
International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.1, Feb 2011

DOI : 10.5121/ijcses.2011.2108                                                                                                                  99

AUTOMATED SOFTWARE TEST DATA 

GENERATION: DIRECTION OF RESEARCH

Hitesh Tahbildar1 and Bichitra Kalita2

1Department of Computer Engineering and Application, Assam Engineering Institute, 
Guwahati, Assam 781003, India

tahbil@rediffmail.com
2Department of Computer Application, Assam Engineering College, 

Guwahati, Assam 781003, India

bichitra1_kalita@rediffmail.com

ABSTRACT

In this paper we are giving an overview of automatic test data generation. The basic objective of this 
paper is to acquire the basic concepts related to automated test data generation research. The different 
implementation techniques are described with their relative merits and demerits. The future challenges 
and problems of test data generation are explained. Finally we describe the area where more focus is 
required for making automatic test data generation more effective in industry.

KEYWORDS

1. INTRODUCTION

A challenge for IT industry is to develop software system that meets business needs. The fact is 
we are to deliver software that is free of bugs. The bugs in software can cause major loss in IT 
organization if they are not removed before delivery. Software testing is important parameter 
developing software that is free from bugs and defects. Software testing is performed to support 
quality assurance [65]. A good quality software can be made by using an efficient test method. 
Statistics say that 50% of the total cost of software development is devoted to software testing 
even it is more in case of critical software[29]. Depending on time, scale and performing 
methods we can classify testing as unit testing, integration testing, system testing, alpha testing, 
beta testing, acceptance testing, regression testing, mutation testing, performance testing, stress 
testing etc. There are testing like statistical testing which is used for measuring reliability of 
software rather than finding errors. Test data can be generated either based on specification [5, 
6, 4] or code. In the literature of automated test data generation, searched based data generation 
survey is available[56]. Although code based survey for test data generation has been discussed 
by many authors [29, 65] yet there is a field to study in context of program analyzers, test data 
generation models etc. In this paper we basically concentrate on survey of code based [29] test 
data generation. Test data can be designed either manually or automatically. Software 
engineering research puts large emphasis on automating the software development process that 
produce large more complex quantities of code with less effort. For testing these software, we 
need to find advance innovative support procedures to automate the testing process[33]. In spite 
of continuous effort till today automated testing has limited impact in industry, where the test 
generation activity remains largely manual. What we need is 100% automated testing to reduce 
overall cost of software development with high quality. A number of test data generation 
techniques such as random test data generator, path oriented test data generator, goal oriented 
test data generator and intelligent test data generator have been automated. Nowadays testing on
networking environment i.e. to improve the scalability of software testing is emphasized [33].



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.1, Feb 2011

100

Test data generation research are going on since 1970's. But unfortunately till today there is 
hardly any fully automated test data generation tool found in industry. Initially people did 
research on test data generation using symbolic execution in 70's upto mid 80's [62, 70]. At that 
time the language taken for test data generation was FORTRAN Algorithm [64]. In 1987 
Parther [68] had contributed a new idea for test data generation called path prefix method. In 
1990, B. Korel had made a revolutionary change by generating test data dynamically based on 
actual value using pattern and explanatory search. In 1996 Korel [23] developed assertion 
oriented and chaining approach [72] Goal oriented test data generation. In 2000 test data 
generation on dynamic data structure is emphasized[12, 26, 57, 42, 43]. Mahmood in [2] has 
given a good review of test data generation techniques from 1997 to 2006. But the paper ignore
technical details of the methods found in his reviewed paper. During 2004 to 2006 clever 
implementation of random testing is done to get the benefits of avoidance of infeasible paths 
and to ignore path selector module[37, 67, 31]. During this time test data generation using 
hybrid method that takes the advantages of both static and dynamic method were done [28, 66]. 
The William work path crawler has the advantages because it ignores infeasible paths. But 
problem is of exponential increase of number of paths. In 2000 there are many other papers who 
worked to detect infeasible paths for saving computational time [18, 54]. In 2005 Chen etal [61]
had shown how to implement automated test data generation for teaching students. This type of 
work is very useful for beginners to know how to start research. In 2010 Tahbildar etal [44] has 
given a heuristic to determine the number of iteration required for longest path coverage. In 
2000-2010 Object oriented test data generation techniques are also taken as key area of
research. Most of the industry is using object oriented techniques for software development due 
to high productivity. UML has got a great importance for software testing of object oriented 
programs. Different UML diagrams are used for different types of testing[50, 14, 49]. Mutation 
testing is used to improve reliability of object oriented software[54]. A scalable test data 
generation based on multi agent is proposed by Siwen in [53]. In 2008 Xio [32] has proposed a
method for guaranteed test data generation even if some path predicate is unsolvable. But the 
method could not give a good coverage. In 2008 Gautam Saha [3] made a map which gives us 
clear understanding of software testing types, concepts and their relationship which may help 
researcher to get a complete picture of the domain. In 2010 [47] proposed a heuristic specially 
useful programming construct having loops of different dimensions and array of variable length. 
Moreover, In 2010 [46] test data is generated by avoiding unsolvable constraints.

The paper is organized as follows: in section 2 basic concept related to test data generation are 
explained. Section 3 discusses different test data generation techniques with their relative merits 
and demerits. Section 4 describes the related works on survey of test data generation methods. 
In Section 5, we discuss about the future challenges and problems that are required to solve for 
generating test data efficiently. Section 6 states about future trends of test data generation by 
listing some problems to be solved in automated test data generation. Finally we conclude with
concluding remarks in section 7.

2. Basic concepts

2.1. Concept related to software testing

Software testing is the process of ensuring right software product to achieve full customer 
satisfaction. The following terms are mostly used for automated test data generation research.

Test data: Test Data are data which have been specifically identified for use in testing computer 
                program.
Test case: Test case is a set of conditions or variables under which a tester will determine 
                  whether an application or software system is working correctly or not.
Test oracle: The mechanism for determining whether a software program or system has passed  



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.1, Feb 2011

101

                  or failed such a test is known as a test oracle.
Test suite: A set of test cases is called test suite.
Test plan: is a document which contains all the information about the testing of all stages.
Test Automation: Developing software for testing a software product.
Coverage: Coverage of program or faults. The aim of coverage based testing method is to 
                'cover' the program with test cases that satisfy some fixed coverage criteria. The aim  
                 of fault coverage criteria is to cover maximum fault in a program.
Path: sequence of nodes and edges. If we start from entry node and end at exit node then we  
          call complete path.
Branch predicate: is a condition in a node that may lead to either true path or false path.
Path predicate: A path predicate is defined as the collection of branch predicate which require 
                         to be true in order to traverse a path.
Feasible path: The path where there is valid input that execute in the path
Infeasible path: The path where there is no valid input that execute in the path
Constraint: A constraint is an expression that specifies the semantics of an element, and it must 
                  always be true
Constraint generator: is a program that can automatically generate the set of conditions or 
                                   constraints in a path.
Constraint solver : is a program that provides value to the input variables of a path predicate 
                             such that it satisfies all the constraints of the path predicate at a time.
Constraint programming: Constraint programming is a programming paradigm where relations 
                                        between variables are stated in the form of constraints.

