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SUMMARY

Multi-wave self-report data on age at menopause in 2182 female twin pairs (1355 monozygotic and 827
dizygotic pairs), were analysed to estimate the genetic, common and unique environmental contribution to
variation in age at menopause. Two complementary approaches for analysing correlated time-to-onset twin
data are considered: the generalized estimating equations (GEE) method in which one can estimate
zygosity-speci"c dependence simultaneously with regression coe$cients that describe the average popula-
tion response to changing covariates; and a subject-speci"c Bayesian mixed model in which heterogeneity in
regression parameters is explicitly modelled and the di!erent components of variation may be estimated
directly. The proportional hazards and Weibull models were utilized, as both produce natural frameworks
for estimating relative risks while adjusting for simultaneous e!ects of other covariates. A simple Markov
chain Monte Carlo method for covariate imputation of missing data was used and the actual implementa-
tion of the Bayesian model was based on Gibbs sampling using the freeware package BUGS.
Copyright ( 2000 John Wiley & Sons, Ltd.

INTRODUCTION

The informativeness of traditional epidemiologic studies is often enhanced by the incorporation
of information about genetic risk. Twin data have proven very useful in assessing the relative
importance of genetic and familial factors in the aetiology of complex phenotypes [1, 2]. The basis
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of the analyses is a comparison of the phenotypic covariance in monozygotic (MZ) twins who are
genetically identical to that in dizygotic (DZ) twins who, on the average, have half their genes in
common. This contrast permits the decomposition of the phenotypic variance into a part due to
additive genetic factors (A), and one due to environmental e!ects. The environmental variance, in
turn, may be split into a component re#ecting shared (C) and unique environmental factors (E).
This decomposition of variance (ACE) is similar to that used in much of current linkage analytic
methods.

There have been multiple extensions to the basic ACE model, for example, to handle multivari-
ate observations, covariates and various degrees of gene by environment interaction. Concurrent-
ly, there has been much progress in the adaptation of logistic and Cox models to the analysis of
age-of-onset using data from larger, more informative but costlier, families [3}7]. However, the
current analytical methods for twin data still have limited ability to handle censored observa-
tions. At one extreme, researchers will exclude from the analyses those twin pairs where one of the
twins' phenotype is censored. Depending on the degree of censoring, this practice may lead to
signi"cant biases in the parameter estimates and to decreases in statistical power. As an
alternative, Pickles et al. [8] proposed to model age-at-onset as a gradation disease liability.
However, his approach assumes a simple censoring mechanism, where all subjects are observed
until a maximum censoring time, greater than all observed failure times. Complications will arise
when the censored observation on one twin is much lower than the observed age-of-onset in the
other twin. This could be due, for example, to premature deaths or dropouts from a longitudinal
study.

In the present paper, we will adapt two recent methods for the analysis of censored data in
twins. The "rst method [9, 10] models hazard rates with the Cox proportional hazard model.
First, we use a bivariate survivor function, proposed by Clayton [11], that requires only one
additional parameter, to model the correlation in the survival times of twins. Parameter values
are obtained using estimating equations. This is an extension of earlier work in the complete-case
correlated outcomes arena [12}14]. It has two desirable features: (i) robustness } no higher-order
distributional assumptions are required beyond pairwise ones; and (ii) computational e$ciency.

Second, we develop a Bayesian method for the analysis of censored data in twins, using
Markov chain Monte Carlo (MCMC) methods. We begin with a Bayesian representation of
a mixed e!ects model, where genetic and environmental contributions are treated as random
e!ects, while allowing for adjustments for observed covariates. A complete likelihood analysis of
censored data in twins would be computationally intractable, a problem that is avoided when
using MCMC methods. The Gibbs sampler [15] is the most popular algorithm used in MCMC
applications to correlated data. MCMC methods have been used for linkage analysis [16}18], for
the estimation of parameters in the mixed model with and without covariates [19, 20], for
estimation of gene}smoking interaction and covariate imputation [21], for performing combined
linkage and segregation analysis [22, 23] and for mixed models of large complex pedigrees [24].
We perform the Bayesian analysis using the BUGS program [25]. Some recent computer
packages that implement Gibbs sampling for analysis of pedigree data include BUGS [25}27],
Genetic Analysis Package [28] and MIXD [29, 30].

We then apply these two methods to twin data on menopausal age and obtain complementary
results. Recent work has highlighted the relationships between age at natural menopause and
factors such as reproductive, sociodemographic and certain behavioural in#uences (for example,
birth year, parity, smoking, education and age at menarche) [31}34]. Standard failure time
regression analyses as used in earlier studies have limitations in unravelling the complex
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mechanisms leading to the cessation of reproductive capability, because these methods do not
su$ciently address the interrelationships between certain independent variables which may share
parameters of the same maturation and ageing process. There has been limited work on the
genetic synchronization of menopause with various aspects of reproductive and behavioural
factors. Snieder et al. [35] investigated this relationship using methods that required multivariate
normality and did not allow censored data.

