CHALMERS

FORMAL VERIFICATION APPLIED TO
SEQUENTIAL FUNCTION CHARTS

QAISAR AHMAD MALIK

Control and Automation Laboratory

Department of Signals and Systems

CHALMERS UNIVERSITY OF TECHNOLOGY

Goteborg, Sweden EX038/2004

Abstract

Sequential Function Chart (SFC) is a powerful graphical technique for describing
the sequential behaviors of a Programmable Logic Controller’s (PLC) program. The
control systems driven by PLCs are often complex, safety critical and expensive.
Any failure of these systems might not only result in financial loss but can lead to
causalities as well. There is a need for verification of SFC programs running on
such systems. But there is hardly any available verification tool for SFCs. The goal
of this thesis is to provide such formal verification tool. In this thesis few of SFC
language constructs are translated to be verified formally. For formal verification we
will use a technique known as Symbolic Model Checking, a technique that provides
an exhaustive analysis of properties on finite state models. A model checking tool
Symbolic Model Verifier (SMV) has been used for this purpose. In SFC, dynamic
semantic properties such as reachability of steps, mutual exclusion between shared
variables, termination, avoidance of undesired states etc. are desirable to be verified.
For this purpose SFC is translated into input language of SMV. This translation is
performed automatically by software developed in this thesis. After translation de-
sired temporal properties, expressed in temporal logic, of considered SFC program
can be verified by SMV.

KEYWORDS: Sequential Function Charts, Symbolic Model Checking, Verification,
Temporal Logic

Acknowledgments

I thank Knut Akesson for supervising this thesis. His guidance, help and encour-
agement gave me the confidence to do this work. What I know about PLC pro-
gramming especially Sequential Function Charts (SFC) is because of him. His deep
insight about verification-needed areas within this domain helped me a lot in finding
research direction. Since this is my first research project, what I know about process
of research I learned from him.

I also thank Mary Sheran at department of Computer Science for teaching me courses
on Formal Methods and introducing me to this wonderful world of Formal Methods.

The work in this thesis also rests rather heavily on that of Ralf Huuck at the Uni-
versity of Kiel Germany. His work in this direction served as a starting point. I
thank him for his support and ideas he expressed during this project.

I must thank Kenneth L. McMillan at Cadence Berkeley Labs California USA for
his help and guidance in finding solution to a problem during verification part of
this thesis.

Thanks to Martin Fabian at department of Signals and Systems, Peter Gammie and
Koen Claessen at department of Computer Science for their valuable support during
this project.

Of course, I am indebted to all the good people at Signals and Systems who make
this department and its facilities work.

Vi

CONTENTS

1 INTRODUCTION
1.1 Defining the Problem
1.2 Related Work
1.3 Goal of this Thesis
1.4 Model Checking
1.5 Challenges

1.6 Contributions of this Thesis

2 SEQUENTIAL FUNCTION CHARTS
2.1 SFC Constructsot
O Y o
2.1.2 nitial Step.
2.1.3 Transition
2,14 ACtions
2.1.5 Parallel Branching

2.2 SFC Execution Models - Scan Cycles.

3 VERIFICATION OF SEQUENTIAL FUNCTION CHARTS
3.1 Modeling ... o
3.2 Specification

3.3 Verification

4 CONCLUSION
4.1 SUMMANY .o

4.2 Future Work

vii

10
10
11
11
13

14

19
19
27

29

viii CONTENTS

APPENDIX 35
A Case Studies 35
Al First Casestudy.o 35

A.2 Second Case study 38

NOTATION

Abbreviations

CTL

IEC

LD

LTL

PLC

SFC
SFCVerifier
SMV

XML

Computational Tree Logic

International Electrotechnical Commission
Ladder Diagrams

Linear Temporal Logic

Programable Control Logic

Sequential Function Chart

Sequential Function Chart Verifier
Symbolic Model Verifier by Cadence
Extensible Markup Language

Chapter 0 Notation

1 INTRODUCTION

In this introductory chapter we give an overview of this verification project and
present relevant work already done in this direction. Moreover, concept and process
of model checking is also discussed in later sections.

1.1 Defining the Problem

The purpose of this thesis is to formally verify Sequential Function Charts (SFC).
SFC is one of the programming languages used for Programmable Logic Controllers
(PLC), a kind of industrial controller used extensively in industry.

Control systems driven by PLCs are often complex, safety critical and involve a lot
of money. Any failure of these systems might not only result in a significant financial
loss but lead to causalities as well. Hence, their actual programming and correctness
plays a vital role (Huuck 2003).

To check correctness there is need for verification of SFC programs. SFC programs
often execute in a continuous loop and may exhibit interesting concepts like paral-
lelism and inheritance. Since SFCs are often used in safety critical systems there
should be verification for mutual exclusion, deadlocks and safety. There might be
some other user defined properties which should not be violated by a SFC program
during its execution; these properties depend upon the nature the of system mod-
eled, like overflowing from an acid tank or setting temperature on maximum heat
level etc. It is not easy task to manually verify each and every program for given
property with their execution states. Here comes the idea of automated testing,
the theme of this thesis, where a SFC program is analyzed in a software tool and
verification is done for general and user defined properties.

1.2 Related Work

In past researchers had developed approaches for verification of SFCs depending
upon their own requirements and analysis. These include:

Timed automaton.

In this approach (D.L’Her et al. 1995), Sequential Function Chart programs are
represented as timed automata with consideration of continuous time and it abstract
from explicit scan cycles. Finally these timed automatons are verified by using
KRONOS, a model checker for real-time systems.

4 Chapter 1 Introduction

Execution model.

In this work (Hellgren et al. 2001), different execution models are discussed and solu-
tion to synchronization and mutual exclusion problems are presented. The technique
to translate SFC to Ladder Diagrams (LD), another PLC programming language,
is also discussed. Emphasis is on the knowledge of execution model also for the
verification purpose.

Software verification for PLCs.

The most related work to this thesis is done in (Huuck 2003). Formal and Informal
semantics for Sequential Function Charts’ constructs are defined but they remain
abstract. There are no detailed algorithms/techniques for translation of many of
the SFC constructs into SMV code especially when step actions are involved.

1.3 Goal of this Thesis

The goal of this thesis is to investigate the possibility of formal verification of Se-
quential Function Chart programs. For this purpose a subset of SFC constructs
are selected to be verified. JGrafchart (Arzén 2002, Johansson 1999), a program-
ming tool for Sequential Function Chart, is used for programming and editing SFC.
JGrafchart is implemented in Java 2. It runs on every computing platform that
supports this environment. JGrafchart is selected for the various reasons: it is quite
stable and user friendly tool, encouraging support was available from its developer
during this project and importantly the facility of SFC programs to be transformed
into XML files. It was quite feasible to parse XML files to analyze program structure
and building our own data structure for SFCs. Once the Sequential Function Chart
programs are read from JGrafchart and data structure is built, the SFCVerifier,
the tool developed in this thesis, analyses the SFC program, which may contain
more than one SFC, and applies different techniques to generate code for Symbolic
Model Verifier (SMV). The techniques for translating SFC constructs into SMV are
discussed in more detail in Chapter 3. The Symbolic Model Verifier (SMV) uses
a technique known as Symbolic Model Checking [McMillan|, described in detail in
following section. For verification purpose we use Temporal Logic to verify our
properties, also described in following section. The Figure 1.1 shows the process,
proceeding from left to right.

1.4 Model Checking

Model checking is a technique for verifying finite state concurrent systems. One
benefit of this restriction is that verification can be performed automatically. The

1.4 Model Checking 5

. SMV Input
aFC _ Lanouage
SFCWerifier

JGrafchart [), - SV

s
o

Figure 1.1. The flow of project.

model checker normally uses an exhaustive search of the finite state space of the
system to determine if some specification (property of the system) is true or not
(Clarke et al. 2000). Since SFC is a high level structuring language based on transi-
tion systems, it is easy to find a finite abstraction for a SFC program (Huuck 2003).
Once a finite abstraction is found and system is translated for a Model Checker,
different semantic properties can be verified.

