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Abstract. This chapter contains a discussion material and preliminary
experimental results of a new approach to building intelligent conscious
machines (ICM) and its application to multilingual spoken recognition systems.
ICM can analyse their behaviour and subsequently adapt and improve their
structure and functionality during operation, can evaluate their ability of problem
solving in terms of what they "can do" and what they cannot. These systems
consist of many modules interacting during operation and organised in several
hierarchical levels aggregated into two main ones, a low, sub-conscious level,
and a higher, conscious level. A framework for intelligent conscious machines is
proposed and a partial realisation is presented which makes use of fuzzy neural
networks and spatial-temporal maps. The framework is applicable to recognising
patterns from time-series at different time scales, with numerous applications. A
particular case study of spoken language recognition is presented along with
some preliminary experimental results of a system realisation. The approach,
introduced in the chapter, is extended to multi-lingual spoken recognition
systems. This has been inspired by new biological evidence about the activity of
the human brain in multi-lingual subjects.
Key words: intelligent information systems, multi-lingual speech recognition,
cognitive engineering, fuzzy neural networks, conscious machines.

1. Introduction: Intelligent Information Systems and
Intelligent Conscious Machines

This section specifies the scope of AI, cognitive engineering and brain-like
computing as used in the chapter, and also defines the notions of intelligent
information systems (IIS) and intelligent conscious machines (ICM).
     Intelligence is usually associated with such characteristics as:
•  ability to communicate ideas and thoughts in speech and language;
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•  pattern recognition, e.g. speech patterns, images, time series events;
•  learning from structured and unstructured experience and successful

generalisation;
•  dynamic adaptation to new situations;
•  reasoning and decision making based on uncertainty;
•  creativity, i.e. creating something which is missing at present; e.g. plans.

Intelligent information systems (IIS) have some or all of the characteristics above
in addition to having large memories and fast "number crunching" abilities. The
combination of the computing power of the traditional computers with
computational intelligence makes the IIS very powerful a means for information
processing. Adding "consciousness" to an IIS  would enable these machines to be
aware of what they are in the current operating environment, how they relate to
other objects, what they can do and what they can not, who might do what they
can not attempt, etc. (Arbib, 87, 95; Aleksander, 97). We shall call such
machines intelligent conscious machines (ICM).
      Developing methods and tools for IIS, including ICM, based on cognitive
principles of the brain, is the area of cognitive engineering. Some of the cognitive
features of an IIS may be achieved by using connectionist techniques and
principles adopted from the physical organisation of the brain, which is the area
of the brain-like computing (Arbib, 95). Other cognitive features will be
implemented by using other (non-brain-like) techniques such as symbolic AI,
fuzzy logic, etc. (Zadeh, 65,84; Kasabov, 96).
     IIS at present are usually realised as hybrid AI systems i.e. they make use of
several AI paradigms in one system. Hybrid systems, consisting of a low, sub-
conscious level, and a higher, conscious level, have been suggested by several
authors (Kasabov, 90; Handelman, Lane and Gefland, 90; Hendler and Dickens,
91). A two-level hierarchical framework is suggested in (Kasabov, 90, 96) and
shown in fig.1.1. The block diagram on fig.1.1 is simple but has a sophisticated
functionality as explained here. ‘The first (low) level communicates with the
environment, recognises images and more complex situations, learns new
knowledge in a stimulus-reaction way, etc., but the final solution is
communicated at a higher level, which performs "deliberate thinking", planning
and symbol processing. The low level is fast, flexible, adaptable, subconscious.
The high level is slow, serial, conscious. The low level operates mainly with
numbers, values and connections. The high level is mainly symbolic. It operates
with objects, relations, concepts, rules, premises, hypotheses, plans, strategies
and classes, etc. Both levels communicate until the final solution is reached.
Each of the two main levels of the general two-level model, can consist of more
sub-levels.
    The framework as described above was realised in several hybrid
connectionist rule-based systems: COPE (Kasabov, 93), FuzzyCOPE (Kasabov,
95, 96; Kasabov, Kim, et al, 97). Other hybrid systems which combine symbolic
AI, fuzzy logic, neural networks and possibly some other AI paradigms were
reported in (Takagi, 90; Yamakawa, 93; Hashiyama, Furuhashi and Uchikawa,
92).
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Fig. 1.1. A general two-level hierarchical model of an IIS (Kasabov,90, 96)

