
A Case for Dynamic Frequency Tuning in On-Chip
Networks

Asit K. Mishra† Reetuparna Das† Soumya Eachempati†

Ravi Iyer§ N. Vijaykrishnan† Chita R. Das†

†Department of Computer Science and Engineering §Integrated Platforms Lab
The Pennsylvania State University Intel Corporation
University Park, PA-16801, USA Hillsboro, OR 97124, USA

{amishra,rdas,eachempa,vijay,das}@cse.psu.edu ravishankar.iyer@intel.com

Abstract
Performance and power are the first order design metrics
for Network-on-Chips (NoCs) that have become the de-facto
standard in providing scalable communication backbones for
multicores/CMPs. However, NoCs can be plagued by higher
power consumption and degraded throughput if the network
and router are not designed properly. Towards this end, this
paper proposes a novel router architecture, where we tune
the frequency of a router in response to network load to
manage both performance and power. We propose three dy-
namic frequency tuning techniques, FreqBoost, FreqThrtl and
FreqTune, targeted at congestion and power management in
NoCs. As enablers for these techniques, we exploit Dynamic
Voltage and Frequency Scaling (DVFS) and the imbalance
in a generic router pipeline through time stealing. Experi-
ments using synthetic workloads on a 8x8 wormhole-switched
mesh interconnect show that FreqBoost is a better choice for
reducing average latency (maximum 40%) while, FreqThrtl
provides the maximum benefits in terms of power saving and
energy delay product (EDP). The FreqTune scheme is a bet-
ter candidate for optimizing both performance and power,
achieving on an average 36% reduction in latency, 13% sav-
ings in power (up to 24% at high load), and 40% savings
(up to 70% at high load) in EDP. With application bench-
marks, we observe IPC improvement up to 23% using our
design. The performance and power benefits also scale for
larger NoCs.

Categories and Subject Descriptors

C.1.2 [Multiprocessors]: Interconnection architectures.
C.1.4 [Parallel Architectures]: Distributed architectures.

General Terms

Design, Experimentation, Performance.

1. INTRODUCTION
On-chip interconnects or Network-on-Chip (NoC) archi-

tectures have become an important research focus in recent
years for designing multicores/Chip Multi-Processors (CMPs)
and System-on-Chip (SoC) architectures that can scale to
hundreds of cores in the future. This is because an on-chip
network plays a critical role in determining the performance
and power behavior of a multicore/SoC architecture. While
the performance implications of the underlying communica-
tion architecture is well understood in designing multipro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICRO’09, December 12–16, 2009, New York, NY, USA.
Copyright 2009 ACM 978-1-60558-798-1/09/12 ...$10.00.

cessors over the years, power consumption has become a first
order design metric specifically in the nanometer regime. It
is predicted that NoC power can be a significant part of the
entire chip power and can account for up to 40 to 60 watts [3]
with technology scaling for a mesh based network with 128
nodes. A few commercial designs also support this trend,
where up to 28% of the entire chip power is devoted to the
interconnect [11]. Thus, on-chip interconnects that can op-
timize both performance and power pose intriguing research
challenges. This is evident from the large body of literature
covering multiple facets of NoC design [16, 13, 25, 8, 22, 28].

Router frequency is one of the critical design parameter
that directly affects both performance and power, albeit in
a contradictory fashion. With a sophisticated design of a
router pipeline, it is possible to increase the operating fre-
quency [18, 23], but higher router frequency leads to higher
power consumption. On the other hand, a mismatch between
processor and router/network frequency can result in signif-
icant performance penalties [6]. Thus, a prudent control of
the router frequency can help in optimizing both performance
and power.

We motivate the fine balance that exists between power
and performance in an on-chip network with a relative power-
performance trade-off analysis with respect to offered net-
work load. Figure 1 shows the relative growth of network
power versus network latency for an 8x8 mesh with a syn-
thetic traffic mixture of Uniform Random, Transpose, Nearest-
Neighbor and Self Similar traffic (detail network configura-
tion is mentioned later in Table 3(a)). The bars indicate
network latency/power normalized with respect to the net-
work latency/ power at no load (idle network). At low load,
the network power consumption is less. However, the rate of
growth of network power is much higher as compared to the
rate of growth of network latency. For example, as shown in
Figure 1, the network power grows to 30x as the injection
rate varies from 1% to 40%, whereas the network latency
grows only 7x. We leverage our insights from these trends
to optimize the network at low load for performance and at
high load for power. An activity based power-management
technique, which was recently implemented in the Intel 80-
core routers [11, 33], shares a similar view of optimizing the
network power based on activity, albeit in a different fashion
by clock-gating the idle ports.

Since performance and power are directly proportional to
frequency, we dynamically modulate the router frequency in
response to network load to facilitate these optimizations,
and demonstrate the advantages at system level. Specifically,
at low load we operate the routers at peak frequency. At
high load, we dynamically determine the operating frequency
of individual routers in the network. The dynamic schemes
that determine the operating frequencies of the routers are
designed to a) reduce power consumption and b) manage

0

1

2

3

4

5

6

7

0

5

10

15

20

25

30

35

0.01 0.04 0.08 0.16 0.24 0.28 0.32 0.34 0.36 0.38 0.39 0.4

R
a

ti
o

 o
f
L

a
te

n
c
y
 I
n

c
re

a
s
e

R
a

ti
o

 o
f
P

o
w

e
r

In
c
re

a
s
e

Injection Ratio (flits/node/cycle)

Normalized Power Normilized Latency

Figure 1: Average network latency and power be-
havior of an 8x8 mesh network.
congestion in the network, by selectively stepping up and
down the frequency of a subset of routers in the congested
regions of a network. We propose a two-prong approach to
vary the baseline router frequency: clock scaling and time-
stealing. We employ Dynamic Voltage and Frequency Scaling
(DVFS) [29, 35] to scale up and down the router clock fre-
quency below the nominal frequency by switching the operat-
ing voltage levels. The time stealing technique is employed to
boost the baseline router frequency by exploiting the timing
imbalance between router pipeline stages, such that a router
can operate at the average cycle time of all the pipeline stages
in contrast to the delay of the worst case pipeline stage.

We explore three techniques for dynamic frequency tun-
ing to simultaneously address power-performance trade-offs.
The first technique, called FreqBoost, initially employs time-
stealing to operate all routers at a boosted frequency. This
helps in enhancing the performance at low load conditions,
while slightly increasing the power consumption. However,
as the network gets congested, power consumption becomes
a key challenge. Hence, it throttles the frequency/voltage of
selected routers using DVFS. The second mechanism, called
FreqThrtl, initially operates all routers at the baseline fre-
quency and selectively employs time-stealing and DVFS to ei-
ther increase or decrease the frequency at the onset of conges-
tion. This scheme, unlike FreqBoost, can modulate frequency
of routers bi-directionally (higher or lower) and consequently
can help reduce power and manage congestion at high load
more effectively. Using this technique, the frequency of a
congested router is boosted at the onset of congestion and
the frequency of a router adjacent to this congested router
is throttled. FreqTune is a hybrid of the above two schemes
that dynamically switches between FreqBoost and FreqThrtl
as the network load varies from low to high.

We evaluate the performance and power implications of
the proposed techniques using a wormhole-switched mesh in-
terconnect with synthetic and application benchmarks and
compare them with respect to a baseline router/network. To
further emphasize the efficacy of our approach, we compare
our results with adaptive routing and with a baseline design
that employs time-stealing but no congestion management.

The primary contributions of this paper are the following:
• We propose novel frequency tuning algorithms to re-

duce latency and power consumption in NoC by distributed
throttling and boosting of router frequencies depending upon
network load. To the best of our knowledge, this is the
first work to propose a distributed congestion management
scheme that is based on operating individual routers at dif-
ferent frequency levels. Our proposal leads to 36% reduction
in latency at high load, 13.5% savings in power (up to 24% at
high load) and average 40.5% reduction in energy delay prod-
uct (EDP) (maximum 70% at high load). With application
benchmarks, we achieve IPC improvements up to 23.1% us-
ing our schemes. Moreover, the power-performance benefits
increase when these techniques are applied to large networks.

D
CONGESTED

HIGH

B

C

EA

CONGESTED

HIGH

N

S E

W

No Change In

Frequency

Throttles

Throttles

CONGESTED

HIGH

CONGESTED

HIGH
Flit

Empty Buffer

Slot

D

B

C

EA

CONGESTED

LOW

N

S E

W

Throttles
CONGESTED

LOW

BACK TO

NORMAL

FREQUENCY

(a) (b)

Figure 2: An example showing actions taken by a
congested router.

• Our analysis corroborates the pipeline stage imbalance
found in other routers proposed in [18, 6, 23]. While this
imbalance can be removed using power optimizations such as
variable voltage (supply/threshold) and gate sizing optimiza-
tions, we focus on time-stealing techniques to boost perfor-
mance. Time-stealing in NoC routers can lead to 25% reduc-
tion in zero load latency. In addition, we use the well-known
DVFS technique at the granularity of an individual router
to tune the router frequency and power based on its load.
We believe, this is the first paper to apply time-stealing and
DVFS techniques for performance and power management in
on-chip routers.

