http://webdam.inria.fr/

Web Data Management

Serge Abiteboul Ioana Manolescu
INRIA Saclay & ENS Cachan INRIA Saclay & Paris-Sud University

Philippe Rigaux
CNAM Paris & INRIA Saclay

Marie-Christine Rousset Pierre Senellart
Grenoble University Télécom ParisTech

Copyright @2011 by Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset,
Pierre Senellart;
to be published by Cambridge University Press 2011. For personal use only, not for distribution.

http://webdam.inria.fr/Jorge/

http://webdam.inria.fr/
http://webdam.inria.fr/Jorge/

Contents

Introduction
I Modeling Web Data
1 Data Model
1.1 Semistructureddata.
1.2 XML . e
121 XMLdocuments e
1.2.2 Serialized and tree-based forms
123 XMLsyntax
124 Typingand namespaces
125 Totypeornottotype
1.3 Web Data Managementwith XML
131 Dataexchange.
13.2 Dataintegration.
14 TheXMLWorld e
141 XMLdialects e
142 XMLstandards e
1.5 Furtherreading
1.6 EXercises i i e e e e e
1.6.1 XMLdocuments
1.62 XMLstandards
2 XPath and XQuery
2.1 Introduction
2.2 BasiCs o e e e e e
22.1 XPath and XQuery data model for documents
2.2.2 The XQuery model (continued) and sequences
223 Specifying pathsinatree: XPath
224 A first glance at XQuery expressions L.
225 XQueryvs XSLT
23 XPath e
23.1 Stepsand pathexpressions
2.3.2 Evaluation of path expressions
2.3.3 Generalitieson axesandnodetests.
234 AXES . . . e e e e
2.3.5 Nodetestsand abbreviations
23.6 Predicates
237 XPath2.0. e

For personal use only, not for distribution.

24 FLWORexpressionsin XQuery
241 Defining variables: the forand letclauses
242 Filtering: the whereclause
243 Thereturnclause
244 Advanced featuresof XQuery Lo L L
2.5 XPathfoundations e
251 Arelational viewofanXMLtree
252 Navigational XPath
253 Evaluation e
254 Expressiveness and first-orderlogic
255 Other XPath fragments.
2.6 Furtherreading,
2.7 EXercises e e e e
3 Typing
3.1 Motivating Typing
3.2 Automata e e e
321 AutomataonWords e
3.2.2 AutomataonRankedTrees
323 Unranked Trees e
3.24 Trees and Monadic Second-Order Logic
3.3 SchemaLanguagesfor XML
3.3.1 Document Type Definitions
332 XMLSchema e e
3.3.3 Other Schema Languagesfor XML
34 TypingGraphData
3.4.1 Graph SemistructuredData
3.4.2 GraphBisimulation.
343 Dataguides o
3.5 Furtherreading
3.6 Exercises e e e e

4 XML Query Evaluation

41 XML fragmentation L L L Lo
42 XMLidentifiers
42.1 Region-based identifiers 0 0.
422 Dewey-based identifiers 0L
423 Structural identifiersand updates o0
43 XML evaluation techniques,
43.1 Structuraljoin o
43.2 Optimizing structural join queries
43.3 Holistictwigjoins 0.
44 Furtherreading L
45 EXercises i e

5 Putting into Practice: Managing an XML Database with EXIST
51 Prerequisites

52
53
55
55
57
58
59
60
61
62
63
63
65

69
69
71
72
73
74
76
77
77
79
82
84
84
84
85
85
87

91
92
95
96
97
99
99
99
103
104
108
109

113

For personal use only, not for distribution. 5
52 Instaling EXIST 113
53 Getting started with EXIST L oL 114
5.4 Running XPath and XQuery queries with the sandbox 116

541 XPath. e 116
542 XQuery. 118
543 Complement: XPath and XQuery operators and functions 119
55 Programming with EXIST 121
55.1 Usingthe XML:DBAPIwithEXIST 121
5.5.2 Accessing EXIST with Web Services 121
5.6 Projects 125
56.1 Gettingstarted oo L L 125
5.6.2 Shakespeare OperaOmnia 125
5.6.3 MusicXMLonline 126

6 Putting into Practice: Tree Pattern Evaluation using SAX 129
6.1 Tree-patterndialects 129
6.2 CTPevaluation e e e 132
6.3 Extensions e e 136

I Web Data Semantics and Integration 139

7 Ontologies, RDF, and OWL 141
7.1 Introduction 141
7.2 Ontologiesbyexample 142
7.3 RDF,RDFS,and OWL 145

7.3.1 Web resources, URL, namespaces 146
732 RDFE. . . . e 147
733 RDFS:RDFSchema 149
734 OWL . . . 152
74 Ontologies and (Description) Logics 156
74.1 Preliminaries: the DLjargon 157
742 ALC:theprototypical DL L. 160
74.3 Simple DLs for which reasoning is polynomial 163
744 The DL-LITE family: a good trade-off 164
75 Furtherreading 165
7.6 EXErcises e e e e e 167

8 AQuerying Data through Ontologies 169
8.1 Introduction 169
8.2 Querying RDF data: notation and semantics 170
8.3 Querying through RDFS ontologies 173
8.4 Answering queries through DL-LITE ontologies 176

841 DL-LITE e 176
84.2 Consistency checking 179
843 Answersetevaluation L. 184
8.4.4 Impact of combining DL-LITEg and DL-LITEr on query answering 188

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 6
85 Furtherreading L L 189
8.6 Exercises e e e 190

9 Data Integration 193
9.1 Introduction e e 193
9.2 Containment of conjunctive queries 195
9.3 Global-as-view mediation, 197
9.4 Local-as-view mediation 200

941 TheBucketalgorithm 202
9.42 TheMiniconalgorithm 206
9.4.3 The Inverse-rules algorithm 208
9.4.4 DiSCUSSION v v i e e e e e e e 211
9.5 Ontology-based mediators 211
9.5.1 Adding functionality constraints 211
9.52 Query rewriting using views in DL-LITEx 213
9.6 Peer-to-Peer Data Management Systems 216
9.6.1 Answering queries using GLAV mappings is undecidable 217
9.6.2 Decentralized DL-LITER . - -« v v v v v v e e e e e e e e e e 220
9.7 Furtherreading 222
9.8 EXercices e e e 223

10 Putting into Practice: Wrappers and Data Extraction with XSLT 225
10.1 Extracting Data from WebPages 225
10.2 RestructuringData 228

11 Putting into Practice: Ontologies in Practice (by Fabian M. Suchanek) 231
11.1 Exploring and installing YAGO 231
11.2 Querying YAGO e 232
11.3 Web accesstoontologies L. 233

11.3.1 CoolURIs e 233
11.3.2 Linked Data 234

12 Putting into Practice: Mashups with YAHOO! PIPES and XProc 235
12.1 YAHOO! PIPES: A Graphical Mashup Editor 235
12.2 XProc: An XML Pipeline Language 236

Il Building Web Scale Applications 239

13 Web search 241
13.1 The World WideWeb e 241
13.2 Parsingthe Webo 244

13.2.1 CrawlingtheWeb, 244
13.2.2 Text Preprocessing 248
13.3 Web Information Retrieval 250
13.3.1 Inverted Files 251
13.3.2 Answering Keyword Queries 254
13.3.3 Large-scale Indexing with Inverted Files 257

For personal use only, not for distribution. 7

1334 Clustering 263
13.3.5 Beyond Classical IR 265

134 Web GraphMining 265
1341 PageRank 266
1342 HITS e 270
1343 Spamdexing 271
13.4.4 Discovering CommunitiesontheWeb 272

13.5 Hot Topicsin Web Search 273
13.6 FurtherReading 274
13.7 Exercises 276
14 An Introduction to Distributed Systems 281
14.1 Basics of distributed systems Lo o L Lo L 281
14.1.1 Networking infrastructures 282
14.1.2 Performance of a distributed storage system 283
14.1.3 Data replication and consistency 286

14.2 Failure management 288
1421 Failurerecovery 289
14.2.2 Distributed transactions 0L 290

14.3 Required properties of a distributed system 292
14.3.1 Reliability 292
14.3.2 Scalability 293
14.3.3 Availability 294
14.3.4 Efficiency 295
14.3.5 Putting everything together: the CAP theorem 295

14.4 Particularities of P2Pnetworkso Lo L L. 296
14.5 Case study: a Distributed File System for very large files 298
1451 Largescalefilesystem, 298
1452 Architecture 299
14.5.3 Failurehandling 300

14.6 Furtherreading 301
15 Distributed Access Structures 303
15.1 Hash-based structures 303
15.1.1 Distributed Linear Hashing 306
15.1.2 Consistent Hashing 310
15.1.3 Casestudy: CHORD 313

15.2 Distributed indexing: Search Trees 317
15.2.1 Designissues o 317
1522 Casestudy: BATON 319
15.2.3 Case Study: BIGTABLE 323

15.3 Furtherreading 328
15.4 Exercises 329
16 Distributed Computing with MAPREDUCE and PiG 331
16.1 MAPREDUCE i 333
16.1.1 Programmingmodel L. 333

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 8
16.1.2 The programming environment 335
16.1.3 MAPREDUCEinternals 339

16.2 PIG . . . o o 340
16.2.1 Asimplesession o 340
16.2.2 Thedatamodel 343
16.2.3 Theoperators 344
16.2.4 Using MAPREDUCE to optimize PIG programs 347

16.3 Furtherreading 350

16.4 EXEICISes o i v i e 351

17 Putting into Practice: Full-Text Indexing with LUCENE (by Nicolas Travers) 355

17.1 Preliminary: a LUCENEsandbox 355

17.2 Indexing plain-text with LUCENE — A fullexample 356
17.2.1 Themain program 356
17.2.2 CreatetheIndex 357
1723 Addingdocuments L L L 358
17.2.4 Searchingtheindex. 359
17.2.5 LUCENE queryingsyntax 360

17.3 Putitinto practice! L o 361
17.3.1 Indexing a directorycontent, 361
17.3.2 Web site indexing (project), 362

17.4 LUCENE - Tuning the scoring (project) 362

18 Putting into Practice: Recommendation Methodologies (by Alban Galland) 365

18.1 Introduction to recommendation systems, 365

18.2 Pre-requisites 366

183 Dataanalysis. 368

18.4 Generating some recommendations 370
18.4.1 Global recommendation, 370
18.4.2 User-based collaborative filtering 371
18.4.3 Item-based collaborative filtering 374

185 Projects e 374
185.1 Scaling 375
18.5.2 The probabilisticway, 375
18.5.3 Improving recommendation, 375

19 Putting into Practice: Large-Scale Data Management with HADOOP 377

19.1 Installing and running HADOOP 377

19.2 Running MAPREDUCEjobs 380

19.3 PIGLATIN scripts 384

19.4 Running in cluster mode (optional) 384
19.4.1 Configuring HADOOP inclustermode 385
19.4.2 Starting, stopping and managing HADOOP 386

19.5 EXErCiSes v o o i i e e e e e

For personal use only, not for distribution. 9

20 Putting into Practice: CoucHDB, a JSON Semi-Structured Database 389
20.1 Introduction to the COUCHDB document database 389
20.1.1 JSON, a lightweight semi-structured format 390

20.1.2 CoOuUcCHDB, architecture and principles 392

20.1.3 Preliminaries: set up your COUCHDB environment 394

20.14 Addingdata o 395

2015 VIEWS . . . oo e 397

20.1.6 Querying views 399

20.1.7 Distribution strategies: master-master, master-slave and shared-nothing 400

20.2 Putting COUCHDB into Practice! 402
20.2.1 EXerciseso e e e e 402

20.2.2 Project: build a distributed bibliographic database with COUCHDB . . 403

20.3 Furtherreading L 404
References 409

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

Introduction

Like all men of the Library, | have
wandered in search of a book,
perhaps the catalogue of catalogues.

(The Library of Babel, Jorge Luis
Borges)

Internet and the Web have revolutionized access to information. Individuals are more and
more depending on the Web where they find or publish information, download music and
movies, or interact with friends in social networking Websites. Following a parallel trend,
companies go more and more towards Web solutions in their daily activity by using Web
services (e.g., agenda) as well as by moving some applications into the cloud (e.g., with
Amazon Web services). The growth of this immense information source is witnessed by
the number of newly connected people, by the interactions among them facilitated by the
social networking platforms, and above all by the huge amount of data covering all aspects
of human activity. With the Web, information has moved from data isolated in very protected
islands (typically relational databases) to information freely available to any machine or any
individual connected to the Internet.

Perhaps the best illustration comes from a typical modern Web user. She has information
stored on PCs, a personal laptop, and a professional computer, but also possibly at some server
at work, on her smartphone, an e-book, etc. Also, she maintains information in personal
Web sites or social network Web sites. She may store pictures in Picasa, movies in YouTube,
bookmarks in Firefox Sync, etc. So, even an individual is now facing the management of a
complex distributed collection of data. At a different scale, public or private organizations
also have to deal with information produced and stored in different places, or collected on
the Web, either as a side effect of their activity (e.g., world-wide e-commerce or auction sites)
or because they directly attempt at understanding, organizing and analyzing data collected
on the Web (e.g., search engines, digital libraries, or Web intelligence companies).

As a consequence, a major trend in the evolution of data management concepts, methods,
and techniques is their increasing focus on distribution concerns: since information now
mostly resides in the network, so do the tools that process this information to make sense
of it. Consider for instance the management of internal reports in a company. Typically,
many collections of reports may be maintained in different local branches. To offer a unique
company-wide query access to the global collection, one has to integrate these different
collections. This leads to data management within a wide area network. Because of slow
communications, the company may prefer to maintain such a large collection in a unique
central repository. (This is not always possible for organizational reasons.) If the collection
is a massive data set, it may rapidly outrange the capacity of a single computer. One may
then choose to distribute the collection locally on a cluster of machines. Indeed, one may even
prefer this solution simply because buying a cluster of cheap computers may be much cheaper
than buying a single high-end machine with the same throughput than the cluster. This leads
to data management within a local area network, with very fast communication. An extreme

For personal use only, not for distribution. ii

example that combines both aspects is Web search: the global collection is distributed on a
wide area network (all documents on the Web) and the index is maintained on a local area
network (e.g., a Google farm).

