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Abstract. This chapter contains a discussion material anéliminary
experimental results of a new approach to buildingelligent conscious
machines (ICM) and its application to multilingusgdoken recognition systems.
ICM can analyse their behaviour and subsequentptaénd improve their
structure and functionality during operation, camalaate their ability of problem
solving in terms of what they "can do" and whatytltannot. These systems
consist of many modules interacting during operatimd organised in several
hierarchical levels aggregated into two main orse$ow, sub-conscious level,
and a higher, conscious level. A framework for liilgent conscious machines is
proposed and a partial realisation is presenteattwhiakes use of fuzzy neural
networks and spatial-temporal maps. The framewsipiplicable to recognising
patterns from time-series at different time scaleiffy numerous applications. A
particular case study of spoken language recogniisopresented along with
some preliminary experimental results of a systemlisation. The approach,
introduced in the chapter, is extended to multidial spoken recognition
systems. This has been inspired by new biologicialemce about the activity of
the human brain in multi-lingual subjects.
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1. Introduction: Intelligent Information Systems and
Intelligent Conscious Machines

This section specifies the scope of Al, cognitivegiaeering and brain-like
computing as used in the chapter, and also defimesnotions of intelligent
information systems (11S) and intelligent consciooachines (ICM).

Intelligence is usually associated with sulchracteristics as:
« ability to communicate ideas and thoughts in speechlanguage;
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e pattern recognition, e.g. speech patterns, imdimae,series events;

e learning from structured and unstructured expegerand successful
generalisation;

e dynamic adaptation to new situations;

e reasoning and decision making based on uncertainty;

e creativity, i.e. creating something which is miggat present; e.g. plans.

Intelligent information systems (11S) have somebiof the characteristics above
in addition to having large memories and fast "namirunching” abilities. The
combination of the computing power of the tradiibncomputers with
computational intelligence makes the IIS very pdules means for information
processing. Adding "consciousness" to an 1IS wauldble these machines to be
aware of what they are in the current operatingrenment, how they relate to
other objects, what they can do and what they acanwho might do what they
can not attempt, etc. (Arbib, 87, 95; Aleksander).9We shall call such
machinesntelligent conscious machin¢kCM).

Developing methods and tools for IS, inchgliiCM, based on cognitive
principles of the brain, is the area of cognitiveyimeering. Some of the cognitive
features of an 1IS may be achieved by using comm@st techniques and
principles adopted from the physical organisatibthe brain, which is the area
of the brain-like computing (Arbib, 95). Other catiye features will be
implemented by using other (non-brain-like) techusis such as symbolic Al,
fuzzy logic, etc. (Zadeh, 65,84; Kasabov, 96).

IIS at present are usually realised as hyBtidystems i.e. they make use of
several Al paradigms in one system. Hybrid systetossisting of a low, sub-
conscious level, and a higher, conscious levelgehaeen suggested by several
authors (Kasabov, 90; Handelman, Lane and Gef@®@dHendler and Dickens,
91). A two-level hierarchical framework is suggekia (Kasabov, 90, 96) and
shown in fig.1.1. The block diagram on fig.1.1 isigle but has a sophisticated
functionality as explained here. ‘The first (lowgvel communicates with the
environment, recognises images and more complexatgins, learns new
knowledge in a stimulus-reaction way, etc., but tfieal solution is
communicated at a higher level, which performs itahte thinking", planning
and symbol processing. The low level is fast, tdxi adaptable, subconscious.
The high level is slow, serial, conscious. The lmwel operates mainly with
numbers, values and connections. The high levelaly symbolic. It operates
with objects, relations, concepts, rules, premisggotheses, plans, strategies
and classes, etc. Both levels communicate untilfithed solution is reached.
Each of the two main levels of the general two-lawedel, can consist of more
sub-levels.