• We demonstrate that the proposed techniques are not
only much more effective in delivering better performance
and reducing power consumption compared to the mono-
lithic, single frequency design, but also can outperform other
pure performance enhancement techniques such as using adap-
tive routing and simply increasing the operating frequency
without any congestion management. Moreover, we also
show how coarse-grain frequency tuning can help in reduc-
ing the overheads involved in these techniques. All these re-
sults make a strong case for implementing variable frequency
routers in on-chip interconnects.

The rest of this paper is organized as follows: the three per-
formance and power management techniques are presented in
section 2. In section 3, we elaborate on clock scaling and time
stealing techniques for deploying these schemes, and the re-
quired hardware support. Section 4 discusses the experimen-
tal platform and results. Prior work is discussed in section 5,
followed by the concluding remarks in section 6.

2. FREQUENCY TUNING RATIONALE
We use a congestion metric (buffer utilization) per port in

a router to decide whether this port of the router is likely to
get congested in the next few cycles, and if so, it signals the
upstream router to throttle. The intuition behind such an
approach comes from the fact that if a router is getting con-
gested, it is due to the pressure from its neighboring routers.
The congested router is unable to arbitrate and push out its
flits fast enough compared to the rate of flit injection into its
buffers. To handle this mismatch and reduce the contention
in the congested router, we throttle the upstream router by
lowering its frequency. This decrease in frequency of the
upstream router leads to a lower rate of arrival of the flits
into the congested router, giving the congested router some
leverage to push out its flits, and hence, reduce the overall
blocking latency in the network.

To better understand our proposed techniques, we present
an example using Figure 2. Figure 2(a) shows the central (D)
router’s North (N),South (S) and East (E) port buffers are
at the onset of congestion. Thus, router D signals congested
port’s corresponding upstream routers B,C and E to throt-

Table 1: (a) Settings for FreqBoost and FreqThrtl (b) Thresholdthrottled Settings for FreqBoost, FreqThrtl
and FreqTune. The table shows throttling frequency that a neighboring router uses based on its buffer
utilization(BU) after receiving a congested high signal.

Fbase Fboost

2.20 GHz 2.75 GHz

Thresholdcongestion Thresholdlow

0.60 0.40

BU > 0.60 0.50 < BU < 0.60 0.40 < BU < 0.50 BU < 0.40

FreqBoost Fboost 0.9*Fboost 0.85*Fboost 0.8*Fboost

FreqThrtl Fbase 0.9*Fbase 0.85Fbase 0.8*Fbase

FreqTune Fboost 0.85*Fboost 0.8*Fboost Fbase

(a) (b)

tle. Due to similar reasons, router B’s East port signals its
upstream router to throttle. The upstream routers in turn,
depending on their own congestion status, decide whether to
throttle themselves or operate at the normal frequency. In
the example shown, router B does not throttle itself since it
is at the verge of congestion, while routers C and E throt-
tle themselves. A few cycles later, when buffer availability
in East and South ports of router D increases, it signals the
throttled routers to boost their frequency back to the normal
level. This is shown in Figure 2(b). Based on these premises,
we design three techniques, FreqBoost, FreqThrtl and Freq-
Tune.

2.1 FreqBoost Technique

In the FreqBoost technique, we operate the network at a
higher frequency, Fboost (2.75 GHz), compared to the nomi-
nal operating frequency, Fbase (2.2GHz), right from the be-
ginning using time-stealing technique and apply DVFS to
throttle a router for congestion management. This tech-
nique and all other techniques proposed later in this paper
use two thresholds, Thresholdcongestion and Thresholdlow

(shown in Table 1(a)), for triggering the proposed schemes.
Thresholdcongestion is used to decide pro-actively whether a
particular port is likely to get congested in the next few cy-
cles. Upon detection of such an onset of congestion, this port
signals a congested high to the upstream router. We assume
that it takes one cycle for this signal to reach the upstream
router similar to the credit-flow information. Upon receipt of
the congested high signal, the upstream router compares its
overall buffer utilization with the Thresholdthrottled settings,
shown in Table 1(b), and depending on its overall buffer uti-
lization, the upstream router decides its operating frequency.
Table 1(b) shows the different frequency settings for each
level of buffer utilization in the router. If the total buffer
utilization in the router that received the congested high
signal is high, then it will not throttle itself by a big mar-
gin, whereas, if the buffer utilization is low, then it would
throttle itself aggressively. The reason behind using over-
all buffer utilization as a metric in choosing the throttled
frequency settings and not a port’s buffer utilization, is to
handle asymmetric traffic, where buffers across some ports
are heavily utilized compared to other ports. This scenario
arises in X-Y routing, where buffers in the X-direction are
heavily utilized compared to buffers in the Y-direction. The
Thresholdthrottled settings ensure that the buffer utilization
of a router to be throttled is not close to the congestion
threshold, and thereby, the slowed-down router can sustain
throttling, without itself getting congested.

When a congested router’s buffer utilization goes below
Thresholdlow, it signals congested low to its upstream router.
After receiving a congested low signal, the throttled router
increases its frequency back to Fboost.

2.2 FreqThrtl Technique

With FreqThrtl, we increase the frequency of a congested
router to Fboost only at the onset of congestion and throt-
tle the upstream router to manage congestion, otherwise the
base frequency,Fbase (2.2GHz), is not enhanced during nor-

mal operation. Increasing the frequency of the congested
router helps in servicing the flits faster through higher rate
of arbitration and flit traversal. Additionally, slowing down
upstream routers helps to reduce the pressure of injections
and helps to ease out the traffic in the congested router.

Note that, we do not change the routing algorithm during
congestion, thus, the algorithm does not have to deal with
any deadlock situations. Also, monitoring the buffer uti-
lization per port and throttling the corresponding upstream
router helps us to manage congestion across traffic flows, i.e.
at the onset of congestion in a router, the scheme selectively
throttles only those neighboring routers which can lead to
congestion in the current router. Additionally, our schemes
work on top of the credit-based flow control. With the credit-
based flow control, a flit’s traversal into the downstream
router would pause when there are no available credits. How-
ever, with our approach, we pro-actively detect whether the
downstream router port is likely to get congested (before all
buffer slots get filled up) and slow down the rate of injec-
tion into this downstream router, making it different from
the credit-based approach, where flit traversal is paused till
credit availability. This approach leads to reduction in block-
ing and queuing latency per flit since each flit now sees re-
duced contention upon arrival at each input port.

Figure 3 shows the load-latency and power consumption/
savings in an 8x8 network for Uniform Random (UR) traf-
fic. BaseCase, in the figures depicts a network, where no
time-stealing or DVFS techniques are applied. For compar-
ison purposes, we have also plotted latency curves with a
minimally-adaptive routing algorithm (shown as Adaptive in
the figure) and a case where time-stealing alone (no DVFS)
is employed on top of the base case to boost the perfor-
mance of the network (shown as BaseCase + TS). As can
be seen, FreqBoost and FreqThrtl increase the through-
put of the network at higher injection rates when BaseCase

starts saturating. FreqBoost always gives the best perfor-
mance compared to all of the schemes. With FreqBoost,
we operate the network at a 25% higher frequency due to
time-stealing, and hence, consumes 25% more power at low-
injection rates. However, at low injection rates, absolute
power consumption in the network is low (less than 7W till
12% injection rate) and FreqBoost does not, therefore, in-
crease the absolute power envelope significantly. At higher
injection rates, FreqBoost starts throttling routers to man-
age congestion and thus, power consumption in the network
decreases. The power curves for FreqBoost lie in between
BaseCase+TS and BaseCase. Comparison of performance
and power curves for BaseCase+TS and FreqBoost shows
that simply increasing the frequency of a router does not
lead to significant performance benefits. Since FreqBoost

employs intelligent throttling of routers along with frequency
boosting, the performance difference between FreqBoost and
BaseCase+TS can solely be attributed to our congestion
management scheme, where we tune the frequency of indi-
vidual routers depending on load conditions.

