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Abstract

Analysis of transversely loaded cantilever shaft having multiple cracks is investigated in this paper. The
behavior of cracks locations and sizes on vibration parameters is presented taking the advantage of
reduction in stiffness of shaft from fracture mechanics. The shaft is subjected to static axial and bending
load for given angle of twist along its longitudinal direction. Using the principle strain energy release rate
and stress intensity factor (for plain stress and strain condition), the natural frequencies with their mode
shapes at different crack locations with its depths are evaluated. The result obtained from theoretical
method has been verified with the advantage of adaptive neuro-fuzzy inference system (ANFIS) using the
modal parameter of cracked shaft. The vibration parameters such as first three non-dimensional natural
frequencies with their mode shapes at different locations and depths are supplied to ANFIS to optimize
the results. The crack location and size predicted from ANFIS model are verified with the theoretical data
with acceptable error. The surface plot, residual error, and probability plot obtained from ANFIS are
showing the effectiveness of theoretical method. Research work has been extended to set up an experi-
mental model to strengthen both theoretical and ANFIS work.The paper basically focused on error
percentage obtained from the theoretical result with ANFIS and experimental work. It is found that
the error percentage in ANFIS and experimental analysis are 2% and 1-7.33% respectively with respect
to theoretical analysis. The present method is simple and can be easily extended to complex structure
with different orientation of multiple cracks for any structural analysis.

Keywords
Vibration, multiple cracks, shaft, natural frequency, mode shape, adaptive neuro-fuzzy inference system,
experimental analysis

Introduction

The basis of linear elastic fracture mechanics (LEFM) is to study the behavior of crack in machine
component like shaft, beam, or plate. Initiation of crack in any structure is not important. However,
the growth rate of crack leads to catastrophic failure of machine component. The physical
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characteristics of a structure due to crack alter its dynamic response. Therefore, early detection of
crack is desirable in modern machinery to avoid catastrophic failures of machines’ component.
Diagnosis of fault before and after the damage has been a challenging task for the researcher in
the last few decades across the globe. Various nondestructive techniques and health monitoring
system came forward to solve nonlinear problem with less cost and better accuracy. Stress intensity
factor (SIF) is the key parameter that deals with growth rate of crack and it depends on the applied
loading and geometry of structure. The rate at which strain energy released depends on SIF, which is
a function of location of crack with depth. Apart from conventional methods, nondestructive tech-
niques (NDT) and Al technique can be applied actively to detect the faults in all dynamic structures
within a short span of time. The key parameters for vibration analysis are depth of crack with its
location.

Shooshtari and Khajavi (2010) studied the vibration characteristic of tapered beam with its
abrupt jumps in crack section using strain-interpolating functions. They determined the exact stiff-
ness matrix and interpolating function using principle of virtual work. Noble works were presented
by Dixit and Hanagud (2011) to determine mode shapes and natural frequencies through perturb-
ation method. The damage indexes such as stiffness and mass per unit length are independent of
beam properties presented by Liu et al. (2011). They used an edge-based smooth finite element
method for simulating singular stress field for mode-1 fracture. Moore et al. (2011) implemented
Byes theorem, taking Markov-chain Monte Carlo implementation for determining crack parameters
and their probability distribution. Palmeri and Cicirello (2011) formulated a model for slender
Euler—Bernoulli beam and short Timoshenko beam having multiple cracks with various crack
depths. Rezaee and Hassannejad (2011) adopted crack as fatigue and change in the local stiffness
as a nonlinear-dependent function. The dynamic response of the cracked beam has been calculated
using mechanical energy balance model. Rubio et al. (2011) represented the flexibility matrix
through the polynomial fitting of the SIFs, by integrating elliptical front and compared the results
obtained through finite element method. Abortive change in strength due to hole in laminated
composite glass-epoxy fiber was given by Sen et al. (2011) under various orientation of fiber at
different loading. Experiments were conducted to investigate the failure analysis under various
material and geometrical parameters. They concluded that bearing strength and failure mode ten-
aciously modified due to presence of hole or bolt joints. Lundmark and Varna (2011) formulated an
interaction function to measure the crack opening displacement. Interaction function has been
formulated by the using the results of finite elements morphology. Ignoring the geometrical and
material properties of cross-ply laminate,the interaction function represented as a crack density to
foretell the reduction in stiffness at the crack layar. Zhu et al. articulated a model to compute fatigue
life at low amplitude using Miner’s rule. Different fuzzy set rule has been employed to improve the
Miner rule. The outcome derived from the model is supported with experimental results. A new
approach was made by Pham et al. (2012) for developing a model intimating material property
degradation method (MPDM) and cohesive element (CE) for radical failure of carbon-epoxy com-
posite. Various theories of failure has been introduced to study the degradation of material proper-
ties. It is concluded that the reduction in strength due to notch increases on increasing the specimen
size. The expected results were compared with the experimental data and good agreement was
found. Movaghghar and Lvov (2012) recommended a model made up of composite material used
for wind turbine blade. The specific blade model is intended for maximum elastic strain energy
achived at the growth rate of damage for different critical load position using ANSYS. Critical
stresses and fatigue life were computed at resonance condition. Nanda and Das (2013) analyzed fault
in a cracked structure using genetic algorithm (GA) technique. They presented a crack cantilever
beam to determine the natural frequency through numerical method and validated results by
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using GA. A new hybrid model was presented by Nanda et al. (2013) taking multiple adaptive
neuro-fuzzy interface system (MANFIS) for crack diagnosis in the fixed shaft using changes in
vibration parameter. Saeed et al. (2012) presented a crack diagnosis in the curvilinear beam using
frequency functions and artificial neural network (ANN) and showed results with good agreement.
Sayyad et al. (2013) provided a proper procedure to verify the intensity of crack with its location
regulating the data of axial vibration for different beam structure. The effectiveness of two first
natural frequencies for determination of crack parameters is employed theoretically. The results of
theoretical analysis is validated by experimental approach and suitable agreement was found.

