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Yang—Mills theory over surfaces and the
Atiyah—Segal theorem

DANIEL A. RAMRAS

In this paper we explain how Morse theory for the Yang-Milis€tional can be
used to prove an analogue, for surface groups, of the Atigapal theorem. Clas-
sically, the Atiyah—Segal theorem relates the representahg R(I") of a compact
Lie groupI” to the complexXX —theory of the classifying spad&". For infinite dis-
crete groups, it is necessary to take into account defoomatf representations,
and with this in mind we replace the representation ring bygSan’s deformation
K—theory spectrunKge(I') (the homotopy-theoretical analogue B(T")). Our
main theorem provides an isomorphism in homotégy(m1X) = K*(X) for all
compact, aspherical surfac&sand all «+ > 0. Combining this result with work
of Tyler Lawson, we obtain homotopy theoretical informati@bout the stable
moduli space of flat unitary connections over surfaces.

55N15, 58E15; 58D27, 19L41

1 Introduction

Associated to any group’, one has the (unitary) representation riR§"), which
consists of “virtual isomorphism classes" of represeotesti Each representation
p: I' — U(n) induces a vector bundlg, over the classifying spacBI', and this
provides a mafR(I") = KOBI'). Now assume thaF is a compact Lie group. By

a theorem of Buhstaber and Miscenkg), [K°(BI") is isomorphic to the limit of the

K —theories of the skeletB['™, and hence has the structure of a complete ring. The
classical theorem of Atiyah and Segél [7] states that in this situation the map
becomes an isomorphism after completiRd’) appropriately.

Extensions and analogues of the Atiyah—Segal theorem hese tonsidered by a
number of authors. For infinite discrete groupssatisfying appropriate finiteness
conditions, Adem3] studied the relationship between tKe-theory of the classifying
spaceBI" and the representation rings of the finite subgroups .ot.iick and Oliver
considered the case of an infinite discrete graupcting properly, i.e. with finite
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stabilizers, on a spac¥. They showed that th€—equivariantk —theory of X, com-
pleted appropriately, agrees with the topologi€aitheory of the homotopy orbit space
EIl' xr X. When X is a point, properness forcésto be finite, and the tick—Oliver
theorem reduces to the Atiyah—Segal theorem. Work of Kasp&kandalis27] and
Kasparov—Higson19] on the Baum-Connes conjecture may be viewed as estalgishin
an isomorphism between an analytical version of the reptasen ring of an infinite
discrete group and the equivaridfttheory of the classifying space for proper actions.
This work applies to a wide class of groups, including théag groups discussed in
this paper.

In this article, we will explore a direct homotopical analegof the Atiyah-Segal
theorem for discrete grouds admitting finite dimensional classifying spaces. As a
motivating example, we consider the simplest case, naiielyZ. Representations
of Z are simply unitary matrices, and isomorphism classes afesgntations are
conjugacy classesid(n). By the spectral theorem, these conjugacy classes comdsp
to points in the symmetric product SY(8'), and the natural mapJ, Synf'(S}) —
R(Z) is injective. So the discrete representation ring.aé quite large, and bears little
relation toK —theory ofBZ = S': every complex vector bundle ové&t is trivial, and
soK%(2) is just the integers.

We now observe that in this setting, deformations of repregi®mns play an important
role. Here by a deformation of a representatjgyn I' — U(n) we simply mean a
representatiorp; and a continuous path of representatignsonnectingpg and p;.
The vector bundle ovdBI' associated to the representatipmay be formed using the
mixing construction:

E, = (ET x C")/T,

whereT" acts onEI" by deck transformations and dfi” via the representatiop.
(The quotientE, is then formed by modding out the diagonal action.) The path
pt of representations now induces a family of bundiEs, which fit together to
produce a bundle homotopy betwekp, and E,,. Hence the bundle associated to
po Is isomorphicto the bundle associated to each of its deformations, andntye
associating an element &f—theory to a representation factors through deformation
classes.

Returning to the examplé = Z, we observe that sinc&(n) is connected, the
natural map from deformation classes of representatioks-theory ofZ = St group

completes to an isomorphism. (We remark that for finite gspupis discussion is
moot: any deformation of a representatipns actually isomorphic t@, because the
trace of a representation gives a continuous, completeiamtaof the isomorphism
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type, and on representations of a fixed dimension, the tekes ton only finitely many
values. Hence whef is finite, deformations are already taken into account by the
construction ofR(G).)

With this situation understood, one is inclined to look for @nalogue of the rep-
resentation ring which captures deformations of represients, i.e. the topology
of representation spaces. The most naive way of taking uhafitons into account
fails rather badly: the monoid of deformation clasgdsmoHom(', U(n)) admits a
well-defined map toKO(BI"), but (despite the casE = Z) this map does not usu-
ally group-complete to an isomorphism: the representajmaces Honi{, U(n)) are
compact CW-complexes, so have finitely many componentghbut can be infinitely
many isomorphism types af—dimensional bundles ovéI'. In the case of Riemann
surfacesy:, the spaces Hom{X, U(n)) are always connected (see discussion at the
end of Sectior®), so the monoid of deformation classes is jNsand its group com-
pletion isZ; on the other hand bundles over a Riemann surface are datsirioy their
dimension and first Chern class (and all Chern classes dizadesoK%(X) = Z @ Z.
Note here thak = B(71X) except in the case of the Riemann sphere.

The deformation-theoretical approach is not doomed tar@ilthough. Let Repi)
denote the topological monoid of unitary representatiacsp, and let Gdenote the
Grothendieck group functor. Carlsson’s deformatiortheory spectruniKyes(I') [9] is
alifting of the functor Gr{oRep()) to the category of spectra, or in faktj—modules,
in the sense that

moKgef(I') = Gr (moRep()) .

As we will describe in Sectiorz, the deformationK—theory may be viewed as the
precise homotopy theoretical analogue of the discreteesgmtation ringR(I"). Our
main result may now be seen as a correction to the fact that

Gr (moRepm %)) — K°(%)

fails to be an isomorphism when is a compact, aspherical Riemann surface.

Theorem5.1 LetM be a compact, aspherical surface. Thenfor O,

Kger(m1(M)) = K*(M).

This result will be proven in Sectiob. For non-orientable surfaces, there is actually
an isomorphism onrg as well; this is just a re-interpretation of the results of Ho
and Liu [23, 25]. Since theK-theory of a surface is easily computed, Theorgm
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gives a complete computation &.«(m1M) (see Corollarys.2). We note that when
M = St x St, Theorenb.1follows from T. Lawson’s product formulBges(I'y x I') ~
Kaef(I'1) AkuKgef(I'2) [31] together with his calculation df4e1(Z) as aku—module BO].
As the proof will show, the isomorphism in Theoréniis functorial for smooth maps
between surfaces, and is in particular equivariant witlpegesto the mapping class
group of the surface.

Theorenb.1lsuggests that deformatidf—theory is the proper setting in which to study
Atiyah—Segal phenomena for groups with finite classifyipgces. In particular, we
expect that for any discrete grolipwith a compact classifying space, the deformation
K-groups ofI" will agree with Kj«(BI') in high degree. We note that the author’s
excision result for free product88] and Lawson’s product formul&]] indicate that
this phenomenon should be stable under both free and diredugts of discrete
groups.

The failure of Theoren®.1in degree zero, and the resulting failure in higher degrees
for related groups, reflect an important feature of defoionak -theory. This failure
stems from the close ties between this functor and the tggotd representation
spaces. WhileK -theory is a stable homotopy invariant & (i.e. depends only on
the stable homotopy type @dG), the representation spaces carry a great deal more
information about the groufs. Hence deformatiork -theory should be viewed as a
subtler invariant ofG, and its relationship to topological -theory of BG should be
viewed as an important computational tool.

As an application of Theorer.1 (and a justification of the preceding paragraph), we
obtain homotopy-theoretical information about the stateluli space of flat unitary
connections over a compact, aspherical surface. Ho and2Rj2f] have shown that
for eachn, the moduli space of fldt (n)—connections is connected (in fact, their results
apply to flatG—connections for any compact, connected Lie gr@&)p In Section?,

we combine our work with T. Lawson’s results on the Bott magl@iormationK —
theory B(] to study these moduli spaces after stabilizing with resfethe rankn. In
particular, we prove:

Corollary 1.1 LetX be a compact, aspherical surface. Then the fundamentgb grou
of the stable moduli space of flat unitary connections aves isomorphic tak(2) =
Ké‘ef(ﬂ'lx) .

The proof of Theorend.1 relies on Morse theory for the Yang-Mills functional, as
devoped by Atiyah and Bot6], Daskalopoulos10], and Rade B7]; the key analytical
input comes from Uhlenbeck’s compactness theoré&44]. In the non-orientable
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case, we rely on recent work of Ho and LRP] 25] regarding representation spaces of
non-orientable surface groups and Yang-Mills theory ower-arientable surfaces.

The link between deformatioi —theory and Yang-Mills theory is provided by the
well-known fact that representations of the fundamentaligrinduce flat connections,

which form a critical set for the Yang-Mills functional. Toativate our arguments, we

give a proof along these lines of the well-known equivalence

(G*g ~ LBG = Map(St, BG),

where G is a compact, connected Lie group ar@{)nc = EG xg (G*) is the
homotopy orbit space of the adjoint action®fon itself. (This result is well-known
for any groupG, but the only reference of which | am aware is the elegantfgiven
by Gruher in her thesislf]).

To begin, note that®*),c = Hom(Z, G)ns. ConnectionsA over the circle are always
flat, and hence give rise to holonomy representations, 8t = 7Z:

A~ (pa: Z — Q).