With FreqThrtl, we always save power (Figure 3(b)), which

0

10

20

30

40

0 0.1 0.2 0.3 0.4

La
te

nc
y

(in
 N

an
os

ec
on

ds
)

Injection Ratio (flits/node/cyle)

BaseCase

Adaptive

FreqThrtl

FreqBoost

BaseCase+TS

0

5

10

15

20

25

30

35

40

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

P
ow

er
 C

on
su

m
pt

io
n

(in
 W

at
ts

)

Injection Ratio(flits/node/cycle)

BaseCase

Adaptive

FreqBoost

FreqThrtl

BaseCase+TS

-30

-20

-10

0

10

20

30

40

0.01 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32

P
er

ce
nt

ag
e

S
av

in
gs

Injection Ratio(flits/node/cycle)

FreqThrtl FreqBoost BaseCase+TS

(a) Load-Latency Graph (b) Power Consumption (c) Savings in Power w.r.t. BaseCase

Figure 3: Performance and network power analysis of FreqBoost and FreqThrtl with UR traffic.

comes mostly when few routers under high network load op-
erate at lower than nominal voltage and frequency. However,
when compared with FreqBoost, FreqThrtl saturates ear-
lier. Therefore, while FreqBoost helps in performance en-
hancement and consumes more power, FreqThrtl helps in
reducing power consumption while providing smaller perfor-
mance enhancement margins. Since FreqThrtl at low load
behaves similar to BaseCase until congestion thresholds are
reached, initial power savings with FreqThrtl are negligible
until the load increases to about 4% injection rate. On an
average, we find about 4.5-5.5 nanoseconds (10-12 cycles) re-
duction in zero and light load latency and about 40% increase
in the throughput of the network with FreqBoost. With
FreqThrtl, there is about 12% increase in network through-
put. Average power saving with FreqThrtl is 23%, while
FreqBoost consumes on an average 14% more power com-
pared with BaseCase. Figure 3(c) depicts that simply boost-
ing the network frequency by 25% (BaseCase+TS) leads to
a consistent 25% more power consumption. The figures also
show that both FreqBoost and FreqThrtl outperform adap-
tive routing in average latency and FreqThrtl provides much
better power savings due to congestion management in the
network. Our simulations show a similar power and perfor-
mance trend with other non-uniform traffic patterns as well.
Hence, in subsequent sections, we do not present any evalua-
tion results comparing adaptive routing to our techniques to
preserve clarity.

2.3 FreqTune Technique

Leveraging our insights from the above results, we propose
an adaptive technique that utilizes FreqBoost and FreqThrtl.
It uses FreqBoost at low load for performance enhancement
and switches to FreqThrtl at high load to save power and
manage congestion. The EDP results shown in later sec-
tions reinforce this choice. We call this hybrid technique
FreqTune, since using this technique, the network dynam-
ically tunes to the traffic conditions. With FreqTune, each
router selects its operating mode using information from its
neighbors. This leads to distributed throttling of routers in
the network with a mix of schemes, wherein some regions
operate in the nominal frequency mode, some in FreqBoost
mode and others operate in FreqThrtl mode. Thus, with
FreqTune, a router transitions from using high-frequency,
Fboost, at low load to using nominal frequency, Fbase, at
medium load and again to high frequency at high load if
it gets congested. This distributed dynamic frequency tran-
sition, based on network load, manages congestion as well as
saves power in the network.

3. ROUTER AND NETWORK ARCHITE-
CTURE

In this section, we discuss the enablers for our proposed
techniques: on-chip DVFS in routers and time-stealing. We
then describe the architectural modifications to the router de-
sign for supporting frequency scaling and time stealing tech-

niques, their hardware implementation and the correspond-
ing overheads.

3.1 Frequency Scaling

Our approach extends the concept of per-core on-chip DVFS
[17] to per-router DVFS in NoCs for congestion and power
management. In order to minimize the overhead of support-
ing multiple power domains in the network, we also exper-
iment with one regulator being shared among a group of
routers. We adopt the two-step voltage regulator configura-
tion as proposed by Kim et al. [17]. An off-chip regulator per-
forms the initial step down from the Li-ion battery (3.7V) to
1.8V followed by multiple on-chip voltage regulators, where
each of them steps down voltage from 1.8V to 1V. The 2-level
approach amortizes the degradation in conversion efficiency
of employing only off-chip regulators. A multi-phase buck
converter that can provide three voltage and frequency lev-
els and a programmable voltage controlled ring oscillator [10]
are used. The programmable ring oscillator is required for
different frequencies at the same voltage to support the time-
stealing technique described next. The on-chip regulators
operate at 125MHz switching frequency and provide voltage
transitions between 1V to 0.8V. The routers can operate at
the lower frequency during frequency step-down by speedily
ramping down the frequency before the voltage steps down.
For stepping-up the frequency using DVFS, we first step-up
the voltage before ramping up the router frequency. Thus,
the overhead in every transition is primarily the voltage set-
tling time which is 13ns for every 100mV change [17]. Hence,
due to higher than required voltage during step-down (and
lower frequency during step-up), the power consumed by the
router during a transition lies between the values before and
after the scaling. All our evaluations take this overhead into
account.

The power consumption (at activity factor of 0.5) for our
regulator with conversion efficiencies similar to that in [17]
is given in Table 2(a). The area overhead in an 8x8 mesh
for 64 on-chip regulators is 4mm2 which is about 25% of the
area. The average power overhead is around 8% (at 1V) of
all routers in the network. This is based on our router area of
0.245 mm2 and power of 0.35W at 65nm node based on our
synthesized design (see Section 3.3.2). This area and power
overhead reduces by 4x when we use per-column regulators
(described later in Section 4.3).

3.2 Time Stealing in Router Pipeline

A generic on-chip router pipeline stage delays are quite
imbalanced unlike the processor pipeline [6, 26, 24]. In order
to boost the router frequency from the nominal frequency, we
apply time stealing techniques, where a slower stage in the
router gains evaluation time by stealing it from successive or
previous router pipeline stages. In order to steal slack from
a previous pipeline stage, an early clock signal needs to be
available and this may be limited by the earliest time a clock
signal can be obtained from the clocking system. A cycle may
steal time from subsequent stages by delaying the triggering

454ps

SA

VA

RC

ST LT

440ps

290ps

309ps326ps

454ps Frequency

= 1/454ps

= 2.20GHZ

(a) Base case router pipeline

454ps

SA

VA

440ps

309ps326ps

SA LT

363ps Frequency

= 1/363ps

= 2.75GHZ

RC

290ps

(b) Time stealing in router pipeline

C1

C2

L

2

RC

VA1

SA1

RC

VA2

SA2

Latch delay

Phase 1

ST

Cycle time

L

1

L

2

L

1

C1
C2

Original falling edges
Delayed falling edges

LTL

2

L

1

L

2
ST LT

Phase 2

Time stolen from ST (> what

ST can give)
ST steals time from

LT

Original

C1

Resulting Stage 1 Clock domain
Resulting ST Clock

domain

Resulting LT Clock

domain

(c) Time stealing with a 2-phase clocked pipeline

Figure 4: Time stealing in a generic router pipeline with a 2-phase clock.

edge of the clock to all the subsequent latches. We use the
later method for our router design.

Our baseline router is a 2-stage speculative router in which
the first stage performs the routing computation (RC), the
virtual channel allocation (VA) and the switch allocation
(SA) in parallel and the second stage is the switch trans-
fer (ST) as shown in the Figure 4(a). The link traversal
(LT) stage takes an additional cycle. The router stage de-
lays (shown in Figure 4(a)) are obtained after synthesis us-
ing the Synopsys Design Compiler, and the LT stage de-
lay is obtained using wire models from PTM [1]. A non-
overlapping symmetric two-phase clock is used for boosting
the router frequency (shown as C1 and C2 in 4(c)). In our
2-stage router, since the VA stage (454ps) is the bottleneck,
it steals time from the ST stage. Since the time required by
the VA stage is greater than the slack available in the ST
stage, ST stage will need to steal time from LT as shown in
Figure 4(b). Consequently, we delay the active clock edge
of C1 and C2 for both first and second stages (shown in
Figure 4(c)). Let the new enhanced clock time after time

stealing be Tc (=TV A+TST +TLT

3
). The active clock edge for

the VA stage is delayed by S1 = TV A − Tc. This is the ex-
tra time that is required by VA (stolen from ST and LT put
together). The slack time ST can provide is S2 = Tc − TST .
The remaining time of S1−S2 is stolen from the LT stage by
the ST stage. Thus, the clock edge to the ST stage is delayed
by TV A + TST − 2 ∗ Tc.

The extra time required to delay the falling edge is in-
troduced using tunable delay buffers comprising of inverter
chains [32]. We assume a hierarchical network consisting
of an H-tree at the top level and local mesh grids at the
lower level for distributing the clock on the chip similar to
the Itanium [31] clock-distribution design. A local grid typi-
cally constitutes about 1250 flip-flops [9], which is about the
size of a single stage of our router. Thus, the clock signal
to the router stages are supplied by the distinct local clock
grids. Hence, accommodating for time stealing technique
will involve introducing the extra delay buffer for the clock
grid supplying a router stage. Assuming a two-stage inverter
chain for the buffer, the size of the second inverter required
for introducing the clock skew in the clock distribution net-
work is shown in Table 2(b). For a delay of 27ps, a single
inverter sized to 2.4 times the minimum sized inverter is suffi-
cient. These values were obtained from HSPICE simulations
at 65nm, and we find that the power and the area overheads
for introducing these extra buffers are minimal.

To study the effectiveness of the time-stealing approach
across more diverse VA stage designs and implementation
choices, the frequency improvement was evaluated by vary-
ing the VA stage delay by ±25% from our design. Further,

Table 2: (a) On chip regulator power consumption
and (b) Inverter sizes for introducing clock skew.