The use of global-area-network distribution is typical for Web data: data relevant for a
particular application may come from a large number of Web servers. Local-area-network
distribution is also typical because of scalability challenges raised by the quantity of relevant
data as well as the number of users and query load. Mastering the challenges open by data
distribution is the key to handle Web-scale data management.

Motivation for the book

Distributed data management is not a new idea. Research labs and database companies have
tackled the problem for decades. Since System R* or SDD-1, a number of distributed database
systems have been developed with major technical achievements. There exist for instance
very sophisticated tools for distributed transaction processing or parallel query processing.
The main achievements in this context have been complex algorithms, notably for concurrency
control (e.g., commit protocols), and global query processing through localization.

Popular software tools in this area are ETLs (for extract, transform, and load). To support
performance needs, data is imported using ETLs from operational databases into warehouses
and replicated there for local processing, (e.g., OLAP or on-line analytical processing). Al-
though a lot of techniques have been developed for propagating updates to the warehouse,
this is much less used. Data in warehouses are refreshed periodically, possibly using synchro-
nization techniques in the style of that used for version control systems.

With the Web, the need for distributed data management has widely increased. Also,
with Web standards and notably standards for Web services, the management of distributed
information has been greatly simplified. For example, the simple task of making a database
available on the network that was typically requiring hours with platforms such as Corba,
can now be achieved in minutes. The software that is needed is widely available and often
with free licenses. This is bringing back to light distributed data management.

The ambition of this book is to cover the many facets of distributed data management on
the Web. We will explain the foundations of the Web standard for data management, XML.
We will travel in logical countries (e.g., description logic), that provide foundations for the
Semantic Web that is emerging in modern data integration applications. We will show the
beauty of software tools that everyone is already using today, for example Web search engines.
And finally, we will explain the impressive machinery used nowadays to manipulate amount
of data of unprecedented size.

We are witnessing an emergence of a new, global information system created, explored,
and shared by the whole humankind. The book aims at exposing the recent achievements
that help make this system usable.

Scope and organization of the book

Databases are a fantastic playground where theory and systems meet. The foundations of
relational databases was first-order logic and at the same time, relational systems are among
the most popular software systems ever designed. In this book, theory and systems will also
meet. We will encounter deep theory (e.g., logics for describing knowledge, automata for

For personal use only, not for distribution. 1ii

typing trees). We will also describe elegant algorithms and data structures such as PageRank
or Distributed Hash Tables. We believe that all these aspects are needed to grasp the reality of
Web data management.

We present this material in different core chapters that form, in our opinion, the principles
of the topic. They include exercises and notes for further reading. We also see as essential to
put this material into practice, so that it does not remain too abstract. This is realized in PiP
(for Putting into Practice) chapters. For instance, after we present the abstract model for XML
in core chapters, we propose a PiP for XML APIs (Application Programming Interfaces for
XML), and one for EXIST (an Open Source XML database). The approach is followed for the
other topics addressed by the book. Our main concern is to deliver a content that reaches a
good balance between the conceptual aspects that help make sense of the often unstructured,
heterogeneous and distributed content of the Web, and the practical tools that let practitioners
acquire a concrete experience. Also, because software or environments typically evolve faster
than core material, the PiP chapters are complemented by teaching material that can be found
in a Web site.

The book is organized in three parts. The first part covers Web data modeling and repre-
sentation, the second is devoted to semantic issues, and the last one delves into the low levels
of Web scale data handling systems. We next detail these three parts.

Part I: Modeling Web Data

The HTML Web is a fantastic means of sharing information. But, HTML is fully oriented
toward visual presentation and keyword search, which makes it appropriate for humans
but much less for accesses by software applications. This motivated the introduction of a
semistructured data model, namely XML, that is well suited both for humans and machines.
XML describes content, and promotes machine-to-machine communication and data exchange.
XML is a generic data exchange format that can be easily specialized to meet the needs of a
wide range of data usages.

Because XML is a universal format for data exchange, systems can easily exchange informa-
tion in a wide variety of fields, from bioinformatics to e-commerce. This universality is also
essential to facilitate data integration. A main advantage (compared to previous exchange
formats) is that the language comes equipped with an array of available software tools such as
parsers, programming interfaces and manipulation languages that facilitate the development
of XML-based applications. Last but not least, the standard for distributed computation over
the Internet is based on Web services and on the exchange XML data.

This part proposes a wide but concise picture of the state-of-the-art languages and tools
that constitute the XML world. We do not provide a comprehensive view of the specifications,
but rather explain the main mechanisms and what are the rationales behind the specifications.
After reading this part, the reader should be familiar enough with the semistructured data
approach to understand its foundations and be able to pick up the appropriate tools when
needed.

Part ll: Web data Semantics and Integration

On the Web, given a particular need, it may be difficult to find a resource that is relevant to
it. Also, given a relevant resource, it is not easy to understand what it provides and how to
use it. To solve such limitations and facilitate interoperability, the Semantic Web vision has

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. iv

been proposed. The key idea is to also publish semantic descriptions of Web resources. These
descriptions rely on semantic annotations, typically on logical assertions that relate resources
to some terms in predefined ontologies.

An ontology is a formal description providing human users or machines a shared under-
standing of a given domain. Because of the logic inside, one can reason with ontologies,
which is key tool for integrating different data sources, providing more precise answers, or
(semi automatically) discovering and using new relevant resources.

In this part, we describe the main concepts of the semantic Web. The goal is to familiarize
the reader with ontologies: what they are, how to use them for query answering, how to use
them for data integration.

Part lll: Building Web Scale Applications

At this stage of the book, we know how to exchange data and how to publish and understand
semantics for this data. We are now facing the possibly huge scale of Web data. We will
present main techniques and algorithms that have been developed for scaling to huge volumes
of information and huge query rate. The few numbers that one may want to keep in mind are
billions of Web documents, millions of Web servers, billions of queries per month for a top
Web search engine, and a constant scale-up of these figures. Even a much smaller operation
such as a company wide center, may have to store millions of documents and serve millions
of queries.

How do you design software for that scale?

We will describe the basics of full-text search in general, and Web search in particular.
Indexing is at the core of Web search and distributed data access. We will consider how
to index huge collections in a distributed manner. We will also present specific techniques
developed for large scale distributed computing.

This part puts an emphasis on existing systems, taken as illustrative examples of more
generic techniques. Our approach to explain distributed indexing techniques for instance
starts from the standard centralized case, explains the issues raised by distribution, and shows
how these issues have been tackled in some of most prominent systems. Because many of
these technologies have been implemented in Open Source platforms, they also form the
basis of the PiP chapters proposed in this part.

Intended audience

The book is meant as an introduction to the fascinating area of data management on the Web.
It can serve as the material for a master course. Some of it may also be used in undergraduate
courses. Indeed, material of the book has already been tested, both at the undergraduate and
graduate levels. The PiPs are meant to be the basis of labs or projects. Most of the material
deals with well-established concepts, languages, algorithms and tools. Occasionally, we
included more speculative material issued from ongoing research dedicated to the emergence
of this vision. This is to better illustrate important concepts we wanted to highlight. The
book’s content can thus also serve as an academic introduction to research issues regarding
Web data management.

Among other viewpoints, one can view the Web as a very large library. In our travel within
Web territories, we will be accompanied by a librarian, Jorge. This is in homage to Jorge Luis

For personal use only, not for distribution. \%

Borges whose short story The Library of Babel introduces a library preserving the whole human
knowledge.

Companion Web site

A companion Web site for this book, available at http://webdam.inria.fr/Jorge/,
contains electronic versions of this book, as well as additional materials (extra chapters,
exercise solutions, lecture slides, etc.) pertaining to Web data management. In particular, all
examples, data sets, or software used in the PiP chapters are available there.

Acknowledgments

We would like to thank the following people who helped us to collect, organize and improve
the content of this book: Stanislav Barton (Internet Memory Foundation), Michael Benedikt
(Oxford Univ.), Véronique Benzaken (Univ. Paris-Sud), Balder ten Cate (UCSC), Irini Fundu-
laki (FORTH Institute), Alban Galland (INRIA Saclay), David Gross-Amblard (INRIA Saclay),
Fran cois Goasdoué (Univ. Paris-Sud), Fabrice Jouanot (Univ. Grenoble), Pekka Kilpeldinen
(Univ. of Eastern Finland), Witold Litwin (Univ. Paris-Dauphine), Laurent d’Orazio (Univ.
Clermont-Ferrand), Fabian Suchanek (INRIA Saclay), Nicolas Travers (CNAM).

We are also grateful to the students at CNAM, ENS Cachan, Grenoble, Paris-Sud, or
Téléom ParisTech who followed portions of this course and helped, by their questions and
comments, improving it.

This book has been developed as part of the Webdam
project. The Webdam project is funded by the European
Research Council under the European Community’s Sev-
enth Framework Programme (FP7/2007-2013), ERC grant
Webdam, agreement 226513.

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://webdam.inria.fr/Jorge/

Part |

Modeling Web Data

A tree’s a tree. How many more do
you need to look at?

(Ronald Reagan)

1 Data Model

The Web is a media of primary interest for companies who change their organization to place
it at the core of their operation. It is an easy but boring task to list areas where the Web
can be usefully leveraged to improve the functionalities of existing systems. One can cite in
particular B2B and B2C (business to business or business to customer) applications, G2B and
G2C (government to business or government to customer) applications or digital libraries.
Such applications typically require some form of typing to represent data because they consist
of programs that deal with HTML text with difficulties. Exchange and exploitation of business
information call as well for a more powerful Web data management approach.

This motivated the introduction of a semistructured data model, namely XML, that is well
suited both for humans and machines. XML describes content and promotes machine-to-
machine communication and data exchange. The design of XML relies on two major goals.
First it is designed as a generic data format, apt to be specialized for a wide range of data
usages. In the XML world for instance, XHTML is seen as a specialized XML dialect for data
presentation by Web browsers. Second XML “documents” are meant to be easily and safely
transmitted on the Internet, by including in particular a self-description of their encoding
and content.

XML is the language of choice for a generic, scalable, and expressive management of Web
data. In this perspective, the visual information between humans enabled by HTML is just
a very specific instance of a more general data exchange mechanism. HTML also permits
a limited integrated presentation of various Web sources (see any Web portal for instance).
Leveraging these capabilities to software-based information processing and distributed man-
agement of data just turns out to be a natural extension of the initial Web vision.

The chapter first sketches the main traits of semistructured data models. Then we delve
into XML and the world of Web standards around XML.

1.1 Semistructured data

A semistructured data model is based on an organization of data in labeled trees (possibly
graphs) and on query languages for accessing and updating data. The labels capture the
structural information. Since these models are considered in the context of data exchange,
they typically propose some form of data serialization (i.e., a standard representation of data
in files). Indeed, the most successful such model, namely XML, is often confused with its
serialization syntax.

Semistructured data models are meant to represent information from very structured to
very unstructured kinds, and, in particular, irregular data. In a structured data model such
as the relational model, one distinguishes between the type of the data (schema in relational
terminology) and the data itself (instance in relational terminology). In semistructured data
models, this distinction is blurred. One sometimes speaks of schema-less data although it
is more appropriate to speak of self-describing data. Semistructured data may possibly be

For personal use only, not for distribution. 4

na tel ail name tel ail
Alan 7786 agg@abc.com 7786 agg@abc.com
first /\ last
Alan Black

Figure 1.1: Tree representation, with labels on edges

typed. For instance, tree automata have been considered for typing XML (see Chapter 3).
However, semistructured data applications typically use very flexible and tolerant typing;
sometimes no typing at all.

We next present informally a standard semistructured data model. We start with an idea
familiar to Lisp programmers of association lists, which are nothing more than label-value
pairs and are used to represent record-like or tuple-like structures:

{name: "Alan", tel: 2157786, email: "agb@abc.com"}

This is simply a set of pairs such as (name, "Alan") consisting of a label and a value. The
values may themselves be other structures as in

{name: {first: "Alan", last: "Black"},
tel: 2157786,
email: "agb@abc.com"}

We may represent this data graphically as a tree. See, for instance, Figures 1.1 and 1.2. In
Figure 1.1, the label structure is captured by tree edges, whereas data values reside at leaves.
In Figure 1.2, the second, all information resides in the vertices.

Such representations suggest departing from the usual assumption made about tuples or
association lists that the labels are unique, and we allow duplicate labels as in

{name: "Alan", tel: 2157786, tel: 2498762 }

T Il

name tel email name tel email
| | | N | |
Alan 7786 agg@abc.com first last 7786 agg@abc.com
Alan Black

Figure 1.2: Tree representation, with labels as nodes

The syntax makes it easy to describe sets of tuples as in

For personal use only, not for distribution. 5

entry
.
name work purpose
,//////A\\\\\\\ ,""’””””T\\\\\\\\\\\\\\\
In INRIA address email like to teach
Jean Doe CityAzip j@inria.fr

Cachan 94235

Figure 1.3: An XML document

{ person: {name: "Alan", phone: 3127786, email: "alan@abc.com"},
person: {name: "Sara", phone: 2136877, email: "sara@xyz.edu"},
person: {name: "Fred", phone: 7786312, email: "fd@ac.uk"} }

Furthermore, one of the main strengths of semistructured data is its ability to accommodate
variations in structure (e.g., all the Person tuples do not need to have the same type).
The variations typically consist of missing data, duplicated fields, or minor changes in
representation, as in the following example:

{person: {name: "Alan", phone: 3127786, email: "agg@abc.com"},
person: &314
{name: {first: "Sara", last: "Green" },
phone: 2136877,
email: "sara@math.xyz.edu",
spouse: &443 },

person: &443
{name: "Fred", Phone: 7786312, Height: 183,
spouse: &314 H}

Observe how identifiers (here 443 and &314) and references are used to represent graph
data. It should be obvious by now that a wide range of data structures, including those of the
relational and object database models, can be described with this format.

As already mentioned, in semistructured data, we make the conscious decision of possibly
not caring about the type the data might have and serialize it by annotating each data item
explicitly with its description (such as name, phone, etc.). Such data is called self-describing.
The term “serialization” means converting the data into a byte stream that can be easily
transmitted and reconstructed at the receiver. Of course, self-describing data wastes space,
since we need to repeat these descriptions with each data item, but we gain interoperability,
which is crucial in the Web context.