The framework as described above was realised séveral hybrid
connectionist rule-based systems: COPE (Kasabgy,FR&zyCOPE (Kasabov,
95, 96; Kasabov, Kim, et al, 97). Other hybrid syss which combine symbolic
Al, fuzzy logic, neural networks and possibly sootber Al paradigms were
reported in (Takagi, 90; Yamakawa, 93; Hashiyamaukashi and Uchikawa,
92).
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Fig. 1.1.A general two-level hierarchical model of an |Ksagabov,90, 96)

A significant limitation of these systems is theywales are interpreted, that is -
rules do not change during operation. There is daptation procedure to help
the system improve over time. Time was not tredtegte as an important
attribute of the system. Those systems were effelgtiused mainly for decision
making on static data and static rules in staticasions. Even though a module
of a fuzzy neural network FUNN was developed as pathe FuzzyCOPE/2
(Kasabov, Kim et al, 97) which allows for rule exdtion and adaptation, these
features were not inherent in the developed systems

In the next section a general framework of I@&M is introduced. It is
designed to recognise patterns of events happemieg different time scales.
This is what a conscious mind does - it collececes of facts, information, data,
signals over different time-scales (millisecondsnutes, hours, years, etc) and
recognises certain patterns (phonemes, words, rsmgeheart-beat irregularities,
moving objects from series of images, hand-writtelmaracters, long-term
associations, etc.). Its applications in severaharare outlined. A connectionist
realisation of this framework utilising fuzzy nelreetworks and spatial-temporal
maps is presented in sections three, four and f8ections three and four
introduce also the main principles of fuzzy neuretworks and spatial-temporal
maps respectively. In section 5 some new cognaive brain-like functions and
principles of the human brain when processing minigual spoken language
information are discussed and a general framewdrla onultilingual spoken
language recognition system is presented along weitime preliminary
experimental results. In several illustrative exéaap in this chapter data from
the Otago Speech Corpus has been used (Kasabb®gt Sinclair and Watson,
95). The Otago Speech Corpus on New Zealand Englistvailable from the
WWW: http://divcom.otago.ac.nz:800/COM/INFOSCI/KEL/spledtm
Section 6 is a concluding section where current lémentations of the
framework are discussed along with directions totHer research.

2. A Framework of an Intelligent Conscious Machine
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Collecting information over different time-scalesida forming meaningful
patterns, structures, concepts, knowledge, to hbduused and interpreted for
inferring new knowledge, and for refining old ong the aim of the framework
presented here. The time-scales can be millisecanuhates, hours, years, etc.
The patterns and structures can be phonemes, weealgences, heart beat
irregularities, moving objects, recognised fromieerof images, long-term
associations, etc. Incoming information is groupsdt arrives over time and the
best-matched existing structure is recalled or & pee is created. At a sub-
conscious level the system recognises elementagtgeyvsounds, and sequences
of them. At the conscious level the system recamimeaningful patterns and
structures, analyses its behaviour and improvetinie. It adapts to new data,
forms new structures, creates new associations.

A block diagram of the framework is givenfig.2.1. In general, each block
consists of several modules working simultaneousither on the same, or on
different input data. Each module comprises many-reodules, called
elementary units.

Fig.2.1. A framework of an intelligent conscious maching fecognising complex
patterns/ objects from time-series of events

The pre-processing units extract features and fivams the raw input data
according to certain time scales. The set of setefsatures is very important for
the further operation of the whole system. Heretao$ the two main formants is
compared with a set of three time-lags of 26 eldnmampl-scale vectors to
represent speech data are compared and illustatfid.2.2 and fig.2.3.

In spite of the numerous publications on naggwhonemes into the feature
space (map) of the first two main frequences (fortslg we can easily proof that
this space is far from being sufficient for unamligs mapping. Figure 2.2
shows plots of four phoneme sounds taken from wsptdden by one female and
one male speakers of NZ English (speakers 12 anfioh7 the Otago Speech
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Corpus) in a two dimensional space of the first faonants. The plot illustrates
the ambiguity at the elementary speech sound Ifarethis particular feature
space. By using the first two formants only, itriet possible to distinguish
linguistically meaningful sounds, phonemes; e.gisithard to distinguish the
female prononciation of /i/ and / /, the femdleahd male / /, etc. At the same
time the male and the female /e/, taken from gppear at different places in the
formant space as they differ in the second formiams. necessary to use a higher
level knowledge to be able to classify correctlpse elementary sounds that
have meaning in a spoken language, but even higher knowledge may not be
sufficient for the task.

Fig. 2.2.Plots of four phoneme sounds taken from words epdky one female and one
male speakers of New Zealand English (speakersnt?1a from the Otago Speech
Corpus) in a two dimensional space of the first tfewmants. The plots contain
ambiguous information.