Output Power

voltage overhead

1V 52.3mW

0.9V 41.5mW

0.85V 37.9mW

0.8V 34.1mW

Skew Inverter Skew Stage

Size @ Freq

91ps 4.75 VA @ 2.75GHz

54ps 2.41 ST @ 2.75GHz

46ps 1.9 VA @ 2.47GHz

27ps 2.41 VA @ 2.34GHz

(a) (b)

0

5

10

15

20

25

30

35

40

45

-25% -15% BaseCase +15% +25%
%

 Im
pr

ov
em

en
t i

n
C

yc
le

F

re
qu

en
cy

Sensitivity To Arbitration Delay

VC=2 VC=3 VC=4 VC=5 VC=6

Figure 5: Impact of #VCs on time-stealing.

the number of virtual channels (VCs) is also varied to analyze
the percentage benefits with time-stealing due to variation in
both VA stage latency as well the number of VCs. Such delay
variations are done to mimic changes due to different arbiter
designs or circuit optimizations. Figure 5 shows the per-
centage improvement in cycle frequency using time-stealing
technique as the number of VCs vary and as the cycle-time
of the VA stage varies from the BaseCase design. There is
a 25% frequency improvement using time stealing over the
base router frequency (2.2 GHz at 1V and 4VCs). If the
delay of the VA stage is reduced by 25%, it no longer be-
comes the bottleneck stage in the router and the ST stage
becomes the delay dominant stage. Under such scenarios, the
ST stage steals time from the LT stage. On an average, there
is 32% improvement in cycle-time across ±25% variations in
VA stage time as the number of VCs change.

3.3 Architectural Support for Frequency Adapta-
tion and Hardware Implementation

3.3.1 Asynchronous Communication

In order for the network routers to operate at different fre-
quencies, they should be able to communicate asynchronously
with each other. The router control logic, switching logic and
arbitration logic remain unaffected. This architecture essen-
tially mimics a Globally Asynchronous Locally Synchronous
(GALS) design within the network. To support the commu-
nication between routers operating at different frequencies,
we utilize the dual clock I/O buffer design from [12] for our
router buffers. In this design, the buffers use independent
read and write clock signals along with control to prevent
synchronization problems when read and write pointers ap-
proach each other. In our design, the write clock of a buffer is
controlled by the clock of the feeding upstream router and the

read clock is from the current router. When two neighboring
routers operate at the same frequency and the read and the
write pointers are in separate locations in the buffer, the read
and write operations are independent. Two operational sit-
uations that could cause problems are when the two address
pointers approach each other in the buffer. These situations
correspond to buffer emptying and buffer full. Prevention
of synchronization problems is handled separately for each
of these cases without introducing any delay penalty using
additional circuitry as proposed in [12]. Note that, with our
proposed distributed frequency tuning schemes, the entire
network does not become asynchronous, only neighboring
routers that are operating at different frequencies commu-
nicate asynchronously. The feasibility of such asynchronous
clocking styles has been demonstrated recently. For example,
the 80-core prototype chip from Intel [33] uses mesochronous
clocking, where there is no control over the clock phase reach-
ing a particular module and data signal is transmitted along
with a strobe signal, which is translated by the receiver as an
incoming clock. Our proposed distributed frequency tuning
techniques would benefit with these kinds of clocking styles
for on-chip networks.

3.3.2 Hardware Implementation

All of our proposed techniques require only buffer utiliza-
tion (BU) as the input. This information is already gathered
in conventional on-chip networks for the credit-based flow
control. Buffer utilization is a good indicator of network con-
gestion since it is sensitive to network traffic and adapts well
to the changes in traffic pattern. Also, to filter out short-term
fluctuations in the network traffic and adapt our techniques
to handle long-term traffic characteristics, we use exponential
weighted average utilization of buffers by combining the cur-
rent buffer utilization with past buffer utilization to decide
the operating points.

The threshold values for triggering the techniques are stored
in registers and the comparison operations can be imple-
mented using simple combinational logic. For signaling con-
gestion status to neighbors, we use a 1-bit line that does not
add any significant overhead to the already existing back-
wiring for credit-flow information. All the overheads for volt-
age and frequency management discussed in Section 3.1 are
included in our evaluations. In addition, the overheads for
implementing the buffer utilization tracking and control sig-
nal generation are obtained through synthesis using the Syn-
opsys Design Compiler. This shows an additional 550 logic
gates per router port with a negligible 6 mW power consump-
tion increase in the router. None of these logic gates lie in
the critical path of the router pipeline, and hence, the router
frequency is not affected.

4. PERFORMANCE EVALUATION

4.1 Experimental Platform

We use a 64-node network as our experimental platform
with the network laid out as a 8x8 2D-mesh. We also vary
the network size from 8x8 to 16x32 for conducting scalabil-
ity analysis. We use a cycle-accurate NoC simulator for our
simulations and model a state-of-the art two stage router
pipeline based on [26]. The base case router has 5 physical
channels (PCs) including the local PE-to-router port and 4
virtual channels (VCs) multiplexed on to each PC. A mes-
sage (packet) consists of six 128-bit flits and we use a buffer
depth of 4 flits per VC. We simulate a wormhole-switched
network with the deterministic X-Y routing and credit-based

flow control. The router along with the proposed modifica-
tions, described in Section 3, was implemented in structural
RTL Verilog and synthesized using Synopsys Design Com-
piler using TSMC 90 nm cell library and then scaled down
the parameters to 65 nm based on rules given in [4]. The
resulting design operates at a clock voltage of 1V and 2.20
GHz (2.75 GHz using time-stealing). The dynamic and leak-
age power numbers were extracted using Orion [34] and in-
corporated in our simulator for detailed power analysis of the
network.

The network is initially warmed up with 1000 packets and
the statistics are collected for 100,000 packets. We measure
average flit latency, average power consumption and energy
delay product (EDP) across various injection rates for syn-
thetic traffic. The injection rates are with respect to the
base frequency and are unbiased to frequency scaling. For
synthetic workload, we use Uniform Random (UR), Trans-
pose (TP), Bit-Compliment (BC), Nearest Neighbor (NN)
and Self-similar (SS) traffic patterns. For application work-
loads, we use four commercial workloads and six benchmarks
from the PARSEC suite [2] and measure reduction in latency,
power savings and IPC improvements when our techniques
are applied.

4.2 Results with Synthetic Workload

We compare the latency and power consumption charac-
teristics of the three techniques with the five synthetic traf-
fic patterns. BaseCase in our discussion corresponds to
the standard design without any frequency tuning and con-
gestion management. Base Case+TS represents the case,
where time-stealing is used on top of BaseCase to boost
the frequency of the network, but no congestion manage-
ment techniques are used. Figures 6(a)-(e) show the load-
latency curves with different traffic patterns. We measure
the saturation bandwidth when the average latency per flit
is three times the zero-load latency [8]. All three of our pro-
posed techniques outperform the BaseCase as well as the
BaseCase+TS network, and as expected, FreqTune’s per-
formance envelope lies between FreqThrtl and FreqBoost.
At low load, FreqTune’s performance is similar to that of
FreqBoost, and at high load, FreqTune’s performance gets
close to FreqThrtl. On an average, we find 24% (up to
31%) increase in throughput using FreqTune when com-
pared to the BaseCase, and up to 21% increase in through-
put when compared to the BaseCase+TS. For NN traffic
in Figure 6(d), the reduction in latency is mostly due to the
frequency boosting technique. The congestion management
techniques do not play a significant part in latency reduc-
tion because of the very nature of the NN traffic, where a
particular node sends packets only to its neighboring nodes.
Therefore, throttling a neighbor node actually hurts latency
since the throttled node will eject flits to the local PE at a
reduced rate.

As the network load increases leading to an onset of con-
gestion, FreqTune switches to the FreqThrtl mode, where the
frequency of a congested router is boosted and the neigh-
boring routers are throttled. The congested router can thus
service its flits at a faster rate compared to the rate at which
it is receiving flits from neighbors. At high injection rates,
while some of the routers are congested, some routers are still
un-congested. Thus, using FreqTune, the congested regions
use FreqBoost and the un-congested regions use FreqThrtl.
Figure 6(f) shows a contour plot of a snapshot with UR traffic
depicting relative operating frequencies of the routers com-
pared to BaseCase at high load (0.36 injection rate). The

0

10

20

30

40

0 0.1 0.2 0.3 0.4

La
te

nc
y

(in
 N

an
os

ec
on

ds
)

Injection Ratio(flits/node/cycle)

BaseCase

FreqThrtl

FreqBoost

FreqTune

BaseCase+TS

0

10

20

30

40

0 0.05 0.1 0.15 0.2 0.25

L
a
te

n
cy

 (
in

 N
a
n
o
se

co
n
d
s)

Injection Ratio(flits/node/cycle)

BaseCase

FreqThrtl

FreqBoost

FreqTune

BaseCase+TS

0

10

20

30

40

0 0.1 0.2 0.3 0.4

L
a
te

n
cy

 (
in

 N
a
n
o
se

co
n
d
s)

Injection Ratio(flits/node/cycle)

BaseCase

FreqThrtl

FreqBoost

FreqTune

BaseCase+TS

(a) Uniform Random (b) Transpose Traffic (c) Bit-Complement Traffic

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4

La
te

nc
y

(in
 N

an
os

ec
on

ds
)

Injection Ratio(flits/node/cycle)

BaseCase FreqThrtl

FreqBoost FreqTune

BaseCase+TS
0

10

20

30

40

0 0.1 0.2 0.3 0.4 0.5

La
te

n
cy

 (
in

 N
an

o
se

co
n

d
s)

Injection Ratio(flits/node/cycle)

BaseCase

FreqThrtl

FreqBoost

FreqTune

BaseCase+TS

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1

2

3

4

5

7

8

1 4 6 7 8

1.20

1.15

1.10

1.05

1.00

0.95

0.90

0.85

COLUMNS

R

O

W

S

0.80
5

6

2 3

(d) Nearest-Neighbor Traffic (e) Self-Similar Traffic (f) Contour Plot with UR traffic

Figure 6: Performance with synthetic traffic and a snapshot of relative frequencies of routers at high load.