After modding out based gauge transformations, one okadinsneomorphism (Propo-
sition 3.9)
A(S! x G)/Map, (!, G) = Hom(z, G),

and since the based gauge group acts freely, a standardbfact Romotopy orbit
spaces yields a homotopy equivalence

(A(S' x G)/Map,(S",G)), . ~ (A(S' x G))

hMap(St,G) *

But connections form a contractible (affine) space, so ti& fiand side is the classi-
fying space of the (full) gauge group. Atiyah and Bott haveveh that the space
Map(St,BG) = LBG is a model for this classifying space, so we conclude that

Ghd ~ LBG, as desired.

Our interest in this argument lies in the fact that defororak —theory (ofZ, say) is
built from the homotopy orbit spaces

EU(N) xum Hom@Z, U(n)) = EU(N) xugm (UN)AY)

(see Corollary2.4), and the homotopy groups dfBU(n) = Map(St, BU(n)) are
precisely the compleX -groups of St = BZ (in dimensions 0< k < 2n). Thus the
statemenU(n)ﬁS(n) ~ LBU(n) may be interpreted as a sort of Atiyah—Segal theorem
for the groupZ.

When Z is replaced by the fundamental group of a two-dimensiondiese, one
can try to mimic this argument. Not all connections are flathiis case, but flat
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connections do form a critical set for the Yang-Mills fuctal. Hence one may hope
to relate this critical set to the spagk of all connections via the Morse stratification
for the Yang-Mills functional, i.e. the stratification of by stable manifolds. &le’s
work [37] provides deformation retractions from the strata to theitical subsets,
and in particular allows us to pass from the critical set dfd@nections to its stable
manifold. By results of Daskalopoulo4(], the Morse stratification agrees with
the Harder-Narasimhan stratification from complex geoyngs was conjectured by
Atiyah and Bott) and in particular the stable manifold fog gpace of flat connections
is the space of semi-stable holomorphic structures. We giigeise bounds on the
codimensions of the Harder-Narasimhan strata, and our raaits then follow from
an application of Smale’s infinite dimensional transvetgdheorem.

This paper is organized as follows. In Sectidgnwe introduce deformatiork —
theory and explain how the McDuff-Segal group completioactiem provides us
with a convenient model for the zeroth space of thespectrumKgef(m1M) when M

is a compact, aspherical surface. The precise passage @mmsentation varieties
to spaces of flat connections is discussed in Se@ioin Section4 we discuss the
Harder-Narasimhan stratification on the space of holomoituctures and the results
of Daskalopoulos anddlie which link it to Morse theory for the Yang-Mills functiai
This leads to the required connectivity estimates for tlaesf flat connections. The
main theorem is proven in Sectidnusing the results of the previous three sections. In
Section6, we explain how the failure of Theorebnlin degree zero leads to a failure of
excision (in the sense of Ramr&s]) for connected sum decompositions of Riemann
surfaces. In Sectionwe discuss T. Lawson’s work on the Bott map and its implicatio
for the homotopy groups of the stable moduli space of flat eotions. Finally, we
have included an appendix discussing the holonomy repiasamassociated to a flat
connection.
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2 Deformation K-theory

In this section, we introduce Carlsson’s notion of defoiorak —theory B] and discuss
its basic properties. Deformatiok—theory is a contravariant functor from discrete
groups to spectra, and is meant to capture homotopy-thealretformation about the
representation spaces of the group in question. This spectray be constructed as the
K—theory spectrum associated to a topological permutagitegory of representations.
This approach originated in T. Lawson’s thes®9][ and is explained in detail in
Ramras 88, Section 2].

Here we will take a more naive, but essentially equivalgopyeach. The present view-
point makes clear the precise analogy between deformHtiegheory and the classical
representation ring. Its relation to the categorical auesion will be described at the
end of this section.

For the rest of this section, we fix a discrete grollp The construction of the
(unitary) representation rinB(I') may be broken down into several steps: one begins
with the setsHom(", U(n)), which form a monoid under direct sum; next, one takes
isomorphism classes by modding out the actions of the graugg on the sets
Hom(',U(n)). The monoid structure descends to the quotient, and intéaxsor
product now induces the structure of a semi-ring. Finallyfaren the Grothendieck
ring R(I") of this semi-ring ofisomorphism classes. Deformatiortheory (additively,

at least) may be constructed simply by replacing each stéisrconstruction by its
homotopy theoretical analogue. To be precise, we begintivithpace

Rep() = [ [ Hom@, U(n),
n=0

which is a topological monoid under block sum. Rather thassipg toU (n)—orbit
spaces, we now form the homotopy quotient

Rep()nu = H EU(n) xy(m Hom(T', U(Nn)).
n=0
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Block sum of unitary matrices induces maps
EU(n) x EU(m) — EU(n + m)

on universal bundles, and together with the monoid strectur Repl’) these give
Rep(Mnu the structure of a topological monoid (for associativityhtd, we must use

a functorial model forEU(n), as opposed to the infinite Stiefel manifolds; see Re-
mark?2.2). Finally, we apply the homotopical version of the Grothieosll construction

to this topological monoid and call the resulting spacg, the (unitary) deformation
K—theory ofI".

Definition 2.1 The deformatiorK —theory of a discrete group is the space

Kaef(I') := 2B (Rep)nu) ,
whose homotopy groups we denotey.(I') = m.Kget(I').

Here B denotes the simplicial bar construction, namely the digssi space of the
category with one object and with Répfu as its space of morphisms. Note that
Kgef(I') is a contravariant functor from discrete groups to spaces.

It was shown in B8, Section 2] that the spackg(I") as defined here is weakly
equivalent to the zeroth space of the connecfivespectrum associated to T. Lawson’s
topological permutative category of unitary represeats;j in particular the homotopy
groups of this spectrum agree with the homotopy groups ofplaeeK gef(I).

We note that constructing a ring structure in deformatcrtheory requires a subtler
approach, and this has been carried out by T. Law3dh [

The first two homotopy groups oKgef(I") have rather direct meaningsngf(F)
is the Grothendieck group of virtual connected componehteresentations, i.e.
Gr (moRep(’)) [38, Section 2]. It follows from work of Lawson3[] that the group
Ki() is a stable version of the groupiHom(', U(n))/U(n); a precise discussion
will be given in Sectiorv.

Remark 2.2 In [38], the simplicial model forEU(n) is used; in this paper we will
need to use universal bundles for Sobolev gauge groupsewhersimplicial model
may not give an actual universal bundle. Hence it is more eoienit to use Milnor’s
model B3], which is functorial and applies to all topological groug@sere is a natural
zig-zag of weak equivalences connecting these two versibtte classifying space,
and this gives a zig-zag connecting the simplicial versibdedormationK —theory to
the Milnor version.
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2.1 Group completion in deformation K-theory

The starting point for our work on surface groups is an amalysthe consequences of
McDuff-Segal Group Completion theorer8 for deformationK—theory, as carried
out in [38]. Here we recall that result and explain its consequenaesuidace groups.
Given a topological monoidM and an elemenm € M, we say thatM is stably
group-like with respect tom if the submonoid ofrgM generated by the component
containingm is cofinal (inmgM). Explicitly, M is stably-group-like with respect tm

if for every x € M, there exists an elemert! € M such thatx - x* is connected by
a path tom” for somen € N. We then have:

Theorem 2.3 ([38]) LetI be afinitely generated discrete group such Bep(’) is
stably group-like with respect to € Hom([', U(k)). Then there is a weak equivalence

Kgef(T') =~ teIescope(Rep(F)hU 2. Repl)ny 22 > 7
where®p denotes block sum with the poifiy, p] € EU(K) xyg Hom(", U(K).

Here, and throughout this article, telescope refers to thppimg telescope of a
sequence of maps. The novel aspect of this result is thakkeuslsewhere in algebraic
K—theory, Quillen’s +-construction does not appear. Thidus to the fact that the
fundamental group on the right-hand side is already abedidact which (in general)
depends on rather special properties of the unitary groups.

In low dimensions, this result has the following manifestat

Corollary 2.4 Let M be either the circle or an aspherical compact surface. Then
there is a weak equivalence betwde€fs(m1(M)) and the space

telescopRep(riM)ny) = telescope(ReperM)hU 2N Rep@iM)nu LN )

®1

where®1 denotes the map induced by block sum with the identity mdtrixU (1).

There are at least two approaches to the problem of showatgRbp{r1M) is sta-

bly group-like with respect to & Hom(r1M, U(1)). In Corollaries4.11and4.12

we use Yang-Mills theory to show that RepM) is stably group-like for any com-
pact, aspherical surfadd. (In the orientable case, this amounts to showing that the
representation spaces are all connected, which is a wellkriolk theorem.) This
argument is quite close to Ho and Liu’'s proof of connectifiiy the moduli space of
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flat connectionsd2, Theorem 5.4]. For most surfaces, other work of Ho and Rhj [
gives an alternative method, depending on Alekseev, Matkid Meinrenken’s theory
of quasi-Hamiltonian moment map4][ A version of that argument, adapted to the
present situation, appears in the author’s the&9sChapter 6].

3 Representations and flat connections

Let M denote am—dimensional, compact, connected manifold, with a fixe@pamt
mo € M. Let G be a compact Lie group, ai®l > M be a smooth principaB—bundle,
with a fixed basepoinpg € 7—%(mg) C P. Our principal bundles will always have a
right action of the structure grou@.

In this section we explain how to pass fro@+representation spaces of(M) to
spaces of flat connections on princiga+bundles oveM, which form critical sets for
the Yang-Mills functional. The main result of this sectiarthe following proposition,
which we state informally for the moment.