There have been different proposals for semistructured data models. They differ in choices
such as: labels on nodes vs. on edges, trees vs. graphs, ordered trees vs. unordered trees. Most
importantly, they differ in the languages they offer. Two quite popular models (at the time of
writing) are XML, a de facto standard for exchanging data of any kind, and JSON (“Javascript
Object Notation”), an object serialization format mostly used in programming environments.
We next focus on XML, an introduction to JSON being given in Chapter 20.3.

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 6

1.2 XML

XML, the Extensible Markup Language, is a semistructured data model that has been pro-
posed as the standard for data exchange on the Web. It is a simplified version of SGML (ISO
8879). XML meets the requirements of a flexible, generic, and platform-independent language,
as presented earlier. Any XML document can be serialized with a normalized encoding, for
storage or transmission on the Internet.

Remark 1.2.1 It is well-established to use the term “XML document” to denote a hierar-
chically structured content represented with XML conventions. Although we adopt this
standard terminology, please keep in mind that by “document” we mean both the content
and its structure, but not their specific representation which may take many forms. Also
note that “document” is reminiscent of the SGML application area, which mostly focuses
on representating technical documentation. An XML document is not restricted to textual,
human-readable data, and can actually represent any kind of information, including images,
of references to other data sources.

XML is a standard for representing data but it is also a family of standards (some in
progress) for the management of information at a world scale: XLink, XPointer, XML Schema,
DOM, SAX, XPath, XSL, XQuery, SOAP, WSDL, and so forth.

1.2.1 XML documents

An XML document is a labeled, unranked, ordered tree:

Labeled means that some annotation, the label, is attached to each node.
Unranked means that there is no a priori bound on the number of children of a node.

Ordered means that there is an order between the children of each node.

The document of Figure 1.3 can be serialized as follows:

<entry><name><fn>Jean</fn><ln>Doe</ln></name>INRIA<adress><city>
Cachan</city><zip>94235</zip></adress><email>jRinria.fr</email>
</job><purpose>like to teach</purpose></entry>

or with some beautification as

<entry>
<name>
<fn>Jean</fn>
<ln>Doe</1n> </name>
<work>
INRTA
<adress>
<city>Cachan</city>
<zip>94235</zip> </adress>
<email>j@inria.fr</email> </work>
<purpose>like to teach</purpose>
</entry>

For personal use only, not for distribution. 7

In this serialization, the data corresponding to the subtree with root labeled (e.g., work), is
represented by a subword delimited by an opening tag <work> and a closing tag </work>.
One should never forget that this is just a serialization. The conceptual (and mathematical)
view of an XML document is that it is a labeled, unranked, ordered tree.

XML specifies a “syntax” and no a priori semantics. So, it specifies the content of a
document but not its behavior or how it should be processed. The labels have no predefined
meaning unlike in HTLM, where, for example, the label href indicates a reference and img
an image. Clearly, the labels will be assigned meaning by applications.

In HTML, one uses a predefined (finite) set of labels that are meant primarily for document
presentation. For instance, consider the following HTML document:

<h1> Bibliography </hl>
<p> <i> Foundations of Databases </i>
Abiteboul, Hull, Vianu

 Addison Wesley, 1995 </p>
<p> <i> Data on the Web </i>
Abiteboul, Buneman, Suciu

 Morgan Kaufmann, 1999 </p>

where <h1> indicates a title, <p> a paragraph, <i> italics and
 a line break (
 is
both an opening and a closing tag, gathered in a concise syntax equivalent to
</br>).
Observe that this is in fact an XML document; more precisely this text is in a particular XML
dialect, called XHTML. (HTML is more tolerant and would, for instance, allow omitting the
</p> closing tags.)

The presentation of that HTML document by a classical browser can be found in Figure 1.4.
The layout of the document depends closely on the interpretation of these labels by the
browser. One would like to use different layouts depending on the usage (e.g., for a mobile
phone or for blind people). A solution for this is to separate the content of the document and
its layout so that one can generate different layouts based on the actual software that is used
to present the document. Indeed, early on, Tim Berners-Lee (the creator of HTML) advocated
the need for a language that would go beyond HTML and distinguish between content and
presentation.

The same bibliographical information is found, for instance, in the following XML docu-
ment:

<bibliography>
<book>
<title> Foundations of Databases </title>
<author> Abiteboul </author> <author> Hull </author>
<author> Vianu </author>
<publisher> Addison Wesley </publisher>
<year> 1995 </year> </book>
<book>...</book>
</bibliography>

Observe that it does not include any indication of presentation. There is a need for a
stylesheet (providing transformation rules) to obtain a decent presentation such as that of the
HTML document. On the other hand, with different stylesheets, one can obtain documents for

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 8

several media (e.g., also for PDF). Also, the tags produce some semantic information that can
be used by applications, (e.g., Addison Wesley is the publisher of the book). Such tag information
turns out to be useful for instance to support more precise search than that provided by Web
browser or to integrate information from various sources.

File Edit View Go Bookmarks Tools Help

@&-o- & @ E file:fffafsfinria.frf © Go |[CL
Bibliography

Foundations of Databases Abiteboul, Hull, Vianu
Addison Wesley, 1995

Data on the Web Abiteboul, Buneman, Suciu
Morgan Kaufmann, 1999

L -

Figure 1.4: HTML presentation

The separation between content and presentation already exists in a precursor of XML,
namely SGML. In SGML, the labels are used to describe the structure of the content and
not the presentation. SGML was already quite popular at the time XML was proposed, in
particular for technical documentation (e.g., Airbus documentation). However, SGML is
unnecessarily complicated, in particular with features found in complex document models
(such as footnote). XML is much simpler. Like SGML, it is a metalanguage in that it is always
possible to introduce new tags.

1.2.2 Serialized and tree-based forms

An XML document must always be interpreted as a tree. However the tree may be represented
in several forms, all equivalent (i.e., there exists a mapping from one form to another) but
quite different with respect to their use. All the representations belong to one of the following
category:

* serialized forms, which are textual, linear representations of the tree that conform to a
(sometimes complicated) syntax;

e tree-based forms, which implement, in a specific context (e.g., object-oriented models),
the abstract tree representation.

Both categories cover many possible variants. The syntax of the serialized form makes
it possible to organize “physically” an XML document in many ways, whereas tree-based
forms depend on the specific paradigm and/or technique used for the manipulation of the
document. A basic pre-requisite of XML data manipulation is to know the main features of
the serialized and tree-based representation, and to understand the mapping that transforms
one form to another.

For personal use only, not for distribution. 9

Figure 1.5 shows the steps typically involved in the processing of an XML document
(say, for instance, editing the document). Initially, the document is most often obtained
in serialized form, either because it is stored in a file or a database, or because it comes
from another application. The parser transforms the serialized representation to a tree-based
representation, which is conveniently used to process the document content. Once the
application task is finished, another, complementary module, the serializer, transforms the
tree-based representation of the possibly modified document into one of its possible serialized

forms.
serialized Application serialized
form tree form orm

Figure 1.5: Typical processing of XML data

Stricly speaking, the syntax of XML relates to its serialized representation. The syntax can
be normalized because a serialized document is meant for data exchange in an heterogeneous
environment, and must, therefore, be completely independent from a specific context. The
tree-based representation is more strongly associated with the application that processes the
document, and in particular to the programming language.

We provide a presentation of the XML syntax that covers the main aspects of the serialized
representation of an XML document and show their couterpart in terms of a tree-based
representation. The serialized syntax is defined by the World Wide Web Consortium (W3C)
and can be found in the XML 1.0 recommendation. Since the full syntax of XML is rather
complex and contains many technical detail that do not bring much to the understanding
of the model, the reader is referred to this recommendation for a complete coverage of the
standard (see the last section).

For the tree-based representation, we adopt the DOM (Document Object Model), also
standardized by the W3C, which defines a common framework for the manipulation of
documents in an object-oriented context. Actually we only consider the aspects of the
model that suffice to cover the tree representation of XML documents and illustrate the
transformation from the serialized form to the tree form, back and forth. The DOM model is
also convenient to explain the semantics of the XPath, XSLT and XQuery languages, presented
in the next chapters.

1.2.3 XML syntax

Four examples of XML documents (separated by blank lines) are:

<document>
Hello World!
<document /> </document>
Document 1 Document 2

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 10

<?xml version="1.0"
encoding="utf-8" 2>

<document> <document>
<salutation> <salutation color="blue">
Hello World! Hello World!
</salutation> </salutation>
</document > </document >
Document 3 Document 4

In the last one, the first line starting with <?xm1 is the prologue. It provides indications such
as the version of XML that is used, the particular coding, possibly indications of external
resources that are needed to construct the document.

Elements and text

The basic components of an XML document are element and text. The text (e.g., Hello World!),
is in UNICODE. Thus texts in virtually all alphabets, including, for example, Latin, Hebrew,
or Chinese, can be represented. An element is of the form

<name attr=’value’ ...> content </name>

where <name> is the opening tag and </name> the closing tag.

The content of an element is a list of text or (sub) elements (and gadgets such as comments).
A simple and very common pattern is a combination of an element and a textual content. In
the serialized form, the combination appears as

<elt_name>
Textual content
</elt_name>

The equivalent tree-based representation consists of two nodes, one that corresponds to
the structure marked by the opening and closing tags, and the second, child of the first,
which corresponds to the textual content. In the DOM, these nodes are typed, and the tree is
represented as follows:

Element
elt_name

Text
Text 2

The Element nodes are the internal nodes of a DOM representation. They represent the
hierarchical structure of the document. An Element node has a name, which is the label of the

For personal use only, not for distribution. 11

corresponding tag in the serialized form. The second type of node illustrated by this example
is a Text node. Text nodes do not have a name, but a value which is a non structured character
string.

The nesting of tags in the serialized representation is represented by a parent-child relation-
ship in the tree-based representation. The following is a slight modification of the previous
examples which shows a nested serialized representation (on the left) and its equivalent
tree-based representation (on the right) as a hierarchical organization with two Element
nodes and two Text nodes.

Element
eltl

<eltl>

Content 1 /\

<elt2> Text Element

Content 2 Content 1 elt?

</elt2> ‘

</eltl>
Text
Content 2
Attributes

The opening tag may include a list of (name,value) pairs called attributes as in:
<report language=’'fr’ date=’08/07/07'>

Two pairs of attributes for the same element are not allowed to have the same attribute name.

Major differences between the content and the attributes of a given element are that (i)
the content is ordered whereas the attributes are not and (ii) the content may contain some
complex subtrees whereas the attribute value is atomic.

Attributes appear either as pairs of name/value in opening tag in the serialized form, or
as special child nodes of the Element node in the tree-based (DOM) representation. The
following example shows an XML fragment in serialized form and its counterpart in tree-
based form. Note that Attr nodes have both a name and a value.

Element
eltl
<elt attl="12" att2="fr’'>
Textl
</elt> Attr. Attr. Text
attl: 12’ att2: 'fr’ Text1

Attribute can store content, just as Text nodes. In the previous example, the textual content
could just be represented as an attribute of the e1t element, and conversely attributes could

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 12

be represented as child elements with a textual content. This gives rise to some freedom
to organize the content of an XML document and adds some complexity to the tree-based
representation.

Well-formed XML document

An XML document must correctly represent a tree. There exist in a document one and only
one element that contains all the others (called the root element). An element that is not the
root is totally included in its parent. More generally, the tags must close in the opposite order
they have been opened. One says of such a document that it is well-formed. For instance, <a>
 is well-formed and <a> isnot.

The serialized form often (but not always) begins with the prologue; independently of the
existence or not of a prologue, the tree-based representation of an XML document has for
root a Document node. This node has a unique Element child, which is the root element of the
document. The following examples illustrates the situation.

Document
<?xml version="1.0"
encoding="utf-8" 2> Element
<elt> elt
Document content.
</elt> ‘
Text
Document Content

There may be other syntactic objects after the prologue (for instance, processing instruc-
tions), which become children of the Document node in the tree representation.

The Document node is the root of the document, which must be distinguished from the root
element, its only element child. This somehow misleading vocabulary is part of the price to
pay in order to master the XML data model.

An important notion (related to the physical nature of a document and not to its logical
structure) is the notion of entity. Examples of entities are as follows:

<!ENTITY chapl "Chapter 1l: to be written">
<!ENTITY chap2 SYSTEM "chap2.xml">
<report> &chapl; &chap2 </report>

The content of an entity may be found in the document (as entity chap1l), in the local system
(as for chap2) or on the Web (with a URI). The content of an entity can be XML. In this
case, the document is logically equivalent to the document obtained by replacing the entity
references (e.g., &chapl; &chap?2) by their content. The content of the entity may also be
in some other format (e.g., Jpeg). In such case, the entity is not parsed and treated as an
attachment.

Remark 1.2.2 (Details)

For personal use only, not for distribution. 13

1. An empty element <name></name> may alternatively be denoted <name/>.

2. An element or attribute name is a sequence of alphanumeric and other allowed symbols
that must start with an alphanumeric symbols (or an underscore).

3. The value of attribute is a string with certain limitations.

4. An element may also contain comments and processing instructions.

1.2.4 Typing and namespaces

XML documents need not typed. They may be. The first kind of typing mechanism originally
introduced for XML is DTDs, for Document Type Definitions. DTDs are still quite often used.
We will study in Chapter 3 XML schema, which is more powerful and is becoming more
standard, notably because it is used in Web services.

An XML document including a type definition is as follows:

<?xml version="1.0" standalone="yes" 2>
<!-— This is a comment - Example of a DID ——>
<!DOCIYPE email [
<!ELEMENT email (header, body)>
<!ELEMENT header (from, to, cc?)>
<!ELEMENT to (#PCDATA) >
<!ELEMENT from (#PCDATA) >
<!ELEMENT cc (#PCDATA) >
<!ELEMENT body (paragraphx) >
<!ELEMENT paragraph (#PCDATA) >
<email>
<header>
<from> af@abc.com </from>
<to> zd@ugh.com </to>
</header>
<body>
</body>
</email>

The DOCTYPE clause declares the type for this document. Such a type declaration is not
compulsory. Ignoring the details of this weird syntax, this is stating, for instance, that a
header is composed of a from element, a to one, and possibly a cc one, that a body
consists of a list of paragraphs, and finally that a paragraph is a string.

