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Abstract 
We explored the reliability of detecting a learner’s affect from conversational features extracted from interactions 
with AutoTutor, an intelligent tutoring system that helps students learn by holding a conversation in natural 
language.  Training data were collected in a learning session with AutoTutor, after which the affective states of the 
learner were rated by the learner, a peer, and two trained judges. Inter-rater reliability scores indicated that the 
classifications of the trained judges were more reliable than the novice judges.  Seven data sets that temporally 
integrated the affective judgments with the dialogue features of each learner were constructed. The first four datasets 
corresponded to the judgments of the learner, a peer, and two trained judges, while the remaining three data sets 
combined judgments of two or more raters. Multiple regression analyses confirmed the hypothesis that dialogue 
features could significantly predict the affective states of boredom, confusion, flow, and frustration. Machine 
learning experiments indicated that standard classifiers were moderately successful in discriminating the affective 
states of boredom, confusion, flow, frustration, and neutral, yielding a peak accuracy of 42% with neutral 
(chance=20%) and 54% without neutral (chance = 25%).  Individual detections of boredom, confusion, flow, and 
frustration, when contrasted with neutral affect, had maximum accuracies of 69%, 68%, 71%, and 78%, respectively 
(chance=50%).  The classifiers that operated on the emotion judgments of the trained judges and combined models 
outperformed those based on judgments of the novices (i.e., the self and peer). Follow-up classification analyses that 
assessed the degree to which machine-generated affect labels correlated with affect judgments provided by humans 
revealed that human-machine agreement was on par with novice judges (self and peer) but quantitatively lower than 
trained judges. We discuss the prospects of extending AutoTutor into an affect-sensing intelligent tutoring system.   
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1.    Introduction 

Researchers in the field of human-computer interaction (HCI) have recently been modeling the affect of users 
(feelings, moods, emotions) in an attempt to develop more effective, user-friendly, and naturalistic applications  
(Bianchi-Berthouze & Lisetti, 2002; Hudlicka & McNeese, 2002; Klein, Moon, & Picard, 2002; Scheirer, 
Ferndandez, Klein, & Picard, 2002; Prendinger & Ishizuka, 2005; Whang, Lim, & Boucsein, 2003). The process of 
transforming a non-affect sensitive system into one that is responsive to its user’s affective states involves the 
modeling of a cycle known as the affective loop. The affective loop is realized by the detection of the user’s 
affective states, the selection of appropriate actions that encompass the user’s affective states in the decision making 
process, and the synthesis of appropriate emotional expressions by the system. Given this functional specification of 
the affective loop, one of the fundamental challenges involves the robust detection of the user’s affect.  

There have been systematic attempts to automatically detect emotions by means of signal detection algorithms 
that operate on a host of sophisticated sensors. There has been some success in using physiological signals in 
emotion detection (Rani, Sarkar, & Smith, 2003; Picard, Vyzas, & Healey, 2001; Whang, Lim, & Boucsein, 2003), 
but a potential pitfall to this approach is the reliance on obtrusive sensing technologies, such as skin conductance, 
heart rate monitoring, and measurement of brain activities.  While obtrusive detection of affect may be suitable in 
some domains after users habituate to the presence of these sensors, they are not satisfactory in environments in 
which the sensors distract users and interfere with the primary tasks.  Therefore, we argue for the use of non-
intrusive bodily sensors, such as cameras that track facial features and microphones that monitor acoustic-prosodic 
speech contours. The use of these sensors is not unique. A majority of the affect detection systems rely on facial 
feature tracking (Cohn & Kanade, in press; Oliver, Pentland, & Berand, 1997) and acoustic-prosodic vocal features 
(Bosch, 2003; Grimm et al., 2006; Litman & Forbes-Riley, 2004; Shafran & Mohri, 2005). To a lesser extent, some 
research has also focused on affect detection from posture patterns (Mota & Picard, 2003).   

Our interest in the field of affect detection emerges from our desire to transform an intelligent tutoring system 
(ITS), AutoTutor, into an affect responsive system. AutoTutor is an intelligent tutoring system that helps learners 
construct explanations by interacting with them in natural language and helping them use simulation environments 
(Graesser, Chipman, Haynes, & Olney, 2005; Graesser, Person, Harter, & TRG, 2001). ITSs such as AutoTutor have 
implemented several systematic strategies for promoting learning, such as error identification and correction, 
building on prerequisites, frontier learning (expanding on what the learner already knows), student modeling 
(inferring what the student knows and having that information guide tutoring), and building coherent explanations 
(Aleven & Koedinger, 2002; Anderson, Corbett, Koedinger, & Pelletier, 1995; Gertner & VanLehn, 2000; 
Koedinger, Anderson, Hadley, & Mark,  1997; Lesgold, Lajoie, Bunzo, & Eggan, 1992; Sleeman & Brown, 1982; 
VanLehn, 1990)  While ITSs have typically focused on the learner’s cognitive states, we believe that they can be far 
more than mere cognitive machines. ITSs can be endowed with the ability to recognize, assess, and react to a 
learner’s affective state.  We are not alone in this view.  For example, one of the first suggestions for endowing 
computer tutors with a degree of empathy or affect was made by Lepper and Chabay (1988).  Consequently, we 
claim that intelligent tutoring systems should include a mechanism for motivating the learner, detecting the learner’s 
emotional/motivational state, and appropriately responding to that state (Issroff & del Soldato, 1996; Lepper & 
Chabay, 1988; Lepper and Woolverton, 2002).   

DeVincente and Pain (2002) have argued that motivation components are as important as cognitive components 
in tutoring strategies, and that important benefits would arise from considering techniques that track the learner’s 
motivation and emotions. There is some evidence, for example, that tracking and responding to human emotions on 
a computer increases students’ persistence (Aist et al., 2002).  Kim (2005) conducted a study which demonstrated 
that the interest and self-efficacy of a learner significantly increased when the learner was accompanied by a 
pedagogical agent acting as a virtual learning companion that is sensitive to the learner’s affect. Linnenbrink and 
Pintrich (2002) reported that the posttest scores of physics understanding decreased as a function of negative affect 
during learning.  

An emotionally-sensitive learning environment, whether it be human or computer, requires some degree of 
accuracy in classifying the learner’s affective states.  The emotion classifier need not be perfect but must have some 
modicum of accuracy. While the larger project of integrating affect-sensing capabilities into AutoTutor makes use of 
facial feature tracking, speech analyses, and posture patterns for affect detection (D’Mello, Craig, Gholson, 
Franklin, Picard, & Graesser, 2005), this paper focuses on detecting affect from discourse features obtained from 
AutoTutor’s natural language mixed-initiative dialogue. Although dialogue has traditionally been a relatively 
unexplored channel for affect detection, it is a reasonable information source to explore because dialogue 
information is abundant in virtually all conversations and is inexpensive to collect.  



     3

A growing body of research has investigated emotions in human-human dialogues (Alm & Sproat, 2005; Forbes-
Riley & Litman, 2004) and human-computer dialogues (Litman & Forbes-Riley, 2004), although the literature on 
automated affect detection from the latter is somewhat sparse.  Dialogue (i.e., discourse) features have typically 
been used in conjunction with acoustic-prosodic and lexical features obtained through an interaction with spoken 
dialogue systems. The lexical features usually are restricted to either human or automatic transcriptions (with speech 
recognition engines) of user utterances. The acoustic-prosodic features are composed of vocal cues that typically 
include speech rate, intonation, and volume. A number of research groups have reported that appending an acoustic-
prosodic and lexical feature vector with dialogue features results in a 1-4% improvement in classification accuracy 
(Ang, Dhillon, Krupski, Shriberg, & Stolcke, 2002; Litman & Forbes-Riley, 2004; Liscombe, Riccardi, & Hakkani-
Tür, 2005; Lee and Narayanan, 2004). A classic example involving this use of dialogue features is work 
investigating dialogue and emotions conducted on the program ITSPOKE (Litman, Rose, Forbes-Riley, VanLehn, 
Bhemhe, Silliman, 2004; Litman & Silliman, 2004). ITSPOKE integrates a spoken language component into the 
Why2-Atlas tutoring system (VanLehn et al., 2002). With ITSPOKE, Litman and Forbes-Riley (2004) analyzed 
spoken student dialogue turns on the basis of lexical and acoustic features, with codings of negative, neutral or 
positive affect.  They were able to reach high levels of accuracy in detecting affect categories.    

In a similar vein, Ang et al. (2002) reported that the inclusion of discourse features, such as the current turn 
within a session and the associated dialogue acts of the current turn, resulted in a 4% improvement in performance 
over lexical and prosodic features. Their research involved detecting annoyance and frustration within the context of 
a travel reservation system. Similarly, Liscombe, Riccardi, and Hakkani-Tür (2005) reported that the use of dialogue 
features caused a 1.2% improvement over the use of acoustic-prosodic and lexical features in discriminating 
between positive and negative emotions. Their results were obtained by analyzing a large database of 5,690 spoken 
utterances obtained from user interactions with the How May I Help You spoken dialogue system (Gorin, Riccardi, 
& Wright, 1997). An additional 2.8% improvement in accuracy was obtained by the inclusion of contextual features 
spanning two previous turns. Another important example of the use of dialogue for affect detection is provided by 
Lee and Narayanan (2004).  They reported that the use of dialogue features of user utterances obtained from a call 
center produced a 3% increase in accuracy over prosodic and lexical features in discriminating between negative and 
non-negative emotions. 

Innovative uses of dialogue have emerged from research on the identification of problematic points in human-
computer interactions (Batliner, Fischer, Huber, Spilker, and Noth, 2003; Carberry, Lambert, and Schroeder, 2002; 
Walker, Langkilde-Geary, Hastie, Wright, & Gorin, 2002). For example, Carberry, Lambert, and Schroeder (2002) 
proposed an algorithm to recognize doubt by examining linguistic and contextual features of dialogue in conjunction 
with world knowledge. Batliner et al. (2003) reported that discourse information resulted in a 1.2% improvement in 
classification accuracy over lexical and prosodic features alone. 