0

5

10

15

20

25

30

35

40

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

P
o
w

e
r

C
o
n
su

m
p
tio

n
 (

in
 W

a
tt
s)

Injection Ratio(flits/node/cycle)

BaseCase

FreqThrtl

FreqBoost

FreqTune

BaseCase+TS

0
3
6
9

12
15
18
21
24
27
30
33

0 0.05 0.1 0.15 0.2

P
o
w

e
r

C
o
n
su

m
p
tio

n
 (

in
 W

a
tt
s)

Injection Ratio(flits/node/cycle)

BaseCase
FreqThrtl
FreqBoost
FreqTune
BaseCase+TS

0
5

10
15
20
25
30
35
40
45
50
55

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
ow

er
 C

on
su

m
pt

io
n

(in
 W

at
ts

)

Injection Ratio(flits/node/cycle)

BaseCase

FreqThrtl

FreqBoost

FreqTune

BaseCase+TS

(a) Uniform Random (b) Transpose Traffic (c) Bit-Complement Traffic

0

3

6

9

12

15

18

21

24

27

30

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
ow

er
 C

on
su

m
pt

io
n

(in
 W

at
ts

)

Injection Ratio(flits/node/cycle)

BaseCase

FreqThrtl

FreqBoost

FreqTune

BaseCase+TS

0

5

10

15

20

25

30

35

40

45

50

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

P
o
w

e
r

C
o
n
su

m
p
tio

n
 (

in
 W

a
tt
s)

Injection Ratio(flits/node/cycle)

BaseCase

FreqThrtl

FreqBoost

FreqTune

BaseCase+TS

(d) Nearest-Neighbor Traffic (e) Self-Similar Traffic

Figure 7: Network power consumption with synthetic traffic patterns.

frequencies range from the lowest possible value (0.8*Fbase),
shown as deep-blue color in the plot, to the highest possible
value (Fboost), shown as dark-red color. Since the routers in
the center of a mesh are more congested with X-Y traffic,
they operate mostly at Fboost (FreqThrtl), while the routers
around the center operate on an average at lower frequencies.
The routers at the periphery are less congested, and hence,
operate at Fboost (FreqBoost). This contour plot demon-
strates the flexibility and the distributed frequency modula-
tion capability of FreqTune in adapting to network conges-
tion. Comparison of all the three proposed techniques with
BaseCase+TS shows the benefits of a prudent congestion
management scheme through frequency tuning when com-
pared to a simple increase in frequency of the network.

Figures 7(a)-(e) show the absolute power consumption plots
for different traffic patterns.FreqBoost does not give any power
benefit since it starts at a 25% higher frequency and gradu-
ally reduces the frequency based on the congestion scenarios.
At low injection rates,FreqTune exhibits identical power be-
havior as that ofFreqBoost, and as the load increases, power
saving becomes positive with an average reduction of 14.5%.
The power and latency overheads of the controllers are in-
cluded in all of our power-reduction plots and as is evident
from the plots, the benefits due the congestion management
using frequency tuning are significant compared to the over-
heads incurred.

Figures 8(a)-(e) show the percentage reduction in power
and EDP. Figure 8(a) shows the savings in power and EDP
with the three techniques for UR traffic. In addition, the
overhead (in terms of percentage network power w.r.t. Base-
Case) due to voltage-frequency transitions of the additional
controllers in the network for congestion management is shown.
In terms of the EDP metric, FreqThrtl provides no gain at
light load but at higher load it provides the maximum EDP
benefit. Both FreqBoost and FreqTune start with more than
20% saving in light traffic conditions primarily due to la-
tency reduction. At higher network traffic, when buffer uti-
lization increases beyond the specified thresholds, FreqTune

starts distributed throttling of routers using the FreqThrtl

technique, leading to reduction in EDP. By throttling the
upstream router, we lower peak power around hot-spots as
the crossbar traversal in the upstream router, traversal in
the link to the downstream router and buffer write in the
downstream router are all throttled. At medium load, over-
all buffer utilization lies in the intervals 0.55 to 0.35 and
FreqTune dynamically transitions between FreqThrtl and
FreqBoost. This effect is seen as fluctuations in EDP reduc-
tion during medium load in the network.

Similar trends in power and EDP savings are also observed
with other traffic patterns as shown in Figures 8 (b) -(e). We
have not included the power and EDP results for FreqBoost
and FreqThrtl in these graphs for clarity. Across all traffic

-30

-10

10

30

50

70
0
.0

1

0
.0

4

0
.0

8

0
.1

2

0
.1

6

0
.2

0
.2

4

0
.2

8

0
.3

2

P
e
rc

e
n
ta

g
e

Injection Ratio (flits/node/cycle)

FreqThrtl Power FreqBoost Power
FreqTune Power Overhead
FreqThrtl EDP FreqBoost EDP
FreqTune EDP

Injection Ratio (flits/node/cycle)

(a) Uniform Random Traffic

-30

-15

0

15

30

45

60

75

0.
01

0.
04

0.
08

0.
12

0.
16

P
er

ce
nt

ag
e

Injection Ratio (flits/node/cycle)

Power

Overhead

EDP

-30

-15

0

15

30

45

60

75

0.
01

0.
04

0.
08

0.
12

0.
16 0.
2

0.
24

0.
28

0.
32

0.
36 0.
4

P
er

ce
nt

ag
e

Injection Ratio(flits/node/cycle)

Power Overhead EDP

(b) Transpose Traffic (c) Bit-Complement Traffic

-30

-15

0

15

30

45

0.
01

0.
04

0.
08

0.
12

0.
16 0.
2

0.
24

0.
28

0.
32

0.
36 0.
4

0.
44

P
er

ce
nt

ag
e

Injection Ratio(flits/node/cycle)

Power Overhead EDP

-30

-15

0

15

30

45

60

75

0.
01

0.
04

0.
08

0.
12

0.
16 0.
2

0.
24

0.
28

0.
32

0.
36

P
er

ce
nt

ag
e

Injection Ratio(flits/node/cycle)

Power Overhead EDP

(d) Nearest-Neighbor Traffic (e) Self-Similar Traffic

Figure 8: Power and EDP reduction with synthetic traffic for FreqTune and controller power overheads.

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4

La
te

n
cy

 (
in

 n
an

o
se

co
n

d
s)

Injection Ratio

BaseCase

FreqThrtl

FreqBoost

FreqTune

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4

La
te

n
cy

 (
in

 N
an

o
se

co
n

d
s)

Injection Ratio(flits/node/cycle)

BaseCase

FreqTune-Columnwise

FreqTune-perRouter

-30

-15

0

15

30

45

0
.0

1

0
.0

4

0
.0

8

0
.1

2

0
.1

6

0
.2

0
.2

4

0
.2

8

0
.3

2

P
e
rc

e
n
ta

g
e

Injection Ratio

Power Overhead EDP

(a)UR Performance (b) Comparison of per-router DVFS (c) UR Power

with Column-wise Freqtune vs Column-wise DVFS with Column-wise FreqTune

Figure 9: UR traffic performance using Column-wise controllers.

patterns, we find the average power savings in the network to
be 13.5% (up to 24% at high load) with FreqTune compared
to the BaseCase. Average reduction in EDP using FreqTune
is 40.5% (up to 70% at high load). Overall, FreqTune is
able to satisfy the two requirements we discussed earlier -
reduce latency at low load and conserve power at high load.
However, depending on the specific requirements of a sys-
tem, a designer can choose to implement any of the other
two techniques if only performance enhancement or power
conservation is a concern.

4.3 Results with Column-wise Controllers

To further reduce the area and power overheads in having a
per-router DVFS controller, we investigate the performance
and power behavior by reducing number of DVFS controllers.
We chose a column-wise scheme since our evaluations show
that such a scheme is quite agnostic toward many routing
algorithms (e.g. adaptive, X-Y,Y-X routing). A network
designer can choose many other schemes, e.g. having one
controller for the routers in the center of a mesh network
that have similar utilization with X-Y traffic (as is evident
from the contour plot in Figure 6(f)) or have one controller
for routers around a hot-spot region (e.g. around a memory
controller), etc. In this work, we reduce the number of con-
trollers from one per router to one controller per half-column,
i.e. we divide a column in the network into two halves and
assign a controller to each half. A controller in a particular
half now modulates the frequency of all the routers in half of
the column. This reduces the performance gains compared to
the fine-grained frequency modulation. We experiment with
the 8x8 mesh with 16 controllers (2 controller per column),
reducing the area and power overheads by 4x compared to
the per-router schemes.