Applying model checking to a design consists of several tasks:

1. Modeling

2. Specification

3. Verification

The process of model checking can be best illustrated by Figure 1.2 (Franceschet
2003).

The first task is to convert the design of the system into an abstract model accepted
by model checker. The conversion/translation is done automatically by SFCVerifier,
details of translation techniques can be found in Chapter 3. Once modeling is done,
the properties of system that must be satisfied can be specified. The specification is
usually given in some logical formalism. It is common to use temporal logic, which
can assert how the behavior of the systems evolves over time(Franceschet 2003).
After specification of properties in temporal logic, the verification is done by the
model checker. Ideally verification is completely automatic. However, in practice
it often involves human assistance. One such manual activity is the analysis of the
verification results. When the system fails to satisfy a desired property, the model
checker produces a counter example also known as error trace that demonstrates a
wrong behavior (Franceschet 2003). In case of SFC program verification, error trace
shows the execution states with values of variables/signals. This information might
be helpful in diagnosing the error.

6 Chapter 1 Introduction

e ——
@tem Desigj’)f-

Implementation

Specification

Executable Program

Formal 3pecification Modeling
h 4
Iy
Ahstract Mlodel [
v erificatio'r/
Model Checler
Ho Hao
Tes
L J

Figure 1.2. Process of Model Checking (Figure taken from (Franceschet 2003).

1.5 Challenges

There were some major challenges faced during this project. Although Sequential
Function Chart (SFC) language is standardized in IEC 61131-3(IEC-61131 1998),
but no formal semantics are given. The informal descriptions presented in the stan-
dard are often incomplete. Sometimes it was quite difficult to make a decision
about different possible modeling and execution behaviors. The JGrafchart was
only used for editing and structuring SFC programs, compiling the SFC programs
in JGrafchart was not useful since it uses the other execution model not addressed in
this verification project. For details about execution model addressed in this project
see Chapter 2.

1.6 Contributions of this Thesis

In this work we have defined techniques and algorithms to translate Sequential
Function Chart (SFC) constructs into abstract design accepted by Symbolic Model
Verifier (SMV). These techniques are implemented in a software tool called SFCVeri-
fier. The SFCVerifier is implemented in Java 2 and hence it is platform independent.
The integration of JGrafchart with SMV is done through SFCVerifier to automate
the verification process. The SFCVerifier has been successfully tested on number of

1.6 Contributions of this Thesis

case studies.

Chapter 1 Introduction

2 SEQUENTIAL FUNCTION CHARTS

Sequential Function Chart (SFC) is defined in IEC 61131-3 standard (IEC-61131
1998) as elements of a program-structuring language for Programmable Logic Con-
trollers (PLCs). SFC evolved through Grafcet (David 1995) from safe Petri nets
(Fabian 2004).

Programmable Logic Controllers have been used in industrial applications since the
early 70s. Originally, PLCs were designed to replace hard-wired relay-logic in ap-
plications where use of ordinary computers could not be economically motivated.
The PLCs proved to be very versatile, and their application areas have increased
constantly, as have their ability to handle more complex control issues. However,
their original heritage still influences both their behavior and programming. To
simulate the parallelism inherent in the wired relay-logic, a PLC executes cyclically,
reading and storing the inputs, executing the entire user-program and finally writing
the outputs. This read-execute-write cycle, called a scan cycle, effectively simulates
parallel behavior from an input-output point of view. For the outside viewer, and
specifically the plant, the output-signals change their state simultaneously in re-
sponse to the input-signals, given that the scan cycle time is short with respect to
the time constants of the plant (Hellgren et al. 2001).

A Sequential Function Chart depicts sequential behavior of PLC program. SFC
program can be used at the top level to show the main phases of a process, such as,
‘Startup’, ‘Pumping’, ‘Emptying’ or the main states of a machine, like ‘Running’,
‘Stopped’ etc. It can also be used at any other level. For example, SFC can be used at
low level to describe the behavior of a function block handling a serial communication
device with various states such as ‘Off’, ‘Carrier-Detected’, ‘Transforming’ and so
on (Lewis 1995).

SFCs are transition systems consisting of steps and transitions interconnected by
directed links. For every SFC there is exactly one initial step, though JGrafchart
(Arzén 2002, Johansson 1999, Arzén and Johansson 2002) allows more than one
initial step in one SFC program but we have assumed it to be one in this project for
clarity and simplicity. A SFC can be closed or open as shown in Figure 2.1. With
each step there may be attached set of actions, and with each transition a transition
condition. In this project we have assumed the transition condition to be a Boolean
expression.

2.1 SFC Constructs

The Sequential Function Charts’ language constructs, considered in this project for
verification, are discussed one by one in following subsections.

10 Chapter 2 Sequential Function Charts

Initial Step

=

Transition =|=

%.

—

e

Step

o

Figure 2.1. One closed and one open SFC.

2.1.1 Step

A step is graphically represented by a rectangular box usually with a name identi-
fying the step as shown in Figure 2.2 the step is named S1.

51

Figure 2.2. SFC Step.

2.1.2 Initial Step

The starting point in SFC point is known as initial step and as described earlier
there is exactly one initial step in one SF'C. The initial step is graphically drawn by
a bordered rectangle (or double square) usually with a name as shown in Figure 2.3
the initial step is named SO.

2.1 SFC Constructs 11

30

Figure 2.3. An initial Step.

2.1.3 Transition

The transitions are graphically represented by horizontal bar. Attached with every
transition is a Boolean expression, as shown in Figure 2.4 the Boolean condition is
1 (logical True). This Boolean expression may involve variables, steps, input and
output signals written in propositional logic.

== 1

Figure 2.4. A SFC Transition.

2.1.4 Actions

As described earlier that with each step there might be set of actions. The action
block is drawn on the right of a step. The actions within action block are separated
by semicolon (;). An example of a step with its associated set of actions is shown in
Figure 2.5

In Figure 2.5 there are two internal Boolean variables named ‘A1’ and ‘B1’. There
are also used input and output signals named as ‘Input’ and ‘Output’ respectively.
These variables are used within action blocks and referred in transition conditions in
above example. Each action statement within action block has an action qualifier.
The standard IEC 61131-3 defines a range of qualifiers which define precisely when a
particular action executes in relation to its associated step(Lewis 1995). But in this
project we consider only three kinds of action qualifiers as described below, based
on JGrafchart (Arzén and Johansson 2002) language reference.

12 Chapter 2 Sequential Function Charts

SA1=1;
Bool 1
Al
== lnput
Bool 0
N Output; B
Chan:o
u}
== Input
Input
KB1=0; Chan:0
1
Cutput

Figure 2.5. The SFC Actions.

Normal Action (Non-Stored Action)

In TEC-1131-3 standard (IEC-61131 1998) normal actions are defined for programs
which execute when their respective steps are active. In this project we allow only to
write a Boolean variable with normal actions and normal actions associate the truth-
value with the activation status of the corresponding step, the variable becomes true
when the program is running and false otherwise. Thus we model a program as a
Boolean variable. The syntax for a normal action is

N ‘‘variable’’;

Enter Action (Stored Action)

An enter action is executed once when a step becomes active. The syntax for enter
actions is

S ‘‘action’’;

Exit Action

An exit action is executed once immediately before the step is deactivated, the
syntax for exit actions is

X ‘‘action’’;

2.1 SFC Constructs 13

The ‘“action’’ in the syntax definitions is an assignment and its syntax is
‘‘variable’’ = ‘‘expression’’

Where ¢ ‘variable’’ is a reference to either an internal variable or an output vari-
able. The “expression’’ is the value assigned to variable used on left side.