We can identify three major differences between our approach to affect detection reported in this paper and some 
of the earlier research involving the use of dialogue to detect affect. The first difference is that we explore a larger 
array of discourse variables.  We believe dialogue can be a serious competitor to more popular measures of user 
affect, such as facial and acoustic-prosodic features. The second difference is that previous efforts investigating 
dialogue were limited to a small set of affective states, such as neutral, negative, and positive (Litman & Forbes-
Riley, 2004), negative versus positive/non-negative (Liscombe, Riccardi, & Hakkani-Tür, 2005; Lee and Narayanan, 
2004), or annoyance versus frustration (Ang et al., 2002). These contrasts may be suitable for some domains, but 
they are not sufficient to encompass a realistic gamut of learning (Conati, 2002). Additional complexities arise from 
the fact that a person’s reaction to the presented material can change as a function of their goals, preferences, 
expectations and knowledge state. Consequently, our research involves the detection of a larger set of affective 
states within the arena of complex-learning.  The relevant emotions (i.e., affective states) include boredom, 
confusion, delight, flow, frustration, neutral, and surprise. The third difference between this research and other 
efforts is the method of establishing ground-truth categories of affect. A number of researchers have relied on a 
single operational measure when inferring a learner’s emotion, such as self reports (De Vicente & Pain, 2002; Klein, 
Moon, & Picard, 2002; Matsubara & Nagamachi, 1996) or ratings by independent judges (Liscombe, Riccardi, & 
Hakkani-Tür, 2005; Litman & Forbes-Riley, 2004; Mota & Picard, 2003).  In contrast, we propose the combination 
of several different measures of a learner’s affect. Our measures of emotion incorporate judgments made by the 
learner, a peer, and two trained judges, as will be elaborated later. 

We begin by describing the AutoTutor learning environment and exploring the interplay between emotions and 
learning. In particular, we describe three studies, two of which were used to isolate the set of affective states that 
accompany complex learning. The third study tackles the problem of human measurement of emotions. The data has 
served as training and testing data for a number of machine learning algorithms, with the affect ratings representing 
the gold standard. The subsequent section describes the AutoTutor dialogue features and provides a synopsis of 
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some of our past research efforts in detecting the learner’s emotions from these features. The Results section begins 
with a series of statistical analyses that evaluate the hypothesis that dialogue features can significantly predict the 
learner’s affect.  Two dimensionality reduction techniques are subsequently investigated as preprocessing techniques 
for the machine learning algorithms. The machine learning experiments attempt to assess the reliability of 
automatically detecting the learner’s affect from AutoTutor’s dialogue. We conclude by discussing the prospect of 
integrating additional sensors (cameras, posture sensors, etc.) in an effort to boost classification accuracy.  Our 
ultimate goal is to explore how the learner’s affective states may be integrated into AutoTutor’s pedagogical 
strategies and thereby improve learning.   

2.   The Relationship between Affect and Complex Learning 

Empirical research on emotions is quite extensive, but the scientific literature on the relation between emotions and 
cognition is considerably sparse and scattered, especially in relation to complex learning (Goleman, 1995; Mandler, 
1984; Stein & Levine, 1991).  In the popular science literature, Goleman’s (1995) book Emotional Intelligence 
raises the question of how emotions impact learning, and vice versa.  However, the book did not address many of the 
important research questions to guide future empirical work. Our previous research has identified the affective states 
that accompany learning introductory computer literacy (Craig et al., 2004; D’Mello et al., 2006) and some 
alternative ways to measure these affective states (Graesser et al., 2006). These previous efforts are described in this 
section. The desire to elicit affect from a non-traditional source like conversational dialogue raises additional issues 
that we also address in this section.  

2.1.  The AutoTutor Learning Environment 

The Tutoring Research Group (TRG) at the University of Memphis developed AutoTutor, a fully automated 
computer tutor that simulates human tutors and holds conversations with students in natural language (Graesser et 
al.; 2001; 2005a; 2005b). AutoTutor attempts to comprehend the students’ natural language contributions and then 
responds to the students’ typed input with adaptive dialogue moves similar to human tutors. AutoTutor helps 
students learn by presenting challenging problems (or questions) from a curriculum script and engaging in a mixed-
initiative dialogue while the learner constructs an answer.  

AutoTutor has different classes of dialogue moves that manage the interaction systematically.  AutoTutor 
provides feedback on what the student types in (positive, neutral, or negative feedback), pumps the student for more 
information (“What else?”), prompts the student to fill in missing words, gives hints, fills in missing information 
with assertions, identifies and corrects misconceptions and erroneous ideas, answers the student’s questions, and 
summarizes topics. A full answer to a question is eventually constructed during this dialogue, which normally takes 
between 30 and 100 turns between the student and tutor for one particular problem or main question. 

As an example, the exchange below is one of the shorter tutorial dialogues between a college student and 
AutoTutor. This student was an above-average student in the computer literacy class.  

 
1. AUTOTUTOR: When you turn on the computer, how is the operating system first activated and loaded into 

RAM?  [this is the main question] 
2. STUDENT: When the computer is turned on a file is automatically booted up. 
3. AUTOTUTOR: Anything else?    [this is a pump for more information] 
4. STUDENT: This file contains the operating system. 
5. AUTOTUTOR: What about storage?   [this is a hint] 
6. STUDENT: The operating system is then read into RAM and activated. 
7. AUTOTUTOR: Right. The CPU executes instructions in ROM, which helps the  

operating system to start.   [after giving positive feedback, there is an assertion]  
8. STUDENT: After being read from ROM the OS is activated. 
9. AUTOTUTOR:  Right. Let’s review what we’ve just gone over. The operating system  

must first be stored on the hard disk. When you turn on the computer, the CPU executes  
instructions stored in ROM. These instructions help boot the operating system. The operating system is then 
loaded from the hard disk into RAM.  [after positive feedback comes a summary] 

 
AutoTutor’s knowledge about the topic being tutored (computer literacy in this study) is represented by Latent 

Semantic Analysis (LSA) (Landauer & Dumais, 1997) and a moderately structured curriculum script on the 
material. LSA is a statistical technique that measures the conceptual similarity of two texts on the basis of a higher-
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dimensions space with a few hundred dimensions (Landauer & Dumais, 1997).   The dimensions are statistically 
derived from a large corpus of texts and the words that appear in the documents of the corpus.  LSA computes a 
geometric cosine (typically ranging from 0 to 1) that represents the conceptual similarity between the two texts. In 
AutoTutor, LSA is used to assess the quality of student responses (by comparing student input to expected content) 
and to monitor other informative parameters, such as topic coverage and student ability level.  

AutoTutor has been tested in several experiments on over 2500 students in computer literacy and physics 
courses. Significant learning gains were obtained in all of these experiments (an average sigma of .8), particularly at 
the level of deep explanations as opposed to shallow facts and ideas (VanLehn, Graesser, Jackson, Jordan, Olney, & 
Rose, in press). AutoTutor has also been evaluated on the conversational smoothness and the pedagogical quality of 
its dialogue moves in the turn-by-turn tutorial dialogue (Person, Graesser, & TRG, 2002).  Person, Graesser and 
TRG (2002) performed a bystander Turing test on the naturalness of AutoTutor’s dialogue moves. Bystanders were 
unable to discriminate between dialogue moves of AutoTutor and dialogue moves of a real human tutor. 

2.2.   Identifying the Affective States that Accompany Complex Learning 

There have been theories that link cognition and affect very generally, such as those of Mandler (1984), Bower 
(1981), Stein and Levine (1991), Ortony, Clore, and Collins (1988), and more recently by Russell (2003). While 
these theories convey general links between cognition and emotions, they do not directly explain and predict the sort 
of emotions that occur during complex learning, such as attempts to master physics, biology, or computer literacy.  
Some emotions presumably have a more salient role in learning than others (Linnenbrink & Pintrich, 2004).  What 
are these emotions? How are they linked to cognition? These are the fundamental questions that surface in modeling 
affect in learning environments.  

Ekman and Friesen (1978) have proposed 6 basic emotions that are ubiquitous in everyday experience.  The six 
basic emotions include fear, anger, happiness, sadness, disgust, and surprise.  However, many have called into 
question the relevance of these basic emotions to the learning process (Kort, Reilly, & Picard, 2001). Some 
researchers have argued for a different set of emotions that influence learning and cognition, namely boredom 
(Csikszentmihalyi, 1990; Miserandino, 1996), confusion (Graesser & Olde, 2003; Kort, Reilly, & Picard, 2001), 
delight (Fredrickson & Branigan, 2005; Silvia & Abele, 2002), flow (Csikszentmihalyi, 1990), frustration (Kort, 
Reilly, & Picard, 2001; Patrick et al, 1993), and surprise (Schutzwohl & Borgstedt, 2005). In an earlier study, we 
reported that increased levels of boredom were negatively correlated with the learning of computer literacy, whereas 
increased levels of confusion and the state of flow (being absorbed in the learning process, Csikszentmihalyi, 1990) 
were positively correlated with learning in an AutoTutor learning environment (Craig, Graesser, Sullins, & Gholson, 
2004).   

In a recently completed study, we adopted an emote-aloud procedure (D’Mello, Craig, Sullins, & Graesser, 
2006), a variant of the think-aloud procedure (Ericsson & Simon, 1993), as an online measure of the learners’ 
affective states during learning. College students were asked to state the affective states they were feeling while 
working on a task, in this case being tutored in computer literacy with AutoTutor. This method allowed for on-line 
identification of emotions while working on a task with minimal task interference. Seven participants were run in 
the emote-aloud study and the procedure yielded 215 emote-alouds. The emotions of interest in the emote-aloud 
study were anger, boredom, confusion, eureka, frustration, contempt, curious, and disgust, but only boredom, 
confusion, eureka, and frustration were frequently reported by the participants. Additionally, although eureka was 
reported with a modest frequency, we suspect that this response may have functionally signified delight from giving 
a correct answer or surprise from getting unexpected positive feedback from the tutor rather than a deep eureka 
experience (i.e., a flash of insight, followed by extremely positive affect). In light of these findings, we have refined 
our list of emotions affiliated with deep learning to boredom, confusion, flow, and frustration.  Additionally, three 
new affective states (neutral, delight, and surprise) have been added to the list.  Neutral was added because unlike 
the emote-aloud study in which participants voluntarily expressed their affective states, the current study forced 
participants to state their emotions every 20 seconds (described below). Delight and surprise were added as 
functional replacements for eureka. 