Figure 9(a) shows that FreqThrtl performs worse than the
BaseCase with column-wise controllers. This is because of
the coarser granularity of frequency adjustments and adap-
tivity. However, we find that FreqBoost’s performance is

not affected as much because of using high-frequency routers
and thus, FreqTune’s latency curve is still better than the
BaseCase. Figure 9(b) shows how latency of FreqTune

is affected when using column-wise controllers compared to
FreqTune with per-router controller. Figure 9(c) shows the
percentage reduction in power and EDP with FreqTune us-
ing column-wise controllers over the BaseCase. With column-
wise controllers, there is on an average 12% reduction in la-
tency, 13% savings in network power and 27% reduction in
EDP with FreqTune. Hence, although congestion manage-
ment with column-wise controllers now happens at a much
coarser granularity, we still save in power and EDP without
sacrificing performance.

4.4 Sensitivity Analysis
4.4.1 Network Scaling Analysis

Figures 10(a)-(c) show the behavior of our techniques as
the network size scales from 64 (8x8) to 512 (16x32) nodes.
As the network size increases, all the three techniques get
greater flexibility in terms of the number of routers that can
be modulated when adapting to load in the network. This
leads to even higher percentage reduction in latency, power
and EDP with network size. For FreqTune, the latency
savings increase from 30% to 38% and power savings increase
from 13.5% to 18.2% as the network scales to 512 nodes.
Even with the column-wise DVFS scheme, the percentage
reductions in three metrics increases as network size scales.
4.4.2 Sensitivity to Threshold

Next, the sensitivity of our techniques to specified thresh-
olds is analyzed. Sensitivity results are shown only for the
FreqTune scheme with UR traffic for brevity. The con-
gestion thresholds depend on buffer utilization, and hence,
are sensitive to the number of virtual channels and buffer
depth. Figure 11(a) shows the load-latency curves and 11(b)
shows the percentages in power savings compared to the it
BaseCase for the it FreqTune scheme, where the threshold
to trigger the technique varies across the plots. With a

0

10

20

30

40

50

FreqThrtl FreqBoost FreqTune

%
 R

ed
uc

tio
n

8x8 8x16 16x16 16x32

-20

-10

0

10

20

30

%
 R

ed
uc

tio
n

8x8

8x16

16x16

16x32

FreqThrtl

FreqBoost

FreqTune

0

10

20

30

40

50

8x8 8x16 16x16 16x32

%
 R

ed
uc

ti
on

%Power %Latency %EDP

(a) Latency (per router controller) (b) Power (per router controller) (c) Column-wise

Figure 10: Network scaling results for FreqTune with UR traffic.

0

10

20

30

40

50

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

L
a
te

n
cy

(i
n
 n

a
n
o
se

co
n
d
s)

Injection Ratio(flits/node/cycle)

Thresholdcongested=0.40

Thresholdcongested=0.50

Thresholdcongested=0.60

Thresholdcongested=0.70

-30

-20

-10

0

10

20

30

0.
01

0.
02

0.
04

0.
06

0.
08 0.
1

0.
12

0.
14

0.
16

0.
18 0.
2

0.
22

0.
24

0.
26

0.
28 0.
3

0.
32

0.
34

%
 R

ed
uc

tio
n

Injection Ratio(flits/node/cycle)

Thresholdcongested=0.40
Thresholdcongested=0.50
Thresholdcongested=0.60
Thresholdcongested=0.70

0%

10%

20%

30%

40%

50%

60%

Throughput Power EDP

P
e
rc
e
n
ta
g
e

FreqThrtl(DVFS) FreqThrtl(TS+DVFS)

(a) Load-Latency graph with UR traffic (b) Savings in power with UR traffic (c) FreqThrtl using DVFS only

Figure 11: Sensitivity of FreqTune to thresholds and results with DVFS only.

Table 3: CPU, Cache, Network and Workloads Configuration.

CPU and network configuration

Processor Pipeline: 64 x86 based 2.2 GHz

(nominal) processors, two-way out of order,

64-entry instruction window

L1 Caches: 16 KB per-core(private), 4-way

set associative, 128B block size, 2-cycle la-

tency, split I/D caches

L2 Caches: 1MB banks (per-core),shared,

16-way set associative, 128B block size, 6-

cycles latency, 32 MSHRs

Main Memory: 4GB DRAM,up to 16 out-

standing requests for each processor, 400 cy-

cle access, 4 memory controllers

Network and Router: 8x8 mesh net-

work(each tile consists of 64 CPUs and 64 L2

banks), 2-stage wormhole switched router, X-

Y routing, 4 VCs per port, buffer depth=5,

1024 maximum packet size(8 flits/packet),

2.2 GHz base frequency, 2.75 GHz boosted

frequency

Commercial workloads

App. Benchmark(sap): SAP stands for Standard

Application Benchmark and represents a sales and

distribution workload.

ServerWorkload(specjbb): SPECjbb2000 is a

Java based benchmark that models a 3-tier system.

We simulated 64 warehouses on 64 processors and

start measurements 30 seconds after ramp-up time.

Transaction Processing(tpcc): TPC-C is an

OLTP benchmark.TPC-C simulates a complete com-

puting environment where a population of users ex-

ecutes transactions against a database.

SPEC Java App. Server(sjas): SJAS is a multi-

tier benchmark for measuring the performance of

J2EE technology-based application servers.

The traces for TPC-C, SAP and SJAS benchmark

were collected from a CMP server configurations at

Intel Corporation and we use 64 threads from each

benchmark.

PARSEC

PARSEC suite includes emerg-

ing RMS applications as well

as large scale multi-threaded

programs for CMPs. From

this suite we choose three

application benchmarks, fer-

ret (frrt), facesim (fsim)

and vips, and three ker-

nel benchmarks, canneal

(canl), dedup (ddup) and

streamcluster (sclst), and

ran them with simlarge input

sets. Traces were collected on

a CMP platform(see config.

in (a)) using Simics for 64

threads of each benchmark

for 20 million L2 references

and then simulated in our

cycle-accurate processor-

cache-network simulator.

(a) (b) (c)

more aggressive threshold of Thresholdcongested = 0.4 and
Thresholdlow = 0.25, performance takes a hit. Correspond-
ingly, percentage savings in power is also reduced. This is
because, with a lower threshold, the technique is triggered
earlier and starts throttling the routers even before there is
a likelihood of congestion. Hence, latency of the flits is in-
creased and flits spend more time in the network leading to
increased power consumption. With a more relaxed threshold
of Thresholdcongested = 0.7 and Thresholdlow = 0.4, perfor-
mance again takes a hit, since in this case, the triggering of
the congestion management schemes is delayed and this leads
to network saturation. The optimal threshold values for our
experiments are shown in Table 1.

4.4.3 FreqThrtl Using DVFS Only

We also analyze the case when a router cannot support
time-stealing to boost its frequency (to 2.75GHz). Such a
scenario might arise if the pipeline stages in a router are
balanced using circuit optimizations, and hence, there is no
further scope for time-stealing. In this case, we can still use
FreqThrtl and can use DVFS knobs to scale the voltage and
thereby the frequency of the upstream routers. Figure 11(c)
shows the improvement in throughput, reduction in power
and EDP when using FreqThrtl with DVFS only compared
to the BaseCase (1V, 2.2GHz) for UR traffic averaged over

L 2

Bank

CPU L1

N

I

C

Router

Links

From N

From S

From E

From W

Memory Controller

Local Port

8x8 Mesh

Network

Figure 12: CMP layout.

injection rates. We also show the results for the original
FreqThrtl scheme that uses both DVFS and time-stealing.
For FreqThrtl with DVFS only, we use the highest volt-
age/frequency knob (1V, 2.2GHz) for nominal operation and
during congestion, throttle the neighboring routers to the sec-
ond highest voltage/ frequency setting (1V, 1.98GHz). Even
with these constraints, on an average, there is 8% increase
in throughput, 28% savings in power and 33.2% reduction in
EDP. All these benefits are purely due to congestion man-
agement in the network, which reinforces the advantages of
frequency modulation.

16%

20%

24%

28%

32%

36%

40%

sap sjbb tpcc sjas frrt fsim sclst canl ddup vips Avg.

Comm.

Avg.

PARSEC

P
e
rc
e
n
ta
g
e

BaseCase+TS FreqTune

9%

12%

15%

18%

21%

24%

sap sjbb tpcc sjas frrt fsim sclst canl ddup vips Avg.

Comm.

Avg.

PARSEC

P
e
rc
e
n
ta
g
e

BaseCase+TS FreqTune

(a)Percentage reduction in latency (b) Improvement in IPC

0%

4%

8%

12%

16%

20%

sap sjbb tpcc sjas frrt fsim sclst canl ddup vips Avg.

Comm.

Avg.

PARSEC

P
e
rc
e
n
ta
g
e

FreqTune Overhead

0%

3%

6%

9%

12%

15%

18%

sap sjbb tpcc sjas frrt fsim sclst canl ddup vips Avg.

Comm.

Avg.

