
http://webdam.inria.fr/

Web Data Management

Serge Abiteboul Ioana Manolescu
INRIA Saclay & ENS Cachan INRIA Saclay & Paris-Sud University

Philippe Rigaux
CNAM Paris & INRIA Saclay

Marie-Christine Rousset Pierre Senellart
Grenoble University Télécom ParisTech

Copyright @2011 by Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset,
Pierre Senellart;

to be published by Cambridge University Press 2011. For personal use only, not for distribution.

http://webdam.inria.fr/Jorge/

http://webdam.inria.fr/
http://webdam.inria.fr/Jorge/

Contents

Introduction i

I Modeling Web Data 1

1 Data Model 3
1.1 Semistructured data . 3
1.2 XML . 6

1.2.1 XML documents . 6
1.2.2 Serialized and tree-based forms . 8
1.2.3 XML syntax . 9
1.2.4 Typing and namespaces . 13
1.2.5 To type or not to type . 14

1.3 Web Data Management with XML . 14
1.3.1 Data exchange . 15
1.3.2 Data integration . 16

1.4 The XML World . 16
1.4.1 XML dialects . 17
1.4.2 XML standards . 19

1.5 Further reading . 26
1.6 Exercises . 27

1.6.1 XML documents . 27
1.6.2 XML standards . 28

2 XPath and XQuery 31
2.1 Introduction . 31
2.2 Basics . 31

2.2.1 XPath and XQuery data model for documents 33
2.2.2 The XQuery model (continued) and sequences 35
2.2.3 Specifying paths in a tree: XPath . 37
2.2.4 A first glance at XQuery expressions . 38
2.2.5 XQuery vs XSLT . 39

2.3 XPath . 40
2.3.1 Steps and path expressions . 41
2.3.2 Evaluation of path expressions . 42
2.3.3 Generalities on axes and node tests . 44
2.3.4 Axes . 45
2.3.5 Node tests and abbreviations . 47
2.3.6 Predicates . 48
2.3.7 XPath 2.0 . 51

3

For personal use only, not for distribution. 4

2.4 FLWOR expressions in XQuery . 52
2.4.1 Defining variables: the for and let clauses 53
2.4.2 Filtering: the where clause . 55
2.4.3 The return clause . 55
2.4.4 Advanced features of XQuery . 57

2.5 XPath foundations . 58
2.5.1 A relational view of an XML tree . 59
2.5.2 Navigational XPath . 60
2.5.3 Evaluation . 61
2.5.4 Expressiveness and first-order logic . 62
2.5.5 Other XPath fragments . 63

2.6 Further reading . 63
2.7 Exercises . 65

3 Typing 69
3.1 Motivating Typing . 69
3.2 Automata . 71

3.2.1 Automata on Words . 72
3.2.2 Automata on Ranked Trees . 73
3.2.3 Unranked Trees . 74
3.2.4 Trees and Monadic Second-Order Logic 76

3.3 Schema Languages for XML . 77
3.3.1 Document Type Definitions . 77
3.3.2 XML Schema . 79
3.3.3 Other Schema Languages for XML . 82

3.4 Typing Graph Data . 84
3.4.1 Graph Semistructured Data . 84
3.4.2 Graph Bisimulation . 84
3.4.3 Data guides . 85

3.5 Further reading . 85
3.6 Exercises . 87

4 XML Query Evaluation 91
4.1 XML fragmentation . 92
4.2 XML identifiers . 95

4.2.1 Region-based identifiers . 96
4.2.2 Dewey-based identifiers . 97
4.2.3 Structural identifiers and updates . 99

4.3 XML evaluation techniques . 99
4.3.1 Structural join . 99
4.3.2 Optimizing structural join queries . 103
4.3.3 Holistic twig joins . 104

4.4 Further reading . 108
4.5 Exercises . 109

5 Putting into Practice: Managing an XML Database with EXIST 113
5.1 Pre-requisites . 113

For personal use only, not for distribution. 5

5.2 Installing EXIST . 113
5.3 Getting started with EXIST . 114
5.4 Running XPath and XQuery queries with the sandbox 116

5.4.1 XPath . 116
5.4.2 XQuery . 118
5.4.3 Complement: XPath and XQuery operators and functions 119

5.5 Programming with EXIST . 121
5.5.1 Using the XML:DB API with EXIST . 121
5.5.2 Accessing EXIST with Web Services . 121

5.6 Projects . 125
5.6.1 Getting started . 125
5.6.2 Shakespeare Opera Omnia . 125
5.6.3 MusicXML on line . 126

6 Putting into Practice: Tree Pattern Evaluation using SAX 129
6.1 Tree-pattern dialects . 129
6.2 CTP evaluation . 132
6.3 Extensions . 136

II Web Data Semantics and Integration 139

7 Ontologies, RDF, and OWL 141
7.1 Introduction . 141
7.2 Ontologies by example . 142
7.3 RDF, RDFS, and OWL . 145

7.3.1 Web resources, URI, namespaces . 146
7.3.2 RDF . 147
7.3.3 RDFS: RDF Schema . 149
7.3.4 OWL . 152

7.4 Ontologies and (Description) Logics . 156
7.4.1 Preliminaries: the DL jargon . 157
7.4.2 ALC: the prototypical DL . 160
7.4.3 Simple DLs for which reasoning is polynomial 163
7.4.4 The DL-LITE family: a good trade-off 164

7.5 Further reading . 165
7.6 Exercises . 167

8 Querying Data through Ontologies 169
8.1 Introduction . 169
8.2 Querying RDF data: notation and semantics 170
8.3 Querying through RDFS ontologies . 173
8.4 Answering queries through DL-LITE ontologies 176

8.4.1 DL-LITE . 176
8.4.2 Consistency checking . 179
8.4.3 Answer set evaluation . 184
8.4.4 Impact of combining DL-LITER and DL-LITEF on query answering . 188

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 6

8.5 Further reading . 189
8.6 Exercises . 190

9 Data Integration 193
9.1 Introduction . 193
9.2 Containment of conjunctive queries . 195
9.3 Global-as-view mediation . 197
9.4 Local-as-view mediation . 200

9.4.1 The Bucket algorithm . 202
9.4.2 The Minicon algorithm . 206
9.4.3 The Inverse-rules algorithm . 208
9.4.4 Discussion . 211

9.5 Ontology-based mediators . 211
9.5.1 Adding functionality constraints . 211
9.5.2 Query rewriting using views in DL-LITER 213

9.6 Peer-to-Peer Data Management Systems . 216
9.6.1 Answering queries using GLAV mappings is undecidable 217
9.6.2 Decentralized DL-LITER . 220

9.7 Further reading . 222
9.8 Exercices . 223

10 Putting into Practice: Wrappers and Data Extraction with XSLT 225
10.1 Extracting Data from Web Pages . 225
10.2 Restructuring Data . 228

11 Putting into Practice: Ontologies in Practice (by Fabian M. Suchanek) 231
11.1 Exploring and installing YAGO . 231
11.2 Querying YAGO . 232
11.3 Web access to ontologies . 233

11.3.1 Cool URIs . 233
11.3.2 Linked Data . 234

12 Putting into Practice: Mashups with YAHOO! PIPES and XProc 235
12.1 YAHOO! PIPES: A Graphical Mashup Editor . 235
12.2 XProc: An XML Pipeline Language . 236

III Building Web Scale Applications 239

13 Web search 241
13.1 The World Wide Web . 241
13.2 Parsing the Web . 244

13.2.1 Crawling the Web . 244
13.2.2 Text Preprocessing . 248

13.3 Web Information Retrieval . 250
13.3.1 Inverted Files . 251
13.3.2 Answering Keyword Queries . 254
13.3.3 Large-scale Indexing with Inverted Files 257

For personal use only, not for distribution. 7

13.3.4 Clustering . 263
13.3.5 Beyond Classical IR . 265

13.4 Web Graph Mining . 265
13.4.1 PageRank . 266
13.4.2 HITS . 270
13.4.3 Spamdexing . 271
13.4.4 Discovering Communities on the Web 272

13.5 Hot Topics in Web Search . 273
13.6 Further Reading . 274
13.7 Exercises . 276

14 An Introduction to Distributed Systems 281
14.1 Basics of distributed systems . 281

14.1.1 Networking infrastructures . 282
14.1.2 Performance of a distributed storage system 283
14.1.3 Data replication and consistency . 286

14.2 Failure management . 288
14.2.1 Failure recovery . 289
14.2.2 Distributed transactions . 290

14.3 Required properties of a distributed system . 292
14.3.1 Reliability . 292
14.3.2 Scalability . 293
14.3.3 Availability . 294
14.3.4 Efficiency . 295
14.3.5 Putting everything together: the CAP theorem 295

14.4 Particularities of P2P networks . 296
14.5 Case study: a Distributed File System for very large files 298

14.5.1 Large scale file system . 298
14.5.2 Architecture . 299
14.5.3 Failure handling . 300

14.6 Further reading . 301

15 Distributed Access Structures 303
15.1 Hash-based structures . 303

15.1.1 Distributed Linear Hashing . 306
15.1.2 Consistent Hashing . 310
15.1.3 Case study: CHORD . 313

15.2 Distributed indexing: Search Trees . 317
15.2.1 Design issues . 317
15.2.2 Case study: BATON . 319
15.2.3 Case Study: BIGTABLE . 323

15.3 Further reading . 328
15.4 Exercises . 329

16 Distributed Computing with MAPREDUCE and PIG 331
16.1 MAPREDUCE . 333

16.1.1 Programming model . 333

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 8

16.1.2 The programming environment . 335
16.1.3 MAPREDUCE internals . 339

16.2 PIG . 340
16.2.1 A simple session . 340
16.2.2 The data model . 343
16.2.3 The operators . 344
16.2.4 Using MAPREDUCE to optimize PIG programs 347

16.3 Further reading . 350
16.4 Exercises . 351

17 Putting into Practice: Full-Text Indexing with LUCENE (by Nicolas Travers) 355
17.1 Preliminary: a LUCENE sandbox . 355
17.2 Indexing plain-text with LUCENE – A full example 356

17.2.1 The main program . 356
17.2.2 Create the Index . 357
17.2.3 Adding documents . 358
17.2.4 Searching the index . 359
17.2.5 LUCENE querying syntax . 360

17.3 Put it into practice! . 361
17.3.1 Indexing a directory content . 361
17.3.2 Web site indexing (project) . 362

17.4 LUCENE – Tuning the scoring (project) . 362

18 Putting into Practice: Recommendation Methodologies (by Alban Galland) 365
18.1 Introduction to recommendation systems . 365
18.2 Pre-requisites . 366
18.3 Data analysis . 368
18.4 Generating some recommendations . 370

18.4.1 Global recommendation . 370
18.4.2 User-based collaborative filtering . 371
18.4.3 Item-based collaborative filtering . 374

18.5 Projects . 374
18.5.1 Scaling . 375
18.5.2 The probabilistic way . 375
18.5.3 Improving recommendation . 375

19 Putting into Practice: Large-Scale Data Management with HADOOP 377
19.1 Installing and running HADOOP . 377
19.2 Running MAPREDUCE jobs . 380
19.3 PIGLATIN scripts . 384
19.4 Running in cluster mode (optional) . 384

19.4.1 Configuring HADOOP in cluster mode 385
19.4.2 Starting, stopping and managing HADOOP 386

19.5 Exercises . 386

For personal use only, not for distribution. 9

20 Putting into Practice: COUCHDB, a JSON Semi-Structured Database 389
20.1 Introduction to the COUCHDB document database 389

20.1.1 JSON, a lightweight semi-structured format 390
20.1.2 COUCHDB, architecture and principles 392
20.1.3 Preliminaries: set up your COUCHDB environment 394
20.1.4 Adding data . 395
20.1.5 Views . 397
20.1.6 Querying views . 399
20.1.7 Distribution strategies: master-master, master-slave and shared-nothing 400

20.2 Putting COUCHDB into Practice! . 402
20.2.1 Exercises . 402
20.2.2 Project: build a distributed bibliographic database with COUCHDB . . 403

20.3 Further reading . 404

References 409

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

Introduction

Like all men of the Library, I have
wandered in search of a book,
perhaps the catalogue of catalogues.

(The Library of Babel, Jorge Luis
Borges)

Internet and the Web have revolutionized access to information. Individuals are more and
more depending on the Web where they find or publish information, download music and
movies, or interact with friends in social networking Websites. Following a parallel trend,
companies go more and more towards Web solutions in their daily activity by using Web
services (e.g., agenda) as well as by moving some applications into the cloud (e.g., with
Amazon Web services). The growth of this immense information source is witnessed by
the number of newly connected people, by the interactions among them facilitated by the
social networking platforms, and above all by the huge amount of data covering all aspects
of human activity. With the Web, information has moved from data isolated in very protected
islands (typically relational databases) to information freely available to any machine or any
individual connected to the Internet.

Perhaps the best illustration comes from a typical modern Web user. She has information
stored on PCs, a personal laptop, and a professional computer, but also possibly at some server
at work, on her smartphone, an e-book, etc. Also, she maintains information in personal
Web sites or social network Web sites. She may store pictures in Picasa, movies in YouTube,
bookmarks in Firefox Sync, etc. So, even an individual is now facing the management of a
complex distributed collection of data. At a different scale, public or private organizations
also have to deal with information produced and stored in different places, or collected on
the Web, either as a side effect of their activity (e.g., world-wide e-commerce or auction sites)
or because they directly attempt at understanding, organizing and analyzing data collected
on the Web (e.g., search engines, digital libraries, or Web intelligence companies).

As a consequence, a major trend in the evolution of data management concepts, methods,
and techniques is their increasing focus on distribution concerns: since information now
mostly resides in the network, so do the tools that process this information to make sense
of it. Consider for instance the management of internal reports in a company. Typically,
many collections of reports may be maintained in different local branches. To offer a unique
company-wide query access to the global collection, one has to integrate these different
collections. This leads to data management within a wide area network. Because of slow
communications, the company may prefer to maintain such a large collection in a unique
central repository. (This is not always possible for organizational reasons.) If the collection
is a massive data set, it may rapidly outrange the capacity of a single computer. One may
then choose to distribute the collection locally on a cluster of machines. Indeed, one may even
prefer this solution simply because buying a cluster of cheap computers may be much cheaper
than buying a single high-end machine with the same throughput than the cluster. This leads
to data management within a local area network, with very fast communication. An extreme

i

For personal use only, not for distribution. ii

example that combines both aspects is Web search: the global collection is distributed on a
wide area network (all documents on the Web) and the index is maintained on a local area
network (e.g., a Google farm).

The use of global-area-network distribution is typical for Web data: data relevant for a
particular application may come from a large number of Web servers. Local-area-network
distribution is also typical because of scalability challenges raised by the quantity of relevant
data as well as the number of users and query load. Mastering the challenges open by data
distribution is the key to handle Web-scale data management.

Motivation for the book

Distributed data management is not a new idea. Research labs and database companies have
tackled the problem for decades. Since System R* or SDD-1, a number of distributed database
systems have been developed with major technical achievements. There exist for instance
very sophisticated tools for distributed transaction processing or parallel query processing.
The main achievements in this context have been complex algorithms, notably for concurrency
control (e.g., commit protocols), and global query processing through localization.

Popular software tools in this area are ETLs (for extract, transform, and load). To support
performance needs, data is imported using ETLs from operational databases into warehouses
and replicated there for local processing, (e.g., OLAP or on-line analytical processing). Al-
though a lot of techniques have been developed for propagating updates to the warehouse,
this is much less used. Data in warehouses are refreshed periodically, possibly using synchro-
nization techniques in the style of that used for version control systems.

With the Web, the need for distributed data management has widely increased. Also,
with Web standards and notably standards for Web services, the management of distributed
information has been greatly simplified. For example, the simple task of making a database
available on the network that was typically requiring hours with platforms such as Corba,
can now be achieved in minutes. The software that is needed is widely available and often
with free licenses. This is bringing back to light distributed data management.

The ambition of this book is to cover the many facets of distributed data management on
the Web. We will explain the foundations of the Web standard for data management, XML.
We will travel in logical countries (e.g., description logic), that provide foundations for the
Semantic Web that is emerging in modern data integration applications. We will show the
beauty of software tools that everyone is already using today, for example Web search engines.
And finally, we will explain the impressive machinery used nowadays to manipulate amount
of data of unprecedented size.

We are witnessing an emergence of a new, global information system created, explored,
and shared by the whole humankind. The book aims at exposing the recent achievements
that help make this system usable.

Scope and organization of the book

Databases are a fantastic playground where theory and systems meet. The foundations of
relational databases was first-order logic and at the same time, relational systems are among
the most popular software systems ever designed. In this book, theory and systems will also
meet. We will encounter deep theory (e.g., logics for describing knowledge, automata for

For personal use only, not for distribution. iii

typing trees). We will also describe elegant algorithms and data structures such as PageRank
or Distributed Hash Tables. We believe that all these aspects are needed to grasp the reality of
Web data management.

We present this material in different core chapters that form, in our opinion, the principles
of the topic. They include exercises and notes for further reading. We also see as essential to
put this material into practice, so that it does not remain too abstract. This is realized in PiP
(for Putting into Practice) chapters. For instance, after we present the abstract model for XML
in core chapters, we propose a PiP for XML APIs (Application Programming Interfaces for
XML), and one for EXIST (an Open Source XML database). The approach is followed for the
other topics addressed by the book. Our main concern is to deliver a content that reaches a
good balance between the conceptual aspects that help make sense of the often unstructured,
heterogeneous and distributed content of the Web, and the practical tools that let practitioners
acquire a concrete experience. Also, because software or environments typically evolve faster
than core material, the PiP chapters are complemented by teaching material that can be found
in a Web site.

The book is organized in three parts. The first part covers Web data modeling and repre-
sentation, the second is devoted to semantic issues, and the last one delves into the low levels
of Web scale data handling systems. We next detail these three parts.

Part I: Modeling Web Data

The HTML Web is a fantastic means of sharing information. But, HTML is fully oriented
toward visual presentation and keyword search, which makes it appropriate for humans
but much less for accesses by software applications. This motivated the introduction of a
semistructured data model, namely XML, that is well suited both for humans and machines.
XML describes content, and promotes machine-to-machine communication and data exchange.
XML is a generic data exchange format that can be easily specialized to meet the needs of a
wide range of data usages.

Because XML is a universal format for data exchange, systems can easily exchange informa-
tion in a wide variety of fields, from bioinformatics to e-commerce. This universality is also
essential to facilitate data integration. A main advantage (compared to previous exchange
formats) is that the language comes equipped with an array of available software tools such as
parsers, programming interfaces and manipulation languages that facilitate the development
of XML-based applications. Last but not least, the standard for distributed computation over
the Internet is based on Web services and on the exchange XML data.

This part proposes a wide but concise picture of the state-of-the-art languages and tools
that constitute the XML world. We do not provide a comprehensive view of the specifications,
but rather explain the main mechanisms and what are the rationales behind the specifications.
After reading this part, the reader should be familiar enough with the semistructured data
approach to understand its foundations and be able to pick up the appropriate tools when
needed.

Part II: Web data Semantics and Integration

On the Web, given a particular need, it may be difficult to find a resource that is relevant to
it. Also, given a relevant resource, it is not easy to understand what it provides and how to
use it. To solve such limitations and facilitate interoperability, the Semantic Web vision has

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. iv

been proposed. The key idea is to also publish semantic descriptions of Web resources. These
descriptions rely on semantic annotations, typically on logical assertions that relate resources
to some terms in predefined ontologies.

An ontology is a formal description providing human users or machines a shared under-
standing of a given domain. Because of the logic inside, one can reason with ontologies,
which is key tool for integrating different data sources, providing more precise answers, or
(semi automatically) discovering and using new relevant resources.

In this part, we describe the main concepts of the semantic Web. The goal is to familiarize
the reader with ontologies: what they are, how to use them for query answering, how to use
them for data integration.

Part III: Building Web Scale Applications

At this stage of the book, we know how to exchange data and how to publish and understand
semantics for this data. We are now facing the possibly huge scale of Web data. We will
present main techniques and algorithms that have been developed for scaling to huge volumes
of information and huge query rate. The few numbers that one may want to keep in mind are
billions of Web documents, millions of Web servers, billions of queries per month for a top
Web search engine, and a constant scale-up of these figures. Even a much smaller operation
such as a company wide center, may have to store millions of documents and serve millions
of queries.

How do you design software for that scale?
We will describe the basics of full-text search in general, and Web search in particular.

Indexing is at the core of Web search and distributed data access. We will consider how
to index huge collections in a distributed manner. We will also present specific techniques
developed for large scale distributed computing.

This part puts an emphasis on existing systems, taken as illustrative examples of more
generic techniques. Our approach to explain distributed indexing techniques for instance
starts from the standard centralized case, explains the issues raised by distribution, and shows
how these issues have been tackled in some of most prominent systems. Because many of
these technologies have been implemented in Open Source platforms, they also form the
basis of the PiP chapters proposed in this part.

Intended audience

The book is meant as an introduction to the fascinating area of data management on the Web.
It can serve as the material for a master course. Some of it may also be used in undergraduate
courses. Indeed, material of the book has already been tested, both at the undergraduate and
graduate levels. The PiPs are meant to be the basis of labs or projects. Most of the material
deals with well-established concepts, languages, algorithms and tools. Occasionally, we
included more speculative material issued from ongoing research dedicated to the emergence
of this vision. This is to better illustrate important concepts we wanted to highlight. The
book’s content can thus also serve as an academic introduction to research issues regarding
Web data management.

Among other viewpoints, one can view the Web as a very large library. In our travel within
Web territories, we will be accompanied by a librarian, Jorge. This is in homage to Jorge Luis

For personal use only, not for distribution. v

Borges whose short story The Library of Babel introduces a library preserving the whole human
knowledge.

Companion Web site

A companion Web site for this book, available at http://webdam.inria.fr/Jorge/,
contains electronic versions of this book, as well as additional materials (extra chapters,
exercise solutions, lecture slides, etc.) pertaining to Web data management. In particular, all
examples, data sets, or software used in the PiP chapters are available there.

Acknowledgments

We would like to thank the following people who helped us to collect, organize and improve
the content of this book: Stanislav Barton (Internet Memory Foundation), Michael Benedikt
(Oxford Univ.), Véronique Benzaken (Univ. Paris-Sud), Balder ten Cate (UCSC), Irini Fundu-
laki (FORTH Institute), Alban Galland (INRIA Saclay), David Gross-Amblard (INRIA Saclay),
Fran cois Goasdoué (Univ. Paris-Sud), Fabrice Jouanot (Univ. Grenoble), Pekka Kilpeläinen
(Univ. of Eastern Finland), Witold Litwin (Univ. Paris-Dauphine), Laurent d’Orazio (Univ.
Clermont-Ferrand), Fabian Suchanek (INRIA Saclay), Nicolas Travers (CNAM).

We are also grateful to the students at CNAM, ENS Cachan, Grenoble, Paris-Sud, or
Télćom ParisTech who followed portions of this course and helped, by their questions and
comments, improving it.

This book has been developed as part of the Webdam
project. The Webdam project is funded by the European
Research Council under the European Community’s Sev-
enth Framework Programme (FP7/2007–2013), ERC grant
Webdam, agreement 226513.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://webdam.inria.fr/Jorge/

Part I

Modeling Web Data
A tree’s a tree. How many more do
you need to look at?

(Ronald Reagan)

1

1 Data Model

The Web is a media of primary interest for companies who change their organization to place
it at the core of their operation. It is an easy but boring task to list areas where the Web
can be usefully leveraged to improve the functionalities of existing systems. One can cite in
particular B2B and B2C (business to business or business to customer) applications, G2B and
G2C (government to business or government to customer) applications or digital libraries.
Such applications typically require some form of typing to represent data because they consist
of programs that deal with HTML text with difficulties. Exchange and exploitation of business
information call as well for a more powerful Web data management approach.

This motivated the introduction of a semistructured data model, namely XML, that is well
suited both for humans and machines. XML describes content and promotes machine-to-
machine communication and data exchange. The design of XML relies on two major goals.
First it is designed as a generic data format, apt to be specialized for a wide range of data
usages. In the XML world for instance, XHTML is seen as a specialized XML dialect for data
presentation by Web browsers. Second XML “documents” are meant to be easily and safely
transmitted on the Internet, by including in particular a self-description of their encoding
and content.

XML is the language of choice for a generic, scalable, and expressive management of Web
data. In this perspective, the visual information between humans enabled by HTML is just
a very specific instance of a more general data exchange mechanism. HTML also permits
a limited integrated presentation of various Web sources (see any Web portal for instance).
Leveraging these capabilities to software-based information processing and distributed man-
agement of data just turns out to be a natural extension of the initial Web vision.

The chapter first sketches the main traits of semistructured data models. Then we delve
into XML and the world of Web standards around XML.

1.1 Semistructured data

A semistructured data model is based on an organization of data in labeled trees (possibly
graphs) and on query languages for accessing and updating data. The labels capture the
structural information. Since these models are considered in the context of data exchange,
they typically propose some form of data serialization (i.e., a standard representation of data
in files). Indeed, the most successful such model, namely XML, is often confused with its
serialization syntax.

Semistructured data models are meant to represent information from very structured to
very unstructured kinds, and, in particular, irregular data. In a structured data model such
as the relational model, one distinguishes between the type of the data (schema in relational
terminology) and the data itself (instance in relational terminology). In semistructured data
models, this distinction is blurred. One sometimes speaks of schema-less data although it
is more appropriate to speak of self-describing data. Semistructured data may possibly be

3

For personal use only, not for distribution. 4

Alan

name

7786

tel

agg@abc.com

email name

Alan

first

Black

last

7786

tel

agg@abc.com

email

Figure 1.1: Tree representation, with labels on edges

typed. For instance, tree automata have been considered for typing XML (see Chapter 3).
However, semistructured data applications typically use very flexible and tolerant typing;
sometimes no typing at all.

We next present informally a standard semistructured data model. We start with an idea
familiar to Lisp programmers of association lists, which are nothing more than label-value
pairs and are used to represent record-like or tuple-like structures:

{name: "Alan", tel: 2157786, email: "agb@abc.com"}

This is simply a set of pairs such as (name, "Alan") consisting of a label and a value. The
values may themselves be other structures as in

{name: {first: "Alan", last: "Black"},
tel: 2157786,
email: "agb@abc.com"}

We may represent this data graphically as a tree. See, for instance, Figures 1.1 and 1.2. In
Figure 1.1, the label structure is captured by tree edges, whereas data values reside at leaves.
In Figure 1.2, the second, all information resides in the vertices.

Such representations suggest departing from the usual assumption made about tuples or
association lists that the labels are unique, and we allow duplicate labels as in

{name: "Alan", tel: 2157786, tel: 2498762 }

name

Alan

tel

7786

email

agg@abc.com

name

first

Alan

last

Black

tel

7786

email

agg@abc.com

Figure 1.2: Tree representation, with labels as nodes

The syntax makes it easy to describe sets of tuples as in

For personal use only, not for distribution. 5

entry

name

fn

Jean

ln

Doe

work

INRIA address

city

Cachan

zip

94235

email

j@inria.fr

purpose

like to teach

Figure 1.3: An XML document

{ person: {name: "Alan", phone: 3127786, email: "alan@abc.com"},
person: {name: "Sara", phone: 2136877, email: "sara@xyz.edu"},
person: {name: "Fred", phone: 7786312, email: "fd@ac.uk"} }

Furthermore, one of the main strengths of semistructured data is its ability to accommodate
variations in structure (e.g., all the Person tuples do not need to have the same type).
The variations typically consist of missing data, duplicated fields, or minor changes in
representation, as in the following example:

{person: {name: "Alan", phone: 3127786, email: "agg@abc.com"},
person: &314

{name: {first: "Sara", last: "Green" },
phone: 2136877,
email: "sara@math.xyz.edu",
spouse: &443 },

person: &443
{name: "Fred", Phone: 7786312, Height: 183,
spouse: &314 }}

Observe how identifiers (here &443 and &314) and references are used to represent graph
data. It should be obvious by now that a wide range of data structures, including those of the
relational and object database models, can be described with this format.

As already mentioned, in semistructured data, we make the conscious decision of possibly
not caring about the type the data might have and serialize it by annotating each data item
explicitly with its description (such as name, phone, etc.). Such data is called self-describing.
The term “serialization” means converting the data into a byte stream that can be easily
transmitted and reconstructed at the receiver. Of course, self-describing data wastes space,
since we need to repeat these descriptions with each data item, but we gain interoperability,
which is crucial in the Web context.

There have been different proposals for semistructured data models. They differ in choices
such as: labels on nodes vs. on edges, trees vs. graphs, ordered trees vs. unordered trees. Most
importantly, they differ in the languages they offer. Two quite popular models (at the time of
writing) are XML, a de facto standard for exchanging data of any kind, and JSON (“Javascript
Object Notation”), an object serialization format mostly used in programming environments.
We next focus on XML, an introduction to JSON being given in Chapter 20.3.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 6

1.2 XML

XML, the Extensible Markup Language, is a semistructured data model that has been pro-
posed as the standard for data exchange on the Web. It is a simplified version of SGML (ISO
8879). XML meets the requirements of a flexible, generic, and platform-independent language,
as presented earlier. Any XML document can be serialized with a normalized encoding, for
storage or transmission on the Internet.

Remark 1.2.1 It is well-established to use the term “XML document” to denote a hierar-
chically structured content represented with XML conventions. Although we adopt this
standard terminology, please keep in mind that by “document” we mean both the content
and its structure, but not their specific representation which may take many forms. Also
note that “document” is reminiscent of the SGML application area, which mostly focuses
on representating technical documentation. An XML document is not restricted to textual,
human-readable data, and can actually represent any kind of information, including images,
of references to other data sources.

XML is a standard for representing data but it is also a family of standards (some in
progress) for the management of information at a world scale: XLink, XPointer, XML Schema,
DOM, SAX, XPath, XSL, XQuery, SOAP, WSDL, and so forth.

1.2.1 XML documents

An XML document is a labeled, unranked, ordered tree:

Labeled means that some annotation, the label, is attached to each node.

Unranked means that there is no a priori bound on the number of children of a node.

Ordered means that there is an order between the children of each node.

The document of Figure 1.3 can be serialized as follows:

<entry><name><fn>Jean</fn><ln>Doe</ln></name>INRIA<adress><city>
Cachan</city><zip>94235</zip></adress><email>j@inria.fr</email>
</job><purpose>like to teach</purpose></entry>

or with some beautification as

<entry>
<name>

<fn>Jean</fn>
<ln>Doe</ln> </name>

<work>
INRIA
<adress>

<city>Cachan</city>
<zip>94235</zip> </adress>

<email>j@inria.fr</email> </work>
<purpose>like to teach</purpose>

</entry>

For personal use only, not for distribution. 7

In this serialization, the data corresponding to the subtree with root labeled (e.g., work), is
represented by a subword delimited by an opening tag <work> and a closing tag </work>.
One should never forget that this is just a serialization. The conceptual (and mathematical)
view of an XML document is that it is a labeled, unranked, ordered tree.

XML specifies a “syntax” and no a priori semantics. So, it specifies the content of a
document but not its behavior or how it should be processed. The labels have no predefined
meaning unlike in HTLM, where, for example, the label href indicates a reference and img
an image. Clearly, the labels will be assigned meaning by applications.

In HTML, one uses a predefined (finite) set of labels that are meant primarily for document
presentation. For instance, consider the following HTML document:

<h1> Bibliography </h1>
<p> < i> Foundations of Databases </ i>

Abiteboul, Hull, Vianu

 Addison Wesley, 1995 </p>

<p> < i> Data on the Web </ i>
Abiteboul, Buneman, Suciu

 Morgan Kaufmann, 1999 </p>

where <h1> indicates a title, <p> a paragraph, <i> italics and
 a line break (
 is
both an opening and a closing tag, gathered in a concise syntax equivalent to
</br>).
Observe that this is in fact an XML document; more precisely this text is in a particular XML
dialect, called XHTML. (HTML is more tolerant and would, for instance, allow omitting the
</p> closing tags.)

The presentation of that HTML document by a classical browser can be found in Figure 1.4.
The layout of the document depends closely on the interpretation of these labels by the
browser. One would like to use different layouts depending on the usage (e.g., for a mobile
phone or for blind people). A solution for this is to separate the content of the document and
its layout so that one can generate different layouts based on the actual software that is used
to present the document. Indeed, early on, Tim Berners-Lee (the creator of HTML) advocated
the need for a language that would go beyond HTML and distinguish between content and
presentation.

The same bibliographical information is found, for instance, in the following XML docu-
ment:

<bibliography>
<book>

<title> Foundations of Databases </title>
<author> Abiteboul </author> <author> Hull </author>
<author> Vianu </author>
<publisher> Addison Wesley </publisher>
<year> 1995 </year> </book>

<book>...</book>
</bibliography>

Observe that it does not include any indication of presentation. There is a need for a
stylesheet (providing transformation rules) to obtain a decent presentation such as that of the
HTML document. On the other hand, with different stylesheets, one can obtain documents for

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 8

several media (e.g., also for PDF). Also, the tags produce some semantic information that can
be used by applications, (e.g., Addison Wesley is the publisher of the book). Such tag information
turns out to be useful for instance to support more precise search than that provided by Web
browser or to integrate information from various sources.

Figure 1.4: HTML presentation

The separation between content and presentation already exists in a precursor of XML,
namely SGML. In SGML, the labels are used to describe the structure of the content and
not the presentation. SGML was already quite popular at the time XML was proposed, in
particular for technical documentation (e.g., Airbus documentation). However, SGML is
unnecessarily complicated, in particular with features found in complex document models
(such as footnote). XML is much simpler. Like SGML, it is a metalanguage in that it is always
possible to introduce new tags.

1.2.2 Serialized and tree-based forms

An XML document must always be interpreted as a tree. However the tree may be represented
in several forms, all equivalent (i.e., there exists a mapping from one form to another) but
quite different with respect to their use. All the representations belong to one of the following
category:

• serialized forms, which are textual, linear representations of the tree that conform to a
(sometimes complicated) syntax;

• tree-based forms, which implement, in a specific context (e.g., object-oriented models),
the abstract tree representation.

Both categories cover many possible variants. The syntax of the serialized form makes
it possible to organize “physically” an XML document in many ways, whereas tree-based
forms depend on the specific paradigm and/or technique used for the manipulation of the
document. A basic pre-requisite of XML data manipulation is to know the main features of
the serialized and tree-based representation, and to understand the mapping that transforms
one form to another.

For personal use only, not for distribution. 9

Figure 1.5 shows the steps typically involved in the processing of an XML document
(say, for instance, editing the document). Initially, the document is most often obtained
in serialized form, either because it is stored in a file or a database, or because it comes
from another application. The parser transforms the serialized representation to a tree-based
representation, which is conveniently used to process the document content. Once the
application task is finished, another, complementary module, the serializer, transforms the
tree-based representation of the possibly modified document into one of its possible serialized
forms.

serialized

form

serialized

form

Application
parser serializer

tree form

Figure 1.5: Typical processing of XML data

Stricly speaking, the syntax of XML relates to its serialized representation. The syntax can
be normalized because a serialized document is meant for data exchange in an heterogeneous
environment, and must, therefore, be completely independent from a specific context. The
tree-based representation is more strongly associated with the application that processes the
document, and in particular to the programming language.

We provide a presentation of the XML syntax that covers the main aspects of the serialized
representation of an XML document and show their couterpart in terms of a tree-based
representation. The serialized syntax is defined by the World Wide Web Consortium (W3C)
and can be found in the XML 1.0 recommendation. Since the full syntax of XML is rather
complex and contains many technical detail that do not bring much to the understanding
of the model, the reader is referred to this recommendation for a complete coverage of the
standard (see the last section).

For the tree-based representation, we adopt the DOM (Document Object Model), also
standardized by the W3C, which defines a common framework for the manipulation of
documents in an object-oriented context. Actually we only consider the aspects of the
model that suffice to cover the tree representation of XML documents and illustrate the
transformation from the serialized form to the tree form, back and forth. The DOM model is
also convenient to explain the semantics of the XPath, XSLT and XQuery languages, presented
in the next chapters.

1.2.3 XML syntax

Four examples of XML documents (separated by blank lines) are:

<document/>

Document 1

<document>
Hello World!

</document>

Document 2

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 10

<document>
<salutation>

Hello World!
</salutation>

</document>

Document 3

<?xml version="1.0"
encoding="utf-8" ?>

<document>
<salutation color="blue">
Hello World!

</salutation>
</document>

Document 4

In the last one, the first line starting with <?xml is the prologue. It provides indications such
as the version of XML that is used, the particular coding, possibly indications of external
resources that are needed to construct the document.

Elements and text

The basic components of an XML document are element and text. The text (e.g., Hello World!),
is in UNICODE. Thus texts in virtually all alphabets, including, for example, Latin, Hebrew,
or Chinese, can be represented. An element is of the form

<name attr=’value’ ...> content </name>

where <name> is the opening tag and </name> the closing tag.
The content of an element is a list of text or (sub) elements (and gadgets such as comments).

A simple and very common pattern is a combination of an element and a textual content. In
the serialized form, the combination appears as

<elt_name>
Textual content

</elt_name>

The equivalent tree-based representation consists of two nodes, one that corresponds to
the structure marked by the opening and closing tags, and the second, child of the first,
which corresponds to the textual content. In the DOM, these nodes are typed, and the tree is
represented as follows:

Element
elt_name

Text
Text 2

The Element nodes are the internal nodes of a DOM representation. They represent the
hierarchical structure of the document. An Element node has a name, which is the label of the

For personal use only, not for distribution. 11

corresponding tag in the serialized form. The second type of node illustrated by this example
is a Text node. Text nodes do not have a name, but a value which is a non structured character
string.

The nesting of tags in the serialized representation is represented by a parent-child relation-
ship in the tree-based representation. The following is a slight modification of the previous
examples which shows a nested serialized representation (on the left) and its equivalent
tree-based representation (on the right) as a hierarchical organization with two Element
nodes and two Text nodes.

<elt1>
Content 1
<elt2>

Content 2
</elt2>

</elt1>

Element
elt1

Text
Content 1

Element
elt2

Text
Content 2

Attributes

The opening tag may include a list of (name,value) pairs called attributes as in:

<report language=’fr’ date=’08/07/07’>

Two pairs of attributes for the same element are not allowed to have the same attribute name.
Major differences between the content and the attributes of a given element are that (i)

the content is ordered whereas the attributes are not and (ii) the content may contain some
complex subtrees whereas the attribute value is atomic.

Attributes appear either as pairs of name/value in opening tag in the serialized form, or
as special child nodes of the Element node in the tree-based (DOM) representation. The
following example shows an XML fragment in serialized form and its counterpart in tree-
based form. Note that Attr nodes have both a name and a value.

<elt att1=’12’ att2=’fr’>
Text1

</elt>

Element
elt1

Attr.
att1: ’12’

Attr.
att2: ’fr’

Text
Text1

Attribute can store content, just as Text nodes. In the previous example, the textual content
could just be represented as an attribute of the elt element, and conversely attributes could

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 12

be represented as child elements with a textual content. This gives rise to some freedom
to organize the content of an XML document and adds some complexity to the tree-based
representation.

Well-formed XML document

An XML document must correctly represent a tree. There exist in a document one and only
one element that contains all the others (called the root element). An element that is not the
root is totally included in its parent. More generally, the tags must close in the opposite order
they have been opened. One says of such a document that it is well-formed. For instance, <a>
 is well-formed and <a> is not.

The serialized form often (but not always) begins with the prologue; independently of the
existence or not of a prologue, the tree-based representation of an XML document has for
root a Document node. This node has a unique Element child, which is the root element of the
document. The following examples illustrates the situation.

<?xml version="1.0"
encoding="utf-8" ?>

<elt>
Document content.

</elt>

Document

Element
elt

Text
Document Content

There may be other syntactic objects after the prologue (for instance, processing instruc-
tions), which become children of the Document node in the tree representation.

The Document node is the root of the document, which must be distinguished from the root
element, its only element child. This somehow misleading vocabulary is part of the price to
pay in order to master the XML data model.

An important notion (related to the physical nature of a document and not to its logical
structure) is the notion of entity. Examples of entities are as follows:

<!ENTITY chap1 "Chapter 1: to be written">
<!ENTITY chap2 SYSTEM "chap2.xml">
<report> &chap1; &chap2 </report>

The content of an entity may be found in the document (as entity chap1), in the local system
(as for chap2) or on the Web (with a URI). The content of an entity can be XML. In this
case, the document is logically equivalent to the document obtained by replacing the entity
references (e.g., &chap1; &chap2) by their content. The content of the entity may also be
in some other format (e.g., Jpeg). In such case, the entity is not parsed and treated as an
attachment.

Remark 1.2.2 (Details)

For personal use only, not for distribution. 13

1. An empty element <name></name> may alternatively be denoted <name/>.

2. An element or attribute name is a sequence of alphanumeric and other allowed symbols
that must start with an alphanumeric symbols (or an underscore).

3. The value of attribute is a string with certain limitations.

4. An element may also contain comments and processing instructions.

1.2.4 Typing and namespaces

XML documents need not typed. They may be. The first kind of typing mechanism originally
introduced for XML is DTDs, for Document Type Definitions. DTDs are still quite often used.
We will study in Chapter 3 XML schema, which is more powerful and is becoming more
standard, notably because it is used in Web services.

An XML document including a type definition is as follows:

<?xml version="1.0" standalone="yes" ?>
<!-- This is a comment - Example of a DTD -->
<!DOCTYPE email [

<!ELEMENT email (header, body)>
<!ELEMENT header (from, to, cc?)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT cc (#PCDATA)>
<!ELEMENT body (paragraph*) >
<!ELEMENT paragraph (#PCDATA)>

<email>
<header>

<from> af@abc.com </from>
<to> zd@ugh.com </to>

</header>
<body>
</body>

</email>

The DOCTYPE clause declares the type for this document. Such a type declaration is not
compulsory. Ignoring the details of this weird syntax, this is stating, for instance, that a
header is composed of a from element, a to one, and possibly a cc one, that a body
consists of a list of paragraphs, and finally that a paragraph is a string.

In general, the list of children for a given element name is described using a regular
expression in BNF specified for that element.

A most important notion is also that of namespace. Consider a label such as job. It
denotes different notions for a hiring agency or for a (computer) application service provider.
Applications should not confuse the two notions. The notion of namespace is used to
distinguish them. More precisely, consider the following XML piece of data:

<doc xmlns:hire=’http://a.hire.com/schema’
xmlns:asp=’http://b.asp.com/schema’ >

...

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 14

<hire:job> ... </hire:job> ...
<asp:job> ... </asp:job> ...
</doc>

The hire namespace is linked to a schema, and the asp to another one. One can now mix
the two vocabularies inside the same document in spite of their overlap.

XML also provides some referencing mechanisms that we will ignore for now.
When a type declaration is present, the document must conform to the type. This may, for

instance, be verified by an application receiving a document before actually processing it. If a
well-formed document conforms to the type declaration (if present), we say that it is valid (for
this type).

1.2.5 To type or not to type

The structure of an XML document is included in the document in its label structure. As
already mentioned, one speaks of self-describing data. This is an essential difference with
standard databases:

In a database, one defines the type of data (e.g., a relational schema) before creating
instances of this type (e.g., a relational database). In semistructured data (and XML), data
may exist with or without a type.

The “may” (in may exist) is essential. Types are not forbidden; they are just not compulsory
and we will spend quite some effort on XML typing. But in many cases, XML data often
presents the following characteristics:

1. the data are irregular: there may be variations of structure to represent the same
information (e.g., a date or an address) or unit (prices in dollars or euros); this is
typically the case when the data come from many sources;

2. parts of the data may be missing, for example, because some sources are not answering,
or some unexpected extra data (e.g., annotations) may be found;

3. the structure of the data is not known a priori or some work such as parsing has to be
performed to discover it (e.g., because the data come from a newly discovered source);

4. part of the data may be simply untyped, (e.g., plain text).

Another differences with database typing is that the type of some data may be quite
complex. In some extreme cases, the size of the type specification may be comparable to, or
even greater than, the size of the data itself. It may also evolve very rapidly. These are many
reasons why the relational or object database models that propose too rigid typing were not
chosen as standards for data exchange on the Web, but a semistructured data model was
chosen instead.

1.3 Web Data Management with XML

XML is a very flexible language, designed to represent contents independently from a specific
system or a specific application. These features make it the candidate of choice for data
management on the Web.

For personal use only, not for distribution. 15

Speaking briefly, XML enables data exchange and data integration, and it does so universally
for (almost) all the possible application realms, ranging from business information to images,
music, biological data, and the like. We begin with two simple scenarios showing typical
distributed applications based on XML that exploit exchange and integration.

1.3.1 Data exchange

The typical flow of information during XML-based data exchange is illustrated on Figure 1.6.
Application A manages some internal data, using some specialized data management soft-
ware, (e.g., a relational DBMS). Exchanging these data with another application B can be
motivated either for publication purposes, or for requiring from B some specialized data
processing. The former case is typical of web publishing frameworks, where A is a web server
and B a web client (browser, mobile phone, PDF viewer, etc.). The later case is a first step
towards distributed data processing, where a set of sites (or “peers”) collaborate to achieve
some complex data manipulation.

dialect
Specialized

HTML
Web site

Application A Application B

Data source

Web Browser

XML data

X
M

L
 e

xp
or

t

e.g.,data processing
Other tools,

PDF
Document PDF viewer

Figure 1.6: Flow of information in XML-based data exchange

XML is at the core of data exchange. Typically, A first carries out some conversion process
(often called “XML publishing”) which produces an appropriate XML representation from the
internal data source(s.) These XML data are then consumed by B which extracts the content,
processes it, and possibly returns an XML-encoded result. Several of the afore mentioned
features of XML contribute to this exchange mechanism:

1. ability to represent data in a serialized form that is safely transmitted on the Web;

2. typing of document, which allows A and B to agree on the structure of the exchanged
content;

3. standardized conversion to/from the serialized representation and the specific tree-
based representation respectively manipulated by A and B.

For concreteness, let us delve into the details of a real Web Publishing architecture, as shown
in Figure 1.7. We are concerned with an application called Shows for publishing information
about movie showings, in a Web site and in a Wap site. The application uses a relational
database. Data are obtained from a relational database as well as directly from XML files.
Some specialized programs, written with XSLT (the XML transformation language, see below)

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 16

are used to restructure the XML data, either coming from files, from the database through
a conversion process, or actually from any possible data source. This is the XML publishing
process mentioned above. It typically produces XHTML pages for a Web site. These pages
are made available to the world by a Web server.

Web Application Server

Web

SQL

Database

conversion
XSLT
engine

XML
DBMS

SQL
resultsXML

XML files XSLT programs

Figure 1.7: Software architecture for Web publishing applications

The data flow, with successive transformations (from relational database to XML; from
XML to a publication dialect), is typical of XML-based applications, where the software
may be decomposed in several modules, each dedicated to a particular part of the global
data processing. Each module consumes XML data as input and produces XML data as
output, thereby creating chains of data producers/consumers. Ultimately, there is no reason
to maintain a tight connection of modules on a single server. Instead, each may be hosted on a
particular computer somewhere on the Internet, dedicated to providing specialized services.

1.3.2 Data integration

A typical problem is the integration of information coming from heterogeneous sources. XML
provides some common ground where all kinds of data may be integrated. See Figure 1.8.
For each (non-XML) format, one provides a wrapper that is in charge of the mapping from
the world of this format to the XML world. Now a query (say an XQuery) to the global XML
view is transformed by the mediator (using the view definitions) into queries over the local
sources. A source wrapper translates the XML query to the source it receives into a query
the source understands. That query is evaluated on the source, and some data are produced.
The wrapper translates this data into XML data. The mediator combines the result it receives
from all the wrappers to obtain the general result.

1.4 The XML World

The broad scope of XML is achieved through a spectrum of XML dialects, XML-based
standards, and XML-based software. Dialects define specialized structures, constraints, and
vocabularies to construct ad hoc XML contents that can be used and exchanged in a specific
application area. Languages and softwares on the other hand are generic. Together, dialects
and languages build an entire world that is at our disposal for developing Web applications.

For personal use only, not for distribution. 17

relational

data

XML

data

XML

data

Wrapper

XML

Documents

legacy

data

Wrapper

View

definitions

Mediator

Queries

q q

Virtual XML

documents

Virtual XML

documents

Figure 1.8: Information integration

1.4.1 XML dialects

Suppose we are working in some particular area, say the industry of plastic. To facilitate the
exchange of information, the industry specifies a common type for such exchanges, with the
tags that should be used, the structure of the information they contain, and the meaning of
the corresponding data. The advantage is that once this is achieved, (i) partners can easily
exchange information, (ii) information from different companies can more easily be integrated,
and (iii) information of interest can more easily be found. Basically, by doing that, the plastic
industry has solved, in part, the problem of the heterogeneity of information sources. It is
important to note that the design of such dialect includes the design of a syntax (an XML
type) and of a semantics (e.g., the meaning for the different element of the syntax).

We already mentioned the XHTML that serves the same purpose as HTML (describe simple
documents) but with an XML syntax. Perhaps the main difference is that all opening tags
should be closed. RSS is another popular dialect for describing content updates that is heavily
used for blog entries, news headlines, or podcasts. The following document is an example of
RSS content published on the WebDam site (http://webdam.inria.fr/):

<?xml version="1.0" encoding="UTF-8" ?>

<rss version="2.0">

<channel>
<title>Webdam Project</title>
<atom:link href="http://webdam.inria.fr/wordpress/?feed=rss2"

rel="self" type="application/rss+xml" />
<link>http://webdam.inria.fr/wordpress</link>

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://webdam.inria.fr/

For personal use only, not for distribution. 18

<description>Foundations of Web Data Management</description>
<pubDate>Wed, 26 May 2010 09:30:54 +0000</pubDate>

<item>
<title>News for the beginning of the year</title>
<description>The webdam team wish you an happy new year!</description>
<link>http://webdam.inria.fr/wordpress/?p=475</link>
<pubDate>Fri, 15 Jan 2010 08:48:45 +0000</pubDate>
<dc:creator>Serge</dc:creator>
<category>News</category>

</item>

</channel>
</rss>

SVG (Scalable Vector Graphics) is an XML dialect for describing two-dimensional vector
graphics, both static and animated. SVG is very powerful and can represent quite complex
figures such as all the figures found in the present book! The following is a simple example
that shows the combination of a surfacic object with some text. The left part is the SVG
encoding, the right one shows the graphic representation that can be obtained by a Web
browser or by a specialized tool (e.g., Gimp or Inkscape).

<?xml version="1.0" encoding="UTF-8" ?>
<svg xmlns="http://www.w3.org/2000/svg">

<polygon points="0,0 50,0 25,50"
style="stroke:#660000; fill:#cc3333;"/>

<text x="20" y="40">Some SVG text</text>
</svg>

This example shows that data of any kind can be encoded as XML, and exchanged on
the Internet between applications that possibly run under different systems, on different
computer architectures, and so on. It is also worth noting that, although this SVG example
is trivial and easy to understand even without a rendering tool, in general the content of an
XML file may be arbitrarily complex and definitely not suitable for inspection by a human
being. Some of the SVG representations for complex figures in this book consist of hundreds
of lines of abstruse code that can only be manipulated via appropriate software.

As another illustration, (symbolic) music can be represented in XML. The following is a
slightly simplified example of a MusicXML document.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<score-partwise version="2.0">
<part-list>

<score-part id="P1">
<part-name>Music</part-name>

</score-part>

For personal use only, not for distribution. 19

</part-list>
<part id="P1">

<attributes>
<divisions>1</divisions>

</attributes>
<note>

<pitch>
<step>C</step>
<octave>4</octave>

</pitch>
<duration>4</duration>

</note>
<note>

<pitch>
<step>G</step>
<octave>4</octave>

</pitch>
<duration>4</duration>

</note>
</part>

</score-partwise>

This encoding can be interpreted by specialized software and rendered as a musical score:

Some other popular XML dialects are MathML (the mathematical mark-up language),
an XML dialect for describing mathematical notation and capturing both its structure and
content. It aims at integrating mathematical formulae into World Wide Web documents (if
one considers only the presentation aspect, it is something like the mathematics in LATEX): see
Exercises. XML/EDI is an XML dialect for business exchanges. It can be used to describe, for
instance, invoices, healthcare claims, and project statuses. For the moment, the vast majority
of electronic commerce transactions in the world are still not using XML, but (pure) EDI, a
non-XML format.

There are just too many dialects to mention them all, ranging from basic formats that
represent the key/value configuration of a software (look at your Firefox personal directory!)
to large documents that encode complex business process. Above all, XML dialects can be
created at will, making it possible for each community to define its own exchange format.

1.4.2 XML standards

The universality of XML brings an important advantage: any application that chooses to
encode its data in XML can benefit from a wide spectrum of standards for defining and vali-
dating types of documents, transforming a document from one dialect to another, searching
the document for some pattern, manipulating the document via a standard programming
language, and so on. These standards are generic to XML, and are defined independently
from the specificities of a particular dialect. This also enables the implementation of softwares

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 20

and languages that are generic, as they apply to XML-formatted information whatever the
underlying application domain. For the standards, one should also notably mention:

SAX, the Simple API for XML, is an application programming interface (API) providing a
serial access to XML documents seen as a sequence of tokens (its serialization).

DOM, the Document Object Model, is an object-oriented model for representing (HTML
and) XML document, independently from the programming language. DOM sees a
document as a tree and provides some navigation in it (e.g., move to parent, first child,
left/right sibling of a node). A DOM API is available for all popular languages (Java,
C++, C#, Javascript, etc.)

XPath, the XML Path Language, is a language for addressing portions of an XML document.

XQuery is a flexible query language for extracting information from collections of XML
documents. It is to a certain extent the SQL for Web data.

XSLT, the Extensible Stylesheet Language Transformations, is a language for specifying the
transformation of XML documents into other XML documents. A main usage of XSLT
is to define stylesheet to transform some XML document into XHTML, so that it can be
displayed as a Web page.

Web services, provide interoperability between machines based on Web protocols. See fur-
ther.

To make the discussion a bit more precise, we consider some of these in slightly more detail.

Programming interfaces: SAX and DOM

We start with the first two APIs, that provide two distinct ways to see an XML document. See
Figure 1.9.

very efficient

Complex

applications,

XSLT,

editor

Simple

applications,

object

API

XML

SAX

parser

document

DOM

of events

Stream

parser

Figure 1.9: Processing an XML document with SAX and DOM

Let us begin with the SAX programming model. A SAX parser transforms an XML docu-
ment into a flow of events. Examples of events are the start/end of a document, the start/end
of an element, a text token, a comment, and so on. To illustrate, suppose that we obtained

For personal use only, not for distribution. 21

some relational data in an XML format. SAX may be used, for instance, to load this data in a
relational database as follows:

1. when document start is received, connect to the database;

2. when a Movie open tag is received, create a new Movie record;

a) when a text node is received, assign its content to X;

b) when a Title close tag is received, assign X to Movie.Title;

c) when a Year close tag is received, assign X to Movie.Year, etc.

3. when a Movie close tag is received, insert the Movie record in the database (and commit
the transaction);

4. when document end is received, close the database connection.

SAX is a good choice when the content of a document needs to be examined once (as in the
previous example), without having to follow some complex navigation rule that would, for
instance, require to turn back during the examination of the content. When these conditions
are satisfied, SAX is the most efficient choice as it simply scans the serialized representation.
For concreteness, the following piece of code shows a SAX handler written in Java (this
example is simplified for conciseness: please refer to the Web site for a complete version). It
features methods that handle SAX events: opening and closing tags; character data.

import org.xml.sax.*;
import org.xml.sax.helpers.LocatorImpl;

public c l a s s SaxHandler implements ContentHandler {

/** Constructor */
public SaxHandler() {

super();
}

/** Handler for the beginning and end of the document */
public void startDocument() throws SAXException {

out.println("Start the parsing of document");
}

public void endDocument() throws SAXException {
out.println("End the parsing of document");

}

/** Opening tag handler */
public void startElement(String nameSpaceURI, String localName,

String rawName, Attributes attributes) throws SAXException {
out.println("Opening tag: " + localName);

// Show the attributes, if any
i f (attributes.getLength() > 0) {

System.out.println(" Attributes: ");
for (i n t index = 0;

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 22

Node

Attribute TreeNode

Leaf

CharacterData

Text

CData

Comment

Container

Document Element DocType

Figure 1.10: DOM class hierarchy

index < attributes.getLength(); index++) {
out.println(" - " + attributes.getLocalName(index)

+ " = " + attributes.getValue(index));
}

}
}

/** Closing tag handler */
public void endElement(String nameSpaceURI,

String localName, String rawName)
throws SAXException {
out.print("Closing tag : " + localName);
out.println();

}

/** Character data handling */
public void characters(char[] ch, i n t start,

i n t end) throws SAXException {
out.println("#PCDATA: " + new String(ch, start, end));

}
}

The other XML API is DOM. A DOM parser transforms an XML document into a tree
and, as already mentioned, offers an object API for that tree. A partial view of the class
hierarchy of DOM is given in Figure 1.10. We give below a Preorder program that takes as
argument the name of some XML file and analyzes the document with a DOM parser. The
analysis traverses the XML tree in preorder and outputs a message each time an element is
met. Comments in the code should clarify the details.

// Import Java classes
import java.io.*;
import javax.xml.parsers.*;
import org.w3c.dom.*;

For personal use only, not for distribution. 23

/**
* A DOM class that outputs all the elements in preorder

*/

c l a s s DomExample {
/**
* The main method.

*/
public s t a t i c void main(String args[]) {

// Obtain the document
File fdom = new File(args[0]);

// Parser instantiation
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();

// Document analysis
Document dom = builder.parse(fdom);

// Start the recursive traversal from the root element
Node elementRoot = dom.getDocumentElement();
Traversal(elementRoot);

}

/**
* The recursive method.