The flexural vibration in cantilever beam having various transverse crack with its location and
size has been detected. Suresh et al. (2004) analytically used modal parameters and modelled the
crack as rotational spring. The results obtained from the modal analysis have been optimized by
neural network and Newton—Raphson method. GA is a multi-objective optimizing technique, which
wasused by Cheng and Tham (2003) for multi-output with multi-input parameter. The input par-
ameter used for GA are relative to all the three natural frequencies with their mode shape, crack
location, and size trained up to the GA controller. The output of GA is the crack location and depth,
which is verified with the experimental data. Chandrashekhar and Ganguli (2009) have expounded a
fuzzy logic system for detection of crack. They evaluated the relation between changes in the modal
frequency with change in material properties which helped them in developing a robust fuzzy model
for detection of crack parameters. Studies presented by Panigrahi et al. (2009) consisted of an
objective function for verifying microscopic fatigue crack in a uniform strength beam using a
residual force method and GA. They investigated the crack parameters by varying both width
and depth but keeping the uniform strength as constant. Zachanias et al. (2004) focused on detecting
damage on crates of beverages using ANN for locating crack position and size in various structural
designs. The input data to ANN provided by frequency responses spectra was obtained by finite
element, theoretical, and experimental method and a good agreement was found with the
existing data.

Theoretical analysis of shaft

With the help of linear fracture mechanics theory and taking the strain energy release rate and stress
intensity factor, the mode shapes, natural frequencies, and stiffness of the steel cracked cantilever
shaft have been calculated as follows.

Estimation of local flexibility of damaged shaft under axial and bending load

A multi-cracked cantilever shaft of diameter D is represented in Figure 1. Two transverse surface
cracks are presented at two locations L; and L, with depth b; and b, from the fixed end (Figure 3).

Figure |. Shaft with multiple cracks.
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Figure 2. Geometry of cracked surface.
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Figure 3. Crack model.

Both the cracks result in a coupling effect yielding both longitudinal and transverse motion of the
shaft. An axial force F; and bending force F, are applied at free end of the shaft. Due to the presence
of cracks, a local flexibility will be interposed with the order of 2 x 2 matrix. The geometry of
cracked surface is shown in Figure 2.

The rate of strain energy released during fracture is J, where

1
Jo=1(Cn + () (1)
. .. 11—
For plane strain condition, — =
E E
For plane stress condition _ 1
P BT E

here, v is the Poisson’s ratio and £ is the Young’s modulus of elasticity. Cy; and C, represents stress
intensity factors of first mode for given load F; and F,, respectively. The values of local stiffness
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factor from fracture mechanics can be calculated by taking the rectangular strip de as given in
Figure 2.

Height of the element w = 2/(R? — ¢?)