Fig. 2.3. The male and the female realisation of /e/ frogy #.2 show similarity when
shown as three 26 element-MSC vectors each ofabtrs representing one 12 ms frame
of the signal with 50% overlap between the frantese-lags). The third graph shows the
difference in intensity between the male and ferpat&unciation.
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Ambiguity at the elementary sound level can be ipbsseduced if another set of
features is used, for example mel- scale coefftsiefMSC) or mel-scale
cepstrum coefficients, which filter the sound imcedefined frequency band-
filters. The male and the female /e/ from fig. &Zhown in fig.2.3 as three 26-
element MSC vectors each of the vectors repregpmtiie 12 ms frame of the
signal with 50% of overlap between the frames (tlags). The similarity

between the male and the female patterns are &isiblterms of frequency
patterns. Of course there is difference in thensity of the signals taken from
the male and the female voice (here it is up to 20%

In a general case, time is taken into accdaonthe elementary event
recognition module and several time-lags of thadfarmed input data are fed to
the module where elementary events, patterns, amdgnised with their
corresponding matching degrees and confidencerfaciéne modules also learn
and adapt to the most important features thus iggo(possibly through
forgetting) the unimportant ones at that time. Tleyomatically find out and
adapt to the optimal, for a particular elementargre, number and type of time-
lags of the signal. In the realisation given intgets 3 and 5 fuzzy neural
networks trained with forgetting are used to impdenthis block. Time is
presented here as spatially ordered input features.

In the block of sequence of events recognitiba input vectors represent the
recognised elementary events in the previous blatlq certain time interval,
with their matching degrees and confidence factArsequence of such vectors
activates possible referenced sequences (wordsieSof the recognised
sequences have meaning according to the concegtstiarctures defined in the
following blocks, but some of them do not have niegninteraction between
this block and the next ones is achieved troughbtbek of conscious decision
making where meaning is identified. For examplereeognised sequence of
sounds which represent a meaningful word in Gergraa meaningful word in
Japanese, would not have a meaning to an Englesikem person who does not
speak German or Japanese. Defining the meaningea$geech sounds in terms
of language is a conscious act. At each time (¢yafieecognition the interaction
goes from the block of event-sequences recognitioough the rest of the blocks
to the highest level of the hierarchy and backhts block until a stable sequence
or structure is recognised.

The feedback connection from the consciousisten making module
"filters" all the perceived patterns, sequencepatterns and structures at all
levels of the hierarchical framework. Only the miegful ones proceed further
on and are analysed and processed. Through leaamdgadaptation more and
more perceived information patterns become meauirggid form short term or
long term patterns depending on the time scalerimdtion from the time-scale
recognition modules.

The conscious decision module makes adaptatigsible at different levels,
including the elementary events recognition leWgw elementary events may
be added to this module or some existing events leagplit into sub-events, if
this is needed for the recognition of meaningful@apts or structures.
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Time is represented in the framework of fig.th many different ways, e.g.
as spatially organised input vectors, as input-gugssociations in a module, as
interaction between modules including feed-bacleradtion, or as symbols.
Aggregating elementary events into larger and nmegal sequences, concepts,
structures, is a challenging task. The general émark is illustrated in sections
3,4 and 5 with the use of fuzzy neural networks spatial-temporal maps.

3. Fuzzy Neural Networks — A General Architecture and
Applications for Phoneme Classification

3.1. The FUNN Architecture and its Functionality

Fuzzy neural networks are neural networks thatigea set of fuzzy rules and a
fuzzy inference machine in a connectionist way (dkawa et al, 93;
Hashiyama, Furuhashi, Uchikawa, 92; Jang, 93, thaampn and Heesche, 95;
Kasabov, 96).

FuNN is a fuzzy neural network introduced ffins (Kasabov, 96) and then
developed as FUNN/2 in (Kasabov, Kim et al, 97)isla connectionist feed-
forward architecture with five layers of neurongddour layers of connections.
The first layer of neurons receives the input infation. The second layer
calculates the fuzzy membership degrees to whiehitput values belong to
predefined fuzzy membership functions, e.g. smakdium, large. The third
layer of neurons represents associations betweenirthut and the output
variables, fuzzy rules. The forth layer calculathe degrees to which output
membership functions are matched by the input dath the fifth layer does
defuzzification and calculates values for the otiyariables. A FUNN has both
the features of a neural network and a fuzzy imfeeemachine. A simple FUNN
structure is shown in Figure 3.1. The number ofraes in each of the layers can
potentially change during operation through groworgshrinking. The number
of connections is also modifiable through learnwgh forgetting, zeroing,
pruning and other operations (Kasabov, 96; Kasabml/Kozma, 97; Kasabov,
Kozma and Watts, 97).