In general, the list of children for a given element name is described using a regular
expression in BNF specified for that element.

A most important notion is also that of namespace. Consider a label such as job. It
denotes different notions for a hiring agency or for a (computer) application service provider.
Applications should not confuse the two notions. The notion of namespace is used to
distinguish them. More precisely, consider the following XML piece of data:

<doc xmlns:hire='http://a.hire.com/schema’
xmlns:asp='http://b.asp.com/schema’ >

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 14

<hire:job> ... </hire:job> ...
<asp:job> ... </asp:job> ...
</doc>

The hire namespace is linked to a schema, and the asp to another one. One can now mix
the two vocabularies inside the same document in spite of their overlap.

XML also provides some referencing mechanisms that we will ignore for now.

When a type declaration is present, the document must conform to the type. This may, for
instance, be verified by an application receiving a document before actually processing it. If a
well-formed document conforms to the type declaration (if present), we say that it is valid (for
this type).

1.2.5 To type or not to type

The structure of an XML document is included in the document in its label structure. As
already mentioned, one speaks of self-describing data. This is an essential difference with
standard databases:

In a database, one defines the type of data (e.g., a relational schema) before creating
instances of this type (e.g., a relational database). In semistructured data (and XML), data
may exist with or without a type.

The “may” (in may exist) is essential. Types are not forbidden; they are just not compulsory
and we will spend quite some effort on XML typing. But in many cases, XML data often
presents the following characteristics:

1. the data are irregular: there may be variations of structure to represent the same
information (e.g., a date or an address) or unit (prices in dollars or euros); this is
typically the case when the data come from many sources;

2. parts of the data may be missing, for example, because some sources are not answering,
or some unexpected extra data (e.g., annotations) may be found;

3. the structure of the data is not known a priori or some work such as parsing has to be
performed to discover it (e.g., because the data come from a newly discovered source);

4. part of the data may be simply untyped, (e.g., plain text).

Another differences with database typing is that the type of some data may be quite
complex. In some extreme cases, the size of the type specification may be comparable to, or
even greater than, the size of the data itself. It may also evolve very rapidly. These are many
reasons why the relational or object database models that propose too rigid typing were not
chosen as standards for data exchange on the Web, but a semistructured data model was
chosen instead.

1.3 Web Data Management with XML

XML is a very flexible language, designed to represent contents independently from a specific
system or a specific application. These features make it the candidate of choice for data
management on the Web.

For personal use only, not for distribution. 15

Speaking briefly, XML enables data exchange and data integration, and it does so universally
for (almost) all the possible application realms, ranging from business information to images,
music, biological data, and the like. We begin with two simple scenarios showing typical
distributed applications based on XML that exploit exchange and integration.

1.3.1 Data exchange

The typical flow of information during XML-based data exchange is illustrated on Figure 1.6.
Application A manages some internal data, using some specialized data management soft-
ware, (e.g., a relational DBMS). Exchanging these data with another application B can be
motivated either for publication purposes, or for requiring from B some specialized data
processing. The former case is typical of web publishing frameworks, where A is a web server
and B a web client (browser, mobile phone, PDF viewer, etc.). The later case is a first step
towards distributed data processing, where a set of sites (or “peers”) collaborate to achieve
some complex data manipulation.

e ™
—* HTML Web Browser
s N L Web site b -
-
© XML data PDF
R PDF viewer
o Document — {_)
=
=
/ < Specialized (Other tools, h
Data source S dialect \e.g.,data processing)
(S J
Application A Application B

Figure 1.6: Flow of information in XML-based data exchange

XML is at the core of data exchange. Typically, A first carries out some conversion process
(often called “XML publishing”) which produces an appropriate XML representation from the
internal data source(s.) These XML data are then consumed by B which extracts the content,
processes it, and possibly returns an XML-encoded result. Several of the afore mentioned
features of XML contribute to this exchange mechanism:

1. ability to represent data in a serialized form that is safely transmitted on the Web;

2. typing of document, which allows A and B to agree on the structure of the exchanged
content;

3. standardized conversion to/from the serialized representation and the specific tree-
based representation respectively manipulated by A and B.

For concreteness, let us delve into the details of a real Web Publishing architecture, as shown
in Figure 1.7. We are concerned with an application called Shows for publishing information
about movie showings, in a Web site and in a Wap site. The application uses a relational
database. Data are obtained from a relational database as well as directly from XML files.
Some specialized programs, written with XSLT (the XML transformation language, see below)

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 16

are used to restructure the XML data, either coming from files, from the database through
a conversion process, or actually from any possible data source. This is the XML publishing
process mentioned above. It typically produces XHTML pages for a Web site. These pages
are made available to the world by a Web server.

Web Application Server
SQL
XML results
Web e XME e J DBMS
engine conversion
SQL
[XML files XSLT programs Database]

Figure 1.7: Software architecture for Web publishing applications

The data flow, with successive transformations (from relational database to XML; from
XML to a publication dialect), is typical of XML-based applications, where the software
may be decomposed in several modules, each dedicated to a particular part of the global
data processing. Each module consumes XML data as input and produces XML data as
output, thereby creating chains of data producers/consumers. Ultimately, there is no reason
to maintain a tight connection of modules on a single server. Instead, each may be hosted on a
particular computer somewhere on the Internet, dedicated to providing specialized services.

1.3.2 Data integration

A typical problem is the integration of information coming from heterogeneous sources. XML
provides some common ground where all kinds of data may be integrated. See Figure 1.8.
For each (non-XML) format, one provides a wrapper that is in charge of the mapping from
the world of this format to the XML world. Now a query (say an XQuery) to the global XML
view is transformed by the mediator (using the view definitions) into queries over the local
sources. A source wrapper translates the XML query to the source it receives into a query
the source understands. That query is evaluated on the source, and some data are produced.
The wrapper translates this data into XML data. The mediator combines the result it receives
from all the wrappers to obtain the general result.

1.4 The XML World

The broad scope of XML is achieved through a spectrum of XML dialects, XML-based
standards, and XML-based software. Dialects define specialized structures, constraints, and
vocabularies to construct ad hoc XML contents that can be used and exchanged in a specific
application area. Languages and softwares on the other hand are generic. Together, dialects
and languages build an entire world that is at our disposal for developing Web applications.

For personal use only, not for distribution. 17

- Virtual XML
Queries documents

A

Mediator
q <\—, \—'> q
Virtual XML
XML documents
Documents
[Wrapperj [Wrapperj
XML XML — vtV
data data .
relational legacy
data data

Figure 1.8: Information integration

1.4.1 XML dialects

Suppose we are working in some particular area, say the industry of plastic. To facilitate the
exchange of information, the industry specifies a common type for such exchanges, with the
tags that should be used, the structure of the information they contain, and the meaning of
the corresponding data. The advantage is that once this is achieved, (i) partners can easily
exchange information, (ii) information from different companies can more easily be integrated,
and (iii) information of interest can more easily be found. Basically, by doing that, the plastic
industry has solved, in part, the problem of the heterogeneity of information sources. It is
important to note that the design of such dialect includes the design of a syntax (an XML
type) and of a semantics (e.g., the meaning for the different element of the syntax).

We already mentioned the XHTML that serves the same purpose as HTML (describe simple
documents) but with an XML syntax. Perhaps the main difference is that all opening tags
should be closed. RSS is another popular dialect for describing content updates that is heavily
used for blog entries, news headlines, or podcasts. The following document is an example of
RSS content published on the WebDam site (http://webdam.inria.fr/):

<?xml version="1.0" encoding="UTF-8" ?>
<rss version="2.0">

<channel>
<title>Webdam Project</title>
<atom:1link href="http://webdam.inria.fr/wordpress/?feed=rss2"
rel="self" type="application/rss+xml" />
<link>http://webdam.inria.fr/wordpress</link>

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://webdam.inria.fr/

For personal use only, not for distribution. 18

<description>Foundations of Web Data Management</description>
<pubDate>Wed, 26 May 2010 09:30:54 +0000</pubDate>

<item>
<title>News for the beginning of the year</title>
<description>The webdam team wish you an happy new year!</description>
<link>http://webdam.inria.fr/wordpress/?p=475</1link>
<pubDate>Fri, 15 Jan 2010 08:48:45 +0000</pubDate>
<dc:creator>Serge</dc:creator>
<category>News</category>

</item>

</channel>
</rss>

SVG (Scalable Vector Graphics) is an XML dialect for describing two-dimensional vector
graphics, both static and animated. SVG is very powerful and can represent quite complex
figures such as all the figures found in the present book! The following is a simple example
that shows the combination of a surfacic object with some text. The left part is the SVG
encoding, the right one shows the graphic representation that can be obtained by a Web
browser or by a specialized tool (e.g., Gimp or Inkscape).

<?xml version="1.0" encoding="UTF-8" 2>
<svg xmlns="http://www.w3.0rg/2000/svg">

<polygon points="0,0 50,0 25,50"
style="stroke:#660000; fill:#cc3333;"/>

me SVG text

<text x="20" y="40">Some SVG text</text>
</svg>

This example shows that data of any kind can be encoded as XML, and exchanged on
the Internet between applications that possibly run under different systems, on different
computer architectures, and so on. It is also worth noting that, although this SVG example
is trivial and easy to understand even without a rendering tool, in general the content of an
XML file may be arbitrarily complex and definitely not suitable for inspection by a human
being. Some of the SVG representations for complex figures in this book consist of hundreds
of lines of abstruse code that can only be manipulated via appropriate software.

As another illustration, (symbolic) music can be represented in XML. The following is a
slightly simplified example of a MusicXML document.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<score-partwise version="2.0">
<part-list>
<score-part id="P1">
<part-name>Music</part-name>
</score-part>

For personal use only, not for distribution. 19

</part-list>
<part id="P1">
<attributes>
<divisions>1</divisions>
</attributes>
<note>
<pitch>
<step>C</step>
<octave>4</octave>
</pitch>
<duration>4</duration>
</note>
<note>
<pitch>
<step>G</step>
<octave>4</octave>
</pitch>
<duration>4</duration>
</note>
</part>
</score-partwise>

This encoding can be interpreted by specialized software and rendered as a musical score:

r ()
A (9

0

G

©-

Some other popular XML dialects are MathML (the mathematical mark-up language),
an XML dialect for describing mathematical notation and capturing both its structure and
content. It aims at integrating mathematical formulae into World Wide Web documents (if
one considers only the presentation aspect, it is something like the mathematics in IXTEX): see
Exercises. XML/EDI is an XML dialect for business exchanges. It can be used to describe, for
instance, invoices, healthcare claims, and project statuses. For the moment, the vast majority
of electronic commerce transactions in the world are still not using XML, but (pure) EDI, a
non-XML format.

There are just too many dialects to mention them all, ranging from basic formats that
represent the key/value configuration of a software (look at your Firefox personal directory!)
to large documents that encode complex business process. Above all, XML dialects can be
created at will, making it possible for each community to define its own exchange format.

1.4.2 XML standards

The universality of XML brings an important advantage: any application that chooses to
encode its data in XML can benefit from a wide spectrum of standards for defining and vali-
dating types of documents, transforming a document from one dialect to another, searching
the document for some pattern, manipulating the document via a standard programming
language, and so on. These standards are generic to XML, and are defined independently
from the specificities of a particular dialect. This also enables the implementation of softwares

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 20

and languages that are generic, as they apply to XML-formatted information whatever the
underlying application domain. For the standards, one should also notably mention:

SAX, the Simple API for XML, is an application programming interface (API) providing a
serial access to XML documents seen as a sequence of tokens (its serialization).

DOM, the Document Object Model, is an object-oriented model for representing (HTML
and) XML document, independently from the programming language. DOM sees a
document as a tree and provides some navigation in it (e.g., move to parent, first child,
left/right sibling of a node). A DOM API is available for all popular languages (Java,
C++, C#, Javascript, etc.)

XPath, the XML Path Language, is a language for addressing portions of an XML document.

XQuery is a flexible query language for extracting information from collections of XML
documents. It is to a certain extent the SQL for Web data.

XSLT, the Extensible Stylesheet Language Transformations, is a language for specifying the
transformation of XML documents into other XML documents. A main usage of XSLT
is to define stylesheet to transform some XML document into XHTML, so that it can be
displayed as a Web page.

Web services, provide interoperability between machines based on Web protocols. See fur-
ther.

To make the discussion a bit more precise, we consider some of these in slightly more detail.

Programming interfaces: SAX and DOM

We start with the first two APIs, that provide two distinct ways to see an XML document. See
Figure 1.9.

I/'\ Complex
objec applications,
o DOM ./K\. o XSIT,
P ® editor
document
Simple
* SAX Stream applications,
parser of events very efficient

Figure 1.9: Processing an XML document with SAX and DOM

Let us begin with the SAX programming model. A SAX parser transforms an XML docu-
ment into a flow of events. Examples of events are the start/end of a document, the start/end
of an element, a text token, a comment, and so on. To illustrate, suppose that we obtained

For personal use only, not for distribution. 21

some relational data in an XML format. SAX may be used, for instance, to load this data in a
relational database as follows:

1. when document start is received, connect to the database;

2. when a Movie open tag is received, create a new Movie record;

a) when a text node is received, assign its content to X;
b) when a Title close tag is received, assign X to Movie.Title;

c) when a Year close tag is received, assign X to Movie. Year, etc.

3. when a Movie close tag is received, insert the Movie record in the database (and commit
the transaction);

4. when document end is received, close the database connection.