In Figure 2.5, the initial step has a stored action where it sets the value of variable
‘A1’ to 1 (logical True). This value will be set through out the program execution
until it is changed again in the same step or in later steps. The step after initial
step sends value to output signal named ‘Output’. Since this is a non-stored action,
the output signal will have value until this step remains active. The last step has
an exit action which sets the value 0 (logically False) to variable ‘B1’. This action
will be executed as this current step deactivates or we can say when next step will
be activated. As described earlier transitions have transition conditions which can
refer to variables and input signals. In example discussed in Figure 2.5 the transition
condition after initial step waits for input signal ‘Input’ to get low (logically not high/
not True) after it happens the initial step is deactivated and next step is activated.
Similarly transition between last two steps waits for input signal ‘Input’ to get high
(logical True). More about steps, transitions, actions and other SFC constructs can
be found in (Lewis 1995).

2.1.5 Parallel Branching

The parallel constructs also known as parallel bars are used to indicate beginning and
end of a parallel branch (Johansson 1999). To indicate divergent path (alternative
path) a parallel split is used, and for convergent path a parallel join is used as shown
in Figure 2.6

The SFC evolves, starting from the initial step, as the transition are fired, proceeding
steps are deactivated, and successor steps are activated. SFC evolution can go along
diverging paths (alternatives). When there are two or more transitions from a
single step the sequence diverges to one, and only one, of the possible steps. In
an SFC sequence only one step can be active at a time, unless the parallel (sub)
sequence is used as shown in Figure 2.6. Here, when step S1 is active and transition
T1 evaluates to True, the transition activates both S2 and S4. This sub-sequence
once initiated continues to evolve in parallel until they at some point converge. In
Figure 2.6 convergence occurs at steps S3 and S5. Only when both of these steps
are simultaneously active the transition to S6 will take place. Thus, we have sort of
synchronization of sub-sequences. The step S6 will only be active when both steps
S2 and S4 are active simultaneously and transition T4 evaluates to True. There
is no restriction on subsequences, any valid SFC constructs are allowed. However,
some allowable constructs may lead to very unsafe behavior, such as one shown in
Figure 2.7.

In Figure 2.7, when step S4 is active and T6 is true (while T3 is false, in case user

14 Chapter 2 Sequential Function Charts

51

Parallel Split
T

52 54

L —— LE——1

53 25

T
Parallel Join
Ts+

Figure 2.6. Parallel Branching within SFC, example based on (Fabian 2004).

S6

has defined Left priority) the SFC branches out of the parallel sub-sequence S4-S5
and activates initial step S1. The active step in S2-S3 sequence remains active, so
now we suddenly have S2 or S3 active together with S1. If T1 again becomes true
it will happen that either both S2 and S3 are active simultaneously, or S2 (or S3) is
re-activated without being deactivated. In either case, the behavior is unpredictable
and may even be catastrophic. Other examples of unsafe designs can be found
in (Lewis 1995) as well as in the IEC 61131-3 standard (IEC-61131 1998). There
can be more than one SFC running concurrently, may share variables or signals,

may depend upon each other’s actions. This project also deals with verification of
multiple SFCs.

2.2 SFC Execution Models - Scan Cycles

The standard defines rules for building an SFC from aforementioned basic elements
and describes how to execute SFCs by giving evolution rules similar to the firing

2.2 SFC Execution Models - Scan Cycles 15

51

el

52 G4

T2e—o Tie—— T6

53 54

T

5

Figure 2.7. Unsafe SFC, example based on (Fabian 2004).

S6

rules of Petri nets. However, execution is only defined on an abstract level not taking
into account concrete aspects of program execution. Since PLC programs are cyclic
in nature and therefore are SFCs. In every scan cycle fist input from environment
(e.g. from sensors of a plant such as pressure or temperature sensors) is read and
stored. Then the PLC program is executed based on the stored input, i.e. actions
of the active steps are executed, which may change the output and afterwards the
transitions are taken. At the end of each cycle the output is sent to environment,
i.e. to the actuators of a plant such as valves and motors (Huuck 2003).

From this 3-stage execution cycle there are two possible execution models. In first
one after reading inputs transition is evaluated and if it is enabled then transition
is fired and exit actions of the old step(s) are executed with enter actions of the
new step(s). This continues with the next transition. This execution model is also
referred to as “immediate transit” and is used by some school of thoughts and it is
easy to implement mutual exclusion by this model. In second execution model after
reading inputs all enabled transitions are found and then all exit and enter actions
are executed. In this way it is easy to implement synchronization. This execution

16 Chapter 2 Sequential Function Charts

model is called “deferred transit”. In this project we have chosen first approach, the
“immediate transit”.

The two execution models are illustrated in Figure 2.8 and Figure 2.9, these examples
are taken from (Hellgren et al. 1999). In IEC-1131 standard the .X notation with
step-name represents activeness of step. For example if we write StepName.X then it
will return true when step is active and false otherwise. Here in following examples,
within transition conditions, we assume to have .X as postfix with step-names.

Let us first examine Figure 2.8. The two SFCs are supposed to mutually exclude
each other from having steps S2 and S4 active simultaneously. Assume steps S1 and
S3 are active in beginning. In the case that deferred execution model is used both
step S2 and S4 will be activated. Indeed, when transition conditions are evaluated
neither S2 nor S4 is active and transition conditions ‘‘!S4’° and ‘‘!82’’° are
both true. On the other hand, when immediate transit execution model is used,
the mutual exclusion works. Let for instance the left SFC be checked first. Then,
because S3 is active, 184’ is true and S1 is deactivated and S2 is activated. The
transition condition ¢ ‘!S82’° is now false so that S4 is not activated, as intended.

81 53

ﬁ=!54 =|='!52

= 54

Figure 2.8. Mutual exclusion based on execution models, example based on
(Hellgren et al. 1999).

Let us now examine Figure 2.9. The two SFCs are to execute the transitions leading
to steps S2 and S4 synchronously. Again, assume that step S1 and S3 are active in
beginning. In the case that deferred transit execution model is used, the synchro-
nization works. Indeed, when transition conditions are evaluated both transition
conditions, ‘¢S3’’ and ¢ ‘S1’’ are true. Consequently, both S2 and S4 are acti-
vated. On the other hand, in case that the immediate transit execution model is
used, the synchronization fails. Let for instance the left SFC be checked first also
in this case. Then, because ¢ “S3’° is true, S1 is deactivated and S2 is activated.
The transition condition ‘“S1°’’ is now false so that S4 cannot be activated, thus
preventing the intended synchronization to occur.

2.2 SFC Execution Models - Scan Cycles 17

g1 g3
== 53 == 51
52 54
Figure 2.9. Synchronization based on execution models, example based on

(Hellgren et al. 1999).

Abstract Formal Semantics

The efforts have been made to formalize the syntax and semantics for SFC. The
(Bornot et al. 2000) and (Huuck 2003) provide the detailed abstract formal seman-
tics. This formal framework serves as a basis for formal reasoning. The formal
semantics are important because it provides alternative approaches to semantic am-
biguities present in the standard. In this project we have taken into account the
formal semantics already defined in above citations.

18

Chapter 2 Sequential Function Charts

3 VERIFICATION OF SEQUENTIAL FUNC-
TION CHARTS

In this project verification is done by a Symbolic Model Verifier (SMV). The SMV
is a formal verification tool, which verifies every possible behavior of the system for
user defined specifications. The specification is collection of properties about the
modeled system. For example in this project we can have properties about mutual
exclusion, deadlocks, synchronization etc. These properties are defined in a notation
called temporal logic. This allows concise specification about temporal relationships
between signals. Temporal logic specifications about finite state systems can be
automatically formally verified by a technique called model checking (McMillan
1999a). The SMV is quite useful in automatically verifying properties as it also
generates counter examples i.e. the behavioral trace where violation is done.