2.3.   Human-Measurement of Emotions: The Multiple Annotator Study 

Modeling affect involves determining what emotion a learner is experiencing at particular points in time. Emotion is 
a construct (i.e., an inferred conceptual entity), so one can only approximate its true value. Researchers sometimes 
have relied on a single operational measure in inferring a learner’s emotion, such as self reports (De Vicente & Pain, 
2002; Klein, Moon, & Picard, 2002; Matsubara & Nagamachi, 1996) or ratings by independent judges (Liscombe, 
Riccardi, & Hakkani-Tür, 2005; Litman & Forbes-Riley, 2004; Mota & Picard, 2003), but we propose the 
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combination of several different measures of a learner’s affect. Our measures consist of emotion judgments made by 
the learner, a peer, and two trained judges. Employing multiple measures of affect is compatible with the standard 
criterion for establishing convergent validity (Campbell & Fiske, 1959). 

We conducted a study which consisted of 28 participants interacting with AutoTutor for 32 minutes on one of 
three randomly assigned topics in computer literacy: hardware, internet, or operating systems. Three streams of 
information were recorded during the participant’s interaction with AutoTutor. A video of the participant’s face was 
captured using the IBM® blue-eyes camera (Morimoto, Koons, Amir, & Flickner, 1998). Posture patterns were 
captured by the Tekscan® Body Pressure Measurement System (Tekscan, 1997). A screen-capturing software 
program called Camtasia Studio (developed by TechSmith) was used to capture the audio and video of the 
participant’s entire tutoring session with AutoTutor. The captured audio included the speech generated by the 
AutoTutor agent. 

The affect judging process was conducted by synchronizing and displaying to the judges the video streams from 
the screen and the face.  Judges were instructed to make judgments on what affective states were present at 20-
second intervals; at each of these points, the video automatically paused (freeze-framed). Additionally, if 
participants were experiencing more than one affective state in a 20-second block, judges were instructed to mark 
each state and indicate which was most pronounced. However, in these situations only the more prominent affective 
state was considered in the current analyses. At the end of the study participants were asked to identify any affective 
states they may have experienced that were not included in the specified list of 7 emotions. However, a cursory look 
at this data did not reveal any new affective states. 

Four sets of emotion judgments were made for the observed affective states of each participant’s AutoTutor 
session. First, for the self judgments, the participant watched his or her own session with AutoTutor immediately 
after having interacted with the tutor. Second, for the peer judgments, participants returned approximately a week 
later to watch and judge another participant’s session on the same topic in computer literacy. Finally, two additional 
judges (called trained judges) judged all of the sessions individually; these trained judges had been trained on how 
to detect facial action units according to Paul Ekman’s Facial Action Coding System (FACS) (Ekman & Friesen, 
1978). The trained judges also had considerable experience interacting with AutoTutor. Hence, their emotion 
judgments were based on contextual dialogue information as well as the FACS system. 

A list of the affective states and definitions was provided for all judges. The states were frustration, confusion, 
flow, delight, surprise, boredom, and neutral. Frustration was defined as dissatisfaction or annoyance. Confusion 
was defined as a noticeable lack of understanding, whereas flow was a state of interest that results from involvement 
in an activity. Delight was a high degree of satisfaction. Surprise was defined as wonder or amazement, especially 
from the unexpected. Boredom was defined as being weary or restless through lack of interest. Neutral was defined 
as no apparent emotion or feeling.  

We examined the proportion of judgments that were made for each of the affect categories, averaging over the 4 
judges.   The most common affective state was neutral (.32), followed by confusion (.24), flow (.17), and boredom 
(.16). The frequency of occurrence of the remaining states of delight, frustration and surprise were significantly 
lower, comprising .06, .04, and .02 of the observations respectively.  This distribution of affective states implies that 
most of the time learners are either in a neutral state or in a subtle affective state (boredom or flow). There is also a 
reasonable amount of confusion since the participants in this study were typically low domain knowledge students 
as indicated by their low pretest scores. 

Interjudge reliability was computed using Cohen’s kappa for all possible pairs of judges: self, peer, trained 
judge1, and trained judge2. Cohen’s kappa measures the proportion of agreements between two judges with 
correction for baserate levels and random guessing. There were 6 possible pairs altogether. The kappas were 
reported in Graesser et al. (2006): self-peer (.08), self-judge1 (.14), self-judge2 (.16), peer-judge1 (.14), peer-judge2 
(.18), and judge1-judge2 (.36). While these kappas appear to be low, they are on par with data reported by other 
researchers who have assessed identification of emotions by humans (Ang et al., 2002; Grimm et. al., 2006; Litman 
& Forbes-Riley, 2004; Shafran, Riley, & Mohri, 2003).An ANOVA performed on these 6 interjudge kappa revealed 
that there were significant differences in the inter-judge reliability scores among the six pairs, F(5, 135) = 33.34, 
MSe =.008, p < .01. Post hoc tests revealed that the self-peer pair had the lowest inter-judge reliability when 
compared to the other five pairs. The two trained judges had significantly higher kappa scores than the other five 
pairs. These results support the conclusion that peers are not particularly good at detecting learner emotions. 
Another conclusion is that training on Ekman’s facial action coding system can enhance the reliability and accuracy 
of judgments of affective states.  

Interrater reliability scores for individual emotions between the two trained judges revealed that delight and 
confusion has the highest kappas (.71 and .40 respectively). The kappa scores for flow (.30), neutral (.30), surprise 
(.27), and boredom (.26) were very similar and quantitatively higher than frustration (.21) which had the lowest 
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kappa. On the basis of these results, we can infer that the trained judges had less difficulty in detecting emotions that 
are typically embodied with animated facial expressions such as delight and confusion. However, our data does 
suggest that frustration and surprise seem to be exceptions to this rule. The low kappa scores associated with 
frustration could perhaps be explained by the fact that most learners attempt to disguise frustration since it is 
considered to be a negative affective state. Moderate kappa scores for surprise could be explained by the low 
frequency of occurrence of this emotion. In fact trained judges only observed surprise in half of the participants and 
obtained a non-zero kappa score in about a third of these participants. 

3.   Synopsis of Prior Research on Affect and Dialogue 

3.1.   Features of AutoTutor’s Mixed-Initiative Dialogue 

A session with AutoTutor is comprised of a set of subtopics (main questions) that cover specific areas of the main 
topics (hardware, internet, and operating systems). Each subtopic has an associated set of expectations, potential 
dialogue moves to elicit expectations (e.g., hints, prompts, assertions), misconceptions, corrections of 
misconceptions, and other slots in the curriculum script that need not be addressed here. The expectations are ideally 
covered by a series of turns in AutoTutor’s conversation with the student in an attempt to help the student construct 
an answer to the current main question (subtopic). When an acceptable answer with the appropriate details is 
gleaned from the student’s responses (usually after 30 – 100 turns), AutoTutor moves on to the next subtopic. At the 
end of each student turn, AutoTutor maintains a log file that captures the student’s response, a variety of 
assessments of the response, the feedback provided, and the tutor’s next move. Temporal information, such as the 
student’s reaction time and response time, is also recorded. Table I provides an overview of relevant information 
channels that are available in AutoTutor’s log files of the interaction history.   

3.1.1 Temporal Information. The temporal information can be viewed as a combination of global and local temporal 
markers that span the period of interaction. The real time measures the time of a dialogue event in the tutoring 
session, and is measured in milliseconds but rounded to seconds for ease of interpretation. The subtopic number 
indicates the number of main questions answered. It provides a global measure of sequential position within the 
entire tutorial session. For example, for a one-hour session covering three subtopics, the third subtopic would 
indicate that the student is approximately in the 40-60 minute time span. The turn number, on the other hand, 
provides a local temporal measure.  It is the nth turn of the student in the current question (subtopic). Finally, the 
student response time is the elapsed time (in milliseconds converted to seconds for easy interpretation) between the 
verbal presentation of the question by AutoTutor and the student submitting an answer. 

3.1.2  Response Information. AutoTutor uses LSA for the majority of its assessments of the student’s responses to a 
question, as will be discussed below.  Another measure we consider is the verbosity of the student’s responses. The 
verbosity is measured by the number of words and the number of characters in the student’s response.  A recent 
measure of the student’s response to AutoTutor is based on a classification of the student’s response (SAC) 
according to a Speech Act Classification system (Olney, Louwerse, Mathews, Marineau, Hite-Mitchell, & Graesser, 
2003). The system classifies each response into one of a number of categories; those of interest in this research 
involve topic-unrelated frozen expressions (e.g., I don’t know, What did you say?, coded as -1) and topic-related 
contributions (scored as a 1). 

3.1.3 Answer Quality Assessments.  AutoTutor relies on LSA (Landauer & Dumais, 1997; Landauer, McNamara, 
Dennis, & Kintsch, in press) as its primary computation of the quality of student responses in student turns. The 
local assessments for a given turn N measures the student’s response for that turn on the basis of its similarity to 
good answers (expectations) and bad answers (misconceptions and bugs). The local good score is the highest match 
score between the content of student turn N and the set of expectations representing good answers. The local bad 
score is the highest match to the set of bad answers. A high local good score reflects progress in answering the main 
question, whereas a high local bad score reflects resonance with misconceptions. The delta local good score and the 
delta local bad score measure changes in the local good score and the local bad score, respectively, compared with 
student turn N-1.    

The four Global parameters (see Table I) perform the same assessments as the local parameters with the 
exception that the text used for the LSA match is an aggregation of all of the student’s turns (1 through N) for a 
given subtopic. With this scheme, a student’s past responses to a subtopic are considered in AutoTutor’s assessment 
of the student’s current response. 
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Table I. Description of the information mined from AutoTutor’s log files at the end of each student turn 

Channel Sub channel Description 

Temporal Information 

Real Time 
Subtopic No. 
Turn No. 
Response Time 

Time in seconds since the beginning of the session 
The current subtopic (question) in this session 
The no. of the conversation turn within a subtopic 
Time between question and answer submission 

Response Information 
No. of words 
No. of chars 
Speech Act 

The number of words in the student’s response 
The number of characters in the student’s response 
Speech Act category of the student’s response 

Answer Quality Assessment 

Local Good  
Delta Local Good  
Global Good  
Delta Global Good 
Local Bad  
Delta Local Bad  
Global Bad  
Delta Global Bad  

Similarity of student’s response to an expectation 
The change in the Local Good Score 
Similarity of response history to expectations 
The change in the Global Good Score 
Similarity of student’s response to a bad answer 
The change in the Local Bad Score 
Similarity of response history to bad answers 
The change in the Global Bad Score 

Tutor Directness 

Pump 
Hint 
Prompt 
Correction 
Assertion 
Summary 

Minimal information provided. e.g. “What else” 
Provides a hint to the student to fill in proposition 
Prompts student to fill in a missing content word 
Corrects the student’s misconception 
Asserts information about an expectation 
Provides a summary of the answer 

Tutor Feedback 

Positive 
Neutral Positive 
Neutral 
Neutral Negative 
Negative 

Provides feedback terms such as: “good job”,  
Provides feedback terms such as: “yeah”, “right”  
Provides feedback terms such as: “uh huh”,  
Provides feedback terms such as: “kind of” 
Provides feedback terms such as: “wrong”, “no” 

Note.  The various sub channels for tutor directness and tutor feedback channels are ordered onto two individual scales. 
Therefore, the number of dialogue predictors is taken to be 17 and not 26. 