The membership functions, used in FUNN to esent fuzzy values, are of
triangular type, the centres of the triangles beatached as weights to the
corresponding connections. The membership functcamsbe modified through
learning as shown in Figure 3.2.

Several training algorithms have been degyedofor FUNN:
(a) A modified back-propagation (BP) algorithmttid@es not change the input
and the output connections representing the memipefisnctions.
(b) A modified BP algorithm that utilises structulearning with forgetting, i.e. a
small forgetting ingredient, e.g. 20is used when the connection weights are
updated (see Ishikawa, 96; Kozma et al, 96; KasaBmzma and Watts, 97).
(c) A modified BP algorithm that updates both thaar connection layers and
the membership layers. This is possible when thevateves are calculated
separately for the two parts of the triangular memhip functions. These are
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also the non-monotonic activation functions of tieurons in the condition
element layer.

(d) A genetic algorithm for training (Kasabov, Kaamand Watts, 97).

(e) A combination of any of the methods above lisdtifferent time intervals as
part of a single training procedure

Fig. 3.1.A FuNN structure for two initial fuzzy rules: RIF x1 is Al (DI1,1) and x2 is
B1 (DI2,1) THEN yis C1 (CF1); R2: IF x1 is A2 (BR) and x2 is B2 (DI2,2) THEN y is
C2 (CF2), where DlIs are degrees of importance lathdo the condition elements and
CFs are confidence factors attached to the conséqaets of the rules (adopted from
(Kasabov, 96)). The triplets (s,a,0) representifipdor the layer summation, activation,
and output functions.

Fig. 3.2.Initial membership functions (solid lines) of ariadle x (either input, or output)
represented in a FUNN and the membership functdies adaptation (dotted lines). The
boundaries, to which each centre can move butnosscare also indicated.
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Several algorithms for rule extraction from FuNNvhabeen developed and
applied (Kasabov, 96). One of them represents rsdemode of a trained FUNN
as an IF-THEN fuzzy rule as shown in fig.3.1.

FuNNs have several advantages when compardt thie traditional
connectionist systems or with the fuzzy systems:
(a) They are both statistical and knowledge eswiimg tools.
(b) They are robust to catastrophic forgetting, when further trained only on
new data, they keep a reasonable memory of thdaikl
(c) They interpolate and extrapolate well in regiovhere data is sparse.
(d) They can be used as replicators, where samg dgia is used as output data
during training; in this case the rule nodes penf@an optimal encoding of the
input space.
(e) They accept both real input data and fuzzy tingata represented as
singletons (centres of gravity of the input membgr$unctions))
(e) They are appropriate tools to build multi-madulS as explained next.

Fuzzy neural networks have been used so far festa$ speech recognition.
Some of the experiments use a large, single, newdkork for classifying
phonemes on their formant input values (Mitra aatj 85; Ray and Ghoshal, 97)
and to extract fuzzy rules. Other experiments ydmitl neuro-fuzzy systems in a
modular approach (Kasabov, 95,96; Kasabov, Kozrag 87a, 97b).

3.2. Using FUNNSs for phoneme recognition

Here FUNNSs are used to learn and classify phoneate @hree 26-element mel-
scale coefficients (MSC) vectors, representing #peech signal at three
consecutive time frames of 12 ms each, are usedtias inputs.

Through training with forgetting, each FuNNituis tailored to the specific
phoneme (sound). After the training procedure amdrasecutive pruning of the
very small connections, only the important inputattcorrespond to significant
for the phoneme time-lags, and the important MSKg, kept in the FuNN
structure. This is illustrated on fig. 3.3.