Software’s are tested or validated based on functional requirements, non functional              
requirements, and business requirements.

2.1.1. Functional requirements

Functional requirements are associated with specific functions, tasks the software must support. 
what are the work software supposed to do. It deals with product features and product 
functionality. 

2.1.2. Nonfunctional requirements

Non-functional requirements are constraints on various attributes of functions or tasks. It deals 
with quality of product. Testing for maximum ability, speed, efficiency, reliability, safety, and 
scalability etc. For example how many users can simultaneously try to vote in online voting 
software where millions of voters may caste vote on the same day. Testing this type software 
manually is not possible. Non functional testing’s are key area for automation where manual 
testing is impossible. Both functional and non functional requirements are included in software 
requirement specification document.

2.1.3. Business requirements

Business requirements are the basic requirements of customer that are to be fulfilled for smooth 
running of their day to day work. Neither functional nor non functional they know but they are 
interested only on their business. They always mean business running smoothly implies 
software requirements are fulfilled. It is not included in software requirement specification 
document. Software testing plays an important role in developing software that is free from 
bugs and defects. It consists of three major steps: (i) Designing test cases i.e. generating 
data(test data) for the input variables, (ii) Executing the software with those test cases and (iii) 
Examining results whether it is as per requirements written in SRS (software requirement 
specification) document. It is observed that all new inventions are passed through a series of 
different tests based on well-defined criterion in order to verify correctness against 
specification, determine performance and quality of the product.



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.1, Feb 2011

102

We classify testing work with words How, When, and Who.

How- By the word how we mean how test data is generated. Testing can be done either based on 
code, that may be source code, executables, binaries or based on experience, previous 
knowledge about input and output of a particular code. In code based testing basically we try to 
cover maximum code to minimize error by fulfilling criteria like statement coverage, branch 
coverage, condition coverage, and path coverage. We call this type of testing as white box 
testing. White box testing is done by technical persons/developers who has knowledge of 
programming. Testing based on experience, considering the program as black box is called 
black box testing. There are different methods of black box testing like equivalence partitioning, 
boundary value analysis etc., for example the program to check palindrome. We may put 
appropriate data and check the reliability of white box testing which is based on probability. For 
example, suppose your test data covers 95% of code. But still your program may fail if the test 
data is belongs to 5% of code.

When- By the word when we mean different time of testing. Whether testing is done in only 
testing a phase or all phases of software development. Accordingly, testing is classified as 
verification and validation. Verification mean testing during all phases basically static testing 
without executing with test input. Validation testing is done in testing phase i.e. testing with 
executing test inputs.
Who- By the word who we means who does the testing. There are three types of testers. 
Developers/engineers, friendly customers and actual customers. These testing are called alpha, 
beta, and acceptance testing respectively. A schematic view of software testing is given in figure 
1.

Figure 1: Schematic view of software Testing
Designing Test data or generating test input can be done either manually or automatically. Test 
data generation is a complex activity because it involves so many sub-steps and each sub-step 
has several related issues. Different authors had proposed different models representing 



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.1, Feb 2011

103

architecture of test data generation. Based on test data generation implementation technique, we 
found following architectures are commonly used in software test data generation literature.

Architecture I based on symbolic value execution

Schematic representation of the architecture is shown in figure 2. The model is based on the 
concept of symbolic execution. It consists of three parts: path selector, constraint generator and 
constraint solver. The path selector generates a set of paths from the input program satisfying 
some criteria. One of the criteria is statement coverage i.e. we need to select the set of paths in 
such a way that each and every statement is covered at least once. This is poor criterion because 
all branches in the program may not be exercised and errors may remain undetected. A stronger
criterion is the branch coverage i.e. selecting the set of path covering all branches in the 
program so that all statements as well as branches are executed at least once. Another interesting 
criterion is the testing of boundary value. Here we need to select the path in such a way that will 
ensure all branches be covered by at least one path. For each loop, there are one path covering 
the loop at least once and another path that does not cover the loop at all. The Constraint 
generator creates the path constraints either from the source program directly or from the test 
path generated by the path selector. Concept of symbolic execution is applied to find the 
constraints. Symbolic execution means executing the program using some symbolic variables 
instead of actual value of input variable. Symbolic execution can be performed in two ways: 
forward traversal (forward substitution) and backward traversal (backward substitution). In 
forward substitution, symbolic execution is performed on every executable statement and 

Figure 2: Architecture of test data generation I [60]

Intermediate symbolic values are stored for subsequent use. Number of paths may grow very 
rapidly in this approach. In backward substitution, path is traversed in reverse order. It generates 
path constraint in a bottom-up fashion by first finding constraints for the called routine. This 
approach is suitable for testing large programs. Here advantage is that no storage is required to 
store the symbolic values of variables. On the other hand forward substitution can detect 



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.1, Feb 2011

104

infeasible paths early with contradicting input constraints. In handling array also it has 
advantage over backward substitution. The output of constraint generator is the path constraint. 
Each path constrain is a set of equalities and inequalities on the input variables and the set of 
values that satisfy these constraints which are the required set of test data for the respective 
path. The set of test data is found by Constraint solver. The constraints may be linear or non-
linear. Depending upon the type of constraint it applies different techniques to solve these 
constraints. For linear constraints, linear programming techniques are used. For non linear
constraints, nonlinear programming techniques need to be applied. Using systematic trial and 
error method also test data can be generated. In [46] Tahbildar and Kalita proposed a model for 
test data generation where they consider only the solvable constraints. It avoids unsolvable 
constraints. This architecture is best suited for programs with less number of constraints and if 
they are less correlated. 

Architecture II based on concrete/actual value execution

Schematic representation of the architecture is shown in figure3. It consists of three parts: 
program analyzer, path selector and test data generator.

2.2. Program Analyzer

It analyzes the source code automatically. Program analyzer takes a piece of software as input 
and produces necessary data to be used by path selector and/or test data generator. For analyzing 
program, data flow graph, data dependence graph, program dependence graph and extended 
finite state machines are most commonly used.