A significant limitation of these systems is the way rules are interpreted, that is -
rules do not change during operation. There is no adaptation procedure to help
the system improve over time. Time was not treated there as an important
attribute of the system. Those systems were effectively used mainly for decision
making on static data and static rules in static situations.  Even though a module
of a fuzzy neural network FuNN was developed as part of the FuzzyCOPE/2
(Kasabov, Kim et al, 97) which allows for rule extraction and adaptation, these
features were not inherent in the developed systems.
     In the next section a general framework of an ICM is introduced. It is
designed to recognise patterns of events happening over different time scales.
This is what a conscious mind does - it collects pieces of facts, information, data,
signals over different time-scales (milliseconds, minutes, hours, years, etc) and
recognises certain patterns (phonemes, words, sentences, heart-beat irregularities,
moving objects from series of images, hand-written characters, long-term
associations, etc.). Its applications in several areas are outlined. A connectionist
realisation of this framework utilising fuzzy neural networks and spatial-temporal
maps is presented in sections three, four and five. Sections three and four
introduce also the main principles of fuzzy neural networks and spatial-temporal
maps respectively. In section 5 some new cognitive and brain-like functions and
principles of the human brain when processing multi-lingual spoken language
information are discussed and a general framework of a multilingual spoken
language recognition system is presented along with some preliminary
experimental results. In several illustrative examples  in this chapter data from
the Otago Speech Corpus has been used (Kasabov et al, 95; Sinclair and Watson,
95). The Otago Speech Corpus on New Zealand English is available from the
WWW: http://divcom.otago.ac.nz:800/COM/INFOSCI/KEL/speech.htm.
Section 6 is a concluding section where current implementations of the
framework are discussed along with directions for further research.

2. A Framework of an Intelligent Conscious Machine
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Collecting information over different time-scales and forming meaningful
patterns, structures, concepts, knowledge, to be further used and interpreted for
inferring new knowledge, and for refining old one, is the aim of the framework
presented here. The time-scales can be milliseconds, minutes, hours, years, etc.
The patterns and structures can be phonemes, words, sentences, heart beat
irregularities, moving objects, recognised from series of images, long-term
associations, etc. Incoming information is grouped as it arrives over time and the
best-matched existing structure is recalled or a new one is created. At a sub-
conscious level the system recognises elementary events, sounds, and sequences
of them. At the conscious level the system recognises meaningful patterns and
structures, analyses its behaviour and improves in time. It adapts to new data,
forms new structures, creates new associations.
      A block diagram of the framework is given in fig.2.1. In general, each block
consists of several modules working simultaneously, either on the same, or on
different input data. Each module comprises many sub-modules, called
elementary units.

Fig.2.1. A framework of an intelligent conscious machine for recognising complex
patterns/ objects from time-series of events

The pre-processing units extract features and transform the raw input data
according to certain time scales. The set of selected features is very important for
the further operation of the whole system. Here a set of the two main formants is
compared with a set of three time-lags of 26 element mel-scale vectors to
represent speech data are compared and illustrated on fig.2.2 and fig.2.3.
      In spite of the numerous publications on mapping phonemes into the feature
space (map) of the first two main frequences (formants), we can easily proof that
this space is far from being sufficient for unambiguous mapping. Figure 2.2
shows plots of four phoneme sounds taken from words spoken by one female and
one male speakers of NZ English (speakers 12 and 17 from the Otago Speech
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Corpus) in a two dimensional space of the first two formants. The plot illustrates
the ambiguity at the elementary speech sound level for this particular feature
space. By using the first two formants only, it is not possible to distinguish
linguistically meaningful sounds, phonemes; e.g. it is hard to distinguish the
female prononciation of /i/ and /   /, the female /I/ and male /  /, etc. At the same
time the male and the female /e/, taken from ’get’ appear at different places in the
formant space as they differ in the second formant. It is necessary to use a higher
level knowledge to be able to classify correctly close elementary sounds that
have meaning in a spoken language, but even higher level knowledge may not be
sufficient for the task.

Fig. 2.2. Plots of four phoneme sounds taken from words spoken by one female and one
male speakers of New Zealand English (speakers 12 and 17 from the Otago Speech
Corpus) in a two dimensional space of the first two formants. The plots contain
ambiguous information.