A FuNN structure is initialised as 78-234-20- and then trained with
forgetting on both male and female data of the phua/e/, as positive data and
the rest of the phoneme data as negative datatr@imng and testing data is
taken from 139 words pronounced three times eacla byale and a female
speakers of NZ English, as explained in the Otageegh Corpus, the male
speaker being #12 and the female #17. The FuNNtsteihas been significantly
simplified through training with forgetting and ansequent pruning. As it can
be seen from the third figure on fig. 3.3 only threile nodes have left. The
condition element nodes and the left connectioomfthem to the rule nodes,
correspond to the main frequences of the phonefedésation as shown on the
top of fig. 3.3. The bright areas there show higlergy of the signal for a
particular MSC. It can also be seen that more cotimes from the first time-lag
input vector are left which suggests a higher ingraece of this time-lag. The
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trained /e/ FUNN, when tested on new data, showect true positive and true
negative activation (the bottom figure on fig. 3.3)

Fig. 3.3.A FuNN used to classify the phoneme /e/ from omdenand one female speech
data: (a) A selected set of MSC vectors of the phmn/e/ realisation (speakers #12 and
#17 from the Otago Speech Corpus); each of theoxeaepresent three time lags
(3x26=78 elements); (b) A FuNN trained to clasgihoneme /e/ data without forgetting;
(c) The same FuNN trained with forgetting; (d) Testcuracy of recognition — all
phonemes in English extracted form spoken by the $peakers words are used for
testing; the last part of the data are true phonermealisation data.

3.3. FuNN-based Intelligent Multi-modular Systems.

Fig. 3.4a shows a block diagram of a FUNN-based Iti$onsists of a FUNN-

based module which includes single FuNN-units fache class (elementary
event, patter, etc.), a module for rule extractiond explanation, and a module
for adaptation. Here, adaptation is the processneline training when a single
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FuNN improves its performance based on observatiod analysis how its

performance compares to the reality. The moduleadaptation and explanation
may be considered as forming the conscious decisiaking module as shown
in fig. 2.1. Adaptation in a multi-modular FUNN&tture is based on individual
tuning of single FUNN-units if the analysis of tperformance of the whole
system shows that those are reasons for unsatisfgoerformance or points of
improvement. One scheme for adaptation is showigir8.4b where a copy of a
FuNN is trained on-line to improve its performanegeile the main FUNN-unit is

in operation. After a certain time interval the gogubstitutes the main FUNN
unit.

Fig. 3.4.(a) A multi-modular FUNN-based Intelligent Informati@ystem. i§) A scheme
for adaptation in a multi-modular FUNN-based IIS

3.4. Multi-modular FuNN-based Systems for All-Elematary Event (All-
Phoneme) Classification

Building FUNN-based IIS is illustrated here on thieole set of phoneme data of
one male and one female speaker (#12 and #17) @ngprl0,000 training
examples and 5,000 validation examples. A singlRNFus trained to classify
speech input data into one of the 43 phonemes iw Mealand English
(phonemes #44 and #45 are not included), in theesaay as it was explained
above on the case of phoneme /e/. Figure 3.5 shahdation results. The
results are satisfactory for most of the phoner@siously further tuning of the
phonemes ## 24, 30, 39, 43 is needed which is lgessecause of the modular
approach taken. All the phoneme FuNNs will be imt&ained further on other
speakers’ data. The modular approach also allowsadaptation of individual
phoneme FuNNs to new speakers, accents, dialeets. pthoneme FuNNs can
be easily added if necessary along with the madtific of the existing ones. The
trained FuNN-based all-phoneme classifier is shasnpart of a multilingual
spoken recognition system in section 5. The oveitap between the phoneme
classification can be shown in a form of a confosieatrix as shown in fig. 3.6.
The matrix represents the winner takes all prircipthen the number of
activations (correct and wrong ) of each phoneméNFuis counted and
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presented as a level of darkness. This matrix esstggvay to measure similarity
in sounding between different phonemes.

Fig. 3.5. Preliminary evaluation of the test accuracy of gi®neme recognition in the

FuNN units across all the phonemes in New Zealamgligh. FUNNs have been trained
and tested on one male and one female speakerfralatéhe Otago Speech Corpus. The
black and white bars represent the true positivd Hre true negative classification

accuracy resepectively.

