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ABSTRACT

Order-preserving encryption enables performing many classes
of queries – including range queries – on encrypted databases.
Popa et al. recently presented an ideal-secure order-preserving
encryption (or encoding) scheme, but their cost of inser-
tions (encryption) is very high. In this paper we present
an also ideal-secure, but significantly more efficient order-
preserving encryption scheme. Our scheme is inspired by
Reed’s referenced work on the average height of random bi-
nary search trees. We show that our scheme improves the
average communication complexity from O(n log n) to O(n)
under uniform distribution. Our scheme also integrates ef-
ficiently with adjustable encryption as used in CryptDB. In
our experiments for database inserts we achieve a perfor-
mance increase of up to 81% in LANs and 95% in WANs.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—
Cryptographic controls; C.2.4 [Computer-Communication
Networks]: Distributed Systems—Distributed databases

Keywords

Order-Preserving Encryption; Indistinguishability; Ideal Se-
curity; Efficiency; Adjustable Encryption; In-Memory Col-
umn Database

1. INTRODUCTION
Order-preserving encryption [6, 8, 9, 32] enables perform-

ing many classes of queries – including range queries – on
encrypted data without modification of the database en-
gine. Recent results in database implementation suggest
that these queries are quite practical in terms of perfor-
mance [17, 33]. Hence, researchers have suggested a number
of order-preserving encryption schemes. Nevertheless, the
security of these schemes is still under discussion.

Boldyreva et al. provide the first formal treatment of secu-
rity in order-preserving encryption [8]. Intuitively an ideal-
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security order-preserving encryption (indistinguishability un-
der ordered chosen plaintext attack – IND-OCPA) scheme
leaks nothing but the order: The ideal encryption of plain-
texts {7, 12, 19} is {1, 2, 3}, i.e. exactly their order.

This type of encryption is quite hard to achieve. Simply
imagine encrypting the value of 13 in the ideal-secure cipher-
texts above. Clearly, the ciphertexts of 13 and 19 conflict,
because both are supposed to be 3. Boldyreva et al. prove
that it is impossible to design such an encryption scheme
with linear-length ciphertexts, if the encryption scheme is
static and stateless. They therefore settle for a weaker secu-
rity notion (random order-preserving function). It has later
been shown that this security definition leaks at least half
of the bits [9, 37].

Popa et al. modify the construction of the encryption
scheme (calling it now an encoding scheme) [32]. They first
prove that it is still not possible to construct a linear-length
encryption scheme, even if the encryption function can be
stateful. They then settle for an interactive protocol which
updates the encryption on inserts. This achieves the goal of
ideal-security.

The main idea of Popa et al. is to update the ciphertexts
when inserting new values. These updates are also clearly
necessary, yet the cost of updates in Popa et al.’s scheme is
quite high. Let there be n elements in the database. Even
in the best case their scheme incurs a communication cost
of Ω(n log n).

As Popa et al. point out any immutable1 encryption scheme
must have exponential ciphertext size, yet this is not a prob-
lem in most cases. On average, such updates can be kept to
a minimum. Reed proves that the height of a random binary
search is tightly centered around O(log n) [34]. We use this
result to construct an order-preserving encryption scheme
that has Ω(n) lower bound communication cost and even
O(n) in the average case under uniform distribution which
is also the theoretical lower bound. Table 1 shows the com-
parison between ours and the other formally analyzed order-
preserving encryption schemes by Popa et al. and Boldyreva
et al.

We apply our order-preserving encryption scheme to en-
cryption of an outsourced database. The client retains the
key and queries are performed on encrypted data as in [6,
15, 16, 33]. Our subject of investigation is a column-store,
in-memory database [12, 36, 43]. Column-store databases
store data in columns for faster sequential access, e.g. for
aggregations. In order to fit all data in main memory they
compress it using a dictionary [44, 4, 7]. We first argue that

1In a mutable encryption scheme ciphertexts can change.



Ideal-Secure Compat. with AE2 Best Case Avg. Case Worst Case
Boldyreva et al. [8, 9] no yes O(n) O(n) O(n)
Popa et al. [32] yes no O(n log n) O(n log n) O(n log n)
This paper yes yes O(n) O(n) O(n2/ log n)

Table 1: Comparison between OPE schemes

our order-preserving encryption scheme is better suited for
this kind of database architecture (Section 4). We also ar-
gue that our scheme is efficiently compatible with adjustable
encryption as introduced by CryptDB [33] which further in-
creases the security of an outsourced database. Then, we
show that our scheme results in improved performance for a
number of synthetic and real-world benchmarks (Section 5).
In our experiments for database inserts we achieve a perfor-
mance increase of up to 81% (factor 5) in LANs and 95%
(factor 18) in WANs.

In summary, our contribution is a novel order-preserving
encryption scheme with updates that

• is ideally secure under the IND-OCPA definition by
Boldyreva et al. Yet, we point out a new weakness in
this definition (Section 3.4.1) that fortunately has no
relevance in the database setting.

• is more efficient in the average case and in our exper-
imental benchmarks.

The remainder of the paper is structured as follows: In the
next Section we review related work – other order-preserving
encryption schemes, their applications and related crypto-
graphic schemes. In Section 3 we present our order-preserving
encryption scheme, including its algorithms, security proof
and complexity analysis. Then, in Section 4 we show how we
apply it to an outsourced, encrypted database. We summa-
rize our findings from the experiments in Section 5. This in-
cludes a validation of our assumptions and database bench-
marks. Finally, we present our conclusions in Section 6.

2. RELATED WORK

2.1 Order-Preserving Encryption
A number of order-preserving encryption schemes have

been proposed in the literature [6, 8, 9, 32, 5, 17, 19, 20,
23, 25, 26, 28, 38, 39, 42]. Yet, most of them use ad-hoc or
speculative security models. The work by Popa et al. [32] is
the first to achieve ideal-security. We improve on their result
by lowering cost in the best and average case and enabling
compatibility with adjustable encryption.