Figure 3: Architecture of test data generation II [69]

2.2.1. Control Flow Graph (CFG)

CFG describes the sequence in which the statements/instructions of a program are executed. It is 
representation of flow of control through the program. CFG is directed graph in which each 
node is a program statement/basic block and each edge represents the flow of control between 
statement/basic blocks. A basic block is a sequence of consecutive statements in which flow of 
control enters at the beginning and leaves at the end without halt or possibly of branching 
except at the end. In [29] CFG is defined as a directed graph G=(N,E,s,e) consisting of a set of 
nodes N and a set of edges E = {(n, m) | n, m € N} connecting the nodes. All edges are labeled 



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.1, Feb 2011

105

with a condition or a branch predicate. If a node has more than one outgoing edge the node 
represents a condition and the edge represents branch. CFG has two special nodes: one entry(s) 
and one 

Figure 4: Control Flow Graph for GCD Computation

exit(e) node. Control flow information is used in Path Oriented Testing, Goal Oriented testing 
and Random testing. Figure 4 shows the control flow graph for GCD computation program 
listed in Annexure. This architecture is best suited for programs having pointer data types, 
constraints with different variables.

Architecture III based on both symbolic and actual value execution

Schematic representation of the architecture is shown in figure 5. It consists of Program 
Analyzer, code instrumentor, filter, and comparator. The code instrumentor statically inserts
lines to the source code to display the paths and the filter provides us the only unique feasible 
paths. The comparator compares the number of paths in current iteration and previous iteration 
to terminate with minimum number of iterations either for longest path criteria or all path
criteria. Details of this model can be seen in [47]. This architecture is best suited for programs 
having loops with variable number of iterations and array with different dimensions.

Architecture IV based on object oriented approach

The schematic representation of architecture is shown in figure 6. In this model [36] 
components are system model written in UML diagrams, and test directives written in UML. 
The compilers produce state machine written in an Intermediate format language. The output of 
the state machine is an abstract test suite containing sequence of simulations and observations. 
This model is useful for non functional model based testing like scalability, stress testing etc. 
This architecture is best suited for programs with object oriented approach and for performing 
system testing.



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.1, Feb 2011

106

2.2.2. Data Dependence Graph (DDG)

According to [25], DDG is a graph that represents data dependencies between statements. 
Nodes in the graph represent memory references and edges represent data dependencies 
between nodes. Before building DDG we need to construct CFG. DDG can be generated from 
CFG in two ways. One is to generate DDG directly from CFG using the information of data 
dependence. Data dependency can be defined as follows. Let the set DEF(i) and REF(i) denote 
the sets of variable defined and referenced at node i of the CFG. Node j is data dependent on 
node i if there exist a variable x such that: i) x DEF(i) ii) x REF(j), and iii) there exist a path 
from node i to j without intervening definition of x. The other is to firstly build Program 
Dependence Graph (PDG) and then convert PDG into DDG by deleting the control dependence. 
Both the data and control dependencies for each operation in a program are explicitly shown in
the PDG. Data dependence exists between statements S1 and S2 if S1 defines a variable and S2 
has a reference to the variable and there is a path in the program from S1 to S2 on which the 
variable is not defined again, which means the definition of the variable in S1 reaches the use in 
S2. If statement S2 is dependent on statement S1, then (S1, S2) is a definition-use pair. We can 
get DDG by deleting the control dependence relations between the statements. Figure 7 shows 
the data dependence graph for GCD computation program listed in Annexure. Data-dependence 
graph defines a partial order between the operations performed by a program [59]. When a 
reordering of the program's operations or instructions does not inverse the DDG arrows, then the 
semantic of the program is preserved. The DDG is a static information: it relates textual 
operations from the program. When the operation is enclosed in a control structure, such as a 
loop, it represents all its run-time executions.

Figure 5: Architecture of test data generation III

2.2.3. Program Dependence Graph (PDG)

The PDG represents a program as a graph in which the nodes are statements, predicate 
expressions, and the edges incident to a node represent both data dependence and control 
dependence. More than CFG, the PDG can present the dependence of any statements, including 
data and control dependence, not only the control flow. To build PDG first CFG is constructed. 
The next task is finding data dependence and control dependence in CFG. Figure 8 shows the 
program dependence graph for GCD computation program listed in Annexure.



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.1, Feb 2011

107

Figure 6: Architecture of test data generation IV [36]

Figure 7: Data Dependence graph for GCD Computation program

Figure 8: Program Dependence graph for GCD Computation program



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.1, Feb 2011

108

2.2.4. Extended Finite State Machine (EFSM)

In program dependence graph or data dependence graph some information are not available but 
in EFSM almost all information in a program is represented. According to [20] EFSM can be 
defined as (S,V,T) where S is the set of states, V is the set of variables, T is a set of transitions. 
S contains one initial state and one or more final states which represents end of program 
execution. The EFSM moves from current state to next state by updating the values of variables
performing some action. In action it executes input statements or assignment statements that 
give values to variables. In [20] Zhang uses EFSM for selecting the set of paths. Figure 9 shows 
the EFSM for GCD computation program listed in Annexure. The tools discussed above are 
seen to be used extensively by different researches for automated test data generation. Different 
methods using either actual value or symbolic value approach are found in the literature that 
takes the advantage of using CFG in the process of automated test data generation. In [31] 
Gotlieb and Petit used CFG for selecting path and then apply backward symbolic execution. 
Xiao Ma et al. [32] have used CFG in their Constraint prioritization method using which test 
data can be generated even in a situation when constraints are not solvable. In path prefix 
strategy[16] also CFG has been used to select new path from using previous path as a guide to 
the selection of subsequent paths. In [73] Zhang et al. extract path conditions from CFG and 
then use a tool to decide satisfiability of the constraints. In Binary search based test data 
generation technique also CFG has been used for selecting paths. Data Dependence Graph and 
Program Dependence Graph are found to be used mainly in program optimization. For instance 
Xinyn Wang et al [25] uses DDG for the purpose of automatic identification of domain
variables from source code and Laurent Hascoet applied DDG for computing gradients in 
program optimization. PDG has been used by [63] as a program representation tool for program 
optimization and [24] uses PDG for generating sequential code from concurrent specification in 
Esterel V5 compiler. EFSM has been used by [20] for generating test path using symbolic 
execution and [40] describes a method of generating EFSM whose output may be used by any 
EFSM analyzer. The suitable mapping between program analyzer and test data generation 
methods are shown in figure 10.

2.3. Path Selector

The path selector identifies a set of paths to satisfy selected testing criterion. A good path 
selector ensures high coverage of code. Basically we are interested in basis set of paths as the 
number of program paths in a program may be unexpectedly high and sometimes impossible to 
test all the paths of a program[27]. A basis set of path should be linearly independent covering 
all edges of CFG and the basis set path can derive all possible path by linear operation on the 
basis set paths. This phase is ignored in many recent test data generation techniques.



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.1, Feb 2011

109

Figure 9: EFSM for GCD Computation program[30]

2.4. Test Data Generator (TDG)

The Test data generator utilizes the information generated by the program analysis and /or path 
selector. Once path information is obtained, aim of TDG is to find input values that will traverse 
a specific path. This is achieved by finding the path predicate and then solving it in terms of 
input variables. To solve the path predicate representing a system of inequalities, various search 
method such as alternating variable, simulated annealing and different heuristics based on 
equation-rewriting can be applied.