Fig. 3.6. A confusion matrix of the validation classificati@f NZ English phoneme data
in the FUNN-based multi-modular all-phoneme classidin one male and one female data



A Framework fotéfligent "Conscious" Machines 117

4. Spatial-Temporal Maps: A general Introduction and
Applications for Mapping Elementary Events (Phonemes) and
Sequences of Events (Words)

4.1. A General Introduction

Spatial-temporal maps (STM) are connectionist $tmeés which have time

sequence of vectors as inputs and a topologicgitially organised map as an
output. Kohonen self-organised maps (SOM) (Koho®é&y,with time sequence

of vectors as inputs, are examples of STM. Figurke. 4epresents a block
diagram of a STM. STM can be trained either in lir@®anised, unsupervised
way, or in a supervised one.

Fig. 4.1.A block diagram of a STM.

STM can be used to map similar sequences of elamemvents over time

intervals (not necessarily equal in duration) itdpologically close areas on the
map. When used in the general framework from fig, 2o realise the block of
sequence of events recognition, the STM may reafifly new data is input, both
meaningful and meaningless sequences, which armhefurdefined by the

conscious decision making block through a feed-lzacinection.

4.2. STM for Mapping Phoneme- and Word- Data

One of the first applications of the Kohonen SOMsviar phoneme and word
recognition. In this section Kohonen SOMs are useghap temporal sequences
of so called phoneme activation vectors into aia@ry of words. Mapping
phonetic representation of words into sotinds-like” STMis a new approach
introduced and used here. It allows for storingdatng and retrieving words
from large dictionary. The output of the modulestdmentary sounds (phoneme)
recognition is an n-element activation vector prmth every time frame (say
6ms). The activation vector contains the activatadnthe elementary events
(phonemes) at a certain time frame. In the cagghoheme recognition, this is a
phoneme activation vector (PAV). A sequence of BA&/further aggregated in
a shorter sequence of PAVs which is then mapped dfictionary of words
represented as a trained STM. Mapping PAV is ithtsed below for the NZ
English phonemes and for a small set of Englishdaor
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Synthetic PAVs can be created based on thecteg similarity between the
sounding of the phonemes ( see for example theusonf table from fig.3.6 and
the acoustic features given in the appendix betvtbe phonemes, e.g. alveolar,
etc.). A PAV contains a value of activation of 1r flhat phoneme, lesser
activation values for similar phonemes and value§ f¢or different phonemes
(Kasabov, Kozma, Kilgour et al, 97a; 97b). Mappihg PAVs into a SOM is
shown in fig. 4.2. The SOM was trained with 43 phloe activation vectors for
10,000 epochs. The phonemes are clearly distingdisin the map. Further
training and adaptation of the SOM on more dafmisible.

Fig. 4.2. Mapping the synthetic phoneme activation vectdrdhe phonemes in NZ
English into a SOM. The SOM was trained with 43pdoe activation vectors

Through using PAVs the phonetic transcription af thords can be used to map
all the words from a dictionary (regardless ofsize, e.g.. 2,000 or 200,000) into
a STM of “sounds-like” words. For example, a phan&tnscription of the word
‘pat’ can be represented as 3 times 43-element PBEMsire 4.3 shows the SOM
for several English words.

Fig. 4.3. The “sounds-like” word SOM for several English wsr Inputs are synthetic
PAVs. It is seen on the map that similar PAVs atBvneurons in the same area. The
activation of all the output neurons is shown #r&winning neuron is marked as “*".
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Representing language dictionaries as STM and S©paiticular, have several
advantages when compared to the traditional datategsesentation:
(a) it accounts for similarities between the ward¢he dictionary;
(b) it makes the whole process of searching throaglictionary effective
regardless of the size of the dictionary as itdsieved by one recall procedure
through the STM;

STM can be used for representing higher lewetules form the framework
of fig.2.1, e.g. the concept recognition modules. e&ts shown in section 5.
Both the FuNN-based phoneme classifier and the STavis used for a partial
implementation of a multi-lingual spoken recogmitigystem in the next section.

5. A Framework for Multi-lingual Speech Recognition Systems

5.1. The Problem of Speech Recognition and the Roté Consciousness. A
Framework of an ICM for Spoken Language Recognition

Spoken language recognition and understanding impoter systems is a
challenging task (Cole et al, 95; Altman,90; Juk¢@y). The aim of it is two-
fold:

(a) as the best machine for this task is the mubrain, the task will stimulate
and will require further study on the speech petiogpand language learning in
humans;

(b) as the task involves intelligence and consciess, even partial solutions of
the task will bring useful brain-like computing rhetls, new methods of
cognitive engineering and therefore new framewdoksuilding 11S and ICM.