Proposition 3.9 For anyn—-manifoldM and any compact, connected, real algebraic
Lie groupG, holonomy induces &—equivariant homeomorphism

[T Arat(Pi)/Go(P)) % Hom(r1 (M), G),

[Pi]
where the disjoint union is taken over some set of represeggafor the (unbased)
isomorphism classes of princip@-bundles oveM.

In order to give a precise statement and proof of Proposgi®ywe need to introduce
the relevant Sobolev spaces of connections and gaugedrarafons. Our notation
and discussion follow Atiyah—Bot6[ Section 14], and another excellent reference is
the appendix to Wehrheind4].

We use the notatiorILE to denote functions witkk weak (distributional) derivatives,
each in the Sobolev spat®. We will record the necessary assumptionskoand p
as they arise. The reader interested only in the applicatiomleformatiork —theory
may safely ignore these issues, noting only that all theltest this section hold in
the Hilbert spaceLﬁ for large enoughkk. Whenn = 2, our main case of interest, we
just needk > 2.
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Definition 3.1 Letk > 1 be an integer, and ldt < p < oco. We denote the space
of all connections on the bundk of Sobolev clas$_E by A“P(P). This is an affine
space, modeled on the Banach spacEEosections of the vector bundiE*M & adP
(hereadP = P xg g, andg is the Lie algebra o6 equipped with the adjoint action).
Hence A%P(P) acquires a canonical topology, making it homeomorphic écBanach
space on which it is modeled. Flaf connections are defined to be those with zero

curvature. The subspace of flat connections is denoted'f‘,llft)(/P).

We let GKt1LP(P) denote the gauge group of all bundle automorphismB of class

LE 11, and (when(k + 1)p > n) we let gg“’p(P) denote the subgroup of based
automorphisms (those which are the identity on the fiber avee M ). These gauge
groups are Banach Lie groups, and act smoothlAbP(P). We will always use the left
action, meaning that we let gauge transformations act onamions by pushforward.
We denote the group of all continuous gauge transformatigng(P). Note that so
long as(k + 1)p > n, the Sobolev Embedding Theorem gives a continuous ingiusio
GKLP(P) — G(P), and hence in this ranﬁ“’p(P) is well-defined. We denote the
smooth versions of these objects (33)>°(P).

The following lemma is well-known.

Lemma3.2 Assumek+ 1)p > n. Then the inclusiorg*+P(P) — G(P) is a weak
equivalence.

Proof Gauge transformations are simply sections of the adjointlalP x g Ad(G)
(see B, Section 2]). Hence this result follows from general appr@tion results for
sections of smooth fiber bundles. O

Note the continuous inclusiogkt1P(P) — G(P) implies that there is a well-defined,
continuous homomorphism: G¥t1P(P) — G given by restricting a gauge transfor-
mation to the fiber over the basepoimp € M. To be precisef(¢) is defined by
Po - r(¢) = ¢(po), and hence depends on our choice of basepmir P.

Lemma 3.3 If G is connected, then the restriction map G*t1P(P) — G is
surjective. If we assume further th@t+ 1)p > n, thenr induces a homeomorphism
Gk+Lp(P)/ g('j“’p(P) =~ G. The same statements hold for the smooth gauge groups.

Proof Thinking of gauge transformations as sections of the atmimdle, we may
deform the identity ma® — P over a neighborhood afy so that it takes any desired
value atpy (here we use connectivity @). This proves surjectivity.
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By a similar argument, we may construct continuous locdicess: U — G>°(P) of
the mapr, whereU C G is any chart. Ifr: G>(P) — G(P)>°/Gg°(P) is the quotient
map, then the maps o s are inverse t@ on U. Hencer—! is continuous. The same
argument applies tG<t1P(P), although we must requirek ¢ 1)p > n so thatr is
well-defined and continuous. O

I do not know whether Lemma.3holds for non-connected groups; certainly the proof
shows that the image of the restriction map is always a uni@emponents ofs.

Flat connections are related to representations, bf via the holonomy map. Our next
goal is to analyze this map carefully in the current conté8abolev connections. The
holonomy of a smooth connection is defined via parallel parts given a smooth loop
~ based atny € M, there is a uniqué—horizontal lifty of v with 4(0) = pg, and the
holonomy representatiol (A) = pa is then defined by the equatioil)- pa([Y]) = po-
(Since flat connections are locally trivial, a standard caatipess argument shows that
this definition depends only on the homotopy clagksdf ~.) It is important to note
here that the holonomy map depends on the chosen the basppairP. For further
details on holonomy, we refer the reader to the Appendix.

Lemma 3.4 The holonomy mamﬁft(P) — Hom(mM, G) is continuous ifk > 2
and(k — 1)p > n.

Proof The assumptions ok and p guarantee a continuous embeddih‘gM) —
CY(M). Hence ifA € Aﬁg’t(P) is a sequence of connections converging,(liﬁft(P))

to A, thenA; — A in C! as well. We must show that for any such sequence, the
holonomies of thé; converge to the holonomy .

It suffices to check that for each loop the holonomies aroung converge. These
holonomies are defined (continuously) in terms of the irgtbguirves of the vector fields
V(A;)) on ~*P arising from the connectiong;. Since these vector fields converge in
the C! norm, we may assume that the sequeieéA;) — V(A)||c: is decreasing and
less than 1. By interpolating linearly between téA;), we obtain a vector field
on v*P x | which at timet; is just V(A;), and at time 0 isV(A). This is clearly a
Lipschitz vector field and hence its integral curves varyticmously in the initial point
(Lang [28, Chapter 1V]) completing the proof. O

Remark 3.5 With a bit more care, one can prove Lemi8& under the weaker
assumptionk > 1 andkp > n. The basic point is that these assumptions give an
embeddingLf(M) — C°(M), and by compactness®(M) — L(M) (and similarly
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after restricting to a smooth curvelih). Working in local coordinates, one can deduce
continuity of the holonomy map from the fact that limits couome with integrals in
LY([0, 1]).

Lemma 3.6 Assumep > n/2 (and ifn = 2, assumep > 4/3). If G is connected,
then eachgy P (P)—orbit in AXP(P) contains a uniqugg® (P)—orbit of smooth con-
nections.

Proof By Wehrheim 14, Theorem 9.4], the assumptions krand p guarantee that
eachG*t1P(n) orbitin kl’aﬁ(n) contains a smooth connection. Now, s&\A is smooth

for some¢ € GKt1LP(P). By Lemma3.3, there exists a smooth gauge transformation
@ such thatr(¢)) = r(¢)~1. The compositiony o ¢ is clearly based, and sinag is
smooth we know that{o ¢) - A is still smooth. This proves existence. For uniqueness,
say ¢ - A and - A are both smooth, wherg, ¢ € g('j“’p(P). Then¢y~ is smooth

by [6, Lemma 14.9], so these connections lie in the s@igre-orbit. O

The following elementary lemma provides some of the commess we will need.

Lemma 3.7 If G is a compact, real algebraic group then only finitely manynise
phism classes of princip&—bundles oveM admit flat connections.

Proof As described in the Appendix, any bundieadmitting a flat connectio is
isomorphic to the bundle induced by holonomy represemtaijg 71M — G. If two
bundlesEy and E; arise from representationg and p; in the same path component
of Hom(r1M, G), then choose a path of representations connecting to p1. The
bundle

E=(Mx[0,1]x 6) /(M t,) ~ (M.t () 0)

is a principal G=bundle overM x [0, 1] and provides a bundle homotopy between
Eo and E;; by the Bundle Homotopy Theorem we conclulg = E;. Hence the
number of isomorphism classes admitting flat connectioreg imost the number of
path components of Hom{M, G).

Now we use the assumption th@tis algebraic. SinceriM is finitely generated (by
k elements, say), Hom{M, G) is the subvariety ofGX cut out by the relations in
m1M. So this space is a real algebraic variety, hence trianfpiidbr a proof, see
Hironaka R0]). Since compact CW complexes have finitely many path corapts)
the proof is complete. O
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Remark 3.8 We note that the previous lemma holds eveifs not compact, by a
result of Whitney 5] regarding components of varieties.

We can now prove the result which connects representatieorythwith Yang-Mills
theory.

Proposition 3.9 Assumep > n/2 (and ifn = 2, assumeg > 4/3), k > 1, and
kp > n. Then for anyn—manifold M and any compact, connected, real algebraic Lie
groupG, the holonomy map induces@—equivariant homeomorphism

[T AkRP)/Gs PP - Hom(mi(M), G),

[Pi]
where the disjoint union is taken over some set of represeggafor the (unbased)
isomorphism classes of princip@—bundles ovemM . (Note that to definé{ we
choose, arbitrarily, a base point in each representatinelbip; .)

The G-action on the left is induced by the actions @f"1P(P;) together with the
homeomorphisms7*1P(P;) /GK™P(P)) =~ G, which again depends on the chosen
basepoints in the bundlé.

Proof The assumptions ok and p allow us to employ all previous results in this
section (note Remar®.5). It is well-known that the holonomy map

H: J]Afu(Pi) — Hom(ri(M), G)
[Pi]
is invariant under the action of the based gauge group angcé@sdan equivariant
bijection 3
H: [T AR(P)/96°(P) — Hom(ma(M), G).

[Pi]
For completeness we have included a proof of this result @ Appendix. By
Lemma3.6, the left hand side is unchanged (set-theoretically) if welace Ag;,
andgg® by Aﬁapt and g'g“*’, and hence Lemma.4tells us that we have a continuous
equivariant bijection

He [T ARRP)/Gs P(P) — Hom(mi(M), G).
[P
We will show that for eactP, Aﬁﬁ(P)/gg“’p(P) is sequentially compact. Since, by

Lemma3.7, only finitely many isomorphism types of princip@—bundle admit flat
connections, this implies that

[T ARRP) /G5 PPy

[Pi]
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is sequentially compact. A continuous bijection from a sgdjially compact space to
a Hausdorff space is a homeomorphism, so this will comphetetoof.