3.1.4 Tutor Directness.  At the end of each student turn, AutoTutor incorporates the various LSA assessments when 
choosing its next pedagogically appropriate dialogue move. When AutoTutor tries to get a single expectation (E) 
covered (e.g., “The hard disc is a storage medium”), this goal is posted and is achieved by AutoTutor presenting a 
series of different dialogue moves across turns until the expectation E is expressed by the student or as a last resort 
by the tutor.  It first gives a pump (What else?), then a hint (What about the hard disk?), then a prompt for a specific 
important word (The hard disk is a medium of what?), and then simply asserts the information (The hard disc is a 
medium for storage).  After all of the expectations for the problem are covered, a summary is provided by 
AutoTutor.  Given this mechanism of encouraging the student to cover the expectations, the dialogue moves chosen 
can be ordered on a directness scale (ranging from -1 to 1) on the basis of the amount of information AutoTutor 
supplies to the learner. The ordering is pump < hint < prompt < assertion < summary. A pump conveys the 
minimum amount of information (on the part of AutoTutor) whereas a summary conveys the most amount of 
explicit information.  

3.1.5  Tutor Feedback.  AutoTutor’s short feedback (positive, neutral, negative) is manifested in its verbal content, 
intonation, and a host of other non-verbal conversational cues. Table I shows examples of AutoTutor’s responses, 
characterized by the type of feedback being provided. Similar to the directness scale constructed above, AutoTutor’s 
feedback was mapped onto a scale ranging from -1 (negative feedback) to 1 (positive feedback). 

3.2.   Relating Affect and Dialogue 

The first investigation into the potential of the dialogue features being a viable channel for affect detection was 
performed on the data from the emote-aloud study (D’Mello et al., 2006).  In that study, college students verbally 
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expressed their emotions during interactions with AutoTutor. The AutoTutor log files were mined to obtain 
information from the various dialogue channels described above.  Each dialogue feature vector was then associated 
with an emotion category on the basis of the verbalized affect ratings. Correlation and regression analyses confirmed 
the hypothesis that dialogue features could significantly predict the affective states of confusion, eureka (delight), 
and frustration but not boredom. Standard classification techniques used to assess the reliability in discriminating 
between confusion, eureka, and frustration from the conversation features yielded an average accuracy of 58% 
(chance= 34.5%, D’Mello et al., 2006).  

 However, the D’Mello et al. (2006) results should be interpreted with caution because of a number of 
shortcomings identified with the emote-aloud procedure and the accompanying data analyses. The first limitation 
with the procedure was that there were floor effects in the reporting of some affective states.  Consequently, we 
ended up concentrating on only the affective states of boredom, confusion, eureka/delight, and frustration.  A second 
limitation was that a statistically significant model was not discovered for the affective state of boredom. The third 
limitation was that significant relationships between AutoTutor dialogue and the affective states were discovered 
only with three out of the five main channels of dialogue information available (see next section). The number of 
participants utilized in the emote-aloud study (N=7) was also a matter of some concern. 

In light of the above discussion, we conclude that it is reasonable to explore the detection of learners’ affect from 
the dialogue features. However, in order to consider dialogue as a serious competitor to the more popular bodily 
measures, such as the tracking of facial features and acoustic-prosodic features from speech, a more comprehensive 
evaluation of affect detection reliabilities from dialogue are required.  

4.   Results of Present Study 

The present study evaluated whether conversational dialogue features are a viable channel for affect detection.  The 
data used for the analyses was from the multiple annotator study in which 28 participants interacted with AutoTutor 
on topics in computer literacy. When aggregated across each 32-38 minute session for each of the 28 participants, 
we obtained 1470 student-tutor interaction turns and 2967, 3012, 3816, and 3723 emotion judgments for the self, 
peer, trained judge 1, and trained judge 2, respectively. A dialogue feature vector based on the features listed in 
Table I was then extracted for each student-tutor interaction turn. The feature vector was then associated with an 
emotion category on the basis of the human judges’ affect ratings. More specifically, the emotion judgment that 
immediately followed a dialogue move (within a 15 second interval) was bound to that dialogue move.  This data 
collection procedure yielded four ground truth models of the learner’s affect, so we were able to construct 4 labeled 
data sets.  

Affect judgment reliabilities between the human judges presented above revealed that the highest agreement was 
obtained between the trained judges (kappa = .36). However, it is still not firmly established whether the trained 
judges or the self judgments are closer to the ground truth. We address this issue by combining affect judgments 
from the four judges in order to obtain a better approximation of the learner’s emotion. In particular, one data set 
was constructed on the basis of judgments in which both trained judges agreed. Another was constructed for 
judgments in which any two (or more) judges agreed. Similarly, a third data set was constructed for the affect 
judgments in which three (or more) judges agreed. A fourth additional data set was constructed for judgments in 
which all four judges agreed, but were eliminated from the subsequent analyses because of a very small sample size 
(N = 66). The frequencies of the emotions in each data set are listed in Table II. 

Table II. Frequency of affective states in each data set 

Frequency of Affective States  Affect Judge Boredom Confusion Delight Flow Frustration Neutral Surprise  Sum 

Self 164 172 52 176 167 265 28  1024 
Peer 189 172 25 177 97 344 36  1040 
Trained Judge 1 104 258 82 190 139 321 21  1115 
Trained Judge 2 242 238 67 102 58 390 12  1109 
Trained Judges  81 150 61 67 62 196 6  623 
Two Agree  144 167 42 105 84 326 6  874 
Three Agree 64 90 22 49 30 154 1  410 
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4.1   Multiple Regression Analyses 

Multiple regression analyses were conducted to determine the extent to which the seven affective states of interest 
could be predicted from the various dialogue features. For each of the seven data sets (self, peer, trained judge1, 
trained judge2, trained judges agree, any 2 judges agree, and any 3 judges agree), seven multiple regression models 
were constructed, one for each of the affective states, yielding 49 models in all. The criterion variable for each 
multiple regression analysis was the affective state (1 or 0 if present or absent respectively) whereas the predictor 
variables were the set of dialogue features. It is widely acknowledged that strongly correlated predictor variables 
tend to cause instability in multiple regression models.  Therefore, we first identified and subsequently eliminated 
the collinear dialogue features. We adopted a correlation threshold (Pearson’s r > .7) to remove collinear predictor 
variables. Specifically, when two variables were identified as collinear predictors, the one with a stronger overall 
correlation with the affective states was preserved. This approach reduced the 17 features to 11 features by 
discarding real time, local bad score, global bad score, delta local bad score, delta global bad score, and number of 
words.  

In order to partial out variability among participants, the multiple regression analyses were conducted in two 
steps. In step 1, the predictors included the participants’ pretest scores and dummy coded variables to differentiate 
participants.  In step 2, the group of predictors was the 11 different conversation features after six potential 
predictors were excluded as a result of the collinearity analysis. Step 1 was entered first, with the residual variance 
passed onto step 2.  In this fashion, we could partial out any of the variability associated with the participants’ 
characteristics and determine the unique variance that could be ascribed to particular conversation features.  

4.1.1 Analysis of Regression Models. Statistically significant overall relationships (at the p < 0.05 level) were 
discovered for boredom, confusion, flow, frustration, and neutral, but not for delight and surprise.  In the cases of 
delight and surprise, step 1 was usually significant but not step 2.  Such a result implies that the various conversation 
features were unable to add a significant improvement in classifying affect states above and beyond participant 
characteristics. 

Table III. Summaries of the multiple regression models for emotions in each data set 

Affective States 

Boredom Confusion Flow Frustration Neutral Rating Type Model df1,df2 
2
adjR  F  2

adjR  F  2
adjR  F  2

adjR  F  2
adjR  F  

PC 27,996 .134 6.86 .123 6.33 - - .129 6.59 .298 17.12Self PC+DF 11,985 .162 4.00 .171 6.26 - - .161 4.46 .315 3.18 
PC 27,1012 .162 8.44 .097 5.14 - - .085 4.57 .275 15.63Peer PC+DF 11,1001 .208 6.39 .107 1.98 - - .116 4.26 .287 2.44 
PC 27,1087 .072 4.18 .032 2.37 .098 5.50 .025 2.04 .013 1.54 Trained Judge1 PC+DF 11,1076 .122 6.70 .082 6.33 .194 12.80 .107 10.15 .029 2.67 
PC 27,1081 .048 3.06 .036 2.51 .046 2.98 .054 3.34 .075 4.31 Trained Judge2 PC+DF 11,1070 .128 10.03 .140 12.91 .135 11.09 .103 6.38 .105 4.32 
PC 27,595 .062 2.53 .040 1.96 .082 3.05 .039 1.95 .092 3.34 Trained Judges PC+DF 11,584 .159 7.22 .123 6.13 .178 7.37 .138 7.19 .117 2.51 
PC 27,846 .082 3.88 .064 3.21 .080 3.83 .063 3.19 .057 2.97 Two Judges PC+DF 11,835 .160 8.17 .159 9.67 .147 7.03 .138 7.70 .097 4.36 
PC 27,382 .128 3.22 .114 2.96 .084 2.39 .120 3.07 .161 3.92 Three Judges PC+DF 11,371 .245 6.40 .229 6.16 .196 5.85 .164 2.84 .186 2.04 
PC  0.098  0.072  0.078  0.074  0.139  
DF  0.071  0.072  0.092  0.059  0.024  Mean 2

adjR  
PC+DF  0.169  0.144  0.170  0.132  0.162  

PC: Regression model with participant characteristics only. 
PC + DF: Regression model with participant characteristics and dialogue features. 
All models statistically significant at the p < .05 level. 