*/
private s t a t i c void Traversal(Node node) {
String str = new String();
// Node numbering if it is a text
i f (node.getNodeType() == Node.ELEMENT_NODE) {
str = "Found element " + node.getNodeName();
System.out.println(str + "\n");

// Recursive call if node has children
i f (node.hasChildNodes()) {
// Get the list of children
NodeList child = node.getChildNodes();
// List traversal
for (i n t i = 0; i < child.getLength(); i++)
Traversal(child.item(i));

}
}

}
}

Several implementations of DOM exist. The example we use here is based on an implemen-
tation proposed by the Apache Foundation and a popular DOM parser called Xerces.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 24

Query languages: XPath, XQuery

Consider a large collection of XML documents, say the archives of the DBLP bibliography. To
extract some pieces of information from this collection, a user will typically specify graphically
a query. That query may be translated in XPath or XQuery queries in much the same way
that a standard graphical query to a relational database is translated to SQL.

In an XML context, queries combine different styles of selection:

1. queries by keywords as in search engines;

2. precise queries as in relational systems;

3. queries by navigation as in Web browsing.

Loosely speaking, XPath is a language that allows the specification of paths between the
nodes of an XML document (seen as a tree, as it always should). This specification takes
the form of patterns that describe more or less tightly a family of paths that comply to the
specification. These paths “match” the pattern. An example of XPath pattern query is as
follows:

document(’dblp.xml’)//book[publisher = ’Cambridge University Press’]

It selects the books in the document dblp.xml with Cambridge University Press for publisher.
XPath is at the core of other XML manipulation languages, such as XQuery and XSLT, because
it provides a mechanism to navigate in an XML tree.

Here is an example of query with XQuery.

for $p in document(’dblp.xml’)//publisher
l e t $b := document(’dblp.xml’)//book[publisher = $p]
where count($b) > 100
return <publisher> {$p//name, $p//address} </publisher>

In this query, the variable $p scans the list of publishers. For each publisher, variable $b
contains the sequence of books published by this publisher. The where clause filters out the
publishers who published less than 100 books. Finally, the return constructs the result, for
each publisher, the name and address.

Web services

An application on a machine when turned into a Web service can be used by a remote
machine. This is the basis of distributed computing over the Internet. Different machines
over the network exchange XML data using a particular protocol, SOAP. They describe their
interfaces using yet another language, namely WSDL (pronounced wiz-d-l), the Web Services
Description Language.

The idea underlying Web services is very simple and will be best explained by an example.
Suppose I wrote a program that takes as input a URL and computes the page rank of that
page and its classification in some ontology (what it is talking about). Suppose a friend in
California wants to use my program. I have to package it, send her all the data (perhaps
some databases) the program is using (which may be forbidden by my company). Then we

For personal use only, not for distribution. 25

have to solve loads of problems such as software compatibility. It is much simpler to turn
my program into a Web service (which takes a couple of minutes) and publish it on a local
Web server. My friend can then use it without knowing that I developed it in Java or C++, on
Mandrake Linux or Vista, with standard libraries or rather obscure homemade ones.

The core ideas are to exchange (serialized) XML and use a standard protocol for messages.
The basis is SOAP, the Simple Object Access Protocol, a protocol for exchanging XML-based
messages over the network (typically using HTTP or HTTPS). The most common messaging
for SOAP is a Remote Procedure Call (RPC) where a computer (the client) sends a request
message to another one (the server); and the server responds by a message to the client.
Imagine for instance that you make the following function call from your Client application:

pr = getPageRank ("http://webdam.inria.fr/");

This call must be shipped to the server. The SOAP protocol encodes the relevant information
in XML and transfers the following XML document to the server.

<?xml version="1.0" encoding="UTF-8">
<SOAP-ENV:Envelope
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>
<ns1:getPageRank
xmlns:ns1="urn:PageRankService">

<param1 xsi:type="xsd:string">
http://webdam.inria.fr/

</param1>
</ns1:getPageRank>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Although rather verbose, this SOAP message is simple enough to exhibit the main informa-
tion that constitutes the remote function call: the server Uniform Resource Name (urn), the
function name and the parameter value. The server then transmits its answer with a SOAP
message. This exchange is transparent to the Client: what is exploited here is the capacity of
XML to safely encode and exchange data between computers.

Let us finally complete this very brief overview of Web Services by mentionning WSDL, the
Web Services Description Language. WSDL is an XML-based language for describing Web
services, which specifies the type of their input and output. It can be used, in particular, to
generate automatically the correct “stubs” of client applications that takes care of creating the
SOAP message that respects the signature (type and number of parameters) of the functions
provided by the service.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 26

1.5 Further reading

Before the Web, publication of electronic data was limited to a few scientific and technical areas.
With the Web and HTML, it rapidly became universal. HTML is a format meant for presenting
documents to humans. However, a lot of the data published on the Web is produced by
machines. Moreover, it is more and more the case that Web data are consumed by machines
as well. Because HTML is not appropriate for machine processing, semistructured data models,
and most importantly of a new standard for the Web, namely XML [174], were developped
in the 90’. The use of a semistructured data model as a standard for data representation and
data exchange on the Web brought important improvement to the publication and reuse of
electronic data by providing a simple syntax for data that is machine-readable and, at the
same time, human-readable (with the help of the so-called style-sheets).

Semistructured data models may be viewed, in some sense, as bringing together two cul-
tures that were for a long while seen as irreconcilable, document systems (with notably SGML
[74]) and database systems (with notably relational systems [156]). From a model perspective,
there are many similarities with the object database model [39]. Indeed, like XML, the object
database model is based on trees, provides an object API, comes equipped with query lan-
guages and offers some form of serialization. As already mentioned, an alternative to XML in
some contexts is JSON (see http://www.json.org and the description in Chapter 20.3),
a semistructured model directly derived from the need to serialize the representation of an
object that must be exchanged by two programs (typically, a Web browser and a Web server).
A main difference is that the very rigorous typing of object databases was abandoned in
semistructured data models.

SGML (Standard Generalized Markup Language) is the (complex) 1986 ISO Standard for
data storage and exchange. SGML dialects can be defined using DTD. For instance, HTML is
such a dialect.

XML is developed and promoted by the World Wide Web Consortium (W3C). XML is a
1998 recommendation of the W3C. Its specification is a couple of dozens of pages long, vs.
the hundreds of pages of SGML. It is supported by academic labs such as MIT (US), INRIA
(Europe) or Keio University and backed by all the heavy weights of industry notably Oracle,
IBM and Microsoft. The role of W3C is in particular to lead the design of standards where the
XML syntax is only the tip of the iceberg. They propose a wide range of them for typing XML
[165], querying XML [182], transforming XML [183], interacting with XML [58], developing
distributed applications with XML, etc. See the site of the W3C [161] for more.

The articulation of the notion of semistructured data may be traced to two simultaneous
origins, the OEM model at Stanford [132, 8] and the UnQL model at U. Penn [134]. See [5] for
a first book on the topic.

Specific data formats had been previously proposed and even became sometimes popular
in specific domains, e.g. ASN.1 [96]. The essential difference between data exchange formats
and semistructured data models is the presence of high level query languages in the latter. A
query language for SGML is considered in [6]. Languages for semistructured data models
such as [8, 134] then paved the way for languages for XML [182].

http://www.json.org

For personal use only, not for distribution. 27

1.6 Exercises

1.6.1 XML documents

Exercise 1.6.1 (Well formed XML documents) Have you ever written an HTML page? If not, it
is time to create your first one: create a .html home page with your public information: CVs, address,
background and hobbies, photos, etc.

This page must be a well-formed XHTML document. Use a public XHTML validator to check its
well-formedness, and correct any error. Hints: the W3C provides an online validator at http://validator.w3c.org/.
You can also add a validator to your browser that check any page loaded from the Internet (for Firefox,
the Web Developper plugin is a good choice).

Exercise 1.6.2 (XML and graphics) Now, embellish you page with some vector graphics. As a
starting point, take the SVG example given in the present chapter, save it in an svg.xml document and
add the following instruction somewhere in your XHTML code.

<object data="svg.xml" type="image/svg+xml" width="320" height="240" />

Open the page in your browser (of course, the browser should be equipped with an SVG rendering
module: Firefox natively supports SVG) and see the graphics displayed in your Web page. Search for
some more exciting SVG options and experiment them.

Exercise 1.6.3 MathML is an XML dialect for the representation of mathematical fomulas in XML.
Arithmetic formulas in MathML use a prefix notation, where operators come before their operands.
For instance, the prefix notation of

x2 + 4x + 4

is

(+ (^ x 2) (* 4 x) 4)

When encoded in MathML, this formula is represented by the following document:

<?xml version=’1.0’?>
<apply>

<plus/>
<apply>

<power/>
<ci>x</ci>
<cn>2</cn>

</apply>
<apply>

<times/>
<cn>4</cn>
<ci>x</ci>

</apply>
<cn>4</cn>

</apply>

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 28

Note that each parenthesis gives rise to an apply element ; operators +, × and ^ are respectively
represented with plus, times and power elements ; finally, variables are represented by ci elements,
and constants cn elements.

1. Give the tree for of this MathML document.

2. Express the following formulas in MathML

• (xy + 3xy)× y

• xa+2 + y

3. Give the DTD that corresponds to the MathML fragment given above.

1.6.2 XML standards

Programming with XML APIs, SAX and DOM, is a good means to understand the features
of XML documents. We invite you to realize a few, simple programs, based on examples
supplied on our web site.

These examples are written in Java. You need a SAX/DOM parser: the Xerces open-source
parser is easy to obtain and our programs have been tested with it:

• get the Xerces java archive from http://xerces.apache.org/ and download it
sowewhere on your local disk;

• add your Xerces directory to $JAVA_HOME;

• take from our web site the following files: SaxExample.java, SaxHandler.java and DomEx-
ample.java.

Let us try the SAX program first. It consists of a class, the handler, that defines the method
triggered when syntactic tokens are met in the parsed XML document (see page 19 for details).
The handler class is supplied to the SAX parser which scans the XML document and detects
the tokens. Our handler class is in SaxHandler.java, and the parser is instantiated and run in
SaxExample.java. Look at both files, compile them an run SaxExample. It takes as input the
name of the XML document. For instance, using the movies.xml document from our site:

java SaxExample movies.xml

The DOM example executes the same basic scan of the XML document in preorder, and
outputs the name of each element. Compile it, and run it on the same file:

java DomExample movies.xml

We also provide a DomPreorder.java example that shows a few other features of DOM
programming: modification of nodes, and serialisation of a DOM object.

For the following exercises, you should download the dblp.xml document from the DBLP
site: http://www.informatik.uni-trier.de/~ley/db/. The main file is about 700
Mbs, which helps to assess the respective performance of the SAX and DOM approaches.

Exercise 1.6.4 (Performance) Write a SAX program that count the number of top-level elements
(elements under the element root) in an XML document.

http://xerces.apache.org/
http://www.informatik.uni-trier.de/~ley/db/

For personal use only, not for distribution. 29

• apply your program to dblp.xml and count the number of references;

• extend your program to count only a subset of the top-level elements, say, journals or books.

Write the same program as above, but in DOM. Run it on dblp.xml and compare the performances.

Exercise 1.6.5 (Tree-based navigation) Imagine that you need to implement a Navigate program
that accesses one or several nodes in an XML documents, referred to by a path in the hierarchy. For
instance:

java Navigate movies movie title

should retrieve all the <title> nodes from the movies.xml document (nb: this is actually a quite
rudimentary XPath evaluator, see the next chapter).

Try to design and implement this program in SAX and DOM. Draw your conclusions.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

2 XPath and XQuery

2.1 Introduction

This chapter introduces XPath and XQuery, two related languages that respectively serve to
navigate and query XML documents. XPath is actually a subset of XQuery. Both languages,
specified by the W3C, are tightly associated, and share in particular the same conceptual
modeling of XML documents. Note that the XPath fragment of XQuery has a well-identified
purpose (expressing “paths” in an XML tree) and as such can be used independently in other
XML processing contexts, such as inside the XSLT transformation language. XQuery uses
XPath as a core language for path expressions and navigation.

XQuery is a declarative language, and intends to play for XML data the role of SQL in the
relational realm. At a syntactical level, it is somewhat inspired from SQL. More importantly,
it is expected to benefit from a mixture of physical storage, indexing, and optimization
techniques, in order to retrieve its result by accessing only a small fraction of its input.
XQuery constitutes therefore an appropriate choice when large XML documents or large
collections of documents must be manipulated.

In this chapter, we use as running example a movies XML database. Each XML document
represents one movie, and is similar in structure to the sample document shown in Figure 2.1.

We begin the chapter with a bird’s eye view of XQuery principles, introducing the XML
data model that supports the interpretation of path expressions and queries, and showing
the main features of the two languages. We then consider in more detail XPath and XQuery
in a rather informal way. Finally we reconsider XPath more formally, investigating nice
connections with first-order logic.

2.2 Basics

The W3C devoted a great deal of effort (along with heavy documents) to formally define the
data model that underlies the interpretation of XPath and XQuery expressions. We just need,
for the purpose of this introduction, to understand that XQuery is designed as the database
query language for XML sources. As such, it must fulfill some basic requirements, two of the
most important being that:

1. there exists a well-defined “data model”, i.e., a set of constructs and typing rules that
dictate the shape of any information that conceptually constitutes an XML database;

2. the query language is closed (or composable): in plain English, this means that queries
operate on instances of the data model, and produce instances of the data model.

Let us first consider the corresponding requirements for relational databases. In a relational
database, data are represented using two-dimensional “tables”. Each table consists of a set of
rows with a predefined list of “columns”. Given a row and a column, an entry consists of

31

For personal use only, not for distribution. 32

<?xml version="1.0" encoding="UTF-8"?>

<movie>
<title>Spider-Man</title>
<year>2002</year>
<country>USA</country>
<genre>Action</genre>
<summary>On a school field trip, Peter Parker (Maguire) is

bitten by a genetically modified spider. He wakes
up the next morning with incredible powers. After
witnessing the death of his uncle (Robertson),
Parkers decides to put his new skills to use in
order to rid the city of evil, but someone else
has other plans. The Green Goblin (Dafoe) sees
Spider-Man as a threat and must dispose of him. </summary>

<director id=’21’>
<last_name>Raimi</last_name>
<first_name>Sam</first_name>
<birth_date>1959</birth_date>

</director>
<actor id=’19’>

<first_name>Kirsten</first_name>
<last_name>Dunst</last_name>
<birth_date>1982</birth_date>
<role>Mary Jane Watson</role>

</actor>
<actor id=’22’>

<first_name>Tobey</first_name>
<last_name>Maguire</last_name>
<birth_date>1975</birth_date>
<role>Spider-Man / Peter Parker</role>

</actor>
<actor id=’23’>

<first_name>Willem</first_name>
<last_name>Dafoe</last_name>
<birth_date>1955</birth_date>
<role>Green Goblin / Norman Osborn</role>

</actor>
</movie>

Figure 2.1: An XML document describing a movie

For personal use only, not for distribution. 33

an atomic value of a predefined type specified by the column. This constitutes a simple and
effective data model. Regarding the SQL language, each query takes one or several tables as
input and produces one table as output. (We ignore here some features such as ordering the
rows with order by commands.) Even if the query returns a single value, this value is seen as
a cell in a one-row, one-column, result table. The closed-form requirement guarantees that
queries can be composed to form complex expressions. In other words, one can build complex
queries using composition because the output of a query can serve as input to another one.

Let us now consider these requirements in the context of XML. We must be able to model
the content of the documents, which is much more flexible and complex than the content of a
relational table. We must also model the structure of the database as a set of documents, with
possibly quite different contents and structures. And, finally, we need to make sure that any
query output is also a collection of XML documents, so that we can compose queries.

A difficulty is that we sometimes want to talk about a tree and we sometimes want to focus
on a sequence of trees (the children of a node in a tree). The W3C has therefore introduced
a data model which, beyond the usual atomic data types, proposes two constructs: trees to
model the content of XML documents, and sequences to represent any ordered collection of
“items”, an item being either an atomic value or a document.

Another difficulty is that, as we shall see, we sometimes want to talk about collections
without duplicates. For instance, the result of the simplest XPath queries is such a collection.
Indeed, the specification of XPath 1.0, which is still the most widely implemented version of
the language, does not allow arbitrary sequences, but only node sets, duplicate-free collections
of nodes. So we shall have to carefully distinguish between sequences (ordered lists possibly
with duplicates) and duplicate-free collections or node sets.

To conclude this preliminary discussion, we want to stress that XQuery is a functional
language based on expressions: any expression takes sequences as inputs and produces a
sequence as output. This is probably everything that needs to be remembered at this point.
We now illustrate the principles, starting with the tree model of XML documents.

2.2.1 XPath and XQuery data model for documents

In the XQuery model, an XML document is viewed as a tree of nodes. Each node in a tree
has a kind, and possibly a name, a value, or both. These concepts are important for the correct
interpretation of path expressions. Note that this is actually a simplified version of the
object-based representation that supports the Dom API (see Chapter 1). Here is the list of the
important node kinds that can be found in an XML tree:

• Document: the root node of the XML document, denoted by “/”;

• Element: element nodes that correspond to the tagged nodes in the document;

• Attribute: attribute nodes attached to Element nodes;

• Text: text nodes, i.e., untagged leaves of the XML tree.

The data model also features ProcessingInstruction, Comment, and Namespace node
kinds. The first two can be addressed similarly as other nodes, and the third one is used for
technical processing of namespaces that is rarely needed. Therefore, to simplify, we do not
consider these node kinds in the following presentation. Another important feature of the

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 34

XQuery data model is the data type that can be attached to element and attribute nodes. This
data type comes from an XML Schema annotation (see Chapter 3) of the document. It is a
very powerful feature that allows XQuery queries to deal differently with nodes of different
declared data types. It also allows for the static verification of a query. However, because of
lack of support from implementations, this component of XQuery is sparingly used. Again to
simplify, we mostly ignore data types in the remaining of this chapter.

It is worth mentioning that the tree model ignores syntactic features that are only relevant
to serialized representations. For instance, literal sections or entities do not appear, since they
pertain to the physical representation and thus have no impact on the conceptual view of a
document. Entities are supposed to have been resolved (i.e., references replaced by the entity
content) when the document is instantiated from its physical representation.

<?xml version="1.0"
encoding="utf-8"?>

<A>
<B att1=’1’>

<D>Text 1</D>
<D>Text 2</D>

<B att1=’2’>

<D>Text 3</D>

<C att2="a"

att3="b"/>

Figure 2.2: Example XML document in serialized form

Figure 2.2 shows a serialized representation of an XML document, and Figure 2.3 its
interpretation as an XML tree. The translation is straightforward, and must be understood by
anyone aiming at using XPath or XQuery. Among the few traps, note that the typical fragment
<a>v is not interpreted as a single node with name a and value v, but as two nodes: an
Element which bears the name, and a Text child which bears the value. It is important to
keep in mind a few other characteristics which are common to all tree representations, and
help understand the meaning of expressions:

• the document order denotes the order of the nodes when the tree is traversed in pre-order;
it is also the order of the serialized representation;

• a tree has a unique Document node, called the root node of the tree in the following; this
root node has a unique child of type Element, called the root element.

A root node may also have other children such as comments or processing instructions but
as previously mentioned, we ignore them here. Next, for each node in a tree, the concepts
of name and value are defined as follows: (i) an Element node has a name (i.e., the tag in the
serialized representation), but no value1; (ii) a Text node has a value (a character string), but

1No value per se; the XPath recommendation defines the value of an element node as the concatenation of the
values of all Text nodes below

For personal use only, not for distribution. 35

Document

Element
A

Element
B

Attr.
att1: ’1’

Element
D

Text
Text 1

Element
D

Text
Text 2

Element
B

Attr.
att1: ’2’

Element
D

Text
Text 3

Element
C

Attr.
att2: ’a’

Attr.
att3: ’b’

Figure 2.3: Tree representation of the XML document from Figure 2.2

no name; and (iii) an Attribute node has both a name and a value. As we shall see Attribute
nodes are special: attributes are not considered as first-class nodes in an XML tree and are
addressed in a specific manner.

A term commonly used is “content” which must be distinguished from the notion of
“value”. Although an Element node N has no value, it has a content, which is the XML subtree
rooted at N. If we consider the serialized representation instead, the content is (equivalently)
the part of the document contained between the opening and closing tags of the element. Now
one often makes the mistake to see the content of an XML node as the serialized representation.
It is important to keep in mind that conceptually it is a tree. To increase the confusion, one
sometimes speak of the textual content of a node N, which is the concatenation of the values
of the Text nodes which are descendant of N. In others words, the textual content of N is
obtained from its content by getting rid of all the structural information. This makes sense
only when we think of an XML document as structured text.

Although all this may seem confusing at first glance, it is important to be very comfortable
with these notions and in particular keep in mind that the content of a node of an XML tree is the
subtree rooted at that node.

2.2.2 The XQuery model (continued) and sequences

The main construct manipulated by XQuery expressions is the sequence of items, a deliberately
vague and general structure that covers all kinds of information that can be dealt with in an
XML database. An item is either an atomic value or a node. In the latter case, when the node
N is an Element or a Document (i.e., the root node of a document), it represents the whole
XML tree rooted at N.

Sequences constitute a central concept for XQuery, since a query takes as input one or more
sequences and produces as output a sequence.

A sequence may be an enumeration, surrounded with parentheses. The content of a
sequence may also be described intentionally (e.g., all integers between 1 and 5.)

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 36

(1, ’a’, 1, ’zgfhgf’, 2.12)
(1 to 5)

Observe that the first sequence mixes integers, characters, character strings, floating num-
bers. The mixture may also contain nodes and accepts duplicates. Due to the very versatile
shape of semi-structured information, the data model actually puts almost no restriction on
the content of a sequence. An important point is that sequences cannot be embedded inside
each other: a sequence is always a flat, ordered, collection of atomic values or nodes. In other
words, the following two sequences are identical:

(1, (2, 3), (4, 5, 6))
(1, 2, 3, 4, 5, 6)

Since querying atomic values is of little interest, a query takes in general as input XML
documents or a collection of XML documents. A collection is actually nothing else than a
persistent sequence of XML documents which can be referred to by a name. XQuery identifies
its input(s) with the following functions:

1. doc() takes the URI of an XML document and returns a singleton document tree;

2. collection() takes the URI of a collection of XML documents and returns a sequence of
trees.

For instance,

doc(’Spider-Man.xml’)
c o l l e c t i o n(’movies’)

The result of doc(’Spider-Man.xml’) is the singleton sequence consisting of the root node of
the tree representation of the XML content found in Spider-Man.xml. The node kind is
Document.

As part of our running example, the movies collection contains a set of XML documents,
each describing a specific movie. The result of collection(’movies’) is the sequence of root nodes
of the collection of movie documents. In general, the collection() function returns a sequence of
items. Although its organization is much more flexible, a collection is somehow comparable
to tables in the relational model, where items of the collection set play the role of tuples.

The functions doc() and collection() take as input a URI. They can therefore be used to access
a database that is stored either locally or remotely. For instance, the URI movies may refer to
the database serving all the movie XML documents. In both cases, the output is a sequence
of Document nodes. Given such sequences available through calls to the doc() or collection()
functions, XPath and XQuery expressions can be expressed to retrieve information from these
contents. Such an environment is typically an XML database system, e.g., the EXIST system
(see Chapter 5).

For personal use only, not for distribution. 37

2.2.3 Specifying paths in a tree: XPath

XPath is a syntactic fragment of XQuery, which forms the basic means of navigating in an
XML tree. At its core are path expressions that denote paths in a tree, using a mixture of
structural information (node names, node kinds) and constraints on data values. Here is a
first example:

doc(’Spider-Man.xml’)/movie/title

An XPath expression consists of steps, separated by “/”. The above expression consists
of three steps. The first one returns a singleton with the root node of the document. The
second step (movie) returns the children of the root node with name movie. Again, this is
a singleton since the root node only has one Element child. Finally, the third step (title)
returns the sequence of Element nodes, of name title, children of the movie element. The
sequence of title nodes is the result of the whole XPath expression.

More generally, a path expression is evaluated with respect to a context node, which is often
(but not always) the root node of some XML document, and its result is a sequence of terminal
nodes of the paths that start from the context node and match the expression.

So far, the interpretation is quite similar to the usual navigation in the directory tree of a
computer system. XPath is more expressive and permits very flexible navigation in the trees
with access to both content and structure of the visited trees. The following example features
a predicate, i.e., a Boolean expression that must be satisfied for the nodes to be qualified in the
result sequence. The interpretation should be clear: one retrieves the nodes corresponding to
the actresses of the input document whose last name is Dunst.

doc(’Spider-Man.xml’)/movie/actor[last_name=’Dunst’]

One obtains a sequence, with as many actor items as there are matching nodes in the
document (here: only one). Note that the item is an Element node, along with its content, i.e.,
the subtree at this node. In other word, the (serialized) result is:

<actor id=’19’>
<first_name>Kirsten</first_name>
<last_name>Dunst</last_name>
<birth_date>1982</birth_date>
<role>Mary Jane Watson</role>

</actor>

The comparison with navigation in file system directories can be extended a little further.
Indeed, XPath is not limited to going down the tree, following the “child” axis, but can also
access the (unique) parent of a node. The following XPath expression gives all the titles of
movies in the movies collection, featuring Kirsten Dunst as an actress.

c o l l e c t i o n(’movies’)/movie/actor[last_name=’Dunst’]/../title

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 38

To better understand what is going on here, it is probably useful to take a representation
of the tree of a specific movie (say, Spider-Man), and draw the path that matches the above
expression (knowing that, as expected, the “..” step denotes the parent of the context node).
There exists an equivalent (and maybe more natural) expression:

c o l l e c t i o n(’movies’)/movie[actor/last_name=’Dunst’]/title

The power of XPath is however relatively limited in term of node retrieval.2 Moreover,
the result of an XPath expression can only consist of a sequence of nodes from the input
document. This is a very severe restriction since it prevents the construction of new XML
documents. However it constitutes a convenient tool for describing classes of paths in XML
trees, and can be used together with more powerful languages to obtain complex queries.

2.2.4 A first glance at XQuery expressions

XQuery is a functional language. An expression is a syntactic construct which operates on a
sequence (the input) and produces a sequence (the output). Since the output of an expression
can be used as the input of another expression, the combination of expressions yields the
mechanism to create very complex queries.

The simplest expression is a literal: given a sequence S, it returns S. The following is
therefore a valid XQuery expression:

(1, ’a’, 1, ’zgfhgf’, 2.12)

XQuery becomes more powerful than XPath when it comes to constructing rich output or to
expressing complex statements. The following simple examples illustrate the most important
features without delving into details.

First, XQuery allows the construction of new documents, whose content may freely mix
literal tags, literal values, and results of XQuery expressions. The following shows the
construction of an XML document containing the list of movie titles.

document {
<titles>

{ c o l l e c t i o n(’movies’)//title}
</titles>

}

The collection() function is now embedded in an XML literal fragment (formed here of a
single root element titles). Expressions can be used at any level of a query, but in order
to let the XQuery parser recognize an expression e which must be evaluated and replaced
by its result, the expression e must be surrounded by curly braces {} when it appears inside
literal elements. Forgetting the braces results in a literal copy of the expression in the result
(i.e., it remains uninterpreted). Any number of expressions can be included in a template,

2This is all the truer if one restricts the language to the XPath 1.0 fragment, that cannot express much more than
these kinds of path expressions. XPath 2.0, with its iteration features described further, is more powerful, but
still limited compared to XQuery.

For personal use only, not for distribution. 39

thereby giving all freedom to create new XML content from an arbitrarily large number of
XML inputs.

Note that, in the above query, XPath is used as a core language to denote paths in an
existing XML document referred to by the doc() expression.

Here is a second example of a powerful XQuery expression that goes far beyond the
capabilities of simple path expressions. The following shows a query that returns a list of
character string with the title of a movie (published after 2005) and the name of its director.

for $m in c o l l e c t i o n(’movies’)/movie
where $m/year >= 2005
return
<film>

{$m/title/ t e x t()},
director: {$m/director/last_name/ t e x t()}

</film>

The query is syntactically close to the SQL select-from-where construct. The for clause is
similar to the SQL from, and defines the range of a variable $m. The return clause (in the
spirit of SQL select) constructs the result, using variable $m as the root of XPath expression.
The output obtained from our sample collection, is (disregarding whitespace):

<film>A History of Violence, director: Cronenberg</film>
<film>Match Point, director: Allen</film>
<film>Marie Antoinette, director: Coppola</film>

Note that the result is a sequence of nodes, and not an XML document.
Expressions based on the for clause are called FLWOR expressions. This is pronounced

“flower” with the “F” standing for for, “L” for let (a clause not used in the previous example),
“W” for where, “O”for order by (an optional ordering clause), and “R” for return. A FLWOR
expression must contain at least one (but potentially many) for or let clause and exactly one
return clause, the other parts being optional. The expressive power of the language comes
from its ability to define variables in flexible ways (from and let), from supporting complex
filtering (where) and ordering (order by), and allowing the construction complex results
(return).

2.2.5 XQuery vs XSLT

XQuery is thus a choice language for querying XML documents and producing structured
output. As such, it plays a similar role as XSLT, another W3C standardized language for
transforming XML documents, that is presented in more detail in the companion Web site of
this book. The role of XSLT is to extract information from an input XML document and to
transform it into an output document, often in XML, which is also something that XQuery
can do. Therefore, both languages seem to compete with one another, and their respective
advantages and downsides with respect to a specific application context may not be obvious
at first glance. Essentially:

• XSLT is good at transforming documents, and is for instance very well adapted to map
the content of an XML document to an XHTML format in a Web application;

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 40

• XQuery is good at efficiently retrieving information from possibly very large repositories
of XML documents.

Although the result of an XQuery query may be XML-structured, the creation of complex
output is not its main focus. In a publishing environment where the published document
may result from an arbitrarily complex extraction and transformation process, XSLT should
be preferred.

Note however that, due to its ability to randomly access any part of the input tree, XSLT
processors usually store in main memory the whole DOM representation of the input. This
may severely impact the transformation performance for large documents. The procedural
nature of XSLT makes it difficult to apply rewriting or optimization techniques that could, for
example, determine the part of the document that must be loaded or devise an access plan
that avoids a full main-memory storage. Such techniques are typical of declarative database
languages such as XQuery that let a specialized module organize accesses to very large data
sets in an efficient way.

We conclude here this introduction to the basics of XQuery. We next visit XPath in more
depth.

2.3 XPath

The term XPath actually denotes two different languages for selecting nodes in a tree:

1. XPath 1.0, whose specification was finalized in 1999, is the most widely used version
of XPath; implementations exist for a large variety of programming languages, and
it is used as an embedded language inside another language in a number of contexts,
especially in XSLT 1.0. XPath 1.0 is a simple language for navigating a tree, based on
the notion of path expressions, and its expressive power is quite limited, as discussed
further. Its data model is somewhat simpler than the XQuery data model discussed
earlier in this chapter: node sets instead of sequences, and no data type annotations.

2. XPath 2.0, standardized in 2007, is an extension of XPath 1.0 that adds a number
of commodity features, extends the data model to that of XQuery, and adds some
expressiveness to the language, with the help of path intersection and complementation
operators, as well as iteration features. XPath 2.0 is a proper subset of XQuery, and is also
used inside XSLT 2.0. Apart from these two contexts, implementations of XPath 2.0 are
rare. With a few technical exceptions, XPath 2.0 is designed to be backwards compatible
with XPath 1.0: XPath 1.0 expressions are, mostly, valid XPath 2.0 expressions with the
same results.

In this section, we mostly discuss XPath 1.0 and its core aspect, path expressions. We
discuss briefly at the end of the section the additional features available in XPath 2.0. As
already mentioned, a path expression consists of steps. It is evaluated over a list, taking each
element of the list, one at a time. More precisely, a step is always evaluated in a specific context

[〈N1, N2, · · · , Nn〉, Nc]

consisting of a context list 〈N1, N2, · · · , Nn〉 of nodes from the XML tree; and a context node Nc
belonging to the context list, the node that is currently being processed. The result of a path

For personal use only, not for distribution. 41

expression, in XPath 1.0, is a node set. Here is a subtlety. The term set insists on the fact that
there is no duplicate. Now to be able to be reused in another step, this set has to be turned
into a sequence, i.e., be equipped with an order. We shall see how this is achieved.

2.3.1 Steps and path expressions

An XPath step is of the form:

axis::node-test[P1][P2]. . .[Pn]

Here, axis is an axis name indicating the direction of the navigation in the tree, node-test
specifies a selection on the node, and each Pi (n ≥ 0) is a predicate specifying an additional
selection condition. A step is evaluated with respect to a context, and returns a node set. The
following examples of steps illustrate these concepts:

1. child::A denotes all the Element children of the context node that have A for name;
child is the axis, A is the node test (it restricts the selected elements based on their
names) and there is no predicate. This very frequently used step can be denoted A for
short.

2. descendant::C[@att1=1] denotes all the Element nodes descendant of the context
node, named C and having an Attribute node att1 with value 1. Observe how a node
test is used to specify the name of the node and a predicate is used to specify the value
of an attribute.

3. parent::*[B] denotes the parent of the context node, whatever its name may be
(node test *) and checking it has an Element child named B. The predicate here checks
the existence of a node. Since each node has a single parent, for a context node, the
result is a collection of one element (the parent has a B child) or is empty (the test failed).

A path expression is of the form:

[/]step1/step2/. . ./stepn

When it begins with “/”, it is an absolute path expression and the context of the first step is in
that case the root node. Otherwise, it is a relative path expression. For a relative path expression,
the context must be provided by the environment where the path evaluation takes place.
This is the case for instance with XSLT where XPath expressions can be found in templates:
the XSLT execution model ensures that the context is always known when a template is
interpreted, and this context serves to the interpretation of all the XPath expressions found in
the template.

The following are examples of XPath expressions:

1. /A/B is an absolute path expression which denotes the Element nodes with name B,
children of the root element A;

2. /A/B/@att1[.>2] denotes all the Attribute nodes with name att1 of the nodes
obtained with the previous expression, whose values are greater than 2.

3. ./B/descendant::text() is a relative path expression which denotes all the Text
nodes descendant of an Element B, itself child of the context node.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 42

Document
context

Element
A

Element
B

Attr.
att1: ’1’

Element
D

Text
Text 1

Element
D

Text
Text 2

Element
B

Attr.
att1: ’2’

Element
D

Text
Text 3

Element
C

Attr.
att2: ’a’

Attr.
att3: ’b’

Figure 2.4: First step of the evaluation of /A/B/@att1

In the last two expressions above, “.” is an abbreviation of the step self::node(), which
refers to the context node itself. The axis self represents the “stay-here” navigation, and the
node() node test is true for all nodes.

2.3.2 Evaluation of path expressions

The result of a path expression is a sequence of nodes obtained by evaluating successively the
steps of the expression, from left to right. A step stepi is evaluated with respect to the context
of stepi−1. More precisely:

• For i = 1 (first step): if the path expression is absolute, the context is a singleton, the root
of the XML tree; otherwise (for relative path expressions) the context is defined by the
environment.

• For i > 1: if Ni = 〈N1, N2, · · · , Nn〉 is the result of step stepi−1, stepi is successively
evaluated with respect to the context [Ni, Nj], for each j ∈ [1,n].

The result of the path expression is the node set obtained after evaluating the last step. As
an example, consider the evaluation of /A/B/@att1. The path expression is absolute, so the
context consists of the root node of the tree (Figure 2.4).

The first step, A, is evaluated with respect to this context, and results in the element node
which becomes the context node for the second step (Figure 2.5).

Next, step B is evaluated, and the result consists of the two children of A named B. Each of
these children is then taken in turn as a context node for evaluating the last step @att1.

1. Taking the first element B child of A as context node, one obtains its attribute att1
(Figure 2.6);

2. Taking the second element B child of A as context node, one obtains its attribute att1
(Figure 2.7).

For personal use only, not for distribution. 43

Document

Element
A

context

Element
B

Attr.
att1: ’1’

Element
D

Text
Text 1

Element
D

Text
Text 2

Element
B

Attr.
att1: ’2’

Element
D

Text
Text 3

Element
C

Attr.
att2: ’a’

Attr.
att3: ’b’

Figure 2.5: Second step of the evaluation of /A/B/@att1

Document

Element
A

Element
B

context

Attr.
att1: ’1’

Element
D

Text
Text 1

Element
D

Text
Text 2

Element
B

Attr.
att1: ’2’

Element
D

Text
Text 3

Element
C

Attr.
att2: ’a’

Attr.
att3: ’b’

Figure 2.6: Evaluation of @att1 with context node B[1]

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 44

Document

Element
A

Element
B

Attr.
att1: ’1’

Element
D

Text
Text 1

Element
D

Text
Text 2

Element
B

context

Attr.
att1: ’2’

Element
D

Text
Text 3

Element
C

Attr.
att2: ’a’

Attr.
att3: ’b’

Figure 2.7: Evaluation of @att1 with context node B[2]

The final result is the union of all the results of the last step, @att1. This is the union is a
set-theoretic way, i.e., duplicates are eliminated. It is turned into a sequence (i.e., ordered)
using an order that, as we shall see, is specified by the axis of the last step.

2.3.3 Generalities on axes and node tests

Given a context list, the axis determines a new context list. For each node in turn, the node
test is evaluated filtering out some of the nodes. Then each predicate is evaluated and the
nodes that fail some test are eliminated. This yields the resulting context list.

Table 2.1 gives the list of all XPath axes. Using them, it is possible to navigate in a tree, up,
down, right, and left, one step or an arbitrary number of steps. As already mentioned, the
axis also determines the order on the set of resulting nodes. It is in most cases the document
order. In some cases, it is the reverse document order. The rule can be simply remembered as:
for forward axes, positions follow the document order; for backward axes (cf. Table 2.1), they
are in reverse order. One can also see that they correspond to how they are “naturally” visited
following the navigation from the context node.

An axis is always interpreted with respect to the context node. It may happen that the axis
cannot be satisfied, because of some incompatibility between the kind of the context node
and the axis. An empty node set is then returned. The cases of such “impossible” moves are
the following:

• When the context node is a document node: parent, attribute, ancestor, following-sibling,
preceding, preceding-sibling.

• When the context node is an attribute node: child, attribute, descendant, following-sibling,
preceding-sibling.

• When the context node is a text node: child, attribute, descendant.

We briefly observe next a subtlety. Attributes are not considered as part of the “main”
document tree in the XPath data model. An attribute node is therefore not the child of the

For personal use only, not for distribution. 45

Table 2.1: XPath axes

child (default axis)
parent Parent node.
attribute Attribute nodes.
descendant Descendants, excluding the node it-

self.
descendant-or-self Descendants, including the node it-

self.
ancestor Ancestors, excluding the node itself.

Backward axis.
ancestor-or-self Ancestors, including the node itself.

Backward axis.
following Following nodes in document order

(except descendants).
following-sibling Following siblings in document order.
preceding Preceding nodes in document order

(except ancestors). Backward axis.
preceding-sibling Preceding siblings in document order.

Backward axis.
self Context node itself.

element on which it is located. (To access them when needed, one uses the attribute
axis.) On the other hand, the parent axis, applied to an attribute node, returns the element
on which it is located. So, applying the path parent::*/child::* on an attribute node,
returns a node set that does not include the node one started with.

We next detail the different axes. To be able to illustrate, we also use node tests. These will
be detailed further.

2.3.4 Axes

Child axis. The child axis denotes the Element or Text children of the context node. This
is the default axis, used when the axis part of a step if not specified. So, child::D is in fact
equivalent to D. See Figure 2.8.

Parent axis. The parent axis denotes the parent of the context node. The result is always
an Element or a Document node, or an empty node-set (if the parent does not match the
node test or does not satisfy a predicate). One can use as node test an element name. The
node test * matches all names. The node test node() matches all node kinds. These are the
standard tests on element nodes. For instance:

• if the context node is one of the B elements, the result of parent::A is the root
element of our sample document; one obtains the same result with parent::* or
parent::node();

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 46

Document

Element
A

Element
B

context

Attr.
att1: ’1’

Element
D

Text
Text 1

Element
D

Text
Text 2

Element
B

Attr.
att1: ’2’

Element
D

Text
Text 3

Element
C

Attr.
att1: ’a’

Attr.
att2: ’b’

child child

Figure 2.8: The child axis

• if the context node is the root element node, then parent::* returns an empty set, but
the path parent::node() returns the root node of the document.

The expression parent::node() (the parent of the context node) may be abbreviated as ...

Attribute axis. The attribute axis retrieves the attributes of the context node. The node
test may be either the attribute name, or @* which matches all attribute names. So, assuming
the context node is the C element of our example,

• @att1 returns the attribute named att1;

• @* returns the two attributes of the context node.

Descendant axis. The descendant axis denotes all nodes in the subtree of the context
node, except the Attribute nodes. The node test text() matches any Text node. Assume for
instance that the context node is the first B element in the document order (Figure 2.9). Then :

• descendant::node() retrieves all nodes descendants of the context node, except
attributes (Figure 2.9);

• descendant::* retrieves all Element nodes, whatever their name, which are descen-
dant of the context node;

• descendant::text() retrieves all Text nodes, whatever their name, which are de-
scendant of the context node.

Observe that the context node is not a descendant of itself. If one wants it in the resulting
context list, one should use instead descendant-or-self.

For personal use only, not for distribution. 47

Document

Element
A

Element
B

context

Attr.
att1: ’1’

Element
D

Text
Text 1

Element
D

Text
Text 2

Element
B

Attr.
att1: ’2’

Element
D

Text
Text 3

Element
C

Attr.
att2: ’a’

Attr.
att3: ’b’

descendant descendantdescendant descendant

Figure 2.9: Result of descendant::node()

Ancestor axis. The ancestor axis denotes all ancestor nodes of the context node. The result
of ancestor::node(), when the context node is the first B element, consists of both the
element root and the root node. Again, if one wants the context node to belong to the result,
one should use ancestor-or-self instead.

Following and preceding axes. The following and preceding axes denote respectively
all nodes that follow the context node in the document order, or that precede the context
node, with the exception of descendant or ancestor nodes. Attribute nodes are not selected.

Sibling axes. The siblings of a node N are the nodes that have the same parent as N. XPath
proposes two axes: following-sibling and preceding-sibling, that denote respec-
tively the siblings that follow and precede the context node in document order. The node
test that can be associated with these axes are those already described for descendant or
following: a node name (for Element), * for all names, text() or node(). Note that, as
usual, the sibling axes do not apply to attributes.

2.3.5 Node tests and abbreviations

Node tests are closely related to the kinds of the nodes. Their usage is therefore constrained
to the kind of nodes returned by axis. Node tests are of the following forms:

• node() matches any node, except attributes;

• text() matches any Text node;

• *matches any named node, i.e., any Element node, or any Attribute for the attribute
axis;

• ns:* or ns:blah match elements or attributes in the namespace bound to the prefix
ns; the second form also imposes the exact name.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 48

Table 2.2: Summary of XPath abbreviated forms

Abbreviation Extended form

. self::node()

.. parent::node()
blah child::blah
@blah attribute::blah
a//b a/descendant-or-self::node()/b
//a /descendant-or-self::node()/a

Some associations of axes and node tests are so common that XPath provides abbreviated
forms. The list of abbreviations is given in Table 2.2.

2.3.6 Predicates

Predicates are optional Boolean expressions built with tests and Boolean connectors (and, or).
Negation is expressed with the not() Boolean function. A test may take one of the following
forms:

• an XPath expression; the semantics is that the resulting node set is nonempty;

• a comparison or a call to a Boolean function.

Predicates, the last components of an XPath expression step, provide the means to select
nodes with respect to content of the document, whereas axis and node test only address the
structural information. The processor first creates a sequence of nodes from the axis and the
node test. The nodes in the sequence are then tested for each predicate (if any), one predicate
after the other. Only those nodes for which each predicate holds are kept.

In order to understand the meaning of a precidate, we must take into account the context of
the step evaluation. Recall that an XPath step is always evaluated with respect to the context
of the previous step. This context consists of a context list, and a context node from this list.
The size of the context list is known by the function last(), and the position of the context node
in the list by position().

It is very common to use these functions in predicates. For instance, the following expres-
sion:

//B/descendant::text()[position()=1]

denotes the first Text node descendant of each node B. Figure 2.10 shows the result. Using the
position is so common that when the predicates consists of a single number n, this is assumed
to be an abbreviation for position() = n. The previous expression is therefore equivalent to:

//B/descendant::text()[1]

Expression //B[last()] denotes therefore the last element B in the document (it is an
abbreviation for //B[position()=last()]). A predicate on a position must be carefully
interpreted with respect to the context when the position() and last() functions are evaluated.
It should be clear for instance that the following expressions all give different results (look at
our example document, and try to convince yourself!):

For personal use only, not for distribution. 49

Document

Element
A

Element
B

Attr.
att1: ’1’

Element
D

Text
Text 1

Element
D

Text
Text 2

Element
B

Attr.
att1: ’2’

Element
D

Text
Text 3

Element
C

Attr.
att2: ’a’

Attr.
att3: ’b’

Figure 2.10: Result of //B/descendant::text()[position()=1]

1. /descendant::B[1]/descendant::text(),

2. /descendant::B[1]/descendant::text()[1],

3. /descendant::B/descendant::text()[1], and

4. /descendant::B/D/text()[1].

Conversions in XPath

Since a predicate often consists in some test on the value or on the content of some document
node(s), its evaluation may require a conversion to the appropriate type, as dictated by the
comparator or the constant value used in the predicate expression. Consider for instance the
following examples:

• B/@att1 = 3

• /A/B = /A/C/@att2

• /A/B = /A/C

The first case is a simple (and natural) one. It just requires a conversion of the value of the
att1 attribute to a number so that the comparison may take place. Note that this may not
always be possible. For instance, if the value of the attribute is “Blah”, this string cannot be
coerced to be an integer and the comparison simply returns false. The second case is more
intricate. Suppose the /A/B expression returns a sequence of nodes and /A/C/@att2 returns
a single attribute. Since this expression is perfectly legal in XPath, the language defines type
conversion rules to interpret this comparison. Finally the last case is a comparison between
two node sets. Here again, a rule that goes far beyond the traditional meaning of the equality
operator is used in XPath: the result of the comparison between two node sets is true if there

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 50

Table 2.3: The primitive types of XPath 1.0

Type Description Literals Examples

Boolean Boolean values none true(), not($a=3)
number Floating-point numbers 12, 12.5 1 div 33
string Character strings "to", ’ti’ concat(’Hello’,’!’)
node set Unordered sets of nodes none /a/b[c=1 or @e]/d

exists one node from the first node set and one node from the second node set for which the
result of the comparison, after conversion to the appropriate data type, is true.

Thus, such comparisons are based on type and type conversion. The type system of XPath
1.0 consists of four primitive types, given in Table 2.3. The result of an XPath expression
(including constant values) can be explicitly converted using the boolean(), number() and string()
functions. There is no function for converting to a node set, since this conversion is naturally
done in an implicit way most of the time. The conversion obeys rules that try, as far as possible,
to match the natural intuition.

Conversion to a Boolean

Here are the rules for converting to a Boolean:

• A number is true if it is neither 0 nor NaN. (NaN stands for Not a Number. It is a value of
the number type representing an undefined or unrepresentable value.)

• A string is true if its length is not 0.

• A node set is true if it is not empty.

An important conversion rule is the one that states that a node set is true if it is nonempty.
Consider the following two examples:

• //B[@att1=1]: all nodes B having an attribute att1 with value 1;

• //B[@att1]: all nodes B having an attribute named att1.

In this last example, @att1 is an XPath expression whose result is a node set which is either
empty or contains a single node, the att1 attribute. Found in a predicate, it is converted to a
Boolean. If, for a B node, the node set resulting from @att1 is nonempty (the current context
node has an att1 attribute), the set is converted to the Boolean true.

Converting a node set to a string

Here are the rules for converting a node set to a string:

• The string value of an element or document node is the concatenation of the character
data in all text nodes below.

• The string value of a text node is its character data.

For personal use only, not for distribution. 51

• The string value of an attribute node is the attribute value.

• The string value of a node set is the string value of its first item in document order.3

<b titi=’tutu’><c />
<d>tata</d>

Figure 2.11: XML file illustrating types conversion

These rules are illustrated by the following examples, based on the document of Figure 2.11.

• boolean(/a/b) is true;

• boolean(/a/e) is false;

• string(/) is "tata" (assuming all whitespace-only text nodes are stripped);

• string(/a/@toto) is "3";

• string(/a/*) evaluates to the empty string in XPath 1.0; it raises an error in XPath
2.0.

This concludes this presentation of the essential principles of XPath. All the material
presented so far is valid for XPath 1.0 which is the specification that is most commonly
implemented nowadays. Some features specific to XPath 2.0 are introduced below. Note
also that the expressiveness of XPath is extended with many functions that provide ad-hoc
computations. For a large part, these functions are standardized and now belong to the
XQuery specification. XML systems often add their own built-on functions, and the ability to
create new ones. Chapter 5, devoted to the EXIST system, gives a list of the most useful ones.

2.3.7 XPath 2.0

We briefly mention here the most important extensions that the XPath 2.0 language adds to
XPath 1.0; since XPath 2.0 is a subset of XQuery, all of these are usable in XQuery:

• Improved data model, tightly associated with XML Schema. XPath 2.0 fully follows
the XQuery data model presented earlier, including schema annotations and sequences
(the semantics of simple path expressions remain the same, however; in particular the
result of a path expression does not contain duplicate nodes, and is sorted in document
order).

• More expressive language features, especially allowing to compute the intersection or
set difference of a path operation (respectively, intersect and except), to branch
depending on the result of a condition (if(...) then ... else ...), and to

3This behavior is specific to XPath 1.0. In XPath 2.0, it is an error to cast a sequence of more than one item to a
string.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 52

iterate over a sequence (for ... return, some ... satisfies and every
... satisfies expressions). The for ... return expression is a restriction of
the more general XQuery FLWOR expression. Here is a showcase of some of these new
capabilities of the language:

//a//b intersect //a//c
if(/a/b) then /a/c else /a/d
for $x in //a return ($x,$x/..)
//a[some $x in * satisfies $x = //b]

• More precise operators for value comparisons: eq, ne or le behave similarly as =, !=
and <=, except they can only be applied to atomic values, not sequences of length greater
than one. In the presence of schema annotations, comparison behaves accordingly to
the data types of the operands. A new is operator allows testing node identity.

• Ease-of-use with many new built-in functions, including regular expression matching,
date and time manipulation, extraction of distinct values in a sequence, etc.

XPath 2.0 also introduce new node tests:

item() any node or atomic value;

element() any element node;

element(author) any element named author;

element(*, xs:person) any element of type xs:person;

attribute() any attribute.

Finally, XPath 2.0 also permits nested paths expressions: any expression that returns a
sequence of nodes can be used as a step. The following expression is for instance valid in
XPath 2.0, but not in XPath 1.0.

/book/(author | editor)/name

2.4 FLWOR expressions in XQuery

We delve in this section in more detail into the fundamental aspect of XQuery, namely
FLWOR expressions. As already mentioned, FLWOR queries are very close, syntactically
and semantically, to SQL queries formed with select, from, where and order by. A major
difference is that the output of a SQL queries is limited to the creation of flat tuples, whereas
XQuery is able to nest query results in order to create complex documents with hierarchical
structure.

In its simplest form, a FLWOR expression provides just an alternative to XPath expressions.
For instance:

l e t $year:=1960
for $a in doc(’Spider-Man.xml’)//actor
where $a/birth_date >= $year
return $a/last_name

For personal use only, not for distribution. 53

is equivalent to the XPath expression //actor[birth_date>=1960]/last_name.
Actually FLWOR expressions are much more expressive and, in general, they cannot be

rewritten simply with XPath. Let us now examine in turn the clauses for, let, where and
return. The use of order by is straightforward: it allows for the ordering of the sequence
processed by the return clause, in the same way as the SQL keyword of the same name;
the ascending or descending character of the order is specified with the ascending (default
behavior) or descending keywords following the sort criterion.

2.4.1 Defining variables: the for and let clauses

A FLWOR expression starts with an arbitrary (non-zero) number of for and left clauses, in
whatever order. A for clause defines a variable that ranges over a sequence. The sequence
may be obtained by many means. Most commonly one uses the result of an XPath expression
and the sequence often consists of nodes with similar structure. However nothing prevents a
variable to range over a heterogeneous sequence that mixes values and nodes of completely
unrelated structures. The following variant of the previous query is perfectly legal:

for $a in doc(’Spider-Man.xml’)//*
where $a/birth_date >= 1960
return $a/last_name

Note that $a now ranges over all the element nodes of the document. The semantics
of XQuery states that the result is instantiated only for those nodes which feature both a
birth_date and a last_name. If only actor nodes have both, the two are equivalent.
However, this second query is typically less efficient, in particular if many nodes have one of
the two and not the other.

The range of a for clause can also be a sequence of values, as in:

for $i in (1 to 10) return $i

As all loops in any language, for clauses can be nested:

for $i in (1 to 10) return
for $j in (1 to 2) return $i * $j

The expression above realizes a cross product of the two input sequences. The bindings
generated by these expressions consist of all the possible pairs of values. XQuery allows a
more concise syntactic variant:

for $i in (1 to 10), $j in (1 to 2)
return $i * $j

In all cases, the result of a for expression is the sequence of nodes and values obtained by
instantiating the content of the return clause. In fact, a for clause is just an instance of an
XQuery expression that returns a sequence. As such, in can be used as the range of another
sequence. The following query is valid, and enumerates the multiples of 6 from 6 to 60:

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 54

for $i in (for $j in (1 to 10) return $j * 2)
return $i * 3

XQuery is a functional language: any expression takes as input a sequence and returns a
sequence. This allows expressions to be nested in one another without restrictions.

The let clause is just a simple way of defining a variable and assigning a value to it. The
variable just acts as a synonym for its value (which, of course, is a sequence obtained by any
convenient means, ranging from literals to complex queries). The following defines $m to be
a shorthand for the root element of the Spider-Man.xml document.

l e t $m := doc(’movies/Spider-Man.xml’)/movie
return $m/director/last_name

Once defined, a variable can be used as its value. In the following example, the let clause
could easily be avoided. In general, let is essentially a convenient way of referring to a value.

l e t $m := doc(’movies/Spider-Man.xml’)/movie
for $a in $m/actor
return $a/last_name

The scope of a variable is that of the FLWOR expression where it is defined. Since XQuery
is a pure functional language, variables cannot be redefined or updated within their scope
(the same rule holds for XSLT). They are in effect constants. This yields sometimes strange
behavior, as shown by the following example:

l e t $j := 0
for $i in (1 to 4)

l e t $j := $j + $i
return $j

One might expect that $j works like an accumulator which stores successively the values
(1,1 + 2,1 + 2 + 3,1 + 2 + 3 + 4). But $j instead is redefined at each iteration of the for loop,
and the resulting sequence is simply (1,2,3,4).

One must consider XQuery variables, just like XSLT variables, as references to values, and
not as storage unit whose content can be accessed and replaced. There is indeed nothing
like a global register holding some information shared by all expressions. The XQuery user
must comply to the functional spirit of the language, and design its operations as trees
of expressions that receive and transmit sequences, without any form of side effect. The
sequence (1,1 + 2,1 + 2 + 3,1 + 2 + 3 + 4) can be obtained by:

for $i in 1 to 4 return sum (1 to $i)

For personal use only, not for distribution. 55

2.4.2 Filtering: the where clause

The optional where clause allows to express conditional statements. It is quite similar to its
SQL counterpart. The difference lies in the much more flexible structure of XML documents,
and in the impact of this flexibility on the interpretation of the where statement. A few
examples follow. The first one retrieves titles of films in the movies collection that are directed
by Woody Allen, in lexicographic order.

for $m in c o l l e c t i o n("movies")/movie
where $m/director/last_name=’Allen’
order by $m/title
return $m/title

This first example resembles the use of where in SQL. Variable $m ranges over the collection
of movies, and each movie is selected if and only if its (unique) director is named Allen.

A first comment is that, at least in the absence of schema, nothing guarantees that the path

movie/director/last_name

is always found in in the movies collection. In a relational database context, data always
complies to a known schema, and the query parser is always able to determine whether
a query matches the schema or not, in which case an error (with explanatory messages) is
produced. This is no longer systematically true in an XML database context. If the schema
is unknown, the parser accepts any syntactically correct expression and attempts to match
the paths in the query with the documents found in the scope of the query. If a path does
not exist, then this results either in an evaluation to false (in the where clause) or an empty
result (in the return clause). A downside of this flexibility, from the user point of view, is that
mistakes in query expressions will not be rejected by the parser.

Here is another example which is only a small restatement of the previous one. We are
looking for movies featuring Kirsten Dunst as an actress.

for $m in c o l l e c t i o n("movies")/movie
where $m/actor/last_name=’Dunst’
order by $m/title
return $m/title

The query is syntactically correct and delivers the expected result. The subtle point here
is that the path $m/actor/last_name returns a sequence of nodes (the list of actors in a
movie), which is compared to a single value (“Dunst”). This is a specific example for the
more general rule for evaluating comparison operators between two sequences: if at least one
successful matching is found between one element of the left sequence and one element of
the right one, then it evaluates to true, else to false. For our example, this can be stated as:
“return those movies for which at least one of the actor names is ‘Dunst’.”

2.4.3 The return clause

The return clause is a mandatory part of a FLWOR expression, and always comes last. It
is instantiated once for each binding of the variable in the for clause that passed the where

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 56

test. The body of return may include arbitrary XQuery expressions, but often contain literal
XML fragments that serve to structure the output of the query. Inside these XML fragments,
XQuery expressions must be surrounded with braces so that the parser can identify them.
Actually, nesting expressions in a return clause is the only means of creating non-flat results,
and so, complex XML documents. The following examples shows how to output a textual
representation of a movie featuring Kirsten Dunst.