SAX s a good choice when the content of a document needs to be examined once (as in the
previous example), without having to follow some complex navigation rule that would, for
instance, require to turn back during the examination of the content. When these conditions
are satistfied, SAX is the most efficient choice as it simply scans the serialized representation.
For concreteness, the following piece of code shows a SAX handler written in Java (this
example is simplified for conciseness: please refer to the Web site for a complete version). It
features methods that handle SAX events: opening and closing tags; character data.

import org.xml.sax.x*;
import org.xml.sax.helpers.LocatorImpl;

public class SaxHandler implements ContentHandler {

/#*% Constructor x*/
public SaxHandler () {
super () ;

}

/++ Handler for the beginning and end of the document x/
public void startDocument () throws SAXException ({
out.println ("Start the parsing of document");

}

public void endDocument () throws SAXException ({
out.println ("End the parsing of document");

}

/++ Opening tag handler #*/

public void startElement (String nameSpaceURI, String localName,
String rawName, Attributes attributes) throws SAXException {
out.println ("Opening tag: " + localName) ;

// Show the attributes, 1f any

if (attributes.getLength() > 0) {
System.out.println (" Attributes: ");
for (int index = 0;

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 22

Node
Attribute TreeNode
Leaf Container

CharacterData Document Element DocType

N

Text Comment

CData

Figure 1.10: DOM class hierarchy

index < attributes.getLength(); index++) {
out.println (" - " + attributes.getLocalName (index)
+ " =" + attributes.getValue (index));

}

/#++ Closing tag handler #*/
public void endElement (String nameSpaceURI,
String localName, String rawName)
throws SAXException {
out.print ("Closing tag : " + localName) ;
out.println();
}

/*% Character data handling =/
public void characters(char[] ch, int start,
int end) throws SAXException {
out.println ("#PCDATA: " + new String(ch, start, end));

The other XML API is DOM. A DOM parser transforms an XML document into a tree
and, as already mentioned, offers an object API for that tree. A partial view of the class
hierarchy of DOM is given in Figure 1.10. We give below a Preorder program that takes as
argument the name of some XML file and analyzes the document with a DOM parser. The
analysis traverses the XML tree in preorder and outputs a message each time an element is
met. Comments in the code should clarify the details.

// Import Java classes
import java.io.x;

import javax.xml.parsers.x;
import org.w3c.dom. ;

For personal use only, not for distribution. 23

ok k
* A DOM class that outputs all the elements in preorder

*/

class DomExample {
J hk
* The main method.
*/
public static void main(String args[]) {
// Obtain the document
File fdom = new File(args[0]);

// Parser instantiation

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance () ;

DocumentBuilder builder = factory.newDocumentBuilder () ;

// Document analysis
Document dom = builder.parse (fdom) ;

// Start the recursive traversal from the root element
Node elementRoot = dom.getDocumentElement () ;
Traversal (elementRoot) ;

VAR
* The recursive method.
*/
private static void Traversal (Node node) {
String str = new String();
// Node numbering if it 1is a text
if (node.getNodeType () == Node.ELEMENT_NODE) {
str = "Found element " + node.getNodeName () ;
System.out.println(str + "\n");

// Recursive call if node has children
if (node.hasChildNodes ()) {
// Get the list of children
NodeList child = node.getChildNodes () ;
// List traversal
for (int i = 0; i < child.getLength(); i++)
Traversal (child.item(i)) ;

Several implementations of DOM exist. The example we use here is based on an implemen-
tation proposed by the Apache Foundation and a popular DOM parser called Xerces.

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 24

Query languages: XPath, XQuery

Consider a large collection of XML documents, say the archives of the DBLP bibliography. To
extract some pieces of information from this collection, a user will typically specify graphically
a query. That query may be translated in XPath or XQuery queries in much the same way
that a standard graphical query to a relational database is translated to SQL.

In an XML context, queries combine different styles of selection:

1. queries by keywords as in search engines;
2. precise queries as in relational systems;
3. queries by navigation as in Web browsing.

Loosely speaking, XPath is a language that allows the specification of paths between the
nodes of an XML document (seen as a tree, as it always should). This specification takes
the form of patterns that describe more or less tightly a family of paths that comply to the
specification. These paths “match” the pattern. An example of XPath pattern query is as
follows:

document (' dblp.xml’) //book [publisher = ’Cambridge University Press’]

It selects the books in the document dblp.xml with Cambridge University Press for publisher.
XPath is at the core of other XML manipulation languages, such as XQuery and XSLT, because
it provides a mechanism to navigate in an XML tree.

Here is an example of query with XQuery.

for Sp in document ('dblp.xml’)//publisher

let $b := document (' dblp.xml’)//book [publisher = $p]
where count (S$b) > 100

return <publisher> {$p//name, $p//address} </publisher>

In this query, the variable $p scans the list of publishers. For each publisher, variable $b
contains the sequence of books published by this publisher. The where clause filters out the
publishers who published less than 100 books. Finally, the return constructs the result, for
each publisher, the name and address.

Web services

An application on a machine when turned into a Web service can be used by a remote
machine. This is the basis of distributed computing over the Internet. Different machines
over the network exchange XML data using a particular protocol, SOAP. They describe their
interfaces using yet another language, namely WSDL (pronounced wiz-d-1), the Web Services
Description Language.

The idea underlying Web services is very simple and will be best explained by an example.
Suppose I wrote a program that takes as input a URL and computes the page rank of that
page and its classification in some ontology (what it is talking about). Suppose a friend in
California wants to use my program. I have to package it, send her all the data (perhaps
some databases) the program is using (which may be forbidden by my company). Then we

For personal use only, not for distribution. 25

have to solve loads of problems such as software compatibility. It is much simpler to turn
my program into a Web service (which takes a couple of minutes) and publish it on a local
Web server. My friend can then use it without knowing that I developed it in Java or C++, on
Mandrake Linux or Vista, with standard libraries or rather obscure homemade ones.

The core ideas are to exchange (serialized) XML and use a standard protocol for messages.
The basis is SOAP, the Simple Object Access Protocol, a protocol for exchanging XML-based
messages over the network (typically using HTTP or HTTPS). The most common messaging
for SOAP is a Remote Procedure Call (RPC) where a computer (the client) sends a request
message to another one (the server); and the server responds by a message to the client.
Imagine for instance that you make the following function call from your Client application:

pr = getPageRank ("http://webdam.inria.fr/");

This call must be shipped to the server. The SOAP protocol encodes the relevant information
in XML and transfers the following XML document to the server.

<?xml version="1.0" encoding="UTF-8">
<SOAP-ENV:Envelope
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns: SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns: SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.0rg/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/1999/XMLSchema">
<SOAP-ENV:Body>
<nsl:getPageRank
xmlns:nsl="urn:PageRankService">
<paraml xsi:type="xsd:string">
http://webdam.inria.fr/
</paraml>
</nsl:getPageRank>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Although rather verbose, this SOAP message is simple enough to exhibit the main informa-
tion that constitutes the remote function call: the server Uniform Resource Name (urn), the
function name and the parameter value. The server then transmits its answer with a SOAP
message. This exchange is transparent to the Client: what is exploited here is the capacity of
XML to safely encode and exchange data between computers.

Let us finally complete this very brief overview of Web Services by mentionning WSDL, the
Web Services Description Language. WSDL is an XML-based language for describing Web
services, which specifies the type of their input and output. It can be used, in particular, to
generate automatically the correct “stubs” of client applications that takes care of creating the
SOAP message that respects the signature (type and number of parameters) of the functions
provided by the service.

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 26

1.5 Further reading

Before the Web, publication of electronic data was limited to a few scientific and technical areas.
With the Web and HTML, it rapidly became universal. HTML is a format meant for presenting
documents to humans. However, a lot of the data published on the Web is produced by
machines. Moreover, it is more and more the case that Web data are consumed by machines
as well. Because HTML is not appropriate for machine processing, semistructured data models,
and most importantly of a new standard for the Web, namely XML [174], were developped
in the 90". The use of a semistructured data model as a standard for data representation and
data exchange on the Web brought important improvement to the publication and reuse of
electronic data by providing a simple syntax for data that is machine-readable and, at the
same time, human-readable (with the help of the so-called style-sheets).

Semistructured data models may be viewed, in some sense, as bringing together two cul-
tures that were for a long while seen as irreconcilable, document systems (with notably SGML
[74]) and database systems (with notably relational systems [156]). From a model perspective,
there are many similarities with the object database model [39]. Indeed, like XML, the object
database model is based on trees, provides an object API, comes equipped with query lan-
guages and offers some form of serialization. As already mentioned, an alternative to XML in
some contexts is JSON (see http://www. json.org and the description in Chapter 20.3),
a semistructured model directly derived from the need to serialize the representation of an
object that must be exchanged by two programs (typically, a Web browser and a Web server).
A main difference is that the very rigorous typing of object databases was abandoned in
semistructured data models.

SGML (Standard Generalized Markup Language) is the (complex) 1986 ISO Standard for
data storage and exchange. SGML dialects can be defined using DTD. For instance, HTML is
such a dialect.

XML is developed and promoted by the World Wide Web Consortium (W3C). XML is a
1998 recommendation of the W3C. Its specification is a couple of dozens of pages long, vs.
the hundreds of pages of SGML. It is supported by academic labs such as MIT (US), INRIA
(Europe) or Keio University and backed by all the heavy weights of industry notably Oracle,
IBM and Microsoft. The role of W3C is in particular to lead the design of standards where the
XML syntax is only the tip of the iceberg. They propose a wide range of them for typing XML
[165], querying XML [182], transforming XML [183], interacting with XML [58], developing
distributed applications with XML, etc. See the site of the W3C [161] for more.

The articulation of the notion of semistructured data may be traced to two simultaneous
origins, the OEM model at Stanford [132, 8] and the UnQL model at U. Penn [134]. See [5] for
a first book on the topic.

Specific data formats had been previously proposed and even became sometimes popular
in specific domains, e.g. ASN.1 [96]. The essential difference between data exchange formats
and semistructured data models is the presence of high level query languages in the latter. A
query language for SGML is considered in [6]. Languages for semistructured data models
such as [8, 134] then paved the way for languages for XML [182].

http://www.json.org

For personal use only, not for distribution. 27

1.6 EXxercises

1.6.1 XML documents

Exercise 1.6.1 (Well formed XML documents) Have you ever written an HTML page? If not, it
is time to create your first one: create a . html1 home page with your public information: CVs, address,
background and hobbies, photos, etc.

This page must be a well-formed XHTML document. Use a public XHTML validator to check its
well-formedness, and correct any error. Hints: the W3C provides an online validator at http://validator.w3c.org/.
You can also add a validator to your browser that check any page loaded from the Internet (for Firefox,
the Web Developper plugin is a good choice).

Exercise 1.6.2 (XML and graphics) Now, embellish you page with some vector graphics. As a
starting point, take the SVG example given in the present chapter, save it in an svg.xml document and
add the following instruction somewhere in your XHTML code.

<object data="svg.xml" type="image/svg+xml" width="320" height="240" />

Open the page in your browser (of course, the browser should be equipped with an SV G rendering
module: Firefox natively supports SVG) and see the graphics displayed in your Web page. Search for
some more exciting SVG options and experiment them.

Exercise 1.6.3 MathML is an XML dialect for the representation of mathematical fomulas in XML.

Arithmetic formulas in MathML use a prefix notation, where operators come before their operands.
For instance, the prefix notation of

x2+4x+4
is
(+ (~ x 2) (« 4 x) 4)

When encoded in MathML, this formula is represented by the following document:

<?xml version=’1.0"72>
<apply>
<plus/>
<apply>
<power/>
<ci>x</ci>
<cn>2</cn>
</apply>
<apply>
<times/>
<cn>4</cn>
<ci>x</ci>
</apply>
<cn>4</cn>
</apply>

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 28

Note that each parenthesis gives rise to an apply element ; operators 4, X and * are respectively
represented with plus, t imes and power elements ; finally, variables are represented by c1i elements,
and constants cn elements.

1. Give the tree for of this MathML document.

2. Express the following formulas in MathML
* (x¥+3xy) xy

° xa+2 +y

3. Give the DTD that corresponds to the MathML fragment given above.

1.6.2 XML standards

Programming with XML APIs, SAX and DOM, is a good means to understand the features
of XML documents. We invite you to realize a few, simple programs, based on examples
supplied on our web site.

These examples are written in Java. You need a SAX/DOM parser: the Xerces open-source
parser is easy to obtain and our programs have been tested with it:

¢ get the Xerces java archive from http://xerces.apache.org/ and download it
sowewhere on your local disk;

¢ add your Xerces directory to $JAVA_HOME;

* take from our web site the following files: SaxExample.java, SaxHandler.java and DomEx-
ample.java.

Let us try the SAX program first. It consists of a class, the handler, that defines the method
triggered when syntactic tokens are met in the parsed XML document (see page 19 for details).
The handler class is supplied to the SAX parser which scans the XML document and detects
the tokens. Our handler class is in SaxHandler.java, and the parser is instantiated and run in
SaxExample.java. Look at both files, compile them an run SaxExample. It takes as input the
name of the XML document. For instance, using the movies.xml document from our site:

java SaxExample movies.xml

The DOM example executes the same basic scan of the XML document in preorder, and
outputs the name of each element. Compile it, and run it on the same file:

java DomExample movies.xml
We also provide a DomPreorder.java example that shows a few other features of DOM
programming: modification of nodes, and serialisation of a DOM object.

For the following exercises, you should download the dblp.xml document from the DBLP
site: http://www.informatik.uni-trier.de/~ley/db/. The main file is about 700
Mbs, which helps to assess the respective performance of the SAX and DOM approaches.

Exercise 1.6.4 (Performance) Write a SAX program that count the number of top-level elements
(elements under the element root) in an XML document.

http://xerces.apache.org/
http://www.informatik.uni-trier.de/~ley/db/

For personal use only, not for distribution. 29

* apply your program to dblp.xml and count the number of references;
e extend your program to count only a subset of the top-level elements, say, journals or books.

Write the same program as above, but in DOM. Run it on dblp.xml and compare the performances.

Exercise 1.6.5 (Tree-based navigation) Imagine that you need to implement a Navigate program
that accesses one or several nodes in an XML documents, referred to by a path in the hierarchy. For
instance:

java Navigate movies movie title

should retrieve all the <title> nodes from the movies.xml document (nb: this is actually a quite
rudimentary XPath evaluator, see the next chapter).
Try to design and implement this program in SAX and DOM. Draw your conclusions.

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

2 XPath and XQuery

2.1 Introduction

This chapter introduces XPath and XQuery, two related languages that respectively serve to
navigate and query XML documents. XPath is actually a subset of XQuery. Both languages,
specified by the W3C, are tightly associated, and share in particular the same conceptual
modeling of XML documents. Note that the XPath fragment of XQuery has a well-identified
purpose (expressing “paths” in an XML tree) and as such can be used independently in other
XML processing contexts, such as inside the XSLT transformation language. XQuery uses
XPath as a core language for path expressions and navigation.