A number of conclusions can be drawn from the characteristics of the regression models presented in Table III.  
For the affective state of boredom, when aggregated across all 7 models, our features explained about 16.9% of the 
predictable variance, with 7.1% of the variance being accounted for by the step 2 conversation features alone (see 
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last row of Table III). Similarly, on average 14.4% of the variance of affect classification was explained for 
confusion, with 7.2% obtained from the conversation features. For flow and frustration, the conversational features 
accounted for 9.2% and 5.9% of the total variances of 17% and 13.2% respectively. Additionally, the data sets based 
on face value judgments of the self and peer failed to converge on a statistically significant model for flow.  The 
flow emotion is difficult to detect from the affect ratings made by the novice judges. Finally, the weakest model was 
obtained for neutral with the dialogue feature, explaining only 2.4% of the total variance of 16.2%. This implies that 
the dialogue features may not be very successful in discriminating the other affective states from neutral. 

4.1.2 The Relationship between Dialogue Features and Learner’s Affect. We can glean a number of generalizations 
regarding the relationship between dialogue and affective states, based on numerical direction (i.e. signs, +-) of the 
statistically significant coefficients of the multiple regression models (see Table IV). A number of relationships 
surfaced when one considers the significant predictors of the affective states where at least two judges agreed. In 
particular, boredom occurs later in the session (high subtopic number), after multiple attempts to answer the main 
question (high turn number), and when AutoTutor gives more direct dialogue moves (high directness). Alternatively, 
confusion occurs earlier in the session (low subtopic number), within the first few attempts to answer a question 
(low turn number), with slower responses (long response time), shorter responses (less characters), low quality 
answers (low local good LSA scores), with frozen expressions (negatively coded speech acts), when the tutor is less 
direct in providing information, and when the tutor provides negative feedback. The analyses indicated that flow 
occurs within the first few attempts to answer a question (low turn number), with quicker, longer, proficient 
responses (low response time, more characters, and high local good LSA score respectively), and is accompanied by 
positive feedback from the tutor. Frustration was prevalent later in the temporal span of a session (high subtopic 
number), with longer response times, with good answers towards the immediate question (high local good score), 
but poor answers towards the broader topic (low global good score), and negative tutor feedback.  

Table IV. Significant predictors for the multiple regression models for emotions in each data set 

Affective States 

Boredom Confusion Flow Frustration Neutral Dialogue  
Features 

S P J1 J2 JA 2 3 S P J1 J2 JA 2 3 S P J1 J2 JA 2 3 S P J1 J2 JA 2 3 S P J1 J2 JA 2 3
Subtopic No.  + + + + + + + - - - - - - -  -      + +         -      
Turn No. + + + + + + +  -     - -   -  -   +                
Response Time             + + + +   - - - -     +  +    -   - -  
No. Characters           -  - - - - + + + + + +                 
Global Good                        - - - -            
Del. Glbl. Good                                        
Local Good     -         - - -   +    +   + + + +           
Del. Local Good      -                                 
Speech Act -         - - - - - - -               +   +  + +
Directness    + + +     - -                         
Feedback         +       -     -    + + + +  - - - - - - - + + + + + +  

 S: Self Judgments, P: Peer Judgments, J1: Trained Judge1, J2: Trained Judge2 
JA: Both trained judges agree, 2: Any two judges agree, 3: Any three judges agree 
+ or  - indicates that the feature is a positive or negative predictor in the multiple regression model at p < .05 significance level. 
Empty cells indicate that a feature was not a statistically significant predictor for the respective emotion. 

The relationships between the various dialogue features and the affective states described above are generally 
intuitive and in the expected directions. Of particular interest are the features that predict the affective state of 
frustration.  In the case of frustration, the learner tends to have not been doing well on the topic in general, as 
indicated by a negative global LSA score, but they have taken a longer time to answer the question (increased 
response time) and have given a good answer to the immediate question (higher LSA local good score). However, 
AutoTutor’s internal model of the learner’s interaction has erroneously classified the student as being a poor learner 
and responds with increased negative feedback, which in turn increases frustration. It should be noted that in this 
case it would appear that the learner generally made an effort, as indicated by the increased response time and higher 
local good score, but did not receive the positive response expected. This would suggest that this type of frustration 
could be alleviated by dispensing more positive feedback in cases where a learner who has generally performed 
poorly takes the time to give a good response.   
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4.1.3  Segregating Participant Characteristics from Dialogue Features.  

A critical hurdle that accompanies applications in the field of user modeling is whether observed patterns generalize 
across different participants (i.e., are they universal or person-specific?, Picard, 1997). In situations where 
relationships between patterns do not generalize, it is important to introduce some degree of normalization for each 
participant.  The perceived scientific value of this research would increase if the interactions between the dialogue 
features and the learner’s affective states would generalize above and beyond the participant’s characteristics.  

The multiple regression models described above were constructed in two steps, such that the dialogue features 
were excluded from the first step and were reintroduced in the second step. While this procedure quantitatively 
separates any explained variance into two groups, it fails to confirm whether any of the relationships observed in 
Table IV would reflect the commonality of variance between participant characteristics and dialogue features. That 
is, which of these two sources of variance should get credit when there is commonality of variance between the two? 

One way to answer this question involved reversing the order in which the two sets of predictors are entered into 
the 2-step multiple regression analyses. If step-1 regression models are constructed on the basis of the 11 dialogue 
features only and the 29 participant characteristics variables are reserved for the step 2 model alone, one can 
determine whether differences among college students are significant above and beyond the dialogue features. 
Specifically, if a particular feature was a statistically significant predictor of an affective state in step 1 of the 
regression analyses (dialogue features only) as well as in step 2 (dialogue features plus participant characteristics) 
one could reliably conclude that any covariation observed between this feature and the affective state is valid and 
not caused by the participants’ characteristics.  On the other hand if a dialogue feature was a significant predictor in 
step 1 but not in step 2, then one would be forced to conclude that the relationship between the predictor and the 
affective states was a characteristic of individual learners and could not generalize beyond individual participants. 

In accordance with this reverse regression procedure, the multiple regression analyses were repeated with the 
order of the dialogue features and participant characteristics reversed (dialogue features for model 1, dialogue 
features + participant characteristics for model 2). An examination of the significance and direction (+-) of the 
statistically significant predictors across both steps of the regression models did not reveal any serious contradictions 
to what was reported in Table IV. Therefore, we can conclude that our set of dialogue features does covary with the 
affective states above and beyond the participant characteristics.   

4.2   Dimensionality Reduction 

Dimensionality reduction is an important phase in machine learning experiments. In addition to potentially 
increasing classification accuracy by eliminating unrelated features, computational advantages are gained in terms of 
execution time. Therefore, the data were preprocessed before attempting to classify affect from dialogue. We 
pursued two methods of dimensionality reduction, one based on feature selection and the other based on feature 
extraction.  The “feature selection first” method consisted of a supervised selection of features on the basis of the 
collinearity analyses and the multiple regression analyses described above. In particular the statistically significant 
standardized coefficients (after the elimination of 6 highly collinear features) listed in Table IV of the multiple 
regression analyses were used as the features for the classifiers. 

The second dimensionality reduction technique involved extracting features by principal component analyses 
(PCA) and linear discriminant analysis (LDA). The PRAAT environment (Boersma & Weenink, 2006) was used to 
accomplish the requisite computation. The combination of these methods have been widely used and well validated 
as robust dimensionality reduction techniques, particularly in extracting features from speech.  

Our analyses proceeded by first applying PCA to all 7 datasets, each containing the complete set of 17 features,  
and then dynamically reducing the dimensionality on the basis of the number of eigenvectors that accounted for 97% 
of the variance (typically 12-14). LDA was then applied to the decorrelated features to project them onto a lower 
dimensional space on the basis of the number of discriminant functions developed (number of classes – 1). Machine 
learning experiments were conducted, with the classifiers being trained on features extracted by the combined use of 
PCA and LDA as well as separately utilizing PCA and LDA.  These strategies yielded classification accuracies that 
were slightly better than chance and are not discussed in the subsequent section. We suspect that this may be due to 
the fact that our set of predictors is quite small (N = 17) and hence extracting a subset may have reduced the 
predictive power. 

4.3.  Classifying Affective States from Conversation Features 

In order to address the larger goal of extending AutoTutor into an affect-sensitive intelligent tutoring system, the 
need for real time automatic affect detection becomes paramount. Therefore, we applied 17 standard classification 
techniques in an attempt to detect the various affective states based on dialogue features. The motivation behind 
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using a relatively larger set of classifiers was to determine which classifier yields the best performance. It also would 
be interesting to determine whether classifiers from any particular category (trees, rules, etc) outperforms the others. 

The Waikato Environment for Knowledge Analysis (WEKA) (Witten & Frank, 2005) was used to comparatively 
evaluate the performance of various standard classification techniques in detecting affect from dialogue. The 
classification algorithms tested were selected from a list of categories including Bayesian classifiers (Naive Bayes 
and Naive Bayes Updatable), functions (Logistic Regression, Multilayer Perceptron, and Support Vector Machines), 
instance based techniques (Nearest Neighbor, K*, Locally Weighted Learning), meta classification schemes 
(AdaBoost, Bagging Predictors, Additive Logistic Regression), trees (C4.5 Decision Trees, Logistic Model Trees, 
REP Tree), and rules (Decision Tables, Nearest Neighbor Generalization, PART).  

The classification process proceeded in three phases.  In the first stage, we assessed the reliabilities of classifiers 
in discriminating between boredom, confusion, flow, frustration, and neutral. In the second phase, we only 
eliminated neutral and reduced the scope to boredom, confusion, flow, and frustration. This is a challenging task 
because the standardized coefficients of the regression models revealed that the diagnosticity of some of the 
dialogues features with respect to these four affective states was quite low. In the third phase of the classification 
analyses, we examined the accuracies of detecting each of the four affective states from the base state of neutral. 
Specifically, the classification algorithms were compared in their ability to differentiate boredom, confusion, flow, 
or frustration from neutral. There were challenges in this analysis as well.  Although the multiple regression models’ 
analyses provided a significant model for detecting the affective state of neutral, most of the variance associated 
with neutral was accounted for by the participants’ pretest scores and overall emotion ratings; that is, the dialogue 
features were not very proficient predictors of neutral affect. The multiple regression analyses also failed to 
converge upon statistically significant models for delight and surprise, so these emotions were excluded from the 
classification analyses. 