The notion of ideal-security (IND-OCPA) of order-preserv-
ing encryption has been put forward by Boldyreva et al. [8].
On the one hand they settle for a weaker notion of ran-
dom order-preserving functions in their construction. Yum
et al. [42] further improved their construction, but remained
in the same security model of random order-preserving func-
tions. On the other hand they achieve immutable cipher-
texts as in regular encryption. As Popa et al. already point
out in [32] immutable ciphertexts are not a necessity for en-
crypted databases. We improve on Popa et al.’s result by
reducing the probability of updates to be negligible in the
size of the plaintext. This results in optimal average cost,
equal to that of immutable ciphertexts.
2Adjustable Encryption

The idea of a random order-preserving function is to uni-
formly select among all order-preserving functions for a do-
main. Clearly, the ciphertext image needs to be larger than
the domain, such that there are several to choose from. The
security of random order-preserving functions has been chal-
lenged. Boldyreva et al. have shown that it inherently leaks
at least half of the plaintext bits [9, 37]. This significantly
eases an inference attack on an encrypted database. Our
scheme – similar to Popa et al. – provides ideal-security.
Nevertheless, we also use a large ciphertext image, but em-
ploy an encoding technique similar to Popa et al. [32]. Still,
Popa et al. usually encode in a smaller ciphertext image at
higher update costs than ours.

There is a large number of other order-preserving encryp-
tion schemes [5, 17, 19, 20, 23, 25, 26, 28, 39] which provide
no formal, but rather ad-hoc security analysis, including the
original proposal by Agrawal et al. [6]. Xiao et al. [38] define
a notion based on nearby values, but it remains unclear how
to enforce this in an encrypted database or similar setting.

2.2 Applications
Order-preserving encryption has a number of applications.

Most notably database-as-a-service (DAS) [6, 15, 16, 33]. In
DAS the database is outsourced to the cloud and values
stored are encrypted before sent to the cloud. The database
then performs its queries over encrypted data. Order-pre-
serving encryption enables to perform range queries over an
encrypted database without any changes to the database
engine. We also work on databases, but specifically on an
in-memory, column-store database. Furthermore, we effi-
ciently support the notion of adjustable encryption as put
forth in CryptDB [33]. We emphasize that the proposal for
ideal-secure order-preserving encryption by Popa et al. [32]
is inefficient in combination with adjustable encryption.

Besides databases order-preserving encryption has many
applications in general software-as-a-service, e.g., business
software and e-mail [1, 2]. We do not specifically address
them in this paper, but expect a high degree of compatibility
with our scheme.

2.3 Other Cryptographic Schemes
Searchable encryption achieves a stronger notion of secu-

rity than order-preserving encryption. Searchable encryp-
tion for range queries has been presented in [10, 27, 35].
It uses a token of range boundaries generated by the se-
cret key to match ciphertexts which are within the range
of this token. Without the token ciphertexts are indistin-
guishable under chosen plaintext attack. Yet, searchable
encryption schemes require a linear scan of the data, un-
less additional indexing information is provided. Applying
these schemes also requires a change of the database engine.
These two drawbacks make most schemes quite impracti-
cal in many cases. Lu [27] presents a searchable encryp-
tion scheme for ranges with logarithmic time-complexity,
but its indexing information makes it (almost) as vulnera-
ble as order-preserving encryption, since the proposed sorted



tree reveals the order of all elements except of those between
the leafs of the same bottom node.

Searchable encryption is a special case of functional en-
cryption. Functional encryption allows the evaluation of any
function on a set of ciphertexts, such that the result of the
function is revealed. In searchable encryption the function is
the order relation. Recently, functional encryption has been
designed for general functions [14]. Specific functions, such
as the inner product, have been proposed before [21].

One can also construct schemes that maintain the result
of the function as a ciphertext. Fully homomorphic encryp-
tion [13] enables this for arbitrary functions. Previously,
interactive techniques such as secure computation [40, 41]
have been used. Since in many cases searchable encryption
is already too inefficient, we did not consider any of its gen-
eralizations as an alternative.

3. OUR SCHEME

3.1 Example
Before we describe our order-preserving encryption scheme

in detail we would like to introduce a motivating example.
Consider a salary table in a database consisting of first name,
last name and salary amount. Table 2 is an example.

First Name Last Name Salary

John Smith $ 10,000
Jack Smith $ 15,000
Jack Walker $ 12,000
John Daniels $ 18,000

Table 2: Example Salary Table

Our goal is to encrypt this database table, but still be able
to search, e.g. for all last names starting with N to Z and
salaries larger than 13, 000. Hence, we encrypt each column
using its own key (state) in our order-preserving encryption
scheme (and potentially use adjustable encryption on top
as [33]). For first names we need to encrypt 2 values (a com-
pression of 2), for last names we need to encrypt 3 values
and for salary amount we need to encrypt 4 values. Cor-
respondingly the dictionaries of those columns would only
contain those values.

3.2 Algorithm
Let x1, . . . , xi, . . . , xn be the sequence of plaintexts in-

serted, such that 0 ≤ xi < N . Let y1, . . . , yi, . . . , yn be
the corresponding ciphertexts, such that 0 ≤ yi < M . We
describe how to choose M in Section 3.5. Note that the
ciphertexts yi may be modified during the process of en-
cryption. Let xj1 , . . . , xjm and yj1 , . . . , yjm be the ordered
sequence of distinct plaintexts and ciphertexts, respectively.

Consider the following example: N = 16 and M = 256.
Let n = 5, x1 = 13, x2 = 5, x3 = 7, x4 = 5 and x5 = 12.
Note that x2 = x4 is a duplicate. Then m = 4, y1 = 128,
y2 = 64, y3 = 96 and y5 = 112 (without necessity for any
ciphertext modification). For our ordered sequence we have
j1 = 2, j2 = 3, j3 = 5, and j4 = 1, i.e., xj1 = 5, yj1 = 64
and so on.