As described in Chapter 1, there are three stages in model-checking process:

1. Modeling
2. Specification

3. Verification

We will discuss each of these stages with respect to Sequential Function Charts in
following section.

3.1 Modeling

The modeling is in fact the translation of system into finite state space model. The
design of the system is converted into an abstract model accepted by a model checker.
This modeling phase is most time consuming and complex in whole project. One has
to consider the whole system behavior and different interactions with environment.
Error in modeling phase can lead to invalid verification results or uncertain behavior.
For modeling, SMV has its own language.

The SMV language can be roughly divided into three parts - the definitional lan-
guage, the structural language, and language of expression. The definitional part
of the language declares signals and their relationship to each other. It includes
type declarations and assignments. The structural part of the language combines
definitional components. It provides language constructs for defining modules and
structured data types, and for instantiating them. It also provides constructor loops,
for describing regularly structured systems, and a collection of conditional structures
that make describing complicated state transition tables easier. Finally expressions

19

20 Chapter 3 Verification of Sequential Function Charts

in SMV are very similar to expressions in other languages both hardware description
languages and programming languages. It includes the constants, conditional op-
erators, comparison operators, arithmetic operators and other common expressions
found in programming languages. (McMillan 19990)

Here modeling means representing the SFC as abstract finite system in SMV, which
means translating SFC constructs into SMV input language. This translation should
be automatic to avoid any mistakes possible in manual work. For this automatic
modeling a software system is built in this project called SFCVerifier. A big ad-
vantage of this automatic translation by software is the reusability. Usually there
are several constructs of SFC language in one program, like variables, signals, steps,
transitions, parallel branching etc. There might be more than one SFCs in one
program, so modeling needs careful representation of each and every construct to
portray the accurate behavior of SFC program. For translation of these SFC con-
structs several rules were researched and are described in following section.

There is one main module in each SMV program and all the language constructs
are defined and operated in this main module. Following are discussed the SFC
constructs and their translation in SMV.

Variables

For each SFC Boolean variable, input/output signal there is defined a Boolean
variable in SMV program module. In Figure 3.1, the SFC program variables are
shown with their generated SMV variables. These variables are initialized as they
were initialized in SFC program. If a variable was not initialized in SFC program,
it’s value will be remained undetermined in SMV program.

—Thiz file iz sutomatically generated
s1 Bool 0 HODULE main{)

internal_var {

internal _var ;. boolean;

1 Chan.0 Input : boolean;
0 Output : boolean;
51 : boolean;

<2 - init(51) = 0;
52 . boolean;
Chan init{52) := 0;
::%: 1 0 53 . boolean;
init(53) := 0;

Quiput

S3

Figure 3.1. Example of Variables in SFC with their SMV generated code.

3.1 Modeling 21

Steps

For each step in SFC, a Boolean variable is defined in SMV program. The variable
has the same name as that of step. If user has named the step then that name
will be used otherwise name assigned by JGrafchart will be used. The variables
representing steps are initialized to 0 (logical False) since steps are not in active
mode in beginning. In Figure 3.1, on left side SFC with variables is shown while
SMYV generated code for variable definitions is shown on right side.

After SFC program starts the initial step becomes active. And when next transition
becomes true the next step becomes active and previous step is deactivated. This
sequential behavior is shown in SMV by using ‘next’ operator. We can say “A step
is active when it is entered from previous step, with incoming transition enabled, or
it remains active for more than one scan cycle and is not left, no outgoing transition
enabled”. We will see this in next code example.

Transitions

The Transitions are also known as guards. When previous step is active with its
stored and non-stored actions executed, the transition conditions are evaluated. It
means transition conditions are evaluated conditionally. That’s why we have used
transition conditions in conditional operators, i.e. in ¢ ‘If Else’’ statements. The
Figure 3.2 shows a simple SFC excerpt with its translation in SMV code.

&5 if (51 & T1)
{
next (S1) = 0;
next(52) = 1:
next (53) = 53;
= i
T elze 1f(52 & T2)
next (S2) = 0
next (S3) = 1;
57 next(51) = S51;
3
= T2 else
next(S1l) .= 51;
next (S2) = S2:
next (53) = 53;
83 ¥

Figure 3.2. Example of Transitions in SFC with their representation in SMV
generated code.

The first “if’ block’s condition can be read as “if step S1 is active and transition T'1

22 Chapter 3 Verification of Sequential Function Charts

is enabled” then in next sequence step S2 will be activated while deactivating step
S1. Notably remaining steps, here step S3, will have their previous state. The last
default block represents the case when there is no change in steps and transitions,
that is when step remains to their previous state.

Actions

The actions are also translated in SMV since they have an important role in SFC
programs. As we discussed before in Chapter 2 that in this project we have con-
sidered only 3 kinds of actions, i.e. Stored actions, Non-stored actions and Exit
actions.

Stored Actions

For stored actions, the action is performed when its respective step is active. The
action begins execution immediately when step becomes active. Since this action is
stored, the action continues to execute until a reset action is reached. If a stored
action is never reset, it will continue to execute indefinitely.

Non-Stored Actions

For non-stored actions the action is performed only when its respective step is active
and its effect should remain until this step is deactivated and next step is activated.
This behavior of non-stored action is simplified in SMV by having two actions for
each non-stored action; the first action is “enter action” and second is “exit action”.
The “enter action” is performed like normal stored action, i.e. when step is active.
The “exit action” is performed when step deactivates, i.e. when next step is acti-
vated, this “exit action” is inverse of it’s enter action. This behavior is shown in
Figure 3.3

Exit Action

Exit action is performed after its respective step is deactivated, i.e. when next step
is activated. In Figure 3.3, an SFC example is shown with all the three types of
actions and their SMV translations.

In example discussed in Figure 3.3, the first step S1 has two actions; one stored
action and one exit action. The first “if statement” in code listing on right side
shows stored action, the code line is also marked with arrow. While the first step’s
exit action is executed in second step’s code block, i.e. in second conditional block,
where variable ‘Var2’ is assigned a value 0 (logical False), this code line is also

3.1 Modeling 23

. ifi{=tart)
SVar1=1;
1 i nexti{sSl) =
e -» next(¥arl)
next (521 =
nextisS3i) =
next (Output) = Output;

=fT1 1
Output else if(S1 & T1)

N Output; 1
s2 Bool 0

nexti{S2) = 1:
—r next{Output)
—» next(Var?)

next(51)

next (53]

=f T2 Int0 next(‘farlfil
1

SVar1=0; Var2 elze 1f(52 & T2)
S3 {

s

n:

Var1 E;
59:
= Varl:

next({53) = 1;

—r next(Varl) :=

—» next{COutput)
next(52) 1]
nexti(51)

~{Dutput)

n =

Si;

Figure 3.3. Example of Actions in SFC with their SMV generated code.

marked with arrow for readability. This second conditional block has also another
action which pertains to its step S2. Since this is a non-stored action therefore it
is put in this block. But its exit action is performed when next step is activated,
that’s why its exit action is put in next conditional block, i.e. block pertaining to
next step S3. This exit action is also marked with arrow in code listing.