Depth of crack & =w? — (R — b)

F / 2F
Ch = —=~h <P1 <i>) Cio = =2 x wy/7h (P2 (ﬁ» o)
7R w 7R w

The expressions Py(h/w) and P,(h/w) are the experimental determined functions. The stress inten-
sity factors C;; and C;, can be calculated using two experimental determined functions. So, the
following two expressions can be represented as given below

h 2w (h\\"7[0.752 + 2.02(h/w) 4+ 0.37(1 — sin(rth/2w)’
n()= Gen(G)) | oA | oo
h 2w\ [0.923 +0.199(1 — sin(h/2w)*
r 2<w> = ( htan<2h)) { cosGrh/2m) } @

Let V, represent total strain energy due to fracture. Then, additional longitudinal displacement
along the force F; with the aid of Castiglione’s theorem can be represented as follows

v,
T F, )
The total strain energy
h h
v,
Vi= | —dh=| J.dh 6
= [ = [ ©

Here, J, = a/ , where J, is an energy density function.
From equations (1), (5), and (6), we have

h
y; = ai“ [ / J, (h)dh] 7)

The flexibility influence coefficient (Sj;) in both X and Y directions can be obtained using
equation (7).

v *
v= ok = araE |, ®)

Integrating over the whole width of the crack from —a to +a
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5 -1 r @ /hf (Ciy + Cio)*dpdh 9)
i="F arar ), /. 1 12

The combined equations (2), (3), (4), and (9) in the dimensionless form yield

_ hopea o
Sy ="ER_y / / WP () ddi (104)
l—vy 0o Jo
B B ER? hopa — B o
So1 =S = ”1752” = léf / I/ (1 — @?) x Fi(h)F>(h)dgdh (10b)
- 0 JO
_ 3 hopd ~ o
Sy = LTL“;Q; = 64/ / h(1 — ¢) x F5(h)dgdh (10¢)
- 0 JO

, _ h _h r_9 = _a
Whereh—i, ’B_g’ ¢_E’ Cl—ﬁ

By taking the inverse of compliance matrix Sy, the local stiffness matrix C;; can be determined as
presented in the following equation

-1
Cn Cn S Sk
C = = 11
|:C21 sz} |:SZI 522} (b
The stiffness matrix for the first and second crack location (Figure 3) can be obtained as follows.
First crack location

- - — ~ a1
= C]] Clz Sll SlZ
C=17 A |=|a 3 12
[ } [521 522] (12

Second crack location

= = = = -1
C=|Sn Cuo|_|Su Sio (13)
Gy Cx S S»

Variation of dimensionless compliance with respect to nondimensional crack depth j is shown in
Figure 4. It indicates that the dimensionless compliance increases with increasing nondimensional
crack depth.

Formulation of mode shape and displacement for the cracked shaft

A steel shaft of length “L”, diameter “D” with two cracks of depth b; and b, are taken at a
distance of L; and L, from one of the fixed end. vi(x, ), vo(x, ), and v3(x, ) are the amplitudes
of longitudinal vibration for the crack section-1, section-2, and section-3 (Figure 3), respectively.
Similarly, the amplitude of bending vibration are y(x, t), y»(x, ), and y3(x, ?) at the corresponding
section.
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Figure 4. Dimensionless compliance (§,»:|2j:|2) versus nondimensional crack depth (f).

The normal function for longitudinal and bending vibration of following crack sections for the
given shaft can be expressed in nondimensional form as follows

71(¥) = A; cos(C,X) + A sin(C,¥) (14)
72(X) = A3 cos(C,X) + Ay sin(C, %) (15)
73(%) = As cos(C,X) + Agsin(C,X) (16)
71(X) = A7 cosh(C, %) + Ag sinh(C,X) + Ay cos(C, %) + Ay sin(C, %) (17)
72(¥) = Ay cosh(C,%) + Ay sinh(C,X) + A3 cos(C, %) + A4 5in(C, %) (18)
73(¥) = 4y5 cosh(C, %) + A6 sinh(C,X) + A7 cos(C, %) + A5 sin(C, %) (19)
where X =7, v=7,y = %,al = %,az = % (Non — dimensional crack location)

- oL - E\N'? wL?\'? EN'?
Co==2, S,=(=) ., &=(==) , s,=(=) , u=4
! C,’ (P) ! <Sy> ! (Ml> o r

Boundary conditions are applied to determine 18 constants 4(i=1,2,3...18).
Considering the following boundary conditions of the cantilever shaft for four positions:

Atfixedend ¥(0)=0; »(0)=0; »,(0)=0
Atfreeend V(1)=0; 3(1)=0; J5(1)=0
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At first crack location
vilar) = vy(e);  yilen) = yar);  Yi(ar) = y5(en); (o) = 5 ()