XQuery is a declarative language, and intends to play for XML data the role of SQL in the
relational realm. At a syntactical level, it is somewhat inspired from SQL. More importantly,
it is expected to benefit from a mixture of physical storage, indexing, and optimization
techniques, in order to retrieve its result by accessing only a small fraction of its input.
XQuery constitutes therefore an appropriate choice when large XML documents or large
collections of documents must be manipulated.

In this chapter, we use as running example a movies XML database. Each XML document
represents one movie, and is similar in structure to the sample document shown in Figure 2.1.

We begin the chapter with a bird’s eye view of XQuery principles, introducing the XML
data model that supports the interpretation of path expressions and queries, and showing
the main features of the two languages. We then consider in more detail XPath and XQuery
in a rather informal way. Finally we reconsider XPath more formally, investigating nice
connections with first-order logic.

2.2 Basics

The W3C devoted a great deal of effort (along with heavy documents) to formally define the
data model that underlies the interpretation of XPath and XQuery expressions. We just need,
for the purpose of this introduction, to understand that XQuery is designed as the database
query language for XML sources. As such, it must fulfill some basic requirements, two of the
most important being that:

1. there exists a well-defined “data model”, i.e., a set of constructs and typing rules that
dictate the shape of any information that conceptually constitutes an XML database;

2. the query language is closed (or composable): in plain English, this means that queries
operate on instances of the data model, and produce instances of the data model.

Let us first consider the corresponding requirements for relational databases. In a relational
database, data are represented using two-dimensional “tables”. Each table consists of a set of
rows with a predefined list of “columns”. Given a row and a column, an entry consists of

31

For personal use only, not for distribution. 32

<?xml version="1.0" encoding="UTF-8"?>

<movie>

<title>Spider-Man</title>

<year>2002</year>

<country>USA</country>

<genre>Action</genre>

<summary>On a school field trip, Peter Parker (Maguire) is
bitten by a genetically modified spider. He wakes
up the next morning with incredible powers. After
witnessing the death of his uncle (Robertson),
Parkers decides to put his new skills to use in
order to rid the city of evil, but someone else
has other plans. The Green Goblin (Dafoe) sees
Spider—Man as a threat and must dispose of him. </summary>

<director id="21’>
<last_name>Raimi</last_name>
<first_name>Sam</first_name>
<birth_date>1959</birth_date>

</director>

<actor id="19’>
<first_name>Kirsten</first_name>
<last_name>Dunst</last_name>
<birth_date>1982</birth_date>
<role>Mary Jane Watson</role>

</actor>

<actor id=’22'">
<first_name>Tobey</first_name>
<last_name>Maguire</last_name>
<birth date>1975</birth_date>
<role>Spider-Man / Peter Parker</role>

</actor>

<actor id=’23’">
<first_name>Willem</first_name>
<last_name>Dafoe</last_name>
<birth_date>1955</birth_date>
<role>Green Goblin / Norman Osborn</role>

</actor>

</movie>

Figure 2.1: An XML document describing a movie

For personal use only, not for distribution. 33

an atomic value of a predefined type specified by the column. This constitutes a simple and
effective data model. Regarding the SQL language, each query takes one or several tables as
input and produces one table as output. (We ignore here some features such as ordering the
rows with order by commands.) Even if the query returns a single value, this value is seen as
a cell in a one-row, one-column, result table. The closed-form requirement guarantees that
queries can be composed to form complex expressions. In other words, one can build complex
queries using composition because the output of a query can serve as input to another one.

Let us now consider these requirements in the context of XML. We must be able to model
the content of the documents, which is much more flexible and complex than the content of a
relational table. We must also model the structure of the database as a set of documents, with
possibly quite different contents and structures. And, finally, we need to make sure that any
query output is also a collection of XML documents, so that we can compose queries.

A difficulty is that we sometimes want to talk about a tree and we sometimes want to focus
on a sequence of trees (the children of a node in a tree). The W3C has therefore introduced
a data model which, beyond the usual atomic data types, proposes two constructs: trees to
model the content of XML documents, and sequences to represent any ordered collection of
“items”, an item being either an atomic value or a document.

Another difficulty is that, as we shall see, we sometimes want to talk about collections
without duplicates. For instance, the result of the simplest XPath queries is such a collection.
Indeed, the specification of XPath 1.0, which is still the most widely implemented version of
the language, does not allow arbitrary sequences, but only node sets, duplicate-free collections
of nodes. So we shall have to carefully distinguish between sequences (ordered lists possibly
with duplicates) and duplicate-free collections or node sets.

To conclude this preliminary discussion, we want to stress that XQuery is a functional
language based on expressions: any expression takes sequences as inputs and produces a
sequence as output. This is probably everything that needs to be remembered at this point.
We now illustrate the principles, starting with the tree model of XML documents.

2.2.1 XPath and XQuery data model for documents

In the XQuery model, an XML document is viewed as a tree of nodes. Each node in a tree
has a kind, and possibly a name, a value, or both. These concepts are important for the correct
interpretation of path expressions. Note that this is actually a simplified version of the
object-based representation that supports the Dom API (see Chapter 1). Here is the list of the
important node kinds that can be found in an XML tree:

¢ Document: the root node of the XML document, denoted by “/”;
¢ Element: element nodes that correspond to the tagged nodes in the document;
e Attribute: attribute nodes attached to Element nodes;

¢ Text: text nodes, i.e., untagged leaves of the XML tree.

The data model also features ProcessingInstruction, Comment, and Namespace node
kinds. The first two can be addressed similarly as other nodes, and the third one is used for
technical processing of namespaces that is rarely needed. Therefore, to simplify, we do not
consider these node kinds in the following presentation. Another important feature of the

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 34

XQuery data model is the data type that can be attached to element and attribute nodes. This
data type comes from an XML Schema annotation (see Chapter 3) of the document. Itis a
very powerful feature that allows XQuery queries to deal differently with nodes of different
declared data types. It also allows for the static verification of a query. However, because of
lack of support from implementations, this component of XQuery is sparingly used. Again to
simplify, we mostly ignore data types in the remaining of this chapter.

It is worth mentioning that the tree model ignores syntactic features that are only relevant
to serialized representations. For instance, literal sections or entities do not appear, since they
pertain to the physical representation and thus have no impact on the conceptual view of a
document. Entities are supposed to have been resolved (i.e., references replaced by the entity
content) when the document is instantiated from its physical representation.

<?xml version="1.0"
encoding="utf-8"?>
<A>
<B attl="1’'>
<D>Text 1</D>
<D>Text 2</D>

<B attl="2’>
<D>Text 3</D>

<C att2="a"
att3="b"/>

Figure 2.2: Example XML document in serialized form

Figure 2.2 shows a serialized representation of an XML document, and Figure 2.3 its
interpretation as an XML tree. The translation is straightforward, and must be understood by
anyone aiming at using XPath or XQuery. Among the few traps, note that the typical fragment
<a>v is not interpreted as a single node with name a and value v, but as two nodes: an
Element which bears the name, and a Text child which bears the value. It is important to
keep in mind a few other characteristics which are common to all tree representations, and
help understand the meaning of expressions:

¢ the document order denotes the order of the nodes when the tree is traversed in pre-order;
it is also the order of the serialized representation;

* atree has a unique Document node, called the root node of the tree in the following; this
root node has a unique child of type Element, called the root element.

A root node may also have other children such as comments or processing instructions but
as previously mentioned, we ignore them here. Next, for each node in a tree, the concepts
of name and value are defined as follows: (i) an Element node has a name (i.e., the tag in the
serialized representation), but no valuel; (ii) a Text node has a value (a character string), but

No value per se; the XPath recommendation defines the value of an element node as the concatenation of the
values of all Text nodes below

For personal use only, not for distribution. 35

Document
Element
A
Element /Eler'nent\ Element
B
Attr. Element Element Attr. Element Attr. Attr.
attl: ‘1 D D attl: 2’ D att2: ‘a’ att3: 'b’
Text Text Text
Text 1 Text 2 Text 3

Figure 2.3: Tree representation of the XML document from Figure 2.2

no name; and (iii) an Attribute node has both a name and a value. As we shall see Attribute
nodes are special: attributes are not considered as first-class nodes in an XML tree and are
addressed in a specific manner.

A term commonly used is “content” which must be distinguished from the notion of
“value”. Although an Element node N has no value, it has a content, which is the XML subtree
rooted at N. If we consider the serialized representation instead, the content is (equivalently)
the part of the document contained between the opening and closing tags of the element. Now
one often makes the mistake to see the content of an XML node as the serialized representation.
It is important to keep in mind that conceptually it is a tree. To increase the confusion, one
sometimes speak of the textual content of a node N, which is the concatenation of the values
of the Text nodes which are descendant of N. In others words, the textual content of N is
obtained from its content by getting rid of all the structural information. This makes sense
only when we think of an XML document as structured text.

Although all this may seem confusing at first glance, it is important to be very comfortable
with these notions and in particular keep in mind that the content of a node of an XML tree is the
subtree rooted at that node.

2.2.2 The XQuery model (continued) and sequences

The main construct manipulated by XQuery expressions is the sequence of items, a deliberately
vague and general structure that covers all kinds of information that can be dealt with in an
XML database. An item is either an atomic value or a node. In the latter case, when the node
N is an Element or a Document (i.e., the root node of a document), it represents the whole
XML tree rooted at N.

Sequences constitute a central concept for XQuery, since a query takes as input one or more
sequences and produces as output a sequence.

A sequence may be an enumeration, surrounded with parentheses. The content of a
sequence may also be described intentionally (e.g., all integers between 1 and 5.)

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 36

(1, "a’, 1, ’"zgfhgf’, 2.12)
(1 to 5)

Observe that the first sequence mixes integers, characters, character strings, floating num-
bers. The mixture may also contain nodes and accepts duplicates. Due to the very versatile
shape of semi-structured information, the data model actually puts almost no restriction on
the content of a sequence. An important point is that sequences cannot be embedded inside
each other: a sequence is always a flat, ordered, collection of atomic values or nodes. In other
words, the following two sequences are identical:

Since querying atomic values is of little interest, a query takes in general as input XML
documents or a collection of XML documents. A collection is actually nothing else than a
persistent sequence of XML documents which can be referred to by a name. XQuery identifies
its input(s) with the following functions:

1. doc() takes the URI of an XML document and returns a singleton document tree;

2. collection() takes the URI of a collection of XML documents and returns a sequence of
trees.

For instance,

doc (" Spider—-Man.xml’)
collection ('movies’)

The result of doc(’Spider-Man.xml’) is the singleton sequence consisting of the root node of
the tree representation of the XML content found in Spider-Man.xml. The node kind is
Document.

As part of our running example, the movies collection contains a set of XML documents,
each describing a specific movie. The result of collection(’movies’) is the sequence of root nodes
of the collection of movie documents. In general, the collection() function returns a sequence of
items. Although its organization is much more flexible, a collection is somehow comparable
to tables in the relational model, where items of the collection set play the role of tuples.

The functions doc() and collection() take as input a URL They can therefore be used to access
a database that is stored either locally or remotely. For instance, the URI movies may refer to
the database serving all the movie XML documents. In both cases, the output is a sequence
of Document nodes. Given such sequences available through calls to the doc() or collection()
functions, XPath and XQuery expressions can be expressed to retrieve information from these
contents. Such an environment is typically an XML database system, e.g., the EXIST system
(see Chapter 5).

For personal use only, not for distribution. 37

2.2.3 Specifying paths in a tree: XPath

XPath is a syntactic fragment of XQuery, which forms the basic means of navigating in an
XML tree. At its core are path expressions that denote paths in a tree, using a mixture of
structural information (node names, node kinds) and constraints on data values. Here is a
first example:

doc (" Spider-Man.xml’) /movie/title

An XPath expression consists of steps, separated by “/”. The above expression consists
of three steps. The first one returns a singleton with the root node of the document. The
second step (movie) returns the children of the root node with name movie. Again, this is
a singleton since the root node only has one Element child. Finally, the third step (tit1le)
returns the sequence of Element nodes, of name t it le, children of the movie element. The
sequence of t it le nodes is the result of the whole XPath expression.

More generally, a path expression is evaluated with respect to a context node, which is often
(but not always) the root node of some XML document, and its result is a sequence of terminal
nodes of the paths that start from the context node and match the expression.

So far, the interpretation is quite similar to the usual navigation in the directory tree of a
computer system. XPath is more expressive and permits very flexible navigation in the trees
with access to both content and structure of the visited trees. The following example features
a predicate, i.e., a Boolean expression that must be satisfied for the nodes to be qualified in the
result sequence. The interpretation should be clear: one retrieves the nodes corresponding to
the actresses of the input document whose last name is Dunst.

doc (" Spider—-Man.xml’) /movie/actor[last_name=’Dunst’]

One obtains a sequence, with as many actor items as there are matching nodes in the
document (here: only one). Note that the item is an Element node, along with its content, i.e.,
the subtree at this node. In other word, the (serialized) result is:

<actor id="19’>
<first_name>Kirsten</first_name>
<last_name>Dunst</last_name>
<birth_date>1982</birth_date>
<role>Mary Jane Watson</role>
</actor>

The comparison with navigation in file system directories can be extended a little further.
Indeed, XPath is not limited to going down the tree, following the “child” axis, but can also
access the (unique) parent of a node. The following XPath expression gives all the t it 1es of
movies in the movies collection, featuring Kirsten Dunst as an actress.

collection ('movies’) /movie/actor[last_name='Dunst’]/../title

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 38

To better understand what is going on here, it is probably useful to take a representation
of the tree of a specific movie (say, Spider-Man), and draw the path that matches the above
expression (knowing that, as expected, the “. .” step denotes the parent of the context node).
There exists an equivalent (and maybe more natural) expression:

collection ('movies’) /movie[actor/last_name=’Dunst’]/title

The power of XPath is however relatively limited in term of node retrieval.? Moreover,
the result of an XPath expression can only consist of a sequence of nodes from the input
document. This is a very severe restriction since it prevents the construction of new XML
documents. However it constitutes a convenient tool for describing classes of paths in XML
trees, and can be used together with more powerful languages to obtain complex queries.