MATERIALS AND METHODS

The data on age at menopause

To illustrate the methods, we have used data from successive mail surveys of twins in Australia
(1980 to 1996). Twin pairs were recruited from the Australian Twin Registry (National Health and
Medical Research Council). The Australian Twin Registry is a volunteer registry with more than
27 000 twin pairs enrolled, about 10}20 per cent of the estimated number of twin pairs in the
population. Mailed questionnaires obtained information on health histories and behaviours,
life-style factors, family structure and personality. The subjects in this study were born between
1893 and 1964. Zygosity was determined from self-report items shown to give at least 95 per cent
agreement with true zygosity as determined by genotyping [36].

Age at menopause was de"ned as age at last menstrual period, determined retrospectively, after
a woman had stopped menstruating for 12 months not due to pregnancy, lactation, or ill health
(Figure 2). As covariates, we considered birth year and age at menarche (both continuous), and
binary variables including smoking (0"non-smokers), parity (0"fewer than 2 children) and
education (0"no university education). We excluded women who had commenced hormone
replacement therapy (HRT) before reaching menopause. A total of 5593 women had a valid
endpoint age for analyses and data on covariates as well. Censoring of menopausal age (58 per
cent) was due to: (i) hysterectomies or bilateral oophorectomies before natural menopause;
(ii) cessation of menses for other reasons (for example, pregnancy, lactation, ill health); and
(iii) continued menstruation at the last time of follow-up. 2182 pairs remained for genetic analysis
after removal of the singletons (1355 MZ and 827 DZ).

The hypothesized covariates of age at menopause were birth year, education, social class,
occupation, annual income, smoking habits, alcohol use, body mass index (BMI), age at
menarche, and age at full-term pregnancy. Selection of these variables was based on previous
studies of determinants of menopausal age. Where information was collected in more than one
survey, the value provided at the time closest to age at menopause was used, except for age at
menarche, which was taken from the earliest survey, and quantities of smoking and drinking,
which were accumulated over the woman's life span until age at menopause.

Birth year and age at menarche were treated as continuous variables. Education data were
categorized as: 1, high school or less (including apprenticeship and diploma); 2, technical or
teacher's college; 3, university or postgraduate degree. Participants were asked to classify
themselves into the working or middle class. Information on occupation was based on the
Australian Bureau of Statistics (ASCO) coding system, consisting of nine standard classi"cations.
We regrouped these into four major classes: 1, upper white-collar workers; 2, lower white-collar
workers; 3, trade and sales service workers; and 4, blue-collar factory workers. Women who
described their major lifetime occupation as homemakers, all married, were assigned their
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Figure 1. Path diagram of twin resemblance indicating di!erent sources of shared and non-shared vari-
ation: d, e, h and c are the corresponding path coe$cients for these e!ects. The MZ additive and dominance
genetic correlations are both equal to 1.0, while the DZ additive and dominance genetic correlations are

equal to 0.5 and 0.25, respectively.

husband's occupation status. Average annual income of twins and their spouses were calculated
and classi"ed into: 1, income less than AU$10 000; 2, $10 000 to less than $30 000; 3, $30 000 to
less than $50 000; or 4, $50 000 and more. A woman was classi"ed as a non-smoker if she reported
that she had never smoked in all surveys, started smoking after menopause, or smoked only once
or twice in her lifetime before menopause. Smokers were all those who reported more than
occasional smoking in any survey and started before menopause. Alcohol use was assessed by
typical intake in the past 12 months, number of drinks in a typical week, and number of speci"c
drinks (beer, wine, spirits, sherry, other) consumed each day of the past week. The combined
information is used to classify women into non-drinkers and drinkers (light, moderate, heavy).
Body mass index was computed using the formula BMI"weight(kg)/[height(m)]2. Age at
full-term pregnancy was calculated from a woman's year of birth and her "rst child's date of birth.
Parity was represented by the number of live-born children reported in the latest survey.