Multiple SFCs

There can be more than one SFCs working concurrently in one program. As it has
been discussed in Chapter 2 that there are three phases in a scan cycle namely.

e Input phase
e Execution phase

e Output phase

In case of Multiple SFCs, the Execution phase is divided between SFCs, thus intro-
ducing micro-cycles. The concept is that, after reading input, the steps in multiple
SFCs are executed turn by turn and while switching from one SFC to another the
input does not change. For this micro-cycle a variable named ‘turn’ is introduced.
This scenario is depicted in Figure 3.4. In the Figure 3.5 is shown an excerpt of
code generated for two SFCs, where micro scan cycles are introduced. This figure

24 Chapter 3 Verification of Sequential Function Charts

Input Phase
- -
Turn=1 Tun=2 Tun=3

Figure 3.4. Describes how Multiple SFCs are modeled in SMV.

shows a rough structure of SMV code generated for two SFCs. The ‘turn’ variable
can have value in range from 1 to (number of SFCs +1). This ‘turn’ variable is
initialized to value 1. Then in each execution turn its value is changed as can be
seen by code line:

next (turn) := (turn mod 3)+1;

The turn variable is assigned a new value (next value) depending upon previous
value.

Parallel Branching

The parallel branching constructs in SFC program are also translated in SMV code.
When control enters in a parallel split, more than one step gets activated and exe-
cution goes in concurrent fashion. To reflect this concurrency in SMV each parallel
branch is represented as complete SFC program. This conversion can be seen in the
example in Figure 3.6.

3.1 Modeling

25

—— Thi= file 1= automatically generated
HODULE main)

it

turn : 1. 3;
init{turn) := 1:

——HEEHEEEXEEXXESHEC F] EHFXEEXXEEENEENXRE
1f{turn = 1)}

&
if{.. .
1 :
ﬁext(turn} = (turn mod 3)+1;
else 1£(...)
{
ﬁext(turn} = (turn mod 3)+1;
1
=l=e
1
ﬁext(turn} = (turn mod 3)+1;
H
——HEEHEEEXEEXXESHET F T EFXREXEXEEENEENXRE
else 1f{turn = 23
b1 £ (REREEEN)
i ;
ﬁext{turn) = fturn mod 33+1;
else 1£(...)
ﬁext(turn) = (turn mod 3)+1:
H
el==
i
ﬁext{turn) = fturn mod 39+1;
H
T
——HEAREXXXXXXXX]NDUL PhosoX XX EEXXXRREER
else 1f{turn = 33
ﬁext(turnj = (turn mod 3)+1;
—noh—determninistic assignment= for all Input =signals like
—— next({inputSignall) := {0.1%};
— next{inputSignal?) = {0.1}:
—for two input signals 'inputSignall' and 'inputSignal?’

Figure 3.5. Example structure of SMV generated code for Multiple SFCs.

$1

T,

S3

S4

S2
H — +Tz

T5 N start_sfc1=1;
SubSFC -——N start_sfc2=1;

S6

T6 & end_sfc1 & end_sfc2

S6

S6

iy

Figure 3.6. Describes how Parallel Branching is converted to be modeled in SMV.

start_sfc1

$3

[

sfe2_init

start_sfc2

§5

TS

Send_sfct:=1;

Send_sfc2:=1;

9¢

suey”) uoiaoun jerpuanbag Jo uoiedyLs) ¢ 491dey)

3.2 Specification 27

In Figure 3.6, a SFC having parallel construct is split forming two more SFCs. The
structure of original SFC is also changed. On right side of arrow is the original SFC
with parallel constructs used, and on the left side are the transformed SFCs, where
left most SFC after arrow is original SFC, here parallel split is replaced by a new
step named ‘SubSFC’.

The parallel branches are replaced by new SFCs, as shown in right most of the
arrow. During this transformation few new Boolean variables are declared internally
in data-structure. To each new SFC is added an initial step and a transition after
initial step. These new-added transitions after initial steps have conditions, which
will be enabled when the step SubSFC is active. Notice that step SubSFC has two
non-stored actions, when this step is activated these actions are executed, making
internally declared variables ‘start_sfcl’ and ‘start_sfc2’ True. These ‘start_sfcl’,
‘start_sfc2’ are in fact the start indication in their respective SFC. Similarly two
internally declared variables ‘end_sfcl’ and ‘end_sfc2’ are present as stored actions
in last steps of branch-converted-SFCs.

After transformation the execution process for SFC in Figure 3.6 will be: when
step S2 is active and transition T2 is enabled, the step SubSFC is activated while
deactivating step S2. After step SubSFC is activated its non-stored actions are
performed. Since there are now three SFCs, due to transformation, the execution
phase is divided among these three SFCs, as discussed in previous topic on Multiple
SFCs. After performing of actions, when next turn for 2nd or 3rd SFC comes,
the transition after initial step is fired, since initial steps were enabled in previous
turns. Now at this stage step S3 and/or S5 are activated, depending upon turns,
thus starting normal execution of branch-converted-SFCs. Turn for main SFC may
come in between but it will not progress since its next transition is not enabled.
The branch-converted-SFCs, when come to their last step, will make two internally
declared variables ‘end_sfcl’ and ‘end_sfc2’ true, thus enabling transition after step
'SubSFC’ in main SFC, which in turn will activate step S6 while executing “exit
actions” of ‘SubSFC’. This is how parallel branching or in other words concurrent
behavior is modeled. The SMV generated code will have similar structure like
shown in Figure 3.5 except that there will be total 3 SFCs for example discussed in
Figure 3.6.

3.2 Specification

After modeling comes the specification phase. In this phase we specify the proper-
ties of system to be verified. These properties can be general for all SFCs or specific
to particular SFC. The general properties include checking Reachability of each and
every step, repeated Reachability (liveness / deadlock). The specific properties can
be checking for synchronization, mutual exclusion or other safety related proper-
ties. These properties are specified in Temporal Logic (Pnueli 1981). Temporal
logic formulas are interpreted over Kripke’s structures (Kripke 1963). The temporal
logic extends propositional logic, i.e., Boolean proposition with connectives such as

28 Chapter 3 Verification of Sequential Function Charts

logical conjunction, disjunction and negation, with modal operators. The modal op-
erators are operators like always or eventually, which allow reasoning over execution
sequences and can be combined with the usual connectives (Huuck 2003). There are
also other operators such as next operator, until operator etc. More details about
these operators can found in (McMillan 19995).

Reachability

To specify that whether a Step S1 is Reachable, we can write like this
assert F(S1);

Here assert shows that this property is certainly true. The ‘F’ operator stands for
finally. There is an enclosed propositional formula with this operator. Thus we can
read above as “step S1 must eventually (finally) be true (activated) after some finite
time.”

Repeated Reachability

To specify that whether Step S1 is Reachable infinitely often, we can write
assert G(S1 -> F(~8S1));

Here operator ‘G’ stands for globally (always) and the arrow operator is ‘implies’
operator also known as ‘conditional operator’. We can read this formula as “its
globally (always) true that if step S1 is true (activated) in some finite time then
eventually step S1 will be false (deactivated) after some finite time.” It means there
will be no deadlock and an active step will not be active for infinite time, once it is

activated it will be deactivated after some finite time.

User Defined Properties

The above stated reachability properties are generated automatically for each step
in SFC. But user can also specify some other property and append it to already
generated properties in SMV file. One example of user defined property is testing
for mutual exclusion, for example mutual exclusion between two steps S1 and S6
can be stated in temporal logic as

assert G ~(S1 & S6);

Here ‘~’ operator is unary operator ‘not’ and & operator is logical ‘and’ operator.
We can read above formula as “it is globally true that step S1 and step S6 cannot be
true simultaneously”. If this property is violated it means there is some case where

3.3 Verification 29

both steps are active at the same time.

Fairness Properties

In SFC program digital inputs can be used. These digital inputs represent envi-
ronment (e.g. sensors) and SFC program has no control over their value. If we
wish to verify a SFC program with input signals then it may be required to verify
it with changing value of input signals. It means that that input variables should
change their value infinitely often, rather than sticking to some constant value. To
model this behavior we add fairness constraints in our specification. For each input
variable one fairness constraint is added. The fairness constraint is written like this

assert (G F(inputVar)) & (G F(~inputVar));

Here right-hand-side of ‘&’ operator says that ‘inputVar’ must finally be true after
some finite time and left-hand-side says that ‘inputVar’ must finally be false after
some finite time. These fairness constraints are added for each input signal and
reachability and repeated-reachability properties are verified assuming these fairness
constraints.