The Strong Uhlenbeck Compactness Theoréih(see also Daskalopoulo&(, Propo-
sition 4.1]) states that the spaoﬁe',‘lg(P)/gk“vp(P) is sequentially compact. Now,
given a sequencéA;} in A}‘I’aﬁ(P), there exists a sub-sequenfd; } and a sequence
oj € GKtLP(n) such tha;-Aj; converges in4"P to a flat connectiom. Letg; = r(¢y).
SinceG is compact, passing to a sub-sequence if necessary we magetsat thep;
converge to an elemergt € G. The proof of Lemm&.3 shows that we may choose
a convergent sequeneg € G*tP(P) such thatr(v;) = g *; we lety) = lim ¢y, so
r() = g~t. Now continuity of the action implies that the sequengg o ¢j) - A

converges ta) - A. Sinceyj o ¢j € g{;“*’(P), this completes the proof. O

Remark 3.10 It is worth noting that point-set considerations alone shbat se-
quential compactness of the quotient spatlfg(P) /géﬂ’p(P) suffices to prove its
compactness: speciﬁcally;ﬁft(P) is second countable, since it is a subspace of a sep-
arable Banach space. The quotient map of a group actioniis speli:?(P)/G& P (P)

is second countable as well. Now, any second countablyesgiglly compact space

is compact. (The necessary point-set topology can be fauiilansky 46, 5.3.2,

7.3.1,5.4.1].)

More interesting is that Propositicdh9implies that the based gauge orbitsAlﬁ’apt(P)
are closed (the quotient embedsHom(mM, G)). SinceG is compact, one also
concludes that the full gauge orbits are closed.

4 Morse theory for the Yang-Mills Functional and the
Harder-Narasimhan stratification

In the previous section, we explained how to pass from spatespresentations to
spaces of flat connections. We now focus on the case wWildasea compact Riemann
surface andG = U(n). As explained in the introduction, we wish to compare the
space of flat connections onli(n)—bundleP over M to thecontractiblespace of all
connections orP, and in particular we want to understand what happens asitie r
of P tends to infinity. Atiyah and Bott made such a comparison &dixed bundle
P) using computations in equivariant cohomology. We wilk@zsl work directly with
homotopy groups, by employing Smale’s infinite dimensidrahsversality theorem.
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A (co)homological approach could be used in the orientabtecbut there are some
technical difficulties (related to equivariant Thom isopttisms) in extending such an
argument to the non-orientable case. These issues araittytreing studied in joint
work with Ho and Liu.

The main result of this section is a connectivity estimaidtfe space of flat connections:

Proposition 4.9 Let M = MY denote a compact Riemann surface of geguand
letn > 1 be an integer. Then the spa_@kﬁat(n) of flat connections on a trivial rank
n bundle oveM is 2g(n — 1)—connected, and if is a non-orientable surface with
double coveM?9, then the space of flat connections on any prindipal) —bundle over
> is (g(n — 1) — 1)—connected.

We will work in the Hilbert space of_ﬁ connections, and we will assunke> 2 so
that the results of SectioB apply. We will now suppresp = 2 from the notation,
writing simply A, GK, and so on. Over a Riemann surface, any prindip@)—bundle
admitting a flat connection is trivial (see Corolla#yl1), and hence we restrict our
attention to the casB = M x U(n) and use the notatiod*(n) = AX(M x U(n)), etc.

For any smooth principal (n)—bundleP — M, the Yang-Mills functional
L: AYP) —» R
is defined by the formula

L) = /M IF(A)|Pdvol

whereF(A) denotes the curvature form of the connectidrand the volume oM is
normalized to be 1. The spacé,(n) of flat connections forms a critical set for the
L [6, Proposition 4.6], and so one hopes to employ Morse-thiedrktas to compare
the topology of this critical set to the topology df(P). In particular, the gradient flow
of L should allow one to define stable manifolds associated ticarsets ofM, which
should deformation retract to those critical subsets. Hdoessary analytical work has
been done by Daskalopoulokd] and Rade B7], and furthermore Daskalopoulos has
explicitly identified the Morse stratification of“(P) (proving a conjecture of Atiyah
and Bott). We now explain this situation.

Over a Riemann surface, there is a correspondence betweeeations on a principal
U(n)—bundleP and holomorphic structures on tkE° vector bundleE = P xy(n C".
The setC(E) of holomorphic structures may be viewed as an affine spaocéegeted
on the vector spac@®1(M; EndE) of endomorphism-valued (@)—forms. Since this
is the space of (smooth) sections of a vector bundléMgrwe may define Sobolev
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spacesCX(E) = C%?(E) of holomorphic structures simply by takirg—sections of
this bundle. If we fix a Hermitian metric ok, then to each holomorphic structure
there corresponds a unique compatible (metric) conne€linp. 73]. WhenM is a
Riemann surface, this induces an isomorphism of affine spadeich extends to an
isomorphismAX(P) 22 CX(P x ) C"). For further details, se&[Sections 5, 7] orl0,
Section 2].

There is a natural algebraic stratification@{E) called the Harder-Narasimhan strat-
ification, which turns out to agree with the Morse stratifimatof .AX(P). We now
describe this stratification in the caBe= M x C".

Definition 4.1 Let E be a holomorphic bundle ovéd. Let degE) denote its first
Chern number and lek(E) denote its dimension. We cdll semi-stable if for every
proper holomorphic sub-bund C E, one has

degE)) _ deg€)
tk(E) ~ rk(E)
Replacing the< by < in this definition, one has the definition ostablebundle.

Given a (smooth) holomorphic structuéeon the bundleM x C", there is a unique
filtration (the Harder-Narasimhan filtratioa7])

O0=&CcéE & =€&

of £ by holomorphic sub-bundles with the property that eachigndbD; = & /&1
is semi-stablei(= 1,...,r) and w(D1) > u(D2) > --- > u(Dy), where u(D;) =
gi?(((%i)), and degD;) is the first Chern number of the vector bundbe. Letting nj =
rank©;) andk; = deg;), we call the sequence

p=((ng, ka), ..., (nr, k)

the typeof £€. Note that since ranks and degrees add in exact sequencésgvee
Y ini=nand); k = 0. By the results ofg, Section 14], each orbit of theomplex
gauge group orC4(E) contains a unique isomorphism type of smooth holomorphic
structure, so we may defir@ = CK(n) C C¥(n) to be the subspace of all holomorphic
structures gauge-equivalent to a smooth structure of tyad theCk partition C¥(n).
Note that the semi-stable stratum corresponds to ((n, 0)),

It is a basic fact that every flat connection Bncorresponds to a semi-stable bundle:
the Narasimhan-Seshardri Theoref) [8.1)] says that irreducible representations
inducestablebundles. By Propositiol3.9, every flat connection comes from some
unitary representation, which is a sum of irreducible repr¢ations, and hence the
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holomorphic bundle associated to any representationaingflat connection, is a sum
of stable bundles. Finally, an extension of stable bundi¢seosame degree is always
semi-stable.

We can now state the result we will need.

Theorem 4.2 (Daskalopoulos, Rade) Let M be a compact Riemann surface. Then
the gradient flow of the Yang-Mills functional is well-defahéor all positive time, and
defines continuous deformation retractions from the HalN#asimhan stratéfb to
their critical subsets. Moreover, these strata are loadflged submanifolds af*(n)

of complex codimension

o(p) = Znikj—njki +(9-1) Znin,-

i>] i>]

In particular, there is a continuous deformation retracfaefined by the gradient flow
of L) from the spac&X{n) of all semi-stablel_ﬁ holomorphic structures okl x C"
to the subspacél}‘lat(n) of flat (unitary) connections.

Remark 4.3 This result holds for anyC* vector bundle. Daskalopoulos proved
convergence of the Yang-Mills flow modulo gauge transforomest and established
continuity in the limit on (the gauge quotient of) each HarNarasimhan stratum
(which he proved to be submanifolds).aé later proved the full convergence result
stated above. We will discuss the analogue of this situatidghe non-orientable case
in the proof of Propositiod.9. We note that one could ask for a result slightly stronger
than Theorend.2 since the gradient flow of converges at timeroc to give a
continuous retraction from ea«ﬂz to its critical set, this stratum is certainly a disjoint
union of Morse strata. However, | do not know in general Wbeﬂi is connected.
Hence the Morse stratification may be finer than the Hardeaiiamhan stratification.

The following definition will be useful.

Definition 4.4  Consider a sequence of pairs of integ€rs , ki), ..., (n,, k). We
call such a sequena@missibleof total rankn (and total Chern clas3) if n; > O for
eachi, >"ni =n, >,k =0, and r'% > > n&, Hence admissible sequences of
total rankn and total Chern clad3 are precisely those describing Harder-Narasimhan

strata inC(n).

We denote the collection of all admissible sequences of tatekk n and total Chern
classO by Z(n).
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We now compute the minimum codimension of a non semi-stataus. In particular,
this computation shows that this minimum tends to infinityhwi, so long as the genus
g is positive.

Lemma4.5 The minimum (real) codimension of a non semi-stable stratué¥(n)
(n> 1) is precisely2n + 2(n — 1)(g — 1) = 2g(n — 1) + 2.