At second crack location
V() = Vi(e2);  ya(an) = p3(an); Vi) = Vs(an); 15 () = 35 (o)

Because of discontinuity at crack location due to axial deformation at left and right of the first
crack location can be obtained by force balancing. The given expression can be written as

dvi(L dy,(L dy;(L
EDED _ () = () + Cpp (22 ) 20)
dx dx dx
On multiplying equation (20) by a factor AE/LC,,C, we get
M Mv (o) = Ma(ia(er) — 91 (1)) + My (V) — 7 (1)) (21)

Similarly due to discontunity of slope on either side of the first crack location, the moment
balance can be applied. So the given equation takes the form of

d?yi(L dy,(Ly)  dyi(L
El—yl(z Y _ Car(na(Ly) = vi(Ly)) + Coo pally) _ dynly) (22)
dx dx dx
On multiplying equation (22) by a factor EI/L*C»,C»;, we get
M3My3(ay) = M3(va(ary) — ¥1(enr)) + Ma (P (er) — 7 () (23)

where, My = 75, My =28, M; =L, M4:L2LCI,2]
Similarly, by applymg force and moment balance to the second crack section (L), the following
expression can be derived

MsMgvy(an) = Me(v3(a2) — a(2)) + Ms(33(a) — yy(aa)) (24)
M7 Mg (z) = M7(v3(az) — Va(a2)) + Mg (7 (r2) — () (25)
where, Ms = LC“ M6—éE, M, _LCIa My = £L

2Cy
The normal functions from equations (14) to (19) with the boundary conditions at four locations
as mentioned above, rise to the characteristic equation of given the system as

IR =0

where R is a 18 x 18 matrix. The determinant of the given matrix is a function of natural frequency
(w), nondimensional crack location («, ), and the local stiffness matrix “C”. Again local stiffness
matrix is the function of nondimensional crack depth (8; and 5,).

Various results of the theoretical analysis have been generated taking different crack sections with
physical property of the same shaft as given in Table 3 for uncracked and cracked shaft. Some of the
examples of theoretical results are given in Table 1. Effect of crack location and depth on eigenvalues
have been plotted as shown in Figure 5(a) to (c).
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The elements of the R-matrix are as follows.

Ry = cosh(cyay), Ry =sin h(¢ary), Ry = cosh(cy), Ry =sin h(c;), Rs = cos(¢a),
R =sin(¢yar1), Ry =cos(¢,), Rs = sin(¢,), Ry = sinh(¢en), Kig = —M26,Ry,
Ry = cosh(¢y), K3 = —Rg — M36,Rs, Ry = cos(G,a2), Riz = sin(Gy),

Ts = cos(cyay), Ty = cos(¢y), T =sin(¢ye), T =sin(c,), To = cos(¢yan),

Tyo = sin(Gyon), Mo = M/M>, M3y = M3/My, Msq = Ms/Mg, Mg = M7/Ms,

_ _ _ M
K\ = Ry + M3é,R,, Ky = Ry + M3é,Ry, Ky = —Rs — M1, Rg, Ks = 0—3“ x Ts,
y
My — My — My, _ B}
Ko =——xTe, K3 =——x1T5, Kg=——xTs, K9 = Mi2¢,Ra, Kio = M12¢,Ry,
Cy Cy Cy

Ky = —M3¢,R¢, Ki2 = M2¢,Rs, Ki3 = —M12¢,Ry, Kis = M2¢,Rs, Kig = —M12¢,Rs,
Ki7 =Ts — M¢,Ts, Kig =T+ Mc,Ts, KK; = Ryo + M7¢,Ry, KK> = Ry + M7¢, R,

_ _ M M
KK3 = =Ry — M7¢, Ry, KKy = =Ry — M7¢,Rpp, KKs = 5—78 Ty, KKs = 5—78 Ty,
y y
—M7sg — Mg - -
KK; = z Ty, KKg = z Ty, KKy = Ms¢cy K19, KKig = Ms6¢,Ko,
y y

KK = _MSGEyRIL KK, = M565};R11, KKj3 = _MSGEle()) KKy = _M56E}’R99
KKis = Mssc,Ri2, KKi6 = —Msec,Ri1, KKi7 = To — Msc, Ty, KKig = T+ Msc, Ty,