2.2.4 Afirst glance at XQuery expressions

XQuery is a functional language. An expression is a syntactic construct which operates on a
sequence (the input) and produces a sequence (the output). Since the output of an expression
can be used as the input of another expression, the combination of expressions yields the
mechanism to create very complex queries.

The simplest expression is a literal: given a sequence S, it returns S. The following is
therefore a valid XQuery expression:

(x, "a’, 1, ’'zgfhgf’, 2.12)

XQuery becomes more powerful than XPath when it comes to constructing rich output or to
expressing complex statements. The following simple examples illustrate the most important
features without delving into details.

First, XQuery allows the construction of new documents, whose content may freely mix
literal tags, literal values, and results of XQuery expressions. The following shows the
construction of an XML document containing the list of movie titles.

document {
<titles>
{collection (‘movies’)//title}
</titles>

The collection() function is now embedded in an XML literal fragment (formed here of a
single root element t it les). Expressions can be used at any level of a query, but in order
to let the XQuery parser recognize an expression e which must be evaluated and replaced
by its result, the expression e must be surrounded by curly braces {} when it appears inside
literal elements. Forgetting the braces results in a literal copy of the expression in the result
(i.e., it remains uninterpreted). Any number of expressions can be included in a template,

2This is all the truer if one restricts the language to the XPath 1.0 fragment, that cannot express much more than
these kinds of path expressions. XPath 2.0, with its iteration features described further, is more powerful, but
still limited compared to XQuery.

For personal use only, not for distribution. 39

thereby giving all freedom to create new XML content from an arbitrarily large number of
XML inputs.

Note that, in the above query, XPath is used as a core language to denote paths in an
existing XML document referred to by the doc() expression.

Here is a second example of a powerful XQuery expression that goes far beyond the
capabilities of simple path expressions. The following shows a query that returns a list of
character string with the title of a movie (published after 2005) and the name of its director.

for sm in collection (‘movies’) /movie
where S$m/year >= 2005
return
<film>

{Sm/title/text ()},

director: {Sm/director/last_name/text ()}
</film>

The query is syntactically close to the SQL select-from-where construct. The for clause is
similar to the SQL from, and defines the range of a variable $m. The return clause (in the
spirit of SQL select) constructs the result, using variable $m as the root of XPath expression.
The output obtained from our sample collection, is (disregarding whitespace):

<film>A History of Violence, director: Cronenberg</film>
<film>Match Point, director: Allen</film>
<film>Marie Antoinette, director: Coppola</film>

Note that the result is a sequence of nodes, and not an XML document.

Expressions based on the for clause are called FLWOR expressions. This is pronounced
“flower” with the “F” standing for for, “L” for let (a clause not used in the previous example),
“W” for where, “O”for order by (an optional ordering clause), and “R” for return. A FLWOR
expression must contain at least one (but potentially many) for or let clause and exactly one
return clause, the other parts being optional. The expressive power of the language comes
from its ability to define variables in flexible ways (from and let), from supporting complex
filtering (where) and ordering (order by), and allowing the construction complex results
(return).

2.2.5 XQuery vs XSLT

XQuery is thus a choice language for querying XML documents and producing structured
output. As such, it plays a similar role as XSLT, another W3C standardized language for
transforming XML documents, that is presented in more detail in the companion Web site of
this book. The role of XSLT is to extract information from an input XML document and to
transform it into an output document, often in XML, which is also something that XQuery
can do. Therefore, both languages seem to compete with one another, and their respective
advantages and downsides with respect to a specific application context may not be obvious
at first glance. Essentially:

e XSLT is good at transforming documents, and is for instance very well adapted to map
the content of an XML document to an XHTML format in a Web application;

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 40

* XQuery is good at efficiently retrieving information from possibly very large repositories
of XML documents.

Although the result of an XQuery query may be XML-structured, the creation of complex
output is not its main focus. In a publishing environment where the published document
may result from an arbitrarily complex extraction and transformation process, XSLT should
be preferred.

Note however that, due to its ability to randomly access any part of the input tree, XSLT
processors usually store in main memory the whole DOM representation of the input. This
may severely impact the transformation performance for large documents. The procedural
nature of XSLT makes it difficult to apply rewriting or optimization techniques that could, for
example, determine the part of the document that must be loaded or devise an access plan
that avoids a full main-memory storage. Such techniques are typical of declarative database
languages such as XQuery that let a specialized module organize accesses to very large data
sets in an efficient way:.

We conclude here this introduction to the basics of XQuery. We next visit XPath in more
depth.

2.3 XPath

The term XPath actually denotes two different languages for selecting nodes in a tree:

1. XPath 1.0, whose specification was finalized in 1999, is the most widely used version
of XPath; implementations exist for a large variety of programming languages, and
it is used as an embedded language inside another language in a number of contexts,
especially in XSLT 1.0. XPath 1.0 is a simple language for navigating a tree, based on
the notion of path expressions, and its expressive power is quite limited, as discussed
further. Its data model is somewhat simpler than the XQuery data model discussed
earlier in this chapter: node sets instead of sequences, and no data type annotations.

2. XPath 2.0, standardized in 2007, is an extension of XPath 1.0 that adds a number
of commodity features, extends the data model to that of XQuery, and adds some
expressiveness to the language, with the help of path intersection and complementation
operators, as well as iteration features. XPath 2.0 is a proper subset of XQuery, and is also
used inside XSLT 2.0. Apart from these two contexts, implementations of XPath 2.0 are
rare. With a few technical exceptions, XPath 2.0 is designed to be backwards compatible
with XPath 1.0: XPath 1.0 expressions are, mostly, valid XPath 2.0 expressions with the
same results.

In this section, we mostly discuss XPath 1.0 and its core aspect, path expressions. We
discuss briefly at the end of the section the additional features available in XPath 2.0. As
already mentioned, a path expression consists of steps. It is evaluated over a list, taking each
element of the list, one at a time. More precisely, a step is always evaluated in a specific context

[<N11N2/' o /Nn>/Nc]

consisting of a context list (N1,Np,- -+, Ny,) of nodes from the XML tree; and a context node N,
belonging to the context list, the node that is currently being processed. The result of a path

For personal use only, not for distribution. 41

expression, in XPath 1.0, is a node set. Here is a subtlety. The term set insists on the fact that
there is no duplicate. Now to be able to be reused in another step, this set has to be turned
into a sequence, i.e., be equipped with an order. We shall see how this is achieved.

2.3.1 Steps and path expressions
An XPath step is of the form:
axis: :node-test [P1] [Py]... [Py]

Here, axis is an axis name indicating the direction of the navigation in the tree, node-test
specifies a selection on the node, and each P; (n > 0) is a predicate specifying an additional
selection condition. A step is evaluated with respect to a context, and returns a node set. The
following examples of steps illustrate these concepts:

1. child: :A denotes all the Element children of the context node that have A for name;
child is the axis, A is the node test (it restricts the selected elements based on their
names) and there is no predicate. This very frequently used step can be denoted 2 for
short.

2. descendant::C[@att1=1] denotes all the Element nodes descendant of the context
node, named C and having an Attribute node att1 with value 1. Observe how a node
test is used to specify the name of the node and a predicate is used to specify the value
of an attribute.

3. parent::x[B] denotes the parent of the context node, whatever its name may be
(node test «) and checking it has an Element child named B. The predicate here checks
the existence of a node. Since each node has a single parent, for a context node, the
result is a collection of one element (the parent has a B child) or is empty (the test failed).

A path expression is of the form:
[/1stepy /step2/... /stepy,

When it begins with “/”, it is an absolute path expression and the context of the first step is in
that case the root node. Otherwise, it is a relative path expression. For a relative path expression,
the context must be provided by the environment where the path evaluation takes place.
This is the case for instance with XSLT where XPath expressions can be found in templates:
the XSLT execution model ensures that the context is always known when a template is
interpreted, and this context serves to the interpretation of all the XPath expressions found in
the template.
The following are examples of XPath expressions:

1. /A/B is an absolute path expression which denotes the Element nodes with name B,
children of the root element A;

2. /A/B/Qattl[.>2] denotes all the Attribute nodes with name att1l of the nodes
obtained with the previous expression, whose values are greater than 2.

3. ./B/descendant: :text () is a relative path expression which denotes all the Text
nodes descendant of an Element B, itself child of the context node.

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 42

context
Document
Element
A
Element //Elen’nent\ Element
B B C
Attr. Element Element Attr. Element Attr. Attr.
attl: ‘1 D D attl: 2’ D att2: ‘a’ att3: 'b’
Text Text Text
Text 1 Text 2 Text 3

Figure 2.4: First step of the evaluation of /A/B/Gattl

“won

In the last two expressions above, “.” is an abbreviation of the step sel1f: :node (), which
refers to the context node itself. The axis se1f represents the “stay-here” navigation, and the
node () node test is true for all nodes.

2.3.2 Evaluation of path expressions

The result of a path expression is a sequence of nodes obtained by evaluating successively the
steps of the expression, from left to right. A step step; is evaluated with respect to the context
of step;_1. More precisely:

* For i =1 (first step): if the path expression is absolute, the context is a singleton, the root
of the XML tree; otherwise (for relative path expressions) the context is defined by the
environment.

e Fori>1: if V; = (N;,Ny,--+,Ny) is the result of step step;_1, step; is successively
evaluated with respect to the context [\, Nj], for each j € [1,n].

The result of the path expression is the node set obtained after evaluating the last step. As
an example, consider the evaluation of /A/B/@att 1. The path expression is absolute, so the
context consists of the root node of the tree (Figure 2.4).

The first step, 2, is evaluated with respect to this context, and results in the element node
which becomes the context node for the second step (Figure 2.5).

Next, step B is evaluated, and the result consists of the two children of A named B. Each of
these children is then taken in turn as a context node for evaluating the last step Gatt1.

1. Taking the first element B child of A as context node, one obtains its attribute att1
(Figure 2.6);

2. Taking the second element B child of A as context node, one obtains its attribute att1
(Figure 2.7).

For personal use only, not for distribution.

43

Attr.
attl: '1’

Attr.
attl: ‘1’

Document
‘ context
Element
Element /Elen’wnt\ Element
B B C
Element Element Attr. Element Attr. Attr.
D D attl: 2’ D att2: ‘a’ att3: 'b’
Text Text Text
Text 1 Text 2 Text 3

Figure 2.5: Second step of the evaluation of /A/B/Gatt1

Document
Element
Elem Element
B B C
Element Element Attr. Element Attr. Attr.
D D attl: 2’ D att2: ‘a’ att3: 'b’
Text Text Text
Text 1 Text 2 Text 3

Figure 2.6: Evaluation of @att 1 with context node B[1]

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 44

Document
Element
A
/m.\
Element Element Element
B
Attr. Element Element Attr. Element Attr. Attr.
attl: ‘1 D D attl: 2’ D att2: ‘a’ att3: 'b’
Text Text Text
Text 1 Text 2 Text 3

Figure 2.7: Evaluation of @att1 with context node B[2]

The final result is the union of all the results of the last step, @att 1. This is the union is a
set-theoretic way, i.e., duplicates are eliminated. It is turned into a sequence (i.e., ordered)
using an order that, as we shall see, is specified by the axis of the last step.

2.3.3 Generalities on axes and node tests

Given a context list, the axis determines a new context list. For each node in turn, the node
test is evaluated filtering out some of the nodes. Then each predicate is evaluated and the
nodes that fail some test are eliminated. This yields the resulting context list.

Table 2.1 gives the list of all XPath axes. Using them, it is possible to navigate in a tree, up,
down, right, and left, one step or an arbitrary number of steps. As already mentioned, the
axis also determines the order on the set of resulting nodes. It is in most cases the document
order. In some cases, it is the reverse document order. The rule can be simply remembered as:
for forward axes, positions follow the document order; for backward axes (cf. Table 2.1), they
are in reverse order. One can also see that they correspond to how they are “naturally” visited
following the navigation from the context node.

An axis is always interpreted with respect to the context node. It may happen that the axis
cannot be satisfied, because of some incompatibility between the kind of the context node
and the axis. An empty node set is then returned. The cases of such “impossible” moves are
the following:

* When the context node is a document node: parent,attribute, ancestor, following-sibling,
preceding, preceding-sibling.

¢ When the context node is an attribute node: child, attribute, descendant, following—-sibling,
preceding-sibling.

e When the context node is a text node: child, attribute, descendant.

We briefly observe next a subtlety. Attributes are not considered as part of the “main”
document tree in the XPath data model. An attribute node is therefore not the child of the

For personal use only, not for distribution. 45

Table 2.1: XPath axes

child (default axis)

parent Parent node.

attribute Attribute nodes.

descendant Descendants, excluding the node it-
self.

descendant-or-self Descendants, including the node it-
self.

ancestor Ancestors, excluding the node itself.
Backward axis.

ancestor-or-self Ancestors, including the node itself.
Backward axis.

following Following nodes in document order

(except descendants).
following-sibling Following siblings in document order.
preceding Preceding nodes in document order

(except ancestors). Backward axis.
preceding-sibling Preceding siblings in document order.

Backward axis.
self Context node itself.

element on which it is located. (To access them when needed, one uses the attribute
axis.) On the other hand, the parent axis, applied to an attribute node, returns the element
on which it is located. So, applying the path parent: :«/child: : » on an attribute node,
returns a node set that does not include the node one started with.

We next detail the different axes. To be able to illustrate, we also use node tests. These will
be detailed further.

2.3.4 Axes

Child axis. The child axis denotes the Element or Text children of the context node. This
is the default axis, used when the axis part of a step if not specified. So, child: : D is in fact
equivalent to D. See Figure 2.8.

Parent axis. The parent axis denotes the parent of the context node. The result is always
an Element or a Document node, or an empty node-set (if the parent does not match the
node test or does not satisfy a predicate). One can use as node test an element name. The
node test » matches all names. The node test node () matches all node kinds. These are the
standard tests on element nodes. For instance:

e if the context node is one of the B elements, the result of parent: :2A is the root
element of our sample document; one obtains the same result with parent: :» or
parent::node();

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 46

Document
Element
A
EleMem\ Element
child B child
Attr. Element Element Attr. Element Attr. Attr.
attl: ‘1 D D attl: 2’ D attl: ‘a’ att2: 'b’
Text Text Text
Text 1 Text 2 Text 3

Figure 2.8: The child axis

¢ if the context node is the root element node, then parent : : « returns an empty set, but
the path parent: :node () returns the root node of the document.