Fig. 2.3. The male and the female realisation of /e/ from fig. 2.2 show similarity when
shown as three 26 element-MSC vectors each of the vectors representing one 12 ms frame
of the signal with 50% overlap between the frames (time-lags). The third graph shows the
difference in intensity between the male and female pronunciation.
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Ambiguity at the elementary sound level can be possibly reduced if another set of
features is used, for example mel- scale coefficients (MSC) or mel-scale
cepstrum coefficients, which filter the sound into predefined frequency band-
filters. The male and the female /e/ from fig. 2.2 is shown in fig.2.3 as three 26-
element MSC vectors each of the vectors representing one 12 ms frame of the
signal with 50% of overlap between the frames (time-lags). The similarity
between the male and the female patterns are visible in terms of frequency
patterns. Of course there is difference in the intensity of the signals taken from
the male and the female voice (here it is up to 20%).
     In a general case, time is taken into account in the elementary event
recognition module and several time-lags of the transformed input data are fed to
the module where elementary events, patterns, are recognised with their
corresponding matching degrees and confidence factors. The modules also learn
and adapt to the most important features thus ignoring (possibly through
forgetting) the unimportant ones at that time. They automatically find out and
adapt to the optimal, for a particular elementary event, number and type of time-
lags of the signal. In the realisation given in sections 3 and 5 fuzzy neural
networks trained with forgetting are used to implement this block. Time is
presented here as spatially ordered input features.
     In the block of sequence of events recognition, the input vectors represent the
recognised elementary events in the previous block, at a certain time interval,
with their matching degrees and confidence factors. A sequence of such vectors
activates possible referenced sequences (words). Some of the recognised
sequences have meaning according to the concepts and structures defined in the
following blocks, but some of them do not have meaning. Interaction between
this block and the next ones is achieved trough the block of conscious decision
making where meaning is identified. For example, a recognised sequence of
sounds which represent a meaningful word in German or a meaningful word in
Japanese, would not have a meaning to an English speaking person who does not
speak German or Japanese. Defining the meaning of the speech sounds in terms
of language is a conscious act. At each time (cycle) of recognition the interaction
goes from the block of event-sequences recognition through the rest of the blocks
to the highest level of the hierarchy and back to this block until a stable sequence
or structure is recognised.
      The feedback connection from the conscious decision making module
"filters" all the perceived  patterns, sequences of patterns and  structures at all
levels of the hierarchical framework. Only the meaningful ones proceed further
on and are analysed and processed. Through learning and adaptation more and
more perceived information patterns become meaningful and form short term or
long term patterns depending on the time scale information from the time-scale
recognition modules.
     The conscious decision module makes adaptation possible at different levels,
including the elementary events recognition level. New elementary events may
be added to this module or some existing events may be split into sub-events, if
this is needed for the recognition of meaningful concepts or structures.
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     Time is represented in the framework of fig.2.1 in many different ways, e.g.
as spatially organised input vectors, as input-output associations in a module, as
interaction between modules including feed-back interaction, or as symbols.
Aggregating elementary events into larger and meaningful sequences, concepts,
structures, is a challenging task. The general framework is illustrated in sections
3,4 and 5 with the use of fuzzy neural networks and spatial-temporal maps.