R-Matrix

o1 0 0 0 00 0 0 0 0 0 0 0 o0 0 0
tr 0t 0 0 0 0o 0 0 0O O 0 O0C 0O 0O 0 0 0
o0 o 0 0 0 0O R K -K - 00 0 0 0 0 O
oo o0 o0 0 0 0 R KB KR -R 00 0 0 0 0 &
K R -% -k - K &% 0 0 0 0 0 0O O 0 0 0 O
R % -B -, -R - R 0 0 0 0 0 O O O 0O 0O O
B X R -R -B & -% 0 0 0 0 0 O O O 0 O O
0 0 0 R Ry -Ry Ry -B -Ry By Rpb 0 0 0O 0 0 0 O
0 0 0 Ry R Ry Ay Ry & Ry Ry 0 0 0 0 0 0 0
0 0 0 R Ry Ry Ry -R ~Ro Ry -Rg 0 0 0 0 0 0 0
L & K R R R -k 0 0 0 0 KKK &K 0 0 -5
000 0 KK KL, K, XK, Ry & Ry -Ry 0 0 K& K I, K O
oo o o 0 o0 0 O O 0o 0 ! 0O O 0 0O 0 O
o0 0 0 0 00 0 0 0 0 0 0 0 0 -5 - 0
o0 0 0 0 0 0 0 0 0 0 -F-5F% -F 0 0 0
00 0 0 0 0 0 0 0 0 0 00 F % F -5 0
Ky Ky Ky Ky B¢ K5 K 0 0 0 0 Ky Ky -5 -§F 0 0 R
0 0 0 KE KRy KEy KKy KK EEy KEs Kg 0 0 KKy KRy -k Ry K

R-Matrix
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Figure 5. (a) Nondimensional amplitude vs. nondimensional distance from the hinge end (first mode of vibration)
a;=0.2, ¥, =028, §,=0.1, B, =0.1; (b) nondimensional amplitude vs. nondimensional distance from the hinge end
(second mode of vibration) «; =0.2, o, =0.8, 8, =0.1, B, =0.1; (c) nondimensional amplitude vs. nondimensional
distance from the hinge end (third mode of vibration) ¢l =0.2, «2=0.8, g1 =0.1, f2=0.1.
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Figure 7. Percentage change in natural frequencies vs. percentage change in depth «; =0.2, o, =0.75,
Bi=p=10%...48%.

ANFIS methodology

ANFIS stands for adaptive neuro-fuzzy inference system and was developed by Jang (1997). It is a
feed-forward ANN, which are functionally equivalent to fuzzy inference systems. He reported that
the ANFIS architecture can be employed to model nonlinear functions, nonhomogeneous, and
complex fuctions. It is a hybrid neuro-fuzzy technique that brings learning capabilities of neural
networks to fuzzy inference systems and uses hybrid learning algorithm. It is a part of the fuzzy logic
toolbox in MATLAB R2008a software of Math Work Inc. (1995-1998). Jang et al. (1997) and Avci
(2008) reported fuzzy inference system (FIS), which is used to compute framework based on the
concepts of fuzzy set theory, fuzzy if—then rule, and fuzzy reasoning. The application of ANFIS has
been successfully found in in the fields of forecasting stock market short-term trends (Atsalakis and
Valavanis, 2009) and comparision of wavelet families for texture classification (Avci, 2008). The
basic components of an FIS consists of three conceptual processes: fuzzification—which translate
input parameters into truth values; rule evaluation—which compute output truth values; defuzzifi-
cation—which transfer truth values into output. The FIS that have been considered in this paper
maps: input characteristics to input membership functions, input membership function to rules, rules
to a set of output characteristics, output characteristics to output membership functions, and output
membership function to single valued output.

For solving the influence of multi-crack with location and size due to transverse loading presented
in this paper, the Sugeno fuzzy inference system is used to obtain the fuzzy model. The Sugeno FIS
was proposed by Takagi et al. (1988, 1985) in an effort to develop a systematic approach to generate
fuzzy rules from a given input and output data set. The first, second, and third natural frequencies
obtained from theoretical analysis in this paper are used as training data to train ANFIS network
with Gussian membership function with a hybrid learning algorithm. In this paper, the ANFIS
structure with first-order Sugeno model consists of 27 rules are considered. For the neuro-fuzzy
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Figure 8. (a) Rate of change in first natural frequencies vs. nondimensional length o, =0.025...0.4,
a;=0.8...0.45, 8,=0.2, 8,=0.3, f3=0.42; (b) rate of change in second natural frequencies vs. nondimensional
length @; =0.025...0.4, 2, =0.8...0.45, 8, =0. 2, 8, =0.3, 83 =0.42; (c) rate of change in third natural frequencies
vs. nondimensional length «; =0.025...0.4, o, =0.8...0.45, 8, =0.2, 8,=0.3, 83 =042.

model used in this work, of the 10 data points obtained using theoretical analysis, 7 are used for
training and the remaining 3 are used for testing (or validating). Training of ANFIS is usually
performed by using ANFIS Editor GUI of MATLAB (2000). The ANFIS Editor GUI window
displays the four main sub-displays.