Genetic model

Covariance between twins can provide useful information about genetic and environmental
contributions to variation within individuals. Human genetic research in the biometrical or
quantitative genetic tradition [37, 38] has shown how familial resemblance for qualitative traits
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Figure 2. Histogram for the age at natural menopause in 1693 post-menopausal Australian female twins
born between 1893 and 1962.

could be modelled using genetic and environmental variance components. Speci"cally, the
decomposition is based on the probabilities that a pair of relatives will have zero, one or two
alleles at any autosomal genetic locus that are identical by descent. Two alleles are said to be
identical in descent if one of them has been derived by direct replication from the other or if both
are copies of the same gene in a common ancestor. The path diagram (Duncan [39]) in Figure 1
illustrates the univariate model for decomposing variance. The total phenotypic variance can be
decomposed into two genetic and two environmental components. Additive genetic factors (A)
are the e!ects of genes taken singly and added over multiple loci, whereas genetic dominance (D)
represents genetic interaction (within loci). Shared environmental e!ects (C) are the environ-
mental e!ects that are shared by twins, and speci"c environmental e!ects (E) are the environ-
mental in#uences that are unique to each individual. The diagram indicates how each type of
factor contributes to the covariance within an MZ or DZ twin pair. Additive genetic factors and
genetic dominance are perfectly correlated in MZ twins, whereas DZ twins, like ordinary siblings,
share only half of the additive genetic e!ects and one quarter of the genetic dominance e!ects.
Shared environmental e!ects are perfectly correlated in both MZ and DZ twins. Lower case
letters (path coe$cients) represent the genetic and environmental loadings on the trait. The model
assumes negligible e!ects of assortative mating, epistasis, genotype-environment correlation
and/or interaction. It is also assumed that shared environmental in#uences are similar for MZ
and DZ twins. Analyses of genotype frequencies and expected MZ and DZ twin correlations may
be found in standard texts [38, 40, 41] and Neale and Cardon [2]. Throughout this paper, we will
assume that the phenotype has been rescaled to unit variance, so that p2

T
"1. On the further
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assumption of random mating in the population the expected phenotypic correlations for
monozygotic and dizygotic twins are respectively r

MZ
"h2#c2#d2"p2

A
#p2

C
#p2

D
and

r
DZ

"1/2h2#c2#1/4d2"1/2p2
A
#p2

C
#1/4p2

D
. Since estimates of c2 and d2 are confounded in

data for twins reared together [1, 42], the MZ and DZ phenotypic correlations may be para-
meterized as an ACE or ADE model. In either case, the di!erence between a variance of unity and
the expected MZ correlation yields an estimate of e2. Maximum-likelihood estimates of model
parameters can be obtained by "tting models to summary covariance matrices in multigroup
analyses using standard software for structural equation modelling [2]. The proportion of
variance in the trait attributable to genetic e!ects is de"ned as the heritability of the trait. The
classical de"nition of heritability is h2"2(o

MZ
!o

DZ
), twice the di!erence of the intraclass

correlation coe$cients of MZ and DZ twins.

Estimating equations approach

Let y"(d
ki
, t

ki
, Z

ki
) denote the data collected for the ith twin in the kth family (k"1,2 , K and

i"1, 2) where d
ki
"0 if the observation is censored, t

ki
is either the recorded age at menopause or

the age at the most recent follow-up for pre-menopausal women, and Z
ki

is a vector of measured
covariates. We assume that censoring time, age at menopause and the covariates are indepen-
dently distributed. These assumptions can be relaxed in more general models, subject to identi-
"cation constraints. The hazard rate for menopause is the instantaneous probability that
menopause occurs immediately after time t, given that the woman is pre-menopausal at time t.
The hazard rate under the Cox proportional hazards model [43] is given by

j (t
ki
)"j

0
(t
ki
) exp(b@Z

ki
)

where j
0
( ) is the baseline hazard function, and b is a vector of regression coe$cients.

We follow Clayton [11] in modelling the bivariate survivor function
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where F
1

and F
2

are univariate survivor functions, h is a scalar parameter that measures the
degree of dependence between the twins' times at onset, independence being implied by h"0, and
positive association by h'0. The Clayton model allows negative dependencies and has the
property that failure times are absolutely continuous for h'!0.5. In addition, the cross-ratio
(or odds-ratio) function as studied by Oakes [44] is

c (t
k1

, t
k2

)"j (t
k1

D¹
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)/j(t

k1
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k2
*t

k2
)"1#h.

This is equivalent to assuming that the odds ratio is invariant over the grid region that supports
the data. Heuristically, the parameter 1#h is an odds ratio that depends on the degree of
dependence between the menopausal ages of the two twins. If genetic factors do in#uence
menopausal age, we would expect to see a higher concordance in the age of onset in MZ twins
who are genetically identical, than in DZ twins who, on the average, share half their genes in
common. Under the current model, this translates as h

MZ
'h

DZ
. We may use a standard method

to estimate within pair correlations for 2]2 tables from odds ratios. Estimates of twin
correlations o

MZ
and o

DZ
are recovered from using the relationships r

MZ
"min(1, ln(1#h

MZ
))

and r
DZ

"min(1, ln(1#h
MZ

)). Testing for the presence of genetic factors underlying age at
menopause is equivalent to testing H

0
:o

MZ
"o

DZ
. We test this hypothesis using a z-transform
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(Reference [45], p. 315) of the point estimates of the correlation coe$cients. Let z
1

and z
2

denote
the transformed statistics of the correlations. Speci"cally, we reject H

0
when E/D'Z

1~a , where
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and Z
1~a is the standard normal deviate corresponding to the one-sided a signi"cance level.