3. Fuzzy Neural Networks – A General Architecture and
Applications for Phoneme Classification

3.1. The FuNN Architecture and its Functionality

Fuzzy neural networks are neural networks that realise a set of fuzzy rules and a
fuzzy inference machine in a connectionist way (Yamakawa et al, 93;
Hashiyama,  Furuhashi, Uchikawa, 92; Jang, 93, Hauptmann and Heesche, 95;
Kasabov, 96).
     FuNN is a fuzzy neural network introduced first in (Kasabov, 96) and then
developed as FuNN/2 in (Kasabov, Kim et al, 97). It is a connectionist feed-
forward architecture with five layers of neurons and four layers of connections.
The first layer of neurons receives the input information. The second layer
calculates the fuzzy membership degrees to which the input values belong to
predefined fuzzy membership functions, e.g. small, medium, large. The third
layer of neurons represents associations between the input and the output
variables, fuzzy rules. The forth layer calculates the degrees to which output
membership functions are matched by the input data and the fifth layer does
defuzzification and calculates values for the output variables. A FuNN has both
the features of a neural network and a fuzzy inference machine. A simple FuNN
structure is shown in Figure 3.1. The number of neurons in each of the layers can
potentially change during operation through growing or shrinking. The number
of connections is also modifiable through learning with forgetting, zeroing,
pruning and other operations (Kasabov, 96; Kasabov and Kozma, 97; Kasabov,
Kozma and Watts, 97).
     The membership functions, used in FuNN to represent fuzzy values, are of
triangular type, the centres of the triangles being attached as weights to the
corresponding connections. The membership functions can be modified through
learning as shown in Figure 3.2.
       Several training algorithms have been developed for FuNN:
 (a) A modified back-propagation (BP) algorithm that does not change the input
and the output connections representing the membership functions.
(b) A modified BP algorithm that utilises structural learning with forgetting, i.e. a
small forgetting ingredient, e.g. 10-5, is used when the connection weights are
updated (see Ishikawa, 96; Kozma et al, 96; Kasabov , Kozma and Watts, 97).
(c) A modified BP algorithm that updates both the inner connection layers and
the membership layers. This is possible when the derivatives are calculated
separately for the two parts of the triangular membership functions. These  are
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also the non-monotonic activation functions of the neurons in the condition
element layer.
(d) A genetic algorithm for training (Kasabov, Kozma and Watts, 97).
(e) A combination of any of the methods above used in different time intervals as
part of a single training procedure

Fig. 3.1. A FuNN structure for two initial fuzzy rules: R1: IF x1 is A1 (DI1,1) and x2 is
B1 (DI2,1) THEN y is C1 (CF1); R2: IF x1 is A2 (DI1,2) and x2 is B2 (DI2,2) THEN y is
C2 (CF2), where DIs are degrees of importance attached to the condition elements and
CFs are confidence factors attached to the consequent parts of the rules (adopted from
(Kasabov, 96)). The triplets (s,a,o) represent specific for the layer  summation, activation,
and output functions.

Fig. 3.2. Initial membership functions (solid lines) of a variable x (either input, or output)
represented in a FuNN and the membership functions after adaptation (dotted lines). The
boundaries, to which each centre can move but not cross, are also indicated.
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Several algorithms for rule extraction from FuNN have been developed and
applied (Kasabov, 96). One of them represents each rule node of a trained FuNN
as an  IF-THEN fuzzy rule as shown in fig.3.1.
     FuNNs have several advantages when compared with the traditional
connectionist systems or with the fuzzy systems:
(a) They are both  statistical and  knowledge engineering tools.
(b) They are robust to catastrophic forgetting, i.e. when further trained only on
new data, they keep a reasonable memory of the old data.
(c) They interpolate and extrapolate well in regions where data is sparse.
(d) They can be used as replicators, where same input data is used as output data
during training; in this case the rule nodes perform an optimal encoding of the
input space.
(e) They accept both real input data and fuzzy input data represented as
singletons (centres of gravity of the input membership functions))
(e) They are appropriate tools to build multi-modular IIS as explained next.

Fuzzy neural networks have been used so far for tasks of speech recognition.
Some of the experiments use a large, single, neural network for classifying
phonemes on their formant input values (Mitra and Pal, 95; Ray and Ghoshal, 97)
and to extract fuzzy rules. Other experiments use hybrid neuro-fuzzy systems in a
modular approach (Kasabov, 95,96; Kasabov, Kozma et al, 97a, 97b).