The task has two main phases, namely subetmrss i.e. the phase of sounds
and the sequences of them (words) recognition dégss of their meaning, and
conscious - the phase of speech sounds, wordssraest etc. recognition in
terms of language (or languages). The task involires at several scales, e.g.
milliseconds in terms of elementary sounds (phor®@meeconds in terms of
words, minutes or longer periods in terms of setgsnand logical associations
between their meanings. This task fits well theegahframework explained in
section 2 and presented in fig. 2.1, as it is shiwfig. 5.1.

The linguistic, conscious decision making kldec the framework from fig.
2.1 has a significant role in the whole processmiken language recognition.
Applying consciousness and language awarenes® isrtly away to deal with
the tremendous variability and ambiguity in speéldtis is the way for a system
to deal with problems such as:

(a) Adapt to new accents and dialects through apgllinguistic knowledge
about their relationship with some already learaeds;

(b) Distinguish close sounds through the context @nguage at the higher level
of information processing which information is fdzhck to the low level
processing through the feedback from the consalegssion making block;

(c) Acquire new language, thus turning some of theognised meaningless
sounds and words into meaningful ones.
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Fig. 5.1.A framework of an ICM for spoken language recoignit

A partial realisation of the framework from figlsfor the case of multi-lingual
system is given in fig. 5.2. It uses FUNNSs for pf®neme recognition and STMs
for word and concept recognition.

5.2. Multi-lingual Spoken Language Recognition

Learning a second and other languages has beestijated in several papers
and books (Zatorre, 89; Juszcyk, 97). Recently, fMRunctional Magnetic
Resonance Imaging) of the activation of neurongasticular spatial areas of the
Broca's area of the cortex, when words of differlmtguages were spoken to a
person who speaks these languages, was experimefad et al, 97). The
investigation shows that when two or more languagedearned at an early age
(under the age of 7) the activation centres whi&dpond highly to pronounced
words in two or more learned languages, are irstiree Broca's area (a distance
of about 1mm has been measured). When a secondalgeds learned at a later
age the activation centres of the two languagesnigeto different areas of the
Broca’s area (a difference of about 8 mm has beeasured). Broca's area is
known as a phonetically sensitive, anterior languagea. At the same time
another language sensitive area of the brain, \WWkes area, which is a
language posterior area, allocates same centrealifahe multiple languages
regardless of the age of acquisition. It is conetudhere that learning several
languages at an early age makes use of the saioa iaghe cerebral cortex for
the elementary sounds and the sounding of the wafrtteese languages.

The above referenced research and some athestigations of the spatial-
temporal mapping of the speech and language irhtiman brain support the
approach taken here, and graphically illustratedign 5.2, for building multi-
lingual ICMs for spoken language recognition. Thereentary sound recognition
module, the “sounds-like” word module and the c@teecognition module are
shared between the languages recognisable in gtensyThe language structure
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recognition modules are different for the differdanguages and they give
indication to the conscious decision making moduwteether the pronounced
sounds and words belong to the languages the syst@minderstand, so it is a
language-aware system. The FuNN-based phonemeéifielessand the STMs

described in the previous sections are used foartiap implementation of the

multi-lingual spoken recognition system as showfigrb.2.

Fig. 5.2. A schematic diagram of a multi-lingual spoken gmtion system illustrated
with the process of recognition of the word ‘cat'six languages.

The low level FuNN-based elementary sounds moduld the STM for

sequences of sounds recognition module are shatdeén all the languages
used in the system. They are expandable to inchele elementary sound
recognition units if such are needed for a new Umgg. The STM module for
recognising the concepts and the meanings of thelsvand sentences is also
shared as humans share common sense regardldss @nguage they speak.
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Words in different languages that have same meawingld be mapped at the
same point (area) in the map of concepts, e.gcdimeept of “pets”. Of course
learning new languages would lead to expandingcithracept STM with new
concepts. The higher level of language structuoegeition and the awareness
about the languages ‘known’ to the system is a@ons process done in a close
interaction between the last block from fig. 5.1ddig. 5.2 and the conscious
decision making block.