These are:

(1) Load data,
(2) Generate FIS,

(3) Train FIS and
(4) Test FIS. Once the FIS is generated, the model structure can be viewed as shown in Figure 9.

The ANFIS information used in this work is tabulated in Table 2.
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Figure 10. Surface plot of Ist and 2nd crack location and crack depth. (a) For 2nd crack depth; (b) for 2nd crack
location; (c) for Ist crack location; (d) for Ist crack depth.
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Table 2. ANFIS information used for solving 7-DOF redundant manipulator.

Three inputs Ist, 2nd, and 3rd natural frequencies
One output Crack location and crack depth
Three membership function in each node Sugeno types

Number of nodes 78

Number of linear parameters 27

Number of nonlinear parameters 27

Total number of parameters 54

Number of training data pairs 7

Number of checking data pairs 10

Number of fuzzy rules used 27

Results and discussion

In this section, surface plots, the residual plots, and the normal probability plots are carried out to
obtain the theoretical results. The surface plot obtained explains the efficiency of the ANFIS meth-
odology. The residual plots obtained by comparing the predicted data from the ANFIS and the
theoretical data show that the data predicted using ANFIS methodology deviate very less from the
theoretical data. The last section of this chapter is concluded with obtaining the normal probability
plots. The details of the plots are explained in the following section.

3D Surface viewer analysis

In this section, the 3D surface plots obtained from the natural frequency of the shaft with its various
crack positions and sizes are discussed. The surface plots display both the connecting lines and aces
of the surface in color. The 3D surface plots obtained from ANFIS explains the relation between the
output and two inputs. Figure 10(a) to (d) shows surface plots for four ANFIS networks relating
inputs to crack locations and depths. This section shows the obtained surface plots of different crack
locations; similarly, the surface plots for different crack depths can be obtained. It can be concluded
from the surface plot that the contribution of interdependent parameters toward obtaining the
output can be easily provided through the ANFIS algorithm and can be hardly obtained otherwise
without employing massive computations. The surface viewer plots show that the total surface is
covered by rule base.

Residual plot analysis

Residuals are the difference between the predicted output from the ANFIS model and the
actual values of natural frequencies. The residual plot is a graph that shows the errors in
vertical axis and the indepandant variables in the horizontal axis. If the errors in the residual
plot are randomly dispersed around the horizontal axis, then the predicted model is considerd
to be suitable for the given data, i.e. there is no drift in the data. In this section, the residual
plots are obtained for training and testing data for different conditions. Figure 11(a) and (b)
indicates a decent fit to the model of different crack locations, as most of the residual lies
between —0.02 and 0.02. Similarly, the residual plots of rest crack location and crack depth
can also be obtained.
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Figure 12. (a) Normal probability plot for Ist location; (b) normal probability plot for 2nd location.

Normal probability plot analysis

The normal probability plot developed by Chambers et al. (1983) is a graphical method for assessing
whether or not a data is approximately normally distributed, if it is nearly straight, the data satisfy
the nearly normal condition. The data are plotted against a theoretical normal distribution in such a
way that the points should form an approximate straight line. Any deviation from this straight line
indicates a deviation from the normality. It provides a good assessment of the adequacy of the
normal model for a set of data. In this plot, the normal distribution is represented by a straight line
angled at 45°. In this section, normal probability plot for two crack locations is presented as shown
in Figure 12(a) and (b). The figure suggests that all the data are normally distributed. Similarly, the
normal probability for all training and testing data of rest crack location and crack depth are
obtained and the plot signifies that the data are normally distributed.

Experimental set-up

Experimental analysis is carried out by measuring the dynamic response of the uncracked and
cracked mild steel shaft specimen. The material properties of the shaft are given in Table 3. The
cracks at various locations with different depths in the shafts were introduced by electro-discharge
machine perpendicular to the longitudinal axis of the shaft. The test specimen made up of mild steel
is 1000 mm length and 10 mm diameter. The cantilever shaft test sample was clamped at its one end
by a clamping device. The free end of the shaft specimen was excited by an appropriate signal from
the function generator, which was amplified by the amplifier. The cantilever shaft was excited at first
three modes of vibration, and the natural frequencies and mode shapes were recorded by the hard-
ware support accordingly, i.e. miniature accelerometer by suitable positioning, data acquisition
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Table 3. Material properties and geometry of structural steel shaft.