2.5. Random Test Data generator

Random test date generation takes test inputs at random until a useful input is found. According 
to [31], random testing is the process of selecting test at random according to an uniform 
probability distribution over programs input domain. This approach is quick and simple. But 
disadvantage is poor code coverage. Now a days several researchers are proposing clever 
implementations of random testing that can improve code coverage like systematic test 
generation. The random testing can be implemented either based on symbolic value [70, 62, 20, 
73, 20] or actual value [[10, 67, 37]. Symbolic execution is useful technique for verification and 
testing. Using symbolic execution, we can collect a path predicate which is a sequence of 
branch predicate appeared in a particular path. The set of constraints found can be solved using 
constraint solver to get test data. Therefore the efficiency of the constraint solver is the main 
issue. This method requires no constraint violation checks of branch predicates since all can be
solved at once. But the problem in this method is that a variable value in symbol may be a very 
complex expression and difficult to solve. The situation becomes more problematic if non-linear 
operator appears. In actual execution instead of variable substitution we run the program with 
some, possibly, randomly selected input. The objective here is to modify the initial randomly 
selected input so that the intended path is taken. This method is quite expensive in terms of 
speed of execution. It requires backtracking. The main challenge of this method is efficiency of 



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.1, Feb 2011

110

search and to select appropriate heuristics so that the number of backtracking is minimized. At 
present people are emphasizing to develop hybrid approach which combines the gains of both 
symbolic and actual based methods. In random testing recent research uses hybrid approach for 
test data generation. In [31] random testing is implemented based on actual value using 
symbolic reasoning. DART (directed automated random testing) means directed search. Starting
with a random input, a DART implemented program calculates during each execution an input 
vector for the next execution. This vector contains values that are the solution of symbolic 
constraints gathered from predicates in branch statements during the previous execution. The 
new input vector attempts to force execution of the program through a new path. By repeating 
this process directed search attempts to force the program to sweep through all its feasible 
execution paths. The challenge in DART is to solve the constraints generated by a program. 
Kousic sen's Concolic testing extended the DART works for programs which have dynamic data 
structure using pointer operation[67]. CUTE implements a solver for both arithmetic and pointer 
constraints to incrementally generate test inputs. But main demerits of this testing method are
that information about test requirement is not incorporated into the generation process, hence it 
may fail to satisfy the requirement. Also it has poor coverage and has difficulty in finding 
semantically small fault.

2.6. Goal Oriented Test Data Generator

Korel [72] defined the goal-oriented approach of test-data generation as the process of 
generating input test data to execute the selected statement irrespective of path taken i.e., the 
path selection stage is eliminated. It uses data dependencies to guide the search process. Data 
dependence analysis is used to identify statements that affect execution of the selected 
statement. It generates input that traverses a given unspecific path. Informally an unspecific path 
is a path with some segments missing. Since this method uses the find-any-path concept, it is 
hard to predict the coverage given a set of goals. Two typical approaches, 'Assertion-based'[23] 
and 'Chaining approach'[72] are known as goal oriented. In the first case assertions are inserted 
and then solved while in the second case data dependence analysis is carried out. Generally the 
goal-oriented approach faces issues of goal selection and selection of adequate test data.

2.7. Intelligent Approach

The intelligent test-data generation approach often relies on sophisticated analysis of the code to 
guide the search for new test data. However this approach can be extended up to the intelligent 
analysis of program specification as well. With the proposed extended ability this approach will 
fall in between functional and structural testing. At this time this approach is quite limited in use 
therefore, its specialization in use or its pros and cons cannot be stated with any certainty.

2.8. Path Oriented Test Data Generator

The path oriented test data generator basically involved 3 steps : program analyzer, path selector 
and test data generator. There are various implementation methods for path oriented testing. In 
1976 Clarke [70] implemented path oriented testing using symbolic values on a given path and 
used linear programming technique to solve the linear path constraints. Biggest problem was 
how to handle the problem of infeasible paths and complex constraints. In 1987 Prather [68] 
generated test data using adaptive method called path prefix strategy which avoid path selector 
step and utilize the best of the previously traversed paths at each selection of a new test input. In 
1990, B. Korel[69].



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.1, Feb 2011

111

           
Figure 10:Mapping Between Program Analyzers and test data generation

            Figure 11: Automated test data generation methods

generate test data using actual value using heuristic function minimization techniques to modify 
the input so that a path is covered. Though Korel uses some heuristics for expediting the search 



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.1, Feb 2011

112

process but still this method is costly in terms of computation specially in presence of infeasible 
paths. The focus of the above test data generation methods was on basic data types such as 
integer and real. In [26, 71] the test data generation methods was extended for dynamic data 
structure. Jian and Xiaoxu [73] emphasized over improvement of constraint solver in path 
oriented testing by including boolean expression. Jian [20] gives a path oriented approach based 
on combination of symbolic execution and constraint solving. Xiao in [32] proposes a constraint 
prioritization method using data sampling scores to generate test data even the set of constraints 
is unsolvable. In [28, 66], PathCrawler generated path test by combining static and dynamic 
analysis. In path-oriented test data generation the typical approach is generation of a control
flow graph. In this approach, at first a graph is generated and subsequently, by using the graph a 
particular path is selected. With the help of a technique such as symbolic evaluation (in the 
static case otherwise it is called function minimization) test data is generated for that path in the 
end. Many white box testing methods can be viewed as path oriented. A set of paths of the 
program are selected, such that some criteria are met. Commonly used criteria are statement 
coverage, branch coverage, and path coverage. The main advantage of this method is high code 
coverage. It is more reliable but computation cost is very high. Path oriented testing can be 
implemented using symbolic value [70] or actual value [9, 69]. In [69] B. Korel uses heuristics 
in function minimization search for reducing the constraints violation and backtracking. In fact 
path testing is very costly for large program containing loops. The number of paths is 
unbounded and deciding whether a path is feasible or not is an undecidable problem in general 
case. A subset of paths can provide good code coverage. In real life program a large portion of 
the paths cannot be executed [20]. Therefore path testing method should be developed that only 
generate test data for feasible paths. The cost of path testing can be reduced by avoiding path 
selection step by using path prefix technique [68, 66]  or test prioritization technique [19, 10, 
34]. Therefore more research is required for selecting only feasible paths, handling loops and to 
avoid reliance on a set of pre selected complete paths to be traversed for test data generation.

3. Implementation methods

3.1. Static method(using symbolic execution)

These are the testing methods adopted for analysis and checking of system representations such 
as the requirements documents, design diagrams and the software source code, either manually 
or automatically, without actually executing the software. In other words, the static methods do 
not require the software under test to be executed. They generally use symbolic execution to 
obtain constraints on input variables for the particular test criterion. Solutions to these 
constraints represent the test-data. Executing a program symbolically means that instead of 
using actual values, 'variable substitution' is used. Static approaches to test case generation [70] 
selects a path from the control flow graph for test requirement, derive path predicate as a set of 
constraints on the input symbolic values and then solve the constraints to find a test case which 
executes the path. Static generation suffers problem to detect infeasible paths in case of loops 
with a variable number of iterations. In general static technique is vastly weaker than dynamic at 
gathering the type information needed to generate real test cases[9]. It is useful only for straight 
forward code. Main difficulty in this technique is to solve the non linear constraints.