We established a uniform baseline for the different emotions by randomly sampling an equal number of 
observations from each affective state category. This sampling process was repeated for 10 iterations and all 
reported reliability statistics were averaged across these 10 iterations.  For example, consider the task of detecting 
confusion from neutral with affect labels provided by the self. In this case we would randomly select an equal 
number of confusion and neutral samples, thus creating a data set with equal prior probabilities of both these 
emotions. Each randomly sampled data set was evaluated on the 17 classification algorithms and reliability statistics 
were obtained using k-fold cross-validation (k = 10).  

A 3 factor repeated measures analysis of variance (ANOVA) was performed in order to comparatively evaluate 
the performance of the classifiers in detecting affect from the dialogue features. The first factor (judge) was the 
judge or combination of judges that provided the affect judgments. This factor had 7 levels: self, peer, trained judges 
1, trained judge 2, trained judges agree, any 2 judges agree, and any 3 judges agree. The second factor involved the 
emotions classified and was composed of 6 levels: collectively discriminating between boredom, confusion, flow, 
frustration, and neutral (level 1, chance = 20%), discriminating between boredom, confusion, flow, and frustration 
(without neutral, level 2, chance = 25%), and individually detecting boredom, confusion, flow, and frustration from 
neutral (levels 3, 4, 5, and 6 respectively, chance = 50%). The third factor in the ANOVA was the classification 
scheme (called classifier) divided across 6 levels for Bayesian classifiers, functions, instance based learners, meta 
classifiers, rules, and trees. The unit of analysis for the 7x5x6 ANOVA was a single iteration of a single classifier. 
The kappa score was utilized as the metric to evaluate performance of each classifier because this metric partials out 
random guessing. The ANOVA indicated that there were significant differences in kappa scores across all three 
factors, as well as for various interactions between the factors. On the basis of the ANOVA we report comparisons 
between the various levels of our three factors (rater, emotion, and classifier). Figure 1 graphically depicts the mean 
kappa score obtained from the emotion classification for each level of each factor of the ANOVA. 

4.3.1  Comparisons across Affect Judges. The results of the ANOVA indicated that a statistically significant effect 
was obtained for the judge F(6,174) = 492.09, MSe =.009, p < .001 (partial η2 = .944). Bonferroni post hoc tests 
revealed that classifiers evaluated on data where at least three judges agreed (M3A = .295, p < .01) yielded the best 
performance. However, this finding should be interpreted with caution since this data set probably consists of the 
most obvious cases, namely when three or more judges were able to agree on an affective state. It was also the 
smallest data set with only 410 records.  The post hoc tests indicated that there were no significant differences in 
kappa scores for classifiers based on combined affect judgments where 2 or more judges agreed, the 2 trained judges 
agreed, and the judgments of trained judge 2 (M2A = .256, MJA = .263, and MJ2 = .258). Classifiers trained on data 
with affect labels provided by trained judge 1 were lower (MJ1 = .245) than these three scores.  The lowest kappa 
scores were found in classifiers trained on affective judgments of the self (MSF =  .111, p < .001). Classifiers trained 
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on affective judgments provided by the peer were significantly lower than all others with the exception of the self 
judgments (MPR = .162, p < .001).  

 In general if one aggregates the 7 factors into 3 groups as novice judges (self and peer), trained judges (1 and 2), 
and combined models (trained judges agree, at least 2, and 3 judges agree) we obtain mean kappa scores of .137, 
.252, and .258. Therefore, one can conclude that reliability scores obtained by classifiers based on affect categories 
provided by trained judges and combined models were approximately the same and higher than those obtained by 
judgments provided by novice judges. 

4.3.2 Comparisons across Emotions Classified. The ANOVA revealed statistically significant differences in kappa 
scores among the emotions classified F(5,145) = 638.41, MSe =.013, p < .001 (partial η2 = .957). Bonferroni post 
hoc tests indicated that the classifiers were most successful in detecting frustration from neutral (MFRNU = .39, p < 
.001). The classifiers had more success in collectively discriminating between boredom, confusion, flow, and 
frustration (MWONU = .229) than individually detecting boredom, confusion, and flow from neutral (MBONU = .207, 
MCFNU = .182, MFLNU = .193). Kappa scores obtained from efforts to detect boredom from neutral (MBONU = .207) 
were significantly higher than similar efforts in detecting confusion from neutral (MCFNU = .182).  

The least robust results were obtained when we attempted to discriminate between the 5 affective states 
(boredom, confusion, flow, frustration, and neutral). In this case we obtained a mean kappa score of .163 (MALL), 
which was significantly lower (p < .001) than all other combinations of emotions. Discriminating a larger number of 
affective states is challenging, particularly when the states are collected in an ecologically valid setting (i.e. no 
actors were used to express emotions and no emotions were intentionally induced). Additionally, these results are on 
par with kappa scores associated with human judges (e.g. self-peer = .08, self-judge1 = .14, self-judge2 = .16). 

 

 
Figure 1. Mean kappa across: (a) Affect Judge; (b) Emotions Classified; (c) Classifier Type 
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4.3.3 Comparisons across Classifier Schemes. The results of the ANOVA indicated that there were statistically 
significant differences in the kappa scores across the various classifier schemes F(5,145) = 44.83, MSe =.03, p < 
.001 (partial η2 = .607). Bonferroni post hoc tests revealed that the kappa scores of the functions, meta, and tree 
based classifiers (MFNCN =.261, MMETA = .246, MTREE = .244) were similar quantitatively and significantly (p < .01) 
higher than the other categories. Kappa scores for the instance-based learning methods (MINST  = .166) were 
significantly lower than the other 5 classifier categories (p < .001 level). The post hoc tests also indicated that 
Bayesian classifiers (MBAYS  = .236) outperformed rule based classification schemes (MRULE  = .21, p < .001). 

4.3.4 Optimal Classification Accuracy. The use of multiple assessments of the learner’s affect (N=7) and a large 
number of classifiers (N=17) served an exploratory goal regarding the possibility of detecting affect from dialogue. 
However,  in order to achieve our goal of developing a real time emotion classification system, we will shift our 
focus to the data set and classifier that yielded the best performance. Table V presents the maximum classification 
accuracies obtained across all 17 classifiers for each of the 7 data sets in collectively discriminating between the 
various affective states, as well as in individually detecting each state from neutral. 

Table V. Comparison of various classification techniques to detect learner’s affect 

Max. Classification Accuracy (%) 
Affective States Base 

Rate  Self Peer  Judge 
1 

Judge 
2  Judges 

Agree 
2 

Agree 
3 

Agree 
Boredom,Confusion, Flow, 
Frustration, Neutral 20  29.5 31.4  38.3 42.4  42.4 41.4 42.2 

Boredom,Confusion, Flow, 
Frustration 25  35.1 38.8  50.4 50.5  54.0 52.5 52.7 

Boredom, Neutral  61.3 61.2  63.9 61.4  67.2 62.7 69.0 
Confusion, Neutral  58.9 59.4  61.2 62.6  60.9 65.4 67.8 
Flow, Neutral  52.9 56.0  66.8 70.0  70.5 63.9 67.3 
Frustration, Neutral 

50 

 64.1 69.2  73.5 76.7  76.6 76.0 77.7 
 

Consider first the ability of classifiers to collectively discriminate boredom, confusion, flow and frustration, 
either with or without the neutral category being included.  The best result, according to a simple logistic regression 
function, was provided by the trained judges and combined ratings.   The accuracy was 42.4% and 54.0% with 
versus without neutral, respectively.  The inclusion of neutral causes a reduction in accuracy, which is what could be 
expected since neutral is often confused with other emotions, particularly flow.  This finding is consistent with the 
multiple regression models having difficulty in detecting neutral from these other emotions. The maximum 
accuracies in detecting boredom, confusion, and flow from neutral (69%, 68%, and 71%) were quantitatively similar 
and lower than accuracies involving the discrimination of frustration from neutral (78%).  The AdaBoost classifier 
provided the best results in contrasting boredom and confusion from neutral. When discriminating neutral from flow 
and frustration, a simple logistic regression and C4.5 decision trees respectively yielded the best performance. With 
the exception of flow, the data sets that yielded the best performance in detecting boredom, confusion, and 
frustration from neutral were obtained from the data set in which 3 or more judges agreed on an affect rating. For 
flow and neutral, however, the best performance was obtained from the data set in which both trained judges agreed 
on the learner’s affect. As with the multiple regression analyses, the classifiers operating on the judgments of 
individual judges (self and peer) were lower than those trained on the basis of the combined models, thus 
highlighting the merits of using composite affect judgments from multiple judges. 