Young’s modulus Density of Poisson’s ratio Length of Diameter of
of shaft, E shaft, o of shaft, u shaft, L shaft, D
2.1 E4 06 MPa 7830 kg/m’ 0.3 1000 mm 10 mm

1. Steel Cantilever shaft 2. Vibration Exciter 3. Power amplifier
4. Function Generator 5. Distribution box 6. supply of power
7. Vibrationindicator 8. Vibration Analyzer 9. Accelerometer

10. Software (NV Gate Envirnoment software)

Figure 13. Experimental setup.

system, and tuning the vibration generator at the corresponding resonant frequencies. Finally, the
analysis of the vibration parameters from the intact and cracked shafts were done by the NVgate
Environment Software loaded on the laptop of the vibration analyzer. The schematic diagram of
experimental setup is shown in Figure 13. Some of the useful instruments are given in Figure 14(a) to
(d). Results for the first three nondimensional amplitude along nondimensional length are plotted in
Figure 15(a) to (c).

% Change in Experimental Natural Frequency — % Change in Theoretical Natural Frequency

%E = - -
onrror % Change in Experimental Natural Frequency

Discussions

The following conclusion can be derived supporting the results from the theoretical analysis. The
dimensionless compliances (S1;, Sij2 = 871, S2) increase with the increasing nondimensional crack
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Figure 14. (a) Vibration indicator (NVgate Envirnoment software); (b) cantilever shaft with frame; (c) vibration
analyzer; (d) vibration pick-up with shaft.

depth as shown in Figure 4. First three mode shapes are reflected graphically in Figure 5(a) to (c) for
different nondimensional crack locations and nondimensional crack depths. It is observed that there
are changes in mode shapes at different locations and depths due to the presence of crack in the
shaft. Table 1 shows some of the nondimensional natural frequencies and mode shape differences
obtained from theoretical analysis with their location and depth. Figure 6 illustrates the percentage
change in the fundamental frequency of the cantilever steel shaft with two cracks as a function of
percentage change in first crack location with two fixed crack depths. The second natural frequency
increases rapidly in comparison to first and third natural frequencies as the first crack moves from
fixed end towards the second crack location with constant crack depth. The effect of crack depth on
modal values is shown in Figure 7. The third natural frequency increases rapidly at high crack depth
(0.35< B <0.5). Figure 8(a) to (c) demonstrates the first, second, and third nondimensional natural
frequencies as a function of nondimensional crack length for constant nondimensional crack depth.
As the two cracks move towards each other, the first natural frequency decreases rapidly (Figure
8(a)) at higher crack depth (8=10.42) in comparison to low crack depth (8=0.2, 8=0.3). But in case
of second natural frequency (Figure 8(b)), it decreases at low crack region (0 < 8 <0.2) and increases
at medium region crack (0.2 < <0.35). It is found that when two cracks location move towards
each other, the third nondimensional frequency decreases continuously irrespective of depths
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Figure 15. (a) Nondimensional amplitude vs. nondimensional length from hinge end (st mode of vibration)

al =0.01, 2 =0.85, g1 =0.2, $2=0.2; (b) nondimensional amplitude vs. nondimensional length from the fixed end
(2nd mode of vibration) ol =0.01, @2 =0.85, 81 =0.2, 82 =0.2; (c) nondimensional amplitude vs. nondimensional
distance from hinge end (3rd mode of vibration) «| =0.01, «2=0.85, §1 =0.2, f2=0.2.

(Figure 8(c)). But the rate of decrease is steeper within the range (0 < 8 <0.2) as compared to the
medium crack (0.2 <B<0.35). There is significant change in mode shape between theoretical
cracked and uncrack shaft with experimental crack shaft as given in Figure 15(a) to (c). Table 4
shows a comparison of relative natural frequency obtained in theoretical and experimental analysis.
The values shown in the table are approximately £7.33% in-between the two analyses.