3.2. Dynamic method(using actual value)

Instead of using variable substitution, these methods execute the software under test with some, 
possibly randomly selected input. By monitoring the program flow the system can determine 
whether the intended path was taken or not. In case of a negative answer the system backtracks 
to the node where the flow took the wrong direction. Using different kinds of search methods 
the flow can then be altered by manipulating the input in a way so that the intended branch is 
taken. In [63] Gupta combine symbolic reasoning with dynamic execution. But scalability of 
these techniques is poor. In [69] B. Korel used heuristic function minimization techniques to 
modify the input so that a path is covered. But these approaches suffer from many problems, 



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.1, Feb 2011

113

such as the number of execution may be more and it may fail to find test case even if one exist. 
Finally, in case of infeasible path it will not terminate.

3.3. Hybrid Implementation

Combining static and Dynamic test data generation The recent research on test data generation 
emphasizes on hybrid approach taking advantages of different methods of test data generation. 
In [66] N. Williams work objective is to have 100% coverage of feasible execution paths. The 
method is not following the traditional steps of test data generation instead, iteratively cover on 
the fly the whole input space of the program under test. It takes path prefix partial path predicate 
and solves using constraint logic programming. The method tries to avoid problems of both 
complexity of static analysis and number of executions required in heuristics algorithms [69] 
used in function minimization.

4. Related Works
In the literature, survey of test data generation [65, 29, 56, 33, 2, 3, 4] are classified into 
specification based survey [4] , code based survey [29], and searched based survey [56]. Harrold
survey focuses on software testing techniques rather than test automation techniques.
Edvardsson in [29] made a survey of test data generation based on code. The paper explains 
different techniques of automated test data generation with examples but it ignores the 
explanation of different types of program analysis information. Phil McMinn [56] has surveyed 
the applications of metaheuristic search techniques such as hill climbing, simulated Annealing, 
and evolutionary algorithms. The paper shows future directions of search based techniques to 
structural, functional, non functional, and grey box testing. Bertolino survey[33] focuses on 
research of automated test data generation techniques that can contribute for 100% automation
of testing in industry. Mahmood in his master thesis[2] made a systematic review of Automated 
Test Data Generation techniques of the period 1997-2006. The paper is good, informative but it 
ignores technical details of the test data generation techniques. Saha did mapping of different 
test data generation techniques [3]. The specification based survey can be found in [4].

5. Future Challenges

5.1. Improvement of code Coverage

Empirical study for code coverage in different existing test data generation algorithm is a key 
area of research[39, 13]. The computational complexity of test data generation algorithms are 
very high. Therefore optimal solution or heuristic can be derived for complexity and coverage to 
facilitate the test automation process in minimum cost.

5.2. Efficient predicate constraint Modification

Major problems with path oriented testing is many paths are non executable or infeasible. To 
decide the feasibility of paths we may generate a set of constraints and then decide their 
satisfiability. Improvement of constraint solver is a challenging research area till today specially 
if it contains non linear constraints. Most of the test data generation algorithms complexity is 
high. It is basically designed for unit testing. But unit testing has high cost for huge quantity of 
extra coding necessary for simulating the environment where the unit will be run [33]. 
Therefore the test data generation algorithms can be improved for making them scalable, i.e. for 
performing system testing. 

5.3. Loops handling in path oriented testing

Infinite looping is a common error in programs. In fact it is impossible to detect all kinds of 
infinite looping fully automatically [73] . But many infinite loops can be detected automatically. 
Therefore research can be done on early detection of infinite loops automatically and it is more 
challenging if loops are nested.



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.1, Feb 2011

114

5.4. Detection of path Infeasibility at the earliest

One of the most time consuming task of automatic test data generation is the detection of 
infeasible path after execution of many statements. In [69] Korel uses backtracking and path 
infeasibility may be determined in the last predicate. Work can be done to propose heuristic for 
infeasible path detection to avoid unnecessary computation. This is a major problem of test data 
generation based on actual value. In [71] Zhang generates set of constraints by symbolic 
constraints and then check their satisfiability to determine path feasibility. But the algorithm for 
solving constraints is complex [71]. In [68] Ronald proposes a method to utilize the best of the 
previously traversed paths at each selection of a new input data that reduces the computational 
requirements. More research are required to recognize path feasibility as early as possible to 
avoid expensive, useless computation.

5.5. Loops and Array program Testing

Test data generation of variable length array and variable number of iteration is a very difficult 
task. The coverage of test data is highly dependent on coverage of loop, because large amount 
of time is required for executing in loops. Therefore special attention should be given on loop. It 
is observed that Path Prefix method [68] is better for program with variable number of loops 
and arrays. But problem of this type of programming construct is that the number of path may 
increases exponentially with the increase of iteration and array size. [44, 46] given heuristics to 
predict the minimum number of iteration required for better coverage. But it is difficult to set a 
common heuristic for all types of programming construct. Therefore a heuristic table for 
different programming construct may be useful. Empirical studies like [38, 34] should be done 
on different example programs.

5.6. Dynamic data structure

Most of the research in testing focuses on basic data types such as integer and real numbers. But 
modern programming languages have constructs with dynamic data structure. In [72] B. Korel 
proposes goal oriented test data generation involving dynamic data structure via data flow 
analysis and backtracking. In [26] Viswanathan applied recursive algorithm on constraint 
simplification to generate test data for dynamic data structure. Zhao in [12] generate test data 
using least restrictive shape. Finally Sen in [67] generate test data for dynamic data structure 
program using hybrid approach both concrete and symbolic execution. Research can be done to 
propose efficient intermediate shape.

5.7. Constraint Prioritization

In general, automated test data generation is an unsolvable problem. In symbolic execution we 
may generate certain constraint which is not solvable specially among the non linear constraints. 
Xiao in [32] proposes a constraint prioritization method using data sampling scores to generate 
test data even the set of constraints is unsolvable. The method stores the sample data with their 
scores to be reused in later constraint solving. Although it can always generate test data but the 
method may be poor in terms of code coverage and the orthogonal spacing is not applicable for 
single variable constraints.

5.8. Improvement of scalability

Due to increase of software size and networking software, testing advocates for non functional 
measure like performance, scalability and reliability. Performance testing, load Testing, and 
tress testing are done for determining the scalability of the test data. The need of this types of 
testing is not to find bugs but to help us in failure for regression testing[15]. Till date there is 
less work on this type of testing. More work is to be done for these testing in coming days 
specially for software that run on networking environment. Scalability testing heuristic can be 
developed for optimal resource utilization to reduce the overall cost.