A first loop outputs the information that functionally depends on each movie.

for $m in c o l l e c t i o n("movies")/movie
l e t $d := $m/director
where $m/actor/last_name=’Dunst’
return
<div>{
$m/title/ t e x t(), ’ directed by ’,

$d/first_name/ t e x t(), ’ ’, $d/last_name/ t e x t()
}</div>

As it appears inside a literal element, the sequence inside the curly braces is interpreted
as a sequence of nodes to be inserted inside the element. Atomic values (strings, numbers,
etc.) are converted into text nodes containing this value, and adjacent text nodes are merged.
This notation facilitates the production of text mixing literal and dynamic values. The query
returns the following result:

<div>Marie Antoinette, directed by Sofia Coppola</div>
<div>Spider-Man, directed by Sam Raimi</div>

Now we need to add the list of actors. This requires a second FLWOR expression, inside
the return clause of the first one.

for $m in c o l l e c t i o n("movies")/movie
l e t $d := $m/director
where $m/actor/last_name=’Dunst’
return
<div>{
$m/title/ t e x t(), ’ directed by ’,

$d/first_name/ t e x t(), $d/last_name/ t e x t()}, with
{

for $a in $m/actor
return {concat($a/first_name, ’ ’, $a/last_name,

’ as ’, $a/role)}
}

</div>

XQuery comes equipped with a large set of functions, namely all functions from XPath 2.0
(see Chapter 5 on EXIST for a short list). The above query uses concat(), as an alternative of
the merging of text nodes used previously. One obtains finally the following output:

<div>Marie Antoinette, directed by Sofia Coppola, with

For personal use only, not for distribution. 57

Kirsten Dunst as Marie Antoinette
Jason Schwartzman as Louis XVI

</div>

<div>Spider-Man, directed by Sam Raimi, with

Kirsten Dunst as Mary Jane Watson
Tobey Maguire as Spider-Man / Peter Parker
Willem Dafoe as Green Goblin / Norman Osborn

</div>

2.4.4 Advanced features of XQuery

In addition to FLWOR expressions, a number of aspects of the XQuery language are worth
mentioning, some of which inherited from XPath 2.0.

Distinct values from a sequence can be gathered in another sequence with the help of the
XPath 2.0 function distinct-values(). (This loses identity and order.) This is useful to implement
grouping ï£¡ la SQL group by. For instance, the query “Return each publisher with their
average book price” can be expressed as:

for $p in
distinct-values(doc("bib.xml")//publisher)
l e t $a :=
avg(doc("bib.xml")//book[publisher=$p]/price)

return
<publisher>
<name>{ $p/ t e x t() }</name>
<avgprice>{ $a }</avgprice>

</publisher>

The if-then-else branching feature of XPath 2.0 is also often useful, as in the following
example that extracts some information about published resources, depending on their kind:

for $h in doc("library.xml")//publication
return
<publication>

{ $h/title,
i f ($h/@type = "journal")
then $h/editor
e lse $h/author }

</publication>

The existential and universal quantifier expressions from XPath can be used to express
such queries as “Get the document that mention sailing and windsurfing activities” or “Get
the document where each paragraph talks about sailing“.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 58

for $b in doc("bib.xml")//book
where some $p in $b//paragraph

s a t i s f i e s (contains($p,"sailing")
and contains($p,"windsurfing"))

return $b/title

for $b in doc("bib.xml")//book
where every $p in $b//paragraph

s a t i s f i e s contains($p,"sailing")
return $b/title

Finally, it is possible to define functions in XQuery. Such functions may be recursive. This
turns XQuery into a full-fletched, Turing-complete, programming language, which is a major
departure from the limited expressive power of a language like XPath. The following example
shows how to define and use a function computing the factorial of a positive integer. This
example also illustrates the use of primitive XML Schema types, and the fact that XQuery
programs need not contain FLWOR expressions.

declare namespace my="urn:local";
declare namespace xs="http://www.w3.org/2001/XMLSchema";

declare function my:factorial($n as xs:integer)
as xs:integer {
i f ($n le 1) then
1

e lse
$n * my:factorial($n - 1)

};

my:factorial(10)

We end here this practical introduction to the XPath and XQuery languages. The following
section explores the theoretical foundations of the XPath language.

2.5 XPath foundations

The main role of XPath is the selection of nodes in a tree. Its semantics is defined as some
form of guided navigation in the tree browsing for particular nodes on the way. The language
is rather elegant and avoids the use of explicit variables. This should be contrasted with a
language such as first-order logic (FO for short), elegant in a different way, that is built around
the notion of variable. In this section, we highlight a surprisingly deep connection between
the navigational core of XPath 1.0, called in the following navigational XPath, and a fragment
of FO, namely, FO limited to using at most two variables. We shall also mention other results
that highlight the connection between various fragments of XPath 1.0 and 2.0 and FO.

These connections are best seen with an alternative semantics of XPath that proceeds
bottom-up, i.e., starting from the leaves of the XPath expression and moving to its root. The

For personal use only, not for distribution. 59

“official” semantics that we previously presented suggests simple top-down implementations
that turn out to be very inefficient on some queries. Indeed, the first XPath implementations
that followed too closely the specification were running on some queries in time that was
exponential in the size of the tree. To give an intuition of the issues, we present an example
of such a query. Consider the document <a><d/><d/> and the sequence of XPath
“pathological” expressions:

pathos0 /a/d
pathos1 /a/d/parent::a/d
pathos2 /a/d/parent::a/d/parent::a/d
. . .
pathosi /a/d(/parent::a/d)i

A naïve evaluation of these queries that follows closely the top-down semantics we discussed
has exponential running time: each addition of a navigation “up” and “down” doubles the
time of the evaluation. Important improvements in algorithms for evaluating XPath are now
fixing these issues. Indeed it is now known that the complexity of XPath is PTIME for all
queries and good XPath processors do not run in exponential time for any query.

The problem with the evaluation of the previous query comes from an incorrect interpreta-
tion of the semantics of XPath. The result of the pathos1 expressions is the node set (d1,d2)
where d1 is the first d node and d2 the second. If the node set is seen as a sequence, as in XPath
2.0, the order is that of the document because the last axis is child. Now, for each i, the
result of pathosi is the same node set with the same order. (And no! pathos2 is not (d1,d2,d1,d2)
because duplicates are eliminated in node sets.)

We next, in turn, (i) introduce a formal relational view of an XML tree, (ii) specify navi-
gational XPath, (iii) reformulate its semantics, (iv) show that this simple fragment can be
evaluated in PTIME; and (v) consider connections with first-order logic.

2.5.1 A relational view of an XML tree

A common way to efficiently store and query an XML database is to encode it as a relational
database, as described in Chapter 4. In a similar manner, we define here a formal view of
trees as relational structures, to help define the semantics of navigational XPath.

A tree T can be represented as a relational database (a finite structure in terms of logic) as
follows. Each node is given a unique identifier. We have a unary relation Ll for each label l
occurring in the tree. The fact Ll(n) indicates that the label of node n is l. Labels stand here
for both names and values, to simplify.

We shall use a relation nodeIds that contains the set of identifiers of nodes in T. We also
have two binary relations child and next-sibling. Observe that we are using the symbol child
to denote both the axis and the corresponding relation. We shall do so systematically for all
axes. For two node identifiers n and n′, child(n,n′) if n′ is the child of n, next-sibling(n,n’) if n′

is the next sibling of n. (They have the same parent and the position of n′ is that of n plus 1.)
Though next-sibling is not an axis available in XPath 1.0, it can be simulated by the expression
following-sibling::node()[1].

We can define binary relations for the other axes:

• self is {(n,n) | nodeIds(n)};

• descendant is the transitive closure of child;

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 60

• descendant-or-self is the union of self and descendant;

• following-sibling is the transitive closure of next-sibling;

• following is

{(n,q) | ∃m∃p ancestor-or-self(n,m) ∧ following-sibling(m, p) ∧ descendant-or-self(p,q)};

• parent, ancestor, ancestor-or-self, preceding-sibling, previous-sibling, preceding, are the in-
verses of, respectively, child, descendant, descendant-or-self, next-sibling, following-sibling,
following.

Observe that this gives a formal semantics for axes. Note also that relations nodeIds, child
and next-sibling can be constructed in one traversal of the tree and that from them the other
axis relations can be constructed in PTIME, for instance using a relational engine including
transitive closure.

We use the term node-set to denote the powerset of nodeIds. An element in node-set is thus a
set of node identifiers.

2.5.2 Navigational XPath

We consider a fragment of XPath 1.0 that focuses exclusively on its navigational part, namely
NavXPath. This fragment ignores such things as equalities between path expressions, po-
sitions, or aggregate functions such as count() or sum(). To be able to better highlight the
connections with logic, we depart slightly from the XPath syntax. The language is still a
fragment of the whole language in that each NavXPath query can easily be translated to an
“official” XPath query.

NavXPath expressions are built using the grammar:

p ::− step | p/p | p ∪ p
step ::− axis | step[q]
q ::− p | label() = l | q ∧ q | q ∨ q | ¬q

where

• p stands for path expression and q for qualifier or filter (we avoid the term predicate here
that has another meaning in first-order logic); and

• axis is one of the axes previously defined.

Ignoring the order first, the semantics is formally defined as follows. Since an XPath
expression p may be interpreted both as an expression and as a qualifier, we have to be careful
when we formally define the semantics and distinguish two semantic functions, one denoted
[.]p (for path expressions) and one [.]q (for qualifiers). It is important to keep in mind that the
semantic function [.]p maps a path expression p1 to a binary relation, where [p1]p(n,n′) states
that there exists a path matching p1 from n to n′. On the other hand, the semantic function [.]q
maps a qualifier q1 to a unary relation, where [q1]q(n) states that node n satisfies q1. Formally,
we have:

For personal use only, not for distribution. 61

Expressions

[r]p := r (for each axis relation r)4

[step[q1]]p := {(n,n′) | [step]p(n,n′) ∧ [q1]q(n′)}
[p1/p2]p := {(n,n′) | ∃m([p1]p(n,m) ∧ [p2]p(m,n′))}
[p1 ∪ p2]p := [p1]p ∪ [p2]p

Qualifiers

[label() = l]q := Ll (for each label l)
[p1]q := {n | ∃n′([p1]p(n,n′))}
[q1 ∧ q2]q := [q1]q ∩ [q2]q
[q1 ∨ q2]q := [q1]q ∪ [q2]q
[¬q1]q := nodeIds− [q1]q

A path query p1 applied to a context node n returns a node set, that is {n′ | [p1]p(n,n′)}.
Now let us introduce the order. Observe that the semantics so far defined specifies a set of
nodes; this set is then ordered in document order.

Clearly, we have departed slightly from the official syntax. For instance, a query such as

child[label() = a][q]

corresponds to child::a[q] in standardized XPath 1.0. Observe also that the focus is on
relative path expressions. It is easy to introduce absolute path expressions: one tests for the
root as the (only) node without parent. It is left as an exercise to show that all queries in
NavXPath can be expressed in XPath 1.0 and that the translation can be achieved in LINEAR

TIME.

2.5.3 Evaluation

Using the bottom-up semantics we presented, we consider the evaluation of NavXPath
expressions.

Again, let us start by ignoring order. As already mentioned, the child and next-sibling
relations, as well as the Ll-relations for each label l, can be constructed in linear time by
one traversal of the documents, using for instance for identifiers the Dewey notation (see
Chapter 4). Now descendant and following-sibling can be computed as the transitive closure
of the previous ones, also in PTIME. Then one can show that each NavXPath expression can
be expressed as an FO formula or as a relational algebra query over these relations. (This
formula can be computed in linear time.) From this, it is easy to see that any NavXPath
expression can be evaluated in PTIME in the size of the tree. In fact, one can show that it can
be evaluated in PTIME in the size of the tree and the expression.

Now consider order. In XML, one typically chooses a node identification scheme that
makes it easy to determine which node comes first in document order. So, this ordering phase
can be achieved in O(n′ · log(n′)) where n′ is the size of the result. Remember that the result
of a NavXPath expression is a subset of the nodes of the original document. This whole phase
is therefore achieved in O(n · log(n)) where n is the size of the document.

We illustrate the construction of the FO formula with an example. In the example, we use
an attribute to show that their handling does not raise any particular issue. In the example, a
binary relation @a is used for each attribute a occurring in the tree. Similarly, we could have
a binary relation text for the content of text nodes.

4Do not get confused. The r at the left of := is the axis name whereas at the right it is the axis relation.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 62

Consider the XPath expression: descendant::a/*[@b=5]/preceding-sibling::*,
or, in NavXPath notation:

q = descendant[lab() = a]/child[@b = 5]]/preceding-sibling

Then we have:
q1(n,n1) ≡ descendant(n,n1) ∧ La(n1)

q2(n,n2) ≡ ∃n1(q1(n,n1) ∧ child(n1,n2) ∧@b(n2,5))
q(n,n3) ≡ ∃n2(q2(n,n2) ∧ following-sibling(n3,n2))

To see a second (and last) example, consider the pathological query pathos3:

/a/d/parent::a/d/parent::a/d/parent::a/d

The bottom-up construction yields:

d = {(x′,y) | (child(x′,y) ∧ Ld(y))}
parent::a/d = {(y′,y) | ∃x′(child(x′,y′) ∧ La(x′) ∧ child(x′,y) ∧ Ld(y))}

d/parent::a/d = {(x,y) | ∃y′(child(x,y′) ∧ Ld(y′) ∧ ∃x′(child(x′,y′) ∧ La(x′) ∧ child(x′,y) ∧ Ld(y)))}
. . .

Observe that we are in a polynomial growth even without using fancy relational query
optimization.

The bottom-up semantics specifies a PTIME evaluation algorithm.5 Of course the resulting
algorithm is rather inefficient and the state of the art in XPath processing does much better.
Furthermore, we treated only the navigational part of XPath. It turns out that using clever,
typically top-down, algorithms, one can process any XPath query in PTIME both in the size of
the tree but also of the query.

2.5.4 Expressiveness and first-order logic

In this section, focusing on NavXPath, we present surprising connections with first-order
logic (FO) as well as stress differences. The binary predicates (relations) allowed in the logic
are all axis relations: child, descendant, following-sibling, etc.

The translation of NavXPath to FO is straightforward based on the semantics we presented
for NavXPath. In fact, it turns out that NavXPath queries correspond to some extend to FO2.
The logic FO2 is FO limited to two variables, say x and y, which may be reused in different
existential or universal quantifiers.

Recall that a NavXPath expression can be interpreted as a binary relation mapping a node n
into a set of nodes, or as a logical formula with two free variables. Also, a NavXPath qualifier
is interpreted as a Boolean function and so can be interpreted by a first-order logic formula
with only one free variable. For instance, consider the path expression d/parent::a/d.
Now think about it as a qualifier. Although it may seem we need four variables to express it
in logic, one can make do with 2:

d/parent::a/d(x) = ∃y′
(
child(x,y′) ∧ Ld(y′) ∧ ∃x′(child(x′,y′) ∧ La(x′) ∧ ∃y(child(x′,y) ∧ Ld(y)))

)
≡ ∃y

(
child(x,y) ∧ Ld(y) ∧ ∃x (child(x ,y) ∧ La(x) ∧ ∃y(child(x ,y) ∧ Ld(y)))

)
5This is because of the restrictions coming with NavXPath; more powerful fragments of XPath 1.0 cannot easily

be evaluated with a bottom-up approach.

For personal use only, not for distribution. 63

Check carefully these formulas to convince yourself that they are indeed equivalent. Get a
feeling why it is in general the case that we can express NavXPath qualifiers with FO2.

The precise theorem that relates FO2 and NavXPath is a bit intricate because, to move to
XPath expressions as opposed to qualifiers, we already need variables to account for the
source and target. But every FO2 formula can be expressed in XPath and every qualifier can
be expressed in FO2.

Although translations between XPath and FO2 exist, one may wonder about the size of the
results. It is known that for some FO2 queries, the equivalent NavXPath expressions have
exponential size. For the other direction, the translation of an XPath qualifier can be done in
polynomial time.

Since it is known that some FO queries require more than 2 variables, there are FO queries
that cannot be expressed in NavXPath. For instance, the following query cannot be expressed
in NavXPath: there is a path from some a node to a descendant a node that traverses only b
nodes. Indeed, this query cannot be expressed in XPath 1.0.

2.5.5 Other XPath fragments

NavXPath only covers the navigational core of XPath 1.0; in particular, it is impossible to
express queries about the value equalities of nodes of the tree such as

movie[actor/@id=director/@id]/title

It is possible to define a formal extension of NavXPath that adds this capability. The char-
acterization of this language in terms of first-order logic is less clear, however. It has been
shown that it is a proper subset of FO3 over the previously mentioned relations, as well as
binary relations that express value comparisons. As already mentioned, query evaluation
remains PTIME in terms of data-and-query complexity.

XPath 2.0 is a much more powerful language than XPath 1.0, with the intersection and
complementation operators, the iteration features, etc. Its navigational core has the same
expressive power as the whole of FO. Evaluating a navigational XPath 2.0 query is, however,
a PSPACE-complete problem in data-and-query complexity.

2.6 Further reading

XPath

XPath 1.0 is a W3C recommendation [163] that was released in November 1999. The relative
simplicity of the language makes the recommendation quite readable to application program-
mers, in contrast to other W3C recommendations that describe more involved technologies.

There exists a large number of implementations for XPath 1.0. Here are a few examples
freely available for various programming languages:

libxml2: Free C library for parsing XML documents, supporting XPath.

java.xml.xpath: Java package, included with JDK versions starting from 1.5.

System.Xml.XPath: standard .NET classes for XPath.

XML::XPath: free Perl module, includes a command-line tool.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 64

DOMXPath: PHP class for XPath, included in PHP5.

PyXML: free Python library for parsing XML documents, supporting XPath.

XPath is also directly usable for client-side programming inside all modern browsers, in
JavaScript.

The W3C published in January 2007 a recommendation [168] for the XPath 2.0 language.
This document is not self-contained, it refers to two additional recommendations, one for
describing the data model [170], and the other to describe all operators and functions [172].
An excellent reference book to the XPath 2.0 language (and to XSLT 2.0) is [108], by Michael
Kay, the author of the SAXON XSLT and XQuery processor.

The large number of extensions that were brought to the language, especially in connection
to XML Schema annotations, make it a much more complex language, with far fewer imple-
mentations. In essence, there are no implementations of XPath 2.0 outside of XQuery and
XSLT 2.0 implementations.

XQuery

XQuery was standardized along XPath 2.0, and its recommendation [169] is also dated
January 2007. In addition to the recommendations on its data model and functions, cited
above, there are separate documents that describe its semantics [171] as well as its serialization
features [173]. The reference information is thus spread across five documents, not counting
the recommendations of XML itself, XML namespaces, and XML schemas, which does not
help readability. More didactic presentations of the language can be found in [121, 178].

There are a large number of XQuery implementations, both as standalone processors and
as part of a XML database management system. Among the freely available (most of which
provide support for the core language, but have no support for external XML schemas), let us
cite:

SAXON: in-memory Java and .NET libraries; the open-source version has no support of
external XML Schemas, but it is still a very convenient tool.

GNU QEXO: a very efficient open-source processor that compiles XQuery queries into Java
bytecode; does not support all features of the language.

QIZX: Java libraries for both a standalone processor and a native XML database; open and
free versions have limitations.

EXIST: an open-source XML database management system, with a very user-friendly inter-
face.

MONETDB: an in-memory column-oriented engine for both SQL and XQuery querying;
among the fastest.

An interesting benchmarking of some freely available XQuery processors is [123]. The W3C
maintains a list of XQuery processors at
http://www.w3.org/XML/Query/#implementations.

http://www.w3.org/XML/Query/#implementations

For personal use only, not for distribution. 65

XPath foundations

The literature on XPath expressiveness, complexity, and processing is quite impressive. The
material of this section borrows a lot from the article “XPath Leashed” [24] that is an in-detail
discussion of expressiveness and complexity of various fragments of XPath 1.0. Efficient
algorithms for processing XPath queries are presented in [76]. Another interesting survey of
expressiveness and complexity results can be found in [154], which is one of the few research
works that look at the expressiveness of XPath 2.0. XQuery is a Turing-complete language,
but its core can also be analyzed with respect to first-order logic, as is done in [25].

2.7 Exercises

Most of the following exercises address the principles of XPath or XQuery. They are intended
to check your understanding of the main mechanisms involved in XML documents manipu-
lation. These exercises must be completed by a practical experiment with an XPath/XQuery
evaluator. You can refer to the list of XPath and XQuery implementations Section 2.6. The
EXIST XML database, in particular, is simple to install and use. Chapter 5 proposes several
exercises and labs with EXIST.

The exercises that follow refer to a few XPath functions whose meaning should be trivial to
the reader: count() returns the cardinality of a node-set; sum() converts the nodes of a node-set
in numbers, and sums them all, name() returns the name (label) of a node, etc. Chapter 5 gives
a list of common XPath/XQuery functions.

Exercise 2.7.1 Consider the XML document shown on Figure 2.12. We suppose that all text nodes
containing only whitespace are removed from the tree.

<a>
<c />
<b id="3" di="7">bli <c /><c><e>bla</e></c>
<d>bou</d>

Figure 2.12: Sample document for Exercise 2.7.1

1. Give the result of the following XPath expressions:

a) //e/preceding::text()

b) count(//c|//b/node())

2. Give an XPath 1.0 expression for the following queries, and the corresponding result:

a) Sum of all attribute values.

b) Text content of the document, where every “b” is replaced by a “c” (Hint: use function
translate(s, x1x2 · · · xn, y1y2 · · ·yn) that replaces each xi by yi in s).

c) Name of the child of the last “c” element in the tree.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 66

Exercise 2.7.2 Explain the difference between the following two XPath expressions:

• //c[position() = 1]

• /descendant::c[position() = 1]

Give an example of a document for which both expressions yield a different result.

Exercise 2.7.3 Explain the following expressions, and why they are not equivalent.

• //lecture[name=’XML’]

• //lecture[name=XML]

Give an instance that yields the same result.

Exercise 2.7.4 (Node tests) Give the appropriate combination of axis and node tests to express in
XPath the following searches.

• select all nodes which are children of an A node, itself child of the context node;

• select all elements whose namespace is bound to the prefix xsl and that are children of the
context node;

• select the root element node;

• select the B attribute of the context node;

• select all siblings of the context node, itself included (unless it is an attribute node);

• select all blah attributes wherever they appear in the document.

Exercise 2.7.5 (Predicates) Give the results of the following expressions when applied to our example
document (Figure 2.3, page 35).

1. //B[1]//text(),

2. //B[1]//text()[1],

3. //B//text()[1], and

4. //B/D/text()[1].

Exercise 2.7.6 For each of the following XPath expressions, explain its meaning and propose an
abbreviation whenever possible.

• child::A/descendant::B

• child::*/child::B

• descendant-or-self::B

• child::B[position()=last()]

• following-sibling::B[1]

For personal use only, not for distribution. 67

• //B[10]

• child::B[child::C]

• //B[@att1 or @att2]

• *[self::B or self::C]

Exercise 2.7.7 (XQuery and recursion) We get back to MathML documents. Recall that arithmetic
formulas are written in prefix notation (see Exercise 1.6.3, page 27). In this exercise, we adopt the
following restrictions: the only operators are <plus/> and <times/>), and these operators are
binary.

1. Give an XQuery expression that transforms an apply expression in infix form. For instance,
applied to the following document:

<apply>
<times/>
<ci>x</ci>
<cn>2</cn>

</apply>

the query returns“x * 2”.

2. Assume now that the infix expression can be expressed as a function eval($op, $x, $y),
where $op is an operation, $x and $y two operands. XQuery makes it possible to call recursively
any function. Give the query that transforms a MathML expression in infix form. For instance,
applied to the following document

<apply>
<times/>
<apply>

<plus/>
<ci>x</ci>
<cn>2</cn>
</apply>
<ci>y</ci>

</apply>

the query should return “(x + 2) * y”.

Exercise 2.7.8 Show that all NavXPath queries can be expressed in XPath 1.0 and that the transfor-
mation can be achieved in LINEAR TIME.

Exercise 2.7.9 At the end of Section 2.5, it is stated that the query “there is a path from some a node
to a descendant a node that traverses only b nodes” cannot be expressed in XPath 1.0. Can you find
an XPath 2.0 expression for this query?

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

3 Typing

In this chapter, we discuss the typing of semistructured data. Typing is the process of
describing, with a set of declarative rules or constraints called a schema, a class of XML
documents, and verifying that a given document is valid for that class (we also say that this
document is valid against the type defined by the schema). This is for instance used to define
a specific XML vocabulary (XHTML, MathML, RDF, etc.), with its specificities in structure
and content, that is used for a given application.

We first present motivations and discuss the kind of typing that is needed. XML data typing
is typically based on finite-state automata. Therefore, we recall basic notion of automata, first
on words, then on ranked trees, finally on unranked trees, i.e., essentially on XML. We also
present the main two practical languages for describing XML types, DTDs and XML Schema,
both of which endorsed by the W3C. We then briefly describe alternative schema languages
with their key features. In a last section, we discuss the typing of graph data.

One can also consider the issue of “type checking a program”, that is, verifying that if the
input is of a proper input type, the program produces an output that is of a proper output
type. In Section 3.5, we provide references to works on program type checking in the context
of XML.

3.1 Motivating Typing

Perhaps the main difference with typing in relational systems is that typing is not compulsory
for XML. It is perfectly fine to have an XML document with no prescribed type. However,
when developing and using software, types are essential, for interoperability, consistency,
and efficiency. We describe these motivations next and conclude the section by contrasting
two kinds of type checking, namely dynamic and static.

Interoperability. Schemas serve to document the interface of software components, and
provide therefore a key ingredient for the interoperability between programs: a program that
consumes an XML document of a given type can assume that the program that has generated
it has produced a document of that type.

Consistency. Similarly to dependencies for the relational model (primary keys, foreign key
constraints, etc.), typing an XML document is also useful to protect data against improper
updates.

Storage Efficiency. Suppose that some XML document is very regular, say, it contains a list
of companies, with, for each, an ID, a name, an address and the name of its CEO. This same
information may be stored very compactly, for instance, without repeating the names of
elements such as address for each company. Thus, a priori knowledge on the type of the
data may help improve its storage.

69

For personal use only, not for distribution. 70

Query Efficiency. Consider the following XQuery query:

for $b in doc("bib.xml")/bib//*
where $b/*/zip = ’12345’
return $b/title

Knowing that the document consists of a list of books and knowing the exact type of book
elements, one may be able to rewrite the query:

for $b in doc("bib.xml")/bib/book
where $b/address/zip = ’12345’
return $b/title

that is typically much cheaper to evaluate. Note that in the absence of a schema, a similar
processing is possible by first computing from the document itself a data guide, i.e., a structural
summary of all paths from the root in the document. There are also other more involved
schema inference techniques that allow attaching such an a posteriori schema to a schemaless
document.

Dynamic and Static Typing

Assume that XML documents (at least some of them) are associated with schemas and that
programs use these schemas. In particular, they verify that processed documents are valid
against them. Most of the time, such verification is dynamic. For instance, a Web server
verifies the type when sending an XML document or when receiving it. Indeed, XML data
tend to be checked quite often because programs prefer to verify types dynamically (when
they transfer data) than risking to run into data of unexpected structure during execution.

It is also interesting, although more complicated, to perform static type checking, i.e., verify
that a program receiving data of the proper input type only generates data of the proper
output type. More formally, let note d |= T when a document d is valid against a type T. We
say that a type T1 is more specific than a type T2 if all documents valid against T1 are also valid
against T2, i.e.,

∀d (d |= T1⇒ d |= T2).

Let Ti be an input type and f be a program or query that takes as input an XML document and
returns an XML document. This f might be an XPath or XQuery query, an XSLT stylesheet,
or even a program in a classical programming language. Static typing implies either static
verification or static inference, defined as follows:

Verification: Is it true that ∀d |= Ti, f (d) |= To, for some given output type To?

Inference: Find the most specific To such that ∀d |= Ti, f (d) |= To.

Note that in a particular case, we have no knowledge of the input type, and the inference
problem becomes: Find the most specific To such that f (d) |= To.

The notion of smallest output type depends of the schema language considered. Assume for

For personal use only, not for distribution. 71

instance that types are described as regular expressions on the tag sequences1 and consider
the following XQuery query:

for $p in doc("parts.xml")//part[color="red"]
return <part>{$p/name, $p/desc}</part>

Assuming no constraint on the input type, it is easy to see that the type of the result is
described by the following regular expression:

(<part> (<name> any</name>)∗ (<desc> any</desc>)∗ </part>)∗

where any stands for any well-formed tag sequence. The regular language described by this
regular expression is also the smallest one that describes the output of the query, since any
document in this language can be generated as the output of this query.

Verifying or inferring an output type for a program is in all generality an undecidable
problem, even for XPath queries and a simple schema language such as DTDs. Even when
the verification problem is decidable, a smallest output type might not exist. Consider for
instance the XQuery program:

l e t $d:=doc("input.xml")
for $x in $d//a, $y in $d//a
return

Suppose that the input is <input><a/><a/></input>. Then the result is:

In general, the result consists in n2 b-elements for some n≥ 0. Such a type cannot be described
by DTDs or XML schemas. One can approximate it by regular expressions but not obtain a
“best” result:

 ∗

ε + + 4 ∗

ε + + 4 + 9 ∗

. . .

3.2 Automata

XML was recently introduced. Fortunately, the model can benefit from a theory that is well
established, automata theory. We briefly recall some standard definitions and results on
automata over words. Then we mention without proof how they extend to ranked trees with
some limitations. As previously mentioned, XML is based on unranked trees, so we finally
consider unranked trees.

1As shall be seen later in this chapter, typical schema languages for XML are more adapted to the tree structure
of the document because they are defined in terms of regular tree languages rather than of regular string
languages.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 72

3.2.1 Automata on Words

This is standard material. We recall here briefly some notation and terminology.

Definition 3.2.1 A finite-state word automaton (FSA for short) is a 5-tuple (Σ, Q,q0, F,δ) where

1. Σ is a finite alphabet;

2. Q is a finite set of states;

3. q0 ∈ Q is the initial state;

4. F ⊆ Q is the set of final states; and

5. δ, the transition function, is a mapping from (Σ ∪ {ε})×Q to 2Q.

Such a nondeterministic automaton accepts or rejects words in Σ∗. A word w ∈ Σ∗ is
accepted by an automaton if there is a path in the state space of the automaton, leading from
the initial state to one of the final states and compatible with the transition functions, such that
the concatenation of all labels from Σ ∪ {ε} along the path is w. The set of words accepted by
an automaton A is denoted L(A). A language accepted by an FSA is called a regular language.
They can alternatively be described as regular expressions built using concatenation, union
and Kleene closure, e.g., a(b + c)∗d.

Example 3.2.2 Consider the FSA A with Σ = {a,b}, Q = {q0,q1,q2,q3}, F = {q2}, δ(a,q0) =
{q0,q1}, δ(b,q1) = {q0}, δ(ε,q1) = {q2}, δ(ε,q2) = {q3}, δ(ε,q3) = {q3}. Then abaab is not in
L(A) whereas aba is in L(A).

An automaton is deterministic if (i) it has no ε-transition, i.e., δ(ε,q) = ∅ for all q; and (ii)
there are no multiple transitions from a single pair of symbol and state, i.e., |δ(a,q)| ≤ 1 for
all (a,q).

The following important results are known about FSAs:

1. For each FSA A, one can construct an equivalent deterministic FSA B (i.e., a deterministic
FSA accepting exactly the same words). In some cases, the number of states of B is
necessarily exponential in that of A. This leads to another fundamental problem that
we will ignore here, the problem of state minimization, i.e., the problem of finding an
equivalent deterministic automaton with as few states as possible.

2. There is no FSA accepting the language {aibi | i ≥ 0}.

3. Regular languages are closed under complement.
(To see this, consider an automaton A. Construct a deterministic automaton that accepts
the same language but never “blocks”, i.e., that always reads the entire word. Let Q be
the set of states of this automaton and F its set of accepting states. Then the automaton
obtained by replacing F by Q− F for accepting states, accepts the complement of the
language accepted by A.)

4. Regular languages are closed under union and intersection.
(Given two automata A, B, construct an automaton with states Q×Q′ that simulates
both. For instance, an accepting state for L(A) ∩ L(B) is a state (q,q′), where q is
accepting for A and q′ for B.)

For personal use only, not for distribution. 73

∨

∧

10

∨

0∨

0∨

10

∧

∧

10

∨

1∨

1∨

11

Figure 3.1: Two binary trees

3.2.2 Automata on Ranked Trees

Automata on words are used to define word languages, that is, subsets of Σ∗ for some
alphabet Σ. Similarly, it is possible to define tree automata whose purpose is to define subsets
of the set of all trees. For technical reasons, it is easier to define tree automata for ranked trees,
i.e., trees whose number of children per node is bounded. We will explain in Section 3.2.3
how the definitions can be extended to unranked trees.

Word automata defined in the previous section process a string from left to right. It is easy
to define a notion of right-to-left automaton, and also easy to see that in terms of accepted
languages, there is absolutely no difference between left-to-right and right-to-left automata.
For trees, there is a difference between top-down and bottom-up automata. Intuitively, in
a top-down automaton, we have a choice of the direction to go (e.g., to choose to go to the
first child or the second) whereas in bottom-up automata, similarly to word automata, the
direction is always prescribed.

Bottom-Up Tree Automata. Let us start with the example of bottom-up automata for binary
trees. Similarly to word automata, a bottom-up automaton on binary trees is defined by:

1. A finite leaf alphabet L;

2. A finite internal alphabet Σ, with Σ ∩ L = ∅;

3. A set of states Q;

4. A set of accepting states F ⊆ Q;

5. A transition function δ that maps:

• a leaf symbol l ∈ L to a set of states δ(l) ⊆ 2Q;

• an internal symbol a ∈ Σ, together with a pair of states (q,q′) to a set of states
δ(a,q,q′) ⊆ 2Q.

The transition function specifies a set of state for the leaf nodes. Then if δ(a,q,q′) contains q′′,
this specifies that if the left and right children of a node labeled a are in states q,q′, respectively,
then the node may move to state q′′.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 74

Example 3.2.3 [Boolean circuit] Consider the following bottom-up automaton: L = {0,1},
Σ = {∨,∧}, Q = { f , t}, F = {t}, and δ(0) = { f }, δ(1) = {t}, δ(∧, t, t) = {t}, δ(∧, f , t) =
δ(∧, t, f) = δ(∧, f , f) = { f }, δ(∨, f , f) = { f }, δ(∨, f , t) = δ(∨, t, f) = δ(∨, t, t) = {t}. The tree
of the left of Figure 3.1 is accepted by the bottom-up tree automata, whereas the one on the
right is rejected. More generally, this automaton accepts and/or trees that evaluate to true.

The definition can be extended to ranked trees with symbols of arbitrarily arity in a
straightforward manner. An ε-transition in the context of bottom-up tree automata is of the
form δ(a,r) = r′, meaning that if a node of label a is in state r, then it may move to state r′.
We can also define deterministic bottom-up tree automata by forbidding ε-transition and
alternatives (i.e., some δ(a,q,q′) containing more than one state).

Definition 3.2.4 A set of trees is a regular tree language if it is accepted by a bottom-up tree
automata.

As for automata on words, one can “determinize” a nondeterministic automata. More
precisely, given a bottom-up tree automata, one can construct a deterministic bottom-up tree
automata that accepts the same trees.

Top-Down Tree Automata. In a top-down tree automaton, transitions are of the form (q,q′) ∈
δ(a,q′′) with the meaning that if a node labeled a is in state q′′, then this transition moves its
left child to state q and its right child to q′. The automaton accepts a tree if all leaves can be
set in accepting states when the root is in some given initial state q0. Determinism is defined
in the obvious manner.

It is not difficult to show that a set of trees is regular if and only if it is accepted by a top-
down automata. On the other hand, deterministic top-down automata are weaker. Consider
the language L = { f (a,b), f (b, a)}. It is easy to see it is regular. Now one can verify that if
there is a deterministic top-down automata accepting it, then it would also accept f (a, a), a
contradiction. Thus deterministic top-down automata are weaker.

Generally speaking, one can show for regular tree languages the same results as for regular
languages (sometimes the complexity is higher). In particular:

1. Given a tree automata, one can find an equivalent one (bottom-up only) that is deter-
ministic (with possibly an exponential blow-up).

2. Regular tree languages are closed under complement, intersection and union (with
similar proofs than for word automata).

3.2.3 Unranked Trees

We have defined in Section 3.2.2 tree automata (and regular tree languages) over the set
of ranked trees, i.e., trees where there is an a priori bound of the number of children of each
node. But XML documents are unranked (take for example XHTML, in which the number of
paragraphs <p> inside the body of a document is unbounded).

Reconsider the Boolean circuit example from Example 3.2.3. Suppose we want to allow
and/or gates with arbitrary many inputs. The set of transitions of a bottom-up automaton

For personal use only, not for distribution. 75

a

gfb

edc

a

εb

f

gε

c

d

eε

ε

Figure 3.2: An unranked tree and its corresponding ranked one

becomes infinite:
δ(∧, t, t, t) = t, δ(∧, t, t, t, t) = t, . . .
δ(∧, f , t, t) = f , δ(∧, t, f , t) = f , . . .
δ(∨, f , f , f) = f , δ(∨, f , f , f , f) = f , . . .
δ(∨, t, f , f) = t, δ(∨, f , t, f) = t, . . .

So an issue is to represent this infinite set of transitions. To do that, we can use regular
expressions on words.

Example 3.2.5 Consider the following regular word languages:

And1 = tt∗ And0 = (t + f)∗ f (t + f)∗

Or0 = f f ∗ Or1 = (t + f)∗t(t + f)∗

Then one can define infinite sets of transitions:

δ(∧, And1) = δ(∨,Or1) = t, δ(∧, And0) = δ(∨,Or0) = f

One can base a theory of unranked trees on that principle. Alternatively, one can build on
ranked trees by representing any unranked tree by a binary tree where the left child of a node
represents the first child and the right child, its next sibling in the original tree, as shown in
Figure 3.2.

Let F be the one-to-one mapping that encodes an unranked tree T into F(T), the binary
tree with first-child and next-sibling. Let F−1 be the inverse mapping that “decodes” binary
trees thereby encoded. One can show that for each unranked tree automata A, there exists a
ranked tree automata accepting F(L(A)). Conversely, for each ranked tree automata A, there
is an unranked tree automata accepting F−1(L(A)). Both constructions are easy.

As a consequence, one can see that unranked tree automata are closed under union,
intersection and complement.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 76

1(a)

5(b)4(a)3(b)

9(b)8(a)7(b)

2(b)

6(b)

Figure 3.3: A tree with node identifiers listed

Determinism. Last, let us consider determinism for unranked tree automata. We cannot
build on the translation to ranked tree automata as we did for union, intersection and
complement. This is because the translation between ranked and unranked trees does not
preserve determinism. So, instead we define determinism directly on bottom-up tree automata
over unranked trees.

Let us define more precisely the machinery of these automata, and first the nondeterministic
ones. The automata over unranked trees are defined as follows. An automata A includes a
finite alphabet Σ of labels, a finite set Q of states, and a set F of accepting states. For each
a ∈ Σ, it includes an automaton Aa over words that takes both its word alphabet and its states
in Q. Consider a tree T with labels in Σ. Suppose its root is labelled a and that it has n ≥ 0
subtrees, T1, ..., Tn, in that order. Then A may reach state q on input T if there exists q1, ...qn
such that:

• For each i, A may reach the state qi on input Ti.

• Aa may reach state q on input q1...qn.

The automaton A accepts T if q is accepting.
Now for the automaton A to be deterministic, we need to prevent the possibility that it may

reach two states for the same input tree. For this, we require Aa to be deterministic for each a.

3.2.4 Trees and Monadic Second-Order Logic

There is also a logical interpretation of regular tree languages in terms of monadic second-order
logic. One can represent a tree as a logical structure using identifiers for nodes. For instance
the tree of Figure 3.3, where “1(a)” stands for “node id 1, label a”, is represented by:

E(1,2), E(1,3), . . . , E(3,9)
S(2,3),S(3,4),S(4,5), . . . ,S(8,9)
a(1), a(4), a(8)
b(2),b(3),b(5),b(6),b(7),b(9)

Here, the predicate E(x,y) denotes the child relation, while the predicate S(x,y) represents
the next-sibling relation.

The syntax of monadic second-order logic (MSO) is given by:

ϕ :- x = y | E(x,y) | S(x,y) | a(x) | ... | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ∃x ϕ | ∃X ϕ | X(x)

For personal use only, not for distribution. 77

where x is an atomic variable and X a variable denoting a set. X(x) stands for x ∈ X. Observe
that in ∃X ϕ, we are quantifying over a set, the main distinction with first-order logic where
quantification is only on atomic variables. The term monadic means that the only second-order
variables are unary relations, that is, sets.

MSO is a very general logical languages for trees. For instance, we can capture in MSO the
constraint: “each a node has a b descendant”. This is achieved by stating that for each node x
labeled a, each set X containing x and closed under descendants contains some node labeled
b. Formally,

∀x a(x)→ (∀X X(x) ∧ β(X)→ ∃y X(y) ∧ b(y))

where β(X) = ∀y∀z (X(y) ∧ E(y,z)→ X(z))
We state a last result in this section because it beautifully illustrates the underlying theory.

We strongly encourage the reader to read further about tree automata and about monadic
second-order logic.

Theorem 3.2.6 A set L of trees is regular if and only if L = {T|T |= ϕ} for some monadic
second-order formula ϕ, i.e., if L is definable in MSO.

3.3 Schema Languages for XML

In this section, we present actual languages that are used to describe the type of XML
documents. We start with DTDs, that are part of the specification of XML, and then move
to the other schema language endorsed by the W3C, XML Schema. We finally discuss
other existing schema languages, highlighting the differences with respect to DTDs and
XML Schema.

3.3.1 Document Type Definitions

DTD stands for “Document Type Definition”. An integral part of the XML specification, this
is the oldest syntax for specifying typing constraints on XML, still very much in use. To
describe types for XML, the main idea of DTDs is to describe the children that nodes with
a certain label may have. With DTDs, the labels of children of a node of a given label are
described by regular expressions. The syntax, inherited from SGML, is bizarre but rather
intuitive.

An example of a DTD is as follows:

<!ELEMENT populationdata (continent*) >
<!ELEMENT continent (name, country*) >
<!ELEMENT country (name, province*)>
<!ELEMENT province ((name|code), city*) >
<!ELEMENT city (name, pop) >
<!ELEMENT name (#PCDATA) >
<!ELEMENT code (#PCDATA) >
<!ELEMENT pop (#PCDATA) >

The comma is the concatenation operator, indicating a sequence of children, while “|” is the
union operator that expresses alternatives. “*” indicates an arbitrary number of children with
that structure; #PCDATA just means “textual content”. In DTDs, the regular expressions are

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 78

supposed to be deterministic. In brief, the XML data can be parsed (and its type verified) by a
deterministic finite-state automaton that is directly derived from the regular expression. For
instance, the expression

(a + b)∗a

(in DTD syntax, ((a|b)*,a)) is not deterministic since when parsing a first a, one doesn’t
know whether this is the a of (a + b)∗ or that of the last a. On the other hand, this expression
is equivalent to

(b∗a)+

(in DTD syntax, ((b*,a)+)), that is deterministic.
Under this restriction, it is easy to type-check some XML data while scanning it, e.g., with

a SAX parser. Observe that such a parsing can be sometimes performed with a finite-state
automaton but that sometimes more is required. For instance, consider the following DTD:

<!ELEMENT part (part*) >

The parser reads a list of part opening tags. A stack (or a counter) is needed to remember how
many where found to verify that the same number of closing tags is found.

The reader may be a bit confused by now. Is this language regular (an automaton suffices
to validate it) or not? To be precise, if we are given the tree, a tree automaton suffices to
check whether a document satisfies the previous DTD. On the other hand, if we are given the
serialized form of the XML document, just the verification that the document is well-formed
cannot be achieved by an automaton. (It requires a stack as anbn does.)

Observe that we do want the kind of recursive definitions that cannot be verified simply by
an FSA. On the other hand, DTDs present features that are less desired, most importantly,
they are not closed under union:

DTD1: <!ELEMENT used (ad*) >
<!ELEMENT ad (year, brand) >

DTD2: <!ELEMENT new (ad*) >
<!ELEMENT ad (brand) >

L(DTD1) ∪ L(DTD2) cannot be described by a DTD although it can be described easily
with a tree automaton. The issue here is that the type of ad depends of its parent. We can
approximate what we want:

<!ELEMENT ad (year?, brand) >

But this is only an approximation. It turns out that DTDs are also not closed under comple-
ment.

What we need to do is to decouple the notions of type and that of label. Each type
corresponds to a label, but not conversely. So, for instance, we may want two types for ads,
with the same label:

car: [car] (used|new)*
used: [used] (ad1*)
new: [new] (ad2*)
ad1: [ad] (year, brand)
ad2: [ad] (brand)

For personal use only, not for distribution. 79

With such decoupling, we can prove closure properties. This is leading to XML Schema,
described in the next section, that is based on decoupled tags with many other features.

DTDs provide a few other functionalities, such as the description of the type of attributes,
a mechanism for including external files and for defining local macros, or the possibility of
declaring an attribute value as unique (ID) in the whole document or refers to one of these
unique values (IDREF). These ID and IDREF attribute types can be used to create “pointers”
from one point of the document to another, as investigated in Section 3.4. XML documents
can include in-line description of their DTDs, as well as refer to external DTDs to indicate
their type. Thus, XHTML documents typically contain such a declaration (before the opening
tag of the root element and after the optional XML declaration):

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Here, html is the name of the root element, -//W3C//DTD XHTML 1.0 Strict//EN is a
public identifier for this DTD (that Web browsers can for instance use to identify the particu-
lar HTML dialect a document is written in) and http://www.w3.org/TR/xhtml1/DTD/
xhtml1-strict.dtd is the system identifier, a URL to the DTD.

A final annoying limitation of DTDs, overcome in XML Schema, is their unawareness of
XML namespaces. Because XML namespaces are very much used in practice, this considerably
limits the usefulness of DTDs. In brief, it is impossible to give a DTD for an XML document
that will remain valid when the namespace prefixes of this document are renamed. Let us
explain this further. An XML document making use of namespaces is usually conceptually the
same when the prefix used to refer to the namespace is changed.2 For instance, the following
three documents are usually considered to be syntactic variants of the same:

<t:a xmlns:t="http://toto.com/"><t:b /></t:a>
<s:a xmlns:s="http://toto.com/"><s:b /></s:a>

These documents can be distinguished using advanced features (namespace nodes) of XML
programming interfaces and languages (DOM, SAX, XPath, XSLT, XQuery, etc.) but it is very
rarely done or useful. As DTDs have been introduced at the same time that XML itself, they
predate the introduction of namespaces in XML. A side-effect of this is that it is impossible to
write a DTD all three documents above are valid against. In XML Schema (as well as in other
modern schema languages for XML), this is directly supported.

3.3.2 XML Schema

XML Schema is an XML-based language for describing XML types proposed by the W3C.
Despite criticism for being unnecessarily complicated, this is the primary schema language
for XML documents (disregarding DTDs), notably because of its support and use in other
W3C standards (XPath 2.0, XSLT 2.0, XQuery 1.0, WSDL for describing Web services, etc.). In

2There are exceptions to that, when the namespace prefix is also used in attribute values or text content, such as
in XSLT or XML Schema, but they are rare.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

For personal use only, not for distribution. 80

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="book">
<xs:complexType>
<xs:sequence>

<xs:element name="title" type="xs:string"/>
<xs:element name="author" type="xs:string"/>
<xs:element name="character"

minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="friend-of" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="since" type="xs:date"/>
<xs:element name="qualification" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="isbn" type="xs:string"/>

</xs:complexType>
</xs:element>

</xs:schema>

Figure 3.4: Simple XML schema

essence, XML schemas are very close to deterministic top-down tree automata but, as already
mentioned, with many practical gadgets. It uses an XML syntax, so it benefits from XML
tools such as editors and type checkers.

An example XML schema is given in Figure 3.4. XML schemas first include the definition of
simple elements with atomic types, where the common types are xs:string, xs:decimal,
xs:integer, xs:boolean, xs:date, xs:time. For instance, one can define:

<xs:element name="lastname" type="xs:string"/>
<xs:element name="age" type="xs:integer"/>
<xs:element name="dateborn" type="xs:date"/>

And corresponding data are:

<lastname>Refsnes</lastname>
<age>34</age>
<dateborn>1968-03-27</dateborn>

One can also define attributes as, for instance in:

<xs:attribute name="lang" type="xs:language"/>ă

For personal use only, not for distribution. 81

with for corresponding data:

<lastname lang="en-US">Smith</lastname>

One can impose restrictions of simple elements as in:

<xs:element name="age">
<xs:simpleType>

<xs:restriction base="xs:integer">
<xs:minInclusive value="0"/>
<xs:maxInclusive value="100"/>

</xs:restriction>
</xs:simpleType>

</xs:element>

Other restrictions are: enumerated types, patterns defined by regular expressions, etc.
XML schemas also allow defining complex elements that possibly correspond to subtrees of

more that one nodes. A complex element may be empty, contain text, other elements or be
“hybrid”, i.e., contain both some text and subelements.

One can define the content of complex elements as in:

<xs:element name="person">
<xs:complexType>

<xs:sequence>
<xs:element name="firstname" type="xs:string"/>
<xs:element name="lastname" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>

It is also possible to specify a type and give it a name.

<xs:complexType name="personinfo">
<xs:sequence> <xs:element name="firstname" type="xs:string"/>
<xs:element name="lastname" type="xs:string"/> </xs:sequence>

</xs:complexType>

Then we can use this type name in a type declaration, as in:

<xs:element name="employee" type="personinfo" />

One should also mention some other useful gadgets:

1. It is possible to import types associated to a namespace.

<xs:import nameSpace = "http://..."
schemaLocation = "http://..." />

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 82

<!ELEMENT book (title, author, character*) >
<!ELEMENT title (#PCDATA) >
<!ELEMENT author (#PCDATA) >
<!ELEMENT character (name,friend-of*,since,qualification)>
<!ELEMENT name (#PCDATA) >
<!ELEMENT name friend-of (#PCDATA) >
<!ELEMENT since (#PCDATA) >
<!ELEMENT qualification (#PCDATA) >

<!ATTLIST book isbn CDATA #IMPLIED >

Figure 3.5: Example DTD, corresponding to the XML schema of Figure 3.4

2. It is possible to include an existing schema.

<xs:include schemaLocation="http://..." />

3. It is possible to extend or redefine an existing schema.

<xs:redefine schemaLocation="http://..." />
... Extensions ...

</xs:redefine>

There are more restrictions on XML schemas, some rather complex. For instance, inside
an element, no two types may use the same tag. Some of them can be motivated by the
requirement to have efficient type validation (i.e., that the top-down tree automaton defined
by the schema is deterministic). The main difference with DTDs (besides some useful gadgets)
is that the notions of types and tags are decoupled.

XML Schema also allows going beyond what is definable by tree automata with dependencies:
it is possible to define primary keys (<xs:key />) and foreign keys (<xs:keyref />, in a
similar way as keys on relational databases. This extends and complements the xs:ID and
xs:IDREF datatypes that XML Schema inherits from DTDs.

To conclude and contrast DTDs with XML Schema, consider again the XML Schema from
Figure 3.4. A corresponding DTD is given in Figure 3.5. In this example, the only difference
between the DTD and the XML schema is that the DTD is unable to express the datatype
constraint on since.

3.3.3 Other Schema Languages for XML

DTDs and XML Schema are just two examples of schema languages that can be used for typing
XML documents, albeit important ones because of their wide use and their endorsement by
the W3C. We briefly present next other approaches.

For personal use only, not for distribution. 83

RELAX NG. RELAX NG (REgular LAnguage for XML Next Generation) is a schema language
for XML, spearheaded by the OASIS consortium, and is a direct concurrent to XML Schema,
with which it shares a number of features. The most striking difference is at the syntax level,
since RELAX NG provides, in addition to an XML syntax, a non-XML syntax, which is much
more compact and readable than that of XML Schema. As an example, here is a RELAX NG
schema equivalent to the XML Schema of Figure 3.4:

element book {
element title { text },
element author { text },
element character {

element name { text },
element friend-of { text }*,
element since { xsd:date },
element qualification { text }

}*,
attribute isbn { text }

}

It is also possible to define named types and reuse them in multiple places of the schema,
like with named XML Schema types. The built-in datatypes of RELAX NG are much less rich
than what exists in XML Schema, but RELAX NG offers the possibility of using XML Schema
datatypes, as shown in the previous example with the datatype xsd:date. RELAX NG is
also much more convenient to use when describing unordered content, and does not have
the same determinism restrictions as XML Schema.

Schematron. Schematron is a schema language that is built on different principles as XML
Schema or RELAX NG. A Schematron schema is an XML document built out of rules, each rule
being an arbitrary XPath expression that describes a constraint to be respected. Schematron
is not designed as a standalone schema language able to fully describe the structure of a
document, but can be used in addition to another schema language to enforce constraints that
are hard or impossible to express in this language. Thus, the following Schematron schema
ensures that there are as many a elements as b elements as c elements in a whole document:

<schema xmlns="http://purl.oclc.org/dsdl/schematron">
<pattern>

<rule context="/">
<assert test="count(//a) = count(//b) and count(//a) = count(//c)">

Invalid number of characters.
</assert>

</rule>
</pattern>

</schema>

Such a constraint on a document is impossible to impose with DTDs, XML schemas, or
RELAX NG schemas.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 84

General Programming Languages. In some XML processing contexts, the facilities offered by
schema languages for XML are not enough to ensure that a document conforms to a precise
type. This might be because the syntax rules are too complex to express in schema languages,
or because they deal with syntactic features of XML documents not available in the data
model that XML “Validator” use. For instance, the W3C XHTML Validitor checks whether
the character set declared in a <meta http-equiv="Content-Type"/> tag conforms to the
one used in the textual serialization of the document, which is impossible to do using XML
schema languages. In these cases, a program in a general programming language, such as C,
Java, or Perl, possibly with a DOM or SAX XML parser can be used to enforce these extra
constraints. Obviously, one loses the advantages of a declarative approach to XML typing.

3.4 Typing Graph Data

Using the ID and IDREF attribute types in DTDs, or the <xs:key /> and <xs:keyref />

XML Schema elements, it is possible to define XML types where one node of the tree references
another node in the tree, moving this way from trees to graphs. In this section, we very briefly
present a graph data model and mention alternative approaches to typing graph data.

3.4.1 Graph Semistructured Data

Prior to XML trees and ID/IDREF links, different models have been proposed for describing
graph data. We next mention one.

Definition 3.4.1 (Object Exchange Model) An OEM is a finite, labeled, rooted graph (N, E,r)
(simply (E,r) when N is understood) where:

1. N is a set of nodes;

2. E is finite ternary relation subset of N × N ×L for some set L of labels,
(E(s, t, l) indicates there is an edge from s to t labeled l);

3. r is a node in the graph.

It should also be stressed that many other graph data models have been considered. In
some sense, RDF (see Chapter 7) is also such a graph data model.

3.4.2 Graph Bisimulation

A typing of a graph may be seen in some sense as a classification of its nodes, with nodes in a
class sharing the same properties. Such a property is that they “point to” (or are “pointed
by”) nodes in particular classes. For instance, consider Figure 3.6. A set of nodes forms the
class employee. From an employee node, one can follow workson, leads and possibly consults
edges to some nodes that form the class project. This is the basis for typing schemes for graph
data based on “simulation” and “bisimulation”.

A simulation S of (E,r) with (E′,r′) is a relation between the nodes of E and E′ such that:

1. S(r,r′) and

2. if S(s, s′) and E(s, t, l) for some s, s′, t, l, then there exists t′ with S(t, t′) and E′(s′, t′, l′).

For personal use only, not for distribution. 85

The intuition is that we can simulate moves in E by moves in E′.
Given (E,r), (E′,r′), S is a bisimulation if S is a simulation of E with E′ and S−1 is a simulation

of E′ with E.
To further see how this relates to typing, take a very complex graph E. We can describe it

with a “smaller” graph E′ that is a bisimulation of E. There may be several bisimulations for
E including more and more details. At one extreme, we have the graph consisting of a single
node with a self loop. At the other extreme, we have the graph E itself. This smaller graph E′

can be considered as a type for the original graph E. In general, we say that some graph E
has type E′ if there is a bisimulalation of E and E′.

3.4.3 Data guides

Another way to type graph data is through data guides. Sometimes we are interested only in
the paths from the root. This may be useful for instance to provide an interface that allows to
navigate in the graph. Consider the OEM Graph of Figure 3.6. There are paths such as

programmer
programmer employee
programmer employee workson

It turns out that in general, the set of paths in an OEM graph is a regular language. For
instance, for Figure 3.6, the set of paths can be described by the regular language:

programmer employee leads workson workson?
| statisticien employee leads workson2 consults?
| employee leads workson workson?
| employee leads workson2 consults?
| project

A deterministic automaton accepting it is called a data guide. A main issue in practice is
that the automaton that is obtained “naturally” from the graph is “very” nondeterministic
and that the number of states may explode when it is turned into a deterministic automaton.

Observe that the data guide gives some information about the structure of the graph, but
only in a limited way: for instance, it does not distinguish between

t1 = r (a (b) a (b d))
t2 = r (a (b b d))

that have the same data guide. Note that a document of type t1 has two a elements whereas a
document of type t2 only has one. Furthermore, suppose the bs have IDs. Then the document
of type t1 specifies which of the two b elements is related to the d element whereas the second
one does not.

3.5 Further reading

Schema Inference and Static Typing

Several algorithms for inferring schemas from example documents have been proposed, [27]
for DTDs and [28] for XML Schema are recent references that also review other approaches.
The problem of static typechecking for XML is reviewed in [152, 125].

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 86

Figure 3.6: OEM and data guide

For personal use only, not for distribution. 87

Automata

The idea that regular tree languages form the proper basis for typing XML was first proposed
in [93]. Finite-state automata theory is at the core of computer science. We suggest to the
readers not familiar with the topic to further read on it. There are numerous texbooks,
e.g., [91]. For everything pertaining to tree automata and regular tree languages, a freely
available reference is [48].

Schema Languages for XML

DTDs are defined in the W3C Recommendation for XML [174]. The specification of XML
Schema is split into three documents: an introductory primer [165], the main part describing
the structure of a schema [166], and a description of the built-in datatypes [167]. RELAX NG
is defined by an OASIS specification [127] and a separate document [128] defines its compact,
non-XML, syntax. Both specifications are also integrated in an ISO standard [97] that is part
of the freely available Document Schema Definition Language standard. Schematron is defined
in another part of this standard [98]. An interesting comparison of schema languages for XML
is presented in [89], along with many practical advice on XML document processing.

Typing languages

A very influencial XML-tranformation language, namely XDuce, is presented in [92]. Its type
checker is based on tree-automata type checking. The language XDuce was then extended to
the programming language CDuce [26].