This approach has the advantage of providing a test for the presence of genetic e!ects through
a single parameter (h). However, it is limited in its ability to attribute the phenotypic variance to
speci"c e!ects (for example, additive gene action).

Mathematical details of the GEE model and the iterative procedure to estimate the regression
coe$cients b, h

MZ
and h

DZ
are summarized in Appendix A.

MCMC analysis using BUGS

The Bayesian paradigm and Gibbs sampling. Markov chain Monte Carlo (MCMC) is an alterna-
tive Bayesian approach that provides estimates of likelihoods and associated parameter values
when exact computation is not feasible [46, 47]. MCMC methods can be used to draw samples
from the underlying joint distribution of major genotypes and polygenic values, conditional on
the observed data. From these samples, desired parameters and likelihoods can be estimated
without the need to resort to exact computation. MCMC methods have been used for linkage
analysis [16, 17], for estimation of parameters in the mixed model with and without covariates
[19, 20], for estimation of gene}smoking interaction and covariate imputation [21], for perform-
ing combined linkage and segregation analysis [22, 23], and for mixed models of large complex
pedigrees [24].

In a general setting, let y be the observed data, and h be everything not observed including
parameters and latent variables. The implementation of Bayesian methods [57] using realistic
models and priors is computer-intensive and relies heavily on cunning computational tools to
approximate integrals. The problem, in general terms, is to obtain the expected value of a function
of interest s( . ) under the posterior density p(hDx)

E[s(h)]"
:
#
s (h)p(h)p (x Dh)dh
:
#
p (h)p (x Dh) dh

which cannot generally be found analytically. One method to carry out the integration on the
RHS is to perform simulation of exact Bayesian posterior distributions using Markov chain
Monte Carlo techniques such as Gibbs sampling. The Gibbs sampler [5] is the most popular
algorithm used in MCMC applications to correlated data. Gibbs sampling was introduced to the
main statistical community by Gelfand and Smith [48], and has since been applied in even
a wider array of problems. The Gibbs sampler is easy to implement because it only depends on
the local neighbourhood structure. In the context of pedigree analysis [30], the basic procedure is
a sequential updating of missing and latent data including the underlying and unobserved major
genotypes, polygenic e!ects and environmental e!ects. Values for the missing or latent data are
sampled from the local conditional distribution, a function of the observed individual data, the
current sampled values of other missing/latent data for this particular individual such as
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polygenic and environmental e!ects, and the values for the sampled genetic e!ects in the
immediate neighbours of an individual. Gibbs sampling basically consists of three main steps:

1. Step 1. Setting initial values for unobserved quantities (parameters and latent variables).
2. Step 2. For each parameter or latent variable h

j
, sample from its &full conditional distribu-

tion' given the current values of all other quantities in the model.
3. Step 3. Examine sampled values of parameters and latent variables to monitor convergence

and to provide summary measures.

Some of the most recent and popular packages that implement Gibbs sampling for analysis of
pedigree data include BUGS [25}27], Genetic Analysis Package [28] and MIXD [29, 30]. We
have used BUGS mainly because it is a freeware product.

The Model. For a simple sequence of independently identically distributed failure times t
i
with

covariate vector z
i
, a Weibull distribution may be used to model time to failure as

f (t
i
, z

i
)"eb@z

itc~1
i

exp(!eb@z
itc
i
) (1)

where b is a vector of unknown regression coe$cients. This leads to a baseline hazard of the form

j
0
(t
i
)"ctc~1

i
.

Reparameterize by letting k
i
"eb@z

i, the conditional distribution of t
i
given k

i
is then Weibull

(c, k
i
).

In survival models, unobserved or unmeasured explanatory variables, some of which may be
genetic, are often referred to as frailties. The frailties take values restricted to the positive line and
may be assumed to act multiplicatively on the hazard. Extending the above model to twin data,
a multiplicative individual heterogeneity or frailty term representing the latent genetic and
common environment variables may be modelled as random e!ects simultaneously with the
e!ects associated with observed covariates. Consider right censored time menopause data
M(¹

ij
, d

ij
, z

ij
); 1)j)nN from n pairs; here ¹

ij
denotes true menopausal age of the jth twin or her

censored time depending on whether d
ij
"1 or 0, respectively, and z denotes a p]1 vector of

covariates. The aim here is to model the correlation structure within twin pairs to satisfy the
fundamental ACE genetic model [38, 40, 49]
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so that the variation in an individual response is the sum of additive genetic e!ects (p2
A
), common