5.9. Test Effectiveness



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.1, Feb 2011

115

There are different test data generation techniques which can be implemented using different 
method. Irrespective of methods or techniques our ultimate objective is to generate test data 
which can detect faults. Again faults may be different types. What type of fault is best detected 
by which method that is the selection of coverage criteria for different types of fault to 
maximize error detection and also to determine by statistical testing which part of the software 
is more error prone where we require rigorous testing. Research on code coverage analysis and 
adapting testing is required to determine effectiveness of test data. [55, 52]].

5.10. UML based Object oriented software Testing

The UML is a set of techniques for specification, visualization and documentation. UML is used 
by testers for getting greater flexibility. The basic idea is to test software whose design is 
modeled using UML. The UML based testing is useful for model based system testing of 
distributed, component based systems. UML sequence diagram, state chart diagrams, UML 
communication diagram, class diagram, and activity diagram are used for test data generation 
where we require constraint solving. The main challenge here is to collect information from one 
or combined UML diagrams and store in an efficient data structure. Test specifications and test 
data are collected from the data structure.

5.11. Agile Testing

The basic principles that form the basis for agile testing are Communication, Simplicity, 
feedback and iterations. It aims to fulfill customer requirement timely manner. The customers
are considered the part of the project. There should be close relation between developer and 
tester. The testers help each other in finding the quick solution. In this approach simple function 
is taken first and then extra functionalities are added. The agile approach use feedback at every 
step from customer. To perform Agile testing agile approach to the development is mandatory.
Basically in agile approach the entire software is divided in small modules and then identifies
the priorities of the module depending on user requirement. The number of iteration should be 
reduced.             

6. Trends for Future
In this paper, we have given a comprehensive on different types of test data generation 
techniques. The paper gives an overall idea in the field of automated test data generation. The 
figure 11 shows the automated test data generation methods. Our work may help the reader to 
select the area and study the concepts of related area. After studying there related area of 
references the reader may choose one of the future challenge areas stated in section 5 for 
research and they may hunt in that area. We have listed the direction of research in a concise 
manner.

6.1. Direction of Research

1. Development of efficient construct solver.

2. Empirical study for finding heuristic for different types of programming construct to 
    reduce the number of iteration required for test data generation.

3. Loop Bounds and Infeasible path detection for WCET Analysis

4. Improvement of scalability of test data generation specially networking software.
5. Test data generation without path selector. Avoidance of infeasible path during test data 
    generation process.

6. Coverage based on priority of code segment. Prioritization of code with respect to coverage 
    to reduce be cost.



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.1, Feb 2011

116

7. Improvement of test data generation for programming constructs having dynamic data 
    structure.

8. Test data generation for programs having variable length array and loops with different 
     dimensions.

9. Test data generation for test effectiveness and code coverage Analysis.

10. A Comparative study of different test data generation implementation techniques to 
     determine best method for programs.

11. Testing object oriented software using UML modeling.

12.Test data generation for recursive programs and procedures/functions.

13. GUI testing.

14. Agile testing.

7. Conclusion
Automated test data generation is an important area of research for reducing cost of software 
development. Test data generation is done to satisfy functional, non functional, and business 
requirements. Some non functional requirement testing can be done only by automation; where 
manually it is not possible. The paper describes four types of architectures. Architecture I and II 
requires path selector phase. Architecture III and IV avoid path selector phase. The problem of 
infeasible path can be eliminated only by considering an architecture which has no path selector
phase. Architecture I requires constraint generator and Constraint solver where as architecture II 
requires test data generators. Architecture III avoid constraint solver by contributing filter on all 
paths to collect unique feasible path. Architecture IV is useful for object oriented programming. 
Depending on test information requirements, test data generation methods, different program 
analyzers are used. The mapping between program analyzers and test data generators can help 
in this regard. The paper emphasizes the basic concepts of automated test data generation. The 
paper does not focus much on the test data generation using UML and object oriented 
methodology. In future, we may hunt the area of object oriented program test data generation 
works, but without having the concepts of this paper, we can not go directly to the concepts of 
object oriented programming. The authors feel these concepts are mandatory to perform 
research in the area of automated test data generation whether it is conventional programming or 
modern programming.

REFERENCES

[1] Xiao Qu, Myra B. Cohen, Katherine M. woolf, “Combinatorial Interaction Regression 
     Testing: A study of Test Case Generation and Prioritization” , 2007.
[2] Shahid Mahmood, “A Systematic Review of Automated Test Data Generation Techniques” , 
     Master Thesis Software Engineering Thesis no: MSE-2007:26 October 2007.
[3] Gautam Kumar Saha, “Understanding Software Testing Concepts”, ACM Ubiquity Vol 9, 
     Issue 6, February12-18, 2008.
[4] M. Prasanna, S.N. Sivanandam, R. Venkatesan, R. Sundarrajan, “A survey on automatic test        
               case generation”,  Academic Open Internet Journal, www.acadjournal.com , Vol 15, 2005.
[5] Mark Utting,Alexander Pretschner, Bruno Legeard, “A Taxonomy of Model-based testing”, 
    April 2006.
[6] Hung Tran, “Test generation using Model Checking”, 2007.
[7] Laurent Hascoet, The Data-Dependence Graph of Adjoint Programs, ISSN 0249-6399 ISRN 
     INRIA/RR{4167{FR+ENG}



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.1, Feb 2011

117

[8] http://webdocs.cs.ualberta.ca/ amaral/courses/429/webslides/topic8-ILP-dynamic/sld004.htm
[9] C. Cadar and D. Engler, “Execution Generated Test Cases: How to Make systems Code 
    Crash Itself”, Technical Report, Computer Systems Laboratory Standford University, 
     Standford CA-94305, U.S.A. 2005.
[10] M. Gittens, K. Romanufa, D. Godwin, J. Racicot, “All Code Coverage is not created equal: A 
       case study in prioritized code coverage”, Technical Report, IBM Toronto Laboratory, 2006.
[11] Mary Jean Harrold Gregg Rothermel Alex Orsa, “Representation and analysis of software”.
[12] Rullian Zhao and Qing Li., “Automatic test generation for dynamic data structure” , Technical 
       report, Beijing University of Chemical Technology, 2006.
[13] Kiran Lakhotia, Phil McMinn, and Mark Harman, “Automated Test Data Generation for 
       Coverage: Havent We Solved This Problem Yet?”, 2009.
[14] Clay E. Williams Center for Software Engineering IBM T. J. Watson Research Center, 2009
[15] Bogdan Korel, Ali M. Al-Yami, “Automated Regression Test Generation", ISSTA 98
              Clearwater Beach Florida USA , 1998.
[16] Jan Gustafsson, Andreas Ermedahl, Christer Sandberg, Bjrn Lisper, “Automatic Derivation of 

Loop Bounds and Infeasible Paths for WCET Analysis Using Abstract Execution", In Proc. 27th 
IEEE Real-Time Systems Symposium (RTSS06), December 2006.