Typing Graph Data

For more details about typing semistructured data in general, including graphs, see [5]. Data
guides for semistructured data have been proposed in [75]. A query language for the OEM
model is proposed in [8].

3.6 Exercises

Exercise 3.6.1 Show how to construct a right-to-left word automaton that accepts the same language
as a given left-to-right word automaton.

Exercise 3.6.2 Show that the languages accepted by nondeterministic bottom-up tree automata and
nondeterministic top-down tree automata are the same.

Exercise 3.6.3 The DBLP Computer Science Bibliography, http://www.informatik.uni-trier.
de/~ley/db/, maintained by Michael Ley, provides bibliographic information on major computer
science journals and proceedings. DBLP indexes more than one million articles as of 2010. The whole
content of the DBLP bibliography is available for download from http://dblp.uni-trier.
de/xml/ in an XML format, valid against a DTD available at http://www.informatik.
uni-trier.de/~ley/db/about/dblp.dtd.

Retrieve the DBLP DTD from the aforementioned URL, and give a document that validates against
it and uses all elements and attributes of the DTD.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://www.informatik.uni-trier.de/~ley/db/
http://www.informatik.uni-trier.de/~ley/db/
http://dblp.uni-trier.de/xml/
http://dblp.uni-trier.de/xml/
http://www.informatik.uni-trier.de/~ley/db/about/dblp.dtd
http://www.informatik.uni-trier.de/~ley/db/about/dblp.dtd

For personal use only, not for distribution. 88

Exercise 3.6.4 Consider the following XML document:

<Robots>
<Robot type="Astromech">

<Id>R2D2</Id>
<maker>Petric Engineering</maker>
<components>

<processor>42GGHT</processor>
<store>1.5 zetabytes</store>

</components>
</Robot>
<Robot type="Protocol">
<Id>C-3PO</Id>
<maker>Xyleme Inc</maker>

<components>
<processor>42GGHT</processor>
<store>100 exabytes</store>

</components>
</Robot>

</Robots>

Give a DTD, XML schema, or RELAX NG schema that validate families of robots such as this one.

Exercise 3.6.5 Consider the following four sets of documents:
C1: <a><c>x</c><d><e>y</e></d>

C2: <a><c>x</c><e/>

C3: <a><c>x</c>

C4: <a><c/><c>x</c><c/>
where x and y stand for arbitrary text nodes. Call these sets C1,C2,C3,C4.
Questions:

1. For each Ci ∈ {C1,C2,C3,C4}, give a DTD (if one exists) that accepts exactly Ci. Otherwise
explain briefly what cannot be captured.

2. For each Ci ∈ {C1,C2,C3,C4}, is there an XML schema that accepts exactly Ci? If yes, you do
not need to give it. Otherwise, explain briefly what cannot be captured.

3. Summarize your results of the first two questions in a table of the form:

C1 C2 C3 C4
DTD yes/no yes/no yes/no yes/no

XML Schema yes/no yes/no yes/no yes/no

4. Each time you answered “no” in the previous question, give the schema (DTD or XML Schema,
according to the case) that is as restrictive as you can and validates Ci.

5. Give a DTD that is as restrictive as you can and validates the four sets of documents (i.e.,
∪4

i=1Ci).

6. Describe in words (10 lines maximum) an XML Schema as restrictive as you can that validates
the four sets of documents (i.e., ∪4

i=1Ci).

For personal use only, not for distribution. 89

Exercise 3.6.6 Consider the trees with nodes labeled f of arity 1 and g of arity 0. Consider the
constraint: “all paths from a leaf to the root have even length”. Can this constraint be captured by (i) a
nondeterministic bottom-up tree automaton, (ii) a deterministic one, (iii) a top-down deterministic tree
automaton?

Same question if f is of arity 2.

Exercise 3.6.7 ([48]) Consider the set T of trees with nodes labeled f of arity 2, g of arity 1, and a
of arity 0. Define a top-down nondeterministic tree-automaton, a bottom-up one, and a bottom-up
deterministic tree-automaton for G = { f (a,u), g(v)) | u,v ∈ T}. Is it possible to define a top-down
deterministic tree automaton for this language?

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

4 XML Query Evaluation

In previous chapters, we presented algorithms for evaluating XPath queries on XML docu-
ments in PTIME with respect to the combined size of the XML data and of the query. In this
context, the entire document is assumed to fit within the main memory. However, very large
XML documents may not fit in the memory available at runtime to the query processor. Since
access to disk-resident data is orders of magnitude slower than access to the main memory,
this dramatically changes the problem. When this is the case, performance-wise, the goal is
not so much in reducing the algorithmic complexity of query evaluation, but in designing
methods reducing the number of disk accesses that are needed to evaluate a given query. The
topic of this chapter is the efficient processing of queries of disk-resident XML documents.

We will use extensively depth-first tree traversals in the chapter. We briefly recall two
classical definitions:

preorder To traverse a non-empty binary tree in preorder, perform the following operations
recursively at each node, starting with the root node: 1. Visit the root; 2. Traverse the
left subtree; 3. Traverse the right subtree.

postorder To traverse a non-empty binary tree in postorder, perform the following operations
recursively at each node, starting with the root node: 1. Traverse the left subtree; 2.
Traverse the right subtree; 3. Visit the root.

Figure 4.1 illustrates the issues raised by the evaluation of path queries on disk-resident
XML documents. The document represents information about some auctions. It contains a
list of items for sale, as well as a collection of the currently open auctions. See Figure 4.1. A
page size has been chosen, typically reasonably small so that one can access some small unit
of information without having to load too much data. A very simple method has been used
to store the document nodes on disk. A preorder traversal of the document, starting from
the root, groups as many nodes as possible within the current page. When the page is full, a
new page is used to store the nodes that are encountered next, etc. Each thick-lined box in
the figure represents a page. Observe, that a node may be stored in a different page than its
parent. When this is the case, the “reference” of the child node in the parent page may consist
of (i) the ID of the page that stores the child node and (ii) the offset of the child node in that
separate page.

We now consider the processing of simple queries on the document in Figure 4.1:

• /auctions/item requires the traversal of two disk pages;

• /auctions/item/description and
/auctions/open_auctions/auction/initial
both require traversing three disk pages;

• //initial requires traversing all the pages of the document.

91

For personal use only, not for distribution. 92

auctions

item open_auctions item

comment

name

description

auction auction

initial bids initial bids

name description

Figure 4.1: Simple page-based storage of an XML tree.

These examples highlight the risk of costly disk accesses even when the query result is very
small. As a consequence, there is a risk of very poor performance on documents stored in
such a naïve persistent fashion. Indeed, the example was meant to illustrate that navigation
on disk-resident structures may be costly and should be avoided. This is indeed a well-known
principle since the days of object-oriented databases.

How can one avoid navigation? Two broad classes of techniques have been proposed.

Smart fragmentation. Since XML nodes are typically accessed by a given property (most often,
their names and/or their incoming paths), fragmentation aims at decomposing an XML
tree into separate collections of nodes, grouped by the value of interesting, shared
property. The goal is to group nodes that are often accessed simultaneously, so that the
number of pages that need to be accessed is globally reduced. We present the main
approaches for fragmentation in Section 4.1.

Rich node identifiers. Even on a well-fragmented store, some queries may require combining
data from more than one the stored collections. This can be seen as “stitching” back
together separated fragments, and amounts to performing some joins on the identifiers
of stored nodes. (The node identifiers for Figure 4.1 consist of (page, offset) pairs.) To
make stitching efficient, sophisticate node identifier schemes have been proposed. We
present some in Section 4.2 and discuss interesting properties they provide. We present
XML query evaluation techniques exploiting node identification schemes in Section 4.3.

4.1 Fragmenting XML documents on disk

A set of simple alternatives have been explored for fragmenting XML documents, and they
can all be conceptualized with the help of some set of relations. The evaluation of XML queries
then turns into a sequence of two steps: translating the XML query into a relational (XML)
query, and evaluating the relational query on the tables representing the XML document
content.

To illustrate fragmentation approaches, we will rely on the sample auction document in
Figure 4.2, where next to each node, we show an integer that allows identifying the node.

For personal use only, not for distribution. 93

1

2 3 4

5

6

7

8 9

10 11 12 13

14 15

auctions

item open_auctions item

comment

name

description

auction auction

initial bids initial bids

name description

Figure 4.2: Sample XML document with simple node identifiers.

pid cid clabel
- 1 auctions
1 2 item
2 5 comment
2 6 name
2 7 description
1 3 open_auctions
3 8 auction
· · · · · · · · ·

Figure 4.3: Partial instance of the Edge relation for the document in Figure 4.2.

The simplest approach considers a document to be a collection of edges, stored in a single
Edge(pid, cid, clabel) relation. Here, cid is the ID of some node (child node), pid stands for
the ID of its parent, and label is its label (the label of the child node). For instance, part of the
document in Figure 4.2 is encoded by the relation shown in Figure 4.3.

Let us now explain the processing of XPath queries relying on such a store. Here and
throughout the section, we consider the evaluation of an XPath query up to the point where
the identifiers of the result nodes are known. It is then usually straightforward to retrieve the
full XML elements based on their identifiers.

• The query //initial can now be answered by evaluating the expression:

πcid(σclabel=initial(Edge))

The Edge storage is quite beneficial for queries of this form, i.e., //a for some node label
a, since, with the help of an appropriate index on Edge.clabel, one can evaluate such
queries quite efficiently.

• The query /auctions/item translates to the expression:

πcid((σclabel=auctions(Edge)) ./cid=pid (σclabel=item(Edge)))

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 94

auctionsEdge
pid cid

- 1

itemEdge
pid cid

1 2
1 4

open_auctionsEdge
pid cid

1 3

auctionEdge
pid cid

3 8
3 9

Figure 4.4: Portions of the tag-partitioned Edge relations for the document in Figure 4.2.

Observe that the two nodes in the query translate to two occurrences of the Edge relation.
Similarly, queries such as

/auctions/item/description and
/auctions/open_auctions/auction/initial

require joining several instances of the Edge table. Such queries become problematic
when the size of the query increases.

• Now consider a query such as //auction//bid. In the absence of schema informa-
tion, the distance between the XML nodes matching auction and their descendants
matching bid is unknown. Therefore, such queries lead to a union of different-lengths
simpler queries, where the // has been replaced with chains of / steps, introducing
nodes with unconstrained labels (using *):

//auction/bid πcid(A ./cid=pid B)
//auction/*/bid πcid(A ./cid=pid Edge ./cid=pid B)
//auction/*/*/bid · · ·

where A = σclabel=auctions(Edge) and B = σclabel=bid(Edge).

In principle, there is no bound on the number of intermediate nodes, so we have to
evaluate an infinite union of XPath queries. In practice, some bound may be provided
by the schema or the maximum depth of the document may be recorded at the time the
document is loaded. This limits the number of queries to be evaluated. However, it is
clear that the processing of such queries, featuring // at non-leading positions, is very
costly in such an setting.

Tag-partitioning A straightforward variation on the above approach is the tag-partitioned
Edge relation. The Edge relation is partitioned into as many tag-based relations as there are
different tags in the original document. Each such relation stores the identifiers of the nodes,
and the identifiers of their respective parents. (There is no need to repeat the label that is
the same for all nodes in such a collection.) Figure 4.4 illustrates tag-partitioning for the
document in Figure 4.2.

Clearly, the tag-partitioned Edge store reduces the disk I/O needed to retrieve the identifiers
of elements having a given tag, since it suffices to scan the corresponding tag-partitioned
relation. However, the partitioning of queries with // steps in non-leading position remains
as difficult as it is for the Edge approach.

For personal use only, not for distribution. 95

/auctions
pid cid

- 1

/auctions/item
pid cid

1 2
1 4

/auctions/item/name
pid cid

2 6
4 14

Paths
path
/auctions
/auctions/item
/auctions/item/comment
/auctions/item/name
· · ·

Figure 4.5: Relations resulting from the path-partitioned storage of the document in Fig-
ure 4.2.

Path-partitioning The Path-partitioning fragmentation approach aims at solving the problem
raised by // steps at arbitrary positions in a query. The idea is roughly to encode the
Dataguide (see page 85) of the XML data set in a set of relations. There is one relation for each
distinct parent-child path in the document, e.g., /auctions/item/name. There is also an
extra table, namely path containing all the unique paths. Figure 4.5 illustrates the resulting
relations for the document in Figure 4.2.

Based on a path-partitioned store, a linear query such as //item//bid can be evaluated
in two steps:

• Scan the path relation and identify all the parent-child paths matching the given linear
XPath query;

• For each of the paths thus obtained, scan the corresponding path-partitioned table.

On a path-partitioned store, the evaluation of XPath queries with many branches will still
require joins across the relations. However, the evaluation of // steps is simplified, thanks
to the first processing step, performed on the path relation. For very structured data, this
relation is typically small, much smaller than the data set itself. Thus, the cost of the first
processing step is likely negligible, while the performance benefits of avoiding numerous
joins are quite important. However, for some data, the path relation can quite large, and in
pathological cases, even larger than the data itself.

4.2 XML node identifiers

We have seen that, within a persistent XML store, each node must be assigned a unique
identifier (or ID, in short). Such an identifier plays the role of a primary key to the node,
that allows distinguishing it from other nodes even if they have the same label and pairwise
identical children. In a fragmented store, moreover, these identifiers are essential to be able to
reconnect nodes according to their relationships and reconstruct the original XML document.

Going beyond these simple ID roles, we show next that it is very useful to encapsulate in
identifiers some knowledge of the element’s position within the original document. Indeed,

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 96

<a>

0

...

30

...

50

...

90

Offsets in the XML file

Figure 4.6: Region-based identifiers.

with particular node identifiers, it even becomes possible, just by considering two XML node
IDs, to decide how the respective nodes are related in the document. We will see how this can
be exploited to efficiently process queries.

4.2.1 Region-based identifiers

Typically, the identifiers we consider exploit the tree structure of XML. First, we present an
identification scheme that is based on the tags signaling the beginning and the end of XML
elements. We assume that the tags are properly nested (just like parentheses in arithmetical
expressions), i.e., that the document is well-formed.

Figure 4.6 shows an example. This document is the serialization of an XML tree with a
root labeled a, that includes some text, a child labeled b that only includes text, followed by
some text. On the horizontal axis, we show the offset, within the XML file, at which begin
tags, such as <a>, respectively, end tags, such as , are encountered. In the figure, the a
element is the root of the document, thus its begin tag starts at offset 0. The b element starts
at offset 30 in the file, and finishes at offset 50. Observe that due to the well-formedness of an
XML document, an element’s begin tag must follow the begin tags of its ancestors. Similarly,
an element’s end tag must precede the end tags of its ancestors.

The so-called region-based identifier scheme simply assigns to each XML node n, the pair
composed of the offset of its begin tag, and the offset of its end tag. We denote this pair by
(n.begin,n.end). In the example in Figure 4.6:

• the region-based identifier of the <a> element is the pair (0, 90);

• the region-based identifier of the element is pair (30, 50).

Comparing the region-based identifiers of two nodes n1 and n2 allows deciding whether n1
is an ancestor of n2. Observe that this is the case if and only if:

• n1.start < n2.start, and

• n2.end < n1.end.

Thus, by considering only the identifiers n1 = (0,90) and n2 = (30,50), and without having
to access the respective nodes or any other data structures, one can decide that the element
identified by n1 is an ancestor of the element identified by n2. Contrast this simple decision
procedure with the costly navigation required to answer a similar question on the page-
fragmented storage shown in Figure 4.1!

Region-based node identifiers are the simplest and most intuitive structural XML IDs. The
simple variant presented above, using offsets in the serialized XML file, can be implemented
easily, since one only needs to gather offsets inside the file corresponding to the serialized

For personal use only, not for distribution. 97

document. However, for the purpose of efficiently evaluating tree pattern queries, one does
not need to count all characters in the file, but only the information describing how elements
are structurally related in the XML tree. Popular variants of region-based identifiers based on
this observation include the following:

(Begin tag, end tag). Instead of counting characters (offsets), count only opening and closing
tags (as one unit each) and assign the resulting counter values to each element. Follow-
ing this scheme, the <a> element in Figure 4.6 is identified by the pair (1,4), while the
 element is identified by the pair (2,3).

The pair (Begin tag, end tag) clearly allows inferring whether an element is an ancestor
of another by simple comparisons of the ID components.

(Pre, post). The (pre, post) identifiers are computed as follows:

• Perform a preorder traversal of the tree. Count nodes during the traversal and
assign to each node its corresponding counter value. This would assign the so-
called pre number of 1 to the a-node, and the pre number of 2 to the b-node.

• Perform a post-order traversal of the tree. Count nodes during the traversal and
assign to each node its corresponding counter value, called post number. For
instance, the post number of <a> in Figure 4.6 is 2, and the post number of is
1.

The (pre, post) IDs still allow inferring whether an element n1 is an ancestor of another
one n2, i.e., if n1.pre ≤ n2.pre and n2.post ≤ n1.post.

It is also useful to be able to decide whether an element is a parent of another. The following
variant allows to do so:

(Pre, post, depth). This scheme adds to the (pre, post) pair an integer representing the depth,
or distance from the document root, at which the corresponding individual node is
found. An element identified by n1 is the parent of an element identified by n2, if and
only if the following conditions hold:

• n1 is an ancestor of n2 and

• n1.depth = n2.depth− 1.

For illustration, Figure 4.7 shows the XML document of the running example, with
nodes adorned with (pre, post, depth) identifiers.

Region-based identifiers are quite compact, as their size only grows logarithmically with
the number of nodes in a document.

4.2.2 Dewey-based identifiers

Another family of identifiers borrows from the well-known Dewey classification scheme,
widely used, for example, in libraries long before computers and databases took over the
inventories. The principle of Dewey IDs is quite simple: the ID of a node is obtained by
adding a suffix to the ID of the node’s parent. The suffix should allow distinguishing each
node from all its siblings that are also constructed starting from the same parent ID. For

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 98

(1,15,1)

(2,4,2) (3,11,2) (4,14,2)

(5,1,3)

(6,2,3)

(7,3,3)

(8,7,3) (9,10,3)

(10,5,4) (11,6,4) (12,8,4) (13,9,4)

(14,12,3) (15,13,3)

auctions

item open_auctions item

comment

name

description

auction auction

initial bids initial bids

name description

Figure 4.7: Sample XML document with (pre, post, depth) node identifiers.

1

1.1 1.2 1.3

1.1.1

1.1.2

1.1.3

1.2.1 1.2.2

1.2.1.1 1.2.1.2 1.2.2.1 1.2.2.2

1.3.1 1.3.2

auctions

item open_auctions item

comment

name

description

auction auction

initial bids initial bids

name description

Figure 4.8: Sample XML document with Dewey node identifiers.

instance, the root may be numbered 1, its first child 1.1, its second child 1.2 and so on. For
example, Figure 4.8 shows our sample XML document with the nodes adorned with Dewey
node IDs.

Dewey IDs encapsulate structural information in a much more explicit way than region IDs.
We illustrate some aspects next. Let n1 and n2 be two identifiers, of the form n1 = x1.x2.xm
and n2 = y1.y2.yn. Then:

• The node identified by n1 is an ancestor of the node identified by n2 if and only if n1 is a
prefix of n2. When this is the case, the node identified by n1 is the parent of the node
identified by n2 if and only if n = m + 1.

• Dewey IDs also allow establishing other relationships such as preceding-sibling and be-
fore (respectively, following-sibling, and after). The node identified by n1 is a preceding
sibling of the node identified by n2 if and only if (i) x1.x2.xm−1 = y1.y2.yn−1; and
(ii) xm < yn.

• Given two Dewey IDs n1 and n2, one can find the ID of the lowest common ancestor (LCA)

For personal use only, not for distribution. 99

of the corresponding nodes. The ID of the LCA is the longest common prefix of n1 and
n2. For instance, in Figure 4.8, the LCA of the nodes identified by 1.2.1.1 and 1.2.2.2 is
1.2. Determining the LCA of two nodes is useful, for instance, when searching XML
documents based on a set of keywords. In this context, the user does not specify the size
or type of the desired answer, and the system may return the smallest XML subtrees
containing matches for all the user-specified keywords. It turns out that such smallest
XML subtrees are exactly those rooted at the LCA of the nodes containing the keywords.

As just discussed, Dewey IDs provide more information than region-based IDs. The main
drawback of Dewey IDs is their potentially much larger size. Also, the fact that IDs have
lengths that may vary a lot within the same document, complicates processing.

4.2.3 Structural identifiers and updates

Observe that identifier of a node for all the forms mentioned above may change when the
XML document that contains this node is updated. For instance, consider a node with Dewey
ID 1.2.2.3. Suppose we insert a new first child to node 1.2. Then the ID of node 1.2.2.3 becomes
1.2.3.3.

In general, offset-based identifiers need to change even if a simple character is added to or
removed from a text node in the XML document, since this changes the offsets of all nodes
occurring in the document after the modified text node. Identifiers based on the (start, end)
or (pre, post) model, as well as Dewey IDs, are not impacted by updates to the document’s
text nodes. One may also choose to leave them unchanged when removing nodes even full
subtrees from the document. If we do that (leave the identification unchanged when subtrees
are removed), we introduce gaps in the use of identifiers in all three methods, but these gaps
do not affect in any way the computation of structural joins.

The management of insertions, on the other hand, is much more intricate. When inserting
an XML node nnew, the identifiers of all nodes occurring after nnew in the preorder traversal of
the tree, need to change. Depending on the ID model, such changes may also affect the IDs
of nnew’s ancestors. The process of re-assigning identifiers to XML nodes after a document
update is known as re-labeling.

In application scenarios where XML updates are expected to be frequent, re-labeling may
raise important performance issues.

4.3 XML query evaluation techniques

We present in the next section, techniques for the efficient evaluation of XML queries, and in
particular for tree pattern queries.

4.3.1 Structural join

The first techniques concern structural joins and can be seen as foundational to all the others.
Structural joins are physical operators capable of combining tuples from two inputs, much in
the way regular joins in the relation case do, but based on a structural condition (thus the
name). Formally, let p1 and p2 be some partial evaluation plans in an XML database, such that
attribute X in the output of p1, denoted p1.X, and attribute Y from the output of p2, denoted
p2.Y, both contain structural IDs. Observe that the setting is very general, that is, we make

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 100

no assumption on how p1 and p2 are implemented, which physical operators they contain
etc. Let ≺ denote the binary relationship “isParentOf” and ≺≺ denote the binary relationship
“isAncestorOf”. Formally then, the structural join of p1 and p2 on the condition that p1.X be
an ancestor of p2.Y is defined as:

p1 ./X≺≺Y p2 = {(t1, t2) | t1 ∈ p1, t2 ∈ p2, t1.X≺≺ t2.Y}

and the structural join on the parent relation ≺ is similarly defined by:

p1 ./X≺Y p2 = {(t1, t2) | t1 ∈ p1, t2 ∈ p2, t1.X ≺ t2.Y}

We have seen that expressive node IDs allow deciding just by comparing two IDs whether
the respective nodes are related or not. Now, what is needed is an efficient way of establishing
how the nodes from sets of tuples are related, i.e., how to efficiently evaluate a join of the form
p1 ./X≺≺Y p2. Efficiency for a join operator means reducing its CPU costs, and avoiding to
incur memory and I/O costs. For our discussion, let |p1| denote the number of tuples output
by p1, and |p2| the number of tuples output by p2.

One can consider different kinds of joins:

Nested loop join The simplest physical structural join algorithms could proceed in nested loops.
One iterates over the output of p1 and for each tuple, one iterates over the output of
p2. However, this leads to CPU costs in O(|p1| × |p2|), since each p1 tuple is compared
with each p2 tuple.

Hash join As in traditional relational database settings, one could consider hash joins that are
often called upon for good performance, given that their CPU costs are in O(|p1|+ |p2|).
However, hash-based techniques cannot apply here, because the comparisons that need
to be carried are of the form “is id1 an ancestor of id2?” which do not lead themselves to
a hash-based approach.

Stack-based join To efficiently perform this task, Stack-based structural joins operators have
been proposed originally for (start, end) ID scheme. They can be used for other labeling
schemes as well. We discuss these joins next.

To be able to use stack-based joins, the structural IDs must allow efficiently answering the
following questions:

1. Is id1 the identifier of the parent of the node identified by id2? The same question can
be asked for ancestor.

2. Does id1 start after id2 in preorder traversal of the tree? Or in other words, does the
opening tag of the node identified by id1 occur in the document after the opening tag of
the node identified by id2?

3. Does id1 end after id2? Or in other words, does the closing tag of the node identified by
id1 occur in the document after the closing tag of the node identified by id2?

Assuming each of these questions can be answered fast, say in constant time, based on the
values of id1 and id2, stack-based structural joins can be evaluated in Ω(|p1|+ |p2|), which
is very efficient. Intuitively, we start with the two lists of identifiers. Condition (1) allows
deciding whether a pair (i, j) with i from one list and j from the other is a solution. Because of

For personal use only, not for distribution. 101

<root(1,5)> <list(2,4)> <list(3,3)> <para(4,2)> <para(5,1)/> </para> </list> </list>
</root>

Ordered by ancestor ID (list ID) Ordered by descendantID (para ID)
(2,4) (4,2)
(2,4) (5,1)
(3,3) (4,2)
(3,3) (5,1)

(2,4) (4,2)
(3,3) (4,2)
(2,4) (5,1)
(3,3) (5,1)

Figure 4.9: Sample XML snippet and orderings of the (list ID, para ID) tuples.

Conditions (2) and (3), we can just scan the two lists (keeping some running stacks) and do
not have to consider all such (i, j) pairs.

More precisely, two algorithms have been proposed, namely, StackTreeDescendant (or STD
in short) and StackTreeAncestor (or STA in short). The algorithms are quite similar. They both
require the inputp1 tuples sorted in the increasing order1 of p1.X, and the input p2 tuples in
the increasing order of p2.Y. The difference between STD and STA is the order in which they
produce their output: STD produces output tuples sorted by the ancestor ID, whereas STA
produces them sorted by the descendant ID.

To see why the two orders do not always coincide, consider the XML snippet shown in
Figure 4.9, with the (start, end) IDs appearing as subscripts in the opening tags. In the figure,
we show the (ancestor, descendant) ID pairs from this snippet, where the ancestor is a list,
and the descendant is a paragraph (labeled “para”).

Observe that the second and third tuples differ in the two tuple orders. This order issue is
significant, since both STD and STA require inputs to be ordered by the IDs on which the join
is to be made. Thus, when combining STD and STA joins in larger query evaluation plans, if
the order of results in one join’s output is not the one required by its parent operator, Sort
operators may need to be inserted, adding to the CPU costs, and delaying the moment when
the first output tuple is built. We now introduce the STD algorithm by means of an example,
leaving STA as further reading.

Figure 4.10 shows a sample XML document with (start, end) IDs shown as subscripts of the
nodes. In this example, the structural join to be evaluated must compute all pairs of (ancestor,
descendant) nodes such that the ancestors are labeled b and the descendants are labeled g.

Figure 4.10 shows a sequence of snapshots during STD execution, with arrows denoting
transitions from one snapshot to the next one.

In each snapshot, the first table shows the inputs, i.e., the ordered lists of IDs of the b nodes,
respectively, of the g nodes. The algorithm’s only internal data structure is a stack, in which
ancestor node IDs are all successively pushed, and from which they are popped later on.

STD execution starts by pushing the ancestor (that is, b node) ID on the stack, namely
(2,5). Then, STD continues to examine the IDs in the b ancestor input. As long as the current
ancestor ID is a descendant of the top of the stack, the current ancestor ID is pushed on the
stack, without considering the descendant IDs at all. This is illustrated by the second b ID,
(3,3) pushed on the stack, since it is a descendant of (2,5). The third ID in the b input, (7,14), is
not a descendant of current stack top, namely (2,5). Therefore, STD stops pushing b IDs on

1This is the lexicographical order, i.e., (i, j) < (i′, j′) if i < i′ or if i = i′ and j < j′.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 102

a(1,16)

b(2,5) b(7,14) f(16,15)

b(3,3) d(6,4) c(8,8) b(11,12) d(15,13)

e(4,1) g(5,2) e(9,6) g(10,7) e(12,9)g(13,10)g(14,11)

b IDs g IDs
(2,5) (5,2)
(3,3) (10,7)

(7,14) (13,10)
(11,12) (14,11)

Stack

⇒

b IDs g IDs
(3,3) (5,2)

(7,14) (10,7)
(11,12) (13,10)

(14,11)

Stack

(2,5)

⇒

b IDs g IDs
(7,14) (5,2)
(11,12) (10,7)

(13,10)
(14,11)

Stack

(3,3)
(2,5)

⇒

b IDs g IDs
(7,14) (10,7)
(11,12) (13,10)

(14,11)

Stack

(3,3)
(2,5)

Output
(3,3), (5,2)
(2,5), (5,2) ⇒

b IDs g IDs
(7,14) (10,7)
(11,12) (13,10)

(14,11)

Stack Output
(3,3), (5,2)
(2,5), (5,2) ⇒

b IDs g IDs
(10,7)
(13,10)
(14,11)

Stack

(11,12)
(7,14)

Output
(3,3), (5,2)
(2,5), (5,2) ⇒

b IDs g IDs
(13,10)
(14,11)

Stack

(11,12)
(7,14)

Output
(3,3), (5,2)
(2,5), (5,2)

(7,14), (10,7)
⇒

b IDs g IDs
(14,11)

Stack

(11,12)
(7,14)

Output
(3,3), (5,2)
(2,5), (5,2)

(7,14), (10,7)
(13,10), (11,12)
(13,10), (7,14)

⇒

b IDs g IDs Stack

Output
(3,3), (5,2)
(2,5), (5,2)

(7,14), (10,7)
(13,10), (11,12)
(13,10), (7,14)
(14,11), (11,12)
(14,11), (7,14)

Figure 4.10: Sample XML tree, and successive snapshots of the inputs and stack during the
execution of a StackTreeDescendant (STD) structural join.

the stack and considers the current descendant ID, to see if it has matches on the stack. It turns
out that the first g node, namely (5,2), is a descendant of both b nodes on the stack, leading to
the first two output tuples. Observe that the stack content does not change when output is
produced. This is because there may be further descendant IDs to match these ancestor IDs
on the stack.

Importantly, a descendant ID which has been compared with ancestor IDs on the stack and has
produced output tuples, can be discarded after the comparisons. In other words, we are certain that
this descendant has encountered all its ancestors from the ancestor stream. This is because of the
way in which ancestor IDs are pushed on the stack (push as long as they are ancestors of each

For personal use only, not for distribution. 103

other). Indeed, all the ancestors of a given g node, for instance, are on a single vertical path in
the document, and therefore, they are guaranteed to be on the stack at once. In our example,
once the (5,2) node ID has lead to producing output, it is discarded.

As the STD execution continues, the g ID (10,7) encounters no matches on the stack.
Moreover, (10,7) occurs in the original document after the nodes on the stack. Therefore, no
descendant node ID yet to be examined can have ancestors on this stack. This is because the input g
IDs are in document order. Thus, if the current g ID is after the stack nodes, all future g IDs
will also occur “too late” to be descendants of the nodes in the current stack. Therefore, at
this point, the stack is emptied. This explains why once an ancestor ID has transited through the
stack and has been popped away, no descendant ID yet to be examined could produce a join result with
this ancestor ID.

The previous discussion provides the two reasons for the efficiency of STD:

• a single pass over the descendants suffices (each is compared with the ancestor IDs on
the stack only once);

• a single pass over the ancestors suffices (each transits through the stack only once).

Thus, the STD algorithm can apply in a streaming fashion, reading each of its inputs only
once and thus with CPU costs in Ω(|p1|+ |p2|).

Continuing to follow our illustrative execution, the ancestor ID (7,14) is pushed on the
stack, followed by its descendant (in the ancestor input) (11, 12). The next descendant ID is
(10,7) which produces a result with (7,14) and is then discarded. The next descendant ID is
(13,10), which leads to two new tuples added in the output, and similarly the descendant ID
(14,11) leads to two more output tuples.

Observe in Figure 4.10 that, true to its name, the STD algorithm produces output tuples
sorted by the descendant ID.

4.3.2 Optimizing structural join queries

Algorithm STD allows combining two inputs based on a structural relationship between an
ID attribute of one plan and an ID attribute of the other. Using STD and the similar Stack-
TreeAncestor (STA), one can compute matches for larger query tree patterns, by combining
sets of identifiers of nodes having the labels appearing in the query tree pattern.

This is illustrated in Figure 4.11 which shows a sample tree pattern and a corresponding
structural join plan for evaluating it based on collections of identifiers for a, b, c and d nodes.
The plan in Figure 4.11 (b) is a first attempt at converting the logical plan into a physical
executable plan. In Figure 4.11 (b), the first logical structural join is implemented using
the STD algorithm, whose output will be sorted by b.ID. The second structural join can be
implemented by STD (leading to an output ordered by c.ID) or STA (leading to an output
ordered by b.ID), but in both cases, the output of this second structural join is not guaranteed
to be sorted by a.ID. Therefore, a Sort operator is needed to adapt the output of the second
join to the input of the third join, which requires its left-hand input sorted by a.ID.

The plan in Figure 4.11 (c) uses STA instead of STD for the first structural join (between
a.ID and b.ID). This choice, however, is worse than the one in Figure 4.11 (b), since a Sort
operator is needed after the first join to re-order its results on b.ID, and a second Sort operator
is needed to order the output of the second physical join, on a.ID. The Sort operators are
blocking, i.e., they require completely reading their input before producing their first output

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 104

(a)

a

b d

c

a IDs b IDs c IDs d IDs

./

./

./

a.ID≺b.ID

b.ID≺≺ c.ID

a.ID≺≺d.ID

(b)

a IDs b IDs c IDs d IDs

STD

STD or STA

STD or STA

a.ID≺b.ID

b.ID≺≺ c.ID

a.ID≺≺d.ID

Sorta.ID

(c)

a IDs b IDs c IDs d IDs

STA

Sortb.ID

Sorta.ID

STD or STA

STD or STA

a.ID≺b.ID

b.ID≺≺ c.ID

a.ID≺≺d.ID

(d)

a IDsb IDs c IDs d IDs

STA

STA

STD or STA

b.ID≺≺ c.ID

a.ID≺b.ID

a.ID≺≺d.ID
(e)

TwigStack

a IDs b IDs c IDs d IDs

Figure 4.11: Tree pattern query and a corresponding logical structural join plan (a); possible
physical plans (b)-(e).

tuple. Therefore, they increase the time to the first output tuple produced by the physical
plan, and the total running time.

In contrast to the plans in Figure 4.11 (b) and (c), the plan in Figure 4.11 (d) allows evaluating
the same query and does not require any Sort operator. Observe however that the plan does
not apply joins in the same order as the other ones in Figure 4.11. In general, it turns out that
for any tree pattern query, there exist some plans using the STD and STA physical operators,
and which do not require any Sort (also called fully pipelined plans). However, one cannot
ensure a fully pipelined plan for a given join order. For instance, in Figure 4.11, the reader can
easily check that no fully pipelined plan exists for the join order a ≺ b, b≺≺ c, a≺≺d.

This complicates the problem of finding an efficient evaluation plan based on structural
joins, because two optimization objectives are now in conflict:

• avoiding Sort operators (to reduce the time to the first output, and the total running
time) and

• choosing the join order that minimizes the sizes of the intermediary join results.

Algorithms for finding efficient, fully-pipelined plans are discussed in [181].

4.3.3 Holistic twig joins

The previous Section showed how, in a query evaluation engine including binary structural
join operators, one can reduce the total running time by avoiding Sort operators and reduce
the total running time and/or the size of the intermediary join results, by chosing the order
in which to perform the joins.

For personal use only, not for distribution. 105

a

b

c

root(1,18)

a(2,14)

b(3,13)

a(4,12)

b(6,9)

c(7,7) c(8,8) c(10,10)

b(11,11) b(15,17)

c(16,16)

d(5,5)

a stack b stack c stack

aID b ID c ID
(2,14) (3,13) (7,7)
(4,12) (6,9) (8,8)

(11,11) (10,10)
(15,17) (16,16)

(4,12)

(2,14)
a stack b stack

(3,13)
c stack

aID b ID c ID
(6,9) (7,7)

(11,11) (8,8)
(15,17) (10,10)

(16,16)

(2,14)

(4,12)

a stack b stack
(3,13)

(6,9)

c stack
(7,7)

aID b ID c ID
(11,11) (8,8)
(15,17) (10,10)

(16,16)

Figure 4.12: Sample tree pattern, XML document, and stacks for the PathStack algorithm.

A different approach toward the goals of reducing the running time and the size of the
intermediary results consists in devising a new (logical and physical operator), more precisely,
an n-ary structural join operator, also called a holistic twig join. Such an operator builds the
result of a tree pattern query in a single pass over all the inputs in parallel. This eliminates
the need for storing intermediary results and may also significantly reduce the total running
time.

Formally, let q be a tree pattern query having n nodes, such that for 1≤ i ≤ n, the i-th node
of the pattern is labeled ai. Without loss of generality, assume that q’s root is labeled a1. For
each node labeled ai, 2≤ i ≤ n, we denote by ap

i is the parent of ai in q.
We first define the logical holistic twig join operator. Assume available a set of logical

sub-plans lp1, lp2, . . ., lpn such that for each i, 1≤ i ≤ n, the plan lpi outputs structural IDs of
elements labeled ai. The logical holistic structural join of lp1, lp2, . . ., lpn based on q, denoted
./q (lp1, lp2, . . . , lpn), is defined as:

σ(ap
2≺≺ a2)∧(ap

3≺≺ a3)∧...∧(ap
n≺≺ an)

(lp1 × lp2 × . . .× lpn)

In the above expression, we assumed that all edges in q correspond to ancestor-descendant
relationship. To account for the case where the edge between ai and ap

i is parent-child, one
needs to replace the atom ap

i ≺≺ ai in the selection, by ap
i ≺ ai.

We now turn to discussing efficient physical holistic twig join operators. For ease of expla-
nation, we first present an algorithm called PathStack, for evaluating linear queries only, and
then generalize to the TwigStack algorithm for the general case.
Algorithm PathStack The algorithm uses as auxiliary data structures one stack Si for each
query node ni labeled ai. During execution, PathStack pushes IDs of nodes labeled ai in the
corresponding stack Si. At the end of the execution, each stack Si holds exactly those IDs of
nodes labeled ai, which participate to one or more result tuples.

PathStack works by continuously looking for the input operator (let’s call it iopmin, corre-
sponding to the query node nmin labeled amin) whose first ID has the smallest pre number

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 106

among all the input streams. This amounts to finding the first element (in document order)
among those not yet processed, across all inputs. Let’s call this element emin.

Once emin has been found, PathStack inspects all the stacks, looking for nodes of which it
can be guaranteed that they will not contribute to further query results. In particular, this is
the case for any nodes preceding emin, i.e., ending before the start of emin. It is easy to see that
such nodes cannot be ancestors neither of emin, nor of any of the remaining nodes in any of
the inputs, since such nodes have a starting position even bigger than emin’s. PathStack pops
all such entries, from all stacks.

PathStack then pushes the current nmin entry on Samin , if and only if suitable ancestors of
this element have already been identified and pushed on the stack of ap

min, the parent node
of amin in the query. If this is the case and a new entry is pushed on Samin , importantly, a
pointer is stored from the top entry in Sap

min
, to the new (top) entry in Samin . Such pointers record

the connections between the stack entries matching different query nodes, and will be used
to build result tuples out (see below). Finally, PathStack advances the input operator iopmin
and resumes its main loop, identifying again the input operator holding the first element (in
document order) not yet processed etc.

When an entry is pushed on the stack corresponding to the query leaf, we are certain that
the stacks contain matches for all its ancestors in the query, matches that are ancestors of the
leaf stack entry. At this point, two steps are applied:

1. Result tuples are built out of the entries on the stacks, and in particular of the new entry
on the stack of the query leaf;

2. This new entry is popped from the stack.

Figure 4.12 illustrates the algorithm through successive snapshots of the input streams and
stacks, for the sample document shown at left in the Figure. The first execution snapshot is
taken at the start: all stacks are empty and all streams are set to their first element. The search
for the iopmin operator is done by comparing the top elements in all the streams. In this case,
the smallest element ID is (2,14) in the stack of a, therefore nmin is set to this node, and nmin
is pushed on the correspondint stack Sa. The stream of a advances to the next position and
we seek again for the new iopmin, which turns out to be the stream of b IDs. The new value
of nmin is the b node identified by (4, 13); this node is therefore pushed on the b stack and
the pointer from (2,14) to (3,13) records the connection between the two stack entries (which
corresponds to a structural connection in the document). The b stream is advanced again, and
then iopmin is found to be the a stream, leading to pushing (4, 12) on the a stack.

At this point, we must check the entries in the stacks corresponding to descendants of a, and
possibly prune “outdated” entries (nodes preceding the newly pushed a in the document). In
our case, there is only one entry in the b stack. Comparing its ID, (3, 13) with the ID (4, 12)
of the newly pushed a element, we decide that the (3, 13) entry should be preserved in the b
stack for the time being.

After advancing the a stream, PathStack’s data structures take the form shown in the middle
snapshot at right in Figure 4.12.

The process is repeated and pushes the (6, 9) identifier on the b stack. No entry is eliminated
from the c stack since it is still empty. The algorithm then pushes the identifiers (7,7) on the
c stack and connects it to the current to p of the b stack, namely (6, 9). This is the situation
depicted at the bottom right of Figure 4.12.

For personal use only, not for distribution. 107

Observe that (7, 7) is a match of the c node which is a leaf in the query. Thus, at this point,
the following result tuples are built out of the stacks, based on the connections between stack
entries:

aID bID cID
(2,14) (3,13) (7,7)
(2,14) (6,9) (7,7)
(4,12) (6,9) (7,7)

The (7,7) entries is then popped from its stack, and (8,8) takes its place, leading similarly to
the result tuples:

aID bID cID
(2,14) (3,13) (8,8)
(2,14) (6,9) (8,8)
(4,12) (6,9) (8,8)

Now, the smallest element not yet processed is identified by (10, 10) in the stream of c
elements. This element is not pushed in the c stack, because it is not a descendant of the
current top of the b stack (namely, (6, 9)).

Continuing execution, the b element identified by (11, 11) is examined. It leads to expunging
from the stacks all entries whose end number is smaller than 11, and in particular, the b entry
(6,9). (11,11) is then pushed on the b stack. When (15,1) is read from the b stream, all existing a
and b entries are popped, however (15, 1) is not pushed due to the lack of a suitable ancestor
in the a stack. Finally, (16,16) is not pushed, by a similar reasoning.

The algorithm has two features of interest.

• No intermediary result tuples: results are built directly as n-tuples, where n is the size
of the query. This avoids the multiplication, say, of every a element by each of its b
descendants, before learning whether or not any of these bs had a c descendant:

• Space-efficient encoding of results: Thanks to the pointer structures and to the way
the algorithm operates, the total size of the entries stored on the stacks at any point
in times is bound by |d| × |q|, however, such stack entries allow encoding up to |d||q|
query results, a strong saving in terms of space (and thus, performance).

Algorithm TwigStack This algorithm generalizes PathStack with support for multiple branches.
The ideas are very similar, as the main features (no intermediary results and space-efficient
encoding of twig query results) are the same. Figure 4.13 shows a twig (tree) pattern query
derived from the linear query of Figure 4.12 by adding a lateral c branch. The document is
the same in both Figures.

At right in Figure 4.13 we show the input streams at the beginning of the execution (top
right) as well as a snapshot of the stacks at the moment during execution when (7,7) has been
pushed on the c stack. Now that there is a match for each query leaf node, the following
tuples are output:

aID bID cID dID
(2,14) (3,13) (7,7) (5,5)
(2,14) (6,9) (7,7) (5,5)
(4,12) (6,9) (7,7) (5,5)

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 108

a

b d

c

root(1,18)

a(2,14)

b(3,13)

a(4,12)

b(6,9)

c(7,7) c(8,8) c(10,10)

b(11,11) b(15,17)

c(16,16)

d(5,5)

aID b ID c ID d ID
(2,14) (3,13) (7,7) (5,5)
(4,12) (6,9) (8,8)

(11,11) (10,10)
(15,17) (16,16)

(5,5)
d stack

(2,14)

(4,12)

a stack b stack
(3,13)

(6,9)

c stack
(7,7)

Figure 4.13: Sample tree pattern, XML document, and stacks for the TwigStack algorithm.

One can show [37] that if the query pattern edges are only of type ancestor/descendant,
TwigStack is I/O and CPU optimal among all sequential algorithms that read their inputs in
their entirety.

4.4 Further reading

The XML storage, indexing, and query processing area is still very active and has witnessed a
wide variety of techniques and algorithms.

Interval-based node IDs were first proposed in the context of efficient relational storage for
XML documents in XRel [185] and XParent [105]. As pointed out in the original structural
join paper [15], they are however inspired by known works in information retrieval systems,
which assign positional identifiers to occurrences of words in text, and closely related to the
Dietz numbering scheme [57]. Dewey-style XML identifiers were used for instance in [146].

Compact labeling of trees is now a mature topic, see [2, 106].
Simple region and Dewey-based ID schemes suffer when the document is updated, since

this may require extensive node re-labeling. ORDPATH IDs [130] remedy to this problem. An
ORDPATH ID is a dot-separated sequence of labels, in the style of Dewey, but using integer
labels and playing on the odd/even character of the numbers to allow inserting nodes at
any place without re-labeling any existing node. ORDPATHs were implemented within the
Microsoft SQL Server’s XML extension. Other interesting node identifier schemes, trading
between compactness, efficient query evaluation and resilience to updates, are described
in [180], [118] and among the most recent works, in [184].

Stack-based structural joins operators have been proposed in [15]. Heuristics for selecting
the best join order in this context are presented in [181]. The TwigStack algorithm is presented
in [37]. Numerous improvements have been subsequently brought to TwigStack, mainly by
adding B-Tree style indexes on the inputs. This enables skipping some of the input IDs, if it
can be inferred that they will not contribute to the query result.

Given the robustness of relational database management systems, many works have
considered using relational DBMSs to store and query XML documents. The first works
in this area are [67, 147]. An interesting line of works starting with [80, 82, 81] considered
the efficient handling of XML data in relational databases relying on (start, end) identifiers.

For personal use only, not for distribution. 109

The special properties satisfied by such IDs (and which are due to the nested nature of XML
documents) is exploited in these works to significantly speed up the processing of XPath
queries and more generally, of (XQuery) tree pattern queries. These works also provide an
extensive approach for faithfully translating XML queries expressed in XPath and XQuery,
into relational algebra (endowed with minimal extensions). In a more recent development,
this algebraic approach has been compiled to be executed by the MONETDB column-based
relational store [32].

Manipulating XML documents within relational databases and jointly with relational data
has been considered quite early on in the industrial world. The ISO standard SQL/XML [99]
is an extension to the SQL language, allowing a new elementary data type xml. A relation can
have columns of type xml, which can be queried using XPath/XQuery invoked by a built-in
function, within a regular SQL query. SQL/XML also provides facilities for declaratively
specifying a mapping to export relational data in an XML form.

4.5 Exercises

The following exercises will allow you to derive a set of results previously established in the
literature, which have been used to efficiently implement tree pattern query evaluation.

Exercise 4.5.1 (inspired from [83])
Recall the notions of pre, post and level numbers assigned to nodes in an XML document:

• the pre number of node n, denoted n.pre, is the number assigned to n when n is first reached by
a pre-order traversal of the document;

• the post number of node n, denoted n.post, is the number assigned to n when n is first reached
by a post-order traversal of the document;

• the level number of node n is 0 if n is the root element of the document, otherwise, it is the
number of edges traversed on the path from the root element to n.

Moreover, we denote by size(n) the number of descendants of a node n. We denote the height of a
document d by h(d).

1. Prove that for any XML node n:

n.pre− n.post + size(n) = n.level

2. Let n be an XML node and nrl be the rightmost leaf descendant of n. In other word, nrl is
attained by navigating from n to its last child r1 (if it exists), from r1 to its last child r2 (if its
exist) and so on, until we reach a childless node, i.e. the leaf nrl . Prove that:

nrl .pre ≤ h(d) + n.post

3. Using point 2. above, show that for any descendant m of a node n:

n.pre ≤ m.pre ≤ h(d) + n.post

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 110

4. Let nll be the leftmost leaf descendant of n. Node nll is attained from n by moving to the first
child l1 of n (if such a child exists), then from l1 to its first child l2 (if such a child exists) and so
on, until we reach a leaf (which is nll). Show that:

nll .post ≥ n.pre− h(d)

5. Using the answer to point 4. above, show that for any node m descendant of a node n:

n.pre− h(d) ≤ m.post ≤ n.post

6. Assume an XML storage system based on the following relations:

Doc(ID, URL, h) For each document, its internal ID, its URL,
and its height

Node(docID, pre, post, level,

label)

For each XML node, the ID of its document,
its pre, post and level numbers, and its label

Let dID be the identifier of a document d, and npre, npost and nlevel be the pre, post
and level numbers of an XML node n ∈ d. Write the most restrictive (selective) SQL query
retrieving the pre numbers and labels of all n descendants in d.

Exercise 4.5.2 (inspired from [181]) We consider a tree pattern query evaluation engine based on
structural identifiers and binary structural joins (implemented by the STA and STD operators). For
any node label l, we denote by lID a relation storing the structural identifiers of all nodes labeled l.
Recall that a physical plan without any Sort operator is termed a fully pipelined plan. For instance,
STAa≺≺b(aID, STAb≺c(bID, cID)) is a fully pipelined plan for the query //a[//b/c].

1. Let q f lat be a “flat” XPath query of the form /r[.//a1][.//a2] . . . //ak. Propose a fully pipelined
plan for evaluating q f lat.

2. For the same query q f lat, consider the following the join order ω1: first verify the predicate
r≺≺ a1, then the predicate r≺≺ a2, then r≺≺ a3 and so on, until the last predicate r≺≺ ak. Is there
a fully pipelined plan for evaluating q f lat respecting the join order ω1?

3. Let qdeep be a “deep” XPath query of the form /r//a1//a2 . . . //ak. Propose a fully pipelined
plan for evaluating qdeep.

4. For the query qdeep introduced above, let ω2 be a join order which starts by verifying the r≺≺ a1
predicate, then the predicate a1≺≺ a2, then the predicate a2≺≺ a3 and so on, until the last predicate
ak−1≺≺ ak. Is there a fully pipelined plan for evaluating qdeep respecting the join order ω2? If
yes, provide one. If not, explain why.

5. For the same query qdeep, now consider the join order ω3 which starts by verifying the predicate
ak−1≺≺ ak, then the predicate ak−2≺≺ ak−1 and so on, until the predicate r≺≺ a1. Is there a fully
pipelined plan for evaluating qdeep respecting the join order ω3? If yes, provide one. If not,
explain why.

6. Show that for any XPath query q, there is at least a fully pipelined plan for evaluating q.

For personal use only, not for distribution. 111

7. Propose an algorithm that, given a general XPath query q and a join order ω, returns a fully
pipelined plan respecting the join order ω if such a plan exists, and returns failure otherwise.

Exercise 4.5.3 (Inspired from [37]) Consider a tree pattern query q and a set of stacks such as those
used by the PathStack and TwigStack algorithms. Propose an algorithm which, based on stack entries
containing matches for all nodes in q, computes the tuples corresponding to the full answers to q:

• in the case where q is a linear path query (algorithm PathStack);

• in the general case where q is a twig pattern query (algorithm TwigStack).

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

5 Putting into Practice: Managing an XML
Database with EXIST

This chapter proposes some exercises and projects to manipulate and query XML documents
in a practical context. The software used in these exercises is EXIST, an open-source native
XML database which provides an easy-to-use and powerful environment for learning and
applying XML languages. We begin with a brief description on how to install EXIST and
execute some simple operations. EXIST provides a graphical interface which is pretty easy to
use, so we limit our explanations below to the vital information which can be useful to save
some time to the absolute beginner.

5.1 Pre-requisites

In the following, we assume that you plan to install EXIST in your Windows or Linux
environment. You need a Java Development Kit for running the EXIST java application (version
1.5 at least). If you do not have a JDK already installed, get it from the Sun site (try searching
“download JDK 1.5” with Google to obtain an appropriate URL) and follow the instructions
to set up your Java environment.

Be sure that you can execute Java applications. This requires the definition of a JAVA_HOME
environment variable, pointing to the JDK directory. The PATH variable must also contain an
entry to the directory that contain the Java executable, $JAVA_HOME/bin.

1. Under Windows: load the configuration panel window; run the System application;
choose Advanced, then Environment variables. Create a new variable JAVA_HOME with
the appropriate location, and add the $JAVA_HOME/bin path to the PATH variable.

2. Under Linux: same as before, the exact command depending on your shell language.
For instance, with bash, put the following in the .bashrc file:

export JAVA_HOME=your_path_to_java
export PATH=$PATH:$JAVA_HOME/bin

3. Under MacOS X, the Java environment should be natively configured.

Check that you can run the java program. If yes you are ready to install EXIST.

5.2 Installing EXIST

EXIST (software, documentation, and many other things) can be found at http://www.
exist-db.org/.

113

http://www.exist-db.org/
http://www.exist-db.org/

For personal use only, not for distribution. 114

The software consists of a Java archive which can be downloaded from the home page.
Assume its name is exist.jar (actually the archive name will contain the version as well). Run
the installation package with the following command:

java -jar exist.jar

Figure 5.1: The home page of a local EXIST server.

Just follow the instructions, which asks in particular for the EXIST installation directory
(referred to a ’EXIST home’ in the following). Once the installation is completed, you can start
the EXIST server as follows:

Linux, Mac OS X and other Unix systems. Move to the EXIST home directory, and type ei-
ther bin/startup.sh or bin/startup.bat. If something goes wrong, look at the
README file.

Windows. The installation procedure creates an EXIST menu and shorcuts in the desktop.
Simply use them to start/stop the server.

When the server is up and running, it waits for HTTP requests on the port 80801. So,
using any Web browser, you can access to the EXIST interface (Figure 5.1) at the URL http:
//localhost:8080/exist/.

From this interface, you can carry out administration tasks, get the documentation, and
run a few predefined client applications. Look at the QuickStart part of the documentation for
further information on the configuration of EXIST.

5.3 Getting started with EXIST

EXIST comes with a predefined set of XML samples which can be loaded in the database. To
start using these example applications, you must log in to the EXIST administration page.

1This is the default port. You can change in the jetty.xml file in the sub-directory tools/jetty of EXIST.

http://localhost:8080/exist/
http://localhost:8080/exist/

For personal use only, not for distribution. 115

Enter the username "admin" and leave the password field empty2. Next, choose Examples
Setup from the menu on the left. Click on the "Import Data" button to start the setup and
begin downloading example data from the Internet (Figure 5.2).

Figure 5.2: Loading XQuery examples in EXIST.

The import creates so-called "collections". A collection can be used to store a set of docu-
ments sharing the same schema, but it can be itself organized recursively in sub-collections for
more flexible document sets organizations. Loading the example creates several collections,
including:

1. library: a bibliographic RDF document, biblio.rdf ;

2. mondial: administrative information on several countries;

3. shakespeare: a few plays from William Shakespeare.

You can access these collections from the "Browse collections" option of the admin menu.
You can also create a new collection with the form at the bottom of the page. Do the following:

1. create a movies collection;

2. add to the movies collection the document movies.xml which can be downloaded from
our site.

EXIST stores now movies.xml in its repository, and you can search, update or transform the
document. Figure 5.3 shows the Web interface that you should obtain.

Now, get back the home page, and choose the "XQuery Sandbow" option. It provides a
simple interface that allows to enter XQuery (or XPath) expressions, and displays the result.
Check the following XPath/XQuery query:

2The installation tool sometimes requires a password to set up EXIST, in which case access to the administration
page is protected by this password.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 116

Figure 5.3: The movies collection, containing a movies.xml sample document.

/movies

This shows the content of the movies elements found in all the collections stored under the
/db root element of EXIST (which plays the role of a global root for all the documents stored
in the repository). Figure 5.4 shows how to run XPath queries with the sanbox: the interface
shows the result sequence in the bottom window.

You can restrict the search to a specific documents (or set of documents) with the document()
function. Here is an example:

document(’/db/movies/movies.xml’)/movies/movie[year=2005]

The collection() function allows to refer to a collection, as in:

collection(’movies’)/movies/movie[year=2005]

You are now ready to play with XPath and XQuery, using the sandbox. The next section
proposes exercises.

5.4 Running XPath and XQuery queries with the sandbox

5.4.1 XPath

Get the movies.xml and movies_refs.xml documents from the book’s Web site, and insert them
into EXIST. Look at the document structure: in the first one, each movie is representated as
one element, including the director’s and actors’ names. In the second one the document
consists of two lists, one for movies, one for actors, the former referencing the latter.

Express the following queries in XPath 1.0, on both documents (note: movies.xml does not
require joining the two lists, which makes expressions easier).

For personal use only, not for distribution. 117

Figure 5.4: Running the /movies//title XPath query in the sandbox.

1. All title elements.

2. All movie titles (i.e., the textual value of title elements).

3. Titles of the movies published after 2000.

4. Summary of “Spider-Man”.

5. Who is the director of Heat?

6. Title of the movies featuring Kirsten Dunst.

7. Which movies have a summary?

8. Which movies do not have a summary?

9. Titles of the movies published more than 5 years ago.

10. What was the role of Clint Eastwood in Unforgiven?

11. What is the last movie of the document?

12. Title of the film that immediatly precedes Marie Antoinette in the document?

13. Get the movies whose title contains a “V” (hint: use the function contains()).

14. Get the movies whose cast consists of exactly three actors (hint: use the function count()).

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 118

5.4.2 XQuery

Exercise 5.4.1 Get the movies_alone.xml and artists_alone.xml documents from the book’s Web site.
They contain respectively the list of movies with references to artists, and the list of artists. It might be
simpler to first express complex queries over the movies.xml document which contains all the data in
one file, before reformulating them over these two documents.