Table VI lists the F-measure scores for the affective states obtained from the most successful classifiers. The 
results indicate that when the classifiers attempted to collectively distinguish boredom, confusion, flow, and 
frustration, the reliabilities in detecting frustration and flow were similar and higher than those obtained for boredom 
and confusion. When one considers the analyses that distinguished  each affective state from neutral, the affective 
state of frustration was most easily distinguished from neutral. The F-measure for the affective states of boredom, 
confusion, and flow were quantitatively similar.  
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Table VI. Accuracies for boredom, confusion, flow, and frustration, and neutral 

F-Measure 
Affective States 

Self Peer Judge 
1 

Judge 
2 

Judges  
Agree 

2  
Agree 

3  
Agree 

Boredom .32 .38 .39 .29 .39 .39 .43 
Confusion .35 .21 .33 .43 .36 .42 .42 
Flow .13 .27 .47 .51 .52 .49 .51 
Frustration .35 .41 .48 .56 .56 .50 .47 
Neutral .26 .23 .16 .25 .23 .19 .23 
Boredom .35 .44 .45 .37 .47 .48 .52 
Confusion .43 .31 .44 .44 .44 .48 .49 
Flow .33 .41 .59 .59 .63 .60 .62 
Frustration .41 .49 .58 .59 .63 .60 .59 
Boredom .57 .68 .64 .63 .68 .64 .71 
Neutral .67 .61 .65 .62 .66 .67 .71 
Confusion .63 .64 .69 .66 .66 .67 .68 
Neutral .57 .59 .59 .63 .62 .66 .72 
Flow .59 .64 .68 .69 .70 .64 .72 
Neutral .54 .55 .66 .71 .71 .67 .70 
Frustration .66 .71 .75 .79 .79 .78 .80 
Neutral .63 .68 .72 .75 .75 .73 .75 

 

4.3.5 Comparisons of Computer Generated Categories with Human Assessments. It is generally accepted that 
humans face some degree of difficulty in judging affect. The difficulty is apparent when we compare our 
assessments of emotions with other psychological entities.  For example, methodologists in the social and behavioral 
sciences have sometimes claimed that kappa scores ranging from 0.4 – 0.6 are considered to be fair, 0.6 – 0.75 are 
good, and scores greater than 0.75 are excellent (Robson, 2003). However, emotions classification does not reach 
such a high bar of interrater agreement.  Interrater reliability scores across a variety of research efforts involving 
emotion measurements by humans are in general quite low. For example, Litman and Forbes-Riley (2004) report 
kappa scores of around .4 in detecting positive, negative, and neutral affect. Ang et al. (2002) report a kappa score of 
.47 in human judgments of frustration and annoyance in human-computer dialogue. Shafran, Riley, and Mohri 
(2003) report kappa scores ranging from .32 to .42 in coding affect. Recently, Grimm et al., (2006) reported kappa 
scores of .48 for humans detecting acted emotions. We found that the highest kappa score obtained from our study 
was only .36. Therefore, an interesting research question is how well affect categories generated by the various 
automated classification algorithms compares with human classification of emotions, which has modest reliability at 
best.  

In order to compare the reliability between computer generated emotion categories and human judgments, we 
conducted another set of classification analyses that focused on assessing reliabilities in collectively discriminating 
between boredom, confusion, flow and frustration. Since the previous analyses revealed that a simple logistic 
regression yielded the best performance in discriminating between these affective states, the subsequent analyses 
involve this classifier as representing the automated algorithms.  In order to make a legitimate comparison with 
human judgments of affect, the combined data sets were not included in this analysis.  Instead, classifiers were 
trained and evaluated on the four data sets that were constructed on the basis of individual judgments of the learner, 
a peer, and two trained judges. 

In order to establish a uniform baseline, we sampled an equal number of observations for the affective states of 
boredom, confusion, flow, and frustration. This process was repeated for 10 iterations and accuracy results were 
averaged across these 10 iterations. After this sampling procedure, each of the four data sets (self, peer, 2 trained 
judges) were split into two parts: training data and testing data. The training data consisted of the dialogue features 
of 21 randomly sampled (without replacement) participants. The data for the remaining 7 participants served as the 
testing data. The logistic regression based classifier was then trained on the training data of a single judge and 
correspondingly evaluated on the testing data associated with the other three judges. For example, the classifier 
trained on the 21-participant subset of the self data was tested on the 7-participant subsets of data from the peer, and 
the 2 trained judges. In this manner four versions of the logistic regression classifier were constructed, each version 
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being trained on the data of the self, the peer, and the two trained judges. Additionally, this entire process was 
repeated for 10 iterations, with each iteration involving the random sampling of a unique set of participants that 
constituted the training (75%) and testing (25%) data. 

The results of the automated classifications are presented in Table VII, where they are contrasted with the 
judgments of the human coders. It should be noted that the reliability scores for the human coders differ from those 
reported earlier (i.e., self-peer = .08, self-judge1 = .14, self-judge2 = .16, peer-judge1 = .14, peer-judge2 = .18, and 
judge1-judge2 = .36). This is because the kappa scores for the human judges listed in Table VII were only 
performed on a sample of the affective states of boredom, confusion, flow, and frustration in order to make valid 
comparisons with the machine generated categories of learner emotions. 

Table VII. Comparisons of computer generated affective states to human classification judgments 

Human Measurements Computer Measurement 
Rater 1 Testing Rater 2 Self Peer Judge 1 Judge 2 Self Peer Judge 1 Judge 2 Training 

Self  - .131 .299 .288 - .100 .257 .229 Self  
Peer - - .333 .343 .121 - .278 .273 Peer 
Judge 1 - - - .583 .124 .169 - .349 Judge 1 
Judge 2 - - - - .102 .117 .266 - Judge 2 

 
A number of conclusions can be drawn from the results of the human-human (left of table) and computer-human 

interjudge reliability (right of table) scores presented in Table VII. Classifiers based on affect judgments of the self 
agreed with other human assessments of affect at a rate proportional to agreement between two humans (first row in 
Table VII). Human-computer agreement scores obtained when the classifiers were trained on the basis of the peer’s 
affect judgments (second row) were slightly lower than human-human agreements for the two trained judges.  
Human-computer interjudge reliability scores obtained from classifiers trained on data provided by the two trained 
judges were significantly lower than the human-human interjudge reliability scores for the trained judges affect 
judgments (judge1-judge2human = .583 whereas judge1-judge2computer = .349, judge2-judge1computer = .266). On the 
basis of these observations, one can conclude that machine generated affect labels proportionally agree with novice 
judges (self and peer) but are inferior to trained judges. 

5.   Discussion 

The problem of automating affect recognition is extremely challenging, on par with automating speech recognition. 
This project supports the conclusion that significant information can be obtained from AutoTutor’s dialogue 
features, so dialogue can complement bodily measures for emotion detection. It appears that the classification 
accuracies obtained in this research on dialogue are not quite on par with the state-of-the-art algorithms that detect 
affect from facial features and speech contours. However, it should be noted that over a decade of sustained efforts 
have been directed towards affect detection from facial expressions and speech. This project is one of very few 
research investigations that classify affect from dialogue alone, whereas earlier efforts  used a small number of 
dialogue features in conjunction with acoustic-prosodic and lexical features. Our results also constitute an 
improvement in classification accuracy compared to previous efforts that used dialogue features.  We attribute this 
improvement primarily to the diversity and richness of our set of features. The features of dialogue in our analyses 
were specific to AutoTutor, but a similar set of features would presumably be relevant to any intelligent tutoring 
system, particularly in those that advocate deeper learning. In particular, the significant features that we extracted 
from AutoTutor’s dialogue history logs (e.g., local good score, global good score, directness, etc.) would generalize 
to generic categories of dialogue features in all virtually all intelligent tutoring systems, such as content coverage, 
temporal parameters, response verbosity, student ability, tutor directness, and tutor feedback.  

This section highlights contributions of this research towards the field of affect detection and human-computer 
interaction.  We subsequently identify some of the limitations of this research and discuss improvements in affect 
classification that might mitigate these limitations and extend this line of research.   

5.1   Research Overview 

This paper has addressed three major research goals.  These included (1) the collection of data on affect 
classification from multiple human judges and multiple channels, (2) statistical analyses that explore the relationship 
between a learner’s affect and the various dialogue features, and (3) analyses of machine learning experiments that 
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assess the accuracy of detecting affect from AutoTutor dialogue. This subsection summarizes and briefly speculates 
on the implications of our major findings.  

5.1.1 Human Judgments of Learner Emotions. This multiple annotator study provided significant findings on human 
coding and online detection of affective states during learning with AutoTutor. The inter-rater reliability scores 
showed significant agreement on affective states among human raters, but there were informative differences among 
the raters. Judges trained in coding facial actions (Ekman & Friesen, 1978) showed comparatively high inter-judge 
agreement between themselves and matched the learner’s self reports better than the untrained peers.  This result 
suggests that untrained peers are not particularly adept at identifying the emotions of learners, whereas trained peers 
fare much better.    

Models of affect that combine judgments made by the learner, a peer, and trained judges may represent an 
advance over traditional techniques that often rely on self reports of affect (De Vicente & Pain, 2002; Klein, Moon, 
& Picard, 2002; Matsubara & Nagamachi, 1996) or ratings by independent judges (Liscombe, Riccardi, & Hakkani-
Tür, 2005; Litman & Forbes-Riley, 2004; Mota & Picard, 2003). The motivation behind these composite affect 
judgments of novice judges (self, peer) and trained judges resides in the indeterminacy of what exactly should be the 
gold standard for deciding what emotions a learner is truly having. In our study, would it be the learner or the expert 
on facial actions? A composite score that considers both viewpoints is arguably the most defensible position. 

5.1.2 Dialogue-Emotion Links. The multiple regression analyses resulted in significant dialogue predictors for 
boredom, confusion, flow, frustration, and neutral but not for delight and surprise. The two-step multiple regressions 
allowed us to statistically partial out variance attributable to individual differences (which was a robust amount of 
variance) before assessing the unique impact of the conversation features on emotions. After partialling out 
individual differences, we found that the dialogue features were able to explain about 7% of the variance for 
boredom, confusion, flow, and frustration.  We acknowledge that the explained variance is modest, but other 
researchers also report modest correlations and explained variance, as discussed throughout this article.  Other 
researchers have not attempted to segregate the systematic variance that can be explained by individual differences 
per se versus intrinsic features of the dialogue. The generalizability of these results to other learners is supported by 
the significant relationships between the various dialogue features and the affective states that persisted after the 
removal of variables related to the individual learner characteristics.  It is of course conceivable that there are hidden 
factors or interactions among the predictors that could explain additional variance between dialogue and affect, but 
tests of that possibility would require additional analyses. 

It is also conceivable that the tutor-centered actions have a distinct influence on the affective states of the learner. 
Tutor-centered actions are moves and utterances of the tutor (feedback and directness) rather than the student 
(number of words in response, speech act, LSA measures, etc). We could explore this possibility by segregating the 
dialogue features listed in Table I into such categories as basic session information (subtopic and turn numbers), 
student-centered actions, and tutor-centered information. The amount of variance explained by each category of 
predictors could then be assessed by incrementally adding or removing each category in the multiple regressions 
analyses that predict affect categories.  These analyses are planned in the future.   

5.1.3 Automated Detection of Learner’s Affect. The challenges of measuring emotions is beset with murky, noisy, 
and incomplete data, and is compounded with individual differences in experiencing and expressing emotions. 
Nevertheless we have found that the characteristics of the dialogue are quite diagnostic in predicting the affect states 
of learners.  On the basis of the natural language dialogue features alone, our results showed that conventional 
classifiers are moderately successful in discriminating the affective states of boredom, confusion, flow, and 
frustration from each other, as well as from the baseline state of neutral.  