3.2. Using FuNNs for phoneme recognition

Here FuNNs are used to learn and classify phoneme data. Three 26-element mel-
scale coefficients (MSC) vectors, representing the speech signal at three
consecutive time frames of 12 ms each, are used as initial inputs.
     Through training with forgetting, each FuNN unit is tailored to the specific
phoneme (sound). After the training procedure and a consecutive pruning of the
very small connections, only the important inputs that correspond to significant
for the phoneme time-lags, and the important MSC, are kept in the FuNN
structure. This is illustrated on fig. 3.3.
      A FuNN structure is initialised as 78-234-10-2-1 and then trained with
forgetting on both male and female data of the phoneme /e/, as positive data and
the rest of the phoneme data as negative data. The training and testing data is
taken from 139 words pronounced three times each by a male and a female
speakers of NZ English, as explained in the Otago Speech Corpus, the male
speaker being #12 and the female #17. The FuNN structure has been significantly
simplified through training with forgetting and a consequent pruning. As it can
be seen from the third figure on fig. 3.3 only three rule nodes have left. The
condition element nodes and the left connections from them to the rule nodes,
correspond to the main frequences of the phoneme /e/ realisation as shown on the
top of fig. 3.3. The bright areas there show high energy of the signal for a
particular MSC. It can also be seen that more connections from the first time-lag
input vector are left which suggests a higher importance of this time-lag. The
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trained /e/ FuNN, when tested on new data, showed correct true positive and true
negative activation (the bottom figure on fig. 3.3)

Fig. 3.3. A FuNN used to classify the phoneme /e/ from one male and one female speech
data: (a) A selected set of MSC vectors of the phoneme /e/ realisation (speakers #12 and
#17 from the Otago Speech Corpus); each of the vectors represent three time lags
(3x26=78 elements); (b) A FuNN trained to classify phoneme /e/ data without forgetting;
(c) The same FuNN trained with forgetting; (d) Test accuracy of recognition – all
phonemes in English extracted form spoken by the two speakers words are used for
testing; the last part of the data are true phoneme /e/ realisation data.

3.3. FuNN-based Intelligent Multi-modular Systems.

Fig. 3.4a shows a block diagram of a FuNN-based IIS. It consists of a FuNN-
based module which includes single FuNN-units for each class (elementary
event, patter, etc.), a module for rule extraction and explanation, and a module
for adaptation. Here, adaptation is the process of on-line training when a single
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FuNN improves its performance based on observation and analysis how its
performance compares to the reality. The modules for adaptation and explanation
may be considered as forming the conscious decision making module as shown
in fig. 2.1.  Adaptation in a multi-modular FuNN structure is based on individual
tuning of single FuNN-units if the analysis of the performance of the whole
system shows that those are reasons for unsatisfactory performance or points of
improvement. One scheme for adaptation is shown in fig. 3.4b where a copy of a
FuNN is trained on-line to improve its performance while the main FuNN-unit is
in operation. After a certain time interval the copy substitutes the main FuNN
unit.

Fig. 3.4. (a) A multi-modular FuNN-based Intelligent Information System. (b)  A scheme
for adaptation in a multi-modular FuNN-based IIS

3.4. Multi-modular FuNN-based Systems for All-Elementary Event (All-
Phoneme) Classification

Building FuNN-based IIS is illustrated here on the whole set of phoneme data of
one male and one female speaker (#12 and #17) comprising 10,000 training
examples and 5,000 validation examples. A single FuNN is trained to classify
speech input data into one of the 43 phonemes in New Zealand English
(phonemes #44 and #45 are not included), in the same way as it was explained
above on the case of phoneme /e/. Figure 3.5 shows validation results. The
results are satisfactory for most of the phonemes. Obviously further tuning of the
phonemes ## 24, 30, 39, 43 is needed which is possible because of the modular
approach taken. All the phoneme FuNNs will be indeed trained further on other
speakers’ data. The modular approach also allows for adaptation of individual
phoneme FuNNs to new speakers, accents, dialects. New phoneme FuNNs can
be easily added if necessary along with the modification of the existing ones. The
trained FuNN-based all-phoneme classifier is shown as part of a multilingual
spoken recognition system in section 5. The overlapping between the phoneme
classification can be shown in a form of a confusion matrix as shown in fig. 3.6.
The matrix represents the winner takes all principle when the number of
activations (correct and wrong ) of each phoneme FuNN is counted and
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presented as a level of darkness.  This matrix suggests way to measure similarity
in sounding between different phonemes.

Fig. 3.5. Preliminary evaluation of the test accuracy of the phoneme recognition in the
FuNN units across all the phonemes in New Zealand English. FuNNs have been trained
and tested on one male and one female speakers data from the Otago Speech Corpus. The
black and white bars represent the true positive and the true negative classification
accuracy resepectively.