Proof Let = ((n1, k1), ..., (N, k) € Z(n) be any admissible sequence with- 1.
Then from Theorem.2, we see that it will suffice to show that

(1) Znikj—njki>n
i>]

and

2) d o =n-1
i>j

To prove (), we begin by noting that sinc®_ ki = 0 and the ratio% are strictly
decreasing, we must hakg > 0 andk, < 0. Moreover, there is somig € R such
thatk > 1 for | < lg andk < —1 for| > lg. We allowlg to be an integer if and only
if ki = 0 for somel; then this integet is unique, and in this case we defike:=I.
Sincer > 2, we know that 1< Ig < r.

Now, if i > lg > j we havek > 1 andk; < —1, so,
niki — niki > m 4 n;.
If i >lp andj = lg, we havek; = 0 andk; < —1, so
niki, — Niki = 0+ Ny, = ny,.
Finally, if i = Ig andj < lo, thenk; = 0 andk; > 1 so we have
Nk — Nk, = Ny, — 0 = ny,.
Now, sincenkj — njki = nin;(kj/n; — ki /m;) and thek; /n; are strictly decreasing, we

know that each term in the surEi>j niki — njki is positive. Dropping terms and
applying the above bounds gives

Dok —nki > > (kg — k) + Y (Mgks — niki) + > (nikiy — nigki)

i>] i>lp>] lo>] i>lg

> i)Y N+ .

i>lg>j lo>] i>lg
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(In the second and third expressions, the latter sums aea takbe empty ilg is not
an integer.) Sincé_ n; = n, to check that the above expression is at leeisisuffices
to check that eaclm; appears in the final sum. But since<lly < r, eachn; with

| # lp appears in the first term, andl§ € N thenn, appears in both of the latter
terms. This completes the proof df)(

To prove @), we fixr € N (r > 2) and consider partitionE: (p1,--.,pr) of n. We
will minimize the function¢,(P) = Zi>j pip;, over all lengthr partitions ofn.

Consider a partitiorS: (p1,---,pr) With pn > p > 1 (I # m), and define another
partition p’ by setting

pi, i1 m,
pI/: p|_17 |:|,
Pm+1 i=m

It is easily checked that(P) > o (p).

Now, if we start with any partitiorﬁ suchp; > 1 for more than one index the above
argument shows thaE cannot minimizeg,. Thus ¢, is minimized by the partition
Po=(L,...,1,n—r — 1), andé(po) = ("55 + (r — 1)(n—r — 1). The latter is an
increasing function for € (0, n) and hencezi>j pip; is minimized by the partition
(1,n—1). This completes the proof o).

Finally, note that the sequence (13, (n— 1, —1)) has complex codimensiam+ (n —
DE-1). m

Remark 4.6 It is interesting to note that the results in the next sectiearly fail in
the case wheW has genus 0. From the point of view of homotopy theory, thélera
is thatS? is not the classifying space of its fundamental group, anoigoshould not
expect a relationship betweéh-theory of S and representations afS* = 0. But
the only place where our argument breaks down is the prevéoosa, which tells us
that there are strata of complex codimension 1 in the Haxdgasimhan stratification
of CX(S x C(n)), and in particular the minimum codimension does not tendfioity
with the rank. Thus there appears to be a relationship betwee codimensions of
these strata and the contractibility of the universal cofey .

The main result of this section will be an application of tl@ldwing infinite-
dimensional transversality theorem, due to SmaleTheorem 19.1] (see alsd]).
Recall that a residual set in a topological space is a colmiatersection of open,
dense sets. By the Baire category theorem, any residuattsaba Banach space is
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dense, and since any Banach manifoltbisally a Banach space, any residual subset
of a Banach manifold is dense as well.

Theorem 4.7 (Smale) LetA, X, andY be second countablé” Banach manifolds,
with X of finite dimensiork. LetW C Y be a (locally closed) submanifold of, of
finite codimensiorny. Assume that > max(Qk — q). Letp: A — C'(X,Y) be a
C"—representation, that is, a function for which the evaarathapev,: A x X — Y
given byev,(a,x) = p(a)x is of classC'.

Fora € A, let pa: X — Y be the mappa(X) = p(@)x. Then{a € Alpa h W} is
residual inA, provided thaev, i W.

Corollary 4.8 Let Y be a second countable Banach space, and\Wtic, be a
countable collection of (locally closed) submanifoldsYofwith finite codimension.
Then ifU =Y — [J,g, Wi is a non-empty submanifold, it has connectivity at least
uw— 2, where

p=min{codimW, : iel};

equivalently the inclusiot) — Y is (1 — 2)—connected.

Proof To begin, consider a continuous map 1 — U, withk—1 < u— 2. We
must show thaf is null-homotopic inU; note that our homotopy need not be based.
First we note that since is a manifold,f may be smoothed, i.e. we may repldcby
aCktl mapf’: <1 — U which is homotopic td inside U.

Choose a smooth function: R — R with the property that(t) = 1 fort > 1/2 and
H(t) = 0 forall t < 1/4. Let DK c RX denote the closed unit disk, gD = S<1.

The formulaH*(x) = ¢(||x||)f (x/||||) now gives aCkt! mapDX — Y which restricts
to f on each shel{x € D¥| ||x|| = r} with r > 1/2. Gluing two copies oH* now
gives aC*1 “null-homotopy” of f defined on the closed manifol.

We now define
A={FecCYS,Y) | F(X) =0 for xe St c §}.

Note thatA is a Banach space: sin@ is compact, I, Theorem 5.4] implies that
C*1(SK,Y) is a Banach space, ardis a closed subspace 6ft1(S,Y). (This is the
reason for working witiCkt1 maps rather than smooth ones.)

Next, we defingp: A — CK(SK,Y) by settingp(F) = F + H. The evaluation map
ev,. Ax S — Y is given by ey(F,x) = F(X) + H(X). Since both ¢, x) — F(x) and



22 Daniel A. Ramras

(F,X) — X — H(x) are of classC¥*1, so is their sum (the fact that the evaluation map
(F,X) — F(x) is of classC**? follows from [1, Lemma 11.6]).

We are now ready to apply the transversality theorem. $ettin= S, W = W
(for somei € 1) and with A as above, all the hypotheses of Theorémare clearly
satisfied, except for the final requirement thaf evW,. But this is easily seen to be
the case. In fact, the derivative of gsurjects ontdl,Y for eachy in the image of ey,
because given 81 mapF: S — Y with F(x) = y and a vectow € TyY, we may
adjustF in a small neighborhood of so that the map remair@<+! and its derivative
hits v.

We now conclude thafF € Ajpa h Wi} is residual inA, for each stratunWi. Since
the intersection of countably many residual sets is (by difi) residual, we in fact
see that

{FEA| pr W Viel}

is residual, hence dense, M In particular, sinceA is non-empty, there exists a map
F: S — Y such thatF|g—1 = f andpp = F + H is transverse to eact;. Since

k < = codimM), this implies that the image df + H must be disjoint from each
W;. Hence F + H)(S) ¢ U, andf represents the zero elementrip_,U . O

We can now prove the main result of this section. This resdkrels work of Ho
and Liu, who showed that spaces of flat connections overcasfare connecte@?,
Theorem 5.4]. We note, though, that their work applies toegainstructure groups
G. We also note that in the orientable case this result is flaséated to work of
Daskalopoulos and Uhlenbeck1, Corollary 2.4], which concerns the less-highly
connected space sfablebundles.

Proposition 4.9 LetM = MY denote a compact Riemann surface of geguand
letn > 1 be an integer. Then the spamﬁat(n) of flat connections on a trivial rank
n bundle oveM is 2g(n — 1)—connected, and if: is a non-orientable surface with
double coveM?9, then the space of flat connections on any prindipal) —bundle over
> is (g(n — 1) — 1)—connected.

Proof We begin by noting that Sobolev spaces (of sections of fibedles) over
compact manifolds are always second countable; this fglfoem Bernstein’s proof of
the Weierstrass theorem since we may approximate any éumioji smooth functions,
and locally we may approximate smooth functions (uniforonbyto thekth derivative
for any k) by Bernstein polynomials. Since the inclusioﬁat(n) — C'gs(n) is a
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homotopy equivalence (Theore#n?), the orientable case now follows by applying
Corollary4.8 (and Lemmat.5) to the Harder-Narasimhan stratification.

For the non-orientable case, we work in the set-up of noentaible Yang-Mills theory,

as developed by Ho and Li22]. Let X be a non-orientable surface with double cover
M9, and letP be a principalU(n)—bundle over:. Let 7: M9 — X be the projection,
and letP = 7*P. Then the deck transformation: M9 — M9 induces an involution

7: P — P, and7 acts on the spacdX(P) by pullback. Connections oR pull back

to connections orP, and in fact, the image of the pullback map is precisely the se
of fixed points ofr (see, for example, H®[l]). Hence we have a homeomorphism
AK(P) = AX(P)7, which we treat as an identification. The Yang-Mills funogibL is
invariant undefr, and hence its gradient flow restricts to a flow.di(P).

Assume for the moment that,.(P) # (. The flat connections of® pull back to
flat connections ofP, and again the image ok (P) in A(P) is precisely. A, (P)".
If we let CK(P) denote the fixed sef¥(P)”, then the gradient flow of restricts to
give a deformation retraction fror8&(P) to A (P). The complement o€X(P) in
AX(P) may be stratified as follows: for each Harder-Narasimhaatigh CK(P) C

AK(P) = cK (i5 X U(n) (C”) , we consider the fixed s€¥(P) := (Cﬁ(ﬁ))T. By Ho and
Liu [22, Proposition 5.1]C5(P) is a real submanifold of4*(P), and if it is non-empty
then its real codimension int“(P) is half the real codimension cﬂﬁ(ﬁ) in AXP).
The codimensions of the non semi-stable st[?;jj(aP) are hence atleagf(n — 1) + 1

(by Lemma4.5). It now follows from Corollary4.8 that Ahat(P) has the desired
connectivity.