The classification accuracy for collectively discriminating 5 affective states (including neutral) was significantly 
greater than the base rate.  However, the reliability was lower compared to classifiers that individually detected each 
emotion from neutral or that collectively considered only the 4 emotions (excluding neutral). This motivates the use 
of a hierarchical classification scheme in order to improve accuracy. The hierarchical model would operate by first 
using a binary classifier to classify an incoming stimulus as a positive or a negative emotion, followed by an 
additional classification step that provides a finer discrimination as to what the individual positive or negative 
emotion may be (e.g., Hoque, Yeasin, & Louwerse, 2006). In a similar vein, we propose a hierarchical classifier 
motivated by a pandemonium model (Selfridge, 1959).  A collection of affect-neutral classifiers would first 
determine whether the incoming dialogue pattern resonated with any one or more of the emotions versus a neutral 
state. If there is resonance with only one emotion, then that emotion is declared as being experienced by the learner.  
If there is resonance with 2 or more emotions, then a second level of classification would be initiated in which 
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classifiers collectively attempt to differentiate among boredom, confusion, flow, and frustration. Rigorous tests of 
these alternative hierarchical models will be pursued in future research.   

5.2   Limitations 

We acknowledge that our approach to data collection and analyses are not without limitations. This section reflects 
on a number of technical limitations and theoretical challenges.   
 
5.2.1 Limited Contextual Information. One limitation of the data analyses presented in this paper is that each 
emotion judgment was analyzed in the context of only the immediately preceding turns of the student and tutor. The 
dialogue features that involved changed scores (delta local good, delta global good, delta local bad, and delta global 
bad) did encompass the context of one previous turn, but these features did not prove to be predictive of the affective 
states. Perhaps classification accuracies could be boosted by incorporating a broader scope of contextual 
information, including patterns of conversation that evolve over a series of turns leading up to an emotional 
experience. The exclusion of this larger snapshot of context preceding an emotion utterance could possibly account 
for some of the lower classifier accuracies. Future efforts will be directed towards the analysis of conversation 
features across a larger temporal span and number of turns.   

5.2.2 Inability to Detect Delight and Surprise. The dialogue channels were unable to detect the affective states of 
delight and surprise. Perhaps these affective states are simply not manifested in AutoTutor’s conversation features 
and their detection would require more sophisticated sensors. Delight and surprise are affective states that are 
generally expressed though animated facial features, so it may be possible to detect these states by means of the 
Facial Action Coding System (FACS, Ekman & Friesen, 1978). Ekman’s research has associated action units 1 
(inner brow raiser), 5 (raised upper eyelids), 26 (jaw drop), and 27 (mouth stretch) with surprise. While Ekman and 
Friesen (1978) did not investigate delight, they have associated action units with happiness, an emotion that is 
presumably similar to delight. In particular, action units 6 (raised lower eyelid), 7 (lid tightener), 12 (lip corner 
puller), 26 (jaw drop), and 27 (mouth stretch) have been affiliated with happiness. With the assistance of automated 
facial feature tracking software, we expect to be able to detect surprise and happiness (delight), thus compensating 
for the inability of detecting these affective states from AutoTutor dialogue. 

5.2.3 Reliance on Shallow Assessments of Performance. A rather subtle limitation to the present results is that we 
relied exclusively on AutoTutor’s assessments of the learner’s contributions and its decisions regarding the type of 
feedback to give the student. Available research supports the claim that AutoTutor’s assessments of the student’s 
contributions highly correlate with human judgments (Graesser et al., 2007; Graesser et al., 2000; Wiemer-Hastings, 
Wiemer-Hastings, & Graesser, 1999) and that AutoTutor’s conversational patterns have a close correspondence with 
human tutors (Person, Graesser, & TRG, 2002).  However, AutoTutor’s assessments are not error free or complete. 
There could be additions to the LSA scores in the computations of a learner’s performance, such as measures of 
semantic entailment (Rus & Graesser, 2006) and the cohesion within each turn and across multiple turns. Cohesion 
refers to the linguistic properties of text that connect ideas conceptually.  Perhaps student contributions with high 
cohesion may be indicative of a degree of understanding and would be diagnostic of the affective state of flow. On 
the other hand, a student contribution with low cohesion may be diagnostic of the affective state of confusion. A 
system called Coh-Metrix provides over 100 measures of various types of cohesion, including referential, spatial, 
temporal, causal, and structural cohesion (Graesser, McNamara, Louwerse, & Cai, 2004). Future efforts will be 
devoted to expanding the set of dialogue features to include measures of cohesion. 

5.3   Future Directions 

Considering the limitations mentioned above, we turn to a number of potential advances to this research. Some of 
these extensions directly address the larger project relating to AutoTutor’s metamorphosis into an affect-sensitive 
intelligent tutoring system. 
 
5.3.1 Combining Multiple Modalities. Affect detection in AutoTutor requires the development of appropriate 
classification systems. In addition to the conversation features and the learners’ pretest knowledge, AutoTutor will 
be endowed with sensors that gauge facial expressions, speech intonation contours, and posture parameters. It will 
be interesting to determine whether classification performance from multiple channels will exhibit performance 
superior to an additive combination of the individual channels. An alternative possibility is that redundancy among 
channels may cause the multisensor classifier to yield negligible incremental gains.  
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We are in the initial phase of an investigation that attempts to isolate a subset of Facial Action Units (Ekman & 
Friesen, 1978) that are routinely observed in particular emotions during learning. In particular, Craig et al. (2004a) 
reported action units 1 (outer brow raise), 2 (inner brow raise), and 14 (dimpler) were primarily associated with 
frustration, with a strong link between action units 1 and 2 occurring together. Confusion displayed associations 
with action units 4 (brow lowerer), 7 (lid tightener), and 12 (lip corner puller); action unit 7 also triggered action unit 
4. Boredom showed an association with 43 (eye closure). While boredom did not display any explicit links with the 
other action units, it did show several weaker trends between eye blinks and various mouth movements, such as 
mouth opening, mouth closing and jaw dropping, undoubtedly indicative of a yawn (Craig et al., 2004a).  

Efforts towards affect detection from posture are motivated by the development of a Body Scoring System (Bull, 
1987) and a study of interest detection in children (Mota & Picard, 2003). Detection of affective states from speech 
would involve the combination of acoustic and vocal prosodic features, as has been substantiated in previous 
emotion detection studies (Ang et al., 2002; Forbes-Riley & Litman, 2004; Litman & Forbes-Riley, 2004).   

5.3.2 AutoTutor with Speech Recognition.  Our multiple annotator study used a version of AutoTutor in which 
learner’s typed in their contributions. Therefore, there were no data that related learner’s affect with their speech 
patterns. Previous research has shown that acoustic-prosodic features of speech are excellent predictors of affective 
states, so we are in the process of systematically replicating the study with a newer version of AutoTutor in which 
the learner’s verbally express their contributions.  In addition to obtaining diagnostic data for affect detection from 
speech, we will attempt to replicate the various relationships between the dialogue patterns and the affective states 
discovered in this paper. 

5.3.3 Use of Advanced Classifiers. The reliability of the standard classifiers in detecting affect from dialogue 
validates the notion of pursuing sophisticated classification techniques. Such techniques include biologically 
motivated classifiers as well as traditional classification methods. One biological approach, for example, is to 
develop classifiers that are based on the dynamic behaviors of neural populations (Kozma & Freeman, 2001). 
Classifiers based on dynamical systems with chaotic activity observed in brains have been experimentally validated 
as powerful pattern classifiers for difficult classification problems, particularly in situations in which the data set is 
not linearly separable (Kozma & Freeman, 2001).  

6.   Conclusion 

The ultimate step in developing an affect sensitive AutoTutor lies in reengineering AutoTutor’s dialogue planning 
module in a fashion that intelligently responds to the learner’s affective states in addition to the cognitive states. This 
adaptation would increase the bandwidth of communication and allow AutoTutor to respond at a more sophisticated 
metacognitive level. There could be many possible responses to the different affective states of the learner and the 
context of the interaction. If the affective state of frustration is detected, then the ITS could respond by changing its 
dialogue strategies to include more direct feedback, assertions, and corrections of detected misconceptions. The tutor 
might also convey a degree of empathy to alleviate frustration. If the learner is bored, a state that has been 
negatively correlated with learning (Craig et al., 2004), then the ITS should engage the learner in a task that 
increases interest and cognitive arousal, such as a simulation, options of choice, a challenge, or a seductive 
embedded game. A change in dialogue strategies could be implemented to induce confusion by introducing related 
new topics or concepts, which will hopefully cause the student to reengage with the material at a deeper level. 
Confusion presents a key opportunity for the ITS to encourage deep learning. The AutoTutor system could manage 
confusion in at least two ways. Successful learners might be allowed to work out their own confusion in a discovery 
learning environment (Bruner, 1961; Vavik, 1993) that requires self-regulated cognitive activities (Azevedo & 
Cromley, 2004). A second method would systematically scaffold the student out of the confused state. This method 
might work better for learners with lower domain knowledge and lower ability to self-regulate their learning 
activities.   

It is important to note that the success of the pedagogical strategies described above will ultimately depend upon 
the accuracy by which the learner’s affect can be detected. The lower accuracies associated with detecting boredom 
and confusion are cause for some concern. We do expect that classification accuracy will increase when additional 
modalities are introduced.  Nevertheless, it is unclear what a reasonable upper bound on emotion recognition 
accuracy would be. It may not be possible to achieve perfect accuracy, so a number of alternative methods may be 
recruited to handle emotion detection errors. AutoTutor could use probabilistic models, such as Dynamic Decision 
Networks, that can model the noisy data associated with recognizing emotions. AutoTutor could bias the confidence 
of the tutor’s actions as a function of the confidence of the emotion estimate. For example if the ITS lacks 
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confidence in its assessment of frustration, then an empathetic response may be preferred over AutoTutor’s blatantly 
acknowledging the frustration and drastically altering its dialogue strategy. 

Robust emotion detection is a significant challenge that must be solved to develop real-time, affect-sensitive 
tutoring systems that work.  Only then will a learning environment that monitors learner emotions be more 
motivating and personally relevant to the learner. We hope that this research represents a small step towards 
fortifying future learners with ITS’s capable of enhanced dynamic reasoning, automated cognitive assessment, and 
intelligent handling of emotions. 
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