (3.33) 

 
1 2 1 1 2

1 2 1 2 1 22

2

2, 2

( )( ) ( )
{[ ] ( ) exp[ ]} ( , )

22
l i l l i l l l i l i l ubl l l l

i i l i l i l l i ilb
l l l

t t x t tx x
C s s l l

µ µ µµ µ
σ

σ σ σπ

− − + − −− −
= + Φ − − ∈ ∈K K

. (3.34) 

In the coming section, we demonstrate the advantages of the proposed method by applying it to an engineering 
design problem under the robust design concept. 
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4. Robust Design for Improving Vehicle Handling 
 

We use the robust deign for improving vehicle handling, in particular preventing rollover of ground vehicles, as 
an example to illustrate the use of analytical uncertainty propagation (UP) in design under uncertainty.  A topic 
related to the analytical UP is the analytical method for global sensitivity analysis (GSA) to study the impact of 
variations in input variables on the variation of a model output.   The common underlying principle for both 
activities is to combine the analytical results of univariate integrals to evaluate the multivariate integrals that are 
associated with multvariate tensor-product basis functions (Jin et al. 2004).  The details of the analytical approach to 
GSA are provided in Chen et al. 2004, but will not be repeated here.  As applying GSA plays an important role in 
variable screening and building an accurate metamodel for further analytical UP in robust design, some of the results 
from GSA are highlighted here.   
 
4.1 Problem Description and Variable Screening 
 

Rollover of ground vehicles is one of the major causes of highway accidents in the United States 
(Mohemedshah and Council, 1997).  To prevent vehicle rollover, we developed a robust design procedure (Chen, et 
al, 2001) to optimize vehicle and suspension parameters so that the design is not only optimal against the worst 
maneuver condition but is also robust with respect to a range of maneuver inputs.  In our earlier work, the second-
order polynomial function was created as the response surface model; factor importance was examined by checking 
the coefficients of the second-order polynomial function and screened based on the linear effects.  In this work, our 
analytical techniques for GSA are applied to the same problem; the Kriging model is built and used for deriving 
analytical formulation for UP.  Through comparisons, we illustrate the advantages of our newly developed methods. 
 

The detailed description of the simulation program for studying the rollover behavior and the robust design 
formulation for preventing rollover can be found in (Chen, et al, 2001).  In brief, the rollover simulation is the 
integrated computer tool ArcSim (Sayers and Riley, 1996) developed at the University of Michigan for simulating 
and analyzing the dynamic behavior of 6-axle tractor/semi-trailers. Without building the metamodel, the testing of 
an optimization scenario without robustness consideration takes at least five hours to converge (Michelena and Kim, 
1998) on the Sun Ultra-1 workstation. When robustness considerations are introduced, the computational demand 
becomes more significant.  

Table 1. Design Variables and Their Ranges 
Variables Description Lower bound Upper bound Unit 

HH1 Height of hitch above ground 51.20 76.80 in 
KHX1 Hitch roll torsional stiffness 80000 120000 in-lb/deg 
KT11 Axle 1 tire stiffness 5520.00 8280.00 lb/in 
KT123 Axles 2 & 3 tire stiffness 5520.00 8280.00 lb/in 

KT2123 Axles 4,5,& 6 tire stiffness 4139.20 6208.80 lb/in 
LTS11 Distance between springs on Axle 1 30.40 45.60 in 
LTS123 Distance between springs on Axles 2 & 3 30.40 45.60 in 

LTS2123 Distance between springs on Axles 4,5 & 6 30.40 45.60 in 
M11 Laden load for Axle 1 11540 17310 lbm 
M123 Laden load for Axles 2 & 3 20358.40 30537.60 lbm 

M2123 Laden load for Axle 4,5, & 6 16274.40 24411.60 lbm 
SCFS11 Axle 1 spring stiffness scale factor 0.8 1.2 / 

SCFS123 Axles 2 & 3 spring stiffness scale factor 0.8 1.2 / 
SCFS2123 Axle 4,5 & 6 spring stiffness scale factor 0.8 1.2 / 

 
Fourteen ArcSim input parameters corresponding to suspension and vehicle parameters are chosen as design 

variables (control factors) (see Table 1).  The steering and braking parameters are taken as the noise factors to 
capture the range of maneuvering conditions (see Table 2).  The level of braking (brake_level) is the amount of 
braking pressure applied. The level of steering (steer_level) is the angle the steering wheel is turned. The starting 
and ending times of braking defines when the driver starts and stops braking. The ending times of steering defines 
when the driver stops steering.  A rollover metric (R) is used as the response for which the metamodel is created. 



 
American Institute of Aeronautics and Astronautics 

 

9

The rollover metric is defined as the square root of the integral of the square of the rollover angle in a 5-second 
period.  If the rollover angle becomes greater than 45°, rollover will inevitably occur. 
 