In our example above the encryption algorithm proceeds
as follows: Assume the entry John, Smith, 10, 000 is added
first. Then we create three local states – one for each col-
umn. In the first we add John and assign it a ciphertext

of, e.g., 128. We keep the pair 〈John, 128〉 in the local state
and send the value 128 to the database server. The same for
Smith and 10.000, each with a ciphertext of 128. Now, we
add Jack, Smith, 15.000. The value Jack is lexicograph-
ically less than John, so it gets ciphertext 64. The value
Smith has already been added and the ciphertext 128 is re-
peated. The value 15, 000 is larger than 10, 000, so it gets
ciphertext 192. We add the pairs to the local state on the
client and send the ciphertexts to the database server. Note
that the state for last names does not need to be updated.
We repeat this for the other two columns.

Algorithm 1 Encryption

Input: xi

Output: yi

State: 〈xj1 , yj1〉, . . .
Initialization: 〈−1,−1〉, 〈N,M〉

1. Find 〈xjk , yjk 〉, 〈xjk+1
, yjk+1

〉, such that xjk ≤ xi <
xjk+1

.

2. If xjk = xi, then return yjk .

3. If yjk+1
− yjk = 1, then

3.1. Initialize to 〈−1,−1〉, 〈N,M〉.

3.2. Update with Update(xj1 , . . .)
‡ (Algorithm 2).

3.3. Find 〈xi, yi〉
§.

3.4. Return yi.

4. Compute

yi = yjk +

⌈

yjk+1
− yjk
2

⌉

5. Insert 〈xi, yi〉
§.

6. Return yi.

The input to the encryption algorithm (Algorithm 1) is a
plaintext xi. Encryption is stateful and stores an ordered
list of plaintext-ciphertext pairs 〈xi, yi〉. This list is initial-
ized to 〈−1,−1〉, 〈N,M〉. The output of the encryption,
i.e. the ciphertext yi, is sent to the database server. We
give an explanatory analysis of how the algorithm works in
Section 3.3.

We emphasize that our encryption algorithm is keyless.
Our transformation is information-theoretic relying only on
the state of the algorithm. The state of the algorithm plays
the role of the key, i.e. it is secret information. Differently
from a key it is not pre-generated, but grows with the num-
ber of encryption operations. The size of the state of the
encryption algorithm is the size of the dictionary of the
database (see Section 4). We therefore do not keep a copy of
the data, but only of the dictionary. We can hence reap the
same size benefits as dictionary compression (roughly over a
factor of 20 [30] which is already achieved for the dictionary
and the data identifier column).

‡Maintain a copy of plaintexts before initializing state.
§The pair is at position k + 1.



The update algorithm (Algorithm 2) potentially updates
all ciphertexts produced so far. It re-encrypts all (distinct)
plaintexts in order, i.e. the median element first and so on.
Thus, it produces a (temporarily) balanced tree.

The state of the encryption algorithm is updated on the
database client. This updated state needs to be sent to the
database server and its persistent data needs to be updated
– potentially all database rows. This affects not only the
column store, but also the entire dictionary.

Algorithm 2 Update

Input: Sorted and distinct xj1 , . . . , xji

1. Encrypt(xj
⌊ i

2
⌋+1

).

2. If i > 1, then Update(xj1 , . . . , xj
⌊ i

2
⌋
).

3. If i > 2, then Update(xj
⌊ i

2
⌋+2

, . . . , xji).

The decryption algorithm (Algorithm 3) is a simple lookup
in the state.

Algorithm 3 Decryption

Input: yi

Output: xi

State: 〈xj1 , yj1〉, . . .

1. Find 〈xi, yi〉.

2. Return xi.

3.3 Analysis
Our order-preserving encryption algorithm builds a binary

search tree as does Popa et al.’s. Different from theirs, ours
is not necessarily balanced and relies on the uniformity as-
sumption about the input distribution. We only balance the
tree when necessary, i.e., then we perform an update oper-
ation. This enables us to maintain the dictionary on the
client and therefore achieve a significant performance gain
and compatibility with adjustable onion encryption.

Recall the example from above: N = 16 and M = 256.
Let n = 5, x1 = 13, x2 = 5, x3 = 7, x4 = 5 and x5 =
12. Then m = 4, y1 = 128, y2 = 64, y3 = 96 and y5 =
112 (without necessity for any ciphertext modification). We
can see the binary tree growing from the root in Figure 2
as we encrypt new plaintexts. Since our choice of M is a
power of 2, the path from the root to leaf forms the prefix
of the binary representation of the ciphertext. An edge to
a higher-order plaintext results in a 1; an edge to a lower-
order plaintext results in a 0. The postfix of the ciphertext
is 10⋆.

Our order-preserving encryption algorithm also forms a
monotonically increasing curve as does Boldyreva et al.’s (or
any order-preserving scheme). In difference to theirs, ours
is only monotonically increasing whereas theirs is strictly
monotonically increasing, since they consider every possible
input value. Also, our scheme encrypts the plaintexts on
the x-axis in random order, namely as they are encrypted,
whereas Boldyreva choose the mean remaining plaintext value

Figure 1: Monotonically Increasing Curve Plot for
Encryption Scheme

to encrypt. We choose the mean for the ciphertext, whereas
Boldyreva et al. choose the ciphertext uniform randomly in
the remaining image space. Figure 1 shows the curve from
our running example. On the one hand, since we are not
strictly monotonically increasing, we must modify the ci-
phertexts (rebalance the tree) when we run out of cipher-
text space. On the other hand, this enables to achieve IND-
OCPA ideal security. Since we reduce the number of updates
to be negligible in the average case, we can still achieve su-
perior performance compared to maintaining the dictionary
on the server as Popa et al. do.

3.4 Ideal Security
We first give a proof that our encryption scheme is IND-

OCPA secure despite its update algorithm. This implies
that the update operation does not impact security.

We define the following security game between an encryp-
tor E and an adversary Adv based on the IND-OCPA defi-
nition from [9] allowing for update operations.