Fig. 3.6. A confusion matrix of the validation classification of NZ English phoneme data
in the FuNN-based multi-modular all-phoneme classifier on one male and one female data
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4. Spatial-Temporal Maps: A general Introduction and
Applications for Mapping Elementary Events (Phonemes) and
Sequences of Events (Words)

4.1. A General Introduction

Spatial-temporal maps (STM) are connectionist structures which have time
sequence of vectors as inputs and a topologically, spatially organised map as an
output. Kohonen self-organised maps (SOM) (Kohonen, 90) with time sequence
of vectors as inputs, are examples of STM. Figure 4.1. represents a block
diagram of a STM. STM can be trained either in a self-organised, unsupervised
way, or in a supervised one.

Fig. 4.1. A block diagram of a STM.

STM can be used to map similar sequences of elementary events over time
intervals (not necessarily equal in duration) into topologically close areas on the
map. When used in the general framework from fig. 2.1, to realise the block of
sequence of events recognition, the STM may recall, after new data is input, both
meaningful and meaningless sequences, which are further defined by the
conscious decision making block through a feed-back connection.

4.2. STM for Mapping Phoneme- and Word- Data

One of the first applications of the Kohonen SOM was for phoneme and word
recognition. In this section  Kohonen SOMs are used to map temporal sequences
of so called  phoneme activation vectors into a dictionary of words. Mapping
phonetic representation of words into a ”sounds-like” STM is a new approach
introduced and used here. It allows for storing, updating and retrieving words
from large dictionary. The output of the module of elementary sounds (phoneme)
recognition is an n-element activation vector produced every time frame (say
6ms). The activation vector contains the activation of the elementary events
(phonemes) at a certain time frame. In the case of phoneme recognition, this is a
phoneme activation vector (PAV). A sequence of  PAVs is further aggregated in
a shorter sequence of PAVs which is then mapped in a dictionary of words
represented as a trained STM. Mapping PAV is illustrated below for the NZ
English phonemes and for a small set of English words.
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     Synthetic PAVs can be created based on the expected similarity between the
sounding of the phonemes ( see for example the confusion table from fig.3.6 and
the  acoustic features given in the appendix  between the phonemes, e.g. alveolar,
etc.). A PAV contains a value of activation of 1 for that phoneme, lesser
activation values for similar phonemes and values of 0 for different phonemes
(Kasabov, Kozma, Kilgour et al, 97a; 97b). Mapping the PAVs into a SOM is
shown in fig. 4.2. The SOM was trained with 43 phoneme activation vectors for
10,000 epochs. The phonemes are clearly distinguished on the map. Further
training and adaptation of the SOM on more data is possible.

Fig. 4.2. Mapping the synthetic phoneme activation vectors of the phonemes in NZ
English into a SOM. The SOM was trained with 43 phoneme activation vectors

Through using PAVs the phonetic transcription of the words can be used to map
all the words from a dictionary (regardless of its size, e.g.. 2,000 or 200,000) into
a STM of “sounds-like” words. For example, a phonetic transcription of the word
‘pat’ can be represented as 3 times 43-element PAVs. Figure 4.3 shows the SOM
for several English words.

Fig. 4.3. The “sounds-like” word SOM for several English words. Inputs are synthetic
PAVs. It is seen on the map that similar PAVs activate neurons in the same area. The
activation of all the output neurons is  shown and the winning neuron is marked as “*”.
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Representing language dictionaries as STM and SOM in particular, have several
advantages when compared to the traditional database representation:
(a) it accounts for similarities between the words in the dictionary;
(b) it makes the whole process of searching through a dictionary effective
regardless of the size of the dictionary as it is achieved by one recall procedure
through the STM;
     STM can be used for representing higher level modules form the framework
of fig.2.1, e.g. the concept recognition modules etc. as shown in section 5.
Both the FuNN-based phoneme classifier and the STMs  are used for a partial
implementation of a multi-lingual spoken recognition system in the next section.