For convenience, you may define a variable for each of these document with a let at the beginning of
each query:

l e t $ms:=doc("movies/movies_alone.xml"),
$as:=doc("movies/artists_alone.xml")

Express the following XQuery queries:

1. List the movies published after 2002, including their title and year.

2. Create a flat list of all the title-role pairs, with each pair enclosed in a “result” element. Here is
an example of the expected result structure:

<results>
<result>

<title>Heat</title>
<role>Lt. Vincent Hanna</role>

</result>
<result>

<title>Heat</title>
<role>Neil McCauley</role>

</result>
</results>

3. Give the title of movies where the director is also one of the actors.

4. Show the movies, grouped by genre. Hint: function distinct-values() removes the duplicates
from a sequence. It returns atomic values.

5. For each distinct actor’s id in movies_alone.xml, show the titles of the movies where this actor
plays a role. The format of the result should be:

<actor>16,
<title>Match Point</title>
<title>Lost in Translation</title>
</actor>

Variant: show only the actors which play a role in at least two movies (hint: function count()
returns the number of nodes in a sequence).

6. Give the title of each movie, along with the name of its director. Note: this is a join!

For personal use only, not for distribution. 119

7. Give the title of each movie, and a nested element <actors> giving the list of actors with their
role.

8. For each movie that has at least two actors, list the title and first two actors, and an empty
"et-al" element if the movie has additional actors. For instance:

<result>
<title>Unforgiven</title>
<actor>Clint Eastwood as William ’Bill’ Munny</actor>
<actor>Gene Hackman as Little Bill Daggett</actor>
<et-al/>
</result>

9. List the titles and years of all movies directed by Clint Eastwood after 1990, in alphabetic order.

5.4.3 Complement: XPath and XQuery operators and functions

XPath proposes many operators and functions to manipulate data values. These operators
are mostly used in predicates, but they are also important as part of the XQuery language
which inherits all of the XPath language. We briefly describe the most important ones here,
all from XPath 1.0. XPath 2.0 widely extends the library of available functions.

Operators.

• Standard arithmetic operators: +, -, *, div, mod.

Warning! div is used instead of the usual /.

Warning! “-” is also a valid character inside XML names; this means an expression a-b
tests for an element with name a-b and does not compute the substraction between the
values contained in elements a and b. This substration can be expressed as a - b.

• Boolean operators: or, and, as in @a and c=3.

• Equality operators: =, != that can be used for strings, Booleans or numbers.

Warning! //a!=3 means: there is an a element in the document whose string value is
different from 3.

• Comparison operators: <, <=, >=, > as in $a<2 and $a>0.

Warning! They can only be used to compare numbers, not strings.

Warning! If an XPath expression is embedded in an XML document (this is the case in
XSLT), < must be used in place of <.

• Set-theoretic union of node sets: | as in node()|@*.

Note that $a is a reference to the variable a. Variables cannot be defined in XPath 1.0, they can
only be referred to.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 120

Node functions.

The following functions apply to node sets.

• count($s) and sum($s) return, respectively, the number of items and the sum of values
in the node set $s.

• local-name($s), namespace-uri($s), and name($s) respectively return the
name without namespace prefix, namespace URI, and name with namespace prefix, of the
node argument; if $s is omitted, it is taken to be the context item.

String functions.

The following functions apply to character strings.

• concat($s1,...,$sn) concatenates the strings $s1, . . . , $sn.

• starts-with($a,$b) returns true if the string $a starts with the string $b.

• contains($a,$b) returns true if the string $a contains the string $b.

• substring-before($a,$b) returns the substring of $a that precedes the first occur-
rence of $b in $a.

• substring-after($a,$b) returns the substring of $a that follows the first occur-
rence of $b in $a.

• substring($a,$n,$l) returns the substring of $a of length $l starting at the $n-th
position of $a. (One starts counting from 1). If $l is omitted, the substring of $a of
length $l starting at the $n-th position of $a is returned.

• string-length($a) returns the length of the string $a.

• normalize-space($a) removes all leading and trailing white-space from $a, and
collapses each white-space sequence to a single white space.

• translate($a,$b,$c) returns the string $a, where all occurrences of a character
from $b has been replaced by the character at the same place in $c.

Boolean and number functions.

• not($b) returns the logical negation of the Boolean $b.

• floor($n), ceiling($n), and round($n) round the number $n to, respectively,
the next lowest, next greatest, and closest integer.

For personal use only, not for distribution. 121

5.5 Programming with EXIST

We give below some examples of the programming interfaces (API) provided by EXIST. They
can be used to access an XML repository from an application program. Two interfaces are
shown: the first one, XML:DB, is a JDBC-like component that can be introduced in a Java
application as a communication layer with EXIST; the second one are the web services of
EXIST.

Along with XPath and XQuery, these APIs constitute a complete programming environment
which is the support of projects proposed in the final section of the Chapter.

5.5.1 Using the XML:DB API with EXIST

Documents stored in EXIST can be accessed from a Java application. EXIST provides an
implementation of the XML:DB API specification, which is to XML databases what JDBC is to
relational databases.

We give below a few examples of Java programs that connect to EXIST, access documents
and perform XQuery queries. You can get these files from our site. You need a Java pro-
gramming environment (Java Development Kit) with the JAVA_HOME environment variable
properly set, and JAVA_HOME/bin directory added to the PATH environment variable.

In order to use the EXIST API, the following archives must be put in your CLASSPATH.

1. exist.jar, found in EXIST_HOME or EXIST_HOME/lib;

2. xmldb.jar, xmlrpc-1.2-patched.jar, and log4j-1.2.14.jar, found in EXIST_HOME/lib/core.

These archives are sufficient to compile and run our examples. For more complex Java
programs, some other archives might be necessary (for instance the XERCES parser or the
XALAN XSLT processor). They can usually be found in EXIST_HOME/lib

You can find many explanations and examples on Java programming with EXIST at
http://exist.sourceforge.net/devguide.html.

5.5.2 Accessing EXIST with Web Services

If you do not want to use Java, or if the architecture of your application makes the embedding
of XQuery calls in your code unsuitable, you can use the Web Service layer of EXIST to send
queries and get result. This is actually an excellent example of the advantage of a well-defined
query language as an interface to a remote data source, and serves as a (small) introduction to
the world of distributed computing with web services.

EXIST runs a server on a machine, and the server opens several communication port to
serve requests that might come from distant locations. Several protocols are available, but the
simple one is based on REST (Representational state transfer), a service layer implementation
that completely relies on HTTP.

Recall that a web service allows a Client to send a function call to a server without having
to deal with data conversion and complicated network communication issues. In the case of
REST-style services, the function call is encoded as a URL, including the function parameters,
and transmitted to the server with an HTTP GET or POST request. The REST servers sends
back the result in HTTP. REST services are quite easy to deal with: the client application just

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 122

import org.xmldb.api.DatabaseManager;
import org.xmldb.api.base.Collection;
import org.xmldb.api.base.CompiledExpression;
import org.xmldb.api.base.Database;
import org.xmldb.api.base.Resource;
import org.xmldb.api.base.ResourceIterator;
import org.xmldb.api.base.ResourceSet;
import org.xmldb.api.modules.XMLResource;

public c l a s s ExistAccess {
protected s t a t i c String DRIVER = "org.exist.xmldb.DatabaseImpl";
protected s t a t i c String URI = "xmldb:exist://localhost:8080/exist/xmlrpc";
protected s t a t i c String collectionPath = "/db/movies/";
protected s t a t i c String resourceName = "Heat.xml";

public s t a t i c void main(String[] args) throws Exception {

// initialize database driver
Class cl = Class.forName(DRIVER);
Database database = (Database) cl.newInstance();
DatabaseManager.registerDatabase(database);

// get the collection
Collection col = DatabaseManager.getCollection(URI + collectionPath);

// get the content of a document
System.out.println("Get the content of " + resourceName);
XMLResource res = (XMLResource) col.getResource(resourceName);
i f (res == null) {

System.out.println("document not found!");
} e lse {

System.out.println(res.getContent());
}

}
}

Figure 5.5: First example: retrieving a document

For personal use only, not for distribution. 123

import org.exist.xmldb.XQueryService;
import org.xmldb.api.DatabaseManager;
import org.xmldb.api.base.Collection;
import org.xmldb.api.base.CompiledExpression;
import org.xmldb.api.base.Database;
import org.xmldb.api.base.Resource;
import org.xmldb.api.base.ResourceIterator;
import org.xmldb.api.base.ResourceSet;
import org.xmldb.api.modules.XMLResource;

public c l a s s ExistQuery {
protected s t a t i c String DRIVER = "org.exist.xmldb.DatabaseImpl";
protected s t a t i c String URI = "xmldb:exist://localhost:8080/exist/xmlrpc";
protected s t a t i c String collectionPath = "/db/movies";
protected s t a t i c String resourceName = "movies.xml";

public s t a t i c void main(String[] args) throws Exception {

// initialize database driver
Class cl = Class.forName(DRIVER);
Database database = (Database) cl.newInstance();
DatabaseManager.registerDatabase(database);

// get the collection
Collection col = DatabaseManager.getCollection(URI + collectionPath);

// query a document

String xQuery = "for $x in doc(’" + resourceName + "’)//title "
+ "return data($x)";

System.out.println("Execute xQuery = " + xQuery);

// Instantiate a XQuery service
XQueryService service = (XQueryService) col.getService("XQueryService",

"1.0");
service.setProperty("indent", "yes");

// Execute the query, print the result
ResourceSet result = service.query(xQuery);
ResourceIterator i = result.getIterator();
while (i.hasMoreResources()) {

Resource r = i.nextResource();
System.out.println((String) r.getContent());

}
}

}

Figure 5.6: Second example: query a collection

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 124

needs an HTTP client library, available in all programming languages. Moreover, the service
can easily be tested with a browser by sending “manual” URL.

Here is a first example: the following GET query retrieves the movies.xml document from
your local EXIST repository:

http://localhost:8080/exist/rest/db/movies/movies.xml

Note that this is a “pseudo-url”: there is nothing on your local disk that resembles directory
path /exist/rest/db/movies/movies.xml. Actually,

1. the REST service is located at /exist/rest/ ; thanks to a URL rewriting mechanism, any
GET request that begins with this address is redirected to the service;

2. the remaining part of the URL, db/movies/movies.xml, is a parameter sent to the service;
it must denote either a collection or a document.

In summary, a REST query such as the above one is tantamount to a document() or collection()
call sent to EXIST. The service accepts other parameters, and in particular the _query
parameter whose value may be an XPath or XQuery expression. Try the following URL:

http://localhost:8080/exist/rest/db/movies?_query=//title

You should get the result of the XPath query collection(’movies’)//title.

Remark 5.5.1 REST services are called via GET or POST requests. In the case of GET, all the values
must be URL-encoded. This is automatically done by a browser (or any HTTP client) when the URL is
a link in an HTML page, but be careful when you directly enter the URL.

Here is a selected list of parameters accepted by the EXIST REST service (for details, please
refer to the Developper’s guide on the EXIST web site).

• _xsl=XSL Stylesheet.
Applies an XSLT stylesheet to the requested resource. If the _xsl parameter contains
an external URI, the corresponding external resource is retrieved. Otherwise, the path
is treated as relative to the database root collection and the stylesheet is loaded from the
database.

• _query=XPath/XQuery Expression.
Executes a query specified by the request.

• _encoding=Character Encoding Type.
Sets the character encoding for the resultant XML. The default value is UTF-8.

• _howmany=Number of Items.
Specifies the number of items to return from the resultant sequence. The default value
is 10.

• _start=Starting Position in Sequence.
Specifies the index position of the first item in the result sequence to be returned. The
default value is 1.

For personal use only, not for distribution. 125

• _wrap=yes | no.
Specifies whether the returned query results are to be wrapped into a surrounding
<exist:result> element. The default value is yes.

• _source=yes | no Specifies whether the query should display its source code in-
stead of being executed. The default value is no.

5.6 Projects

The following projects are intended to let you experiment XML data access in the context of
an application that needs to manipulate semi-structured data. In all cases, you must devise
an architecture that fulfills the proposed requirements, the only constraint being that the
data source model must be XML. Of course you are invited to base your architecture on an
appropriate combination of the XML tools and languages presented in this book and during
the classes: XPath, XSLT (see the resources available on the companion Web site of this book),
XQuery, and Java APIs or REST services.

5.6.1 Getting started

The minimal project is a very simple Web application that allows to search some information
in an XML document, and displays this information in a user-friendly way. You can take the
movies.xml document, or any other XML resource that can be used for the same purpose.

The application must be accessible from a Web Browser (e.g., Firefox) or from a smartphone
browser (e.g., a mobile phone: take one of the many mobile phone simulators on the Web).
Here are the requirements:

1. there must be a form that proposes to the user a list of search criteria: (fragment of) the
title, list of genres, director and actors names, years, and key-words that can be matched
against the summary of the movie;

2. when the user submits the form, the application retrieves the relevant movies from the
XML repository, and displays the list of these movies in XHTML;

3. in the previous list, each movie title should be a link that allows to display the full
description of the movie.

This is a simple project. It can be achieved by a single person in limited time. In that
case you are allowed to omit other markup languages (but doing it will result in a better
appreciation!).

5.6.2 Shakespeare Opera Omnia

The project is based on the Shakespeare’s collection of plays shipped with the EXIST software.
The application’s purposes can be summarized as follows: browsing through a play in order
to analyze its content, read some specific parts and maybe find related information.

Basically, it consists in writing a small Web application devoted to navigating in a play and
extracting some useful information. Here are a few precise requirements:

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 126

1. show the part of a given character, for a given act and/or a given scene;

2. show the table of contents of the play, along with the organization in acts and scenes,
and the characters present in each scene;

3. show a full summary of the play, including the author, list of characters, stages require-
ments, etc.

The web application should be presented in a consistent way, allowing users to switch
from one summary to another. It should be possible to navigate from the table of contents
to the full description of a scene, from the description of the scene to a character, and from
anywhere to the full summary. This list is by no way restrictive. Any other useful extract you
can think of will raise the final appreciation!

Finally, the web application should be available on a traditional browser, as well as on a
smartphone.

The project must be conducted in two steps:

1. write a short description of the architecture and design of your XML application; check
with some limited tests than you know how to put each tool at the right place where it
communicates correctly with the rest of the application;

2. once the design has been validated, you can embark in the development.

5.6.3 MusicXML on line

This is an exploratory project, since there are no guarantees that all the ideas presented below
can be implemented in a reasonable amount of time. The project is also focused on a specific
area: music representation and manipulation. So, it should be chosen only by people with
both musical inclination and appetite for not yet explored domains.

Music is traditionally distributed on the Web via audio files, described by a few meta-data
(author, style, etc.). A quite different approach consists in distributing an accurate content
description based on a digital score. The MusicXML DTD serves this purpose. It allows to
represent the music notation of any piece of music (voice, instruments, orchestra, etc.). The
goal of the projet is to specify a Web portal distributing music scores, and to investigate the
functionalities of such a portal.

The following is a list of suggestions, but the project is really open to new directions. Other
ideas are welcome, but please talk first to your advisor before embarking in overcomplicated
tasks.

Data

It is not that difficult to find data (e.g., digital music scores). Look for instance at http://icking-
music-archive.org/. A collection is also available from your advisor, but you are encouraged
to search resources on the Web. Any kind of music could do, from full symphony to voice-
piano/guitar reduction of folk songs. You can look for digital score produced by tools such as
Finale or Sibelius. From these digital scores it is possible to export MusicXML files.

For personal use only, not for distribution. 127

Core functions

The basic requirement is to be able to store XML music sheets in EXIST, and to display
the music on demand. Displaying score can be achieved with the Lilypond software
(http://lilypond.org/), along with a convertor (musicxml2ly) from MusicXML to Lilypond
format. Putting all these tools together is probably the first thing you should do.

It would be useful to extract some important parts from the MusicXML document. For
instance, you can extract the lyrics from a song, as well as the melody. A basic search form to
extract lyrics and/or melody based on a simple pattern (i.e., e keyword or a musical fragment)
would be welcome.

Advanced options

Here is now a list of the possible additional functionalities that could be envisaged. You are
free to limit yourself to a state-of-the-art of the possible solutions, to implement (in a simple
way) some of them, or both.

1. Input: how can we enter music (e.g., a song) in a database, and how can we query
music (e.g., with a keybard simulator, by whistling, by putting your iPod in front of a
microphone, etc.);

2. Ouput: OK, we can print a score; but what if we we want to listen music? Can we
transform an XML document to a MIDI document? Yes, this is possible with Lilypond:
you are encouraged to investigate further.

Finally, the web application should be available on a traditional browser, as well as on a
smartphone.

This remains, of course, about XML and its multiple usages. You must devise a convenient
architecture, using appropriately all the tools that, together, will enable the functionalities of
your application.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

6 Putting into Practice: Tree Pattern Evaluation
using SAX

In this chapter, we learn how to build an evaluation engine for tree-pattern queries, using
the SAX (Simple API for XML) programming model. We thereby follow a dual goal: (i)
improve our understanding of XML query languages and (ii) become familiar with SAX, a
stream parser for XML, with an event-driven API. Recall that the main features of SAX were
presented in Section 1.4.2.

6.1 Tree-pattern dialects

We will consider tree-pattern languages of increasing complexity. We introduce them in this
section.

C-TP This is the dialect of conjunctive tree-patterns. A C-TP is a tree, in which each node
is labeled either with an XML element name, or with an XML attribute name. C-TP nodes
corresponding to attributes are distinguished by prefixing them with @, e.g., @color. Each
node has zero or more children, connected by edges that are labeled either / (with the
semantics of child) or // (with the semantics of descendant). Finally, the nodes that one
wants to be returned are marked.

As an example, Figure 6.1 shows a simple XML document d where each node is annotated
with its preorder number. (Recall the definition of this numbering from Section 4.2.) Figure 6.2
shows a C-TP pattern denoted t1 and the three tuples resulting from “matchings” of t1 into d.
A matching v is a mapping from the nodes in the tree-pattern to the nodes in the XML tree
that verifies the following conditions: For each nodes n,m,

• If n is labelled l for some l, v(n) is an element node labelled l; If n is labelled @l, v(n) is
an attribute node labelled @l;

• If there is a / edge from n to m, v(n) is a parent of v(m); If there is a // edge from n to
m, v(n) is an ancestor of v(m).

In the figure, the nodes that we want to be returned are marked by boxes surrounding their
labels. Observe that a result is a tuple of nodes denoted using their preorder numbers. For
now, assume that C-TPs return tuples of preorder numbers. In real-world scenarios, of course,
we may also want to retrieve the corresponding XML subtrees, and at the end of this chapter,
the reader will be well-equipped to write the code that actually does it.

Before moving on and extending our language of tree-pattern queries, we next observe an
important aspect of the language. For that consider the following three queries:

129

For personal use only, not for distribution. 130

XML document d

1people

2person 7person 11person

3email

’m@home’

12email

’a@home’

13email

’a@work’

4name 8name 14name

5first

’Mary’

6last

’Jones’

9first

’Bob’

10last

’Lang’

15first

’Al’

16last

’Hart’

Figure 6.1: A sample document.

Query q1:
for $p in //person[email]

[name/last]
return ($p//email,

$p/name/last)

Query q′1:
for $p in //person
return ($p//email, $p/name/last)

Query q2:
for $p in //person[name/last]
return ($p//email,

$p/name/last)

Which one do you think corresponds to the tree-pattern query t1? Well, it is the first one. In
q1, the for clause requires the elements matching $p to have both an e-mail descendant, and
a descendant on the path name/last. Similarly, to obtain a matching from t1 and d, we need
matches on both paths. In contrast, consider the more relaxed query q′1 that would output
the last name of a person element without an email, or the email of a person element
without last name. Lastly, query q2 requires a last name but no email. This motivates an
extension of the language we consider next.

TP The dialect TP is a superset of C-TP, extending it to allow optional edges. Syntactically,
TP distinguishes between two kinds of edges, compulsory and optional edges. In a nutshell,
the semantics of TP is defined as follows. Matchings are defined as for C-TP. The only
difference is that for an optional child edge from n to m, two cases can be considered:

• If v(n) has some child v(m) such that there is a matching from the subtree of the query
rooted at m and the subtree of d rooted at v(m); then v extends such a matching from

For personal use only, not for distribution. 131

Tree pattern t1:
person

email name

last

Embeddings of t1 in d

person email name last
2 3 4 6
11 12 14 16
11 13 14 16

Expected result t1(d)

email last
3 6
12 16
13 16

Figure 6.2: A C-TP and its result for a sample document.

Tree-pattern t2:
person

email name

last

Embeddings of
t2 in d

person email name last
2 3 4 6
7 null 8 10
11 12 14 16
11 13 14 16

Expected result
t2(d)

email last
3 6

null 10
12 16
13 16

Figure 6.3: A TP and its result for the sample document in Figure 6.1.

the m-subtree to the v(m)-subtree.

• Or v(n) has no such child, then v has a null value for m and all its descendants.

And similarly for descendant.
As an example, Figure 6.3 shows the TP pattern t2 corresponding to the previously see

query q2. It resembles t1 but the edge between the person and email nodes is optional
(denoted by the dashed lines in the figure). As the figure shows, the second person element
from the document in Figure 6.1 lacks an email, which leads to a matching tuple with a null.
As a consequence, one of the tuples in t2(d) contains a null email.

To conclude this section, we consider three somehow orthogonal extensions of both TP and
C-TP. Figure 6.4 shows the extended tree-pattern t3, t4 and t5, together with their equivalent
queries, respectively q3,q4 and q5, and their results for the sample document in Figure 6.1.
The three extensions are:

Star (*) patterns We allow labels to be not only element or attribute names, but also “*” that
are interpreted as wild cards matched by any element or attribute.

Value predicate patterns We can impose a constraint on nodes using some predicates. For
instance, we can impose the value of an email, e.g, email = m@home.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 132

Query q3:
for $p in //person[email]
return $p//name/*

Equivalent tree pattern t3:
person

email name

*

Evaluation result of t3(d):
*
5
6
9
10
15
16

Query q4:
for $p in //person[//first]

[//last]
where $p/email=’m@home’
return ($p//first,

$p//last)

Equivalent tree pattern t4:
person

email
=’m@home’

first last

Evaluation result of t4(d):
first last

5 6

Query q5:
for $p in //person
where $p/email=’m@home’
return <res>{$p/*/last}</res>

Equivalent tree pattern t5:
person

email
=’m@home’

*

last

Evaluation result of t5(d):
last

<last>Jones</last>

Figure 6.4: Extended patterns.

Patterns returning full elements Finally, we can request the tree-pattern to not only return
the preorder values of nodes but the entire corresponding subtrees. For simplicity,
we do not introduce any explicit graphical notation for requesting that in answers. In
Figure 6.4, the result of t5(d) assumes that “full answers” are requested.

From a practical perspective of XML querying, all these extensions are interesting. In
particular, C-TP with all the extensions corresponds to a large and useful subset of XPath,
whereas its counterpart building on TP is at the core of an important expressive fragment of
XQuery. We first consider the evaluation of C-TP. Then look at extensions.

6.2 CTP evaluation

We now describe an algorithm, named StackEval, for evaluating a C-TP pattern t on a
document d in a single SAX-based traversal of the document. To understand the algorithm,
it is useful to have in mind that a node matches both because it satisfies some “ancestor
condition” (the path from the root has a certain pattern) and also because its descendants
satisfy some “descendant conditions”. We know whether an XML node satisfies some ancestor
conditions, by the time we encounter the opening tag of the node, because by that time, all
its ancestors have been encountered already. However, we can only decide if the node
satisfies descendant conditions after the complete traversal of all its descendants, that is,
when encountering the closing tag of the node.

We start by describing some data structures we will use:

• When a node nd in document d is found to satisfy the ancestor conditions related to a
node nt in t, a Match object is created to record this information. A Match holds the
following:

For personal use only, not for distribution. 133

class Match {

int start;

int state;

Match parent;

Map <PatternNode, Array<Match>> children;

TPEStack st;

int getStatus() {...}

}

class TPEStack {

PatternNode p;

Stack <Match> matches;

TPEStack spar;

Array <TPEStack> getDescendantStacks(); {...}

// gets the stacks for all descendants of p

push(Match m){ matches.push(m); }

Match top(){ return matches.top(); }

Match pop(){ return matches.pop(); }

}

Table 6.1: Outline of the Match and TPEStack classes.

– the start number of node nd (an integer).

– an internal state flag, whose value can be either open or closed.

– (ancestor conditions) the Match parent that corresponds to a match between the
parent (or an ancestor) of nd, and the parent of nt in the tree pattern query. If the
edge above nt is a parent edge, then parent can only correspond to the parent
node of nd. Otherwise, parent may be built from the parent or another ancestor of
nd.

– (descendant conditions) the (possibly empty) array of matches that were created
out of nd’s children or descendants, for each child of nt in the query. Such matches
for nt children are mapped in the children structure on the PatternNode children
of nt.

– a pointer st to a TPEStack (standing for tree pattern query evaluation stack). As
we will see, we associate a TPEStack to each node in the pattern. Then st points
to the stack associated to the pattern node nt.

• For each node p in the tree-pattern, a TPEStack is created, on which the matches
corresponding to this pattern node are pushed as they are created. Observe that a
TPEStack contains a “regular” Stack in which Match objects are pushed and from
which they are popped. The extra structure of a TPEStack serves to connect them to
each other according to the structure or the query. More specifically, each TPEStack

corresponding to a pattern node p points to:

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 134

– the TPEStack spar corresponding to the parent of p, if p is not the pattern root.

– a set childStacks of the TPEStacks corresponding to the children of p, if any.

• The Match and TPEStack structures are interconnected, i.e., each Match points to the
(unique) TPEStack on which the Match has been pushed upon creation.

The main features of the Match and TPEStack classes are summarized in Table 6.1. In our
discussion of the algorithms, unless otherwise specified, we use the term “stack” to refer to a
TPEStack.

The StackEval algorithm The algorithm evaluates C-TP queries based on the SAX XML
document processing model. More specifically, the query evaluation algorithm runs suitable
handlers of the methods:

startElement (String nameSpaceURI, String localName, String

rawName, Attribute attributes)

endElement (String nameSpaceURI, String localName, String

rawName)

described in Section 1.4.2. For simplicity, within startElement we only use the localName
and Attributes, whereas from the parameters of endElement we only use localName. As a
consequence, the evaluation algorithm we describe does not take into account namespaces.
Extending it to include the support of namespaces does not raise interesting algorithmic
issues.

The StackEval class (Table 6.2) contains the stack corresponding to the query root. It also
stores an element counter called currentPre, from which pre number will be assigned to
new Match objects. Finally, it stores a stack of all pre numbers of elements currently open but
whose end has not been encountered yet.

The startElement handler is notified that an element with a given localName and a set
of attributes has just started. The handler seeks to identify the stack (or stacks) associated to
query nodes which the newly started element may match. To this purpose, it enumerates all
the stacks created for the query (by getting all descendants of the root stack), and for each
stack it checks two conditions. The first condition is that the label of the starting node matches
the label of the query nodes for which the stacks were created. A second condition applies
in the case of a stack s created for a query node p having a parent in the query: we push a
new match on s if and only if there is an open match on the parent stack of s, namely p.spar.
Such an open match signifies that the newly started element appears in the right context,
i.e. all the required ancestors have been matched above this element. In this case, a Match is
created with the current pre number (which is incremented). The Match is open by default
when created. Finally, the currentPre and preOfOpenNodes are updated to reflect the new
element.

Since tree-patterns may also require matches in XML attributes, the next lines in the
startElement handler repeat the previously described procedure for each of the attributes
whose presence is signaled in the same call to startElement.

The endElement handler (Table 6.3) plays a dual role with respect to the startElement one.
Ancestor conditions for a potential query node match are enforced by startElement when
the element starts; descendant conditions are checked by endElement when the element’s

For personal use only, not for distribution. 135

class StackEval extends DocumentHandler {

TreePattern q;

TPEStack rootStack; // stack for the root of q

// pre number of the last element which has started:

int currentPre = 0;
// pre numbers for all elements having started but not ended yet:

Stack <Integer> preOfOpenNodes;

startElement(String localName, Attribute attributes){

for(s in rootStack.getDescendantStacks()){

if(localName == s.p.name && s.spar.top().status == open){

Match m = new Match(currentPre, s.spar.top(), s);

// create a match satisfying the ancestor conditions

// of query node s.p

s.push(m); preOfOpenNodes.push(currentPre);

}

currentPre ++;

}

for (a in attributes){

// similarly look for query nodes possibly matched

// by the attributes of the currently started element

for (s in rootStack.getDescendantStacks()){

if (a.name == s.p.name && s.par.top().status == open){

Match ma = new Match(currentPre, s.spar.top(), s);

s.push(ma);

}

}

currentPre ++;

}

}

Table 6.2: StartElement handler for the StackEval tree-pattern evaluation algorithm.

traversal has finished, because at this time, all the descendants of the XML node for which the
match was created have been traversed by the algorithm. Thus, we know for sure what parts
of the queries could be matched in the descendants of the current node. The endElement

handler plays two roles:

• prune out of the stacks those matches which satisfied the ancestor constraints but not
the descendant constraints;

• close all Match objects corresponding to the XML element which has just finished (there
may be several such matches, if several query nodes carry the same label). Closing
these Matches is important as it is required in order for future tests made by the
startElement handler to work.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 136

class StackEval{ ...

endElement(String localName){

// we need to find out if the element ending now corresponded

// to matches in some stacks

// first, get the pre number of the element that ends now:

int preOflastOpen = preOfOpenNodes.pop();

// now look for Match objects having this pre number:

for(s in rootStack.getDescendantStacks()){

if (s.p.name == localName && s.top().status == open &&)

s.top().pre == preOfLastOpen){

// all descendants of this Match have been traversed by now.

Match m = s.pop();

// check if m has child matches for all children

// of its pattern node

for (pChild in s.p.getChildren()){

// pChild is a child of the query node for which m was created

if (m.children.get(pChild) == null){

// m lacks a child Match for the pattern node pChild

// we remove m from its Stack, detach it from its parent etc.

remove(m, s);

}

}

m.close();

}

}

}

}

Table 6.3: EndElement handler for the StackEval tree-pattern evaluation algorithm.

Instructions Based on the previous explanation:

1. Implement an evaluation algorithm for C-TP tree-patterns. At the end of the execution,
the stacks should contain only those Match objects that participate to complete query
answers.

2. Implement an algorithm that computes the result tuples of C-TP tree patterns, out of
the stacks’ content.

6.3 Extensions to richer tree-patterns

Once this is implemented, the reader might want to consider implementing the extensions
previously outlined. For all these extensions, a single traversal of the document suffices.

More precisely, one can consider:

1. Extend the evaluation algorithm developed in (1.) at the end of the previous section to

For personal use only, not for distribution. 137

“*” wildcards. For this, Stack objects are allowed to be created for *-labeled query tree
nodes. Also the startElement and endElement handlers are adapted.

2. Extend the evaluation algorithm to optional nodes, by modifying the tests performed
in endElement (looking for children which the Match should have) to avoid pruning a
Match if only optional children are missing.

3. Extend the algorithm developed in (2.) to handle optional nodes, by filling in partial
result tuples with nulls as necessary.

4. Extend the evaluation algorithm to support value predicates, by (i) implementing a
handler for the characters(...) SAX method, in order to record the character data
contained within an XML element and (ii) using it to compare the text values of XML
elements for which Match objects are created, to the value predicates imposed in the
query.

5. Extend the algorithm in (2.) to return subtrees and not only preorder numbers. The
subtrees are represented using the standard XML syntax with opening/closing tags.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

Part II

Web Data Semantics and Integration
The impious maintain that nonsense
is normal in the Library, and that the
reasonable (and even humble and
pure coherence) is an almost
miraculous exception.

(The Library of Babel, Jorge Luis
Borges)

139

7 Ontologies, RDF, and OWL

7.1 Introduction

The vision of the Semantic Web is that of a world-wide distributed architecture where data
and services easily interoperate. This vision is not yet a reality in the Web of today, in which
given a particular need, it is difficult to find a resource that is appropriate to it. Also, given a
relevant resource, it is not easy to understand what it provides and how to use it. To solve
such limitations, facilitate interoperability, and thereby enable the Semantic Web vision, the
key idea is to also publish semantics descriptions of Web resources. These descriptions rely
on semantic annotations, typically on logical assertions that relate resources to some terms in
predefined ontologies. This is the topic of the chapter.

An ontology is a formal description providing human users a shared understanding of a
given domain. The ontologies we consider here can also be interpreted and processed by
machines thanks to a logical semantics that enables reasoning. Ontologies provide the basis
for sharing knowledge and as such, they are very useful for a number of reasons:

Organizing data. It is very easy to get lost in large collections of documents. An ontology
is a natural means of “organizing” (structuring) it and thereby facilitates browsing
through it to find interesting information. It provides an organization that is flexible,
and that naturally structures the information in multidimensional ways. For instance,
an ontology may allow browsing through the courses offered by a university by topic
or department, by quarter or time, by level, etc.

Improving search. Ontologies are also useful for improving the accuracy of Web search. Con-
sider a typical keyword search, say “jaguar USA”. The result is a set of pages in which
these intrinsically ambiguous English terms occur. Suppose instead that we use precise
concepts in an ontology, say car:jaguar country:USA. First, one doesn’t miss pages
where synonyms are used instead of the query terms, e.g., United States. Also, one
doesn’t recover pages where one of the terms is used with a different meaning, e.g.,
pages that talk about the jaguar animal.

Data integration. Ontologies also serve as semantic glue between heterogeneous information
sources, e.g., sources using different terminologies or languages. Consider for instance
a French-American university program. The American data source will speak of “stu-
dents” and “course”, whereas the French one will use “étudiants” and “cours”. By
aligning their ontologies, one can integrate the two sources and offer a unique bilingual
entry point to the information they provide.

An essential aspect of ontologies is their potential, because of the “logic inside”, to be the
core of inferencing components. What do we mean by inferencing in our setting? Consider for
instance a query that is posed to the system. It may be the case that the query has no answer.
It is then useful to infer why this is the case, to be able, for instance, to propose a more general

141

For personal use only, not for distribution. 142

query that will have some answers. On the other hand, the query may be too vague and
have too many answers and it may be helpful to propose more specific queries that will help
the user to precise what he really wants. In general, automatic inferences, even very simple
ones, can provide enormous value to support user navigation and search, by guiding in a
possibly overwhelming ocean of information. Inferencing is also an essential ingredient for
automatically integrating different data sources. For instance, it is typically used to detect
inconsistencies between data sources and resolve them, or to analyze redundancies and
optimize query evaluation.

The inferencing potential of ontologies is based on their logical formal semantics. As we
will see, languages for describing ontologies can be seen as fragments of first-order logic
(FOL). Since inference in FOL is in general undecidable, the “game” consists in isolating
fragments of FOL that are large enough to describe the semantics of resources of interest for
a particular application, but limited enough so that inference is decidable, and even more,
feasible in reasonable time.

Not surprisingly, we focus here on Web languages. More precisely, we consider languages
that are already standards of the W3C or on the way to possibly becoming such standards (i.e.,
recommendations of that consortium). Indeed, in the first part of this chapter, we consider
RDF, RDFS and OWL. Statements in these languages can be interpreted with the classical
model-theoretic semantics of first-order logic.

In the second part, we study more formally, the inference problem for these languages.
Checking logical entailment between formulas, possibly given a set of axioms, has been
extensively studied. Since the problem is undecidable for FOL, we focus on decidable
fragments of FOL that are known under the name of description logics. Description logics
provide the formal basis of the OWL language recommended by the W3C for describing
ontologies. They allow expressing and reasoning on complex logical axioms over unary
and binary predicates. Their computational complexity varies depending on the set of
constructors allowed in the language. The study of the impact of the choice of constructors
on the complexity of inference is the main focus of the second part of the chapter.

We start with an example for illustrating what an ontology is, and the kind of reasoning
that can be performed on it (and possibly on data described using it). Then, we survey the
RDF(S) and OWL languages. Finally, we relate those languages to FOL, and in particular to
description logics, in order to explain how the constructors used to describe an ontology may
impact the decidability and tractability of reasoning on it.

7.2 Ontologies by example

An ontology is a formal description of a domain of interest based on a set of individuals (also
called entities or objects), classes of individuals, and the relationships existing between these
individuals. The logical statements on memberships of individuals in classes or relationships
between individuals form a base of facts, i.e., a database. Besides, logical statements are used
for specifying knowledge about the classes and relationships. They specify constraints on
the database and form the knowledge base. When we speak of ontology, one sometimes thinks
only of this knowledge that specify the domain of interest. Sometimes, one includes both the
facts and the constraints under the term ontology.

In this chapter, we use as running example, a university ontology. In the example, the terms
of the ontology are prefixed with “:”, e.g., the individual :Dupond or the class :Students.

For personal use only, not for distribution. 143

This notation will be explained when we discuss name spaces.
The university ontology includes classes, e.g., :Staff, :Students, :Department or :Course.

These classes denote natural concepts that are shared or at least understood by users familiar
with universities all over the world. A class has a set of instances (the individuals in this
class). For example, :Dupond is an instance of the class :Professor. The ontology also
includes relationships between classes, that denote natural relationships between individ-
uals in the real world. For instance, the university ontology includes the relationship, e.g.,
:TeachesIn. Relationships also have instances, e.g., TeachesIn(:Dupond,:CS101), is an in-
stance of :TeachesIn that has the meaning that Dupond teaches CS101. Class or relationship
instances form the database.

Let us now turn to the knowledge base. Perhaps the most fundamental constraint consid-
ered in this context is the subclass relationship. A class C is a subclass of a class C’ if each
instance of C is also an instance of C′. In other words, the set of instances of C is a subset of
the set of instances of C’. For instance, by stating that the class :Professor is a subclass of
the class :AcademicStaff, one expresses a knowledge that is shared with the university
setting: all professors are members of the academic staff. Stating a subclass relationship
between the class :AcademicStaff and the class :Staff expresses that all the members of
the academic staff, in particular the professors, belong to the staff of the university. So, in
particular, from the fact that :Dupond is an instance of the class :Professor, we also know
that he is an instance of :AcademicStaff and of :Staff.

It is usual to represent the set of subclass statements in a graphical way by a class hierarchy
(also called a taxonomy). Figure 7.1 shows a class hierarchy for the university domain.

Besides the class hierarchy, a very important class of ontology constraints allows fixing the
domains of relationships. For instance,

• :TeachesIn(:AcademicStaff, :Course) indicates that if one states that “X :TeachesIn
Y”, then X belongs to :AcademicStaff and Y to :Course,

• Similarly, :TeachesTo(:AcademicStaff, :Student), :Leads(:Staff, :Department)
indicate the nature of participants in different relationships.

A wide variety of other useful constraints are supported by ontology languages. For
instance:

• Disjointness constraints between classes such as the classes :Student and :Staff are
disjoint, i.e., a student cannot belong to the staff.

• Key constraints (for binary relations) such as each department must have a unique
manager

• Domain constraints such as only professors or lecturers may teach undergraduate
courses.

We will show how to give a precise (formal) semantics to these different kinds of constraints
based on logic. The use of logic enables reasoning. For instance, from the fact that Dupond
leads the CS department and the university ontology, it can be logically inferred that :Dupond
is in :Professor and :CSDept is in :Department. Indeed, such a reasoning based on
ontologies and inference rules is one of the main topics of this chapter. But before delving

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 144

F
a
c
u
l
t
y

S
t
a
f
f

A
d
m
i
n
S
t
a
f
f

A
c
a
d
e
m
i
c
S
t
a
f
f

P
r
o
f
e
s
s
o
r

R
e
s
e
a
r
c
h
e
r

L
e
c
t
u
r
e
r

D
e
p
a
r
t
m
e
n
t

C
S
D
e
p
t

M
a
t
h
s
D
e
p
t

P
h
y
s
i
c
s
D
e
p
t

S
t
u
d
e
n
t

P
h
D
S
t
u
d
e
n
t

M
a
s
t
e
r
S
t
u
d
e
n
t

U
n
d
e
r
g
r
a
d

C
o
u
r
s
e

C
S
C
o
u
r
s
e

J
a
v
a

A
I

D
B L
o
g
i
c

M
a
t
h
C
o
u
r
s
e

A
l
g
e
b
r
a

P
r
o
b
a
b
i
l
i
t
i
e
s E
n
g
l
i
s
h

Figure
7.1:A

class
hierarchy

For personal use only, not for distribution. 145

in technicalities on inference, we devote the remaining of the section to illustrations of the
usefulness of inference.

Inference is first very useful for query answering. For instance, consider the query “Who
are the members of the academic staff living in Paris?”. Suppose Professor :Dupond lives
in Paris. He should be in the answer. Why? Because he lives in Paris and because he is a
professor. Note however that the only explicit facts we may have for :Dupond are that he
lives in Paris and that he is a professor. A query engine will have to use the formula that
states that professors are members of the academic staff and inference to obtain Dupond in the
answer. Without inference, we would miss the result.

Inference helped us in the previous example derive new facts such as Dupond is member
of the academic staff. It can also serve to derive new knowledge, i.e., new constraints even in
absence of any fact. For instance, suppose that we add to the class hierarchy of Figure 7.1,
the subclass relationship between :PhDStudent and :Lecturer. Then, it can be inferred
that :PhDStudent is also a subclass of the class :Staff. At the time one is designing such
an ontology, it is useful to be aware of such inference. For instance, membership in the staff
class may bring special parking privileges. Do we really mean to give such privileges to all
PhD students?

Furthermore, suppose that the ontology specifies the (already mentioned) disjointness
relationship between the classes :Staff and :Student. Then, from this constraint and the
subclass relationship between :PhDStudent and :Student, it can be inferred that the class
:PhDStudent is empty. This should be understood as an anomaly: why would a specification
bother to define an empty class? Highlighting in advance such anomalies in ontologies is
very important at the time the ontology is defined, because this may prevent serious errors at
the time the ontology is actually used in an application.

A last illustration of the use of ontologies pertains to integration. Consider again an
international university program. Suppose US students may follow some courses in France
for credits. Then we need to integrate the French courses with the American ones. Statement
such as “FrenchUniv:Cours is a subclass of :Course” serves to map French concepts to
American ones. Now a student in this international program who would ask the query
“database undergraduate”, may get as answers Database 301 and L3, Bases de données.

These are just examples to illustrate the usefulness of inference based on ontologies. In
the next section we describe the languages and formalisms that can be used to represent
ontologies. In Section 7.4, we will be concerned with inference algorithms that are sound
and complete with respect to the logical formal semantics, that is, algorithms guaranteeing
to infer all the implicit information (data or knowledge) deriving from the asserted facts,
relationships and constraints declared in the ontology.

7.3 RDF, RDFS, and OWL

We focus on three ontology languages that have been proposed for describing Web resources.
We first consider the language RDF, a language for expressing facts (focusing primarily on
the database). The other two languages allow constraining RDF facts in particular application
domains: RDFS is quite simple, whereas OWL is much richer. We start by reviewing common
terminology and notions central to this context.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 146

7.3.1 Web resources, URI, namespaces

A resource is anything that can be referred to: a Web page, a fragment of an XML document
(identified by an element node of the document), a Web service, an identifier for an entity, a
thing, a concept, a property, etc. This is on purpose very broad. We want to be able to talk
about and describe (if desired) anything we can identify. An URI may notably be a URL that
any (human or software) agent or application can access. In particular, we need to talk about
specific ontologies. The ontology that is used in the example of this chapter is identified by
the URL:

http://Webdam.inria.fr/Jorge/OntologiesChapter/Examples#

The instance Dupond in this ontology has URI:

http://Webdam.inria.fr/Jorge/OntologiesChapter/Examples#Dupond

To avoid carrying such long URIs, just like in XML (see Chapter 1), we can use namespaces.
So for instance, we can define the namespace jorge: with the URL of the example ontology.
Then the instance Dupond in the ontology jorge: becomes jorge:Dupond. This is just an
abbreviation of the actual URI for Dupond in that ontology.

The examples we will present are within the jorge ontology. When denoting individuals
or relationships in this ontology, we will use the notation :Name instead of jorge:Name,
considering that jorge is the default namespace. For example, the RDF triplet 〈 :Dupond,
:Leads, :CSDept 〉 expresses in RDF the fact that :Dupond leads :CSDept. Remember that
these are only abbreviations, e.g.,:
http://Webdam.inria.fr/Jorge/OntologiesChapter/Examples#Dupond

abbreviates to
Jorge:Dupond

abbreviates to
:Dupond.
One can publish standard namespaces to be used by all those interested in particular

domain areas. In this chapter, we will use the following standard namespaces:

rdf: A namespace for RDF.
The URI is: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs: A namespace for RDFS.
The URI is: http://www.w3.org/2000/01/rdf-schema#

owl: A namespace for OWL.
The URI is: http://www.w3.org/2002/07/owl#

dc: A namespace for the Dublin Core Initiative.
The URI is: http://dublincore.org/documents/dcmi-namespace/

foaf: A namespace for FOAF.
The URI is: http://xmlns.com/foaf/0.1/.

In each case, at the URL, one can find an ontology that, in particular, specifies a particular
vocabulary. Dublin Core is a popular standard in the field of digital libraries. The Friend of a
Friend (FOAF) initiative aims at creating a “social” Web of machine-readable pages describing
people, the links between them and the things they create and do. We will encounter examples
of both.

http://Webdam.inria.fr/Jorge/OntologiesChapter/Examples#
http://Webdam.inria.fr/Jorge/OntologiesChapter/Examples#Dupond
http://Webdam.inria.fr/Jorge/OntologiesChapter/Examples#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2002/07/owl#
http://dublincore.org/documents/dcmi-namespace/
http://xmlns.com/foaf/0.1/

For personal use only, not for distribution. 147

7.3.2 RDF

RDF (Resource Description Framework) provides a simple language for describing annotations
about Web resources identified by URIs. These are facts. Constraints on these facts in
particular domains will be stated in RDFS or OWL.

RDF syntax: RDF triplets.

In RDF, a fact expresses some metadata about a resource that is identified by a URI. An RDF
fact consists of a triplet. A triplet is made of a subject, a predicate and an object. It expresses a
relationship denoted by the predicate between the subject and the object. Intuitively, a triplet
〈a P b〉 expresses the fact that b is a value of property P for the subject a. (In general, a may
have several values for property p.) Don’t get confused by the terminology: a relationship, a
predicate, a property, are three terms for the same notion. The relationship 〈a P b〉 uses the
predicate P, and expresses that the subject a has value b for property P.

In a triplet, the subject, but also the predicate, are URIs pointing to Web resources, whereas
the object may be either a URI or a literal representing a value. In the latter case, a triplet
expresses that a given subject has a given value for a given property. RDF borrows from XML
the literal data types such as strings, integers and so forth, thanks to the predefined RDF data
type rdf:Literal. One can include an arbitrary XML value as an object of an RDF triplet,
by using the predefined RDF data type rdf:XMLLiteral.

In RDF, one can distinguish between individuals (objects) and properties (relationships).
This is not mandatory but it can be done using two rdf keywords (i.e., keywords defined in
the rdf namespace): rdf:type and rdf:Property. For instance, one can declare that the
term :Leads is a property name by the triplet 〈 :Leads rdf:type rdf:Property 〉.

Then data is specified using a set of triplets. These triplets may be represented either in a
tabular way, as a triplet table or as a RDF graph.

Representing a set of triplets as a directed graph is convenient to visualize all the information
related to an individual at a single node by bringing it together. In such a graph, each triplet
is represented as an edge from its subject to its object. Figure 7.2 and Figure 7.3 visualize
respectively the tabular form and the RDF graph corresponding to some set of triplets:

〈 :Dupond :Leads :CSDept 〉
〈 :Dupond :TeachesIn :UE111 〉
〈 :Dupond :TeachesTo :Pierre 〉
〈 :Pierre :EnrolledIn :CSDept 〉
〈 :Pierre :RegisteredTo :UE111 〉
〈 :UE111 :OfferedBy :CSDept 〉

Subject Predicate Object
:Dupond :Leads :CSDept
:Dupond :TeachesIn :UE111
:Dupond :TeachesTo :Pierre
:Pierre :EnrolledIn :CSDept
:Pierre :RegisteredTo :UE111
:UE111 :OfferedBy :CSDept

Figure 7.2: An RDF triplet table

This is almost all there is in RDF. Trivial, no? There is one last feature, the use of blank
nodes to capture some form of unknown individuals. A blank node (or anonymous resource
or bnode) is a subject or an object in an RDF triplet or an RDF graph that is not identified by a
URI and is not a literal. A blank node is referred to by a notation _:p where p is a local name

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 148

:TeachesIn

:Dupond :Pierre

:InfoDept

UE111

:TeachesTo

:EnrolledIn

:RegisteredTo

:OfferedBy

:Leads

Figure 7.3: An RDF graph

that can be used in several triplets for stating several properties of the corresponding blank
node.

Example 7.3.1 The following triplets express that Pierre knows someone named “John Smith” wrote
a book entitled “Introduction to Java”.

:Pierre foaf:knows _:p
_:p foaf:name “John Smith”
_:p wrote _:b
_:b dc:title “Introduction to Java”

The predicates foaf:knows and foaf:name belong to the FOAF vocabulary. The predicate
dc:title belongs to the Dublin Core vocabulary.

We have used here an abstract syntax of RDF. One can clearly describe in a number of ways
using a “concrete” syntax. For instance, there exists an RDF/XML syntax for describing RDF
triplets. We now turn to the semantics that is, as we will see, quite simple as well.

RDF semantics

A triplet 〈s P o〉 without blank node is interpreted in first-order logic (FOL) as a fact P(s,o),
i.e., a grounded atomic formula, where P is the name of a predicate and s and o denotes
constants in the FOL language.

Blank nodes, when they are in place of the subject or the object in triplets, are interpreted as
existential variables. Therefore a set of RDF triplets (represented with a triplet table or an RDF
graph or in RDF/XML syntax), possibly with blank nodes as subjects or objects, is interpreted
as a conjunction of positive literals in which all the variables are existentially quantified.

Giving a FOL semantics to triplets in which the predicates can be blank nodes is also
possible but a little bit tricky and is left out of the scope of this chapter (see Section 7.5).

Example 7.3.2 Consider again the four triplets that we used to express that Pierre knows someone
named “John Smith” wrote a book entitled “Introduction to Java”. They are interpreted in FOL by the

For personal use only, not for distribution. 149

following positive existential conjunctive formula, where the prefixes (foaf:, dc:, _: and :) for
denoting the constants, predicates and variables have been omitted for readability.

∃p∃b[knows(Pierre, p) ∧ name(p,“John Smith”) ∧wrote(p,b) ∧ title(b,“Introduction to Java”)]

7.3.3 RDFS: RDF Schema

RDFS is the schema language for RDF. It allows specifying a number of useful constraints
on the individuals and relationships used in RDF triplets. In particular, it allows declaring
objects and subjects as instances of certain classes. In addition, inclusion statements between
classes and properties make it possible to express semantic relations between classes and
between properties. Finally, it is also possible to semantically relate the “domain” and the
“range” of a property to some classes. These are all very natural constraints that we consider
next.

Syntax of RDFS

The RDFS statements can be themselves expressed as RDF triplets using some specific
predicates and objects used as RDFS keywords with a particular meaning. We have already
seen the rdf:type predicate. This same keyword is used to declare that an individual i is an
instance of class C with a triplet of the form 〈i rdf:type C 〉.

Example 7.3.3 The following triplets express that :Dupond is an instance of the class :AcademicStaff,
:UE111 of the class :Java and :Pierre is an instance of the class :MasterStudent.

:Dupond rdf:type :AcademicStaff
:UE111 rdf:type :Java
:Pierre rdf:type :MasterStudent

RDFS provides a new predicate rdfs:subClassOf to specify that a class is a subclass of
another one. One can use it in particular to disambiguate terms. For instance, by specifying
that :Java is a subclass of :CSCourse, one say that, in the context of this particular ontol-
ogy, by Java, we mean exclusively the CS programming language. Subclass relationships
between classes, and thus a class hierarchy, can be declared as a set of triplets of the form 〈 C
rdfs:subClassOf D 〉. The class hierarchy of Figure7.1 can be described in RDFS by a set
of RDF triplets, an extract of which is given in Figure 7.4.

:Java rdfs:subClassOf :CSCourse
:AI rdfs:subClassOf :CSCourse
:BD rdfs:subClassOf :CSCourse
:CSCourse rdfs:subClassOf :Course
:Logic rdfs:subClassOf :Course
:MathCourse rdfs:subClassOf :Course
:English rdfs:subClassOf :Course
:Algebra rdfs:subClassOf :MathCourse
:Probabilities rdfs:subClassOf :MathCourse

Figure 7.4: Some RDFS declarations for the class hierarchy of Figure 7.1

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 150

Similarly, RDFS provides a predicate rdfs:subPropertyOf to express structural relation-
ships between properties. We could state for instance with the triplet

〈 :LateRegisteredTo rdfs:subPropertyOf :RegisteredTo 〉

that the relationship :LateRegisteredTo is more specific than the relationship :RegisteredTo.
So, suppose that we know:

〈 :Alice :LateRegisteredTo :UE111 〉

Then we can infer that, also:

〈 :Alice :RegisteredTo :UE111 〉

A property P (between subjects and objects) may be seen as a function that maps a subject s
to the set of objects related to s via P. This functional view motivates calling the set of subjects
of a property P, its domain, and the set of objects, its range.

Restricting the domain and the range of a property is also possible in RDFS using two other
new predicates rdfs:domain and rdfs:range and triplets of the form:

〈 P rdfs:domain C 〉

and

〈 P rdfs:range D 〉

Example 7.3.4 Some domain and range constraints on properties in the ontology of the university
domain mentioned in Section 7.2 can be expressed in RDFS by the set of RDF triplets given in
Figure 7.5.

:TeachesIn rdfs:domain :AcademicStaff :TeachesIn rdfs:range :Course
:TeachesTo rdfs:domain :AcademicStaff :TeachesTo rdfs:range :Student
:Leads rdfs:domain :Staff :Leads rdfs:range :Department

Figure 7.5: Some RDFS declarations of domain and range constraints for the university
domain

RDFS semantics

Accordingly to the FOL semantics of RDF presented before, the RDFS statements can be
interpreted by FOL formulas. Figure 7.6 gives the logical semantics of the RDFS statements
by giving their corresponding FOL translation. The figure also gives the corresponding DL
notation, to be explained further on.

Observe that these statements all have the same general form:

∀ . . . (· · · ⇒ . . .)

For personal use only, not for distribution. 151

RDF and RDFS statements FOL translation DL notation
i rdf:type C C(i) i : C or C(i)
i P j P(i, j) i P j or P(i, j)
C rdfs:subClassOf D ∀X (C(X)⇒ D(X)) C v D
P rdfs:subPropertyOf R ∀X∀Y (P(X,Y)⇒ R(X,Y)) P v R
P rdfs:domain C ∀X∀Y (P(X,Y)⇒ C(X)) ∃P v C
P rdfs:range D ∀X∀Y (P(X,Y)⇒ D(Y)) ∃P− v D

Figure 7.6: RDFS logical semantics

Such constraints are very useful in practice and are very adapted to inferencing. They are
called tuple generating dependencies. Intuitively, each such rule may be thought of as a factory
for generating new facts: no matter how (with which valuations of the variables) you can
match the left part of the arrow, you can derive the right part. Underneath this inference are
the notion of pattern, i.e., of a fact where some of the individuals are replaced by variables
(i.e., placeholder) and that of valuation. An example of a pattern is :TeachesIn(X, Y), where
X,Y are variables. A valuation ν may map X to :Dupond and Y to :UE111. It transforms the
pattern :TeachesIn(X, Y) into the fact :TeachesIn(:Dupond, :UE111).

The FOL translation that we presented suggests inference rules that can be used “opera-
tionally” to derive new RDF triplets. This is what is called the operational semantics of RDFS.
One starts with a set of facts, RDF triplets, and constraints. When the body of a rule matches
some knowledge we have, the head of the rule specifies some knowledge we can infer. To
illustrate, consider the inference rule for rdfs:subClassOf:

if 〈 r rdf:type A 〉 and 〈 A rdfs:subClassOf B 〉 then 〈 r rdf:type B 〉

where r, A, and B are variables.
This means that: if we know two triplets matching the patterns 〈 r rdf:type A 〉 and 〈 A

rdfs:subClassOf B 〉 for some values of r, A, B, then we can infer the triplet 〈 r rdf:type
B 〉 with the values of r, B taken to be those of the match.

Or more formally, if there exists a valuation ν such that we know:

〈 ν(r) rdf:type ν(A) 〉

and

〈 ν(A) rdfs:subClassOf ν(B) 〉

then we can infer:

〈 ν(r) rdf:type ν(B) 〉

Of course, triplets that have been inferred can be themselves used to infer more triplets.
We also need rules to capture the operational semantics of rdfs:subPropertyOf, rdfs:domain

and rdf:range constraints:

if 〈 r P s 〉 and 〈 P rdfs:subPropertyOf Q 〉 then 〈 r Q s 〉.
if 〈 P rdfs:domain C 〉 and 〈 x P y 〉 then 〈 x rdf:type C 〉.
if 〈 P rdfs:range D 〉 and 〈 x P y 〉 then 〈 y rdf:type D 〉.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 152

An important issue is that of the soundness and completeness of the operational semantics
defined by the four above inference rules. Let A be a set of RDF triplets and T be a set of
associated RDFS triplets (expressing constraints on facts in A). The operational semantics
is sound if any fact f inferred from A and T by the rules (denoted: A ∪ T ` f) is a logical
consequence of the facts in A together with the constraints in T (denoted: A∪ T |= f).

The soundness of the operational semantics is easy to show, just because our rules are very
close to the constraints imposed by the RDFS statements. More formally it can be shown by
induction on the number of rules required to infer f (details are left as an exercise).

It is a little bit more difficult to show that the operational semantics is complete, i.e., for
any fact f , if A∪ T |= f then A∪ T ` f . We prove it by contrapositive, i.e., we show that if
A∪ T 6` f then A∪ T 6|= f . We consider the set of constants appearing in the facts in A as
the domain of an interpretation I, which is built as follows from the set of facts obtained by
applying the rules to the set of triplets in A∪ T :

• for each class C, I(C) = {i|A ∪ T ` C(i)}

• for each property R, I(R) = {(i, j)|A ∪ T ` R(i, j)}

It is easy to verify that I is a model of A∪ T (details are left as an exercise). Now, let f be a
fact such that A∪ T 6` f . By construction of I, since f is not inferred by the rules, f is not true
in I. Therefore, I is a model of A∪ T in which f is not true, i.e., A∪ T 6|= f .