1. The encryptor E chooses a random bit b.

2. The encryptor E and the adversary Adv engage in a
polynomial number of rounds in which the adversary
may be adaptive. At round i:

(a) The adversary Adv sends values x0
i , x

1
i (0 ≤ x

{0,1}
i <

N to the encryptor E.

(b) The encryptor E returns Encrypt(xb
i). If the en-

cryptor E invokes Update(xj1 , . . . , xji), then the
adversary may observe the updated list yj1 , . . . , yji .

3. The adversary Adv outputs b′, its guess for b.

We say that the adversary Adv wins the game if its guess
is correct (b = b′) and the sequences x0

1, . . . and x1
1, . . . have

the same order relation, i.e., for all i, j : x0
i < x0

j ⇔ x1
i < x1

j .
Let winAdv be the random variable indicating the success of
the adversary in the above game.

Definition 1. An OPE scheme is (perfectly) IND-OCPA
secure if for all p.p.t. adversaries Adv Pr[winAdv ] = 1/2.

Theorem 2. Our OPE scheme is (perfectly) IND-OCPA
secure.
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Figure 2: Search Trees for Insertion of 13, 5, 7, 12

Proof. Observe that our encryption algorithm (Algo-
rithm 1) will start with the same initial state independent
of b. We now state the following lemma.

Lemma 3. If the sequences of xb
1, . . . have the same order

relation, the state of the encryption will contain the same
yj1 , . . . independent of b.

Proof. We prove this by induction. Assume it holds for
round i. Then since the sequences have the same order re-
lation, the algorithm will find pairs with the same yjk , yjk+1

in step 1 due to the induction assumption.
Step 2 is a check within one of the two sequences xb

1, . . .
and since they have the same order relation, the condition
will evaluate the same in both cases. Then, due to the in-
duction assumption the return value yjk will be the same
independent of b.

Updates are triggered in step 3 of Algorithm 1. Clearly,
the choice is only made by the values of yjk , yjk+1

. Due to
the induction assumption the choice is therefore independent
of b.

Then the computation also leads to same yi in step 4.
The state is therefore updated with an xi of the same order
relation and the same yi. Hence, the induction holds for
i+ 1.

Clearly, Lemma 3 holds for i = 0, since we start with the
same initial state.

In summary, our encryption algorithm outputs the same
values yi and performs the same update operations in both
cases of b. Therefore, any adversary Adv can at best guess
the value b′.

3.4.1 Insertion Order

As shown our OPE scheme is ideal-secure, but it does leak
additional information to the order. Namely, when observ-
ing the encryption at the database, i.e. the values yi, one
can determine a partial order of insertion. Our encryption
scheme forms a binary search tree. The lowest bit set in
the ciphertext marks the height of its position within tree
(if M is a power of 2). The lower the height, the later the
element has been inserted. Of course, the adversary cannot

determine the insertion order between elements of the same
height. Therefore it remains a partial order.

First, we do not consider this leakage to be problematic in
the use with encrypted databases. Determining the time of
compromise in an encrypted database is excruciatingly diffi-
cult and therefore the worst-case that the database is always
compromised is assumed. Under this worst-case assumption,
the adversary obtains the insertion order anyway – even in
case of the same-time indistinguishability definition of Popa
et al. [32].

Second, the IND-OCPA definition cannot account for the
insertion order, since – as in any other chosen plaintext at-
tack – the adversary controls this insertion order. It is there-
fore known to the adversary. Hence, it is not surprising that
our scheme still can fulfill this strict security definition.

3.4.2 Domain Coverage

The security of order-preserving encryption relies on the
assumption that the plaintext values only sparsely populate
their domain. If all values in a domain are encrypted, order-
preserving encryption is completely insecure – even if ideal-
secure. The ideal-secure order-preserving encryption of the
values from 1 to n is 1 to n, i.e. plaintexts and ciphertexts are
identical. While not yet quantified, it is always important to
keep this observation in mind when using order-preserving
encryption.

Clearly, this assumption is violated when encrypting auto-
increment counters. The order-preserving encryption of an
auto-increment counter – often used as identifiers and for-
eign keys in databases – is the counter itself. It therefore
should not be order-preserving encrypted at all.

This also alleviates the problem that auto-increment coun-
ters incur the maximum encryption cost in our scheme. They
result in the maximum number of update operations possi-
ble, since they follow the worst-case schedule of encryptions.
Yet, since they are not to be encrypted at all (for security
reasons), they do not represent a problem (for performance
reasons).



3.5 Theoretical Performance Analysis
We need to consider the best case, the average case and

the worst case complexity of our algorithm. For the average
case we assume a uniform distribution of the input.

First, we define a cost model for our algorithms. Local
operations on the client can be implemented efficiently –
even for large plaintext sets –, since there are no complex
(cryptographic) computations, such as modular exponentia-
tions or bilinear maps. Instead all computations are simple
arithmetic and simple data structure lookups, but update
operations on the database are costly. We therefore mainly
consider the cost of inserting one element into the database.
Since communication is the main cost, we count the byte size
of interaction between the database server and the client as
the cost of one insertion. Also the number of rounds is im-
portant and our scheme always requires 1 round per insert
whereas Popa et al.’s scheme requires O(log n), but since the
size of communication in our case is significantly larger in
case of an update we use this as the cost for fair comparison.
In our experiments we also vary the delay of the network in
order to investigate the importance of rounds.

Second, we determine the complexity of the basic algo-
rithms. If encryption proceeds without update, then we only
need to send the new ciphertext to the database: cost O(1),
i.e. Algorithm 1 has cost O(1), if steps 3.1 to 3.4 are not
executed. A single update operation has cost O(n), since
we need to update all elements so far, i.e. Algorithm 2 has
cost O(n). We now need to determine the probability of an
update in the best, average and worst case.

Theorem 4. In the best case our algorithms incur cost
O(n) in communication with the database server. This is
also the theoretical lower bound.

Proof. The best case is when all elements of a perfectly
balanced binary search tree are inserted in pre-order traver-
sal order. In this best case we never need to perform an
update, since the result is also a perfectly balanced binary
search tree. Hence, for n elements we have cost nO(1) =
O(n). This also the lower bound, because we need to send
each of the n elements at least once.