3.3 Verification

After specifying properties in temporal logic, the SMV system can verify them.
The verification results can be viewed through SMV viewer called ‘vw’. If certain
property fails during verification SMV provides a counter example also called as error
trace. In Figure 3.7, is shown snapshot of SMV viewer where a counter example for
modeled system is shown.

In Figure 3.7, on the left column are the names of variables, signals and steps. The
rest of columns show values of these variables, signals and steps with respect to
execution counter, that is the top most row. Here on 8th execution counter the
property ‘deadlockfree_S6 ’is false. This property was specified as

deadlockfree S6: assert G (S6 -> F(~S6));

The step S6 when activated never gets deactivated, as shown in the error trace in
Figure 3.7.

30 Chapter 3 Verification of Sequential Function Charts

T8 simpledead. smy ___EE\S
File Prop View Gote History Abstraction Help
Browser | Properties I Results | Cone I Using | Groups |
Al results &
Property | Result | Time | |
deadlockfree_SE false Fri Jan 16 15:12:34 W. Europe Standard Time 2004
|

| |
Source Trace | Log |

File Edit Run WView |

[}

int

start_1
‘start_2
turn

[l o e Il T s s 5 O

L B e S S I T R s T T
wlo|lo|lH|r|Do|k|D|k|o|o|w
ook |r|o|lr|o|r|O|o|e
ook (k|0 |H|O|O |+ |0
ol el e el b b foes b ey s IS8
Hlg|@|H|r e[| lo|Rr |9
LS s T I T N o o I I O

Figure 3.7. SMV during Verification process when it generated an error trace.

4 CONCLUSION

4.1 Summary

In this thesis work we have presented formal verification technique for PLC lan-
guage Sequential Function Charts (SFC). A subset of SFC constructs is covered
for this verification. Model checking is used as the main approach for verification
purpose and model checking tool Symbolic Model Verifier (SMV) is used. Formal
verification work has been processed through modelling, specifying and verifying
SFCs. For modelling SFCs are translated into input language of SMV. The trans-
lation techniques are implemented by development of a software tool 'SFCVerifier’.
JGrafchart, a programming tool for Sequential Function Chart, is used as source
of SFC programs. The SFCVerifier converts these SFC programs into internal data
structure to model a finite state system. The input language for SMV is generated
by SFCVerifier with specification of properties in temporal logic. These properties
can be general like reachability tests or it can be specific to system like mutual ex-
clusion. Once processed by SMV these properties can be tested and for unverified
properties error trace is generated. These error trace helps to check, when and where
during the execution, problem occurred.

4.2 Future Work

The future work in this direction can be verification of hierarchical SFCs, timed
SFCs, procedures, exceptions, other types of variables/signals and rest of other
constructs not covered in this thesis. Since some research groups use execution
model, in which enabled transitions are found and then exit and enter actions are
executed. Verification of SFCs by modelling according to this execution model can
be a good future work.

There is hardly any work done for verification of other PLC languages and since
PLCs allow mixture of different programming languages, verification with respect
to integration of different programming languages will certainly be big future chal-
lenge.

31

32

Chapter 4 Conclusion

Bibliography

Arzén, Karl-Erik (2002). Jgrafchart.
http://www.control.lth.se/~karlerik /Grafchart/JGrafchart.html, last visited
April 2004.

Arzén, Karl-Erik and Johansson, Charlotta (2002). JGrafchart Language Reference.
available from karlerik@control.lth.se.

Bornot, S., Huuck, R., Lakhnech, T. and B.Lukoschus (2000). An abstract model
for sequential functiom charts. In: WOODES 2002, 5th Workshop on Discrete
Event Systems, Ghent, Belgium.

Clarke, Edmund M., Grumberg, Orna and Peled, Doron A. (2000). Model Checking.
MIT Press.

David, R (1995). Grafcet: A powerful tool for specification of logic controllers. IEEE
Transaction on Control Systems Technology.

D.L’Her, Parc, P.Le and Marc, L (1995). Proving sequential function chart pro-
grams using automata. In: Proceedings of 2nd AMAST workshop on Real-Time
Systems.

Fabian, Martin (2004). Control and communication systems. Lecture notes. Signals
and Systems, Chalmers University of Technology.

Franceschet, Massimo (2003). Lecture notes.
http://staff.science.uva.nl/~schlobac/Teaching/AR2003/massimo_1.pdf, last
visited May 2004.

Hellgren, Anders, Fabian, Martin and Lennartson, Bengt (1999). Synchronized exe-
cution of discrete event models using sequential function charts. In: Conference
on Decision and Control. IEFE.

Hellgren, Anders, Fabian, Martin and Lennartson, Bengt (2001). On the execu-
tion of discrete event systems as sequential function charts. In: Conference on
Control Applications. IEFE.

Huuck, Ralf (2003). Software Verification For Programmable Logic Controllers. PhD
thesis. Christian-Albrechts-University of Kiel.

IEC-61131 (1998). Programmable controllers - programming languages, second edi-
tion. Committee draft IEC 61131-3. International Electrotechnical Commission,
Technical committee No. 65.

Johansson, Charlotta (1999). A Graphical Language for Batch Control. PhD thesis.
Department of Automatic Control, Lund Institute of Technology.

33

34 BIBLIOGRAPHY

Kripke, Saul A (1963). Semantical consideration on modal logic. Technical Report
16:83-94. Acta Philosophica Fennica.

Lewis, R.W (1995). Programming Industrial Control Systems Using IEC1131-3. The
Institution of Electrical Engineers, London, UK.

McMillan, Kenneth L. (1999a). Getting starting with SMV. Cadence Berkeley Labs.
McMillan, Kenneth L. (1999b). The SMV Language. Cadence Berkeley Labs.

Pnueli, Amir (1981). The temporal semantics of concurrent programs. Technical
Report 13:1-20. Theoretical Computer Science.

Appendix A

Case Studies

In this chapter we have presented verification case studies for some Sequential Func-
tion Chart (SFC) examples. The SFC programs are shown with their verification
issues. The tools used are JGrafchart for SFCs, SFCVerifier for analysis 4+ code gen-
eration and Cadence SMV for verification of generated code. For all the discussed
example the SFC programs executable in JGrafchart and SMV code generated by
SFCVerifier can be found on following web address

hitp://www.s2.chalmers.se/~knut/masterthesis /2004 /malik

A.1 First Case study

In this example two concurrent SFC structures are verified. These concurrent struc-
tures interact with each other and there is possibility of deadlock as shown in Fig-
ure A.1

The two SFCs start from their initial step, and execution control will advance de-
pending upon the values of input variables ‘in2” and ‘inl’. The initial steps are
named S1 and S3 in their SFCs. These structures were analyzed and SFCVerifier
and SMV code was generated. When verification was applied to the generated code
in SMV, the SMV system detected a deadlock with error trace. The trace showed
a deadlock possibility where both step S2 and step S4 were active at the same time
setting variables M1 and M2 to true respectively. The step S2 cannot leave because
it’s outgoing transition is not enabled because M1 is true. The step S4 cannot leave
because it’s outgoing transition is not enabled because M2 is true. Both of these
steps wait for each other since the exit action for step S2 will be executed in step
S1 and for S4 it’s exit action will be executed in step S3. Thus these two steps will
wait for each other infinitely without proceeding.

35

36 Appendix A

Baold

hd

51 53

Boald

. . hiz
J‘: in2 J‘: int
Chand
H hZ; H b1, 0
g2 — 54 —

in1
%— M1 % IM2 i
u]

in2

Figure A.1. SFC program with possible deadlock.