It is important to note that the completeness we just discussed concerns the inference of
facts (possibly with blank nodes). For extending the completeness result to the inference of
constraints, we need additional inference rules (described in Figure 7.7) to account for the
combination of range and domain constraints with the subclass relationship, and also for
expressing the transitivity of the subclass and subproperty constraints. The proof is left as an
exercise (see Exercise 7.6.1).

if 〈 P rdfs:domain A 〉 and 〈 A rdfs:subClassOf B 〉
then 〈 P rdfs:domain B 〉

if 〈 P rdfs:range C 〉 and 〈 C rdfs:subClassOf D 〉
then 〈 P rdfs:range D 〉

if 〈 A rdfs:subClassOf B 〉 and 〈 B rdfs:subClassOf C 〉
then 〈 A rdfs:subClassOf C 〉

if 〈 P rdfs:subPropertyOf Q 〉 and 〈 Q rdfs:subPropertyOf R 〉
then 〈 P rdfs:subPropertyOf R 〉

Figure 7.7: The inference rules for RDFS constraints

The RDFS statements are exploited to saturate the RDF triplets by adding the triplets that
can be inferred with the rules. Then the resulting set of RDF triplets can be queried with a
query language for RDF, e.g., SPARQL. This will be explained in the next chapter.

7.3.4 OWL

OWL (the Web Ontology Language and surprisingly not the Ontology Web Language) extends
RDFS with the possibility to express additional constraints. Like RDFS, OWL statements
can be expressed as RDF triplets using some specific predicates and objects used as OWL

For personal use only, not for distribution. 153

keywords with a particular meaning. In this section, we describe the main OWL constructs.
Like RDFS, we provide their FOL semantics and, in anticipation to the next section, the
corresponding DL notation.

There are many constructs expressible in OWL that provide considerable modeling flexi-
bility and expressiveness for the Semantic Web. Providing an operational semantics for all
the OWL constructs is an open issue. However, most of the OWL constructs come from DL.
Therefore, we get for free all the positive and negative known results about reasoning in
DLs. This allows better understanding inferences when considering facts described with RDF
triplets and constraints in OWL.

OWL offers a number of rich semantic constructs, namely class disjointness, functional
constraint, intentional class definition, class union and intersection, etc.. We consider them in
turn.

Expressing class disjointness constraints

OWL provides a predicate owl:disjointWith to express that two classes C and D are
disjoint using the triplet: 〈 C owl:disjointWith D 〉

Although very natural, this constraint cannot be expressed in RDFS. For instance, in our
example, we can state the triplet: 〈 :Student owl:disjointWith :Staff 〉.

The following table provides the logical semantics of this construct.

OWL notation FOL translation DL notation
C owl:disjointWith D ∀X (C(X)⇒¬D(X)) C v ¬D

Observe the use of negation in the logical formulas. This is taking us out of tuple generating
dependencies. Such rules are not used to produce new facts but for ruling out possible worlds
as inconsistent with what we know of the domain of interest.

Functional constraints

In OWL, it is possible to state that a given relationship between A and B is in fact a function
from A to B (resp. from B to A). One can also state that a property is the inverse of another, or
that a property is symmetric. Observe the use of equality in the logical formulas.

OWL notation FOL translation DL notation
P rdf:type owl:FunctionalProperty ∀X∀Y∀Z (f unct P)

(P(X,Y)∧ P(X, Z)⇒ Y = Z) or ∃P v (≤ 1 P)
P rdf:type ∀X∀Y∀Z (f unct P−)
owl:InverseFunctionalProperty (P(X,Y)∧ P(Z,Y)⇒ X = Z) or ∃P− v (≤ 1 P−)
P owl:inverseOf Q ∀X∀Y (P(X,Y) ⇔
Q(Y, X))

P ≡ Q−

P rdf:type owl:SymmetricProperty ∀X∀Y (P(X,Y)⇒ P(Y, X)) P v P−

Recall that a triplet 〈a P b〉 is viewed in the model-theoretic interpretation as a pair in
relation P. An owl:FunctionalProperty thus expresses that the first attribute of P is a
key, while an owl:InverseFunctionalProperty expresses that its second attribute is a
key. Note that a property may be both an owl:FunctionalProperty and an
owl:InverseFunctionalProperty. It would be the case for instance for the property
hasIdentityNo that associates identification numbers to students in the university exam-
ple.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 154

Example 7.3.5 In the university example, the constraint that every department must be led by a
unique manager is expressed in OWL by adding the triplet:

:Leads rdf:type owl:InverseFunctionalProperty

to the RDFS triplets we already have for the domain and range constraints for :Leads. See Figure 7.5.

Intentional class definitions.

A main feature of OWL is the intentional definition of new classes from existing ones. It
allows expressing complex constraints such as every department has a unique manager who is a
professor, or only professors or lecturers may teach to undergraduate students.

The keyword owl:Restriction is used in association with a blank node class, that
is being defined (without being given a name), and some specific restriction properties
(owl:someValuesFrom, owl:allValuesFrom, owl:minCardinality,
owl:maxCardinality) used for defining the new class. The blank node is necessary because
the expression of each restriction requires a set of triplets that are all related to the same class
description.

Example 7.3.6 The following set of triplets defines the blank (i.e., unnamed) class describing the set
of individuals for which all the values of the property :Leads come from the class :Professor:

_:a rdfs:subClassOf owl:Restriction
_:a owl:onProperty :Leads
_:a owl:allValuesFrom :Professor

The constraint that every department can be led only by professors is then simply expressed by adding
the following triplet (involving the same blank class _:a):

:Department rdfs:subClassOf _:a

Note that the constraint that every department must be led by a unique manager who is a professor is
actually the conjunction of the above constraint and of the functionality constraint of :Leads.

Also with restriction, one can use the owl:someValuesFrom keyword on a property P to
produce a class description denoting the set of individuals for which at least one value of the
property P comes from a given class C using:

_:a rdfs:subClassOf owl:Restriction
_:a owl:onProperty P
_:a owl:someValuesFrom C

Finally, the owl:minCardinality and owl:maxCardinality restrictions allow express-
ing constraints on the number of individuals that can be related by a given property P.

Example 7.3.7 The following triplets describe the class (denoted by the blank node _:a) of individuals
having at least 3 registrations and the class (denoted by the blank node _:b) of individuals having
atmost 6 registrations.

_:a rdfs:subClassOf owl:Restriction
_:a owl:onProperty RegisteredTo
_:a owl:minCardinality 3
_:b rdfs:subClassOf owl:Restriction
_:b owl:onProperty RegisteredTo
_:b owl:maxCardinality 6

For personal use only, not for distribution. 155

The constraint that each student must be registered to at least 3 courses and atmost 6 courses is then
simply expressed by adding the two following triplets (involving the same blank classes _:a and _:b):

:Student rdfs:subClassOf _:a
:Student rdfs:subClassOf _:b

The logical semantics of these different class descriptions defined by restrictions can be
given either in FOL as open formulas with one free variable or as DL concepts using DL
constructors. This is summarized in Figure 7.8, where X denotes a free variable.

OWL notation FOL translation DL notation
_:a owl:onProperty P
_:a owl:allValuesFrom C ∀Y (P(X,Y)⇒ C(Y)) ∀P.C
_:a owl:onProperty P
_:a owl:someValuesFrom C ∃Y (P(X,Y) ∧ C(Y)) ∃P.C
_:a owl:onProperty P
_:a owl:minCardinality n ∃Y1 . . .∃Yn(P(X,Y1) ∧ . . . ∧

P(X,Yn) ∧
∧

i,j∈[1..n],i 6=j(Yi 6= Yj))
(≥ n P)

_:a owl:maxCardinality n ∀Y1 . . .∀Yn∀Yn+1
(P(X,Y1) ∧ . . . ∧ P(X,Yn) ∧
P(X,Yn+1)

(≤ n P)

⇒ ∨
i,j∈[1..n+1],i 6=j(Yi = Yj))

Figure 7.8: Logical semantics of the OWL restriction constructs

Union and intersection.

The owl:intersectionOf and owl:unionOf constructs allow combining classes. The
intersection of (possibly unnamed) classes denotes the individuals that belong to both classes;
whereas the union denotes the individuals that belong to some. Note that the argument of
those two constructs is in fact a collection, for which we use the standard shortcut notation of
lists, as illustrated in the following example by the list (:Professor, :Lecturer) declared
as the argument of owl:unionOf.

Example 7.3.8 The constraint that only professors or lecturers may teach to undergraduate
students can be expressed in OWL as follows:

_:a rdfs:subClassOf owl:Restriction
_:a owl:onProperty :TeachesTo
_:a owl:someValuesFrom :Undergrad
_:b owl:unionOf (:Professor, :Lecturer)
_:a rdfs:subClassOf _:b

In the spirit of union, and like union requiring logical disjunction, the owl:oneOf construct
allows describing a class by enumerating its elements as a collection. This corresponds to the
following FOL and DL semantics.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 156

OWL notation FOL translation DL notation
owl:intersectionOf (C, D...) C(X) ∧ D(X) . . . C u D . . .
owl:unionOf (C, D...) C(X) ∨ D(X) . . . C t D . . .
owl:oneOf (e, f ...) X = e ∨ X = f . . . oneOf {e, f , . . .}

Class and property equivalence.

The construct owl:equivalentClass allows stating that two classes are equivalent, i.e., that
there are inclusions both ways. Similarly, owl:equivalentProperty allows stating that
two properties are equivalent. Strictly speaking, those two constructs do not add expressivity
to RDFS. In fact, 〈 C owl:equivalentClass D 〉 can be expressed in RDFS by the two
triplets: 〈 C rdfs:subClassOf D 〉 and 〈 D rdfs:subClassOf C 〉 .

As explained in the next section, OWL constructs are all syntactic variants of description
logic constructors.

7.4 Ontologies and (Description) Logics

First-order logic (FOL) is the formal foundation of the OWL ontology Web language. First-
order logic (also called predicate logic) is especially appropriate for knowledge representation
and reasoning. In fact, ontologies are simply knowledge about classes and properties. From a
logical point of view, classes are unary predicates while properties are binary predicates, and
constraints are logical formulas asserted as axioms on these predicates, i.e., asserted as true in
the domain of interest.

From the early days of computer science, the problem of automatic deduction in FOL has
been extensively studied. The main result that any computer scientist should know is that
the implication problem in FOL is not decidable but only recursively enumerable, which is stated
briefly as FOL is r.e.. That means that there exists an algorithm that given some formula ϕ
enumerates all the formulas ψ such ϕ implies ψ. On the other hand, there does not exist any
general algorithm (i.e., a systematic machinery) that, applied to two any input FOL formulas
ϕ and ψ, decides where ϕ implies ψ. Observe that ϕ implies ψ if and only if there is no
model for ϕ ∧ ¬ψ. Thus the seemingly simpler problem of deciding whether a FOL formula
is satisfiable is also not decidable.

A lot of research has then been devoted to exhibit fragments of FOL that are decidable,
i.e., subsets of FOL formulas defined by some restrictions on the allowed formulas, for
which checking logical entailment between formulas, possibly given a set of axioms, can be
performed automatically by an algorithm. In particular, description logics (DLs) are decidable
fragments of first-order logic allowing reasoning on complex logical axioms over unary
and binary predicates. This is exactly what is needed for handling ontologies. Therefore,
it is not surprising that the OWL constructs have been borrowed from DLs. DLs cover a
broad spectrum of class-based logical languages for which reasoning is decidable with a
computational complexity that depends on the set of constructs allowed in the language.

Research carried out on DLs provides a fine-grained analysis of the trade-off between
expressive power and computational complexity of sound and complete reasoning. In this
section, we just give a minimal background on the main DLs constructs and the impact
of their combinations on the complexity of reasoning. This should first help practitioners
to choose among the existing DL reasoners the one that is the most appropriate for their

For personal use only, not for distribution. 157

application. Also, for researchers it should facilitate further reading of advanced materials
about DLs.

7.4.1 Preliminaries: the DL jargon

A DL knowledge base is made of an intentional part (the Tbox) and an assertional part (the
Abox). The Tbox defines the ontology serving as conceptual view over the data in the Abox.
In DLs, the classes are called concepts and the properties are called roles.

A Tbox T is a set of terminological axioms which state inclusions or equivalences between
(possibly complex) concepts (Bv C or B≡ C) and roles (Rv E or R≡ E), while an AboxA is
a set of assertions stating memberships of individuals in concepts (C(a)) and role memberships
for pairs of individuals (R(a,b)). The legal DL knowledge bases 〈T ,A〉 vary according to the
DL constructs used for defining complex concepts and roles, and to the restrictions on the
axioms that are allowed in the Tbox and the assertions allowed in the Abox. As said in the
previous section, the DL constructs are the OWL constructs, denoted with a different syntax.
The ingredients for constructing a DL knowledge base are thus:

• a vocabulary composed of a set C of atomic concepts (A, B. . .), a set R of atomic roles (P,
Q. . .), and a set O of individuals (a, b, c. . .),

• a set of constructs used for building complex concepts and roles from atomic concepts
and roles,

• a language of axioms that can be stated for constraining the vocabulary in order to
express domain constraints.

Example 7.4.1 Student u Researcher is a complex concept built from the two atomic concepts Stu-
dent and Researcher using the conjunction construct (which is denoted owl:intersectionOf
in OWL). This complex concept can be related to the atomic concept PhDStudent by an inclusion
axiom:

PhDStudent v Student u Researcher

or by an equivalence axiom:

PhDStudent ≡ Student u Researcher

The difference between inclusion and equivalence axioms will be clearer when we will
define the formal semantics underlying DLs. From a modeling point of view, the equivalence
axioms are used to define new concepts (such as PhDStudent) from existing concepts (such as
Student and Researcher). Concepts can be defined by restricting a role using either the value
restriction construct ∀R.C (denoted owl:allValuesFrom in OWL) or the existential restriction
construct ∃R.C (denoted owl:someValuesFrom in OWL). For example, we can define the
concept MathStudent as follows:

MathStudent ≡ Student u ∀ RegisteredTo.MathCourse

to specify that Math students are exactly those who are registered to Math courses only.
However, if we define the concept MathStudent instead as follows:

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 158

MathStudent ≡ Student u ∃ RegisteredTo.MathCourse

any student who is registered to at least one Math course will be considered as a Math student.
The inclusion axioms express relations between concepts. The simplest relations are the

inclusion relations between atomic concepts or roles, which correspond to the subClassOf
and to the subPropertyOf relations of RDFS. For example, if MathCourse and Course are
atomic concepts in the vocabulary, and LateRegisteredTo and RegisteredTo are atomic roles in
the vocabulary, the following inclusion axioms express that MathCourse is a more specific
concept than (i.e., a subclass of) Course, and that LateRegisteredTo is a more specific role than
(i.e., a subproperty of) RegisteredTo:

MathCourse v Course
LateRegisteredTo v RegisteredTo

General inclusion axioms (calleds GCIs) consist of inclusions between complex concepts.
For example, the following GCI expresses the constraint that only professors or lecturers may
teach to undergraduate students (which is expressible in OWL by a set of 5 triplets, as seen in
Section 7.3.4):

∃ TeachesTo.Undergrad v Professor t Lecturer

Such a constraint can interact with other constraints expressed in the Tbox, or in the Abox.
For instance, suppose that we have in the Tbox (i.e., in the ontology) the following inclusion
axioms stating that researchers are neither professors nor lecturers, that only students are
taught to, and that students that are not undergraduate students are graduate students:

Researcher v ¬ Professor
Researcher v ¬ Lecturer
∃ TeachesTo− v Student
Student u ¬ Undergrad v GraduateStudent

Based on the logical semantics which will be detailed below, the following constraint can be
inferred:

Researcher v ∀ TeachesTo.GraduateStudent
Suppose now that the Abox contains the following assertions on the individuals dupond and
pierre:

TeachesTo(dupond,pierre)
¬ GraduateStudent(pierre)
¬ Professor(dupond)

The new fact Lecturer(dupond) can be logically inferred from those facts and the above con-
straints in the Tbox.

The underlying reasoning leading to such inferences is quite elaborate and requires a
complex algorithmic machinery to make it automatic. It is the focus of the remaining of this
section.

FOL semantics of DL

Reasoning in DLs is based on the standard logical semantics in terms of FOL interpretations
of individuals as constants, of concepts as subsets, and of roles as binary relations.

For personal use only, not for distribution. 159

An interpretation consists of a nonempty interpretation domain ∆I and an interpretation function
I that assigns an element to each individual in O, a subset of ∆I to each atomic concept C
and a binary relation over ∆I to each atomic role in R. Usually, in DL, the so called unique
name assumption holds and thus distinct individuals are interpreted by distinct elements in the
domain of interpretation.

The semantics of complex concepts using those constructs is recursively defined from the
interpretations of atomic concepts and roles as follows:

• I(C1 u C2) = I(C1) ∩ I(C2)

• I(∀R.C) = {o1 | ∀ o2 [(o1,o2) ∈ I(R)⇒ o2 ∈ I(C)]}

• I((∃R.C) = {o1 | ∃o2.[(o1,o2) ∈ I(R) ∧ o2 ∈ I(C)]}

• I(¬C) = ∆I \ I(C)

• I(R−) = {(o2,o1) | (o1,o2) ∈ I(R)}

Satisfaction is defined as follows:

• An interpretation I satisfies (i.e., is a model of) an class inclusion axiom B v C, resp.
B ≡ C, if I(B) ⊆ I(C), resp. I(B) = I(C).

• I satisfies a relationship inclusion axiom R v E, resp. R ≡ E, if I(R) ⊆ I(E), resp.
I(R) = I(E).

• I satisfies the membership assertion C(a), resp. R(a,b), if I(a)∈ I(C), resp., (I(a), I(b))∈
I(R).

• I satisfies or is model of a knowledge base K = 〈T ,A〉 if it is a model of all the statements
both in T and A. A knowledge base K is satisfiable (or consistent) if it has at least one
model.

Finally, a knowledge base K logically entails a (terminological or assertional) statement α,
written KB |= α, if every model of K is a also model of α.

Reasoning problems considered in DLs

The main reasoning problems that have been extensively studied in the DL community are
satisfiability (i.e., consistency) checking of DL knowledge bases, and also instance checking
and subsumption checking. They are formally defined as follows.

• Satisfiability checking: Given a DL knowledge base K = 〈T ,A〉, is K satisfiable?

• Subsumption checking: Given a Tbox T and two concept expressions C and D, does
T |= C v D?

• Instance checking: Given a DL knowledge baseK= 〈T ,A〉, an individual e and a concept
expression C, does K |= C(e)?

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 160

Instance checking and subsumption checking are logical entailment problems that can in fact
be reduced to (un)satisfiability checking for DLs having full negation in their language, i.e., for
DLs in which the constructor ¬ can apply to any complex concept in the axioms of the Tbox.
The reason is that, based on the logical semantics, we have the following equivalences (in
which a is a new individual that we introduce):

• T |= C v D⇔ 〈T ,{(C u ¬D)(a)}〉 is unsatisfiable.

• 〈T ,A〉 |= C(e)⇔ 〈T ,A∪ {¬C(e)}〉 is unsatisfiable.

For simple DLs in which the constructor of negation is not allowed, instance checking can
be reduced to subsumption checking by computing the most specific concept satisfied by an
individual in the Abox. Given an Abox A of a given DL and an individual e, the most specific
concept of e in A (denoted msc(A, e)) is the concept expression D in the given DL such that for
every concept C in the given DL, A |= C(e) implies D v C. Clearly, once msc(A, e) is known,
we have:

〈T ,A〉 |= C(e)⇔ T |= msc(A, e) v C

We now focus on some representative DLs. We start with ALC (Section 7.4.2) which is the
basis of the most expressive DLs, and in particular those that led to OWL. Reasoning in these
expressive DLs (and thus in OWL) is decidable but at the price of some high complexity often
prohibitive in practice. We then survey DLs for which reasoning is polynomial: first FL
and EL in Section 7.4.3, and finally the most recent DL-LITE family in Section 7.4.4, which
provides a good trade-off between expressiveness and efficiency.

7.4.2 ALC: the prototypical DL

ALC is often considered as the prototypical DL because it corresponds to a fragment of FOL
that is easy to understand, and also because it is a syntactic variant of the basic modal logic K
(see references). ALC is the DL based on the following constructs:

• conjunction C1 u C2,

• existential restriction ∃R.C,

• negation ¬C.

As a result, ALC also contains de facto:

• the disjunction C1 t C2 (which stands for ¬(¬C1 u ¬C2)),

• the value restriction (since ∀R.C stands for ¬(∃R.¬C)),

• the top > and bottom ⊥ (standing respectively for A t ¬A and A u ¬A).

An ALC Tbox may contain GCIs such as:

∃TeachesTo.Undergrad v Pro f essor t Lecturer

An ALC Abox is made of a set of facts of the form C(a) and R(a,b) where a and b are
individuals, R is an atomic role and C is a possibly complex concept.

For personal use only, not for distribution. 161

SinceALC allows full negation, subsumption and instance checking inALC can be trivially
reduced to satisfiability checking of ALC knowledge bases, as seen previously.

The algorithmic method for reasoning in ALC (and in all expressive DLs extending ALC)
is based on tableau calculus, which is a classical method in logic for satisfiability checking.
The tableau method has been extensively used in DLs both for proving decidability results and
for implementing DL reasoners such as Fact, Racer and Pellet, respectively implemented in
C++, Lisp-like, and in Java).

We just illustrate here the tableau method on a simple example, and refer the reader to the
last section for pointers to more detailed presentations. Consider an ALC knowledge base
whose Tbox T is without GCIs, i.e., T is made of concept definitions only. For instance:

T = {C1 ≡ A u B, C2 ≡ ∃R.A, C3 ≡ ∀R.B, C4 ≡ ∀R.¬C1}

Let us consider the following associated Abox A:

A = {C2(a),C3(a),C4(a)}

For checking whether the knowledge base 〈T ,A〉 is satisfiable, we first get rid of the Tbox
by recursively unfolding the concept definitions. This is always possible for Tbox composed
of a set of acyclic equivalence axioms of the form A ≡ C, where A is an atomic concept
appearing in the left-hand side of exactly one equivalence axioms (no multiple definition).
We obtain the following Abox which is equivalent to 〈T ,A〉:

A′ = {(∃R.A)(a), (∀R.B)(a), (∀R.¬(A u B))(a)}
We now apply a preprocessing that consists in transforming all the concepts expressions in
A′ into negation normal form so that the negation construct applies to only atomic concepts.
This transformation can be done in polynomial time. The result is the equivalent following
Abox A′′:

A′′ = {(∃R.A)(a), (∀R.B)(a), (∀R.(¬A t ¬B))(a)}
The tableau method tries to build a finite model of A′′ by applying tableau rules to extend
it. There is one rule per construct (except for the negation construct). From an extended
Abox which is complete (no rule applies) and clash-free (no obvious contradiction), a so-called
canonical interpretation can be built, which is a model of the initial Abox.

More precisely, the tableau rules applies to a set of Aboxes, starting from {A′′}. The rules
picks one Abox and replaces it by finitely many new Aboxes. New Aboxes containing a clash
(i.e., two contradictory facts A(e) and ¬A(e)) are simply deleted. The algorithm terminates if
no more rules apply to any Abox in the set. The returned answer is then yes (the input Abox
is satisfiable) if the set is not empty, and no otherwise.

The tableau rules for ALC (applied to an Abox A in the set of Aboxes) are the following:

• The u -rule:

Condition: A contains (C u D)(a) but not both C(a) and D(a)

Action: add A′ =A∪ {C(a), D(a)}

• The t -rule:

Condition: A contains (C t D)(a) but neither C(a) nor D(a)

Action: add A′ =A∪ {C(a)} and A′′ =A∪ {D(a)}

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 162

• The ∃ -rule:

Condition: A contains (∃R.C)(a) but there is no c such that {R(a, c),C(c)} ⊆ A
Action: add A′ =A∪ {R(a,b),C(b)} where b is a new individual name

• The ∀ -rule:

Condition: A contains (∀R.C)(a) and R(a,b) but not C(b)

Action: add A′ =A∪ {C(b)}

The result of the application of the tableau method toA′′= {(∃R.A)(a), (∀R.B)(a), (∀R.(¬At
¬B))(a)} gives the following Aboxes:

A′′1 = {(∃R.A)(a), (∀R.B)(a), (∀R.(¬A t ¬B))(a), R(a,b), A(b), B(b),¬A(b)}

A′′2 = {(∃R.A)(a), (∀R.B)(a), (∀R.(¬A t ¬B))(a), R(a,b), A(b), B(b),¬B(b)}
They both contain a clash. Therefore, the original A′′ is correctly decided unsatisfiable by

the algorithm.
The interest of the tableau method is that it is “easily” extensible to new constructs and new

constraints. For instance, in order to extend the previous tableau method to ALC with GCIs,
we first observe that a finite set of GCIs {C1 v D1, . . . ,Cn v Dn} can be encoded into one GCI
of the form > v C where C is obtained by transforming (¬C1 t D1) u . . . u (¬Cn t Dn) in
negation normal form, and we add the following tableau rule:

The GCI -rule for > v C:

Condition: A contains the individual name a but not C(a)

Action: add A′ =A∪ {C(a)}

The subtle point is that by adding this rule, the termination of the tableau method is not
guaranteed, as it can be seen just by considering the Abox {P(a)} and the GCI >v ∃R.P. The
clue is to add a blocking condition for stopping the generation of new individual names and
to prevent the tableau rules for applying to blocked individuals. An individual y is blocked
by an individual x such as the set of concepts describing y is included in the set of concepts
describing x. In our example, from the Abox obtained by applying the GCI rule to {P(a)}, we
stop at the clash-free Abox A = {P(a), (∃R.P)(a), R(a,b), P(b), (∃R.P)(b), R(b, c), P(c)} since
the individual c is blocked by the individual b. The canonical interpretation I of a clash-free
Abox An to which no more rules applies is obtained by defining as domain of interpretation
∆I the set of all the individual appearing in the corresponding Abox and

• for each atomic concept A: I(A) = {e ∈ ∆I | A(e) ∈ An}

• for each atomic role R: I(R) = {(e, f) ∈ ∆I × ∆I | R(e, f) ∈ An} ∪ {R(f , f) | f is blocked
by e such that R(e, f) ∈ An}

It can be shown that this canonical interpretation is in fact a model of the corresponding
clash-free Abox, and therefore of the original Abox which is therefore satisfiable.

The tableau method shows that the satisfiability of ALC knowledge bases is decidable
but with a complexity that may be exponential because of the disjunction construct and the
associated t-rule.

For personal use only, not for distribution. 163

7.4.3 Simple DLs for which reasoning is polynomial

FL and EL are two minimal DLs for which subsumption checking is polynomial for Tboxes
without GCIs. For such simple Tboxes, as already mentioned previously, by concept unfolding,
we can get rid of the Tbox and the subsumption checking problem becomes: given two concept
expressions C and D, does |= C v D ?, i.e., for any individual x, does C(x) implies D(x) ?

The constructs allowed in FL are conjunction C1 u C2, value restrictions ∀R.C and also
unqualified existential restriction ∃R. Satisfiability is trivial in FL: every FL knowledge base is
satisfiable. Subsumption checking between two concept expressions C and D can be done in
quadratic time by a structural subsumption algorithm IsSubsumed?(C, D), which consists in:

• Normalizing the concept expressions. The normal form of a FL concept expression is
obtained by:

– flattening all nested conjunctions, i.e., by applying exhaustively the rewriting rule
to the concept expression: A u (B u C)→ A u B u C

– pushing value restrictions over conjunctions, i.e., by applying exhaustively the
rewriting rule to the concept expression: ∀R.(A u B)→ ∀R.A u ∀R.B.

For example, the normalization of ∀R.(A u ∀S.(B u ∀R.A)) returns the expression:
∀R.A u ∀R.∀S.B u ∀R.∀S.∀R.A.

The application of these rewriting rules preserves logical equivalence, hence the sub-
sumption is preserved by the normalization. (Proof left in exercise).

• Comparing recursively the structure of the normalized expressions C1 u . . . u Cn and
D1 u . . . u Dm as follows: IsSubsumed?(C, D) return true if and only if for all Di

– if Di is an atomic concept or an unqualified existential restriction, then there exists
a Cj such that Cj = Di

– if Di is a concept of the form ∀R.D′, then there exists a Cj of the form ∀R.C′ (same
role) such that IsSubsumed?(C′, D′)

By induction on the number of nesting of the ∀ constructs, it is easy to prove that the above
algorithm runs in O(|C| × |D|) where |C| denotes the size of the concept expression C defined
by the number of the constructs u and ∀ appearing in it.

The structural subsumption is sound since when IsSubsumed?(C, D) returns true, then it
holds that I(C)⊆ I(D) for every interpretation I. Take any conjunct Di of D; either it appears
as a conjunct Cj of C and by definition of the logical semantics of the conjunction construct:
I(C) ⊆ I(Cj) = I(Di) ⊆ I(D); or it is of the form ∀R.D′ and there exists as conjunct of C
of the form ∀R.C′ such that IsSubsumed?(C′, D′); then, by induction I(C′) ⊆ I(D′), and by
definition of the logical semantics of the ∀ construct: I(∀R.C′) ⊆ I(∀R.D′), and thus by the
conjunction semantics, I(C) ⊆ I(Cj) ⊆ I(Di) ⊆ I(D).

The completeness of the structural subsumption is a little bit harder to prove: it must be
shown that, whenever I(C)⊆ I(D) for all interpretations I, then the algorithm IsSubsumed?(C, D)
returns true. The proof is done by contrapositive, i.e., by showing that anytime IsSubsumed?(C, D)
returns f alse, then there exists an interpretation assigning an element of the domain to C and
not to D, i.e., C 6v D. The proof relies on the fact that anytime IsSubsumed?(C, D) returns
f alse, there exists a conjunct Di of D which has no correspondent conjunct in C. In this

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 164

case, we can build an interpretation I in which all the conjuncts in C are assigned to subsets
containing a given element e, and in which Di is assigned to the empty set: e ∈ I(C) and
e 6∈ I(D).

As an exercise, by applying the above algorithm, check that:

∀R.(∀S.B u ∀S.∀R.A) u ∀R.(A u B) v ∀R.(A u ∀S.(B u ∀R.A))

For FL general Tboxes, i.e., Tboxes including general concept inclusions (GCIs), subsump-
tion checking becomes intractable even for Tboxes containing inclusion axioms between
atomic concepts only. In this case, subsumption checking is co-NP complete (by reduction
from the inclusion problem for acyclic finite automata).

The constructs allowed in EL are conjunctions C1 u C2 and existential restrictions ∃R.C. Like
for FL, any EL knowledge base is satisfiable. Subsumption checking in EL is polynomial
even for general Tboxes, i.e., Tboxes including general concept inclusions (GCIs). The
subsumption algorithm for EL can also be qualified as a structural algorithm, although it
is quite different from the “normalize and compare” algorithm for FL concept expressions
described previously. In fact, it relies on the representation of EL concept expressions as
labeled trees (called description trees), in which nodes are labeled with sets of atomic concepts,
while edges are labeled with atomic roles. It is shown that an EL concept expression C is
subsumed by an EL concept expression D if there is an homomorphism from the description
tree of D to the description tree of C. Checking subsumption corresponds then to checking
the existence of an homomorphism between trees. This problem is known to be NP-complete
for graphs but to be polynomial for trees. Taking into account GCIs in the Tbox can be done
by extending accordingly the labels of the description trees.

Therefore, if we can say for short that subsumption checking is polynomial for EL, we
have to be more cautious for FL: we just can say that subsumption checking between two
FL concept expressions (w.r.t. an empty Tbox) is polynomial.

As explained previously, instance checking can be reduced to subsumption checking by
computing the most specific concept of a constant e in A (denoted msc(A, e)). The problem is
that in FL or EL the most specific concepts do not always exist. A solution for checking
whether C(e) is entailed from an FL or EL knowledge base is to adapt the tableau method:
first, the tableau rules corresponding to the constructs allowed in FL and EL can be applied
to saturate the original Abox; then, the negation of C(e) is injected and the tableau rules are
applied, including possibly the t-rule, since the t construct can be introduced by negating
FL or EL concept expressions; C(e) is entailed from the original knowledge base if and only
if all the resulting Aboxes contain a clash.

If we combine the constructs of FL and EL, namely conjunction C1 u C2, value restrictions
∀R.C, and existential restrictions ∃R.C, we obtain the new DL called FLE for which even
checking subsumption between two concept expressions is NP-complete.

In fact, since the DL existential restrictions and value restrictions correspond to the OWL
restrictions owl:oneValuesFrom and owl:allValuesFrom (see Figure 7.8), that means that the
combination of those restrictions that are quite natural from a modeling point of view may
lead to intractability for automatic inferencing.

7.4.4 The DL-LITE family: a good trade-off

The DL-LITE family has been recently designed for capturing the main modeling primitives of
conceptual data models (e.g., Entity-Relationship) and object-oriented formalisms (e.g., basic

For personal use only, not for distribution. 165

UML class diagrams1), while remaining reasoning tractable in presence of concept inclusion
statements and a certain form of negation.

The constructs allowed in DL-LITE are unqualified existential restriction on roles (∃R) and on
inverse of roles (∃R−), and the negation.

The axioms allowed in a Tbox of DL-LITE are concept inclusion statements of the form
B v C or B v ¬C, where B and C are atomic concepts, or existential restriction (∃R or ∃R−).

DL-LITEF and DL-LITER are then two dialects of DL-LITE that differ from some additional
allowed axioms:

• a DL-LITER Tbox allows role inclusion statements of the form P v Q or P v ¬Q, where
P and Q are atomic roles or inverse of atomic roles

• a DL-LITEF Tbox allows functionality statements on roles of the form (f unct P) or
(f unct P−) . An interpretation I satisfies a functionality statement (f unct R) if the binary
relation I(R) is a function, i.e., (o,o1) ∈ I(R) and (o,o2) ∈ I(R) implies o1 = o2.

It is worth noticing that negation is only allowed in right hand sides of inclusion statements.
Inclusion axioms with negation in the right-hand side are called negative inclusions (for short
NIs), while the inclusion axioms without negation are called positive inclusions (for short PIs).

It can be shown that subsumption checking is polynomial both for DL-LITER and DL-
LITEF Tboxes, and that their combination (denoted DL-LITERF) is PTIME-complete. The
subsumption algorithm is based on computing the closure of the Tbox, i.e., the set of all PIs
and NIs that can be inferred from the original Tbox. Checking T |= C v D consists then in
checking whether C v D belongs to the closure of T . Satisfiability checking and instance
checking also rely on exploiting the closure. In fact, they are particular cases of the most
general problem of answering conjunctive queries over DL-LITE knowledge bases, for which
the DL-LITE family has been designed. Answering conjunctive queries over ontologies is a
reasoning problem of major interest for the Semantic Web, the associated decision problem of
which is not reducible to (un)satisfiability checking or to subsumption or instance checking.
This problem has been studied quite recently and we will dedicate a whole chapter to it
(Chapter 8). In particular, we will see that the DL-lite family groups DLs that have been
specially designed for guaranteeing query answering to be polynomial in data complexity.

It is noticeable that DL-LITER has been recently incorporated into the version OWL2 of
OWL as the profile called OWL2 QL. This profile is an extension of RDFS.

7.5 Further reading

We refer to existing books (e.g., [16, 20]) for a full presentation of RDF, RDFS and OWL.
We use an abstract compact syntax for RDF, RDFS and OWL statements, instead of their

verbose XML notation. The usage of the XML syntax for RDF, RDFS or OWL is mainly for
exchanging metadata and ontologies in a standard format. XML name spaces and XML tools
for parsing, indexing, transforming, browsing can be used for that purpose. Several tools
such as Jena [104] are now widely available and used to store, manage and query RDFS data.
We will discuss a query language for RDF, namely SPARQL, in Chapter 8.

RDFS (without blank nodes) can be seen as a fragment of DL-LiteR, which is a DL of the
DL-Lite family, described in [38]. The DL-Lite family has been designed for enabling tractable

1See http://www.omg.org/uml

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 166

query answering over data described w.r.t. ontologies. We will consider the issue of querying
with ontologies in Chapter 8.

The readers interested by the translation in FOL of the full RDFS (possibly with blank
nodes in place of properties) are referred to [36].

A set of RDFS triplets can also be formalized in conceptual graphs [47] that are graphical
knowledge representation formalisms that have a FOL semantics for which reasoning can be
performed by graph algorithms (such as projection). The formalization of RDFS in conceptual
graphs have been studied in [23].

At the moment, in contrast with RDFS, there is very little usage of tools supporting reason-
ing over OWL statements. The only available reasoners are description logic reasoners such
as Fact [62], RACER [138] or Pellet [148].

Readers interested by a comprehensive summary of the complexity results and reasoning
algorithms on Description Logic are referred to [22]. There is a close relation between some
Description Logic (in particular ALC) and modal logics [30] which have been extensively
studied in Artificial Intelligence.

Satisfiability checking in ALC (and thus also subsumption and instance checking) has been
shown EXPTIME-complete. Additional constructs like those in the fragment OWL DL of OWL
which corresponds to DLs 2 do not change the complexity class of reasoning (which remains
EXPTIME-complete). In fact, OWL DL is a syntactic variant of the so-called SHOIN DL,
which is obtained from ALC by adding number restrictions (≥ nP), nominals {a}, and inverse
roles P− of atomic roles. Nominals make it possible to construct a concept representing a
singleton set {a} (a nominal concept) from an individual a. In addition, some atomic roles
can be declared to be transitive using a role axiom Trans(P), and the Tbox can include role
inclusion axioms R1 v R2.

The semantics of those additional constructs and axioms is defined from the interpretations
of individuals, atomic concepts and roles as follows (]{S} denotes the cardinality of a set S):

• I((≥ nP)) = {d ∈ ∆I |]{e | (d, e) ∈ I(P)} ≥ n}

• I(P−) = {(o2,o1) | (o1,o2) ∈ I(P)}

• I({a}) = {I(a)}

An interpretation I satisfies a role transitivity statement (Trans P) if the binary relation I(P)
is transitive, i.e., (o,o1) ∈ I(P) and (o1,o2) ∈ I(P) implies o = o2.
SHIQ extends SHOIN with so-called qualified number restrictions (≥ nP.C) whose se-

mantics is defined by the following interpretation rule:

I((≥ n P.C)) = {d ∈ ∆I |]{e | (d, e) ∈ I(P) ∧ e ∈ I(C)} ≥ n}.
Relating the ontology modeling OWL language to DLs is of primary importance since

it allows to understand the cost to pay if we want to automatically exploit constraints
requiring a given combination of OWL constructs. In particular, we know (from the EXPTIME-
completeness of ALC) that in the worst case an inference algorithm may take an exponential
time for reasoning on a set of constraints expressed using full negation, conjunction, existential
and value restriction. In practice however, the existing DL reasoners such as FaCT, RACER
and Pellet have acceptable performances for dealing with expressive ontologies of reasonable
size. The reason is that the constraints expressed in real-life ontologies usually do not
correspond to the pathological cases leading to the worst-case complexity.

2OWL Full is undecidable

For personal use only, not for distribution. 167

7.6 Exercises

Exercise 7.6.1 Show that the inference rules of Table 7.7 are complete for the logical entailment of
constraints expressible in RDFS. More precisely, let T be a set of RDFS triplets expressing logical
constraints of the form A v B, P v R, ∃P v A or ∃P− v B, where A and B denote classes while P
and Q denote properties. Show that for every constraint C v D of one of those four previous forms,
if T |= C v D then the RDFS triplet denoting C v D is inferred by applying the inference rules of
Table 7.7 to T .

Exercise 7.6.2 AL is the Description Logic obtained fromFL by adding negation on atomic concepts.

1. Based on the logical semantics, prove that the concept expression ∀R.A u ∀R.¬A is subsumed
by the concept expression ∀R.B, for any atomic concept B.

2. Show that the structural subsumption algorithm is not complete for checking subsumption in
AL.

Indication: apply the algorithm IsSubsumed?(∀R.A u ∀R.¬A,∀R.B).

3. Apply the tableau method for checking that ∀R.A u ∀R.¬A is subsumed by the concept expres-
sion ∀R.B.

Indication: apply the tableau rules to the Abox {(∀R.A u ∀R.¬A)(a), (∃R.¬B)(a)}

Exercise 7.6.3 Based on the logical semantics, show the following statements:

1. ∀R.(A u B) ≡ ∀R.A u ∀R.B.

2. ∃R.(A u B) 6≡ ∃R.A u ∃R.B

3. ∃R.(A u B) v ∃R.A u ∃R.B

4. ∃R.A u ∀R.B v ∃R.(A u B)

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

8 Querying Data through Ontologies

8.1 Introduction

As we saw in the previous chapter, ontologies form the backbone of the Semantic Web by
providing a conceptual view of data and services available worldwide via the Web. We
discussed the RDF language for describing knowledge, and a family of languages, called
description logics, that provide formal foundations for ontologies and in particular for the
OWL ontology language recommended by the W3C.

In this chapter, the focus is on querying RDF data. Since massive volumes of RDF sources
are more and more present on the Web, specifying queries for RDF data that can be evaluated
efficiently is becoming every day more and more important.

We will see that the set of query answers strongly depends on the semantic context. We will
study query answering when the ontology is specified in RDFS and then when the ontology
is specified in DL-LITE. The ontology language DL-LITE belongs to the DL family. It has been
designed as a trade-off between the ability to describe a wide range of domains of interest
and query evaluation efficiency. More precisely, we will focus on two important fragments of
DL-LITE, namely DL-LITER and DL-LITEF .

We will observe that the problem of answering queries through ontologies is quite different
from that of answering database queries for the following two essential reasons:

Implicit facts. In a DBMS setting, all the facts are explicit. For instance, the constraint “Every
PhD student is a student” enforces that, before inserting a value v in the PhDStudent
table, this value is also inserted in the Student table (if not already there). In an ontology
context, someone may be a student not explicitly but because of the constraint used as an
inference rule. In addition, the implicit facts may be incompletely known, coming from
constraints such as “A professor teaches at least one master course”. From a fact such
as Professor(dupond), one can infer the two facts Teaches(dupond, x) and MasterCourse(x)
for some unknown value x. Such partially known implicit facts may however be useful
for answering queries such as “Give me all the persons who teach a master course”.

Inconsistency. In a DBMS setting, the constraint “each course must have a single responsible”
is also viewed as a law that cannot be violated. An update of the corresponding
table that would violate this law would simply be rejected. In an ontology context,
such local verifications are not sufficient for checking data inconsistency. Because of
data incompleteness, this may require intricate reasoning on different constraints and
data distributed over different tables. For instance, if in addition of the previous key
constraint, it is declared that “only professors can be responsible of courses in which
they must teach”, “a master course is taught by a single teacher”, and “lecturers are not
professors”, the presence of the three following facts in different tables of the database
makes it inconsistent: Lecturer(jim), TeachesIn(jim,ue431) and MasterCourse(ue431). The
reason is that because of the constraint “only professors can be responsible of courses in

169

For personal use only, not for distribution. 170

which they must teach”, we can infer that the course ue431 must have a responsible x
who is unknown but for whom we have a partial information: s/he is a professor and
s/he teaches in the course ue431. Without knowing x, the fact that she is a professor is
sufficient to infer that x 6= jim (since jim is a lecturer and thus not a professor). Therefore,
the course ue431 is taught by two distinct teachers, which is forbidden for a master
course.

From this, it should be clear that query answering through ontologies is more complicated
that in classical databases. We have to reason to find which inferences may participate in
answering a given query. We also have to reason to verify the consistency of our knowledge.

8.2 Querying RDF data: notation and semantics

In this section, we set the stage for querying RDF data. We also discuss the impact of
ontologies (knowledge on the domain of interest) on the answers. To simplify, we ignore here
blank nodes.

Figure 8.1 is an enhanced version of the University example that we will use throughout
this chapter. The first column provides RDF data in the triple syntax, while the second column
shows the corresponding facts in FOL.

Subject Predicate Object FOL semantics
dupond Leads infoDept Leads(dupond,infoDept)
dupond rdf:type Professor Professor(dupond)
durand ResponsibleOf ue111 ResponsibleOf(durand,ue111)
durand Leads csDept Leads(durand,csDept)
paul TeachesTo pierre TeachesTo(paul,pierre)
paul rdf:type PhdStudent PhDStudent(paul)
paul EnrolledIn infoDept EnrolledIn(paul, infodept)
pierre EnrolledIn infoDept EnrolledIn(pierre, infodept)
pierre rdf:type Undergrad Undergrad(pierre)
pierre RegisteredTo ue111 Registered(pierre, ue111)
ue111 OfferedBy infoDept OfferedBy(ue111,infoDept)
ue111 rdf:type CSCourse CSCourse(ue111)
jim EnrolledIn csDept EnrolledIn(jim, csDept)
csDept rdf:type TeachingDept TeachingDept(csDept)

Figure 8.1: RDF triple syntax and its FOL semantics

RDF triples can be asserted in a very flexible way and almost without constraints. The
association of some ontology is not a requirement. Users can update a collection of RDF
statements freely by just adding/removing triples. The only reserved word in the RDF
vocabulary is rdf:type that is used to relate constant names to types, i.e., classes in domain
of interest or unary predicates in FOL world.

Let us now consider querying a set of RDF facts, for which the query language SPARQL
has been proposed. We briefly consider it next. query language. We briefly consider it next.

For personal use only, not for distribution. 171

SPARQL (pronounced “sparkle”) is a recursive acronym standing for SPARQL Protocol And
RDF Query Language. It is a W3C recommendation as of 2008. Although it does borrow some
features from XQuery (functions and operators), it is based on the graph model underlying
RDF data.

For instance, the following query expresses in SPARQL the search of all the individuals
who are enrolled in a department led by a Professor.

s e l e c t x where x EnrolledIn y, z Leads y, z rdf:type Professor

We used here an SQL-like syntax. There exists competing syntaxes for expressing SPARQL
queries. The corresponding query in FOL notation is:

q(x) : − ∃y∃z[EnrolledIn(x,y) ∧ Leads(z,y) ∧ Professor(z)]

This is a conjunctive query, i.e., a FOL formula without negation or disjunction, of the form

q(x1, ..., xm) : − ∃y1, ...,yn[R1(u1) ∧ ...∧ Rp(up)]

where each ui is a vector of variables in {x1, ..., xm,y1, ...,yn} or constants, and each variable xi
appears in the body of the query (i.e., for each x ∈ {x1, ..., xm}, there exists ui such that x ∈ ui).

In the remainder of this chapter, we use conjunctive queries as the query language for
RDF. From the example, it should be clear that all we say is relevant to SPARQL. We use a
(standard) simplified notation for conjunctive queries. We omit the existential quantifiers and
denote the connector ∧ by a comma. Observe that this does not introduce any ambiguity.
In particular, all variables not occurring in the “head of the query” (i.e., in q(x1, ..., xm)) are
understood as existentially quantified. The variables in x1, ..., xm are said to be distinguished.

In this simplified form, the example SPARQL query becomes:

q(x) :- EnrolledIn(x,y), Leads(z,y), Professor(z)

Now consider a query in the general form:

q(x1, ..., xm) : − R1(u1), ..., Rp(up)

with existential variables y1, ...,yn. Following the standard FOL semantics, the evaluation of
the query consists in finding valuations ν of the variables for which the closed fact Ri(ν(ui))
“holds” for each i. The corresponding answer is then q(ν(x1), ...,ν(xm)). Equally, we may say
that (ν(x1), ...,ν(xm)) is an answer for the query q. When the query is unary (i.e., it has a
single distinguished variable), we either say “q(a) is an answer” or “a is an answer for q”.

An essential issue is in the meaning of “holds” in the previous informal definition.

Inference with data only. In the simplest case, a fact Ri(ν(ui)) holds if it is a known fact
(explicitly stated in the data store). For instance, consider the previous conjunctive query
in the University example. The evaluation of the query q(x) against the facts of Figure 8.1
returns {paul, pierre} as its answer set. To see why paul is an answer, we just check that, by
mapping the distinguished variable to the constant paul, and the existential variables y and z
respectively to the constants infoDept and dupond, all the conjuncts in the query definition are
satisfied by facts in the database. The same holds if the distinguished variable x is instantiated
with the constant pierre.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 172

More inference using an ontology. Now, let us assume that a fact Ri(ν(ui)) holds if it is a
known fact or if it is a consequence of the known facts by taking the ontological statements
into account. Suppose now that we also have the knowledge that someone responsible for a
class has to be a professor, that is in DL syntax:

∃ResponsibleOf v Professor.

Additional answers can then be inferred. For instance, for the query q(x), the additional
answer jim is obtained. It would come from the presence in the data of the facts EnrolledIn(jim,
csDept), Leads(durand, csDept), and from the fact Professor(durand), which, without being
explicitly stated in the data, is logically entailed from the fact ResponsibleOf(durand, ue111)
and ∃ResponsibleOf v Professor.

To see why, we just have to consider the FOL semantics of this DL statement:

∀x∀y[ResponsibleO f (x,y)⇒ Pro f essor(x)].

This logical implication indeed allows inferring the fact Professor(durand) from the fact
ResponsibleOf(durand, ue111).

More subtly, we can get answers from partially instantiated facts that can be logically entailed
by the knowledge base. Suppose that we know that a professor teaches at least one course,
that is in DL syntax:

Professorv ∃TeachesIn.

and consider the query q(x) : −TeachesIn(x,y)
From the explicit ground fact Professor(durand) and the contraint Professorv ∃TeachesIn, we

know that TeachesIn(durand,v) holds for some unknown value v. The valuation of v may
vary in the different “worlds” satisfying the constraint. This is however sufficient to infer that
answer q(durand) is true in all these possible worlds.

Formal definition of answer set. Recall that ϕ |= ψ (i.e., ϕ implies ψ) if each interpretation
making ϕ true also makes ψ true, or equivalently, every model of ϕ is a model of ψ. We next
provide a formal definition of the answer set of a query for a DL knowledge base, that captures
the general setting where data (the Abox A) is associated to an ontology (the Tbox T) to form
a DL knowledge base K = T ∪A. A query to the knowledge base is a conjunctive query using
class or property predicates from the given knowledge base with the proper arity. (Class
predicates have arity one and property predicates arity 2.)

A valuation ν of a set of variables {z1, ...,zp} is a substitution (denoted {z1/a1, ...,zp/ap})
that assigns each variable zi to a constant ai (two distinct variables may be assigned to a
same constant). Given two valuations ν and ν′ of two disjoint sets of variables {z1, ...,zp}
and {v1, ...,vk} , ν ◦ ν′ denotes the valuation assigning the variables zi to the corresponding
constants in ν, and the variables vj to the corresponding constants in ν′.

We can now formally define the notion of answers.

Definition 8.2.1 Let q(x1, ..., xm) : − R1(u1), ..., Rp(up) be a query to a knowledge base K. An
answer is a ground fact q(ν(x1), ...,ν(xm)) for some valuation ν of the distinguished variables such
that in every model of K there exists a valuation ν′ of the existential variables for which Ri(ν ◦ ν′(ui))
is true for each i. The answer set of q for K is the set of all such answers. It is denoted q(K).

For personal use only, not for distribution. 173

Consider again the previous University query example. We have seen that its answer set
varies depending on the knowledge base against which it is evaluated. In particular, if A is
the set of facts of Figure 8.1 and T is {∃ResponsibleOf v Professor}, we have:

• q(A) = {paul,pierre}.

• q(A∪ T) = {paul,pierre, jim}.

Boolean queries. To conclude this section, we consider a particular interesting case of
queries, that of Boolean queries. The arity of a query is the number of its distinguished
variables. A query of arity 0, i.e., a query of the form q() : ..., is called a Boolean query. Note
that there is a single possible answer, namely q(). In this case, we see that as a positive answer
to the query, i.e., as true. If the answer set is empty, we see that as false.

To see an example, consider the query

q’() :- Student(x), TeachesTo(x,y)

This Boolean query asks whether there exists a student teaching to other students. Suppose
T ′ = {PhDStudentv Student}. Then we can distinguish two cases:

• q′(A) = ∅ and the answer is no.

• q′(A,T ′) = {q′()} and the answer is yes.

In the second case, the fact Student(paul), although not in the AboxA, can be inferred from the
fact PhDStudent(paul) inA and the inclusion statement PhDStudentv Student in T ′. Together
with the fact TeachesTo(paul,pierre) present in the Abox, it makes the body of the query q′

satisfied.

8.3 Querying through RDFS ontologies

In this section, we consider RDF data without blank nodes (that can be seen as an Abox),
associated to an RDFS ontology (that can be seen as a very simple Tbox). RDF data and RDFS
statements can be denoted and stored as triples. However, the important point is that RDFS
statements have a logical semantics which can be operationalized as a set of inference rules
(see Section 7.3 in Chapter 7). We illustrate here how this can be used to answer queries.

Figure 8.2 is an example of an RDFS ontology that can be associated to the RDF data in
Figure 8.1. The RDFS statements composing the ontology are given in three notations: the
triple notation, the DL notation, and the corresponding FOL notation.

As already said, these RDFS statements can be used to infer new triples (i.e., new facts) from
the RDF database. For example, the RDF triple 〈durand ResponsibleOf ue111〉 in Figure 8.1
corresponds to the fact ResponsibleOf (durand,ue111), and the RDFS statement 〈ResponsibleOf
rdfs:domain Professor〉 corresponds to the logical rule: ResponsibleOf (X,Y)⇒ Professor(X).
The condition of this rule can be mapped with the fact ResponsibleOf (durand,ue111) by the
substitution {X/durand, Y/ue111}, and thus the corresponding instantiation of the con-
clusion Professor(durand) can be inferred. This new fact can in turn trigger a rule such as

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 174

RDFS notation DL notation FOL notation
〈AcademicStaff rdfs:subClassOf Staff 〉 AcademicStaff v Staff AcademicStaff (X)⇒ Staff (X)
〈Professor rdfs:subClassOf AcademicStaff 〉 Professorv AcademicStaff Professor(X)⇒ AcademicStaff (X)
〈Lecturer rdfs:subClassOf AcademicStaff 〉 Lecturerv AcademicStaff Lecturer(X)⇒ AcademicStaff (X)
〈PhDStudent rdfs:subClassOf Lecturer〉 PhDStudentv Lecturer PhDStudent(X)⇒ Lecturer(X)
〈PhDStudent rdfs:subClassOf Student〉 PhDStudentv Student PhDStudent(X)⇒ Student(X)
〈TeachesIn rdfs:domain AcademicStaff 〉 ∃TeachesInv AcademicStaff TeachesIn(X,Y)⇒ AcademicStaff (X)
〈TeachesIn rdfs:range Course〉 ∃TeachesIn− v Course TeachesIn(X,Y)⇒ Course(Y)
〈ResponsibleOf rdfs:domain Professor〉 ∃ResponsibleOf v Professor ResponsibleOf (X,Y)⇒ Professor(X)
〈ResponsibleOf rdfs:range Course〉 ∃ResponsibleOf− v Course ResponsibleOf (X,Y)⇒ Course(Y)
〈TeachesTo rdfs:domain AcademicStaff 〉 ∃TeachesTov AcademicStaff TeachesTo(X,Y)⇒ AcademicStaff (X)
〈TeachesTo rdfs:range Student〉 ∃TeachesTo− v Student TeachesTo(X,Y)⇒ Student(Y)
〈Leads rdfs:domain AdminStaff 〉 ∃Leadsv AdminStaff Leads(X,Y)⇒ AdminStaff (X)
〈Leads rdfs:range Dept〉 ∃Leads− v Dept Leads(X,Y)⇒ Dept(Y)
〈RegisteredIn rdfs:domain Student〉 ∃RegisteredInv Student RegisteredIn(X,Y)⇒ Student(X)
〈RegisteredIn rdfs:range Course〉 ∃RegisteredIn− v Course RegisteredIn(X,Y)⇒ Course(Y)
〈ResponsibleOf rdfs:subPropertyOf TeachesIn〉 ResponsibleOf v TeachesIn ResponsibleOf (X,Y)⇒ TeachesIn(X,Y)

Figure 8.2: An RDFS ontology expressed in different notations

Professor(X)⇒ AcademicStaff (X), thereby allowing the inference of additional facts such as
AcademicStaff (durand).

More generally, RDFS statements correspond to rules that can be applied in a forward-
chaining manner to the initial set of facts until saturation, i.e., until no more fact can be
inferred. It is important to see that the variables in the head of rule all occur in the body. In
other words, no variable is quantified existentially. So rules always infer new ground facts.
Such rules are said to be safe. We will use unsafe rules when we consider DL-LITE, which will
render query processing more complicated.

The simple forward-chaining Algorithm 1 starts with the set of initial facts and repeats
inference steps until saturation.

Algorithm 1: The Saturation algorithm
Saturation(A,T)
Input: An Abox A and an RDFS Tbox T
Output: The set of facts that are inferred: ∆0
(1) F←A
(2) ∆0←A
(3) repeat ∆1← ∅
(4) foreach rule condition⇒ conclusion in T ,
(5) if there exists a substitution σ such that σ.condition ∈ ∆0
(6) and σ.conclusion 6∈ F
(7) add σ.conclusion to ∆1
(8) F← F∪ ∆1
(9) ∆0← ∆1
(10) until ∆1 = ∅

Figure 8.3 shows the facts resulting from the application of Algorithm 1 to the facts of
Figure 8.1 and the rules of Figure 8.2.

For personal use only, not for distribution. 175

Asserted facts Inferred facts
Leads(dupond,infoDept) AdminStaff(dupond)
Professor(dupond) Dept(infoDept)
ResponsibleOf(durand,ue111) AcademicStaff(dupond)
Leads(durand,csDept) Professor(durand)
TeachesTo(paul,pierre) Course(ue111)
PhDStudent(paul) AcademicStaff(durand)
EnrolledIn(paul, infodept) AdminStaff(durand)
EnrolledIn(pierre, infodept) Dept(csDept)
Undergrad(pierre) AcademicStaff(paul)
Registered(pierre, ue111) Student(pierre)
OfferedBy(ue111,infoDept) Student(paul)
CSCourse(ue111) Student(pierre)
EnrolledIn(jim, csDept) Lecturer(paul)
TeachingDept(csDept) AcademicStaff(paul)

Staff(paul)
Staff(dupond)
Staff(durand)

Figure 8.3: Inferred facts from RDF facts and an associated RDFS ontology

To answer queries from RDF facts associated to an RDFS ontology, one can proceed as
follows. First one compute all the inferred facts (in a bottom-up manner) with the previous
algorithm. Each step of the loop can be computed, for instance, using a standard relational
query engine. This yields a new database consisting of the set of all the facts (asserted
or inferred). Then one can evaluate the query directly on that database using a standard
relational query engine.