Conclusion

This paper approaches a clear representation of the position of two cracks with its location and
depths on modal frequencies and mode shapes. The crack locations and its depths significantly
influence the mode shapes and natural frequencies of the elastic structures. The rate of change in
natural frequencies with its maximum amplitudes are observed at all three mode shapes specially at
crack locations. These changes in natural frequencies and mode shapes will be helpful in forecasting
the crack position with its intensity. The mode shapes for the cracked shaft obtained numerically are
compared with the corresponding experimental results and are found to be in close agreement. The
surface plots, the residual plots, and the normal probability plots obtained from ANFIS are vali-
dated with the theoretical results. The surface plots prove the efficiency of the ANFIS methodology.
The residual plots are taken care by comparing the predicted data from the ANFIS and the
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Table 4. Comparison between theoretical and experimental analyses.

% Change in natural % Change in natural
frequency—Theoretical frequency—Experimental % Error in natural
analysis analysis frequency

Sl o B o B

No. (L))/L (d\)/D (L)L (dy))/D K Q, Q3 Q4 Qs Qe Ist 2nd 3rd

0.425 0.1 0.525 0.12 0.03I 0.091 0.017  0.033 0.096 0.019 6.061 5208 10.526

I

2 04 012 055 0.14 0044 0.125 0.045 0.047 0.134 0.048 6.383 6.716 6.250
3 0375 0.14 0575 0.16 0.06l 0.16 0.09 0.064 0.173 0.095 4.688 7.514 5263
4 035 016 06 018 0.08 0.188 0.167 0.089 0.205 0.181 6.742 8293 7.735
5 0325 0.18 0625 0.2 0.113 0216 0271 0.121 0.233 0.294 6.612 7296 7.823
6 03 02 065 022 0.157 0.23 0393 0.171 0.251 0.426 8.187 8367 7.746
7 0275 022 0675 024 0209 0.23 0518 0.225 0.249 0.559 7111 7631 7335
8 025 024 07 026 0279 0223 0612 0.303 0.241 0.662 7921 7469 7.553
9 0225 026 0725 028 0362 0202 0.672  0.395 0.219 0.724 8354 7.763 7.182
10 02 028 075 03 0.48 0.195 0.684  0.521 0.212 0.739 7869 8019 7.442
I 0.175 0.3 0.775 032 0606 0202 0.637 0.652 0.217 0.687 7.055 6912 7.278
12 0.5 032 08 034 0794 0244 055 0.858 0.265 0.595 7459 7925 7.563
13 0.125 034 0.825 036 0.89 0.348 047 0.96 0.376 0.509 7292 7447 7.662
14 0.1 036 085 038 0903 0529 0448 0977 0.569 0.486 7.574 7.030 7819
I5 0.075 038 0.875 04 0916 0836 0575 0.98I 0.905 0.622 6.626 7.624 7.556
l6 005 042 09 042 0929 0884 0645 0.999 0.956 0.697 7.007 7531 7.46l

theoretical data. ANFIS part is concluded with the normal probability plots. The methodology can
be utilized for condition monitoring of any vibrating structures. Studies can be extended to procre-
ate new artificial intelligence technique for damage detection in structures.
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Appendix

Notation

a
amd

A

A; (i=1to 18)
bmd

B (i=1,2..)
cmd
C;(i=1,2,3)
C

mo DS

fnf

FiJ (l:l, 2)
h

i

inf

J

Je

L, (i=1,2..)
mnf
M;(i=1...8)
Ml,]

Pi (lzl, 2)

0

R (i=1,2...12)
Sij(i=1,2,3)

width of the crack

average relative first mode shape difference
cross-sectional area of the shaft

unknown coefficients of the matrix

average relative second mode shape difference
depth of the crack

average relative third mode shape difference

stress intensity factor
oL

G,
(w_L)l/Z
S,
diameter of the shaft
Young’s modulus of elasticity of the shaft material
relative third natural frequency
axial force (i=1), bending moment (i=2)
coordinates of the crack surface
variable
relative first natural frequency
variable
strain-energy release rate
location of the crack from one of the fixed end
relative second natural frequency
compliance constant
%
experimentally determined function
system matrix
variable in Q matrix
elements of the compliance matrix

o
P
)"

"
period of vibration
normal function
height of the rectangular strip
coordinates of the shaft
coordinates of the shaft
L;/L, location of the crack of the shaft
b;/D, depth of crack of the shaft
Ap
Poisson’s ratio
angular velocity of the shaft
coordinate of the crack surface
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density of crack surface

0
() & dimension less variables
ncracked __geracked . .
fuﬂ,% x 100 Where i defined as ith frequency of the
system

% Change in Natural Frequency(£2;)

. . . Max(Yoracked — Yncracke
% Change in vertical amplitude (7;) | dX(}l]\//I;)/z ;I' .I,GU;MA 0l 100

I moment of inertia
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