environmental e!ects (p2
C
) and residual environmental e!ects (p2

E
). We formulate a mixed model to

represent the conditional distribution of t
ij

given covariate e!ects, random additive genetic and
common environment e!ects as

t
ij
Dk

ij
&Weibull(c, k

ij
) i"1,2 , n; j"1, 2

where

logk
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"G
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for MZ twin

for DZ twin
(2)
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Figure 3. Graphical model of covariate and random family e!ects for an MZ twin, t
ij

represents the
observed failure time for the jth twin in the ith pair with t.cen

ij
being an indicator variable of censoring

status. Full arrows indicate stochastic links to which a probability is attached; broken arrows denote
deterministic relationships; b's are regression coe$cients, q is the precision of the prior distribution and
equals the inverse of the variance; m

i
is an independent additive random e!ect modelled as

m
i
Dt&N(0, p2

A
#p2

C
). Rectangles represent actual data values for the covariates; c and k

ij
are scale and shape

parameters for the underlying Weibull distribution.

and m
i
, d

i
, d

ij
are independent additive random e!ects or latent variables. If we model

m
i
Dt&N(0, p2

A
#p2

C
), d

i
Dt&N(0, 1

2
p2
A
#p2

C
) and d

ij
Dt&N(0, 1

2
p2
A
), then the ACE covariance

model for twin data is satis"ed. We may interpret m
i
as a random MZ family e!ect if the pair is an

MZ twin pair, d
i
as a random DZ family e!ect if the pair is a DZ twin pair and d

ij
as a residual DZ

e!ect for the jth twin. For censored observations, the time to menopause distribution is a trun-
cated Weibull, with lower bound corresponding to the censoring time. The regression coe$cients
and the precision of the random e!ects (q

MZ
, q

DZ
) are given &non-informative'Normal and Gamma

priors, respectively. The shape parameter of the time to menopause, r, is also given a non-
informative Gamma prior which is slowly decreasing on the positive real line.

The overall model (including random e!ects) may be described in a Bayesian graph (Figure 3)
which simpli"es sampling from full conditional distributions by exploiting partial independence
properties [27]. In this graph, each random quantity is represented by a node, which may be
connected by directed or undirected links. Conditional independence assumptions are represent-
ed by the absence of such links.

We implemented the Gibbs sampler using the BUGS program [25] (code in Appendix B). The
e$ciency of this implementation is increased when continuous variables are rescaled to have
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means near the minimum observed value. In the current application, we thus subtracted 7 from
age at menarche, 16 from age at menopause, and 1892 from birth year. Imputation of missing data
is handled naturally in the Gibbs sampling framework by treating missing values as additional
unknown quantities and randomly sampling values from their full conditional distributions. We
chose simple prior distributions for imputation, since the number of missing values for covariates
is small ((1 per cent for menarche, education and parity) and there is no indication of
non-random missingness in our data. Rescaled age at menarche (after subtracting 7) was assumed
to follow a Gaussian prior distribution with mean 5.95 and standard deviation 0.49, values
estimated from complete data. The observed proportion of women with university education is 12
per cent, while women having at least two children make up 85 per cent of the sample; therefore,
imputation for missing education and parity covariates were based on Bernouilli prior distribu-
tions with these respective parameter values. We performed an initial 25 000 burn-in iterations
followed by an additional 5000. Parameter estimates are the mean and standard deviation (SD) of
all post-convergence Gibbs samples; con"dence intervals are computed as the lower and upper
a/2 percentiles from the last 5000 iterations. Convergence to the posterior distribution was
con"rmed by using the di!erent criteria provided by the add-on CODA package including those
of Gelman and Rubin [50], Geweke [51] and Raftery and Lewis [52, 53].

RESULTS

Preliminary analyses

Not accounting for correlation within twins, the median age at menopause was 51 for twins. This
estimate is identical to that found in a sample of 855 women randomly selected from the
Australian electoral roll. Kaplan}Meier curves for age at menopause did not signi"cantly di!er
between controls and twins (logrank p"0.63, Figure 4). We then selected one twin (proband)
from each pair at random, assigned them to one of two groups depending upon whether their
menopausal age was before 50, and plotted Kaplan}Meier [54] survival curves for the twins of
these individuals (Figure 5). The MZ twins or probands reached menopause earlier than the DZ
twins if their respective twins reached menopause at or before the age of 50. As the age at
menopause in one's twin increased, the di!erence between the survival probability of the MZ
twins and that of the DZ twins became smaller. This suggests that there may be a genetic
component to reaching menopause before the age of 50.

We used multivariable Cox regression to screen covariates for inclusion into the model [32].
Later birth year and no smoking were signi"cantly associated with a later age at menopause after
adjustment for other variables in the model. In addition we also found factors for later menopause
were: parity of two or more; university education; and menarche age before 14 years (just
signi"cant).