The worst case is also easy to analyze.

Theorem 5. In the worst case our algorithms incur cost
O(n2/ log n) in communication with the database server.

Proof. As already pointed out in Section 3.4.2, the worst
case adversarial schedule of ordered plaintext inserts results
in an update operation roughly all O(logM) elements. As
we will later show, we choose M = O(n) and such that
M > 2N , i.e. there is always at least logN ciphertext space
to be filled before an update operation. Therefore the worst
case cost is n/O(log n) · O(n) = O(n2/ log n).

Next, we analyze the average case performance under uni-
form input distribution.

Theorem 6. If the ciphertext domain M > 2λN , then in
the average case under uniform input distribution our algo-
rithms incur cost O(n) in communication with the database
server.

Proof. For analyzing the average case complexity we re-
sort to the result of Reed [34]. As already noted, we observe
that our ciphertexts form a binary search tree. The first

plaintext element inserted is the root (the center cipher-
text). Subsequent plaintexts are placed to the left or right
depending on their order relation. Reed investigated the
distribution of heights of binary search trees. We restate his
main theorem (Theorem 1 in [34]).

Theorem 7. Let Hn be the height of a random binary
search tree of n nodes. Then, E[Hn] = 4.31107 · · · lnn −
1.95302 · · · ln lnn+O(1) and V ar[Hn] = O(1).

Note that the maximum length of a ciphertext directly
corresponds to the height of the tree. This implies for our
encryption scheme that – on average – a ciphertext space
O(log n) will be sufficient. Furthermore, since the variance
is constant, it will be sufficient with high probability.

We therefore propose to use a value of M = O(n). Fur-
thermore, we need to reduce the update probability Pr[Upd].
The average complexity for all insertions is n(1+Pr[Upd]O(n)).
Only for Pr[Upd] ≤ O(1/n) we achieve O(n) overall average
complexity. We can use Lemma 7 of [34].

Lemma 8. Let Xn,h be the (random) set of nodes at depth
h. Then, there is a (universal) constant C2 > 2 such that,

for i > 0, we have Pr[Xn,E[Hn]+i 6= ∅] < C22
−i/2.

This means that the probability of encountering a cipher-
text with length longer than the expected value decreases
exponentially with the length of the ciphertext. Hence, if
we add a buffer of at least 2 log n bits to the ciphertext
length, then the probability of exceeding that buffer is at
most O(1/n). This accomplishes the probability of an up-
date Pr[Upd] ≤ O(1/n).

In summary, for a plaintext space of N = 2l we recom-
mend a ciphertext space of λl bits, i.e. M = 2λl. The ex-
pected average case complexity of inserting n elements is
then O(n). Clearly, λ ≥ 4.31107 + 2 is safe, but we evaluate
the choice of λ in our experiments.

4. ENCRYPTED DATABASES
We investigate our encryption algorithms as part of an

encrypted, in-memory, column-store database. This has a
couple of design implications we highlight in this section.

Column-store databases, such as [12, 36, 43] show excel-
lent performance for analytical workloads. For this they
store the data column-wise instead of row-wise. All data
for a single column can such be accessed and processed very
quickly. The speed of processing can be enhanced further if
the data is stored in main memory.

A common compression technique is order-preserving dic-
tionary compression [4, 7]. In dictionary compression data
values are replaced by data identifiers and in a dictionary
their relation is stored. A dictionary is order-preserving,
if the order relation of the data identifiers is the same as
the order relation of the data values. Dictionary compres-
sion usually achieves compression rates of a factor around
20 [30].

Order-preserving dictionaries have the advantage that se-
lect operations – even for range queries – can be performed
without accessing the dictionary. The database operator
is fed with the data identifier (or data identifiers for range
queries) to select and can then process the column. Any
select operation that needs to lookup the dictionary can be
very costly.



Also update or insert operations can be very costly. They
often need to recompute the entire column of data. This
may also involve some further compression operations [4,
44].

The crucial insight is that the order-preserving dictionary
is an ideal-secure order-preserving encryption. The database
performs this operation automatically for us, although not
as an encryption operation. It therefore becomes a crucial
design decision for an encrypted database how to integrate
with this dictionary.

One approach is to strip the dictionary of the data values
and keep those at the client. This has been proposed by
Hildenbrand et al. in [17]. On the one hand this achieves
ideal-security for the order-preserving encryption, since the
database only learns the data identifiers. On the other hand
this prevents all operations that require access to the data
values, such as aggregation which is a very common opera-
tion in analytical work loads.

Another approach is to encrypt the data values in the
dictionary. This has been proposed by Popa et al. in [32].
It also achieves ideal-security on the database, but requires
O(n log n) cost for inserting n elements, since each element
needs to be sorted into the dictionary. When using homo-
morphic encryption [29] this can also achieve aggregation.

A disadvantage of both approaches is that the database
always needs to be encrypted in only order-preserving en-
cryption. Order-preserving encryption may leak more infor-
mation than is necessary for the queries performed. In [33]
Popa et al. introduce the concept of adjustable encryption.
Encryption is layered from order-preserving on the inner-
most layer over deterministic encryption to randomized en-
cryption on the outermost layer. Depending on the opera-
tion performed one or more layers of encryption are removed
before executing the operator. This results in significantly
better security, since only a subset of columns needs to be
encrypted order-preserving.

Another main objective of our work is to also efficiently
integrate with adjustable encryption. This means that the
order-preserving encryption should be the inner-most layer
of an onion of encryption. This implies that encryption
needs to be performed (mostly) at the client, since other
layers of encryption need to be applied. We describe our
scheme in the next section.

4.1 Database Integration
We perform encryption at the SQL layer and do not in-

terfere with the dictionary of the in-memory, column-store
database. Instead, we keep a local copy of the dictionary as
the state of the order-preserving encryption function similar
to [17] and perform updates using the SQL update com-
mand. Before inserting (or updating) a database row, we
encrypt each value. We encrypt the plaintext value using our
encryption algorithm (Algorithm 1). Then, we encrypt the
ciphertext further using a proxy-reencrytpable deterministic
encryption scheme [31]. Finally, we encrypt this ciphertext
using a standard randomized encryption algorithm, e.g. AES
in counter mode. Figure ?? shows the layers of our ad-
justable encryption.