Table 2. Noise Variables and Their Ranges  
 

Variable Distribution Lower Bound Upper Bound Unit 
brake_level Uniform 70 120 psi 
start_brake Uniform 1.02 1.38 sec 
end_brake Uniform 1.53 2.07 sec 
steer_level Uniform 60 100 deg 
end_steer Uniform 2.16 3.24 sec 

 

Based on the observations obtained from global sensitivity analysis (Chen et al. 2004), it is decided to use the 
11 relatively important variables in subsequent procedures and freeze the eight relatively unimportant variables at 
their nominal values. It is also found that three noise variables, i.e., brake_level, end_brake, and steer_level, play 
very significant roles in the variability of the response.  With the knowledge of variable importance, an additional 
400 sample runs are applied in a sequential manner to build the Kriging model for the reduced set of 11 variables.  
The R square value of the metamodel is at around 0.8 after confirmation.  Previous experience has shown that this 
problem is very nonlinear and it is difficult to obtain a metamodel with a very high accuracy (Chen et al., 2001; Jin 
et al. 2000).  

 

4.2 Robust Design Optimization 
 

The design for preventing vehicle rollover under a range of maneuver conditions is modeled using the robust 
design formulation as shown in Fig. 8.  Note that the design variables here are the reduced set of design variables 
after screening.  

 

Given 
• Distribution of noise factors: start_brake, brake_level, end_brake, steer_level, and  

end_steer (Table 2) 
• Kriging Model for the rollover metric 

Find 
         Vehicle Parameters: HH1, LTS123, LTS2123, M11, M123, M2123 
Satisfy 
         M11 + 2M123 + 3M2123 = Constant  
        (The total sum of the laden loads needs to be maintained as a constant.) 
        Boundaries of the variables 

Maximize 
        Robust Design Metric 
         Cdk = (URL-µy)/3σy    
         y – rollover metric; URL – the critical roll over    condition. 

Figure 1.  Robust Design Formulation  

The design capability index Cdk, which measures the portion of the range of designs that satisfies the ranged 
design requirement, is used as the robust design metric for improving vehicle handling performance. URL is the 
upper requirement limited, i.e., the critical rollover condition, which is set as 45 deg-sec1/2 in this study. Statistically, 
the use of 3� implies that when Cdk reaches 1, 99.865% of the performance distribution conforms to the 
requirements, assuming that the performance is normally distributed.  
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Using the developed analytical techniques for uncertainty propagation (for assessing mean 
yµ  and STD 

yσ ), in 
particular based on the Kriging model in this case, we obtain the solutions to the robust design formulation in Fig. 1.  
The baseline design and the robust design, together with the confirmed values of µy, σy, and Cdk (evaluated from the 
results of 40 optimal LHS runs constructed for noise variables while fixing the design variables at their solutions) 
are shown in Table 3. Graphical representations of the probability (based on the simulation results) of the rollover of 
the baseline design and the robust design from our method are presented in Figs. 2 and 3. It is noted that while for 
the baseline design, the probability of rollover is more than 12% (see Fig. 2); for the robust design obtained by using 
our methods, no rollover occurs (see Fig. 3). The standard deviation of rollover metric for baseline, i.e., 18.29, is 
much higher than those obtained from robust design formulation (3.15 for using our methods). In particular, we 
observe that the distribution of rollover metric for the robust design is much farther away from the critical rollever 
condition. Thus, we conclude that the robust design optimization has resulted in improved vehicle handling 
performance. 
 

Table 3. Solution of Robust Design 

 Baseline Design Robust Design Robust Design in Chen et al (1999) 
HH1* 64.0 51.2 51.2 

LTS123* 38.0 45.6 45.6 
LTS2123* 38.0 45.6 45.6 

M11* 14425.0 17310.0 17310.0 
M123 25448.0 30108.4 25448.0 

M2123* 20343.0 16274.4 24411.6 
KHX1* 1000000 1000000 1200000 
KT11 6900.0 6900.0 5520.0 

KT123 6900.0 6900.0 5520.0 
KT2123* 5174.0 5174.0 4139.2 
LTS11* 38.0 38.0 30.4 

SCFS11* 1 1 1.2 
SCFS123 1 1 0.8 
SCFS2123 1 1 0.8 

µy 14.63 5.74 9.27 
σy 18.29 3.15 15.22 
Cdk 0.554 4.159 0.783 

Note: The first six variables are the reduced set of design variables in our study. The variables with '*' are the reduced set of 
design variable in the study of Chen et al (1999). 
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Figure 2. Rollover Metric Distribution for Baseline Design 
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Figure 3. Rollover Metric Distribution for Robust Design 