First, a standard genetic analysis was performed using only twin-pairs where both twins were
post-menopausal at the time of the survey (267 MZ pairs and 159 DZ pairs) using the program
Mx [55]. The estimates of correlation in age-at-onset were r

MZ
"0.49 and r

DZ
"0.33. Since

r
MZ

did not exceed twice r
DZ

, the ACE model was the most appropriate to "t "rst. In subsequent
analyses, we found no evidence for the presence of shared environmental e!ects
(5249.2}5248.6"s2

1
"0.6, P'0.2). We thus re-estimated the parameters for a model which

allowed only additive genetic and unique environmental factors. The heritability estimate
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Figure 4. Kaplan}Meier curves for age at natural menopause in 2980 monozygotic (MZ), 2981 dizygotic
(DZ) Australian female twins and 837 controls.

produced by Mx was 0.505. These analyses were conducted on a complete data pairs only, due
to the limited capability of Mx to handle censored data, resulting in reduced sample size and
power.

GEE approach

We then re-analysed the data using the GEE approach. An inspection of residual plots following
model "tting provided no evidence for the failure of proportional hazards assumption and did not
detect in#uential observations. The results (Table I) suggest that later birth year, university
education, and having at least two children are associated with later age at menopause. Table I
also presents the odds ratio for each zygosity type which can be used to investigate patterns of
familial aggregation. The odds ratios for MZ and DZ twin pairs are 1.764 and 1.355, respectively.
Both are signi"cantly di!erent from independence (odds ratio"1, P(0.01). From these odds
ratios, we estimated the within-pair correlations to be r

MZ
"0.568 and r

DZ
"0.304. The test

statistic for the equality of these two correlations was 7.47, indicating a highly signi"cant
di!erence between MZ and DZ twin correlations. The classical estimate of heritability was
2(0.568!0.304)"0.528. The proportion of the phenotypic variance attributed to the common
environment was an insigni"cant 0.040 ("r

MZ
!h2).
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Table I. GEE approach: estimated regression coe$cients in the proportional hazards
model and estimated odds ratios for quantifying familial aggregation in a longitudinal

study of time to menopause in Australian twins (* indicates signi"cance).

Covariate RR"eb Coe$cient Robust Z-statistic
b SE(b)

(a) Mean e+ects
Year of birth 0.978 !0.022 0.0038 !5.79*
Smoking 1.123 0.116 0.0680 1.72
University education 0.643 !0.442 0.1077 !4.10*
Menarche 0.984 !0.016 0.0226 0.71
Parity 0.624 !0.471 0.0960 !4.90*

(b) Patterns of familial aggregation

Zygosity 1#h SE(h) Z-statistic

MZ 1.764 0.1480 5.16*
DZ 1.355 0.1270 2.79*

Bayesian approach

We re-analysed using Gibbs sampling to impute missing menarche, parity and education and to
estimate subject-speci"c covariate e!ects and random genetic (p2

A
) and common environment (p2

C
)

e!ects on the log scale. The estimated shape parameter r was 9.81 with a 95 per cent con"dence
interval of (9.65, 10.10). The results are summarized in Table II. The residual plots did not indicate
a gross departure from the underlying Weibull model and revealed no in#uential observation. We
checked the sensitivity of the analyses to initial parameter values by re-running the Gibbs sampler
"ve more times using di!erent starting values. The resulting estimates did not di!er by more than
5 per cent from the values reported here. The mean estimate for (p2

A
) was 0.73 (95 per cent CI:

0.13}1.41) and for (p2
C
) was 0.01 (95 per cent CI:!0.456}0.469). Again, the results suggest that the

e!ect of a common environment is negligible. We then compared models that incorporate
(i) covariate e!ects only, (ii) random genetics e!ects only (ACE, AE and CE), (iii) a mixture of
covariate e!ects and random genetics e!ects (ACE, AE and CE), using the Akaike information
criterion (AIC) whenever non-nesting of two models invalidated the use of likelihood ratio
tests. The estimated log-relative risks due to birth year, parity, age at menarche, smoking and
education were essentially unchanged when comparing the ACE model (Table II) to the AE or
CE model.

DISCUSSION

We applied three methods } path analysis on complete data, generalized estimating equation and
Bayesian analysis } to the genetic analysis of age at menopause using twin data. Under all three
approaches, the results suggest that additive genetic factors play an important role in menopause
age and that shared environmental factors do not. We focused attention on the latter approaches

GENETIC ANALYSIS OF THE AGE AT MENOPAUSE 1229

Copyright ( 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:1217}1235



Table II. Gibbs sampling approach: estimated regression coe$cients and estimated variance components in
a longitudinal study of time to menopause in Australian twins (* indicates signi"cance).