We sent the final ciphertext as the data value in the in-
sert or update commands to the database. We keep a local
copy of the dictionary as the state of the order-preserving
encryption function with the corresponding plaintext val-
ues. Furthermore, we sent a separate copy in homomorphic

encryption [29]. When we perform a select operation that
requires either deterministic or order-preserving encryption
we sent the corresponding key to the database which de-
crypts using a stored procedure. Note that decryption is
permanent and never restored.

Since our order-preserving encryption scheme is mutable,
it may be necessary to update all ciphertexts. In case our
encryption algorithm triggers this update (Algorithm 2), we
re-encrypt the entire local dictionary. We again perform
encryption to the top-most layer currently stored in the
database. Then, we issue update commands replacing all
current dictionary values with their new ciphertexts. Of
course, this operation is very costly and its occurrence must
be kept to a minimum. We show theoretically in Section 3.5
and experimentally in Section 5 that we achieve this.

This design allows us to operate the encrypted database
on the SQL layer, i.e. we do not interfere with the dictionary
on the server. Instead, we modify the data values on the
client and use standard SQL commands. Furthermore, we
can easily add layers of encryption on the client and the
ciphertexts in database are often encrypted at higher layers
than order-preserving encryption.

In order to see the problems with adjustable encryption
and Popa et al.’s scheme of [32], recall the encryption pro-
cedure. As long as deterministic or randomized encryption
is the top most layer, the ciphertexts may not be sorted.
This means that the protocol of [32] may not be applied.
Once it is adjusted to order-preserving encryption, then all
ciphertexts need to be sorted. This requires a complete up-
date of the database, similar to our Algorithm 2. Hence,
not only is insertion in order-preserving encryption in their
scheme more expensive in the average case than in ours, also
in adjustably encrypted database they require one update in
many cases whereas the probability of update is negligible
in our scheme.

5. EXPERIMENTS
We perform three sets of experiments: the number of up-

dates depending on the parameter λ, correlation between
plaintext and ciphertext for the different order-preserving
encryption schemes and performance of database inserts be-
tween our and Popa et al.’s scheme.

For these experiments we use two data sets for plaintext
inputs. We use a uniform contribution of inputs in accor-
dance with our theoretical assumption. We sample draw n
independently, identically distributed uniform random vari-
ables from ZN using a pseudo-random number generator
available from the operating system. Then, we also use a
sample drawn from the real-world. It results from a large
scale communication transcript, the Enron mail set [22], that
has been used in the evaluation of various, related research
efforts [11, 18, 24].

From the Enron data set we derive inputs in the following
way. We downloaded and extracted the 2009 version of the
data set [3]. The data set consists of folders and files con-
taining plaintext mail correspondence of Enron employees.
We retrieve samples from the data set by reading words from
the mail bodies of the correspondence. Each word is treated
as a number. In order to read an l bit number, we read
⌈l/8⌉ character bytes and interpret those as an unsigned in-
teger (mod l). We continuously read the mail stream, i.e.,
after processing n numbers, we read the next, subsequent n
numbers for the next experiment.



Throughout all experiments we use as hardware HP Z820
workstations with 8 quad core CPUs and 128 GB RAM,
operating SUSE Linux Enterprise Server 11 SP2. We run
experiments using 64 bit versions of Java JDK 1.7.0 45 and
GCC 4.3 (used for cryptographic routines implemented in
C++, executed with JNI).

5.1 Parameter λ

The expansion factor λ determines the ciphertext expan-
sion, but also the expected number of updates. It should
be chosen as small as possible, but still large enough in or-
der to prevent frequent updates. We derive a safe theoretical
bound of λ ≥ 6.31107 in Section 3.5. However, this theoreti-
cal bound rests on the assumption of uniform input distribu-
tion. We therefore experimentally test our order-preserving
encryption scheme also on real-world inputs from the Enron
data set. We aim to test how real-world distributions may
affect our scheme. We already know that there are worse dis-
tributions, such as ordered insertions, but most real-world
data is not ordered. We hypothesize that in most real-world
cases an expansion factor of λ ≥ 6.31107 is safe.

5.1.1 Setup

In our experiments we measure the average number of up-
dates that occur. We vary three parameters: the expansion
factor λ, the number l of bits in the plaintext domain, and
the number n of plaintexts. For the expansion factor we
choose λ = 2, 3, . . .. For the number of plaintext bits we
choose l = 4, 8, 16, i.e. N = 2l. Then M is determined by λ,
i.e. M = 2λl. These bit sizes may seem small and, of course,
our algorithm and implementation can encrypt arbitrarily
large inputs, but in order to trigger an update one needs to
encrypt close to the entire input domain and this can only
be achieved in a realistic time frame for such small bit sizes.
We choose the number of plaintexts depending on the size of
the plaintext domain, i.e. we choose a fraction α. We choose
α = 0.25, 0.5, 0.75, 1, i.e. n = α2l. We run 25 experiments
for any combination of parameters.

Figure 3: Average Number of Updates per Number
of Inputs (l = 16, λ = 2, 3)

Figure 3 depicts the average number of updates for the
uniform data set, λ = 2, 3 and l = 16 per number of elements
α = 0.25, 0.5, 0.75, 1 on a linear x-axis. Figure 4 depicts
the average number of updates for the uniform data set,
λ = 2, 3 and α = 1 per size of the plaintext l = 4, 8, 16 on a
logarithmic x-axis. We observed that updates only occurred

Figure 4: Average Number of Updates per Plaintext
Size (α = 1, λ = 2, 3)

for λ = 2 in the uniformly distributed data set. Already
for λ = 3 no updates occurred. We never encountered more
than one update in a single experiment. Furthermore, we
do not show any results for the Enron data sets, since for
the same set of parameters no update ever occurred.