5. A Framework for Multi-lingual Speech Recognition Systems

5.1. The Problem of Speech Recognition and the Role of Consciousness. A
Framework of an ICM for Spoken Language Recognition

Spoken language recognition and understanding in computer systems is a
challenging task (Cole et al, 95; Altman,90; Jusczyk,97). The aim of it is two-
fold:
 (a) as the best machine for this  task is the human brain, the task will stimulate
and will require further study on the speech perception and language learning in
humans;
(b) as the task involves intelligence and consciousness, even partial solutions of
the task will bring useful brain-like computing methods, new methods of
cognitive engineering and therefore new frameworks for building IIS and ICM.
      The task has two main phases, namely sub-conscious, i.e. the phase of sounds
and the sequences of them (words) recognition regardless of their meaning, and
conscious - the phase of speech sounds, words, sentences etc. recognition in
terms of language (or languages). The task involves time at several scales, e.g.
milliseconds in terms of elementary sounds (phonemes), seconds in terms of
words, minutes or longer periods in terms of sentences and logical associations
between their meanings. This task fits well the general framework explained in
section 2 and presented in fig. 2.1, as it is shown in fig. 5.1.
     The linguistic, conscious decision making block in the framework from fig.
2.1 has a significant role in the whole process of spoken language recognition.
Applying consciousness and language awareness is the only away to deal with
the tremendous variability and ambiguity in speech. This is the way for a system
to deal with problems such as:
(a) Adapt to new accents and dialects through applying linguistic knowledge
about their relationship with some already learned ones;
(b) Distinguish close sounds through the context of a language at the higher level
of information processing which information is fed back to the low level
processing through the feedback from the conscious decision making block;
(c) Acquire new language, thus turning some of the recognised meaningless
sounds and words into meaningful ones.
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Fig. 5.1. A framework of an ICM for spoken language recognition

A  partial realisation of the framework from fig.5.1 for the case of multi-lingual
system is given in fig. 5.2. It uses FuNNs for the phoneme recognition and STMs
for word and concept recognition.

5.2. Multi-lingual Spoken Language Recognition

Learning a second and other languages has been investigated in several papers
and books (Zatorre, 89; Juszcyk, 97). Recently, fMRI  (functional Magnetic
Resonance Imaging) of the activation of neurons at particular spatial areas of the
Broca’s area of the cortex, when words of different languages were spoken to a
person who speaks these languages, was experimented  (Kim et al, 97). The
investigation shows that when two or more languages are learned at an early age
(under the age of 7) the activation centres which respond highly to pronounced
words in two or more learned languages, are in the same Broca’s area (a distance
of about 1mm has been measured). When a second language is learned at a later
age the activation centres of the two languages belong to different areas of the
Broca’s area  (a difference of about 8 mm has been measured). Broca’s area is
known as a phonetically sensitive, anterior language area. At the same time
another language sensitive area of the brain, Wernicke’s area, which is a
language posterior area, allocates same centres for all the multiple languages
regardless of the age of acquisition. It is concluded there that learning several
languages at an early age makes use of the same region in the cerebral cortex for
the elementary sounds and the sounding of the words of these languages.
     The above referenced research and some other investigations of the spatial-
temporal mapping of the speech and language in the human brain support the
approach taken here, and graphically illustrated in fig. 5.2, for building multi-
lingual ICMs for spoken language recognition. The elementary sound recognition
module, the “sounds-like” word module and the concept recognition module are
shared between the languages recognisable in the system. The language structure
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recognition modules are different for the different languages and they give
indication to the conscious decision making module whether the pronounced
sounds and words belong to the languages the system can understand, so it is a
language-aware system. The FuNN-based phoneme classifiers and the STMs
described in the previous sections are used for a partial implementation of the
multi-lingual spoken recognition system as shown in fig.5.2.

Fig. 5.2. A schematic diagram of a multi-lingual spoken recognition system illustrated
with the process of recognition of the word ‘cat’ in six languages.

The low level FuNN-based elementary sounds module and the STM for
sequences of sounds recognition module are shared between all the languages
used in the system. They are expandable to include new elementary sound
recognition units if such are needed for a new language. The STM module for
recognising the concepts and the meanings of the words and sentences is also
shared as humans share common sense regardless of the language they speak.
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Words in different languages that have same meaning would be mapped at the
same point (area) in the map of concepts, e.g. the concept of “pets”. Of course
learning new languages would lead to expanding the concept STM with new
concepts. The higher level of language structure recognition and the awareness
about the languages ‘known’ to the system is a conscious process done in a close
interaction between the last block from fig. 5.1 and fig. 5.2 and the conscious
decision making block.
      After the elementary sounds are recognised, n-element PAVs, containing the
aggregated activation of each of the n phonemes over a certain period of time, are
fed to the sounds-like word map. This STM has k-inputs, each of them being n-
element phoneme activation vector. The sounds-like map receives feedback from
the higher level modules in the system in order to refine the choice of a group of
words to be further processed at a higher level. These maps are trained on both
artificial data generated from linguistic knowledge (see the STM in section 4)
and real data - the data from the previous module on real data inputs. Figure 5.3
shows a sounds-like SOM of words  from six languages (English, Maori,
German, Russian, Bulgarian and Japanese). The 7x7 SOM was trained with the
PAVs of these words each of them represented as  seven 43-element PAVs.