Covariate RR"eb Coe$cient b Robust SE(b) 95% CI of b

(a) Mean e+ects
Year of birth 0.971 !0.029 0.0035 (!0.036,!0.023)*
Smoking 1.148 0.138 0.0788 (!0.187, 0.293)
University education 0.672 !0.397 0.1400 (!0.676,!0.123)*
Menarche 0.976 !0.024 0.0204 (!0.063, 0.015)
Parity 0.556 !0.586 0.1260 (!0.830,!0.033)*

(b) <ariance components

p2
A

0.730 0.329 (0.129, 1.410)
p2
C

0.011 0.240 (!0.456, 0.489)

because they are more appropriate for modelling age-to-onset data and they allow the inclusion
of covariates in the analyses. Under both approaches, there were suggestions that age at
menopause was in#uenced by later birth year, having a university degree, and having two or more
children. The principal di!erence between the two approaches is in the interpretation of the
regression coe$cients. The GEE method uses a marginal approach resulting in regression
coe$cients that describe the average population response to changing covariates, whereas the
Bayesian approach produces subject-speci"c coe$cients. A secondary distinction is in the nature
of the within-pair dependence. The GEE model only describes a common covariance among twin
pairs of a particular zygosity, whereas the Bayesian approach can explicitly describe the source of
this covariance. A third advantage of the Bayesian method is its #exibility in incorporating prior
information, if available for the covariates or latent e!ects by modifying their prior distributions.
Further, the Bayesian method would permit a more accurate decomposition of the genetic
variance into additive and dominant components and thus provide the means for a direct
assessment of the no-dominance assumption. Finally, it is also interesting to record the amount of
CPU time required for each method: 20 seconds for the GEE approach and approximately 30
hours for the Bayesian analysis on an Ultra-SPARC Workstation. Since years of work and
millions of dollars have been dedicated to collecting, maintaining and updating the twin data, this
extra CPU time requirement by the MCMC method is well worth the additional genetic
information and #exibility that it provides.

The analyses performed here associated a somewhat di!erent level of signi"cance to some
covariates than did a previous analysis of the same data that treated observations from twin
pairs as if they were independent [32]. In the former paper, we found that year of birth,
smoking, university education, later menarche and parity were all signi"cant contributors to
the variation in age at menopause. However, to account for genetics e!ects in this paper, we
could only use information from complete twin pairs, thereby reducing the power to detect
all the covariate e!ects. Speci"cally, the negative e!ects of smoking and abnormally
late menarche are no longer signi"cant here even though the trends are still in the same directions.
However, the previous analysis included an additional 1597 singletons to the data set used in the
present analysis. Further, these singletons tended to be older: 45 per cent were born before
1940, versus 36 per cent in the sample used here. It is thus possible that the di!erences were
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due less to the analytical techniques than to a loss in power and to di!erences in the samples being
studied.

There is also a need to examine the possibility of age interaction e!ects. In several diseases (for
example, familial breast cancer and Alzheimer's disease) &genetic' forms occur earlier in life than
sporadic cases. Therefore we might expect that twins might be more concordant for premature
ovarian failure (say due to occult leiomyomatosis or endometriosis) than later menopause. This
can be tested via a conditional approach [56], contrasting the MZ and DZ odds ratios in a simple
contingency table that splits cells into early and late menopausal ages for twin 1 versus twin 2, or
by calculating age-speci"c risks using straightforward and graphical life-table analysis that
constructs survival curves to examine the risk of menopause at every age point among
the subjects whose twins had reached menopause within a prespeci"ed age interval (Figure 5).
We found no signi"cant age interaction e!ect. However, this result should be interpreted
with caution since our study may have limited power due to the high censoring proportion
(58 per cent).

Our analyses of the menopause data have several limitations. First, it is reasonable to surmise
the existence of common genetic in#uences on age at menopause and age at menarche. Therefore,
treating these covariates as "xed e!ects (GEE) or subject-speci"c e!ects (Bayesian) may in fact
obscure these common genetic e!ects. The solution to this problem would be in the development
of multivariate MCMC methods which can incorporate a mixture of censored and non-censored
observations. Second, it is not possible from twin data alone to separate shared environment
from dominant genetic e!ects. Extensions to the methods presented here should then allow
the inclusion of data on other forms of relatives besides the twins, which would enable the
estimation of additive and dominant e!ects simultaneously. Lastly, we are currently performing
simulation work to determine the robustness of MCMC methods in the genetic decomposition
of censored observations, to, for example, misspeci"cation of the hazard function or the
genetic model.

APPENDIX A: THE GEE MODEL AND ESTIMATION OF PARAMETERS

We applied the iterative method of Hsu and Prentice [9] and Hsu and Zhao [10] to obtain
simultaneous estimates of b and h. Consistent estimates of the regression coe$cients from
a partial likelihood and non-parametric estimates of the baseline can be obtained using methods
by Breslow [58] or Efron [59]. As the model does not require the speci"cation of a baseline
hazard function, we estimate it at each iterative step using the relationship between baseline
hazard and survival rates (S

0
(t))

S
0
(t)"Pr(pre-menopausal at t)"expA!P

t

0

j
0
(t)B"exp(!"