The expression parent : :node () (the parent of the context node) may be abbreviated as . ..

Attribute axis. The attribute axis retrieves the attributes of the context node. The node
test may be either the attribute name, or @ » which matches all attribute names. So, assuming
the context node is the C element of our example,

e @attl returns the attribute named att1;

e (@ returns the two attributes of the context node.

Descendant axis. The descendant axis denotes all nodes in the subtree of the context
node, except the Attribute nodes. The node test text () matches any Text node. Assume for
instance that the context node is the first B element in the document order (Figure 2.9). Then :

® descendant::node () retrieves all nodes descendants of the context node, except
attributes (Figure 2.9);

e descendant : : » retrieves all Element nodes, whatever their name, which are descen-
dant of the context node;

e descendant: :text () retrieves all Text nodes, whatever their name, which are de-
scendant of the context node.

Observe that the context node is not a descendant of itself. If one wants it in the resulting
context list, one should use instead descendant-or-self.

For personal use only, not for distribution. 47

Document
Element
A
EleMem\ Element
an B
Element Attr. Attr.
D att2: ‘a’ att3: 'b’
Text Text Text
Text 1 Text 2 Text 3

Figure 2.9: Result of descendant : :node ()

Ancestor axis. The ancestor axis denotes all ancestor nodes of the context node. The result
of ancestor: :node (), when the context node is the first B element, consists of both the
element root and the root node. Again, if one wants the context node to belong to the result,
one should use ancestor—-or-self instead.

Following and preceding axes. The following and preceding axes denote respectively
all nodes that follow the context node in the document order, or that precede the context
node, with the exception of descendant or ancestor nodes. Attribute nodes are not selected.

Sibling axes. The siblings of a node N are the nodes that have the same parent as N. XPath
proposes two axes: following-siblingand preceding-sibling, that denote respec-
tively the siblings that follow and precede the context node in document order. The node
test that can be associated with these axes are those already described for descendant or
following: a node name (for Element), » for all names, text () or node (). Note that, as
usual, the sibling axes do not apply to attributes.

2.3.5 Node tests and abbreviations

Node tests are closely related to the kinds of the nodes. Their usage is therefore constrained
to the kind of nodes returned by axis. Node tests are of the following forms:

* node () matches any node, except attributes;
* text () matches any Text node;

* « matches any named node, i.e., any Element node, or any Attribute for the at t ribute
axis;

® ns:x or ns:blah match elements or attributes in the namespace bound to the prefix
ns; the second form also imposes the exact name.

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 48

Table 2.2: Summary of XPath abbreviated forms

Abbreviation Extended form

self::node ()
.. parent: :node ()
blah child::blah

@blah attribute: :blah
a//b a/descendant-or—-self::node () /b
//a /descendant-or-self::node()/a

Some associations of axes and node tests are so common that XPath provides abbreviated
forms. The list of abbreviations is given in Table 2.2.

2.3.6 Predicates

Predicates are optional Boolean expressions built with tests and Boolean connectors (and, or).
Negation is expressed with the not() Boolean function. A test may take one of the following
forms:

¢ an XPath expression; the semantics is that the resulting node set is nonempty;
¢ a comparison or a call to a Boolean function.

Predicates, the last components of an XPath expression step, provide the means to select
nodes with respect to content of the document, whereas axis and node test only address the
structural information. The processor first creates a sequence of nodes from the axis and the
node test. The nodes in the sequence are then tested for each predicate (if any), one predicate
after the other. Only those nodes for which each predicate holds are kept.

In order to understand the meaning of a precidate, we must take into account the context of
the step evaluation. Recall that an XPath step is always evaluated with respect to the context
of the previous step. This context consists of a context list, and a context node from this list.
The size of the context list is known by the function last(), and the position of the context node
in the list by position().

It is very common to use these functions in predicates. For instance, the following expres-
sion:

//B/descendant: :text () [position ()=1]

denotes the first Text node descendant of each node B. Figure 2.10 shows the result. Using the
position is so common that when the predicates consists of a single number 7, this is assumed
to be an abbreviation for position() = n. The previous expression is therefore equivalent to:

//B/descendant::text () [1]

Expression //B[last ()] denotes therefore the last element B in the document (it is an
abbreviation for //B[position () =last ()]). A predicate on a position must be carefully
interpreted with respect to the context when the position() and last() functions are evaluated.
It should be clear for instance that the following expressions all give different results (look at
our example document, and try to convince yourself!):

For personal use only, not for distribution. 49

Document
Element
A
Element /Element\ Element
B B C
PN PN
Attr. ~ Element Element Attr. Element Attr. Attr.
attl: '1’ D D attl: '2’ D att2: ‘a’ att3: 'b’
Text Text Text
Text 1 Text 2 Text 3

Figure 2.10: Result of //B/descendant: :text () [position ()=1]

1. /descendant::B[1]/descendant: :text (),
2. /descendant::B[1]/descendant::text () [1],

3. /descendant::B/descendant::text () [1],and

W

. /descendant::B/D/text () [1].

Conversions in XPath

Since a predicate often consists in some test on the value or on the content of some document
node(s), its evaluation may require a conversion to the appropriate type, as dictated by the
comparator or the constant value used in the predicate expression. Consider for instance the
following examples:

e B/Rattl = 3

e /A/B

/A/C/QRatt2

e /A/B /A/C

The first case is a simple (and natural) one. It just requires a conversion of the value of the
att1 attribute to a number so that the comparison may take place. Note that this may not
always be possible. For instance, if the value of the attribute is “Blah”, this string cannot be
coerced to be an integer and the comparison simply returns false. The second case is more
intricate. Suppose the /2 /B expression returns a sequence of nodes and /2A/C/@att2 returns
a single attribute. Since this expression is perfectly legal in XPath, the language defines type
conversion rules to interpret this comparison. Finally the last case is a comparison between
two node sets. Here again, a rule that goes far beyond the traditional meaning of the equality
operator is used in XPath: the result of the comparison between two node sets is true if there

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 50

Table 2.3: The primitive types of XPath 1.0

Type Description Literals Examples

Boolean Boolean values none true (), not (Sa=3)
number Floating-point numbers 12,12.5 1 div 33

string Character strings "to",’ti’ concat (’Hello’,’!")
node set Unordered sets of nodes none /a/blc=1 or Re]/d

exists one node from the first node set and one node from the second node set for which the
result of the comparison, after conversion to the appropriate data type, is true.

Thus, such comparisons are based on type and type conversion. The type system of XPath
1.0 consists of four primitive types, given in Table 2.3. The result of an XPath expression
(including constant values) can be explicitly converted using the boolean(), number() and string()
functions. There is no function for converting to a node set, since this conversion is naturally
done in an implicit way most of the time. The conversion obeys rules that try, as far as possible,
to match the natural intuition.

Conversion to a Boolean
Here are the rules for converting to a Boolean:

¢ A number is true if it is neither 0 nor NaN. (NaN stands for Not a Number. 1t is a value of
the number type representing an undefined or unrepresentable value.)

* A string is true if its length is not 0.
* A node set is true if it is not empty.

An important conversion rule is the one that states that a node set is true if it is nonempty:.
Consider the following two examples:

e //B[@attl=1]: all nodes B having an attribute at t 1 with value 1;
e //B[Rattl]:allnodes B having an attribute named att1.

In this last example, @att1 is an XPath expression whose result is a node set which is either
empty or contains a single node, the at t 1 attribute. Found in a predicate, it is converted to a
Boolean. If, for a B node, the node set resulting from Gatt1 is nonempty (the current context
node has an att1 attribute), the set is converted to the Boolean true.

Converting a node set to a string

Here are the rules for converting a node set to a string:

¢ The string value of an element or document node is the concatenation of the character
data in all text nodes below.

¢ The string value of a text node is its character data.

For personal use only, not for distribution. 51

¢ The string value of an attribute node is the attribute value.

e The string value of a node set is the string value of its first item in document order.?

<b titi=’tutu’><c />
<d>tata</d>

Figure 2.11: XML file illustrating types conversion

These rules are illustrated by the following examples, based on the document of Figure 2.11.
® boolean (/a/b) is true;
® boolean (/a/e) isfalse;
* string (/) is "tata" (assuming all whitespace-only text nodes are stripped);
® string(/a/@toto) is"3";

* string(/a/*) evaluates to the empty string in XPath 1.0; it raises an error in XPath
2.0.

This concludes this presentation of the essential principles of XPath. All the material
presented so far is valid for XPath 1.0 which is the specification that is most commonly
implemented nowadays. Some features specific to XPath 2.0 are introduced below. Note
also that the expressiveness of XPath is extended with many functions that provide ad-hoc
computations. For a large part, these functions are standardized and now belong to the
XQuery specification. XML systems often add their own built-on functions, and the ability to
create new ones. Chapter 5, devoted to the EXIST system, gives a list of the most useful ones.

2.3.7 XPath 2.0

We briefly mention here the most important extensions that the XPath 2.0 language adds to
XPath 1.0; since XPath 2.0 is a subset of XQuery, all of these are usable in XQuery:

¢ Improved data model, tightly associated with XML Schema. XPath 2.0 fully follows
the XQuery data model presented earlier, including schema annotations and sequences
(the semantics of simple path expressions remain the same, however; in particular the
result of a path expression does not contain duplicate nodes, and is sorted in document
order).

* More expressive language features, especially allowing to compute the intersection or
set difference of a path operation (respectively, intersect and except), to branch
depending on the result of a condition (£ (...) then ... else ...), andto

3This behavior is specific to XPath 1.0. In XPath 2.0, it is an error to cast a sequence of more than one item to a
string.

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 52

iterate over a sequence (for ... return, some ... satisfies and every

satisfies expressions). The for ... return expression is a restriction of
the more general XQuery FLWOR expression. Here is a showcase of some of these new
capabilities of the language:

//a//b intersect //a//c

if(/a/b) then /a/c else /a/d

for $x in //a return ($x,$x/..)
//al[some $x in x satisfies $x = //b]

* More precise operators for value comparisons: eq, ne or le behave similarly as =, ! =
and <=, except they can only be applied to atomic values, not sequences of length greater
than one. In the presence of schema annotations, comparison behaves accordingly to
the data types of the operands. A new is operator allows testing node identity.

* Ease-of-use with many new built-in functions, including regular expression matching,
date and time manipulation, extraction of distinct values in a sequence, etc.

XPath 2.0 also introduce new node tests:
item() any node or atomic value;
element() any element node;
element(author) any element named author;
element(*, xs:person) any element of type xs:person;
attribute() any attribute.

Finally, XPath 2.0 also permits nested paths expressions: any expression that returns a
sequence of nodes can be used as a step. The following expression is for instance valid in
XPath 2.0, but not in XPath 1.0.

/book/ (author | editor) /name

2.4 FLWOR expressions in XQuery

We delve in this section in more detail into the fundamental aspect of XQuery, namely
FLWOR expressions. As already mentioned, FLWOR queries are very close, syntactically
and semantically, to SQL queries formed with select, from, where and order by. A major
difference is that the output of a SQL queries is limited to the creation of flat tuples, whereas
XQuery is able to nest query results in order to create complex documents with hierarchical
structure.

In its simplest form, a FLWOR expression provides just an alternative to XPath expressions.
For instance:

let Syear:=1960

for sa in doc ('’ Spider-Man.xml’)//actor
where Sa/birth_date >= Syear

return S$a/last_name

For personal use only, not for distribution. 53

is equivalent to the XPath expression //actor [birth_date>=1960]/last_name.

Actually FLWOR expressions are much more expressive and, in general, they cannot be
rewritten simply with XPath. Let us now examine in turn the clauses for, let, where and
return. The use of order by is straightforward: it allows for the ordering of the sequence
processed by the return clause, in the same way as the SQL keyword of the same name;
the ascending or descending character of the order is specified with the ascending (default
behavior) or descending keywords following the sort criterion.

2.4.1 Defining variables: the for and let clauses

A FLWOR expression starts with an arbitrary (non-zero) number of for and left clauses, in
whatever order. A for clause defines a variable that ranges over a sequence. The sequence
may be obtained by many means. Most commonly one uses the result of an XPath expression
and the sequence often consists of nodes with similar structure. However nothing prevents a
variable to range over a heterogeneous sequence that mixes values and nodes of completely
unrelated structures. The following variant of the previous query is perfectly legal:

for sa in doc (’Spider—-Man.xml’) //x
where Sa/birth_date >= 1960
return S$a/last_name

Note that $a now ranges over all the element nodes of the document. The semantics
of XQuery states that the result is instantiated only for those nodes which feature both a
birth_date and a last_name. If only actor nodes have both, the two are equivalent.
However, this second query is typically less efficient, in particular if many nodes have one of
the two and not the other.

The range of a for clause can also be a sequence of values, as in:

for $i in (1 to 10) return $i

As all loops in any language, for clauses can be nested:

for $i in (1 to 10) return
for $j in (1 to 2) return $i * $7

The expression above realizes a cross product of the two input sequences. The bindings
generated by these expressions consist of all the possible pairs of values. XQuery allows a
more concise syntactic variant:

for $i in (1 to 10), $3j in (1 to 2)
return S$i * $j

In all cases, the result of a for expression is the sequence of nodes and values obtained by
instantiating the content of the return clause. In fact, a for clause is just an instance of an
XQuery expression that returns a sequence. As such, in can be used as the range of another
sequence. The following query is valid, and enumerates the multiples of 6 from 6 to 60:

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 54

for si in (for $j in (1 to 10) return S$3j x 2)
return $i * 3

XQuery is a functional language: any expression takes as input a sequence and returns a
sequence. This allows expressions to be nested in one another without restrictions.

The let clause is just a simple way of defining a variable and assigning a value to it. The
variable just acts as a synonym for its value (which, of course, is a sequence obtained by any
convenient means, ranging from literals to complex queries). The f