To complete the proof, we must show that all bundResver X actually admit flat
connections. This was originally proven by Ho and L25[ Theorem 5.2], and in the
current context may be seen as follows. There are preciselysomorphism types of
principal U(n)—bundles over any non-orientable surface. (A map fidrimto BU(n)
may be homotoped to a cellular map, and since the 3-skelétBtU() is a 2-sphere,
the classification ofJ(n)—bundles is independent of Hence it suffices to note that
the relativeK -groupKo(X) has order 2.) Except in the cage= 1,n = 2, we have just
shown that the space of flat connections on each bundle & eithpty or connected, so
Proposition3.9 gives a bijection between connected components of HekRy(U(n))
and bundles admitting a flat connection. So it suffices to sthawthe representation
space has at least two components. This follows easily ff@mrobstruction defined
by Ho and Liu [op. cit.].

The casay = 1, n = 2 can be handled by an argument similar to the proof of Casolla
4.12, using the facts that there are exactly two bundlesawenon-orientable surface,
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classified by their first Chern classeshf(X,Z) = Z/2, and there are exactly two
components in Hom( X, U(n)), classified by Ho and Liu’s additive obstruction (for
an elementary algebraic proof of the latter fact, 88 Proposition 6.1.11]). Since we
will not need this case, we leave details to the reader. O

Remark 4.10 In the non-orientable case, some improvement to Thedrénis pos-
sible. The results of Ho and Liu show that many of the HarderaSimhan strata
for the double cover of non-orientable surface contain nedfigoints, and hence the
above lower bound on the minimal codimension of the Morsaatis not tight in the
non-orientable case. In the orientable case, the tightoEkemmad4.5 shows that
the bound on connectivity aﬂhat(n) is tight. This can be proven using the Hurewicz
theorem and a homological calculation; the latter requi@sstructing good tubular
neighborhoods for the locally closed submanifcﬂ’zgs(such a construction will appear
in joint work with Ho and Liu).

As discussed in Sectidh, the following results are quite close to the work of Ho and
Liu.

Corollary 4.11  For any compact Riemann surfabé and anyn > 1, the repre-
sentation spacelom(r1(M), U(n)) is connected. In particulaRep¢r1M) is stably
group-like.

Proof The genus O case is trivial. Whem= 1, U(1) = S is abelian and all
representations factor through the abelianizationtgd¥l. Hence HomgiM, U(1))

is a wedge of circles. Wheg,n > 1 we have 8(n — 1) > 0, so Propositior}.9
implies thatAhat(n) is connected. Connectivity of Hom{(M), U(n)) follows from
Proposition3.9, because anyJ(n) bundle over a Riemann surface which admits a flat
connection is trivial (Thaddeud?] has given a beautiful and elementary proof of this
fact). O

Corollary 4.12 LetX be a compact, non-orientable, aspherical surface. Themfor

n > 1, the representation spae®m(r1X, U(n)) has two connected components, and
if p € Hom(r1X, U(n)) andy € Hom(r1X, U(m)) lie in the non-identity components,
then p ® v lies in the identity component diom(r:X, U(n + m)). In particular,
Rep(r1Y) is stably group-like.

Proof First we consider connected components. The case 1 follows as in
Corollary 4.11 Whenn > 1, it follows immediately from Propositiod.9 that the
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space of flat connections on any principa{n)—bundle overX is connected, unless
n = 2 and the genus of the universal covedfs 1, i.e. X is the Klein bottle. For any
n, the case of the Klein bottle may be handled by an elemenkgepeic argumeno,
Proposition 6.1.11]. Note, however, that to prove that Repj is stably group-like,
we are free to ignore the structure of Hamx, U(n)) for smalln.

As discussed in the proof of Propositidi®, there are precisely two bundles over
classified by their first Chern classes, and there is a bjedietween components of
the representation space and isomorphism classes of kuridénce the components
of Hom(r1X:, U(n)) are classified by the Chern classes of their induced bandied
since Chern classes are additive, the sum of two represesrgan the non-identity
components of Hom(; >, U(-)) lies in the identity component. O

5 Proof of the main theorem

We can now prove our surface-group analogue of the AtiyagjalSbeorem.

Theorem5.1 LetM be a compact, aspherical surface (in other wastls: S?, RP?).
Then forx > 0,
Kaer(m1(M)) = K*(M),

whereK*(M) denotes the complek —theory ofM. In the non-orientable case, this in
fact holds in degre@ as well; in the orientable case, we ha(@ef(wl(M)) =7.

We note that the isomorphism in Theoré&ni is functorial forsmoothmaps between
surfaces, as will be apparent from the proof. In particula, isomorphism is equiv-
ariant with respect to the mapping class grougvof

The K —theory of surfaces is easily computed (using the Mayeteviesequence or the
Atiyah-Hirzebruch spectral sequence), so Theokehgives a complete computation
of the deformatiorK -groups.

Corollary 5.2 Let MY be a compact Riemann surface of gegus 0. Then

7, *+=0
Kief(miM®) = { Z%9, x odd
Z?, =« even x> 0.
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Let M be a compact, non-orientable surface of the fédm= M9%N; (g > 0), where
j =1 or2andN; = RP?, N, = RP?#RP? (so N, is the Klein bottle). So long as
M = RP?, we have:

N 7 ®71/27, *even
Kdef(ﬂ'lMg#Nj) = { Z29+j—/1 « odd

Proof of Theorem 5.1 I. The orientable case:Let M be a Riemann surface of genus
g > 0. We will show that for any > 0,

Kier(r1(M)) = 7.(Map’(M, BU)),

where MafS denotes the connected component of the constant map. Thideaily
suffice. In fact, we will exhibit a zig-zag of weak equivalescbetween the zeroth
space of the deformatio—theory spectrum and the spagex Map’(M, BU).

By Corollary2.4and Propositior3.9 (and the fact that any bundle over a Riemann sur-
face admitting a flat connection is trivial), the zeroth spatthe spectruniKges(7m1M)
is weakly equivalent to

(3) telﬁ:opﬂepmM)hu = telescopq_[ EUMN) xum (Ala(n)/GE™(n)
@1 ®[r] n

where the maps are induced by direct sum with the trivial ectian 7 on the trivial
line bundle. Since the based gauge grogg)‘sl(n) act freely on4K(n), and (by Mitter—
Viallet [34]) the projection maps are locally trivial principﬁﬁ“(n)—bundles, a basic
result about homotopy orbit spacés 13.1] shows that we have a weak equivalence

(4) EGHH () X gerany Afiar(M) — EUN) xu@ (Affar(n)/G6()
It now follows from @) that the mapping telescopg)(is weakly equivalent to
tek—:;:)opq;[ (Afat) pgrcesy = Z % tel?:)opeét'f‘lat(n)hgm(n).

Proposition4.9 shows that the connectivity of the projectiouﬁat(n)hgm(n) —
BG*+1(n) tends to infinity, and since the homotopy groups of a mappétescope
may be described as colimits, these maps induce a weak &madea

(5) Z x telescopedfy(Migkrin — Z x telescopdG<(n).

Nn—oo n—oo

By Lemma3.2, the inclusionGkt1(n) — G(n) is a weak equivalence, so we may
replaceGkt1(n) with G(n) on the right.
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We have been using Milnor’s functorial modge(—) for classifying spaces (see Re-
marks2.2). Atiyah and Bott have showrB] Section 2] that the natural map

MapM, EU(n)) — Map’(M, BU(n))

is a universal principal Map{, U(n)) = G(n) bundle, where Mapdenotes the con-
nected component of the constant map. We now have weak éznies

BG(n) — (EG(n) x Map(M, EU(n))) /MapM, U(n)) — Map’(M, BU()),

which are natural im and hence induce weak equivalences on mapping telescopes
(taken with respect to the maps induced by the standardsioecisU(n) — U(n +

1)). The space telescaope, Map®(M, BU(n)) is weakly equivalent to the colimit
Map®(M, BU), since maps from compact sets into a colimit land in someefini
piece. Hence we have a zig-zag of weak equivalences congeitie zeroth space

of Kgef(m1M) to Z x Map®(M, BU), as desired.

Il. The non-orientable case: Let M be a non-orientable surface. Once again, Propo-
sition 2.4 and PropositiorB3.9 tell us that the zeroth space &fgeif(71M) is weakly
equivalent to

telei:)opq_l (Ahat(Pi))hgk+l(pi) ’

o7 [Pi]

where the disjoint union is taken over alland over all isomorphism types of principal
U(n)—-bundles. By Propositiod.9 we know thatA}‘lat(Pi) is @M)(nj — 1) — 1)—
connected, wherg, = dim(P;) andg(M) denotes the genus of the double covehbf
Since we have assumédl £ RP?, we know thag(M) > 0, and hence the connectivity
of A}‘lat(Pi) tends to infinity withn;. This shows that the natural map

(6) telescopq | (Afk,at(Pi))hng(Pi) — telescopd [ BG*(P;)
e [P o1 [Pl

is a weak equivalence (on the right hand side, 1 denotes thitiyl element in
GKt1(1)). Asin the orientable case, we may now switch to the Atitt models for
BG(P;), obtaining the space

telescopq_[ Map™ (M, BU(n)),
o1 [P

where Map' denotes the component of the mapping space consisting sé thaps
f : M — BU(n) with f*(EU(n;)) isomorphic toP;. But since the union is taken over
all isomorphism classes, this space is simply

Z x telescopéMapM, BU(N))

Nn—oo
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(up to homotopy) and as before is weakly equivalent to

7Z x MapM, BU) = Map(M, Z x BU). O

We briefly discuss the spectrum-level version of Thedben The space level construc-
tions used in the proof of Theoreml can be lifted to spectrum-level constructions.
This involves constructing a variety of spectra (and mapgs/éen them) including,
for instance, a spectrum arising from a topological categdrflat connections and
gauge transformations. Each spectrum involved can bercatest from al'—space

in the sense of Segad(], and the space-level constructions above essentiallgrbec
weak equivalences between the group completions of the i®mumderlying these
I"'—spaces. Since these group completions are weakly equiital¢he zeroth spaces
of these(2-spectra, the space-level weak equivalences lift to weplvalences of
spectra. In the non-orientable case, one concludekihdtr:M) is weakly equivalent
to the function spectrurir(M, ku). The end result in the orientable case is somewhat
uglier, due to the failure of Theoref 1 on mp. In this case Kgef(m1M) is weakly
equivalent to a subspectrum BfM, ku), essentially consisting of those maps homo-
topic to a constant map. One may ask whether the intermespatgra aré&ku—algebra
spectra and whether the maps between them preserve thitustruMore basically,
one may ask whether the isomorphisms in Theoketrtome from a homomorphism
of graded rings. Recall that T. Lawsdl] has constructed ku—algebra structure on
the spectrunKgyef(G). Constructing an analogous structure for the spectrusingri
from flat connections appears to be a subtle problem. Thidemy and the full details
of the spectrum-level constructions, will be consideresstwhere.