After the elementary sounds are recogniseglement PAVS, containing the
aggregated activation of each of the n phonemeisabeertain period of time, are
fed to the sounds-like word map. This STM has kitspeach of them being n-
element phoneme activation vector. The soundsHike receives feedback from
the higher level modules in the system in ordetrefine the choice of a group of
words to be further processed at a higher leveks€hmaps are trained on both
artificial data generated from linguistic knowled(gee the STM in section 4)
and real data - the data from the previous moduleeal data inputs. Figure 5.3
shows a sounds-like SOM of words from six langsagEnglish, Maori,
German, Russian, Bulgarian and Japanese). The @ Bas trained with the
PAVs of these words each of them represented asnt8-element PAVSs.

Fig. 5.3. A sounds-like SOM which maps words from six lamges The SOM was
trained with the phoneme activation vectors of ¢hesrds.

6. Conclusions and Directions for Further Research

This chapter discusses some issues in the aredetifgent information systems
and suggests a general framework of an intelligenscious machine along with
its application to multi-lingual spoken recognitieystems. The two levels of
operation of the framework are lower, sub-consciousere sounds and their
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sequences are recognised, and higher, consciousrewmeaningful words,
concepts and language structures are recognisedbldbk of conscious decision
making feeds information back to all the moduleshef framework thus realising
adaptation and deliberate learning of new knowledgbe system, which can be
extended to include new languages. A partial imgletation and preliminary
results are shown when fuzzy neural networks aratiagemporal maps are
used to realise some of the modules of the framewdianguage dictionary is
represented as a connectionist self-organised mhijghwmakes the search
through the dictionary quick. The multi-lingual appch suggested in the chapter
is in coherence with new evidence about speechlamgliage mapping in the
human brain of multi-lingual subjects. This reséandll continue towards using
the framework for continuous speech, multi-lingredognition systems.

Future research has been also planned tovepgdlying the framework to
other tasks, such as moving objects recognitioartHeeat variability estimation,
fruit growth prediction.
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Appendix. The phonemes in NZ English from the Otago Speech @uis

| ASCII Examle Class Characteristics
01

p pin Consonant Bilabial Plosive Unvoiced
02 b bay Consonant Bilabial Plosive Voiced
03 t toy Consonani Alveolar Plosive Unvoiced
04 d die Consonanf  Alveolar Plosive Voiced
05 k key Consonant Velar Plosive Unvoiced
06 g get Consonant Velar Plosive Voiced
07 f five Consonant Labiodental Fricative Unvoice(d
08 V% van Consonanf Labiodental Fricative Voiced
09 T thick Consonant Dental Fricative Unvoiced
10 D then Consonant Dental Fricative Voiced
11 S see Consonant  Alveolar Fricative Unvoiced
12 z zink Consonanf Alveolar Fricative Voiced
13 S ship Consonant Palato-alveolar Fricative Unvoiced
14 YA measure Consonant Palato-alveolar Fricatiye Voiced
15 h he Consonant  Glottal Fricative Unvoiced
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16 tS chin Consonant _Palato-alveolar  Affricate Unvoiced
17 dz jam Consonanf Palato-alveola Affricatd Voiced
18 m me Consonant Bilabial Nasal Voiced
19 n not Consonanf  Alveolar Nasal Voiced
20 N sing Consonant Velar Nasal Voiced
21 | light Consonant Alveolar Approxim Voiced
22 r ring Consonant Post-alveolar ApproximVoiced
23 w win Consonan{ Velar Approxinl Voiced
24 i yes Consonanf Palatal Approxim Voiced
25 | sit Monophth | Close Front Unround.
26 e get Monophth| Mid Front Unround.
27 & cat Monophth| Open Front Unround.
28 \% hut Monophth| Open Central Unround.
29 A hot Monophth| Open Back Rounded
30 U put Monophth| Mid Back Rounded
31 i see Monophth| Close Front Unround.
32 a father Monophth| Open Back Unround.
33 O sort Monophth| Close Back Rounded
34 3 bird Monophth| Mid Central Rounded
35 u too Monophth| Close Back Rounded
36 el day Diphthong| Closing

37 ai fly Diphthong| Closing

38 Oi boy Diphthong| Closing

39 ou go Diphthong| Closing

40 au cow Diphthong| Closing

41 i@ ear Diphthong Centring

42 u@ tour Diphthong| Centring

43 e@ air Diphthong Centring

44 Q silence

45 @ banana MonophtT Mid Central Unround.




A Framework fotéfligent "Conscious" Machines 127