Fig. 5.3. A sounds-like SOM which maps words from six languages. The SOM was
trained with the phoneme activation vectors of these words.

6. Conclusions and Directions for Further Research

This chapter discusses some issues in the area of intelligent information systems
and suggests a general framework of an intelligent conscious machine along with
its application to multi-lingual spoken recognition systems. The two levels of
operation of the framework are lower, sub-conscious, where sounds and their
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sequences are recognised, and higher, conscious, where meaningful words,
concepts and language structures are recognised. The block of conscious decision
making feeds information back to all the modules of the framework thus realising
adaptation and deliberate learning of new knowledge in the system, which can be
extended to include new languages. A partial implementation and preliminary
results are shown when fuzzy neural networks and spatial-temporal maps are
used to realise some of the modules of the framework. A language dictionary is
represented as a connectionist self-organised map which makes the search
through the dictionary quick. The multi-lingual approach suggested in the chapter
is in coherence with new evidence about speech and language mapping in the
human brain of multi-lingual subjects. This research will continue towards using
the framework for continuous speech, multi-lingual recognition systems.
     Future research has been also planned towards applying the framework to
other tasks, such as moving objects recognition, heart-beat variability estimation,
fruit growth prediction.
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Appendix. The phonemes in NZ English from the Otago Speech Corpus

No ASCII Example Class Characteristics
01 p pin Consonant Bilabial Plosive Unvoiced
02 b bay Consonant Bilabial Plosive Voiced
03 t toy Consonant Alveolar Plosive Unvoiced
04 d die Consonant Alveolar Plosive Voiced
05 k key Consonant Velar Plosive Unvoiced
06 g get Consonant Velar Plosive Voiced
07 f five Consonant Labiodental Fricative Unvoiced
08 v van Consonant Labiodental Fricative Voiced
09 T thick Consonant Dental Fricative Unvoiced
10 D then Consonant Dental Fricative Voiced
11 s see Consonant Alveolar Fricative Unvoiced
12 z zink Consonant Alveolar Fricative Voiced
13 S ship Consonant Palato-alveolar Fricative Unvoiced
14 Z measure Consonant Palato-alveolar Fricative Voiced
15 h he Consonant Glottal Fricative Unvoiced
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16 tS chin Consonant Palato-alveolar Affricate Unvoiced
17 dZ jam Consonant Palato-alveolar Affricate Voiced
18 m me Consonant Bilabial Nasal Voiced
19 n not Consonant Alveolar Nasal Voiced
20 N sing Consonant Velar Nasal Voiced
21 l light Consonant Alveolar Approxim

.
Voiced

22 r ring Consonant Post-alveolar Approxim
.

Voiced

23 w win Consonant Velar Approxim
.

Voiced

24 j yes Consonant Palatal Approxim
.

Voiced

25 I sit Monophth
.

Close Front Unround.

26 e get Monophth
.

Mid Front Unround.

27 & cat Monophth
.

Open Front Unround.

28 V hut Monophth
.

Open Central Unround.

29 A hot Monophth
.

Open Back Rounded

30 U put Monophth
.

Mid Back Rounded

31 i see Monophth
.

Close Front Unround.

32 a father Monophth
.

Open Back Unround.

33 O sort Monophth
.

Close Back Rounded

34 3 bird Monophth
.

Mid Central Rounded

35 u too Monophth
.

Close Back Rounded

36 eI day Diphthong Closing
37 ai fly Diphthong Closing
38 Oi boy Diphthong Closing
39 OU go Diphthong Closing
40 aU cow Diphthong Closing
41 i@ ear Diphthong Centring
42 U@ tour Diphthong Centring
43 e@ air Diphthong Centring
44 Q silence
45 @ banana Monophth

.
Mid Central Unround.
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