We now make the following conjecture regarding the homotiypg of the spectrum
Kgef(m1M), as a algebra over the connectie-theory spectrunku. Note that it is
easy to check (using Theorésril) that the homotopy groups of the proposed spectrum
are the same asj(m1(M)).

Conjecture 5.3 For any Riemann surfadel9, the spectrunKge(m1M) is weakly
equivalent, as &u-algebra, to

ku Vv \/Eku vV ¥2ku.
29
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6 Connected sum decompositions

In this section we consider the behavior of deformatiortheory on connected sum
decompositions of Riemann surfaces.

Given an amalgamation diagram of groups, applying defaomd( -theory results in
a pull-back diagram of spectra. An excision theorem stdi@isthe natural map

P Keef(G *k H) — holim (Kgef(G) — Kaef(K) «— Kger(H))
is an isomorphism, where holim denotes the homotopy putlbac

Associated to a homotopy cartesian diagram of spaces

7) W——X

P
Yy—X.7

there is a long exact “Mayer—Vietoris” sequence of homotgmups

®) ... — mW) "2 m () @ mY) T m(@) L mea(W) —

(this follows from Hatcher18, p. 159], together with the fact that the homotopy fibers
of the vertical maps in a homotopy cartesian square are wesaidivalent). If the
diagram {) is a diagram in the category of group-liké—spaces, then all of the maps
in the sequence8] (including the boundary map) are homomorphisms in dimemnsi
zero. Hence whenever deformatiintheory is excisive on an amalgamation diagram,
one obtains a long-exact sequencefy;.

DeformationK —theory can fail to satisfy excision in low dimensions, amgarticular
the failure of Theorend.1in degree zero leads to a failure of excision for connected
sum decompositions of Riemann surfaces. We briefly desthibesituation.

Letting M = M9%+% denote the surface of gengs + g, and Fy the free group ork
generators, if we think oM as a connected sum then the Van Kampen Theorem gives
us an amalgamation diagram fefM. The long exact sequence coming from excision
would end with

ci—cCh
Kt:jlef(F291) @ Kéef(FZQz) - Kc]i'ef(Z) - Ktcj)ef(ﬂ'lM)
- ngf(F291) ©® ngf(FZle) - ngf(Z)'
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The groups appearing in this sequence are all known, ancessetiuence would have
the form

cf —c*
Ktzjlef(F291) D Ktzjlef(F292) 1—C2’ Kdlef(Z) =2 —7—7LOL— L.

We claim, however, that the mams: Ki(F2q) — Kie(Z) are zero. This leads
immediately to a contradiction, meaning that no such exaeguence can exist and
excision is not satisfied in degree zero.

If we write the generators dfzq asaj,by,. .., ay, by, then the mam; : Z — Fyq is

the multiple-commutator map, sending=1Z to ]_[J-g‘zl[a]!, bj]. Since the representation
spaces ofF¢ are always connected, RéRj is stably group-like with respect to
1 € Hom(Fk,U(1)). Hence (using Theorer®.3) one finds that the induced map

¢ Kiet(Fog) — Kief(Z) may be identified with the map
To(Z % (UP)hy) — m(Z x Uny)

induced by the multiple commutator m&x U%% — U (here the actions df) are via
conjugation). The induced mdp, on homotopy is always zero, and from the diagram
of fibrations
U2 —EU xy U% —BU
o

U—EUxyU——=BU
one now concludes (using Bott Periodicity) tlwitis zero forx odd.

This shows that deformatioK —theory is not excisive omg for connected sum de-
compositions. However, based on Theorgrhwe expect that excision will hold in all
higher degrees.

7 The stable moduli space of flat connections

In this section we study the moduli space of flat unitary catinas over a surface, after
stabilizing with respect to rank. By definition, the modypiase of flat connections
over a compact manifold, with structure gro@ is the space

]_[Afklgi(P) /GK P =~ Hom(m M, G) /G,
[Pi]
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where the disjoint union is taken over isomorphism clas$gwinicpal G—bundles.
This homeomorphism follows immediately from Proposit@® (so long ask and p
and G satisfy the hypotheses of that result). In particular, treduati space of flat
unitary connections is simply Hom{M, U(n))/U(n), and the inclusiondJ(n) —
U(n+ 1) allow us to stabilize with respect to rank. The colimit loése spaces is just
Hom(mM, U)/U, whereU = colimU(n) is the infinite unitary group. We call this
space the stable moduli space of flat unitary connections.

In order to apply our results on deformati#h-theory to the stable moduli space, we
need to employ results of T. Lawson regarding the Bott magforthationK —theory.
For the remainder of this section, we think I§fief(I") as the spectrum described in
Section2. This is a connective spectrum, and we have computed its tapyngroups

in Theoremb.1

Lawson has showr[)] that for any finitely generated groulp, there is a homotopy
cofiber sequence of spectra

(9) 52K gef(I") — Keer(l) — RE(D),

whereRe{(I") denotes the “deformation representation ringTofas we will explain.
The first map in this sequence is the Bott map in deformaiietheory, and is obtained
from the Bott map in connectivi€ —theoryku by smashing wittKqe¢(I') ; this requires
the ku—module structure in deformatidf—theory constructed by Lawso81]. Since
Kqef(I') is connective, the first two homotopy groupsXtKqef(I') are zero, and hence
the long exact sequence in homotopy associated) imfnediately gives isomorphisms

(10) Ker(D) = mRE(D)
fori =0, 1.

Remark 7.1 In Section2, we describedKqei(I') as the spectrum associated to a
permutative category of representations. Lawson workB witlifferent model 31],
built from theH —space| [, V(n) xuym Hom(', U(n)). HereV(n) denotes the infinite
Stiefel manifold oi—frames inC>. One may interpolate between the two models by
using a spectrum built from thd —space

(EU(n) x V() xy(m Hom(, U(n)),
and hence Theorer.1 computes the homotopy groups of Lawson’s deformation

K —theory spectrum as well.

Given any topological abelian monoi (for which the inclusion of the identity is
a cofibration), one may apply Segal’s infinite loop space nmecf0] to produce
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a connectivef)—spectrum; equivalently the bar constructiBA is again an abelian
topological monoid and one may iterate. In particular, g®th space of this spectrum
is exactlyQBA. The deformation representation riR§'(I") is the spectrum associated
to the abelian topological monoid

Repl) = [ [ Hom(, u()/u(n),

n=0
SO we have
™. RE() = 7,08 (Rep(D)) -

Itis in general rather easy to identify the group completithWA whenA is an abelian
monoid. In the case of surface groups, we have the followasglt.

Proposition 7.2 LetI" be afinitely generated discrete group, and assuméidat’)
stably group-like with respect to the trivial represematl ¢ Hom(,U(1)) (e.g.
I' = mM with M a compact, aspherical surface). Then the zeroth spalee¢F) is
weakly equivalent to(gef(l“) x Hom(, U)/U. Hence we have

m.Hom(, U)/U = 7, Re(I)
for x > 0, and in particularryHom(", U) /U = K3 «(T).

Proof If Rep() is stably group-like with respect to the trivial represdiun 1 ¢
Hom(", U(1)), the same is true for the monoid of isomorphism clas®ep(’). We

can now apply Ramrag88, Theorem 3.6], because the additional hypothesis (that the
representation 1 must be “anchored") is trivially satisfmdabelian monoids. Hence

OB (Rep()) ~ telescop&kep(),
E—
@1
and since2B(Rep(")) is a group-likeH—-space, all components of these spaces are
homotopy equivalent. To complete the proof we just need &xklthat one of these
components, say

telescopédom(l", U(n))/U(n),

nN—oo

is weakly equivalent to the colimit
%olim Hom(, U(n))/U(n).

But the natural projection from the mapping telescope tatiinit is a weak equiva-
lence, because in each case compact sets land in some feuge(for the colimit, this
requires that points are closed in HdmU(n))/U(n); this space is in fact Hausdorff
because the orbits dfi(n) are compact, hence closed in Ham{U(n)), which is a
metric space, hence normal). O
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Combining Propositior7.2with (10) and Theorenb.1yields:

Corollary 7.3  For any compact, aspherical surfdde the fundamental group of the
stable moduli space of flat unitary connectionsMnis isomorphic to the complex
K -groupK(M). Equivalently, ifM9 is a Riemann surface of gengs

™1 (Hom(rM9,U)/U) = 229,
and in the non-orientable cases (lettikgdenote the Klein bottle) we have

71 (Hom(@mM%RP? U)/U) = Z% and m; (Hom(r;M%K,U)/U) = 2?91,

We note that the proof of this result requires not only theg¢bills theory used to
prove Theorend.1(which includes deep analytical results like Uhlenbeck paotness
and convergence of the Yang-Mills flow) but also the modeablsthomotopy theory
underlying Lawson’s cofiber sequence. His results reqimegxample, the model
categories of module and algebra spectra studied by Elnneritiiz, Mandell, and

May [12], EImendorf and Mandelll3], and Hovey, Shipley, and Smit2§].