[17] Andreas Ermedahl, Christer Sandberg, Jan Gustafsson, Stefan Bygde, and Bjorn Lisper “Loop 
Bound Analysis based on a Combination of Program Slicing, Abstract Interpretation, and 
Invariant Analysis", 2005

[18] BMinh Ngoc Ngo and Hee Beng Kuan Tan, “Detecting Large Number of Infeasible Paths 
               through Recognizing their Patterns” ,ESEC/FSE07, September 3-7, 2007, Cavtat near 
               Dubrovnik, roatia.
[19] Bo Qu, Changhai Nie, Baowen Xu, Xiaofang Zhang , “Test case prioritization for black box 

testing “, 2007 IEEE.
[20] Chen Xu, J. Zhang, Xiaoliang Wang, “Path Oriented Test Data Generation Using Symbolic 

execution And Constraint solving Techniques", In Proceedings of the Second International 
IEEE Conference on Software Engineering and Formal Methods(SEFM'04),2004.

[21] Petri Ihantola , “Test data generation for programming exercise with symbolic execution in Java 
path finder” , April 10, 2006 2006.

[22] Lionel Briand, Yvan Labiche, “Empirical Studies of software testing techniques : Challenges, 
        Practical strategies and future research”' , vol 29, no.-5, September 2004.
[23] Bogdan Korel, Ali M. Al-yami, Department of Computer Science, Illinois Institute of 

Technology, Chicago, IL 60616s, “Generating Fast Code From Concurrent Program Dependent 
Graphs”, Proceedings of ICSE-18, 1996 IEEE.

[24] Jia Zeng, Cristian Soviani, Stephen A Edwards, “Generating Fast Code From Concurrent 
Program Dependent Graphs”' , LCTES'04, June 11-13 2004.

[25] Xinyu Wang, Jianling Sun, Xiaohu Yang,Zhijun He Srinivasa R. Maddineni, “Automatically 
        Identifying Domain Variables based on Data Dependence Graph”' , International Conference on 
        Systems, Man and Cybernetics, IEEE 2004.
[26] Srinivas Visvanathan, Neelam Gupta, “Generating test data for functions with pointer inputs”' , 

in Proceedings of the 17th IEEE International Conference on Automated Software Engineering 
2002.

[27] Li Xiaowei Han Congying Zhang Guangmei, Chen Rui, The automatic generation of basis set of 
       path for path testing ' , in Proceedings of the 14th Asian Test Symposium 2005.
[28] Nicky Williams, Bruno Marre and Patricia Mouy , On the Fly Generation of K-Path Tests for C 

Functions' 19th IEEE International Conference on Automated Software Engineering (ASE'04), 
Linz, Austria September 20-September 24, 2004.

[29] J. Edvardsson, A Survey on Automatic Test Data Generation," In Proceedings of the Second 
        Conference on Computer Science and Systems Engineering(CCSSE'99), Linkoping, pp. 21-28 
        10/1999.
[30] Chen Xu, J. Zhang, Xiaoliang Wang, “Path Oriented Test Data Generation Using Symbolic 

execution And Constraint solving Techniques", In Proceedings of the Second International IEEE 
Conference on Software Engineering and Formal Methods(SEFM'04),2004.

[31] A. Gotlieb, M. Petit, Path-Oriented Random Testing," Proceedings of the First International 
        Workshop on Random testing” (RT'06), Portland, ME, USA, 07/2006.



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.1, Feb 2011

118

[32] Xiao Ma, J. Jenny Li, and David M. Weiss, “Prioritized Constraints with Data Sampling Scores 
for Automated Test Data Generation", Eighth ACIS International Conference on Software 
Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2007.

[33] A. Bertolino, “Software Testing Research: Achievements, Challenges, Dreams", In Future of 
        Software Engineering(FOSE'07),2007.
[34] J. Jenny Li, “Prioritize Code for Testing to Improve Code Coverage of Complex Software", In 
        Proceedings of  the 16th IEEE International Symposium on Software Reliability
       Engineering(ISSRE'05), 2005.
[35] Jun-Yi Li, Jia-Guang Sun, Ying-Ping Lu, “Automated Test Data Generation Based on Program 

Execution", In Proceedings of the Fourth IEEE International Conference on Software 
Engineering Research, Management and Applications(SERA'06), 2006.

[36] Alessandra Cavarra, Thierry Jeron, and Alan Hartman,  “Using UML for Automatic test 
Generation", In Proceedings of ISSTA (ISSTA'02), Rome, Italy 2002.

[37] N. Klarlund, P. Godefroid, and K. Sen, “Directed Automated Random Testing", In Proceedings 
              of the ACM SIGPLAN 2005 Conference on Programming Language Design and 
              Implementation(PLIID'05), 2005.
[38] Lionel Briand, Yvan Labiche “Empirical Studies of Software Testing Techniques: Challenges, 
       Practical Strategies, and Future Research", WERST Proceedings  of ACM SIGSOFT SEN, 
        September 2004 Volume 29 Number 5.
[39] Gregg Rothermel, Roland H. Untch, Chengyun Chu, Mary Jean Harrold, “Test Case 

Prioritization: An Empirical Study", Proceedings of the International Conference on Software 
Maintenance, Oxford, UK, September, 1999, IEEE Copyright.

[40] Jia Zeng, Cristian Solviani, Stephen A Edwards, “Generating Fast Code Form Concurrent 
              Program Dependence Graphs" Proceedings of the LCTES'04, June11-13,2004.
[41] Mtif M. Memon, Mary Lou Sofia, Martha E. Pollack, “Coverage Criteria for GUI Testing” ,
       ESEC/FSE 2001, Vienna, Austria ACM.
[42] Zhongxing Xu, Jian Zhang, “A Test Data Generation Tool for Unit Testing of C Programs",
        Proceedings of the Sixth International Conference on Quality Software (QSIC'06), 2006.
[43] Ruilian Zhao, Qing Li, “Automatic Test Generation for Dynamic Data Structures", Fifth 

International Conference on Software Engineering Research, Management and Applications, 
2007.

[44] H. Tahbildar and B. Kalita, “Automated Test Data Generation For Programs Having Array Of 
Variable Length And Loops With Variable Number Of Iteration", Preecedings of the 
International MultiConference of Engineers and Computer Scientists 2010 Vol. I,IMECS 2010, 
March 17-19, 2010, Hong Kong.

[45] Richard A.DeMillo, A. Jefierson Offutt, “Constraint-Based Automatic Test Data Generation", 
IEEE Transactions on Softare Engineering, 17(9):900{910, September 1991.

[46] H. Tahbildar, B. Kalita, “Automated Test Data Generation Based On Individual Constraints and 
Boundary Value", IJCSI International Journal of Computer Science Issues , Volume 7, Issue 5, 
pp 350-359, September 2010.