For example, the standard evaluation against the set of (asserted + inferred) facts in
Figure 8.3 of the query

q(x) : − Enrolled(x,y),Leads(z,y),Professor(z)

(searching for individuals enrolled in a department led by a Professor) returns {paul,pierre, jim}
as its answer set. If we evaluate the same query against the set of asserted facts only, we do
not find the answer jim.

Complexity analysis. It is interesting to estimate both the maximum number of inferred
triples and the worst-case time complexity for inferring them. Of course, this depends on the
number of asserted triples (i.e., the size of the data) and also on the number of axioms in the
ontology (i.e., the size of the ontology).

Let M be the number of facts in the Abox and N the number of axioms in the Tbox. From
the presence of some initial fact C(a), one can derive a number of new facts C′(a) for some
class C′. Note that the number of such C′(a) is bounded by the number of axioms in the
ontology, i.e., it is less than N. Now consider some initial fact R(a,b). From it, one can
derive some facts R′(a,b) or R′(b, a) as well as some facts C′(a) or C′(b) for some R′ and C′.
Again, one can observe that for a particular R(a,b), the number of new facts one can derive is

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 176

bounded by the number of axioms in the ontology, i.e., it is less than N. Since the number
of initial facts is M, the number of facts one can derive is bounded by M× N. Observe in
particular that it is linear in the number of database facts.

Now consider the worst-case time complexity for inferring them by the Algorithm 1. We
have to perform at most M× N iterations. Each iteration can be performed in polynomial
time. So the algorithm is in PTIME. One can show more precisely that it is in 0((M× N)2).

8.4 Answering queries through DL-LITE ontologies

In this section, we consider two important fragments of the DL-LITE ontology language of
the DL family. As we will see, querying is feasible for these two languages even though
they provide a quite rich framework for describing semantics. We study querying through
ontologies expressed in these two fragments.

8.4.1 DL-LITE

A DL-LITE ontology may contain axioms corresponding (up to the syntax) to those allowed
in an RDFS ontology. Besides, it may contain other axioms, of three kinds: positive inclusions
(PI for short), negative inclusions (NI) and key constraints (Key). Figure 8.4 shows examples
of these three kinds of DL-LITE axioms with their corresponding FOL semantics. These
constraints are not expressible in RDFS.

DL notation Corresponding logical rule
PI Professorv ∃TeachesIn Professor(X)⇒ ∃YTeachesIn(X,Y)

Coursev ∃RegisteredIn− Course(X)⇒ ∃YRegisteredIn(Y,X)
NI Studentv ¬Staff Student(X)⇒¬Staff (X)

Key (funct ResponsibleOf−) ResponsibleOf (Y,X) ∧ ResponsibleOf (Z,X)⇒ Y = Z

Figure 8.4: Examples of DL-LITE axioms not expressible in RDFS

We next consider in turn these new kinds of axioms.

Positive inclusion and incompleteness. A positive inclusion axiom is an expression of one of
the following forms:

DL notation Corresponding logical rule
Bv ∃P B(X)⇒ ∃YP(X,Y)
∃Qv ∃P Q(X,Y)⇒ ∃ZP(X, Z)
Bv ∃P− B(X)⇒ ∃YP(Y, X)
∃Qv ∃P− Q(X,Y)⇒ ∃ZP(Z, X)
Pv Q− or P− v Q P(X,Y)⇒ Q(Y,X)

where P and Q denote properties and B denotes a class. Recall that P− denotes the inverse of
P, i.e., P−(x,y) iff P(y, x) for all x,y.

For personal use only, not for distribution. 177

Observe that expressions of the form ∃Pv B belong to DL-LITE since they already are in
RDFS. Expressions of the form P v Q (so equivalently P− v Q−) also belong to DL-LITE for
the same reason.

It is important to note that the logical rules corresponding to PI axioms expressible in
DL-LITE are not necessarily safe (as opposed to RDFS that uses only safe rules.) Consider the
rule

∀X(Professor(X)⇒ ∃Y(TeachesIn(X,Y)))

The variable Y is existentially quantified. As already mentioned, the main issue is that, as a
consequence, such an axiom does not produce new facts (i.e., ground atoms) from initial facts,
but only an incomplete information in the form of atoms that may be partially instantiated. For
example, from the fact Professor(durand), the previous axiom permits to infer that there exists
some course(s) y that durand teaches. In other words, we know that there exists some fact of
the form TeachesIn(durand,y) that is true but we do not know the value of y. This makes it
difficult to apply the bottom-up approach described in Section 8.3. Such an approach is not
appropriate for answering queries through DL-LITE ontologies.

Negative inclusion and inconsistencies. A negative inclusion axioms is an expression that
takes one of the forms:

DL notation
B1 v ¬B2

R1 v ¬R2

where

• B1 and B2 are either classes or expressions of the form ∃P or ∃P− for some property P

• where R1 and R2 are either properties or inverses of properties.

The corresponding logic rules are left as an exercise. An example of NI (expressing the
constraint “Students do not teach courses”) and the corresponding logical rule are as follows:

DL notation Corresponding logical rule
Studentv ¬∃TeachesIn Student(X)⇒¬∃YTeachesIn(X,Y)

or equivalently, ∃YTeachesIn(X,Y)⇒¬Student(X)

NIs express disjointness constraints between classes or between properties, and thus
introduce negation in the language. Therefore, the knowledge base against which the queries
have to be evaluated may be inconsistent, i.e., a model of the corresponding theory may not
exist. Note that this is not possible with RDFS ontologies: we showed an algorithm that
computed a model (indeed the smallest model).

For example, adding the NI Studentv¬Staff to the ontology of Figure 8.2 leads to the incon-
sistency of the knowledge base made of the facts in Figure 8.1 and of the axioms in the ontology
of Figure 8.2 enriched with that NI. The reason is that from the fact PhDStudent(paul), and
the inclusion axiom PhdStudentv Student, we can infer the fact Student(paul), and in turn the
literal ¬Staff (paul) from the NI Studentv ¬Staff . On the other hand, the fact Staff (paul) can
be inferred from the fact PhDStudent(paul) and the inclusion axioms PhdStudentv Lecturer,
Lecturerv AcademicStaff and AcademicStaff v Staff .

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 178

Key constraints and more inconsistencies. Key constraints are expressed by functionality
axioms of the form (functP) or (functP−) where P is a property and P− denotes the inverse
property of P. Figure 8.5 shows their logical semantics in the form of logical rules.

DL notation corresponding logical rule
(functP) P(X,Y) ∧ P(X,Z)⇒ Y = Z
(functP−) P(Y,X) ∧ P(Z,X)⇒ Y = Z

Figure 8.5: Functionality axioms expressible in DL-LITE and not in RDFS

Observe that key constraints may also lead to inconsistencies. This is the case if we
attempt to equate two distinct constants, e.g., durand and dupond. For instance, the axiom
(funct ResponsibleOf−) expresses that a course must have a unique professor responsible for
it. Therefore, a knowledge base containing this axiom and the two facts:

ResponsibleOf (durand,ue111) and ResponsibleOf (dupond,ue111),

would be inconsistent. This is because we assume implicitly that an individual is denoted
by a single constant. This natural (in practice) assumption is called in logic the unique name
assumption.

We will consider the following two fragments of DL-LITE:

DL-LITER is obtained by extending the axioms of RDFS with the PI and NI axioms.

DL-LITEF is obtained by extending the axioms of RDFS with key constraints, the PI and NI
axioms, but excluding inclusion between properties. Note that, since DL-LITEF does
not permit to express inclusion between properties, RDFS is not included in DL-LITEF .

One may wonder why one would choose such a convoluted language. Why not simply
extend RDFS with the 3 kinds of axioms? This is because functional constraints interact with
inclusion constraints in intricate ways. Query evaluation when they are all present is much
more complex. This will be illustrated by an example in Section 8.4.4.

From the previous discussion, there are two fundamental differences between query an-
swering in the context of RDFS and of DL-LITE knowledge bases:

Inconsistency. RDFS does not permit expressing any form of negation, so an RDFS knowledge
base is always consistent. On the other hand, a DL-LITE knowledge base may be
inconsistent. Thus, answering queries through DL-LITE ontologies requires to make
sure that the data is consistent with respect to the constraints expressed in the ontology.

Incompleteness. The rules corresponding to RDFS axioms are safe thereby allowing the
simple bottom-up algorithm we described. On the other hand, axioms in DL-LITE may
correspond to unsafe rules. Thus a bottom-up approach may infer atoms that are not
ground, i.e., some incomplete facts. Therefore, we will have to use a top-down approach
for evaluating the queries that is more appropriate than the bottom-up approach.

In Section 8.4.2, we show an algorithm for checking consistency of a DL-LITE knowledge
base, and in Section 8.4.3 an algorithm for answering conjunctive queries posed to a DL-LITE

knowledge base. The particularity of these two algorithms is that they work in two-steps:

For personal use only, not for distribution. 179

1. in a first step, we reason with the Tbox alone (i.e., the ontology without the data) and
some conjunctive queries;

2. in the second step, we evaluate these conjunctive queries against the data in the Abox.

Separating ontology reasoning from data processing is typically a desired feature (when
possible). In particular, such an approach has the practical interest that it makes it possible
to use an SQL engine for the second step, thus taking advantage of well-established query
optimization strategies supported by standard relational data management systems. In the
first step, we deal with the Tbox only, typically of much smaller size.

In Section 8.4.4, we show by an example that DL-LITER and DL-LITEF are two maximal
fragments of the DL-Lite family for which reformulating queries into SQL is possible: com-
bining constraints expressible in DL-LITER and DL-LITEF may result in an infinite number of
non redundant SQL reformulations for some queries.

8.4.2 Consistency checking

Towards consistency checking, the first step uses the Tbox alone. It consists in computing
the deductive closure of the Tbox, i.e., all the inclusion axioms that are logically entailed by the
axioms declared in the Tbox. More precisely, the deductive closure (closure for short) of a
DL-LITE Tbox is defined as follows.

Definition 8.4.1 (Closure of a Tbox) Let T be a DL-LITEF or a DL-LITER Tbox. The closure of
T , denoted by cl(T), is inductively defined as follows:

1. All the statements in T are also in cl(T).

2. If B1 v B2 and B2 v B3 are in cl(T), then B1 v B3 is in cl(T).

3. If R1 v R2 and ∃R2 v B are in cl(T), then ∃R1 v B is in cl(T).

4. If R1 v R2 and ∃R−2 v B are in cl(T), then ∃R−1 v B is in cl(T).

5. If R1 v R2 and R2 v R3 are in cl(T), then R1 v R3 is in cl(T).

6. If R1 v R2 is in cl(T), then R−1 v R−2 is in cl(T).

7. If B1 v B2 and B2 v ¬B3 (or B3 v ¬B2) are in cl(T), then B1 v ¬B3 is in cl(T).

8. If R1 v R2 and ∃R2 v ¬B (or B v ¬∃R2) are in cl(T), then ∃R1 v ¬B is in cl(T).

9. If R1 v R2 and ∃R−2 v ¬B (or B v ¬∃R−2) are in cl(T), then ∃R−1 v ¬B is in cl(T).

10. If R1 v R2 and R2 v ¬R3 (or R3 v ¬R2) are in cl(T), then R1 v ¬R3 is in cl(T).

11. If R1 v ¬R2 or R2 v ¬R1 is in cl(T), then R−1 v ¬R−2 is in cl(T).

12. a) In the case in which T is a DL-LITEF Tbox, if one of the statements ∃R v ¬∃R or
∃R− v ¬∃R− is in cl(T), then both such statements are in cl(T).

b) In the case in which T is a DL-LITER Tbox, if one of the statements ∃R v ¬∃R, ∃R− v
¬∃R−, or R v ¬R is in cl(T), then all three such statements are in cl(T).

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 180

Observe that although all axioms should be considered to construct this closure, only
negative inclusions and key constraints can raise an inconsistency. The set of all the negative
inclusions and key constraints in cl(T) is called the NI-closure. For example, consider the
Tbox of Figure 8.6 made of the RDFS ontology shown in Figure 8.2 enriched with the PIs and
NI shown in Figure 8.4. The NI-closure of that Tbox is shown in Figure 8.7.

DL notation FOL notation
AcademicStaff v Staff AcademicStaff (X)⇒ Staff (X)
Professorv AcademicStaff Professor(X)⇒ AcademicStaff (X)
Lecturerv AcademicStaff Lecturer(X)⇒ AcademicStaff (X)
PhDStudentv Lecturer PhDStudent(X)⇒ Lecturer(X)
PhDStudentv Student PhDStudent(X)⇒ Student(X)
∃TeachesInv AcademicStaff TeachesIn(X,Y)⇒ AcademicStaff (X)
∃TeachesIn− v Course TeachesIn(X,Y)⇒ Course(Y)
∃ResponsibleOf v Professor ResponsibleOf (X,Y)⇒ Professor(X)
∃ResponsibleOf− v Course ResponsibleOf (X,Y)⇒ Course(Y)
∃TeachesTov AcademicStaff TeachesTo(X,Y)⇒ AcademicStaff (X)
∃TeachesTo− v Student TeachesTo(X,Y)⇒ Student(Y)
∃Leadsv AdminStaff Leads(X,Y)⇒ AdminStaff (X)
∃Leads− v Dept Leads(X,Y)⇒ Dept(Y)
∃RegisteredInv Student RegisteredIn(X,Y)⇒ Student(X)
∃RegisteredIn− v Course RegisteredIn(X,Y)⇒ Course(Y)
ResponsibleOf v TeachesIn ResponsibleOf (X,Y)⇒ TeachesIn(X,Y)
Professorv ∃TeachesIn Professor(X)⇒ ∃YTeachesIn(X,Y)
Coursev ∃RegisteredIn− Course(X)⇒ ∃YRegisteredIn(Y,X)
Studentv ¬Staff Student(X)⇒¬Staff (X)

Figure 8.6: A DL-LITE Tbox

This example shows that it is possible to infer an important number of new NIs. In fact,
we have to compute all the consequences. But as we will see there is at most a polynomial
number of consequences.

We use three propositions for analyzing the consistency problem: one for evaluating the
complexity of evaluating the closure and the last two for showing the logical soundness and
completeness of this closure. Finally, a fourth proposition will show how to use these results
for data consistency checking.

Proposition 8.4.2 (Size of the closure of a Tbox and complexity of its computation) Let T be
a DL-LITEF or a DL-LITER Tbox.

1. The number of statements in cl(T) is at most polynomial in the size of T .

2. cl(T) can be computed in polynomial time in the size of T .

Proof (sketch). (1.) Follows from the form of the statements that are allowed in a DL-LITEF
or a DL-LITER Tbox.

For (2.), consider the items (2.) to (12.) in Definition 8.4.1. These are closure rules that are
exhaustively applied to the Tbox until saturation. Let T0 = T . For each i, let ∆i be the set
of statements that can be derived from Ti directly using the closure rules (2.) to (12.). Let
Ti+1 = Ti ∪ ∆i. Clearly, for each i, Ti ⊆ cl(T), so its size is polynomial in the size of T .

For personal use only, not for distribution. 181

DL notation FOL notation
Studentv ¬Staff Student(X)⇒¬Staff (X)
PhDStudentv ¬Staff PhDStudent(X)⇒¬Staff (X)
∃TeachesTo− v ¬Staff TeachesTo(Y,X)⇒¬Staff (X)
∃RegisteredInv ¬Staff RegisteredIn(X,Y)⇒¬Staff (X)
Lecturerv ¬Student Lecturer(X)⇒¬Student(X)
Lecturerv ¬PhDStudent Lecturer(X)⇒¬PhDStudent(X)
Lecturerv ¬∃TeachesTo− Lecturer(X)⇒¬∃Y[TeachesTo(Y,X)]
Lecturerv ¬∃RegisteredIn Lecturer(X)⇒¬∃Y[RegisteredIn(X,Y)]
Professorv ¬Student Professor(X)⇒¬Student(X)
Professorv ¬PhDStudent Professor(X)⇒¬PhDStudent(X)
Professorv ¬∃TeachesTo− Professor(X)⇒¬∃Y[TeachesTo(Y,X)]
Professorv ¬∃RegisteredIn Professor(X)⇒¬∃Y[RegisteredIn(X,Y)]
AcademicStaff v ¬Student AcademicStaff (X)⇒¬Student(X)
AcademicStaff v ¬PhDStudent AcademicStaff (X)⇒¬PhDStudent(X)
AcademicStaff v ¬∃TeachesTo− AcademicStaff (X)⇒¬∃Y[TeachesTo(Y,X)]
AcademicStaff v ¬∃RegisteredIn AcademicStaff (X)⇒¬∃Y[RegisteredIn(X,Y)]
Staff v ¬Student Staff (X)⇒¬Student(X)
Staff v ¬PhDStudent Staff (X)⇒¬PhDStudent(X)
Staff v ¬∃TeachesTo− Staff (X)⇒¬∃Y[TeachesTo(Y,X)]
Staff v ¬∃RegisteredIn Staff (X)⇒¬∃Y[RegisteredIn(X,Y)]
∃TeachesTov ¬Student TeachesTo(X,Y)⇒¬Student(X)
∃TeachesTov ¬PhDStudent TeachesTo(X,Y)⇒¬PhDStudent(X)
∃TeachesTov ¬∃TeachesTo− TeachesTo(X,Y)⇒¬∃Z[TeachesTo(Z,X)]
∃TeachesTov ¬∃RegisteredIn TeachesTo(X,Y)⇒¬∃Z[RegisteredIn(X,Z)]
∃TeachesInv ¬Student TeachesIn(X,Y)⇒¬Student(X)
∃TeachesInv ¬PhDStudent TeachesIn(X,Y)⇒¬PhDStudent(X)
∃TeachesInv ¬∃TeachesTo− TeachesIn(X,Y)⇒¬∃Z[TeachesTo(Z,X)]
∃TeachesInv ¬∃RegisteredIn TeachesIn(X,Y)⇒¬∃Z[RegisteredIn(X,Z)]

Figure 8.7: The NI-closure of the Tbox in Figure 8.6

Now since the size of Ti is polynomial in the size of T , each step of the computation can
clearly be performed in PTIME. Since the number of steps is less than the number of statements
in cl(T), the entire computation can be performed in PTIME. 2

The next proposition states the soundness of the closure.

Proposition 8.4.3 (Soundness of the closure of a Tbox) For each T , T ≡ cl(T). In other words,
for each Abox A satisfying a Tbox T , A also satisfies cl(T).

Proof (sketch). cl(T) |= T , since T is included in cl(T). Clearly, the application of each
closure rule is sound. So for each i, Ti |= Ti+1. By induction, T = T0 |= Ti for each i. Thus
T |= cl(T), so T ≡ cl(T). 2

The next proposition establishes the completeness of the closure of a Tbox T : cl(T) contains
all the PIs, NIs and key constraints that are logically entailed by that Tbox (up to equivalence).

Proposition 8.4.4 (Completeness of the closure of a Tbox) Let T be a DL-LITEF or a DL-
LITER Tbox. Then

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 182

1. Let X v Y be a NI or a PI. If T |= X v ¬X

then X v ¬X ∈ cl(T),
otherwise T |= X v Y iff X v Y ∈ cl(T) or ¬Y v ¬X ∈ cl(T).

2. T |= (f unct R) iff (f unct R) ∈ cl(T) or ∃R v ¬∃R ∈ cl(T).

Proof (sketch). We build a canonical interpretation I of the classes and properties appearing
in T as follows: for each X such that X v ¬X ∈ cl(T), I(X) = ∅; for the other classes
or properties, we associate a constant (respectively a pair of constants) with each class
(respectively each property) and we initialize their interpretations with those (pairs of)
constants. Then, we complete these interpretations by applying the positive inclusions in
cl(T) as logical rules in a bottom up manner until saturation. For instance, if A v ∃P is in
cl(T), from the initial state where a is I(A), and (p1, p2) is in I(P), we add a new constant p3
in the domain of interpretation and the pair (a, p3) in I(P). Now, if ∃P v ∃Q is also in cl(T),
we add two new constants p4 and p5 in the domain and the pairs (a, p4) and (p1, p5) to I(Q).

Clearly, by construction, I is a model of each PI in T . It is also a model of each NI X v ¬Y
in T . Suppose that this not the case: there would exist a constant x which is in I(X) and in
I(Y). By construction of I, it would exist a chain of positive inclusions in cl(T) between X
and Y and thus X v Y would be in cl(T), and therefore X v ¬X would be in cl(T) too, and
in this case I(X) would be empty, which contradicts that I is not a model of X v ¬Y.

To prove (1), if T |= X v ¬X, in every model of T , X must be empty, in particular in I. By
construction of I, this means that X v ¬X ∈ cl(T). Otherwise, consider a PI X v Y such that
T |= X v Y. Since I is a model of T , I(X) ⊆ I(Y). By construction of I, this means that there
exists a chain of positive inclusions in cl(T) between X and Y and thus X v Y is in cl(T).

Consider now a NI X v ¬Y such that neither X v ¬Y nor Y v ¬X belong to cl(T). Let us
define the interpretation J such that

• J(Z) = ∅ for each class or property Z appearing in the right-hand side of a NI in cl(T)
of the form X v ¬U or U v ¬X,

• J(A) = D (where D is the whole domain of interpretation) for the other classes, and
J(P) = D× D for the other properties.

In particular J(X) = D (since X v ¬X is not in cl(T)), and J(Y) = D (since neither X v ¬Y
nor Y v ¬X belong to cl(T)). Clearly, J is a model of T , but it is not a model of X v ¬Y.
Therefore, T 6|= X v ¬Y. This ends the proof of (1).

For proving (the contraposite of) (2), we adapt the above canonical interpretation I by
initializing with {(p,q), (p,r)} the interpretation of all the properties R such that neither
(f unctR) nor ∃R v ¬∃R belong to cl(T). And we show that the resulting interpretation I′ is
a model of T in which the constraints of functionality of such R is not satisfied. 2

Finally, the last proposition establishes that checking consistency can be reduced to check
whether the data in A satisfy every NI in the closure.

Proposition 8.4.5 (Consistency checking using NI-closure) Let T be a DL-LITEF or a DL-
LITER Tbox. Let A be an Abox associated to T . 〈T ,A〉 is unsatisfiable iff there exists a NI or a key
constraint in the closure of T which is violated by some facts of A.

Proof (sketch). For every constant a appearing in the Abox A, we define A(a) as the set of
facts extracted from A as follows:

For personal use only, not for distribution. 183

• if A(a) ∈ A, then A(a) is added in A(a)

• if P(a,b) ∈ A, then (∃P)(a) is added in A(a) and (∃P−)(b) is added in A(b)

We first show that if 〈T ,A〉 is unsatisfiable, there exists a constant a such that 〈T ,A(a)〉 is
unsatisfiable. In fact we show the contrapositive: suppose that for every constant a, 〈T ,A(a)〉
is satisfiable: for each a, there exists an interpretation Ia satisfying the inclusions in T and all
the facts in A(a). It is easy to show that the interpretation I defined on the union of domains
of interpretations as follows is a model of 〈T ,A〉 (which is then satisfiable):

• for every class or property X: I(X) =
⋃

a Ia(X)

• for every constant a: I(a) = Ia(a)

Then, since each A(a) is a conjunction of facts of the form X(a), if 〈T ,A〉 is unsatisfi-
able, there exists a constant a such that T , X1(a) ∧ ... ∧ Xn(a) is unsatisfiable. Therefore,
T ,∃x(X1(x) ∧ ... ∧ Xn(x)) is unsatisfiable. This entails: T |= ∀x(¬X1(x) ∨ ... ∨ ¬Xn(x)),
which in DL notation corresponds to: T |= X1 v ¬X2 t ... t ¬Xn. Because of the form of
the inclusion allowed in DL-LITE, there must exist i such that T |= X1 v ¬Xi. According to
Proposition 8.4.4, this entails that the corresponding NI X1 v ¬Xi is in the closure of T and
that A violates it (since it includes X1(a) and Xi(a)).

Conversely, it is easy to show that if a NI in the closure of T is violated by some facts in the
Abox, then 〈T ,A〉 is unsatisfiable. If it were not the case, since according Proposition 8.4.3 T
and cl(T) have the same models, there would be a model in which all the NIs in the closure
of T would be satisfied by the facts in A. 2

The second step of consistency checking, after the NI-closure is computed, does not require
any further computation on the Tbox T . This second step simply consists in evaluating
against the Abox A (seen as a relational database) a Boolean query corresponding to each
negated NI in the NI-closure of the Tbox. If one of those Boolean queries is evaluated to true
againstA, it means that some data in the AboxA violates the corresponding NI, and therefore
the knowledge base K = 〈T ,A〉 is inconsistent.

For example, consider the NI: ∃TeachesTov ¬PhDStudent. Its corresponding FOL formula
ϕ and its negation are:

∀x,y′[TeachesTo(x,y′)⇒¬PhDStudent(x)] ϕ
∃x,y′[TeachesTo(x,y′) ∧ PhDStudent(x)] ¬ϕ

and the corresponding Boolean query is:

qunsat() : − TeachesTo(x,y′),PhDStudent(x)

i.e., the direct translation of the negation of the NI.
Consider the evaluation of the qunsat query against the Abox A of Figure 8.1. It evaluates to

true: consider valuation ν with ν(x) = pierre, ν(y′) = paul and the facts

PhDStudent(paul) and TeachesTo(paul,pierre).

Thus, the knowledge base K made of the Tbox of Figure 8.6 and the Abox of Figure 8.1 is
inconsistent.

The transformation of NIs into Boolean queries that correspond to their negation is de-
scribed in Definition 8.4.6.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 184

Definition 8.4.6 (Transformation of NIs into Boolean queries) The transformation δ of NIs
into Boolean queries corresponding to their negation is defined as follows:

δ(B1 v ¬B2) = qunsat : − γ1(x),γ2(x) such that
γi(x) = Ai(x) if Bi = Ai
γi(x) = Pi(x,yi) if Bi = ∃Pi
γi(x) = Pi(yi, x) if Bi = ∃P−i

δ(R1 v ¬R2) = qunsat : − ρ1(x,y) , ρ2(x,y) such that
ρi(x,y) = Pi(x,y) if Ri = Pi
ρi(x,y) = Pi(y, x) if Ri = P−i

δ((funct P)) = qunsat : − P(x,y) , P(x,z) , y 6= z
δ((funct P−)) = qunsat : − P(x,y) , P(z,y) , x 6= z

This second step of consistency checking is summarized in the Consistent Algorithm (Algo-
rithm 2). In the algorithm, for each NI clause α, the query qunsat,α is an SQL query computing
the Boolean conjunctive queries δ(α). Also, db(A) denotes the A set in a relational database.

Algorithm 2: The Consistent algorithm
Consistent(T ,A)
Input: a KB K = 〈T ,A〉
Output: true if K is satisfiable, false otherwise
(1) qunsat = ∅ (i.e., qunsat is f alse)
(2) foreach α ∈ cln(T) let qunsat = qunsat ∪ qunsat,α(db(A))
(3)
(4) if qunsat = ∅ return true
(5) else return false

It is important to emphasize that this two-step approach for consistency checking does
not require any inference on the data. The only inferences concern the Tbox and consist in
computing the deductive closure of its axioms, from which the NI-closure (denoted cln(T) in
the Algorithm) is extracted.

Consider the Abox A′ obtained from the inconsistent Abox A in Figure 8.1 by deleting the
fact PhDStudent(paul). The knowledge base made of the Abox A′ in Figure 8.8 and the Tbox
T in Figure 8.6 is consistent. (See Exercise 8.6.4.)

8.4.3 Answer set evaluation

In the previous section, the negative constraints played the main role. Once we know the
knowledge base is consistent and move to query answering, the positive constraints take
over.

Answering queries to a DL-LITE knowledge base is done in two steps. The first step is
the query reformulation, which consists in translating the original query q into a set Q of
queries. The second step consists in evaluating the queries in Q over the Abox (again seen
as a relational database). The beauty of the approach is that this will provide the answer set.
Of course, simply evaluating q over the Abox would possibly yield an incomplete answer.
Completeness is achieved by the “reasoning” in the reformulation step. During this step, we
access only the Tbox and not the data.

For personal use only, not for distribution. 185

Subject Predicate Object FOL semantics
dupond Leads infoDept Leads(dupond,infoDept)
dupond rdf:type Professor Professor(dupond)
durand ResponsibleOf ue111 ResponsibleOf(durand,ue111)
durand Leads csDept Leads(durand,csDept)
paul TeachesTo pierre TeachesTo(paul,pierre)
pierre EnrolledIn infoDept EnrolledIn(pierre, infodept)
pierre rdf:type Undergrad Undergrad(pierre)
pierre RegisteredTo ue111 Registered(pierre, ue111)
ue111 OfferedBy infoDept OfferedBy(ue111,infoDept)
ue111 rdf:type CSCourse CSCourse(ue111)
jim EnrolledIn csDept EnrolledIn(jim, csDept)
csDept rdf:type TeachingDept TeachingDept(csDept)

Figure 8.8: A′: an Abox consistent w.r.t the Tbox of Figure 8.6

The query reformulation step is performed by the PerfectRef (Algorithm 3). It consists in
reformulating the initial query by using the PIs in T as rewriting rules. The intuition is that
PIs are seen as logical rules that are applied in backward-chaining to query atoms in order to
expand them (in a resolution style). In databases, this is called a chase.

The queries we consider, i.e., the conjunctive queries, consist of several atoms. In general,
because of the existential variables, new variables are introduced in queries. So we could be
lead to generate more and more queries with new variables. It turns out that we will be able
to control this process and generate only a finite number of distinct queries. This is due to the
limitations of the constraints allowed in the Tbox. As outlined in Section 8.4.4, as soon as we
allow the combination of key constraints with inclusions of properties, we may generate an
infinite number of non redundant queries.

Consider a PI rule α⇒ β. Applicability of the rule to an atom of a query is defined by:

• It is applicable to an atom A(x) of a query if A occurs in β.

• It is applicable to an atom P(x1, x2) of a query if

– α⇒ β is a role inclusion assertion and P or P− occurs in β;

– x2 = _ and β is ∃P;

– x1 = _ and β is ∃P−.

As usual, _ denotes here an unbounded existential variable of a query.
The following definition defines the result gr(g, I) of the goal reduction of the atom g using

the PI I, which is at the core of PerfectRef.

Definition 8.4.7 (Backward application of a PI to an atom) Let I be an inclusion assertion that
is applicable to the atom g. Then, gr(g, I) is the atom defined as follows:

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 186

if g = A(x) and I = A1 v A, then gr(g, I) = A1(x)
if g = A(x) and I = ∃P v A, then gr(g, I) = P(x,_)
if g = A(x) and I = ∃P− v A, then gr(g, I) = P(_, x)
if g = P(x,_) and I = A v ∃P, then gr(g, I) = A(x)
if g = P(x,_) and I = ∃P1 v ∃P, then gr(g, I) = P1(x,_)
if g = P(x,_) and I = ∃P−1 v ∃P, then gr(g, I) = P1(_, x)
if g = P(_, x) and I = A v ∃P−, then gr(g, I) = A(x)
if g = P(_, x) and I = ∃P1 v ∃P−, then gr(g, I) = P1(x,_)
if g = P(_, x) and I = ∃P−1 v ∃P−, then gr(g, I) = P1(_, x)
if g = P(x1, x2) and either I = P1 v P or I = P−1 v P− then gr(g, I) = P1(x1, x2)
if g = P(x1, x2) and either I = P1 v P− or I = P−1 v P then gr(g, I) = P1(x2, x1)

The subtle point of PerfectRef is the need of simplifying the produced reformulations, so that
some PIs that were not applicable to a reformulation become applicable to its simplifications.
A simplification amounts to unify two atoms of a reformulation using their most general
unifier and then to switch the possibly new unbounded existential variables to the anonymous
variable denoted _.

Let us illustrate the reformulation step of the following query using the PIs in the Tbox T
of Figure 8.6:

q(x):- TeachesIn(x,y), RegisteredIn(z,y), Student(z).

Figure 8.9 shows the result returned by PerfectRef (q(x),T).

Initial query
q(x):- TeachesIn(x,y), RegisteredIn(z,y), Student(z)
Reformulations applied PI Reformulated query
q1(x):- ResponsibleOf(x,y), RegisteredIn(z,y), Student(z) ResponsibleOf v TeachesIn q(x)
q2(x):- TeachesIn(x,y), RegisteredIn(z,y), PhDStudent(z) PhDStudentv Student q(x)
q3(x):- TeachesIn(x,y), RegisteredIn(z,y), TeachesTo(_,z) ∃TeachesTo− v Student q(x)
q4(x):- TeachesIn(x,y), RegisteredIn(_,y) ∃RegisteredInv Student q(x)
q5(x):- ResponsibleOf(x,y), RegisteredIn(z,y), PhDStudent(z) PhDStudentv Student q1(x)
q6(x):- ResponsibleOf(x,y), RegisteredIn(z,y), TeachesTo(_,z) ∃TeachesTo− v Student q1(x)
q7(x):- ResponsibleOf(x,y), RegisteredIn(_,y), ∃RegisteredInv Student q1(x)
q8(x):- ResponsibleOf(x,y), RegisteredIn(z,y), PhDStudent(z) ResponsibleOf v TeachesIn q2(x)
q9(x):- ResponsibleOf(x,y), RegisteredIn(z,y), TeachesTo(_,z) ResponsibleOf v TeachesIn q3(x)
q10(x):- ResponsibleOf(x,y), RegisteredIn(_,y) ResponsibleOf v TeachesIn q4(x)
q11(x):- TeachesIn(x,y), Course(y) Coursev ∃RegisteredIn− q4(x)
q12(x):- TeachesIn(x,_) ∃TeachesIn− v Course q11(x)
q13(x):- ResponsibleOf(x,_) ResponsibleOf v TeachesIn q12(x)
q14(x):- Professor(x) Professorv ∃TeachesIn q12(x)

Figure 8.9: A query and its reformulations obtained by PerfectRef applied to the Tbox of
Figure 8.6

We detail here the inference chain leading to some reformulations that are particularly
interesting for getting answers for q from the data in the Abox A′ of Figure 8.8. This also
illustrates the need of the simplification step. The reformulation:

q4(x):- TeachesIn(x,y), RegisteredIn(_,y).

For personal use only, not for distribution. 187

is obtained by:

• the backward application to the atom Student(z) of q(x) of the PI: ∃RegisteredIn v
Student, which leads to the reformulation

q′(x) : − TeachesIn(x,y),RegisteredIn(z,y),Registered(z,_)

in which the anonymous variable _ appearing in the atom Registered(z,_) denotes the
unbounded existential variable produced by the backward application of the PI,

• followed by a simplification step, consisting in unifying the two redundant atoms in the
body of q′: the atom Registered(z,y) is kept instead of the atom Registered(z,_) because y
is an existential variable which is bounded within the body of q′. But now, the existential
variable z is unbounded within the body of q′: it is replaced by the anonymous variable
_.

In turn, q4(x) can be reformulated by the backward application of the PI Coursev∃RegisteredIn−

to the atom RegisteredIn(_,y), which results in the reformulation q11(x):

q11(x):- TeachesIn(x,y), Course(y).

Then, the reformulation q12(x) is produced by the backward application of the PI ∃
TeachesIn− v Course, and the simplification by unification of the two atoms followed by
the replacement of the existential variable y, now unbounded, with the anonymous variable
_.

q12(x):- TeachesIn(x,_).

Finally, the reformulations q13(x) and q14(x) are obtained from the backward application
of the PIs ResponsibleOf v TeachesIn and Professorv ∃TeachesIn respectively.

q13(x):- ResponsibleOf(x,_).

q14(x):- Professor(x).

It is important to notice that the answers durand and dupond are obtained for the initial
query q(x) thanks to those reformulations q13(x) and q14(x): they would not be returned by
the standard evaluation of the query q(x) against the Abox A′ of Figure 8.8.

In the PerfectRef algorithm (Algorithm 3):

• The notation q[g/gr(g, I)] (Line 7) denotes the replacement of the atom g in the body of
the query q with the result gr(g, I) of the backward application of the PI I to the atom g,

• The operator reduce(q, g, g′) (Line 10) denotes the simplification of the body of q obtained
by replacing the conjunction of its two atoms g and g’ with their most general unifier (if g
and g’ can be unified),

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 188

• The operator τ (Line 10) replaces in the body of a query all the possibly new unbounded
existential variables with the anonymous variable denoted _.

Algorithm 3: The PerfectRef algorithm
PerfectRef (q,T)
Input: a conjunctive query q and a Tbox T
Output: a union of conjunctive queries: PR
(1) PR := {q}
(2) repeat
(3) PR′ := PR
(4) foreach q ∈ PR′

(5) (a) foreach g ∈ q
(6) if a PI I ∈ T is applicable to g
(7) PR := PR ∪ {q[g/gr(g, I)]}
(8) (b) foreach g1, g2 ∈ q
(9) if g1 et g2 sont unifiables
(10) PR := PR ∪ {τ(reduce(q, g1, g2))}
(11) until PR′ = PR

Figure 8.9 shows the result returned by PerfectRef (q(x),T), where q(x) is the query of the
previous example, and T is the Tbox of Figure 8.6. The second column makes explicit the PI
used for obtaining the corresponding reformulation. Note that equivalent reformulations can
be produced by different inferences, such as for example the reformulations q4(x) and q7(x).

Although we will not prove it here, the following properties hold:

soundness. All the facts computed using PerfectRef are correct query answers.

completeness. All query answers are obtained.

complexity. Since we touch the data only for the evaluation of FOL queries, the worst-case
complexity is PTIME in the size of the Abox. The number of reformulations is PTIME in
the size of the Tbox. Therefore, the complexity of evaluating a query against a DL-LITER
or DL-LITEF knowledge base is PTIME in the size of the knowledge base.

8.4.4 Impact of combining DL-LITER and DL-LITEF on query answering

In this section, we exhibit an example showing that the interaction of key constraints (the
specificity of DL-LITEF) with inclusion constraints between properties (the specificity of
DL-LITER) may lead to a reformulation of a query into an infinite number of conjunctive
rewritings, each one likely to bring additional answers. This makes an algorithmic approach
such as the one we used for DL-LITER and DL-LITEF in isolation incomplete for query
answering when DL-LITER and DL-LITEF are combined together.

Consider a Tbox made of the following inclusion axioms, in which R and P are two
properties and S is a class:

For personal use only, not for distribution. 189

R v P
(f unctP)
S v ∃R
∃R− v ∃R

Let us consider the following query:

q(x) :- R(z, x)

The following query expression is a valid reformulation for the query q:

r1(x) :- S(x1),P(x1,x)

To see this, we observe that from the fact S(x1) and the PI S v ∃R, it can be inferred
that there exists y such that R(x1,y) holds, and thus P(x1,y) holds too (since R v P). From
the functionality constraint on P and the conjunct P(x1,x) in the body of r1, we can now
infer that y = x, and thus that R(x1,x) holds. Therefore, ∃zR(z,x) is logically entailed by
∃x1S(x1) ∧ P(x1,x), i.e., r1(x) is contained in the query q(x), and thus is a valid reformulation
of the query q(x).

It turns out that the situation is even more subtle. Surprisingly, this reformulation r1(x) is
not the only one. In fact there exists an infinite number of different reformulations for q(x).
Let k≥ 2. The following query is a valid reformulation of q(x):

rk(x) :- S(xk),P(xk, xk−1), . . . ,P(x1, x)

To show that rk(x) is logically contained in q(x), we exploit again the axiom of functionality
of P and the inclusion axiom between R and P: from the fact S(xk) and the PI Sv ∃R, it can
be inferred that there exists yk such that R(xk,yk) holds, and thus P(xk,yk) holds too (since
Rv P). Since P is functional, we get: yk = xk−1, and thus R(xk,xk−1) holds. Now, based on the
PI ∃R− v ∃R, there exists yk−1 such that R(xk−1,yk−1) holds, and with the same reasoning as
before, we get yk−1 = xk−2, and thus R(xk−1,xk−2) holds. By induction, we obtain that R(x1,x)
holds, i.e., rk(x) is logically contained in the query q(x).

One can also show that for each k, there exists an Abox such that the reformulation rk
returns answers that are not returned by the reformulation rk′ for k′ < k. Thus, there exists an
infinite number of non redundant conjunctive reformulations.

It can be shown that if we combine key constraints and inclusions of properties in a
restricted way, this problem can be avoided. For instance, if key constraints are forbidden on
properties involved in right-hand side of an inclusion axiom, there is a finite number of non
redundant conjunctive reformulations and they can be found by the Per f ectRe f algorithm.

8.5 Further reading

The spreading of RDF data on the Web and the importance of queries for such data is
illustrated by the Billion Triple Track of the Semantic Web Challenge 1. The idea is to “do
something” efficiently with one billion of RDFS triples.

1http://challenge.semanticweb.org/

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 190

RDFS. Reasoners for RDFS are available on line and can be downloaded, like for instance the
Jena2 ontology API [104], which implements the forward-chaining algorithm we described. A
SPARQL [175] engine included in the same programmatic Jena environment enables storing
and querying data sets made of (asserted + inferred) triples. In fact, since RDFS statements
are also stored as RDF triplets, SPARQL can also be used to query the schema, and not only
the RDF data. For guaranteeing the completeness of the answers to a schema query, all the
inference rules that we have given Figure 7.7 (section describing RDFS) in Chapter 7 must
be taken into account, and not only the subset that we considered in the forward-chaining
algorithm we described.

We mentioned the practical advantage of separating the computation over a Tbox from
that over the Abox. This is useful also from a theoretical point of view. This gives a bound
on the data complexity (the complexity in terms of the Abox only) of consistency checking
and of query answering. We showed that they can be performed using FOL queries and it is
known [159, 9] that evaluating FOL queries over a relational database is in LOGSPACE in the
size of the database.

DL-lite. DL-LITER has been recently incorporated into the version OWL2 [176] of OWL as
the profile called OWL2 QL. The proof that the PerfectRef Algorithm computes the whole
answer is shown in [38]. It follows that the complexity of query answering by reformulation
in these fragments of DL-LITE is polynomial in the size of the Tbox, and in LOGSPACE in the
size of the Abox.

A major result in [38] is that DL-LITER and DL-LITEF are two maximal fragments of the
DL-Lite family supporting tractable query answering over large amounts of data. It has been
shown in [38] that consistency checking and instance recognition (which a particular case
of query answering), while being LOGSPACE both for DL-LITER and DL-LITEF Tboxes, are
PTIME-COMPLETE for the languages that combine the axioms of both (denoted DL-LITERF).
This complexity result shows it is unlikely that an approach based on query reformulation
would provide a complete query answering algorithm for DL-LITERF .

QuOnto ([13]) is a JAVA tool implementing the DL-Lite family of ontology representation
languages. It permits the declaration of an ontology as a DL-LITE Tbox, the construction of
an associated Abox that can be stored and as a MySQL database. The consistency checking of
the resulting DL-LITE knowledge base, and query answering by reformulation are the core
functionalities of QuOnto, based on the implementation in Java of the algorithms presented
in this chapter.

Datalog+−. Recent research [12, 11] has extended the Datalog database query language
towards query answering over ontologies. This has resulted in a unifying framework based
on a family of expressive extensions of Datalog, called Datalog+−, that captures DL-LITER
and DL-LITEF .

8.6 Exercises

Exercise 8.6.1 With the University example, find a new query that has a different answer:

1. on the RDF data vs. the RDF data together with the RDFS ontology.

2. on the RDF data vs. the RDF data together with the DL-LITE ontology.

For personal use only, not for distribution. 191

Exercise 8.6.2 Prove that the Saturation algorithm runs in 0((M× N)2).

Exercise 8.6.3 Prove that the rules used for computing the TBox closure are sound.

Exercise 8.6.4 Consider AboxA in Figure 8.1 andA′ obtained by deleting the fact PhDStudent(paul),
and the Tbox T in Figure 8.6. Show that:

1. The knowledge base A∪ T is inconsistent.

2. The knowledge base A′ ∪ T is consistent.

Exercise 8.6.5 Give the FOL rule corresponding to the different cases of negative inclusion axioms.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

9 Data Integration

9.1 Introduction

The goal of data integration is to provide a uniform access to a set of autonomous and possibly
heterogeneous data sources in a particular application domain. This is typically what we
need when, for instance, querying the deep web that is composed of a plethora of databases
accessible through Web forms. We would like to be able with a single query to find relevant
data no matter which database provides it.

A first issue for data integration (that will be ignored here) is social: The owners of some
data set may be unwilling to fully share it and be reluctant to participate in a data integration
system. Also, from a technical viewpoint, the difficulty comes from the lack of interoperability
between the data sources, that may use a variety of formats, specific query processing
capabilities, different protocols. However, the real bottleneck for data integration is logical.
It comes from the so-called semantic heterogeneity between the data sources. They typically
organize data using different schemas even in the same application domain. For instance, each
university or educational institution may choose to model students and teaching programs in
its own way. A French university may use the social security number to identify students
and the attributes NOM, PRENOM, whereas the Erasmus database about European students
may use a European student number and the attributes FIRSTNAME, LASTNAME and HOME

UNIVERSITY.
In this chapter, we study data integration in the mediator approach. In this approach,

data remain exclusively in data sources and are obtained when the system is queried. One
sometimes use the term virtual data integration. This is in contrast to a warehousing approach
where the data is extracted from the data sources ahead of query time, transformed, and
loaded in the warehouse. At query time, the warehouse is accessed but not the data sources.
Warehouses approaches are typically preferred for very complex queries, e.g., for data mining.
On the other hand, to have access to “fresh” information, a mediator approach is preferred
since it avoids having to propagate in real time, data source updates to the warehouse. Figure
9.1 illustrates these two approaches of data integration.

In the mediator approach, one starts by designing a global schema (also called mediated
schema) that serves as a unique entry point on which global queries are posed by users. A
main issue is then to specify the relationships, namely semantic mappings, between the schemas
of the data sources and the global schema. Based on these mappings, one can answer queries
over the global schema using queries over the data sources. Typically, query answering in the
mediator approach is performed as follows. First, independently of the data in the sources,
the user’s query posed over the global schema is transformed into local queries that refer to the
schemas of the data sources. A global query combines the data provided by sources. Queries
are optimized and transformed into query plans. The local query plans are executed and their
results combined by the global query plan.

In the following, for presentation purposes, we consider that the global schema and the
schemas of the data sources to integrate are all relational. In practice, each non-relational data

193

For personal use only, not for distribution. 194

Figure 9.1: Virtual versus Materialized data integration

source (e.g., XML or HTML) is abstracted as a relational database with the help of a wrapper.
Wrappers are small programs that translate local relational queries into appropriate requests
understood by specific data sources, and transform their results into relations. The role of
wrappers is to allow the mediator to see each data source as relational, no matter which actual
format it uses.

Let us consider in more detail the specification of semantic mappings between the data
sources and the global schema. Let S1, ..., Sn be the local schemas of n pre-existing data
sources. To simplify the presentation, let us assume that each local schema Si is made of a
single relation that we denote also Si. The relations S1, ..., Sn are called the local relations.
Suppose the global schema G consists of the global relations G1, ..., Gm. The goal is to specify
semantic relations between the local relations Si and the global relations Gj. The Gj are
logically (intentionally) defined by the Si.

An example of simple relationship (not very interesting) is based on equality, e.g., G1 = S1.
One can find more complicated relationships, e.g., G2 = S1 ∪ S2 or G3 = S1 ./ S3. In these
last two examples, a global relation is defined as a query over the local relations. In other
words, the global relation is a view of the local relations. Indeed, one typically prefers more
flexible constraints such as G3 ⊇ S1 ./ S3. Using containment instead of equality leaves open
the possibility for other sources of providing data about G3, e.g., G3 ⊇ σA=”yes”(S4). Because
global relations are constrained by views of the local relations, one uses the term global-as-view
for such specifications.

In a somewhat dual manner, one can use local-as-view constraints such as: S4 ⊆ G1 ./ G3.
This leaves even more flexibility since the contribution of each data source can be specified
(e.g., by its owner) independently of the other sources of the system. This kind of autonomy
is typically well-adapted to a Web setting.

More generally, to express semantic mappings between {S1, ...,Sn} and {G1, ..., Gm}, one
can use inclusion statements, i.e., logical constraints, of the form v(S1, ...,Sn) ⊆ v′(G1, ..., Gm),

For personal use only, not for distribution. 195

where v and v′ are query expressions called views. All the constraints we consider in this
chapter will be of this general form. Now, given an instance I of {S1, ...,Sn} (i.e., an instance
of the data sources), we don’t know the instance J of the global schema. But we know that:

v(I(S1), ..., I(Sn)) ⊆ v′(J(G1), ..., J(Gm))

So, the story of mediator systems is essentially a story of logical constraints and incomplete
information. In this general setting, given I, an answer to a global query q is a fact q(a) that is
true in any instance J that together with I satisfies the mapping constraints, i.e., a fact we can
be sure of as a logical consequence of both the data stored in I and of the logical constraints
expressed by the mappings. Not surprisingly, query answering is thus a complex reasoning
problem that in general may be undecidable. We focus on two particular decidable cases,
for which rewriting algorithms have been designed and implemented. They are based on
semantic mappings that capture typical constraints found in many applications:

Global-As-View (GAV for short). The semantic mappings are of the form

Vi(S1, ...,Sn) ⊆ Gi

also equivalently denoted
Gi ⊇ Vi(S1, ...,Sn)

where each Vi is a view over the local schemas, i.e., a query built on local relations.

Local-As-View (LAV for short). The semantic mappings are of the form

Si ⊆ Vi(G1, ..., Gm)

where each Vi is a view over the global schema, i.e., a query built on global relations.

In our development, we will consider conjunctive queries. Using negation in queries greatly
complicates the issues. In the next section, we recall some standard material on containment of
conjunctive queries, i.e., of the queries at the heart of our formal development. In Sections 9.3
and 9.4, we study GAV and LAV mediators, respectively. For each of these languages, we
describe appropriate query rewriting algorithms. In Section 9.5, we show the impact on query
rewriting of adding DL-LITE constraints in the global schema. Finally, in Section 9.6, we
lay the basis of a peer-to-peer approach for data integration. In contrast with the mediator
approach which offers a unique entry point to data, peer-to-peer data management systems
(PDMS for short) are decentralized data integration systems.

9.2 Containment of conjunctive queries

In this section, we recall some basic notions on comparing conjunctive queries that we will
use in the following.

We recall that a conjunctive query is an expression of the form:

q(x1, ...xn) :- A1(~u1), ..., Ak(~uk)

where each Ai is an relation, ~u1, ..., ~uk are vectors of constants and variables. Furthermore,
we require that each xi occurs in some ~ui. q(x1, ...xn) is called the head and A1(~u1), ..., Ak(~uk)

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 196

the body of the query. The xi variables are called distinguished. The other variables are called
existential.

Given an instance I of the relations appearing in the body of the query, an answer is a
tuple 〈ν(x1), ...,ν(xn)〉 for some valuation ν of the variables in the query, such that for each i,
Ai(ν(~ui)) holds in I. We denote q(I) the set of answers.

We sometimes denote this query q(x1, ...xn) when its body is understood. Observe that the
interpretation of such a conjunctive query in logical terms is:

{x1, ..., xn | ∃y1, ...,∃ym(A1(~u1) ∧ ...∧ Ak(~uk))}

where y1, ...,ym are the variables not occurring in the head.
The data integration techniques rely on conjunctive query containment. This problem has

been extensively studied because it is at the core of query optimization. We use known
techniques that we recall next.

A query q1 is contained in q2, denoted q1 ⊆ q2, if for each I, q1(I) ⊆ q2(I). It is known that
the containment between a conjunctive query q1 and a conjunctive query q2 can be tested by
finding a “homomorphism” from q2 to q1.

Definition 9.2.1 Let q1(x1, ..., xn) and q2(y1, ...,yn) be two conjunctive queries. A (conjunctive
query) homomorphism from q2 to q1 is a mapping ψ from the variables of q2 to the variables of q1
such that:

1. For each i, ψ(yi) = xi; and

2. For each atom R(~ui) in the body of q2, R(ψ(~ui)) is in the body of q1.

Example 9.2.2 Consider the following queries:

• q1(x1, x′1) : −A1(x1, x2, x3), A2(x′1, x2, x3)

• q2(y1,y′1) : −A1(y1,y2,y3), A2(y′1,y2,y′3)

Consider a mapping ψ such that ψ(yi) = xi for each i, ψ(y′1) = x′1 and ψ(y′3) = x3. Then the required
conditions hold, and it follows that q1 ⊆ q2. Intuitively, q2 joins A1 and A2 on the second attribute,
whereas q1 also joins on the third one. The additional condition induces the containment.

The following proposition states that the existence of a homomorphism is a necessary and
sufficient condition for query containment.

Proposition 9.2.3 (Homomorphism theorem) Let q1 and q2 be two conjunctive queries. Then q1
is contained in q2 if and only if there exists a homomorphism from q2 to q1.

This provides a simple algorithm for testing conjunctive query containment. In the general
case, deciding whether a conjunctive query is contained in another one is NP-complete in the
size of the two queries. In fact, in many practical cases, there are polynomial-time algorithms
for query containment.

Algorithm 4 checks whether a query q1 is contained in a query q2.

Example 9.2.4 Consider the queries of Example 9.2.2. The canonical instance Dcan is A1(a,b, c), A2(a′,b, c).
It is easily verified that q2(Dcan) = (a, a′), which is ν(x, x′).

For personal use only, not for distribution. 197

Algorithm 4: The Query containment algorithm
QC(q1,q2)
Input: Two conjunctive queries:

q1(~x) :- g1(~x1), . . . , gn(~xn)
q2(~y) :- h1(~y1), . . . , hm(~ym)

Output: Yes if q1 ⊆ q2; no otherwise
(1) freeze q1: construct a canonical instance Dcan = {gi(ν(~xi)) | 1≤ i ≤ n}
(2) for some valuation ν mapping each variable in q1
(3) to a distinct constant
(4) if ν(~x) ∈ q2(Dcan) return yes
(5) else return no.

9.3 Global-as-view mediation

The main advantage of GAV is its conceptual and algorithmic simplicity. The global schema
is simply defined using views over the data sources and specifies how to obtain tuples of the
global relation Gi from tuples in the sources.

Definition 9.3.1 (GAV mapping) A GAV mapping is an expression of the form: R(x1, ..., xn) ⊇
q(x1, ..., xn), where q(x1, ..., xn) :- A1(~u1), ..., Ak(~uk) is a conjunctive query of the same arity as R.
The semantics of this mapping is:

∀x1, ..., xn(∃y1, ...,ym(A1(~u1), ..., Ak(~uk)⇒ R(~u)))

where y1, ...,ym are of variables occurring in the body of the rule and not its head.

We write alternatively this GAV mapping as:

R(x1, ..., xn) ⊇ A1(~u1), ..., Ak(~uk)
R(x1, ..., xn) ⊇ q(x1, ..., xn)
R ⊇ q

by omitting information that is either not needed or that is clear from the context. When we
want to stress which are the existential variables, we write it R(~x) ⊇ q(~x,~y) where ~y is the
vector of existential variables.

Example 9.3.2 Consider the following four data sources:

• The source relation S1 is a catalog of teaching programs offered in different French universities
with master programs.

S1.Catalogue(nomUniv, programme).

• The source relation S2 provides the names of European students enrolled in courses at some
university within the Erasmus exchange program:

S2.Erasmus(student, course, univ).

• The source relation S3 provides the names of foreign students enrolled in programs of some
French university:

S3.CampusFr(student, program, university).

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 198

• The source relation S4 provides the course contents of international master programs:

S4.Mundus(program,course)

Now, suppose we define a global schema with the following unary and binary relations:

MasterStudent(studentName), University(uniName),
MasterProgram(title), MasterCourse(code),
EnrolledIn(studentName,title), RegisteredTo(studentName, uniName).

These relations are defined in terms of the local relations by the following GAV mappings:

MasterStudent(N) ⊇ S2.Erasmus(N,C,U), S4.Mundus(P,C)
MasterStudent(N) ⊇ S3.CampusFr(N,P,U), S4.Mundus(P,C)
University(U) ⊇ S1.Catalogue(U,P)
University(U) ⊇ S2.Erasmus(N,C,U)
University(U) ⊇ S3.CampusFr(N,P,U)
MasterProgram(T) ⊇ S4.Mundus(T,C)
MasterCourse(C) ⊇ S4.Mundus(T,C)
EnrolledIn(N,T) ⊇ S2.Erasmus(N,C,U), S4.Mundus(T,C)
EnrolledIn(N,T) ⊇ S3.CampusFr(N,T,U), S4.Mundus(T,C)
RegisteredTo(N,U) ⊇ S3.CampusFr(N,T,U)

Note that in a warehousing approach, one would simply evaluate all the queries that define
the global view, and populate the warehouse using standard relational query evaluation. In
a mediator approach, we try to only derive data that is relevant to a specific query posed
on the global view by a user. We show how to rewrite a global query into queries over the
local relations and combine their results. This is achieved by a technical trick that consists in
unfolding the atoms of the global query.

Observe the first two mappings. They specify (using joins) how to obtain tuples of the unary
relation MasterStudent. Now consider the following global query asking for universities
with registered master students:

q(x) :- RegisteredTo(s,x), MasterStudent(s)

The rewriting of this query into source queries is obtained by unfolding, i.e., by replacing
each atom which can be matched with the head of some view, by the body of the correspond-
ing view. (For readers familiar with logic programming, this is some very simple form of
resolution.)