Assuming Conjectur&.3, we know that for Riemann surfacdsgei(m1M9) is free as

a ku—module. Hence the Bott map is easily calculated, and one compute the
homotopy groups of Hom((M9),U)/U. It is interesting to note that they vanish
above dimension 2; the reader should note the similaritywden this calculation (and
the previous theorem) and the main result of Lawson’s pa@y yvhich states that
Uk/U, the space of isomorphism classes of representationsfree@roup, has the
homotopy type of SyAT(SHk = Synt°B(Fy). (Of course this space is homotopy
equivalent to §)X.)

8 Appendix: Holonomy of flat connections

We now give a careful discussion of the holonomy representatssociated to a flat
connection on a principaG—bundle over a connected manifold. We show that
holonomy induces a bijection from the set of all such (smpotinnections to the set
of representations af1M into G, after taking the action of the based gauge group into
account (PropositioB.4). This is essentially well-known, but there does not appear
to be a complete reference. Some of the results to follow neafobnd in Morita’s
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books B6, 35], and a close relative of the main result is stated in then¢hiction to
Fine—Kirk—Klassen14].

Most proofs will be left to the reader; these are generaliljoies but straightforward
unwindings of the definitions. Usually a good picture camsathe necessary ideas.
Many choices must be made in the subsequent discussiaingtaith a choice of left
versus right principal bundles. Itis quite easy to makemmgatible choices, especially
because these may cancel out later in the argument. We hafalgamade consistent
and correct choices.

All manifolds and maps in this appendix will be smooth. IMtbe a connected
manifold, G a Lie group, andr: P — M a principal G—bundle onM. Our principal
bundles will always be equipped with right action of the structure grou®. A
connection orP is a G—equivariant splitting of the map natural map — #*TM.
The gauge groug(P) is the group of all equivariant mapﬁ’s& P suchthatro¢ = 7;
the gauge group acts on the left. d{P) via pushforward:¢,A = D¢ o Ao gZ—l.

Given a smooth curve/: [0,1] — M we may define a parallel transport operator
T,: Py0) — Py by following A-horizontal lifts of the pathy. An A-horizontal lift
of v is a curvey™ [0, 1] — P satisfying

mofy =7y and ) = A(y'1),5(1))

and is uniquely determined by its starting poi0); we denote the lift starting at
p € P, by ¥p. Parallel transport is now defined @y, (p) = 7p(1).

Parallel transport is easily checked toGeequivariant, and behaves appropriately with
respect to composition and reversal of paths. MatyconnectionA is locally trivial
(see Spivak4l, p.349]), and a standard compactness argument shows tlaiepa
transport is homotopy invariant for such connections.

Definition 8.1 LetP be aprincipalG—bundle oveM , and choose basepointg € M,
Po € Pm,. Associated to any flat connectignon P, theholonomy representation
PA: 7Tl(l\/l7 rrb) -G
is defined by settinga([]) to be the unique element & satisfying
Po = T2(po) - pa([])-
Here~: | — M is a smooth loop based at and[~] is its class inr1(M, mg).

From here on we assume thdtis equipped with a basepointy € M, and we assume
all principal bundlesP are equipped with basepointg € P, .
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We denote the set of all (smooth) flat connections on a prah&ipndleP by Asat(P).
We now record the effect of the gauge group on holonomy.

Proposition 8.2 For anyA € Aqa(P) and anyy € G(P) we have

Po.A = SmoPADimes

where¢m, € G is the unique element such that- ¢m, = ¢(po). (Note that with this
definition, the ma — ¢m, is a homomorphisng(P) — G.)

Definition 8.3 The based gauge grouly(P) C G(P) is the kernel of the restriction
homomorphisnr : G(P) — G, r(¢) = ¢m,. Equivalently,Go(P) is the subgroup of
gauge transformations which are the identityRg .

An immediate consequence of Proposition 6 is that the basedeggroupGo(P)
acts trivially on holomony; that is, for alp € Go(P) and all A € Aqa(P) we have

Holonomy defines a map

(11) H: ][ Ana(P) — Hom(ma(M, m). G)

[P]
via the formulaH(A) = pa. The disjoint union ranges over some chosen set of
representatives for thenbasedsomorphism classes of (based) princiatbundles.
In other words, we choose a set of representatives for thesatkisomorphism classes,
and then choose, arbitrarily, a basepoint in each repraheniat which we compute
holonomy).

Proposition8.2 shows that we have a diagram

[]5[] Afiat(P) H Hom(r1(M, my), G)

~.

[ Afiat(P)/Go(P),
[P]

and our next goal is to explain the equivariance properti¢si®@diagram. WherG is
connected, Lemma.3 shows thaiG acts on the space

[T Atat(P)/Go(P).
[P]
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Specifically, the action off € G on an equivalence clas8][ € Agat(P)/Go(P) is given
by the formula

- [Al = [(¢9):Al,

where ¢9 € G(P) is any gauge transformation satisfying®,, = g. We can now
state the main result of this appendix.

Proposition 8.4 The holonomy map defines a (continuous) bijection
H: ][ Ana(P)/Go(P) — Hom(miM, G),
[P]

and if G is connected then this map G—equivariant with respect to thé—action
described above.

Proof We begin by noting that equivariance is immediate from Psifmm 8.2, and
continuity of the holonomy map is immediate from its defimitiin terms of integral
curves of vector fields (here we are thinking of & —topology onAs4(P)).

In order to prove bijectivity of7, we will need to introduce the mixed bundles
associated to representations 1M — G. This will provide a proof of surjectivity.
Injectivity requires a slightly tricky argument, based be tdea that maps between flat
bundles can be described in terms of parallel transport.

Let p: mM — G be a representation. We define thixed bundle E= M x , G by
E, = (MxG) /(x9) ~ x-7.p() 9

HereM ™, M is the universal cover d¥1, equipped with a basepoifity € M lying

overmg € M.

It is easy to check thaE, is a principalG—bundle onM, with projection [(, g)] —
7y (M). We denote this map byt,: E, — M. Note that since we have chosen
basepointsty € M andmy € M, E, acquires a canonical basepointif(€)] € E,
making E, a based principaG-bundle. (Heree € G denotes the identity element.)

The trivial bundleM x G has a natural horizontal connection, which descends to a
canonical flat connectioA , on the bundleE,,. This connection is given by the formula

iy (1%l V) = D ((Demgs) ™ (V2. 0g)

On'the left,x € M, Vye TyM, % € 7=1(9) C M, andg € G. On the right, 0ge T4G
denotes the zero vectoy, denotes the quotient mad x G — M x, G = E,, and
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Dgrry; is invertible becausey; : M — M is a covering map. We leave it to the reader
to check that the connectiod, is flat, with holonomy representatiol(A,) = p.
This proves surjectivity of the holonomy map.

Injectivity will follow from:

Proposition 8.5 Let (P, pp) and(Q, qo) be based principab—bundles oveM with
flat connectionsA\p andAq, respectively. IfH(Ap) = H(Ag), then there is a based
isomorphism¢: P — Q such thatp,Ap = Aqg.

The map¢ is defined by settings(po - g) = qo - g and then extending via parallel
transport:

$(p) = Th% 0 po T2¥,

where~: [0,1] — M is any path withy(0) = mg and~(1) = w(p). Using the fact
that H(Ap) = H(Ag), one may check that is well-defined.

To prove thaip,. Ap = Ag, we worklocally. Giverp € P, chooseapath: [0,1] — M
with ~(0) = mp, (1) = wp(p) and covery([0, 1]) C M by open setdJ, ..., Uy over
which the connection®\p and Aq are both trivial. We may now subdivide into
subpathsy;: [ti_1,t] — M, wherei = 1, ...k, tg = 0,t; = 1 and (after renumbering
the U; if necessary)yi([ti—1,t]) C U;i. SinceAp andAqg are both trivial overJ;, we
may choose isomorphisms

(7 P‘Ui - Q‘Ui

such that ¢).Ap = Aq. Moreover, we may choose thg in order and assume that
11(Po) = o, and then (inductively) we may assume that= i, on the fiber over
ti (here we use the fact that the trivial connectionldnx G is fixed by the constant
gauge transformatioru(g) — (u, hg) for anyh € G). It will now suffice to check that
i = ¢|u,. This is easily proven by induction dq using the following lemma.

Lemma8.6 Leto: (P,po) — (Q,do) be a map of principalb—bundles, and leh be
a flat connection of®. Then for anyp € P, ¢(p) is given by the formula

$(p) = T2*A 0 dmy © TA(D),

wherev: [0,1] — M is any smooth path with(0) = mg and~(1) = mp(p), andpm,
is the restriction of to the fiber ovemy (SO ¢my(Po - 9) = o - 9).

This completes the proof of Propositi@m. O
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As an easy consequence of this result, one obtains the mdk&negn bijection
between (unbased) isomorphism classes of flat connectimhsanjugacy classes of
homomorphisms. A proof of the latter result is given by Mai5, Theorem 2.9];
however, Morita does not prove an analogue of ProposBiérand consequently his
argument does not make the injectivity portions of theselteslear.
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