0
(t))

The survival function for the ith twin in the kth pair is

S(t
ki
DZ

ki
)"[S

0
(t
ki
)]exp(b@Z

ki
)

in which S
0

can then be estimated non-parametrically.
The iterative procedure for the estimation of b and #"(h

MZ
, h

DZ
)@ is based on the Newton}

Raphson algorithm. Let (b
i
, #

i
) denote the values of the estimates at the ith iteration. These values
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are updated using
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are observed and expected twin covariances for age-of-onset. The matrix g
k
allows estimation of

dependence parameters that are relationship speci"c [60]. Note that &~1
1

is the naive covariance
matrix that does not take into account the correlation in the twins. A robust covariance matrix is
given by

&~1
1 A

& (11) & (12)

& (21) & (22)B &~1
1

where & (11) is the information on the marginal parameters b from the mean function, & (22) is the
information on the dependence parameter # from the covariance function, and & (21) is the
information of the marginal parameter b from the covariance function.

APPENDIX B: A BUGS PROGRAM TO IMPLEMENT THE BAYESIAN MCMC
APPROACH IN MODELLING AN ACE MODEL WITH COVARIATE EFFECTS

AND RANDOM GENETICS/ENVIRONMENTAL EFFECTS

d Model A#C#E
model menopause:
const M"2,

NUMFAMS"2182, d number of families
MZFAMS"1355, d number of MZ twin pairs
DZFAMS"NUMFAMS}MZFAMS, d number of DZ twin pairs

var mz[MZFAMS], d MZ effect with precision tauMZ
dz[DZFAMS], d DZ effect with precision tauDZ
d[DZFAMS,M], d Individual DZ effect with precision tauE
tauE, tauMZ, tauDZ, d precisions
VAmz, VAdz, d Variance component for MZ and DZ twins
VAe, d Variance of extra DZ effect
VA, d Variance due to additive genetics
VC, d Variance due to common environment
mu[NUMFAMS, M], d Weibull mean for subject
t[NUMFAMS,2],
t.cen[NUMFAMS,2], d Censored observations
byr[NUMFAMS,2], smoke[NUMFAMS,2], menarce[NUMFAMS,2], parity[NUMFAMS,2],
zyg[NUMFAMS], educat[NUMFAMS,2], alpha, r, beta.byr, beta.smoke, beta.men,
beta.parity, beta.educat;
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data zyg, t, t.cen, byr, smoke, menarce, parity, educat in ‘‘menop.dat’’;

inits in ‘‘menop.in’’;
M
for (i in 1:NUMFAMS)M

for(j in 1:M)M
menarce[i, j]&dnorm(5.95,0.49);
parity[i, j]&dbern(0.846);
educat[i, j]&dbern(0.124);NN

for(i in 1:MZFAMS) M
for(j in 1:M) M

t[i, j]&dweib(r,mu[i,j])I(t.cen[i,j],);
log(mu[i,j])(!alpha#beta.byr*byr[i,j]#beta.men*menarce[i,j]

#beta.smoke*smoke[i,j]#beta.parity*parity[i,j]
#beta.educat*educat[i,j]#mz[i];N

mz[i]&dnorm(0.0, tauMZ);N

for(i in 1:DZFAMS)M
for( j in 1:M)M

t[i#MZFAMS,j]&dweib(r,mu[i#MZFAMS,j])I(t.cen[i#MZFAMS,j],);
log(mu[i#MZFAMS,j]) (!alpha#beta.byr*byr[i#MZFAMS,j]

#beta.men*menarce[i#MZFAMS,j]#beta.smoke*smoke[i#MZFAMS,j]
#beta.parity*parity[i#MZFAMS,j]
#beta.educat*educat[i#MZFAMS,j]#dz[i]#d[i,j];

d[i,j]&dnorm(0.0,tauE);N
dz[i]&dnorm(0.0,tauDZ);N

dPriors
alpha&dnorm(0.0,0.001);
beta.byr&dnorm(0.0,0.001);
beta.smoke&dnorm(0.0,0.001);
beta.men&dnorm(0.0,0.001);
beta.parity&dnorm(0.0,0.001);
beta.educat&dnorm(0.0,0.001);
tauMZ&dgamma(0.001,0.001);
tauDZ&dgamma(0.001,0.001);
tauE&dgamma(0.001,0.001);
r&dgamma(0.001,0.001);

VAmz(!1/tauMZ;
VAdz(!1/tauDZ;
VA(!2*(VAmz}VAdz);
VC(!VAmz}VA;
N
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