Second attempt

In second attempt we modified our example to avoid deadlock and then tried veri-
fication. As shown in Figure A.2, now the condition has been added before step S2
that it cannot enter step S2 until variable M2 is false, similarly another condition is
added before step S4 that it cannot enter step S4 until variable M1 is true

Baald

M1

21 S2

Boald

%— in1 & IM2 %— in2 & IM1 W2
ChanD
H M1, N Mz, 0
52 T 54 1 %

in1
%— M2 % IM1 T
u]

in2

Figure A.2. Improved SFC program with non-trivial deadlock possibility.

Now this should avoid any deadlock. When this program is verified through SFCVer-
ifier it complained about deadlock. Precisely speaking this time it was not a deadlock
but a starvation instead. There is a possibility that input variable ‘inl’ is false at
the same time when M2 becomes false. Since input variables are something not

A.1 First Case study 37

controlled by SFC program, their value come from environment, one cannot predict
about their behavior. We have added fairness constraints that every input variable
should change its value infinitely often. The model checker follows this fairness and
changes the value of input infinitely often but makes the input ‘inl’ false when ‘M2’
becomes false, thus conjunction will always evaluate to false. But on the other hand
it will allow one SFC to execute infinitely often while starving the other. This is a
nontrivial situation and can happen in practice.

Third attempt

To avoid this starvation we modify our example to add one extra step as shown
in Figure A.3. Now this time step S1A and step S3A have been added in their
respective SFCs. Now once input signal is true the execution control will proceed
and there is no deadlock or starvation as verified by SMV.

[
51 53
Boold
Tl 1
in1 in2
BoolO
514 534 Lk
Chani
]
'JF’ M2 ‘Jf‘ 1M1
N b N Mz L
52 - 54 — Chan
Z
.J‘:; IM2 ‘J‘Z’ 1M1 inz

Figure A.3. SFC program free of deadlock and starvation.

38 Appendix A

A.2 Second Case study

This example is taken from one of the exam solutions by Martin Fabian, at depart-
ment of Systems and Signals at Chalmers University of Technology, for course in
Control and Communication Systems.

The Problem

There is a system consisting of three resources (machines) M1, M2 and M3. The
system has to manufacture two products A and B. These two products are to be
manufactured in a concurrent fashion. Both of the products use all the three ma-
chines. The product A uses machines in a sequence that first it acquires machine M1
and then while holding machine M1 it acquires machine M2, then it leaves machine
M1 and while holding machine M2 it acquires machine M3. Finally it leaves machine
M2 and completes the process with machine M3. The product B uses machines in a
bit different sequence. The machine usage sequence for both products A and B can
be seen in Figure A.4.

Ly — D[] —]+ T2 p— D2+ [E f— T

E | L] [(e—]t D5 |e— 0]2 fe— T

Figure A.4. The sequence of machine usage by products A and B.

The output signals are:

USE_M1: It indicates that machine M1 is currently in use.
USE_M2: It indicates that machine M2 is currently in use.
USE_Ma3: It indicates that machine M3 is currently in use.

The input signals are

M1 _OK: It indicates that machine M1 is free for usage.
M2_OK: It indicates that machine M2 is free for usage.
M3_OK: It indicates that machine M3 is free for usage.
M1 _M2_OK: It indicates that machines M1 and M2 are free for usage.
M1 _M3_OK: It indicates that machines M1 and M3 are free for usage.
M2 _M3_OK: It indicates that machines M2 and M3 are free for usage.

A.2 Second Case study 39

The products are manufactured concurrently and there is only one slot in each
machine, means one machine can handle only one product at a time and these
machines should be handled in a mutually exclusive way.

Solution

The SFC program for above stated problem is shown in Figure A.5

1
| USE_M1 1USE_M1

SUSE_M1=1; USE_M2
SUSE_M1=1;

M1_OK

SUSE_M3=1;
SUSE_M2=1;

7 -
7 -
sl Toom
z -
3 i

M1_OK

SUSE_M1=0;
S USE_M2=1;

M3_0K

C)’ﬁan'ﬂ
M2_M3_OK

M1_M2 0K

S USE_M1=0;
— S USE_M3=1;

M2_M3_OK

- SUSE_M3=0;
S USE_M2=0; Sy

|
E

M1_m3 0K

M3_OK M2_0OK Cand

E

S USE_M3=0; SUSE_M2=0; 13 M3 0K

Figure A.5. SFC program with one slot per machine.

When this structure is analyzed in SFCVerifier and it’s generated code is tested in
SMYV it proved to be a correct program without any deadlock or starvation problem.

Extension to the Problem

In SFC program shown in Figure A.5, the two SFC structures are concurrent but
this is not an efficient system because one of the products has to wait for acquiring
the machine since it is used by other product. The Figure A.6 shows an implemen-
tation where capacity of machine M1 is increased. Now machine M1 can handle two
products at the same time. One in slot M1a and other in slot M1b. Each slot can

40 Appendix A

handle exactly one product.

For this system, the output signals are:

USE_M1a: It indicates that machine slot M1a is currently in use.
USE_M1b: It indicates that machine slot M1b is currently in use.
USE_M2: It indicates that machine M2 is currently in use.
USE_Ma3: It indicates that machine M3 is currently in use.

The input signals are:

M1la_OK: It indicates that machine slot M1la is free for usage.

M1b_OK: It indicates that machine slot M1b is free for usage.

M2_OK: It indicates that machine M2 is free for usage.

M3_OK: It indicates that machine M3 is free for usage.

M1la M2 _OK: It indicates that machine slot Mla and machine M2 are free for
usage.

M1b_M2_OK: It indicates that machine slot M1b and machine M2 are free for
usage.

M1la M3_OK: It indicates that machine slot Mla and machine M3 are free for
usage.

M1b_M3_OK: It indicates that machine slot M1b and machine M3 are free for
usage.

M2_M3_OK: It indicates that machines M2 and M3 are free for usage.

Now in this system we can handle both products A and B in Machine M1 at the
same time. But after using machine M1 acquiring further machines without any
synchronization can result in a deadlock as verified by SMV for SFC given in Fig-
ure A.6

If execution control enters in steps S3 and S15 at the same time or in steps S5 and
S13 at the same time then it will result in a deadlock in future since these (steps)
will try to use machine which other step is using and each step will wait without
releasing machine needed by other step, thus resulting in a deadlock.

51

%— 1 USE_M1a

5 USE_Mia=1;
52 _— 5S4
+ M1a OK &! USE_M2
5 USE_MZ =1;
53 1 ¥ USE_M1==0; 55

+ M1a_M2_OK &!USE_M3

%— USE_M1b

5 USE_Mib =1,

%— M1b_OK & ! USE_M2

S USE_MZ=1;
— % USE_Mib=n;

%— M1b_M2_OK &! USE_M3

5 USE_M3=1;
S6 —1
%— MZ_M3_OK
5 USE_Mz=10;
57 —
+ M3_OK
5 USE_M3=0;
ot —

T

S
%— 1 USE_M1a %— 1 USE_M1b
5 USE_M1a=1; 5 USE_Mib=1;
512 1 514 -
+ M1a_OK &! USE_M3 %— M1b_OK & ! USE_M3
SUSE_ME=1; S USE_MZ=1;
513 1 ¥ USE_M1a=0; 515 1 ¥ USE_Mi1b =10,

%— Mia_M3 OK &!USE_M2

%— M1b_M3_OK &! USE_M2

5 USE_MZ=1;
516 —
%— M2_M3_OK
5 USE_M3=0;
517 —
+ M2_OK
5 USE_Mz=0;
518 —

T

Chan:0

k

hila_0K

Chan:
1]

K

Apnis ase) puode§ Z'y

Mb_OK;

Chan:)
o

4

Chan:0

Ei

£
o
&
)
=

Figure A.6. SFC program with two slots for machine M1.