Table 3 also provides the robust design obtained in our earlier study (Chen et al, 1999).  It is noted that the 
robust design achieved in this study is far better than the robust design result reported in the earlier work. Indeed, the 
robust design procedure used in the earlier study fails to find a robust design with a Cdk large than 1 and rollover 
occurs with probability close to 5% (Chen et al, 1999). For this reason, in the earlier study, the range of maneuver 
condition was reduced to obtain a more desirable robust design. Specifically, the range of the three most significant 
noise variables, i.e., brake_level, end_brake and steer_level, was reduced by 30% to achieve a robust design with Cdk 
equal to 2.559.  Nevertheless, even with this noise reduction, the robust design obtained is still not as good as the 
robust design obtained in this study. Furthermore, the significantly better robust design solution is obtained in this 
study with less number of simulations (720 in total including the simulation employed in screening, creating 
metamodel, and confirmation versus 756 in earlier study). 

Several factors have contributed to the improved robust design solution obtained by the proposed techniques in 
this work.   One major reason is that the Kriging model created based on space-filling sample points in this study is 
much more accurate than the quadratic response surface model created based on ad hoc sampling approach in the 
earlier work: The PRESS-R2 of quadratic metamodel, which estimates the prediction capacity and has similar 
meaning as the R2

CV, is merely 0.504, while the R2
CV of the metamodel in this study is 0.792. Furthermore, the global 

sensitivity analysis method used in this work has identified M123  as a critical variable through TSI due to its strong 
interactions with noise variables. Chen's et al.’ earlier study, however, fails to identify M123 as an important 
variable because a quadratic response model was created for the screening purpose, only the linear part of main 
effect was used in ranking variable importance. One more reason behind the improved robust design solution is that 
in this study, analytical uncertain propagation is used, which provides more accurate evaluation of performance 
mean and variance than the 3-level full factorial design (243 sample points) approach used in Chen et al's work.   

To further illustrate the benefits of using analytical UP compared to applying Monte Carlo samples to the 
metamodel, we illustrate in Figs. 4-7 a comparison between the response mean and response variation obtained from 
these two methods, respectively.   The pictures show the results from the analytical method and the Monte Carlo 
method (1000 random sample points), when all the design variables except M123 and LTS 123 are fixed at their 
nominal values. From the figures, it is observed that the Monte Carlo results for both mean and STD are very noisy, 
which will cause serious convergence problem in the process of optimization. We tested with different starting 
points for using Monte Carlo samples for UP in the optimization process. In all cases, the optimizer fails to 
converge. Furthermore, the Monte Carlo method is far more expensive than analytical method. For instance, the 
evaluation of 21×21grid points in the graphs takes 139 seconds for Monte Carlo method, while it takes only 38 
seconds (PIII 650MHZ, MATLAB) when using the proposed analytical method. 
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Figure 4. Mean of Rollover Metric 

by Analytical Method  
Figure 5. Mean of Rollover Metric 

by Monte Carlo Method 
  

30
35

40
45

2

2.5

3x 104

5

10

15

20

25

LTS123

Analytical Method

M123

R
ol

lo
ve

r M
et

ric
 S

TD

 

30
35

40
45

2

2.5

3x 104

5

10

15

20

25

LTS123

Monte Carlo Method

M123

R
ol

lo
ve

r M
et

ric
 S

TD

 
Figure 6. STD of Rollover Metric  by Analytical 

Method  
Figure 7. STD of Rollover Metric by Monte Carlo  

5. Closure 
The fundamental contribution of this work is the development of analytical techniques for assessing the mean 

and variance of a model output via the use of metamodels in simulation-based design under uncertainty.  We 
illustrate that the commonly used metamodels such as polynomial, Kriging, the Radial Basis Functions, and MARS 
all follow the form of multivariate tensor-product basis functions for which the analytical results of univariate 
integrals can be combined to evaluate the multivariate integrals in uncertainty propagation. 

Through the example problem, we demonstrate that compared to the existing sampling based approaches to 
uncertainty propagation, our approach provides more accurate as well as more efficient uncertainty propagation 
results.  The techniques are especially useful for design applications that require computationally expensive 
simulations, where the metamdoels are often readily available to designers.    Analytical uncertainty propagation 
reduces the noises associated with sampling methods and greatly facilitates the convergence of robust design 
optimization. 

As a part of our research effort, the same idea presented in this paper has been used for deriving analytical 
formulations for global sensitivity analysis (Chen et al. 2004).  The knowledge obtained though global sensitivity 
analysis (Saltelli et al. 1997) offers insights into the model behavior, provides guidance in reducing the problem 
size, and helps to identify sources for variance reduction.  Overall, they help designers to make informed decisions 
in product design with the consideration of uncertainty.   Future work in this area will involve the consideration of 
the dependence of the variability of input variables and higher moments in uncertainty propagation.   
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