[47] H. Tahbildar, B. Kalita, “Heuristic Approach of Automated Test Data Generation For Programs 
Having Array of Different Dimensions and Loops With Variable Number of Iteration," 
International Journal of Software Engineering and Applications” , Vol.1, No.4, October 2010.

[48] N. Williams, B. Marre, P. Mouy, and M. Roger, “Heuristics-based infeasible path detection for 
dynamic test data generation", ELSEVIER Information and Software Technology, 
50(2008)641-655.

[49] Ashalatha Nayak and Debasis Samanta, “Automatic Test Data Synthesis using UML Sequence 
        Diagrams", Journal of Object Technology, vol. 09, no. 2, March-April 2010, pp. 75(104)
[50] Huaizhong Li and C. Peng Lam, “Software Test Data Generation using Ant Colony 

Optimization", World Academy of Science, Engineering and Technology 1 2005.
[51] Mrs. R. Jeevarathinam , Dr. Antony Selvadoss Thanamani, “Test Case Generation using 

Mutation Operators and Fault Classification", (IJCSIS) International Journal of Computer 
Science and Information Security, Vol. 7, No. 1, 2010.

[52] Simeon C. Ntafos, Member, IEEE, “A Comparison of Some Structural Testing Strategies",
IEEE Transactions On Software Engineering Vol. 14 No. 6 June 1988.

[53] Siwen Yu and Jun Ai, Department of System Engineering Technology, Beihang University, 
        “Software Test data Generation Based On Multi-Agent" International Journal of Software 
        Engineering and its Applications, Vol. 4, No. 1 January 2010.



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.1, Feb 2011

119

[54] Minh Ngoc Ngo *, Hee Beng Kuan Tan, “Heuristics-based infeasible path detection for dynamic 
Test Data generation", International Journal Information and Software Technology , ELSEVIER, 
Page 641-655, 2008.

[55] D. C. Ince,  “The Automated Generation of Test Data", The Computer Journal, Vol 30. 1 1987.
[56] Phil McMinn,  “Search-based Software Test Data Generation: A Survey,  Software Testing, 
        Verification and Reliability, Wiley”, VOL 14., No. 2, Page 105-156, June 2004.
[57] Sittisak Sai-ngern, Chidchanok Lursinsap, Peraphon Sophatsathit, “An address mapping 

approach For test data generation of dynamic linked structures", 5 April 2004.
[58] David Talby, Arie Keren,Orit Hazzan, Yael Dubinsky, “Agile Software Testing in a Large-

Scale Project", IEEE Software, July/August 2006.
[59] Jeanne Ferrante, Joe D. Warren, “PDG and its use in optimization “, ACM Transaction. on 
       Programming Languages and Systems, Vol 9.,No 3., July 1987.
[60] C.V. Ramamoorthy, S.F. Ho, W.T. Chen, “On the automated generation of Program Test Data",

IEEE Transaction on Software Engineering, Vol. SE-2, No-4, December 1976.
[61] Tsong Yueh Chen, Fei-Ching Kuo, Zhi Quan Zhou, “Automated software test data generation”
        Proceedings of the Fifth International Conference on Quality Software (QSIC05) 2005 IEEE.
[62] M. A. Hennel,M.R. Woodward and D. Hedley, “Experience with path analysis and testing of 
        Programs", IEEE Transaction on Software Engineering, SE-6(3):278-286 1980.
[63] Neelam Gupta, Aditya P. Mathur, Mary Lou Soffa, “Automated test data generation using an 

iterative Relaxation method", ACM, November 1998.
[64] Thomas J. McCabe, “A Complexity measure”, IEEE Trans. on Software Engineering, Vol. SE-

2, No-4, December 1976.
[65] Harrold,  “Testing: A Roadmap”, ACM Trans. on Software Engineering 2000.
[66] N. Williams, B. Marre, P. Mouy, and M. Roger, “PathCrawler: Automatic Generation of Path 

Tests by Combining Static and Dynamic Analysis", Springer-Verlag Berlin Heidelberg, LNCS 
3463, pp. 281-292, 2005.

[67] Koushik Sen, Darko Marinov, Gul Agha, “CUTE: A Concolic Unit Testing Engine for C", 
ACM, pp. 5-9, 09/2005

[68] R. E. Prather, J. P. Myers, “The Path Prefix Software Engineering", IEEE Trans on Software 
       Engineering, SE-13(7), pp. 761-766, 07/1987.
[69] B. Korel, “Automated Software Test Data Generation", IEEE Trans on Software Engineering, 

Vol. 16, No.8, pp. 870-879, 08/1990.
[70] L. A. Clarke , “A System to Generate Test Data and Symbolically Execute Programs", IEEE 

Transaction on Software Engineering, Vol. SE-2, No.3, pp. 215-222, 09/1976.
[71] J. Zhang, Xiaoxu Wang, “A Constraint Solver and its Application to Path Feasibility Analysis",
        International Journal of Software Engineering and Knowledge Engineering, 11(2): pp. 139-156, 
        2001.
[72] R. FerGuson, B. Korel, “The Chaining approach for Software Test Data Generation", ACM 
        Transactions on Software Engineering and Methodology, 5(1): pp. 63-86, 01/1996.
[73] Jian Zhang, “A path-based approach to the detection of infinite looping ", IEEE , 2001.

Annexure
GCD PROGRAM
void main() {
A int m,n,x,y,gcd;
B scanf("%d",&m);
   scanf("%d",&n);
C x=m;
D y=n;
E while(x ! = y) {
F if(x > y)
G x=x-y;
H else y=y-x;
I }
J gcd=x; }



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.1, Feb 2011

120

Authors 

H. Tahbildar Received his B. E. degree in Computer  Science and 
Engineering from Jorhat Engineering College, Dibrugarh University in 1993 
and M. Tech degree in Computer and Information Techno logy from Indian 
Institute of Technology, Kharagpur in 2000. Presently he is doing Ph.D and 
his current research interest is Automated Software Test data generation, 
Program Analysis. He is working as HOD, Computer Engineering 
Department, Assam Engineering Institute, Guwahati, INDIA.

B. Kalita: Ph.D degree awarded in 2003 in Graph Theory. At present 
holding the post of Associate Professor, Department of Computer 
Application, Twenty research papers have got published in national and 
international level related with graph theory, Application of graph theory in 
VLSI   design, software testing and theoretical computer science. Field of 
interest: Graph theory, VLSI Design, Automata theory, network theory, test
data generation etc. Associated with the professional bodies, such as Life 
member of Indian Science Congress association, Life member of Assam 
Science Society, Life member of Assam Academy of Mathematics, Life 
member of Shrimanta Sankar deva sangha ( a cultural and religious society).
Delivered lecture and invited lectures fourteen times in national and
international level.