5.1.2 Discussion

Despite that we feel that more experiments are needed
to reliably recommend a choice of λ in all real-world cases,
we make the following observations: Our hypothesis has not
been falsified. Our encryption scheme behaves better for
the real-world Enron data set than the uniform distribu-
tion, since no update occurred even for λ = 2. This shows
that there are real-world data sets, particularly text-based
as the Enron data set, that are well amenable to our order-
preserving encryption scheme.

For an increasing number of elements, the necessary ex-
pansion factor λ increases. We can see this in Figure 3 for
λ = 2. This is not surprising, since the size of the tree is
growing and hence its height.

For an increasing size of the plaintext domain, the neces-
sary expansion factor λ increases, but is significantly below
the theoretical threshold. We can see this in Figure 4 for
λ = 2 on the logarithmic x-axis. We attribute this effect to
the asymptotic nature of the theoretic analysis. We know
that for the uniform distribution there is a bound, but this
bound is only approached slowly. For many practically rele-
vant values we are still far from reaching that bound. Hence,
the expansion factor λ may be (carefully) chosen smaller.

For performance reasons it is advisable to choose λ large
enough to prevent updates. One may still argue that for se-
curity reasons λ should be smaller. Recall from Section 3.4.2
that as the number of encrypted inputs increases, the secu-
rity of order-preserving encryption decreases. Hence, one
may choose λ small enough to encounter a performance hit
when there is a security problem. We argue that this is a too
ambiguous signal, since the performance hit may come from
several sources, such as encryption adjustment. Instead, the
client should issue a security warning, which he can simply
base on the size of the encryption state.

5.2 Correlation
The first formally verified proposal for order-preserving

encryption by Boldyreva et al. [8] settled for a weaker notion



than ideal-security. They showed that ideal-security is not
achievable using stateless, immutable encryption functions.
Later Popa et al. presented a mutable order-preserving en-
cryption scheme that achieves ideal-security [32]. Our scheme
is ideal-secure (and mutable) as well. We hypothesize that
Popa et al.’s scheme is at least as secure as Boldyreva et al.’s
and that our scheme is at least as secure as Popa et al.’s.

For this experiment we need implementations of not only
our scheme, but also Boldyreva et al.’s and Popa et al.’s.
For Boldyreva et al.’s we use the implementation of Popa
available from CryptDB [33]. Popa et al.’s scheme we reim-
plemented using the description in [32] as a blue-print and
divide the implementation into an encryption client and an
encryption server running on the database. We implemented
their (mOPE) protocol for deterministic encryption, because
it is faster, but only used the order-preserving ciphertexts
for cryptanalysis, i.e. there is no security advantage in using
randomized encryption (stOPE). As deterministic encryp-
tion scheme we use AES-128 in ECB mode.

5.2.1 Setup

Wemeasure the correlation coefficient r between the plain-
texts and the ciphertexts. As we point out in Section 3.3 any
order-preserving encryption scheme forms a monotonically
increasing curve. Hence, there is a stronger correlation be-
tween plaintexts and ciphertexts than in – for example –
deterministic encryption. Yet, the smaller the coefficient,
the less the correlation can be used for cryptanalysis, i.e.,
a smaller correlation coefficient – closer to 0 – is better. A
correlation coefficient of 1 (or −1) implies a deterministic
derivation function of plaintexts from ciphertexts.

For Boldyreva et al.’s scheme we use the parameters pro-
posed in [8] choosing a random key of l bits. For Popa
et al.’s scheme there are no parameters to set. For our
scheme we set λ = 3, such that there are no updates. We
set l = 16, i.e. N = 65536 and vary the number n of in-
puts: n = 1024, 2048, 4096, 8192, 16384, 32768. Recall that
M = 2λl = 248. We run 25 experiments for each value of n
and each data set – uniform and Enron.

Figure 5: Correlation Coefficient with Uniform In-
puts per Number of Inputs

Figure 5 depicts the correlation coefficient for uniformly
random inputs per number of inputs on the logarithmic x-
axis. Figure 6 depicts the correlation coefficient for inputs
from the Enron data set per number of inputs also on a
logarithmic x-axis. We show the 90% confidence intervals as

Figure 6: Correlation Coefficient with Enron Inputs
per Number of Inputs

error bars. For Boldyreva et al.’s scheme no error bars are
visible, since they are too small; similarly, for Popa et al.’s
scheme under uniform distribution. In Figure 5 Boldyreva
et al.’s and Popa et al.’s curves almost overlap. The precise
data reveals a small advantage for Popa et al.’s scheme.

5.2.2 Discussion

Although our experiments are certainly not conclusive for
judging the security of order-preserving encryption, we make
the following observations: Our hypotheses have not been
falsified. Under uniform distribution and particularly in
the Enron data set our encryption scheme performs better
than the not ideal-secure by Boldyreva et al. In the En-
ron data set our correlation coefficient can be as small as
0.68 whereas Boldyreva et al.’s is only marginally smaller
than 1. In the Enron data set also Popa et al.’s scheme
performs significantly better than Boldyreva et al.’s. The
ideal-secure, order-preserving encryption schemes perform
better and hence it is advisable to use them.

In both – uniformly distributed and Enron – data sets
our scheme performs better than Popa et al.’s. A validated
explanation of this observation remains an open research
question. We conjecture that frequent rebalancing of the
search tree negatively impacts security. Note that we never
rebalance (no updates, λ = 3) whereas Popa et al. use a bal-
anced tree in order to limit the worst-case complexity. We
emphasize that both schemes are ideal-secure. Still, our re-
sults indicate that our scheme has a higher diffusion between
plaintexts and ciphertexts than both other schemes.

In Popa et al.’s scheme in the Enron data set, we observe
an increase in correlation as more inputs are encrypted. This
supports our security caveat from Section 3.4.2 that as we
approach the full input domain security decreases. As men-
tioned in the previous experiment, a security alert on the
client seems necessary.