PARSEC

P
e
rc
e
n
ta
g
e

IPC Improvement Latency Reduction Power Reduction Overhead

(c) Controller overheads and percentage reduction in power (d)Application performance for Column-wise scheme with FreqTune

Figure 13: Results with commercial and PARSEC benchmarks.

4.5 Results with Application Benchmarks

We examine the impact of our frequency tuning schemes
on application performance for a 64-tile CMP. Each tile in
the CMP consists of a core with a private write-back L1
cache and a L2 cache bank. The memory hierarchy uses
a two-level directory-based MESI cache coherence protocol
and the network connects the cores, L2 cache banks, and
memory controllers. All requests and responses are faithfully
modeled by the network. The CPU, network configurations
and workload details are given in Table 3 along with the CMP
layout in Figure 12. We collected traces using Simics [21] and
then used our cycle accurate network simulator with a x86-
based processor model as described in Table 3(a) for system
level analysis. For our experiments, we chose four commercial
benchmarks and six workloads from the PARSEC suite [2].

Figures 13(a)-(d) show the results with the application
suite. Having a faster network with congestion management,
reduces the average load/store latency and directly impacts
system performance in terms of instructions per cycle (IPC).
On an average, there is 35.7% (up to 37.16% with facesim) re-
duction in latency (shown in Figure 13(a)), which translates
to 21.2% (up to 23.1% for sjas) improvement in IPC (Fig-
ure 13(b)) across all benchmarks. Correspondingly, there is
on an average 15.17% (up to 19.57% for sap) reduction in
network power (Figure 13(c)) for these applications. We find
the IPC improvements to be greater for commercial bench-
marks (21.70%) compared to PARSEC benchmarks (20.50%)
because of the bursty characteristic and network-latency crit-
ical nature of the commercial workloads. Figure 13(a), also,
shows the reduction in network latency when using a brute
force frequency boosting approach (BaseCase+TS). The
difference in benefits with FreqTune and BaseCase+TS

scheme is solely due to congestion management offered by
our scheme. On an average, 10.8% latency difference be-
tween FreqTune and BaseCase+TS schemes is due to the
congestion management technique employed in the former.

Figure 13(c) shows the overhead due to the controllers we
deploy in the network for the FreqTune scheme.BaseCase

+TS is omitted in this plot since it always consumes 25%
more power, and thus, incurs higher network power. We find
that with a modest 2.4% increase in power overhead, we get
up to 23.1% increase in IPC. Further, the overheads in power

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

2

3

4

5

6

7

8

R

O

W

S

1 2 6 7 8
COLUMNS

543

1
1.20

1.15

1.10

1.05

1.00

0.95

0.90

0.85

0.80

(a) Contour Plot

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4

La
te

n
cy

 (
in

 N
an

o
se

co
n

d
s)

Injection Ratio

BaseCase

FreqThrtl

FreqBoost

FreqTune

PowerHerd

(b) Comparison with PowerHerd (global power budget=33W)

Figure 14: (a) Contour Plot of a snapshot during
SPECjbb’s operation with Column-wise Scheme and
(b) Comparison with PowerHerd.

consumption due to the controllers are counter-balanced by
the 15.17% savings in network power.

Even with the column-wise scheme, there is on an average
16% reduction in latency, translating to 12% improvement in
IPC and 7.23% reduction in power (Figure 13(d)). Similar to
Figure 6(f), Figure 14(a) shows the contour plot of router fre-
quencies with the column-wise FreqTune in an 8x8 network
with the SPECjbb benchmark. Since we use the column-wise
scheme, all the routers in a half-column have the same av-
erage frequency and the routers around a congested router
(shown as dark-red color in the contour plot) operate at a
lower frequency (blue color), demonstrating that the routers
and the entire network work in concert as per the FreqTune

mechanism.
Finally, we compare our proposed techniques with Power-

Herd [28] in Figure 14(b), which handles peak power man-
agement by distributed throttling of flits as opposed to our
design of distributed throttling/boosting of router frequen-
cies. Since PowerHerd is aimed only at peak power man-
agement, it suffers in performance compared to even the
BaseCase scenario. For this comparison, we use a similar
experimental environment as used for the PowerHerd work,
i.e. we use an 8x8 torus network with a global power con-
straint of 33W and our area and power numbers are scaled

to 110nm. On an average, FreqTune reduces the latency
by 38.5% compared to PowerHerd with UR traffic and also
stays within the global power constraint. In addition, we did
a quantitative comparison of our network congestion man-
agement scheme, FreqTune, with a recently proposed con-
gestion management scheme, RCA [8], where the congestion
information is propagated across the network to improve the
ability of adaptive routers to spread network load. For com-
parisons with RCA, we used a simulation setting similar to
the one used in RCA, i.e. 8 VCs with 5 flits per VC, 1-
6 flits/packet. Although the comparison results with RCA
are not included here due to space limitations, our scheme
provides better performance (13.6% less latency) than RCA
in addition to managing power since RCA is only aimed at
congestion management and our proposed techniques simul-
taneously manage performance and power.

5. RELATED WORK
We summarize the prior work in two sub-sections: on-chip

networks and frequency scaling techniques.

5.1 On-Chip Networks

Network-on-Chip is widely viewed as a de-facto solution
to wire-delay problems with future technology scaling. How-
ever, due to the resource constrained nature of an NoC sub-
strate, most researches have focused on two major themes;
improving the performance and reducing power consumption.
For improving performance, researches have proposed the
use of virtual channels and path speculation [26], look-ahead
routing [7], smart pipelines [23] and dynamic traffic distri-
bution [8, 15, 14] to reduce contention, improve throughput
and provide fault-tolerance. Our approach is different from
all these works since, we use dynamic frequency modulation
of routers to manage congestion and improve throughput.
Recently, Moscibroda et.al. show that a bufferless routing
approach [22] leads to lower power consumption without sig-
nificantly sacrificing performance in on-chip networks. How-
ever, their proposed bufferless routing schemes delivers rea-
sonable performance only when the injection rate into the
network is low. On the other hand, our proposed techniques
adapts to the load in the network to maximize performance
and minimize power at low as well as high injection rates.
Hence, our scheme is applicable to a more general purpose
on-chip environment.

An activity based power management scheme was recently
implemented in the routers of the Intel 80-core chip [11].
For this chip, power reduction was achieved by de-activating
ports in the on-chip router and putting individual queues
in the ports to sleep or clock-gating them based on activity
inside the router. Ours approach is orthogonal to this idea
and can be implemented on top of this design for performance
and power management as well.

5.2 DVFS and Time-Stealing Techniques

Several works have proposed DVFS in processors [5, 35,
27] for power management. Recently, work done by Kim
et.al [17], has shown the possibility of on-chip voltage regu-
lators. Prior works have proposed DVFS for links [29, 12] to
manage power in off-chip networks. In PowerHerd [28], throt-
tling a flit traversal in a router has been shown as a means to
manage peak power constraints in off-chip networks. Also,
in ThermalHerd [30], a collaborative run-time thermal man-
agement scheme is proposed for on-chip networks that uses
distributed throttling and thermal correlation based routing
to tackle thermal emergencies.

Time-stealing is a technique that has been widely used in
many works to handle Process Variation [20, 32, 19]. Our,
work on the other hand, extends the concept of time-stealing
to exploit the imbalance in router pipeline stages to over-
clock the router at frequencies above the nominal frequency.

Our proposed schemes are quite different from all related
works discussed here in the sense that we propose an adaptive
frequency router which adapts to load around its vicinity. We
do distributed throttling of routers by frequency tuning in on-
chip networks to manage power and optimize performance.
Moreover, our proposed schemes manage congestion in the
network, and thereby, give additional throughput gain. To
the best of our knowledge, no prior research has proposed
any technique to tune a router’s frequency dynamically and
adapt to the load conditions.

6. CONCLUSIONS
Since both high performance and low power consumption

are essential in designing on-chip interconnects for CMP/SoC
architectures, in this paper, we propose a variable frequency
router architecture for dynamically controlling the perfor-
mance and power behavior of on-chip interconnects by effec-
tive congestion management. Towards this end, we propose
three dynamic congestion management techniques, called Fre-
qBoost, FreqThrtl and FreqTune, show their implementation
details, and conduct a comprehensive experimental evalua-
tion using synthetic as well as application benchmarks to
show the efficacy of our proposal. FreqBoost gives the high-
est performance throughout but consumes more power at low
load. FreqThrtl gives the best power behavior across all in-
jection rates. FreqTune is a hybrid technique that uses Freq-
Boost at low load to enhance performance and FreqThrtl dur-
ing high load to minimize network congestion and power con-
sumption. The frequency tuning techniques are enabled by
clock scaling through DVFS and frequency boosting through
time stealing.

The novelty of these schemes are that they can be applied
independently for optimizing either performance (through
FreqBoost) or power (through FreqThrtl) or both. In the ab-
sence of any time-stealing approach due to balanced router
pipeline design, one can still use DVFS for congestion man-
agement and get benefits both in performance and power.
Furthermore, these techniques are more effective than using
adaptive routing, simple router frequency scaling for perfor-
mance enhancement, and peak power reduction techniques.
We believe all these results make a strong case for using vari-
able frequency routers for future on-chip networks.

7. ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their

reviews and comments in improving this paper. This work
is supported in part by National Science Foundation (NSF)
grants CCF-0702617, CNS-0916887 and CCF-0903432.

8. References
[1] 65 nm PTM Technology Model,

http://www.eas.asu.edu/ ptm/.

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
Benchmark Suite: Characterization and Architectural
Implications. In Proceedings of the 17th International
Conference on Parallel Architectures and Compilation
Techniques, 2008.

[3] S. Borkar. Networks for Multi-core Chips:A contrarian view.
In Special Session at ISLPED 2007.

[4] S. Borkar. Design Challenges of Technology Scaling. IEEE
Micro, 19(4):23–29, 1999.

[5] D. Brooks and M. Martonosi. Dynamic Thermal Management
for High-Performance Microprocessors. In 7th Intl. Symp.
High Performance Computer Architecture, 2001.

[6] R. Das, A. K. Mishra, C. Nicopoulus, D. Park, V. Narayanan,
R. Iyer, M. S. Yousif, and C. R. Das. Performance and Power
Optimization Through Data Compression in Network - on
-Chip Architectures. In Proceedings of the 14th Intl. Symp.
on High-Performance Computer Architecture, 2008.

[7] M. Galles. Scalable Pipelined Interconnect for Distributed
Endpoint routing: The SGI SPIDER Chip. In Symposium on
High Performance Interconnects (Hot Interconnects),
pages 141–146, 1996.

[8] P. Gratz, B. Grot, and S. Keckler. Regional Congestion
Awareness for Load Balance in Networks-on-Chip. In
Proceedings of the 14th International Symposium on
High-Performance Computer Architecture (HPCA),
February 2008.

[9] M. Hashimoto, T. Yamamoto, and H. Onodera. Statistical
Analysis of Clock Skew Variation in H-Tree Structure. In
ISQED ’05: Proceedings of the 6th International
Symposium on Quality of Electronic Design, pages
402–407. IEEE Computer Society, 2005.

[10] K. Hausman, G. Gaudenzi, J. Mosley, and S. Tempest. US
Patent 4978927 - Programmable Voltage Controlled Ring
Oscillator. 1990.

[11] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar. A
5-GHz Mesh Interconnect for a Teraflops Processor.
volume 27, pages 51–61, Sept.-Oct. 2007.

[12] E.-J. Kim, G. Link, K. H. Yum, V. Narayanan, M. Kandemir,
M. J. Irwin, and C. Das. A Holistic Approach to Designing
Energy-Efficient Cluster Interconnects. In IEEE Trans. on
Computers, volume 54, pages 660–671, June 2005.

[13] J. Kim, W. J. Dally, S. Scott, , and D. Abts.
Technology-Driven, Highly-Scalable Dragonfly Topology. In
35th International Symposium on Computer
Architecture (ISCA), 2008.

[14] J. Kim, D. Park, C. Nicopolous, N. Vijaykrishnan, and C. R.
Das. Design and Analysis of an NoC Architecture from
Performance, Reliability and Energy Perspective. In
ANCS’05: Proceedings of the 2005 Symp. on Arch. for
Networking and Comm. Systems, 2005.

[15] J. Kim, D. Park, T. Theocharides, N. Vijaykrishnan, and C. R.
Das. A Low Latency Router Supporting Adaptivity for
On-Chip Router. In 42nd Design Automation Conference
(DAC), 2005.

[16] M. M. Kim, J. D. Davis, M. Oskin, and T. Austin.
Polymorphic On-Chip Networks. In Proc. of the 35th
International Symposium on Computer Architecture,
ISCA, 2008.

[17] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks. System
Level Analysis of Fast, Per-Core DVFS Using On-Chip
Switching Regulators. In Proceedings of the 14th
International Symposium on High-Performance
Computer Architecture (HPCA), February 2008.

[18] A. Kumar, P. Kundu, A. Singh, L.-S. Peh, and N. K. Jha. A
4.6Tbits/s 3.6GHz Single-cycle NoC Router with a Novel
Switch Allocator in 65nm CMOS. In 25th International
Conference on Computer Design (ICCD), 2007.

[19] X. Liang and D. Brooks. Mitigating the Impact of Process
Variations on CPU Register File and Execution Units. In 39th
Intl. Symposium on Microarchitecture(MICRO), 2006.

[20] X. Liang, G.-Y. Wei, and D. Brooks. ReVIVaL: A Variation
Tolerant Architecture using Voltage Interpolation and
Variable Latency. In 35th International Symposium on
Computer Architecture (ISCA), 2008.

[21] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A Full System Simulation Platform.
Computer, 35(2):50–58, 2002.

[22] T. Moscibroda and O. Mutlu. A Case for Bufferless Routing
in On-Chip Networks. In 36th International Symposium
on Computer Architecture (ISCA), 2009.

[23] R. Mullins, A. West, and S. Moore. Low-Latency
Virtual-Channel Routers for On-Chip Networks. In ISCA
’04: Proceedings of the 31st Annual International
Symposium on Computer Architecture, 2004.

[24] N. Muralimanohar and R. Balasubramonian. The Effect of
Interconnect Design on the Performance of Large L2 Caches.
In 3rd IBM Watson Conference on Interaction between
Architecture, Circuits, and Compilers (P=ac2),2006.

[25] N. Muralimanohar and R. Balasubramonian. Interconnect
Design Considerations for Large NUCA Caches. ISCA ’07:
Proceedings of the 34th Annual International
Symposium on Computer Architecture, page 369, 2007.

[26] L.-S. Peh and W. J. Dally. A Delay Model and Speculative
Architecture for Pipelined Routers. In HPCA ’01:
Proceedings of the 7th International Symposium on
High-Performance Comp. Architecture, page 255, 2001.

[27] G. Semeraro, G. Magklis, R. Balasubramonian, D. H.
Albonesi, S. Dwarkadas, and M. L. Scott. Energy-Efficient
Processor Design Using Multiple Clock Domains with
Dynamic Voltage and Frequency Scaling. In 8th Intl. Symp.
on High-Performance Computer Arch., 2002.

[28] L. Shang, L.-S. Peh, , and N. K. Jha. Powerherd: Dynamic
satisfaction of peak power constraints in interconnection
networks. In Association Computing Machinery (ACM)
Int. Conf. Supercomputing, 2003.

[29] L. Shang, L.-S. Peh, and N. K. Jha. Dynamic Voltage Scaling
with Links for Power Optimization of Interconnection
Networks. In 9th Int. Symp. High Performance
Computer Architecture, 2003.

[30] L. Shang, L.-S. Peh, A. Kumar, and N. K. Jha. Thermal
Modeling, Characterization and Management of On-Chip
Networks. In MICRO 37: Proceedings of the 37th annual
IEEE/ACM International Symposium on
Microarchitecture, 2004.

[31] S. Tam, R. Limaye, and U. Desai. Clock Generation and
Distribution for the 130-nm Itanium 2 Processor with 6-MB
On-Die L3 Cache. In IEEE Journal of Solid-State
Circuits, volume 39, pages 636–642, April 2004.

[32] A. Tiwari, S. Sarangi, and J. Torrellas. ReCycle: Pipeline
Adaptation to Tolerate Process Variation. In 34th Annual
International Symposium on Computer Architecture
(ISCA), 2007.

[33] S. Vangal, J. Howard, and et. al. An 80-Tile 1.28TFLOPS
Network-on-Chip in 65nm CMOS. In IEEE International
Solid-State Circuits Conference, ISSCC, 2007.

[34] H. Wang, X. Zhu, L.-S. Peh, and S. Malik. Orion: A
Power-Performance Simulator for Interconnection Networks.
In ACM/IEEE MICRO, Nov 2002.

[35] F. Xie, M. Martonosi, and S. Malik. Compile-time Dynamic
Voltage Scaling Settings: Opportunities and Limits. In
PLDI:Conference on Programming Language Design
and Implementation, 2003.

	1 INTRODUCTION
	2 FREQUENCY TUNING RATIONALE
	2.1 FreqBoost Technique
	2.2 FreqThrtl Technique
	2.3 FreqTune Technique

	3 ROUTER AND NETWORK ARCHITE- CTURE
	3.1 Frequency Scaling
	3.2 Time Stealing in Router Pipeline
	3.3 Architectural Support for Frequency Adaptation and Hardware Implementation
	3.3.1 Asynchronous Communication
	3.3.2 Hardware Implementation

	4 PERFORMANCE EVALUATION
	4.1 Experimental Platform
	4.2 Results with Synthetic Workload
	4.3 Results with Column-wise Controllers
	4.4 Sensitivity Analysis
	4.4.1 Network Scaling Analysis
	4.4.2 Sensitivity to Threshold
	4.4.3 FreqThrtl Using DVFS Only

	4.5 Results with Application Benchmarks

	5 RELATED WORK
	5.1 On-Chip Networks
	5.2 DVFS and Time-Stealing Techniques

	6 CONCLUSIONS
	7 ACKNOWLEDGEMENTS
	8 References