pAz_hz_0K
Chan:0

Bool 0]

USE hila ME OF
Chan:0

o

Boal 0

TSEE a3 OK
Chan:

Bial 0]

WSEME b i oK
Chan:0

Bool 0]

USE_hi3 Mz O

187

42 Appendix A

To avoid this problem we will use semaphore for synchronization. The semaphore-
implemented SFC is shown in Figure A.7

When this implementation was tested, it avoided deadlock but it complained about
possible starvation. Since conditions before steps S3, S5, S13 and S15 are dependent
upon conjunction of output signal and input signal, and the local variables are
controlled in other SFC. There might be the case that one SFC continues to execute
and SMV chooses the value of input signal to be false when local variables’ conditions
evaluate to true, thus making the whole proposition false. To avoid this starvation
problem we changed our SFC structures to add one more step in each branch. The
new modified SFC program is shown in Figure A.8

52

53

i1

-

M2 &! Sem

'USE_M1a 'USE_M1hb
5 USE_M1z =1; 5 USE_M1b =1;
M1a_OK &! USE_M2 & ! Sem %— M1b_OK &1 USE_
5 USE_M2=1; 5 USE_M2=1;
F— % Sem =1; 3] F— % Sem =1;
B USE_Mis =10; B USE_Mib =10;
+ M1a M2 OK &! USE_M3 + M1b_ M2 OK &! USE_M3
|
5 USE_M3=1;
1] —
%— M2 M3 OK
5 USE_Mz=10;
57 5 Sem=10;
%— M3_OK
5 USE_M3=0;
b3 —

=

i1

%— 1 USE_M1a

'J‘:' 'USE_M1b

Chant

k

Apnis ase) puode§ Z'y

Mia_OkK

Chanf
0
% USE_Mia=1: % USE_MIb =1,
512 — sS4 — Wi1b_0K
Chani
M1a_OK &! USE_M3 & ! Sem M1b_OK &! USE_M3 & ! Sem 0
5 USE M3 =1, 5 USE M3 =1, MTa_ME_OK
513 F— % Sermn =1; 514 — % Sem =1; Chan?
¥ USE_Mia =i; ¥ USE_Mib = 0; o
+ M1a_ M3 OK & ! USE M2 + M1b_M3 OK &! USE M2 MibEht OF
Chanf
[]
5 USE_MZ =1, Boal 0
S - htz_hit_OK
Sem
Chan
[
M2 M3 OK Boal 0
el hz_0OK
USE_Mia
5 USE_M3 = 0; =
517 5 sem =10 Claanﬂ
Boal 0
‘é‘: M2_OK USE Mib Mia ki _Ok
5 USE_MZ =0, Thant
518 1 Bool 1 i
USEME pyb_w_ok
1 Chan®
Boal 1 1]
USE M3 ME O

Figure A.7. SFC program with two slots for machine M1 and with Semaphore implementation.

197

52

52_Ex

53

51

H H R H

b

'USE_M1a ' USE_M1b
S USE_Mib=1;
| [SUSEMTa=T: o4 | | -
M1a_OK + M1b_OK
54_Ex
'USE_M2Z & ! Sem % V'USE_MZ & ! Sem
S USE_M2=1; S USE_M2=1;
— % Sem =1, 55 — % Sem =1,
B USE_M1a=10; ® USE_M1b =10;
M1a M2 OK &!USE_M3 + M1b_M2_OK &! USE_M3
S USE_M3=1;
S6 —
%— M2_M3 OK
5 USE_MZ=1;
a7 F—1 5 Sem=0;
== M3_OK
S USE_M2=10;
58 —

iy

Sz

§12_Ex

513

511

1USE_M1a

S USE_M1a=1;

M1a_OK

'USE_M3 & ! Sem

5 USE_M3=1;
F—1 5 Sem=1;
% USE_M1a = 0;

H M B

'USE_M1b

214

S USE_Mib=1;

M1b_OK

S14_Ex

'USE_M3 & ! Sem

515

5 USE_M3=1;
5 Sem=1;
n USE_M1b =10;

Mia M3 OK & ! USE_mM2

H M H R

5 USE_MZ=1;
S16 —
%— M2_M3 0K
S USE_M3=0;
317 % Sem =0,
== M2_OK
5 USE_M2 = 0;
518 —

T

M1b_M3 OK & ! USE_M2

Bool 0

USE_Miz

Bool 0

USE b

Bool 1

USE_hE

Bool 1

USE_ME

Figure A.8. SFC program with two slots for machine M1,a Semaphore and extra step to avoid starvation.

Chani

I

hita_0K

Chani

H

rTb_OK

Chani

I

z
|1}

o=
HE
(=]
-

EY
-
&
(=]
-

&
3

Chani

= 1 =)
=]
=~

rTa_htz_OK

Chani

H

£
o
&
=]
-~

Chani

H

5

144

v xipuaddy

A.2 Second Case study 45

When this system was verified it complained about possible starvation of branch
(note that before it complained about SFC starvation). There is a possibility that
due to timing of input signals it always takes right branch in first SFC and left
in second SFC or vice versa. It means we should implement a fair scheduling in
our SFC to avoid such starvation. This is done in SFC shown in Figure A.9. This
implementation verified all properties to be true, thus is a complete accurate SFC
program. We don’t always need to change our SFC program in case of starvation;
the other possible solutions can be inclusion of constraints in the system which does
not include such traces where input signals are changing their values in order to
negate conjunction. Another solution is to ignore starvation errors (where possible)
raised by SMV and checking of other important properties.

[[
51 s11
IJFI T'USE_M1a & next_leftl J'Zl FUSE_M1b & ! next_leftl JFI I USE_M1a & next_left? JF' ' USE_M1b & ! next_left?
' S USE_MIE =1;
S USE_Mla=1; g S USE_Mz = 1; S USE_MIb = 1;
52 — Snen:|eﬂa1 =0 Ee [B et et 512 — Snert:Ieﬂa‘2=U; 514 —! 5 rest_teftz = 1;
%— M1a_OK ‘%‘ Mib Ok %— M1a_OK %— M1b_OK
52_Ex S $12_Ex S14_Ex
=— lUSE_M2Z &! Sem =— 1 USE_MZ &! Sem =— 1 USE_M3 & ! Sem =— ! USE_M3 &! Sem
S USE_MZ = 1; 5 USE_MZ=1; S USE_M2=1; S USE_M2=1;
53 % Sem=1; 55 % Sem=1; £12 1% Sem=1; 215 F—15 Sem=1;
¥ USE_M1a=0; ¥ USE_MWib = 0; R USE_M1a=0; K USE_Mib = 0;
+ M1a M2 _OK &!USE_M3 %— M1b_M2_OK &! USE_M3 %— M1a_M3_OK &! USE_M2 %— M1b_M3_OK &! USE_M2
[I
S USE_Mz =1;
5 USE_M3=1; N = :
- | g 516
+ M2_M3_OK %— M2_M3_OK
S USE_MZ=0; 5 USE_M3 =0
57 % Sem =0, 517 — % Sem =0,
B — == mM2_OK
5 USE_M3 =0 i | [susemz=o;
58 _—

Figure A.9. Improved version of previous SFC program to avoid branch starvation.

Bool0

Sem

Bool 0

USE N3

Bool 0

USE MG

Bool 1

USE_hiz

Bool 1

USE_ME

Chani
o

ta_0K

Chani)
o

rAb_0K

Chan i
o

hia_htz_OkK
Chani
o

£
-
5
=]
=

Chani)
o

5
&

Chani)
o

Chani
o

B
=

Mia_ht3_OK

Chani
1]
Bool 0
next_left] Rtk _hiz_OFk
Chani
Bool 0 o
next_left? nz_0K

9

v xipuaddy