5.3 Database Inserts
We have shown in Section 3.5 that our scheme has lower

average communication complexity than Popa et al.’s un-
der uniform distribution. Furthermore, we have shown in
Section 5.1 that our scheme also behaves well for real-world
data sets. We also argued in Section 4.1 that our scheme
efficiently integrates with outsourced, encrypted databases.



So, we hypothesize that our scheme has better performance
for insertion in an encrypted database than Popa et al.’s.

5.3.1 Setup

We measure the wall-clock time it takes to encrypt an
input value and insert it into the database. We particularly
also include the database time, although it is the same for
both schemes, but we believe that the entire operation is
time critical. The encryption time includes local operations
and (potential) updates to the database. In case of Popa et
al.’s scheme their (mOPE) protocol is run.

We do not report decryption or database selection times,
since they are negligible (less than 1 ms) compared to en-
cryption and insertion and also do not significantly differ
between the two schemes.

We use the following machine setup. There is one client
and one server machine connected via a network. Both ma-
chines are HP Z820 workstations. For Popa et al.’s scheme
we execute the encryption client on the client machine and
the encryption server as well as the database on the server
machine. The encryption client calls the encryption server
using TCP-based RMI3, and the encryption server uses TCP
sockets to update the database. We follow the recommen-
dation in [32] to host the encryption server close to the
database, i.e., we actually run them on the same machine.

For our scheme, we run the encryption algorithms on the
client and the database on the server. The client uses TCP
sockets to update the database.

Clearly, the performance of the network connecting client
and server has a significant impact on the speed of database
inserts. We run our experiments using two different, physical
network conditions: LAN and WAN. In the LAN setting,
both – client and server – are hosted on the same Ethernet
segment. In the WAN setting, client and server are hosted
at distant locations (roughly 30 miles or 50 km distance).
The communication link has roughly 30 Mbits/s bandwidth
and 10 ms latency. As column-store database we use SAP
HANA 1 SP5.

Based on the experiments in Section 5.1, we use the expan-
sion factors λ = 2, 3. We set the number of bits in the plain-
text size as l = 4, 8, 16. The number of plaintexts we choose
depends on the size of the plaintext domain, i.e. we choose
a fraction α. We choose α = 0.25, 0.5, 0.75, 1, i.e. n = α2l.
We run 25 experiments for each value of n and each data set
– uniform and Enron.

Figure 7 shows the performance results of Popa et al.’s
scheme and ours for an expansion factor λ = 3. In the LAN
setting, our scheme has a performance improvement of 63%
on average and 77% in the best case for the Enron data
set. The performance improvement is higher under uniform
distribution with 72% on average and 81% in the best case.

There is an even higher performance improvement in the
WAN setting (λ = 3). As we show in Figure 8, we have an
average improvement of 83% and 95% in the best case for
the Enron data set. For the uniform data set we have 83%
improvement on average and 88% in the best case.

Furthermore, in order to evaluate the performance impact
of updates in our algorithm, we compare the performance of
database inserts with expansion factors of λ = 2 and λ = 3.
Figures 9 and 10 depict the database insert performance

3RMI was significantly faster than a reference implementa-
tion based on plain TCP sockets.

Figure 7: Time per Database Insert in ms on LAN
(λ = 3) for input sizes of l and α2l elements

Figure 8: Time per Database Insert in ms on WAN
(λ = 3) for input sizes of l and α2l elements

Figure 9: Time per Database Insert in ms on LAN
(our scheme) for input sizes of l and α2l elements

results of our scheme for λ = 2, 3 for the Enron and the
uniform data set in LAN and WAN setting, respectively.

5.3.2 Discussion

We make the following observations: Our hypothesis has
again not been falsified. Our proposed scheme clearly and
unambiguously outperforms Popa et al.’s for both network
settings and data sets. Our scheme requires almost no in-



Figure 10: Time per Database Insert in ms on WAN
(our scheme) for input sizes of l and α2l elements

teraction with the database except for the database insert
operation itself. In contrast, the scheme of Popa et al. usu-
ally transmits multiple messages for each encryption, in or-
der to traverse the balanced tree of the encryption server.
As the messages are exchanged in rounds, the communica-
tion suffers from the network latency which we can clearly
see in the WAN setting. In addition, Popa et al.’s update
the database regularly whereas our scheme performs updates
rarely or even never. These effects are clearly visible in our
measurements.

We also see that the difference of the measured times be-
tween the two data sets is larger for Popa et al.’s scheme.
Except for very low values of input size l and number of el-
ements α2l, the Enron set has lower database insert times.
We attribute this to the fact that there are less distinct val-
ues and hence less rounds are required to traverse the bal-
anced tree, i.e., the tree depth is lower for the Enron data set
compared to a uniformly distributed data set. In this case
also the number and size of database updates are smaller as
compared to a uniform distribution of inputs.

When comparing different values of λ = 2, 3 in our scheme,
we observe similar results for most of experiments performed
for different pairs of input size l and number of elements
α2l. For larger values of input size and number of elements,
e.g. l = 16 and 32768 elements, we observe a larger distance
between the measured times, in particular between the two
data sets. We attribute this effect to the updates (cf. Fig-
ure 3) of our scheme. Still, the impact of updates on a single
database insert is less than 3% (of Popa et al.’s scheme’s per-
formance) in our WAN setting and less than 5% in our LAN
setting compared to a performance gain of up to 95% and
81%, respectively. This indicates that even when including
update operations our encryption scheme is still significantly
faster.

6. CONCLUSIONS
We present a novel order-preserving encryption scheme.

It has optimal average communication complexity of O(n)
and is provably ideal-secure. We have shown in our database
benchmark that it significantly – with a performance gain
of up to 95% – outperforms previous work. Further experi-
mental results indicate that our scheme works well with real-
world data sets and has a higher diffusion between plaintexts
and ciphertexts than previous work. Our scheme also effi-

ciently integrates with adjustable encryption. Hence, it is
currently the best suited scheme for outsourced, encrypted
databases based on order-preserving encryption.
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