In the example, there is a single mapping whose head can be matched with RegisteredTo(s,x),
and two mappings that match MasterStudent(s). Thus, we obtain the following two unfold-
ings:

q1(x) :- S3.CampusFr(s,v1,x), S2.Erasmus(s,v2,v3), S4.Mundus(v4,v2)
q2(x) :- S3.CampusFr(s,v5,x), S3.CampusFr(s,v6,v7), S4.Mundus(v6,v8)

Observe that q2 can be simplified. Replacing the conjunction of its first two atoms by
the single atom S3.CampusFr(s,v6,x) leads to an equivalent query. We thus obtain the
following two GAV rewritings of the initial query:

For personal use only, not for distribution. 199

r1(x) :- S3.CampusFr(s,v1,x), S2.Erasmus(s,v2,v3), S4.Mundus(v4,v2)
r2(x) :- S3.CampusFr(s,v6,x), S4.Mundus(v6,v8)

The result is obtained by computing r1 ∪ r2. Now, observe that each r` is a conjunctive
query. It can be optimized using standard query optimization to obtain an optimized physical
query plan. Of course, the choice of the particular physical query plan that is selected depends
on the statistics that are available and the capabilities of the sources. For instance, a plan may
consist in querying S3 and then for each value a of v6 (i.e., a particular university program),
asking the query q(X) :- S4.Mundus(a,X) to S4.

We now formalize the simple and intuitive notion of query unfolding.

Definition 9.3.3 (Query unfolding) Let q(~x) :- G1(~z1), . . . , Gn(~zn) be a query and for each i, Gi(~xi)
⊇ qi(~xi,~yi) be a GAV mapping. An unfolding of q is the query u obtained from q by replacing,
for each i, each conjunct Gi(~zi) by qi(ψi(~xi,~yi)) where ψi is a function that maps ~xi to ~zi, and the
existential variables ~yi to new fresh variables.

The renaming of the existential variables into fresh ones is necessary to avoid the introduc-
tion of unnecessary constraints in the unfolding. Indeed, consider an existential variable y
occurring in two distinct atoms, say Gi and Gj. Then, the two atoms should be understood as
∃...y...Gi(~zi) and ∃...y...Gj(~zj). The scopes of y in both are disjoint and nothing requires that
the two occurrences of y take the same value. Hence the renaming using fresh variables.

Example 9.3.4 Suppose we have the two mappings:

F(x,y) ⊇ S(x,z),S(y,z) G(x) ⊇ S(x,y)

and the query q(x) :- F(x,y),G(y). Then we get the following unfolding:

q(x) :- S(x,v1),S(y,v1),S(y,v2)

The variable v1 corresponds to the renaming of the existential variable z in the view defining F, whereas
v2 comes from the renaming of the existential variable y in the view defining G.

We next establish that each unfolding of a query computes a part of the desired results, and
that their union computes the whole set of answers. To do so, we use two propositions. The
first one ignores unfolding and focuses on the “materialization” of the global relations.

Proposition 9.3.5 Let S1, ...,Sn be a set of source relations; G1, ..., Gm a global schema defined by a
set G of GAV mappings over S1, ...,Sn; and I be an instance over S1, ...,Sn. Let J be the instance over
G1, ..., Gm defined by, for each j,

J(Gj) = ∪{V(I) | Gj ⊇ V(S1, ...,Sn) ∈ G}

Then for each query q over G1, ..., Gm, the answer of q is q(J).

Proof (sketch). Let u be an answer. Then, by definition, q(u) is true in each instance J′

over G1, ..., Gm such that I and J′ together satisfy the mappings. In particular, u belongs to
q(J). Conversely, let u be in q(J). Let J′ be an instance such that I and J′ together satisfy the
mappings. Since J′ satisfies the mappings, J ⊆ J′. Since conjunctive queries are monotone,
q(J) ⊆ q(J′). Thus u ∈ J′. Since u belongs to all such J′, u is an answer. 2

The second proposition deals with unfoldings.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 200

Proposition 9.3.6 Let S be a set of source relations and G a set of global relations defined by a set G
of GAV mappings over S. Consider the query q(~z) :- Gi1(~zi1), . . . , Gin(~zin) over G and the set {r`} of
unfoldings of q given G. Then for each I over S1, ...,Sn, the answer of q is given by ∪r`(I).

Proof (sketch). Let J be as in Proposition 9.3.5. By the same proposition, it suffices to show
that q(J) = ∪r`(I).

Soundness. Let u ∈ ∪r`(I). Then u is r`(I) for some unfolding r`. Suppose r` results from the
unfolding defined by selecting for each j, the mapping Gij(~xij) ⊇ qij(~xij , ~yij). It follows
that u ∈ q({~u1}, ...,{~un}) where for each j, ~uj is derived by Gij(~xij) ⊇ qij(~xij , ~yij). Thus,
each ~uj is in J(Gij) and u ∈ q(J(Gi1), ..., J(Gin)) = q(J). Therefore, ∪r`(I) ⊆ q(J).

Completeness. Conversely, consider u in q(J). Then, there exists ~u1 in J(Gi1), ..., ~uj in J(Gij),
...~un in J(Gin) such that u∈ q({~u1}, ...,{~un}). By construction of J, for each j there is some
mapping Gij(~xij) ⊇ qij(~xij , ~yi−1) such that ~uj is in qij(~xij , ~yi−1). Consider the unfolding r`
defined by selecting for each j, this particular mapping. One can verify that u is r`(I).
Hence, u ∈ ∪r`(I) and q(J) ⊆ ∪r`(I).

2

We can compute the answer using the unfoldings (also called the GAV rewritings). These
unfoldings can be simplified by removing redundant conjuncts that may have been introduced
by the technique. This simplification relies on checking conjunctive query containment. Given
a conjunctive query with body A1(~u1), ..., Am(~um), we verify whether each query obtained
by removing some Ai(~ui) is equivalent to the initial one. If yes, the atom is redundant and
can be removed. We keep doing this until the query is “minimal”. This simplification test is
costly but the resulting query may be much less expensive to evaluate that the initial one.

We must evaluate all the unfoldings to obtain the complete answer. If we are aware of
some constraints on the local schemas or on the global one, this can be further simplified.
For instance, the constraints may imply that the result of a particular unfolding is empty, in
which case this particular unfolding needs not be evaluated. Also, the constraints may imply
that the result of some unfolding, say r`, is always included in another one. Then r` needs
not be evaluated. For instance, in the previous example, if it is known that students obtained
from the source S2 are European students, while those obtained from the source S3 are non
European students, we can be sure that the GAV rewriting r` obtained by unfolding will not
provide any answer. This requires expressing and exploiting disjointness constraints over the
local relations. Inclusion constraints on local relations would, on the other hand, permit to
detect in advance that a given query plan provides answers that are redundant with those
obtained by another query plan.

A main limitation of GAV is that adding or removing data sources to the integration system
may require deeply revising all the views defining the global schema. In a Web context where
sources may come and go, e.g., because of (non) availability of servers, this is really too
constraining. The LAV approach does not suffer from this disadvantage.

9.4 Local-as-view mediation

The LAV approach takes a dual approach. The local relations are defined as views over global
relations. The goal is to define the global schema in such a way that individual definitions do

For personal use only, not for distribution. 201

not change when data sources join or leave the integration system except for the definitions
of the sources that are involved in the change.

Definition 9.4.1 (LAV mapping) A LAV mapping is a mapping of the form: S ⊆ q, for some
conjunctive query q(x1, ..., xn) :- A1(~u1), ..., Ak(~uk) over the global relations. Its semantics is:

∀x1, ..., xn[S(x1, ..., xn)⇒ (∃y1, ...,ym A1(~u1), ..., Ak(~uk))]

where y1, ...,ym are the existential variables.

Again, S(x1, ..., xn) is called the head of the view, whereas A1(~u1), ..., Ak(~uk) is called the
body of the view.

Example 9.4.2 We define the global schema as consisting of the following relations:

Student(studentName), EuropeanStudent(studentName),
University(uniName), NonEuropeanStudent(studentName),
FrenchUniversity(uniName), EuropeanUniversity(uniName),
NonEuropeanUniversity(uniName), Program(title),
MasterProgram(title), EnrolledInProgram(studentName,title),
Course(code), EnrolledInCourse(studentName,code),
PartOf(code, title), RegisteredTo(studentName, uniName),
OfferedBy(title, uniName).

The four data sources considered in the previous example can be described by the following LAV
mappings:

m1: S1.Catalogue(U,P) ⊆ FrenchUniversity(U), Program(P), OfferedBy(P,U),
OfferedBy(P’,U), MasterProgram(P’)

m2: S2.Erasmus(S,C,U) ⊆ Student(S), EnrolledInCourse(S,C), PartOf(C,P),
OfferedBy(P,U), EuropeanUniversity(U),
EuropeanUniversity(U’) RegisteredTo(S,U’),
U 6= U’

m3: S3.CampusFr(S,P,U) ⊆ NonEuropeanStudent(S), Program(P),
EnrolledInProgram(S,P), OfferedBy(P,U),
FrenchUniversity(U), RegisteredTo(S,U)

m4: S4.Mundus(P,C) ⊆ MasterProgram(P), OfferedBy(P,U),
OfferedBy(P,U’), EuropeanUniversity(U),
NonEuropeanUniversity(U’), PartOf(C,P)

LAV mappings enable quite fine-grained descriptions of the contents of data sources. For
example, we are able to specify precisely the students that can be found in the Erasmus
source: they are European students enrolled in courses of a given (European) university that
is different from their home (European) University in which they remain registered.

LAV mappings express loose coupling between local and global relations, which is impor-
tant for flexibility and robustness when the participating data sources change frequently. If
we are interested in Master students, we do not need to know in advance (unlike the GAV
approach) how to join two sources. We just define them as a global query:

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 202

MasterStudent(E) :- Student(E), EnrolledInProgram(E,M),
MasterProgram(M).

The local sources that must be queried and combined to get the Master students will be
discovered by the rewriting process. Recall that, in the GAV approach, they were predefined
by the two mappings given in Example 9.3.2.

The price to pay for the flexibility of LAV compared to GAV is that the rewritings are more
complicated to find. We describe three algorithms that achieve this rewriting. The Bucket
algorithm and the Minicon algorithm follow the same approach. They first determine the
local relations that are relevant to the query, then consider their combinations as candidate
rewritings and verify whether they are indeed correct. Minicon is actually an optimization
of Bucket that avoids the last verification step by a trickier first step. The third algorithm,
namely the Inverse-rules algorithm, follows a completely different approach: it consists in
transforming the logical rules supporting the LAV mappings (which are unsafe rules) into a
set of safe rules with a single global relation. The global query is unfolded using these rules.

9.4.1 The Bucket algorithm

The principle of the Bucket algorithm is quite simple. It proceeds in three steps:

1. the first step constructs for each atom g of the global query body its bucket, which groups
the view atoms from which g can be inferred;

2. the second step consists in building a set of candidate rewritings that are obtained by
combining the view atoms of each bucket;

3. in a last step, we check whether each candidate rewriting is valid.

Bucket creation

Let g be a query atom. The atoms in bucket(g) are the heads of mappings having in their body
an atom from which g can be inferred. Intuitively, data comes from source relations, and a
(global) query atom is satisfied by (local) data only if it can be matched to a (global) atom in
the body of a mapping whose head can be matched to source facts. A match between g and
some atom in the body of a mapping is thus an indication that the corresponding data source
provides a relevant information for this particular query.

There is an extra constraint that has to be considered to guarantee that g can indeed be
logically inferred, as illustrated next. In fact, the bucket of a query atom g includes a view
atom v only if an atom in the body of v can be matched with g by a variable mapping such
that the variables mapped to the distinguished variables of g are also distinguished variables in
the view defining the mapping.

Let us illustrate this on an example. Consider the LAV mappings of Example 9.4.2, and the
global query:

q(x) :- RegisteredTo(s,x), EnrolledInProgram(s,p), MasterProgram(p)

For personal use only, not for distribution. 203

Let us consider the query atom g= RegisteredTo(s,x), in which the variable x is
distinguished.

We can find two mappings (m2 and m3) in which a body atom can be matched to
RegisteredTo(s,x).

First, consider the mapping m3:

m3: S3.CampusFr(S,P,U) ⊆ NonEuropeanStudent(S), Program(P),
EnrolledInProgram(S,P), OfferedBy(P,U),
FrenchUniversity(U), RegisteredTo(S,U)

The atom RegisteredTo(s,x) matches the atom RegisteredTo(S,U) with the vari-
able mapping {S/s,U/x}, where U is distinguished in the view defining the mapping (it
occurs in the head of this LAV mapping).

Therefore, applying the variable mapping {S/s,U/x} to the head S3.CampusFr(S,P,U)
of the mapping m3 enforces the matching of RegisteredTo(S,U) with the query atom
RegisteredTo(s,x), and then:

S3.CampusFr(s,v1,x) ∧ FOL(m3) |= ∃s RegisteredTo(s,x)

Thus S3.CampusFr(s,v1,x) is added in Bucket(g). Note that v1 is simply a fresh vari-
able mapped to the variable P appearing in S3.CampusFr(S,P,U) but not in the variable
mapping {S/s,U/x}.

On the other hand, consider the mapping m2:

m2: S2.Erasmus(S,C,U) ⊆ Student(S), EnrolledInCourse(S,C), PartOf(C,P),
OfferedBy(P,U), EuropeanUniversity(U),
EuropeanUniversity(U’) RegisteredTo(S,U’), U 6= U’

The match this time is between g = RegisteredTo(s,x) and RegisteredTo(S,U’)
by the variable mapping {S/s,U′/x}. The difference with the previous situation is that the
variable U’ is existentially quantified in the view defining the mapping. Applying the variable
mapping {S/s,U′/x} to the head S2.Erasmus(S,C,U) of the mapping m2 do not enforce the
matching of RegisteredTo(S,U’) in its body with the query atom RegisteredTo(s,x).

More formally:

S2.Erasmus(s,v2,v3) ∧ FOL(m2) 6|= ∃s RegisteredTo(s,x).

To see why, consider the LAV mapping m2 and its logical meaning FOL(m2):

FOL(m2): ∀S∀C∀U [S2.Erasmus(S,C,U)⇒ ∃ P ∃ U’ (
EuropeanStudent(S) ∧ EnrolledInCourse(S,C) ∧
PartOf(C,P) ∧ OfferedBy(P,U)
∧ EuropeanUniversity(U) ∧ RegisteredTo(S,U’)∧ U 6= U’)]

From the fact that S2.Erasmus(s,v2,v3), it follows that:

∃ s ∃ U’ RegisteredTo(s,U’).

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 204

However, this is a strictly weaker statement than ∃ s RegisteredTo(s,x) where x is fixed.
We prove this next. Consider an instance I over the domain ∆ = {s,v2,v3,v4,v5, x} defined
by:

I(S2.Erasmus) = {〈s, v2, v3〉} I(EuropeanStudent) = {s}
I(EnrolledInCourse) = {〈s, v2〉} I(PartOf) = {〈v2, v4〉}
I(OfferedBy) = {〈v4, v3〉} I(EuropeanUniversity) = {v3, v5}
I(RegisteredTo) = {〈s, v5〉}

By the valuation that instantiates respectively the variables S to the constant s, C to the
constant v2, U to the constant v3, P to the constant v4 and U’ to the constant v5, we see
that I satisfies the fact S2.Erasmus(s,v2,v3) and the formula FOL(m2), but that ∃ s
RegisteredTo(s,x) is not satisfied in I.

As a consequence, S2.Erasmus(s,v2,v3) does not belong to the bucket and:

Bucket(RegisteredTo(s,x)) = {S3.CampusFr(s,v1,x)}.

Algorithm 5: The Bucket algorithm
Bucket(g, q, M)
Input: An atom g = G(u1, ...,um) of the query q and a set of LAV mappings
Output: The set of view atoms from which g can be inferred
(1) Bucket(g) : ∅
(2) for each LAV mapping S(~x) ⊆ q(~x,~y)
(3) if there exists in q(~x,~y) an atom G(z1, ...,zm) such that
(4) zi is distinguished for each i such that ui is distinguished in q;
(5) let ψ the variable mapping {z1/u1,,zm/um}
(6) extended by mapping the head variables in ~x not
(7) appearing in {z1, ...,zm} to new fresh variables;
(8) add S(ψ(~x)) to Bucket(g);
(9) return Bucket(g);

Algorithm 5 constructs the buckets. Proposition 9.4.3 is a logical characterization of the
view atoms put in the buckets of the atoms of the global query.

Proposition 9.4.3 Let G(u1, ...,um) be an atom of the global query. Let ~u be the (possibly empty)
subset of existential variables in {u1, ...,um}. Let m: S(~x) ⊆ q(~x,~y) be a LAV mapping. Then

S(~v), FOL(m) |= ∃~uG(u1, ...,um)

iff there exists a view atom in Bucket(g) that is equal to S(~v) (up to a renaming of the fresh variables).

The proof is tedious and left as exercise.
In the worst-case, the Bucket algorithm applied to each atom of a query has a time complex-

ity in O(N ×M×V) and produces N buckets containing each at most M×V view atoms,
where N is the size of the query, M is the maximal size of the LAV mappings and V is the
number of LAV mappings.

Returning to the example, we obtain by the Bucket algorithm, the following buckets for the
three atoms of the query q.

For personal use only, not for distribution. 205

RegisteredTo(s,x) EnrolledInProgram(s,p) MasterProgram(p)
S3.CampusFr(s,v1,x) S3.CampusFr(s,p,v2) S1.Catalogue(v3,v4)

S4.Mundus(p,v5)

Construction of candidate rewritings

The candidate rewritings of the initial global query are then obtained by combining the
view atoms of each bucket. In the worst-case, the number of candidate rewritings is in
O((M×V)N). For instance, in our example, we obtain two candidate rewritings for the query
q:

r1(x) :- S3.CampusFr(s,v1,x), S3.CampusFr(s,p,v2), S1.Catalogue(v3,v4)
r2(x) :- S3.CampusFr(s,v1,x), S3.CampusFr(s,p,v2), S4.Mundus(p,v5)

A candidate rewriting may not be a valid rewriting of the query. By Proposition 9.4.3,
we only know that each candidate rewriting entails each atom of the query in isolation, i.e.,
without taking into account the possible bindings of the existential variables within the query.

It turns out that, in our example, the first candidate rewriting r1 is not a valid rewriting of
the query q: the body of q is not logically entailed by the conjunction of the view atoms in the
body of r1.

To see why, we first apply to each view atom in the body of r1 the corresponding LAV
mapping to obtain the logical global expression (i.e., built on global relations). This step is
called expanding r1, and its result, the expansion of r1. In our case, the expansion of r1 is the
following query expression:

Exp_r1(x) :- NonEuropeanStudent(s), Program(v1), EnrolledInProgram(s,v1),
OfferedBy(v1,x), FrenchUniversity(x), RegisteredTo(s,x),
Program(p), EnrolledInProgram(s,p), OfferedBy(p,v2),
FrenchUniversity(v2), RegisteredTo(s,v2),
FrenchUniversity(v3), Program(v4),OfferedBy(v4,v3),
OfferedBy(v5,v3), MasterProgram(v5)

Note that new existential variables may be introduced by the expansion of some view atoms.
For instance, the LAV mapping defining S1.Catalogue(v3,v4) contains the existential
variable denoted P’ in the LAV mapping definition. Such variables are renamed with new
fresh variables to avoid unnecessary constraints between the variables. In our example, this
corresponds to variable v5 in the body of Exp_r1(x).

To check whether a rewriting is correct, it suffices to check with the Conjunctive Query
Containment algorithm whether the query Exp_r1(x) is contained in the query q(x). For
each variable v, let the corresponding constant, i.e., ψ(v), be "v". The canonical database
obtained from r1 is given in Figure 9.2.

The evaluation of q(x) over this canonical database yields an empty result because there
is no way of assigning the existential variables s and p to constants of the canonical database
which satisfies the binding of the existential variable p between the two last atoms of the
body of the query.

Expanding the rewriting r2 and checking that it is contained into the query q is left in
exercise. This shows that among the two candidate rewritings, only r2 is a valid rewriting:

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 206

NonEuropean- Program EnrolledIn- OfferedBy French- RegisteredTo Master-
Student Program University Program
"s" "v1" ("s", "v1") ("v1", "x") "x" ("s", "x") "v5"

"p" ("s", "p") ("p", "v2") "v2" ("s", "v2")
"v4" ("v4", "v3") "v3"

("v5", "v3")

Figure 9.2: The canonical database resulting from freezing r1

r2(x) :- S3.CampusFr(s,v1,x), S3.CampusFr(s,p,v2),S4.Mundus(p,v5)

Remark 9.4.4 In spite of the apparent redundancy of the two first atoms, this rewriting cannot
be simplified to

r2.1(x) :- S3.CampusFr(s,p,x), S4.Mundus(p,v5)

It is true that r2.1(x) is contained into r2(x). However, the two queries are not equivalent.
For some data sets, it may be the case that there is a student s and there is a university x such
that (based on S3.CampusFr), s is registered in x and also enrolled in a Mundus master
program offered by another university. The containment would hold under a constraint that
would forbid a student to be registered in more than one universities.

One can prove that each rewriting finally obtained does indeed provide answers and that
their union constitutes the complete answer.

9.4.2 The Minicon algorithm

The idea underlying Minicon is to avoid putting in a bucket an atom that will only generate
invalid rewritings. As we saw in the discussion of Bucket, the reason for an atom to be useless
is that its binding of a variable does not match with the binding of other occurrences of that
variable. This explains why a candidate rewriting (like r1) is not valid.

We now illustrate the Minicon algorithm by example. Consider the query q:

q(x) :- U(y,z), R(x,z), T(z,y), R(y’,x)

and the two LAV mappings:

V1(u,v) ⊆ T(w,u), U(v,w), R(v,u)
V2(u,v,v’) ⊆ T(w,u), U(v,w), R(v’,w)

Minicon proceeds in two steps that correspond to the first two steps of Bucket.

First step of Minicon: creation of MCDs

Minicon scans each atom in the query, but instead of creating buckets for them, it builds
MCDs (short name for Minicon Descriptions). The first iteration of Minicon determines the
relevance of the different LAV mappings to rewrite the first query atom U(y,z):

For personal use only, not for distribution. 207

• The Bucket algorithm would put V1(v1,y) in the bucket of U(y,z) (where v1 is a fresh
variable), because the variable mapping {v/y,w/z} allows the match between the atom
U(v,w) in the expansion of V1(u,v) and the query atom U(y,z).

Minicon does not consider the query atom U(y,z) in isolation. Instead, since the
variable w is existential in the view defining the mapping, and mapped to the variable
z that has several occurrences in the query, it checks whether the variable mapping
{v/y,w/z} also covers all the query atoms involving variable z, i.e., can be extended
to also match R(x,z) and T(z,y). Because variable w is existential in the expansion
of V1(u,v) (i.e., w does not appear in the head of the mapping), it is the only way
to enforce the several occurrences of z in the query to be mapped to by the same
variable w. Here, matching the query atom R(x,z) with an atom of the form R(_,w)
in the expansion of V1(v1,y) is not possible: there does not exist such an atom in the
expansion of V1(v1,y). Therefore, no MCD is created from V1 for covering the query
atoms including an occurrence of the variable z.

• When considering V2, though Minicon starts from the same variable mapping {v/y,w/z}
to match U(v,w) in the expansion of V2(u,v,v’) and the query atom U(y,z), the sit-
uation is different for checking whether it can be extended to cover the other query atoms
R(x,z) and T(z,y) containing occurrences of the variable z. Extending the variable
mapping {v/y,w/z} to match R(x,z) with the atom R(v’,w) is possible by adding
the variable mapping v′/x. Now, extending the variable mapping {v/y,w/z,v′/x} to
match T(z,y) with the atom T(w,u) is also possible by adding the variable mapping
u/y. The resulting variable mapping is: {v/y,w/z,v′/x,u/y}. And, V2(y,y,x) is
retained as a rewriting of the corresponding part of the query: a MCD is created for it,
with in addition the positions of the atoms in the query it covers:

MCD1 = (V2(y,y,x)) , {1,2,3})

The last iteration of building MCDs corresponds to the last query atom: R(y’,x). The
LAV mapping V1 has in its expansion the atom R(v,u) that can be matched to it by the
variable mapping {v/y′,u/x)}. Since the distinguished variable x in the query is assigned to
the distinguished variable (same condition as for adding to a bucket), and since the existential
variable y’ of the query atom has a single occurrence in the query, the following MCD is
created:

MCD2 = ((V1(x,y’), {4})

In contrast, there is no MCD created for R(y’,x) with the second LAV mapping: in the
variable mapping {v′/y′,w/x)} that allows to match the query atom R(y’,x) with the atom
R(v’,w) in the expansion of V2, the distinguished variable x in the query is assigned to the
variable wwhich is not distinguished in the expansion of of V2. As for adding a view atom in a
bucket, a MCD is created for a query atom g only if the variables mapped to the distinguished
variables of g are also distinguished variables in the view defining the mapping.

.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 208

Second step of Minicon: combination of the MCDs

The second step of Minicon replaces the combination of the buckets by the combination of the
MCDs. More precisely, the rewritings are obtained by combining MCDs that cover mutually
disjoint subsets of query atoms, while together covering all the atoms of the query.

Because of the way in which the MCDs were constructed, the rewritings obtained that
way are guaranteed to be valid. No containment checking is needed, unlike in the Bucket
Algorithm. In our example, we would therefore obtain as single rewriting of q(x):

r(x) :- V2(y,y,x), V1(x,y’)

9.4.3 The Inverse-rules algorithm

This algorithm takes a radically different approach. It transforms the LAV mappings into
GAV mappings (called inverse rules) so that the complex operation of query rewriting using
LAV mappings can then be replaced by the much simpler operation of query unfolding. A
LAV mapping is replaced by several GAV mappings, one for each atom in the body of the rule.
The subtlety is to keep bindings between the different occurrences of the same existential
variable in the body. This is realized using a simple trick from first-order logic, namely by
introducing Skolem functions.

Let us explain the Inverse-rules algorithm on the example we used for Minicon. A first
important point that distinguishes it from the Bucket and Minicon algorithms is that the
Inverse-rules algorithm is independent of the query. It only considers as input the set of LAV
mappings:

V1(u,v) ⊆ T(w,u), U(v,w), R(v,u)
V2(u,v,v’) ⊆ T(w,u), U(v,w), R(v’,w).

Consider the first LAV mapping and recall that its logical meaning mapping is the formula:

∀u∀v[V1(u,v)⇒ ∃w (T(w,u)∧ U(v,w)) ∧ R(v,u))]

Suppose we know that (a,b) belongs to the source relation V1. From the fact V1(a,b), we
can infer the fact R(b,a), i.e., that the tuple (b,a) is in the extension of the global relation
R, and thus that, for instance, b is an answer for the global query q(x) :- R(x,y).

But we can infer much more. We can also infer that there exists some constant d1 such
that T(d1,a) and U(b,d1) are both true. We do not know the exact value of that constant
d1, but we know it exists and that, in some way, it depends on the constants a,b. Since this
dependency comes from the first rule, we denote this unknown d1 value: f1(a,b).

Creating the inverse rules This motivates the construction of three following GAV mappings
for which we give also the FOL translation.

IN11 : V1(u,v)⊆ T(f1(u,v),u) FOL(IN11) : ∀u∀v[V1(u,v)⇒ T(f1(u,v),u)]
IN12 : V1(u,v)⊆ U(v,f1(u,v)) FOL(IN12) : ∀u∀v[V1(u,v)⇒ U(v,f1(u,v))]
IN13 : V1(u,v)⊆ R(v,u) FOL(IN13) : ∀u∀v[V1(u,v)⇒ R(v,u)]

They are called the inverse rules of the corresponding LAV mapping.

For personal use only, not for distribution. 209

In the previous rules, the symbol f1 is a Skolem function of arity 2, and f1(u,v) is a
Skolem term denoting some constant that depends on the values instantiating the variables
u,v. Given two distinct Skolem terms, e.g. f1(1,2) and f1(2,v3), we cannot tell whether
they refer to the same constant or not.

The Inverse-rules algorithm just scans the LAV mappings and creates n GAV mappings for
each LAV mapping having n atoms. The result of this algorithm applied to the second LAV
mappings in the example is:

IN21 : V2(u,v,v’)⊆ T(f2(u,v,v’),u)
IN22 : V2(u,v,v’)⊆ U(v,f2(u,v,v’))
IN23 : V2(u,v,v’)⊆ R(v’,f2(u,v,v’))

Obtaining the rewritings by unfolding: The rewritings of any global query is now obtained
by unfolding the query atoms using the (Inverse-rules) GAV mappings corresponding to the
initial set of LAV mappings. The unfolding operation here is a bit trickier than the unfolding
defined in Definition 9.3.3, because of the Skolem terms. In Definition 9.3.3, the unfolding
was based on matching each query atom G(x1, .., xm) with an atom (in the right-hand
side of a GAV mapping) of the form G(z1, .., zm) by equating each pair (zi, xi) of
variables. Proposition 9.3.6 showed that unfolding each atom of the query in isolation builds
valid rewritings of the query, i.e., conjunctions of view atoms which logically implies the
conjunction of the query atoms. It is not the case anymore when atoms in the right-hand side
of GAV mappings contain Skolem terms.

The unification of two atoms with functions is more complex than just equating variables,
and it may fail. It may require the substitution of some variables with functional terms (in
our case, Skolem terms). This may make impossible to unify the other atoms of the query
with atoms in the right-hand side of GAV mappings.

Let us illustrate on our example the subtleties of unfolding queries in presence of functional
terms. Consider again the same query q:

q(x) :- U(y,z), R(x,z), T(z,y), R(y’,x).

The query atom U(y,z) can be unified with the atom U(v,f1(u,v)) in the right-hand side
of the GAV mappings IN12 using a so-called most general unifier (mgu). In this case, the mgu
is the substitution:

σ = {y/v1, v/v1, z/f1(v2,v1), u/v2}

where v1 and v2 are new fresh variables introduced in order to avoid name conflict between
variables that would generate unnecessary constraints. The substitution σ is a unifier of the
two expressions U(y,z) and U(v,f1(u,v)) because the replacement in the two expressions
of the occurrences of the variables y, v, z and u by the corresponding term (variable or Skolem
term) in σ results in two identical expressions:

σ(U(y,z)) = σ(U(v,f1(u,v)))

This substitution that makes the unfolding of the first query atom possible, now constrains
the other occurrences in the query of the variables y and z for the unfolding of the other query

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 210

atoms. After the application of σ to the whole body of the query and the unfolding of the first
query atom made possible by σ, we obtain the following (partial) query rewriting:

pr1(x) :- V1(v2,v1), R(x,f1(v2,v1)), T(f1(v2,v1),v1), R(y’,x).

The unfolding of the second atom R(x,f1(v2,v1)) yields V1(f1(v2,v1),x), and we
obtain the (partial) rewriting:

pr2(x) :- V1(v2,v1), V1(f1(v2,v1),x), T(f1(v2,v1),v1), R(y’,x).

It is useless to continue unfolding the remaining query atoms of pr2(x). As soon as
a given unfolding has produced a view atom with Skolem terms, we can be sure that the
evaluation of the query plan under construction will not produce any answer: there is no
way to match V1(f1(v2,v1),x) with any fact in the data source which are of the form
V1(a,b) where a,b are constants. Since we don’t know f1(v2,v1), there is absolutely no
reason to believe that it is equal to a.

Using the inverse rule IN23 to unfold R(x,f1(v2,v1)) does not help because unifying
R(x,f1(v2,v1)) and R(v’,f2(u,v,v’)) fails because of the two different Skolem func-
tions. Thus, the (partial) rewriting issued from unfolding U(y,z) using the inverse rule
IN12 is abandoned.

Let us try now to unfold U(y,z) using IN22 made possible by the substitution

σ′ = {y/v1, v/v1, z/f2(v2,v1,v3), u/v2, v’/v3}.

We obtain the following (partial) query rewriting:

pr’1(x) :- V2(v2,v1,v3), R(x,f2(v2,v1,v3)), T(f2(v2,v1,v3),v1), R(y’,x).

Now, unfolding R(x,f2(v2,v1,v3)) using the inverse rule IN23 is possible thanks to the
substitution

σ′′ = {v’/x,v3/x,u/v2,v/v1}.

This leads to the (partial) rewriting:

pr’2(x) :- V2(v2,v1,x), V2(v2,v1,x), T(f2(v2,v1,x),v1), R(y’,x),

in which one of the first two atoms can be dropped.
Now, we examine the unfolding of the query atom T(f2(v2,v1,x),v1), which requires

checking whether T(f2(v2,v1,x),v1) and T(f2(u,v,v’),u) are unifiable. This is the
case thanks to the substitution {v2/v3,u/v3,v1/v3,v/v3,v′/x}, which leads to the (partial)
rewriting:

pr’3(x) :- V2(v2,v1,x), V2(v3,v3,x), R(y’,x),

Again, we can remove the first atom that is redundant and obtain the equivalent (partial)
rewriting:

For personal use only, not for distribution. 211

pr’4(x) :- V2(v3,v3,x), R(y’,x).

Finally the unfolding of R(y’,x) using IN23 leads to the final rewriting:

r1(x) :- V2(v3,v3,x), V1(x,y’).

9.4.4 Discussion

The three algorithms have the same (worst-case) complexity and they guarantee to provide
the correct answer. Some experiments have shown that in practice Minicon outperforms both
Bucket and Inverse-rules. The main advantage of the Inverse-rules algorithm over the Bucket
and Minicon algorithms is that the step producing the inverse rules is done independently of
the queries. Furthermore, the unfolding step can also be applied to Datalog queries, i.e., to
recursive queries.

The common limitation of the three algorithms is that they do not handle additional
knowledge (ontology statements) that can be known about the domain of application. In the
next section, we see how to extend both the Local-As-Views and Global-As-Views approaches
with DL-LITE ontologies, i.e., we consider global schemas that include constraints expressed
as DL-LITE axioms.

9.5 Ontology-based mediators

We first show a negative result: as soon as we add functionality constraints over the global
schema, the number of conjunctive rewritings of a query to be considered, may become
infinite. This is a severe limitation for extending the LAV or GAV approaches since such
constraints are rather natural. So these approaches to data integration fail when we consider
the DL-LITEF dialect of previous chapters. On the positive side, we show how to extend the
GAV and LAV approaches to constraints expressible in DL-LITER.

9.5.1 Adding functionality constraints

We illustrate on an example the problem raised by taking into account functionality constraints
in the global schema. Let us consider a global schema with one unary relation C and two
binary relations R and R’. In both R and R1, we impose that the first attribute is a key. Let us
consider two LAV mappings:

V1: S(P,N)⊆ R(P,A), R1(N,A)
V2: V(P)⊆ C(P)

and the following query:
q(x) :- R(x,z), R(x1,z),C(x1).

The three previous algorithms (Bucket, Minicon, and Inverse-rules) would return no rewriting
at all for q. The proof is left as an exercise. However, we next show that the following rewriting
is valid:

r1(x) :- S(x,v1),S(x1,v1),V(x1)

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 212

To prove it, we expand r1(x) and show that the resulting expansion together with the logical
axiom expressing the functionality of R1 logically implies the conjunction of atoms in the body
of the query. The expansion of r1(x) is:

Exp_r1(x) :- R(x,y1),R1(v1,y1),R(x1,y′1),R1(v1,y′1),C(x1)

Now, if we ignore the functional dependencies, it is not true that Exp_r1 ⊆ q. But knowing
them, the inclusion holds. Indeed, the logical axiom expressing the functionality of R1 is:

∀y∀z1∀z2 [R1(y,z1) ∧ R1(y,z2)⇒ z1 = z2]

Therefore, it can be inferred from R1(v1,y1) and R1(v1,y′1) in the body of Exp_r1(x) that
y1 = y′1, and thus:

Exp_r1(x) :- R(x,y1),R1(v1,y1),R(x1,y1),R1(v1,y1),C(x1)

Hence Exp_r1 ⊆ q with ψ mapping x, x1,z to x, x1,y1, respectively. Thus r1(x) is a valid
rewriting of q(x).

It is important to note that to properly check containment, the standard query containment
algorithm seen in the previous section would have to be modified in a standard manner to
take into account functional dependencies. Intuitively, one would have to proceed pretty
much as we did in the example, equating variables as implied by the functional dependencies.

It turns out that the situation is even more subtle. Surprisingly, this rewriting r1(x) is not
the only one. In fact there exists an infinite number of different rewritings for q(x). Let k≥ 2.
The following query is a valid rewriting of q(x):

rk(x) : S(x,vk),S(xk,vk),S(xk,vk−1),S(xk−1,vk−1), . . . ,S(x2,v1),S(x1,v1),V(x1)

The expansion of rk(x) is:

Exp_rk(x) :- R(x,yk), R1(vk,yk),
R(xk,y′k), R1(vk,y′k),
R(xk,yk−1), R1(vk−1,yk−1),
R(xk−1,y′k−1), R1(vk−1,y′k−1),
. . . , . . .
R(x2,y1), R1(v1,y1),
R(x1,y′1), R1(v1,y′1), C(x1).

To show that this expansion is logically contained in q, we exploit the axioms of functionality
of both R and R1. Since R1 is functional, we get: yk = y′k, and since R is functional, we get:
y′k = yk−1. By induction, we obtain yk = y′k = yk−1 = y′k−1 = · · · = y1 = y′1, and in particular:
yk = y′1. Thus Exp_rk ⊆ q(x). This implies that rk(x) is a valid rewriting of q(x).

One can also show that for each k, each such rewriting may return answers that are not
returned with k − 1. Thus, there exists an infinite number of non redundant conjunctive
rewritings. The reader familiar with Datalog will observe that this infinite collection of
rewritings can be captured in Datalog by the following recursive rewriting:

r(x) :- S(x,v),S(x1,v),V(x1)
r(x) :- S(x,v), P(v,u),S(x1,u),V(x1)
P(v,u) :- S(z,v),S(z,u)
P(v,u) :- S(z,v),S(z,w), P(w,u)

The question of building automatically such conjunctive rewritings is out of the scope of this
book (see Section 9.7).

For personal use only, not for distribution. 213

9.5.2 Query rewriting using views in DL-LITER

Querying data through DL-LITER ontologies has been detailed in the previous chapter. It
has been shown how the positive and negative constraints expressed in the ontology are
exploited both for data consistency checking and for query answering. In particular, the first
step of query answering is the query reformulation step which is performed by the PerfectRef
algorithm: using the positive constraints, called the PIs, it computes a set of reformulations,
which are then evaluated over the data to produce the answer set of the original query. The
negative constraints, called the NIs, are used to check data consistency, by translating each
(declared or entailed) NI into a Boolean conjunctive query qunsat that must be evaluated over
the data.

In this section, we show how to extend both the LAV and GAV approaches to rewrite
queries in term of views when the global schema includes some DL-LITER Tbox.

Two observations explain how this can be realized:

1. First, one can obtain the answer set of a query q(~x) by computing the union of the
answer sets returned by the evaluation over the local data sources of the (GAV or LAV)
relational rewritings of each reformulation of q(~x) as computed by PerfectRef(q(~x),PI).

2. The rewritings that are obtained may be inconsistent with the negative constraints NI
declared or inferred in the Tbox. Therefore, the consistency of each rewriting r(~x) has
to be checked. This can be done by checking containment between the Boolean query
∃~x Exp_r(~x) (where Exp_r(~x) is the expansion of r(~x)) and each of the Boolean queries
qunsat obtained from the NIs.

These two observations follow from the completeness of the PerfectRef and Consistent algo-
rithms for DL-LITER presented in the previous chapter, and that of the rewriting algorithms
of Sections 9.3 and 9.4; namely Unfolding for GAV, Minicon, Bucket or Inverse-rules for LAV.

The argument may be somewhat too abstract for some readers. We next illustrate these
two points with examples. We use the global schema considered in Example 9.4.2 page 201,
enriched with the DL-LITER Tbox of Figure 9.3. Note in particular that we add the subclass
College of the class University, the subproperty EnrolledInCollege of the property RegisteredTo,
for which the domain is declared as being the class MasterStudent. In addition, we add
the property EnrolledInMasterProgram that we declare as a subproperty of the property
EnrolledInProgram. Finally, we declare a mandatory property for the class College: any college
must have students enrolled in it.

GAV and DL-LITER

We revisit Example 9.3.2 by adding the data source S5 giving the list of French so-called
Grandes Ecoles. Its local schema is made of the local relation: S5.GrandeEcole(nomEcole).
According to this new source and also to the enriched global schema of Figure 9.3, we add
the following GAV mappings to the ones already considered in Example 9.3.2:

College(U) ⊇ S5.GrandeEcole(U)
EuropeanStudent(N) ⊇ S2.Erasmus(N,C,U)
NonEuropeanStudent(N) ⊇ S3.CampusFr(N,P,U)

Consider again the global query looking for universities with registered master students:

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 214

DL notation FOL notation
PIs:
MasterStudentv Student MasterStudent(X)⇒ Student(X)
EuropeanStudentv Student EuropeanStudent(X)⇒ Student(X)
NonEuropeanStudentv Student NonEuropeanStudent(X)⇒ Student(X)
Collegev University College(X)⇒ University(X)
FrenchUniversityv University FrenchUniversity(X)⇒ University(X)
EuropeanUniversityv University EuropeanUniversity(X)⇒ University(X)
NonEuropeanUniversityv University NonEuropeanUniversity(X)⇒ University(X)
∃EnrolledInCollegevMasterStudent EnrolledInCollege(X,Y)⇒MasterStudent(X)
Collegev ∃EnrolledInCollege− College(X)⇒ ∃YEnrolledInCollege(Y,X)
EnrolledInCollegev RegisteredTo EnrolledInCollege(X,Y)⇒ RegisteredTo(X,Y)
MasterStudentv ∃EnrolledInMasterProgram MasterStudent(X)⇒ ∃YEnrolledInMasterProgram(X,Y)
∃EnrolledInMasterProgram− v MasterProgram EnrolledInMasterProgram(X,Y)⇒ MasterProgram(Y)
EnrolledInMasterProgramv EnrolledInProgram EnrolledInMasterProgram(X,Y)⇒ EnrolledInProgram(X,Y)
NIs:
NonEuropeanStudentv ¬EuropeanStudent NonEuropeanStudent(X)⇒¬EuropeanStudent(X)
NonEuropeanUniversityv ¬EuropeanUniversity NonEuropeanUniversity(X)⇒¬EuropeanUniversity(X)
NonEuropeanUniversityv ¬FrenchUniversity NonEuropeanUniversity(X)⇒¬FrenchUniversity(X)

Figure 9.3: A DL-LITER Tbox enriching the global schema of Example 9.4.2

q(x) :- RegisteredTo(s,x), MasterStudent(s)

It is left as an exercise to show that the application of the PerfectRef(q(x), PI) algorithm
returns, in addition to q(x) itself, the reformulation:

q1(x) :- College(x)

By unfolding q(x), we obtain the same two rewritings as in Example 9.3.2:

r1(x) :- S3.CampusFr(s,v1,x), S2.Erasmus(s,v2,v3), S4.Mundus(v4,v2)
r2(x) :- S3.CampusFr(s,v6,x), S4.Mundus(v6,v8)

By unfolding the reformulation q1(x), we get the additional rewriting:

r3(x) :- S5.GrandeEcole(x)

It is important to note that even if we had the GAV mapping

College(U) ⊇ S5.GrandeEcole(U),

the rewriting r3(x) would not have been obtained without reformulated first the initial
query q(x) into q1(x).

Now, in contrast with the standard GAV approach, we have to check the consistency of
each of these rewritings. To do so:

For personal use only, not for distribution. 215

• We first compute the closure of the NI and we translate them into Boolean queries qunsat
(as explained in detail in Section 8.4 of Chapter 8). This is independent of the rewritings
and can be performed at compile time given the Tbox. From the Tbox in Figure 9.3, we
obtain only three Boolean queries qunsat:

q1
unsat :- NonEuropeanStudent(x), EuropeanStudent(x)

q2
unsat :- NonEuropeanUniversity(x), EuropeanUniversity(x)

q3
unsat, :- NonEuropeanUniversity(x), FrenchUniversity(x)

• At query time, we check the consistency of each rewriting by applying the Consistent
algorithm to the canonical instance obtained by expanding each rewriting and freezing
its variables (as explained in detail in Section 8.4 of Chapter8).

We illustrate the consistency check by checking the consistency of the rewriting r1(x).
First, its expansion replaces each of its local atoms S(~z) with the conjunction of global atoms of
the form G(~z) that can be produced by a GAV mapping G(~x) ⊇ S(~x), if such GAV mappings
exist. For expanding r1(x), we apply the following GAV mappings:

NonEuropeanStudent(N) ⊇ S3.CampusFr(N,P,U)
University(U) ⊇ S3.CampusFr(N,P,U)
RegisteredTo(N,U) ⊇ S3.CampusFr(N,P,U)
EuropeanStudent(N) ⊇ S2.Erasmus(N,C,U)
University(U) ⊇ S2.Erasmus(N,C,U)
MasterProgram(T) ⊇ S4.Mundus(T,C)
MasterCourse(C) ⊇ S4.Mundus(T,C)

As a result, we obtain the following expansion for r1(x):

Exp_r1(x) :- NonEuropeanStudent(s), University(x), RegisteredTo(s,x),
EuropeanStudent(s), University(x), MasterProgram(v4),
MasterCourse(v2)

We then apply the Consistent algorithm. For this, we evaluate q1
unsat, q2

unsat and q3
unsat over

the body of Exp_r1(x) seen as a relational database; i.e., we freeze its atoms to obtain a
canonical instance. Query q1

unsat returns true, so an inconsistency has been detected and the
rewriting r1(x) is rejected.

LAV and DL-LITER

We revisit Example 9.4.2 by adding the same data source S5 as in Section 9.5.2. The GAV
mapping is also a LAV mapping: S5.GrandeEcole(U) ⊆ College(U)

Consider again the global query considered in Section 9.4.1:

q(x) :- RegisteredTo(s,x), EnrolledInProgram(s,p), MasterProgram(p)

It is left as an exercise to show that the application of the PerfectRef(q(x), PI) algorithm
returns, in addition to q(x) itself, the following reformulation:

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 216

q1(x) :- College(x)

By applying the Minicon algorithm1 to the initial query q(x), we obtain the following
rewriting (as shown in Section 9.4.1):

r2(x) :- S3.CampusFr(s,v1,x), S3.CampusFr(s,p,v2),S4.Mundus(p,v5)

By applying the Minicon algorithm to the reformulation q1(x) of the initial query, we
obtain the additional rewriting:

r3(x) :- S5.GrandeEcole(x)

As for the extended GAV approach, the consistency of LAV rewritings is not guaranteed
because of the NIs in the Tbox. We follow the same approach: at compile time, the closure
of the NIs is computed and each (declared or inferred) NI is compiled into a Boolean query
qunsat. At query time, each of these qunsat queries is evaluated over the canonical instance
corresponding to each rewriting.

9.6 Peer-to-Peer Data Management Systems

In contrast with the centralized mediator model, a Peer-to-Peer data management system
(PDMS for short) implements a decentralized view of data integration, in which data sources
collaborate without any central authority. In a PDMS, each collaborating data source can
also play the role of a mediator, so is at the same time a data server and a client for other
data sources. Thus each participant to the system is a peer and there are mappings relating
data from the different peers. A PDMS architecture is therefore very flexible in the sense that
there is no need for a global schema defining in advance a set of terms to which each data
source needs to adhere. Over time, data sources can join or leave the PDMS just by adding
or removing mappings between them. PDMS are inspired by P2P file sharing systems but
they enable answering fine-grained queries. Like in the mediator model, answering queries is
performed by reformulating queries based on the mappings, but in a decentralized manner.

Each peer in a PDMS has a peer schema composed of peer relations and peer mappings that
relate its schema to the schemas of other peers. To avoid confusing relations from different
peers, we assume that each relation of peer p is of the form r@p for some local relation
name r. A query to a PDMS is posed using the peer schema of one of the peers. A query is
asked to a particular peer, as a query over his particular schema. It is reformulated using the
peer mappings into a set of queries that may refer to other peer relations. This captures the
intuition that we want to use the information available in the entire P2P system to answer the
query.

For designing the mappings, the distinction made in the mediator model between local
and global relations does not make sense anymore, since each peer relation may play the
role at different times both of a local relation and of a global relation. Therefore, the notions

1The same holds for the Bucket or Inverse-rules algorithm.

For personal use only, not for distribution. 217

of GAV and LAV mappings are relaxed to the more appropriate symmetric notion of GLAV
mappings.

Definition 9.6.1 (GLAV mapping) Let S@i and S@j be the peer schemas of two peers i and j. A
GLAV mapping between these two peers is an inclusion axiom of the form: qi(~x) ⊆ qj(~x), where
qi(~x) and qj(~x) are conjunctive queries over the peer schema S@i, S@j, respectively.

Let qi(~x,~yi) and qj(~x,~yj) be the bodies of qi(~x) and qj(~x)), respectively. The semantics of the GLAV
mapping qi(~x) ⊆ qj(~x) is: ∀~x[∃~yi qi(~x,~yi)⇒ ∃~yj qj(~x,~yj)].

In database terms, a GLAV mapping qi(~x) ⊆ qj(~x) expresses that answers obtained by
asking qi(~x) at peer i should also be considered as answers to qj(~x) asked at peer j. Note
that with this semantics, each local query is assumed to be incompletely answered with local
data since external data may bring in new information to it. As already mentioned, such an
open-world assumption is fully appropriate for Web data.

We next show one negative and one positive result for PDMSs. In Section 9.6.1, we show
that in general, answering queries with GLAV mappings is undecidable, so without further
restriction, answering queries in a PDMS is undecidable. In Section 9.6.2, we show that if we
restrict the peer mappings to be DL-LITER inclusion axioms, a decentralized version of the
algorithm for DL-LITER can be used to answer queries in DL-LITER PDMSs.

9.6.1 Answering queries using GLAV mappings is undecidable

We show that the Dependency Implication Problem (more precisely, the problem of the impli-
cation of an inclusion dependency from a set of inclusion and functional dependencies) can
be reduced to the GLAV Query Answering Problem, i.e., the problem of answering queries
in presence of GLAV mappings. Since the Dependency Implication Problem is known to be
undecidable, this shows that the GLAV Query Answering Problem is also undecidable.

The reduction technique is standard for proving undecidability results. We first recall how
it works and also recall the Dependency Implication Problem. We believe that these notions are
important to know beyond the scope of this book. Finally, we use a reduction to show the
undecidability of answering queries using GLAV mappings.

Reduction from a decision problem B to a decision problem B’

Let B be a Boolean function over a set X. The decision problem B is decidable if there exists an
algorithm (in any computation model equivalent to Turing machines) that terminates on any
input x ∈ B and returns “true” if and only if B(x) is true.

Let B, B′ be two decision problems. A reduction from B to B’ is an algorithm f computing a
function (also denoted f) from X to X’ such that: B(x) is true⇔ B’(f(x)) is true.

It is immediate to see that if there is a reduction f from B to B′:

• if B′ is decidable then B is. Suppose B′ is decidable. Let fB′ be an algorithm that given
some x′ ∈ X′, decides whether B′(x′) holds. Then for each x, B(x) is true if fB′(f (x)) is
true. This provides an algorithm for deciding for any x if B(x) is true.

• (The contraposite) if B is undecidable, then B′ is also undecidable.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 218

The Dependency Implication Problem

We recall the class of dependencies that are used. Let R be a relation of arity n. Then:

Functional dependencies. A functional dependency over R is an expression R : i1...im→ j, where
1≤ i1, ..., im, j≤ n, for n = arity(R). An instance I over R satisfies R : i1...im→ j if for each
tuples 〈a1, ...an〉, 〈b1, ...bn〉 in I,

if for each k ∈ [1..m], aik = bik , then aj = bj.

Inclusion dependencies. An inclusion dependency over R1, R2 is an expression R1 : i1...im ⊆ R2 :
j1...jm, where the ik are distinct, the jk are distinct, 1≤ i1, ..., im ≤ arity(R1), 1≤ j1, ..., jm ≤
arity(R2). An instance I over {R1, R2} satisfies R1 : i1...im ⊆ R2 : j1...jm if for each tuple
〈a1, ..., an〉 in I(R1), there exists a tuple 〈b1, ..., bn′〉 in I(R2) such that for each k, 1≤ k≤m,
aik = bjk .

We will use the following known result:

Theorem 9.6.2 (Undecidability of the Dependency Implication Problem). Let R = {R1, ..., Rn} be
a relational schema. Given a set Σ of functional and inclusion dependencies and an inclusion
dependency σ over relations in R, one cannot decide whether Σ |= σ (i.e., whether each
instance over R satisfying Σ also satisfies σ).

The problem is undecidable when Σ contains both functional and inclusion dependencies.
Note that the implication problem is decidable for functional dependencies alone, and for
inclusion dependencies alone. Undecidability arises when they are considered together.

Undecidability of the GLAV Query Answering Problem

The GLAV Query Answering Problem is to decide, given a PDMS N defined using a set of
GLAV mappings and a query asked at one of the peers whether some particular tuple is in its
answer.

Let us define a reduction from the Dependency Implication Problem to the GLAV Query
Answering Problem. If we show that such a reduction exists, since the Dependency Implication
Problem is undecidable, this will show that the GLAV Query Answering Problem is undecidable.

Surprisingly, we can show the reduction for a PDMS with a single peer. To do that, we will
use some GLAV mapping of the form q@P ⊇ q′@P, where both sides of the mapping involve
the same peer. Note that the undecidability still holds if such “self” mappings are forbidden.
Indeed, we can simulate such a mapping by using “clones” of relations. For instance, suppose
that we want to enforce the mapping R@P(x1, ..., xn) ⊇ R′@P(y1, ...,yn). Then we can use a
dummy site P̂ and a copy R̂@P̂ of R@P with the mappings:

R@P(x1, ..., xn) ⊇ R̂@P̂(x1, ..., xn)

R̂@P̂(x1, ..., xn) ⊇ R@P(x1, ..., xn)

R̂@P̂(x1, ..., xn) ⊇ R′@P(y1, ...,yn)

So, in the rest of this proof, we consider a single peer, say P, with possibly self mappings. To
simplify a relation R@P is simply denoted R.

Let (Σ,σ) be an instance over {R1, ..., Rn} of the Dependency Implication Problem with Σ a
finite set of functional and inclusion dependencies, and σ an inclusion dependency. We build
a PDMS N defined as follows:

For personal use only, not for distribution. 219

• For each relation Ri, the peer P has a relation Ri.

• For each inclusion dependency R1 : i1...im ⊆ R2 : j1...jm in Σ, we add the GLAV mapping
q1 ⊆ q2, where:

q1(x1, ..., xm) :- R1(~u)
q2(x1, ..., xm) :- R2(~v)

where ~u has xk in position ik for each k and some existential variable xi
j in each other

position j; and similarly for ~v and jk.

• For each functional dependency Ri : i1...im→ j in Σ, we add the GLAV mapping q ⊆ q′

where q,q′ are defined by:

q(xi1 , ..., xik , xj, x′j) :- Ri(x1, ..., xk), Ri(x′1, ..., x′k), xi1 = x′i1 , ..., xik = x′ik

q′(xi1 , ..., xik , xj, x′j) :- Ri(x1, ..., xk), Ri(x′1, ..., x′k), xi1 = x′i1 , ..., xik = x′ik
,xj = x′j

for some distinct sets x1, ..., xk and x′1, ..., x′k of variables.

It is easy to see that the GLAV mappings force each Ri to satisfy the functional dependencies
of Ri, and each Ri, Rj to satisfy the inclusion dependencies between Ri and Rj.

Let us assume that σ = Ri : i1 ⊆ Rj : j1 for some Ri of arity n. (This is without loss of
generality since the implication is already undecidable when σ is unary).

Let Ext(Ri) be the set of tuples t of arity n with values in [1..n] such that:

• t[i1] = 1, for every tuple t in Ext(Ri),

• each tuple t in Ext(Ri) represents an equality pattern between values in tuples of size n.

For instance if n = 3 and i1 = 2, Ext(Ri) = {〈1,1,1〉, 〈1,1,2〉, 〈2,1,1〉, 〈2,1,2〉, 〈2,1,3〉}.
We construct an instance (N , Ext(Ri),q) of the GLAV Query Answering Problem where q is

the query defined by q(x) :- Rj(y1, ..., x, ...yk) where the distinguished variable x is in position
j1, and the existential variables yi are pairwise distinct.

We show that Σ |= σ iff 1 is an answer to q in the PDMSN in which the only data is Ext(Ri).

(⇒) Suppose that Σ |= σ. Let I be a model of Ext(Ri) satisfying the GLAV mappings of N .
By construction of those GLAV mappings, I is a model of Σ. Because Σ |= σ, I is a model of
σ, and thus for each tuple 〈a1, ..., an〉 in I(Ri), there exists a tuple 〈b1, ...,bk〉 in I(Rj) such that
ai1 = 1 = bj1 . Therefore, I |= ∃y1, ...,ykRj(y1, ...,1, ...yk), i.e., I |= q(1). Thus 1 is an answer to q
given the GLAV mapping of N and the extension Ext(Ri).

(⇐) Conversely, suppose that 1 is an answer to q given the GLAV mapping of N and the
extension Ext(Ri). Note that 1 is also an answer to q if the extension of Ri is reduced to any
tuple of the original Ext(Ri). Suppose that Σ 6|= σ: there exists an interpretation I that satisfies
Σ in which σ is not satisfied. This means that there exists a tuple 〈e1, ..., e, ...en〉 (where e is
in position i1) in I(Ri) such that there does not exists a tuple in I(Rj) with the value e in
position j1. Let t be the tuple of Ext(Ri) which corresponds to the equality pattern between
values of 〈e1, ..., e, ...en〉. By extending I to interpret each value of t by the element ei at the
same position in 〈e1, ..., e, ...en〉, we obtain a new interpretation I′ that satisfies Σ and thus each
GLAV mapping ofN , and Ri(t). Since 1 is an answer to q given the GLAV mapping ofN and
Ri(t), I′ |= q(1), i.e., I′(1) ∈ I′(Rj[j1]). Since I′(1) = e and I′(Rj) = I(Rj), it means that there
exists a tuple in I(Rj) with the value e in position j1, which contradicts our assumption that σ
is not satisfied in I. Hence Σ |= σ. 2

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 220

9.6.2 Decentralized DL-LITER

If we restrict the GLAV mappings in a PDMS to be inclusion statements that are expressible in
DL-LITER, we get what we will call a DL-LITER PDMS. The decidability of query answering
over a DL-LITER PDMS results from the algorithmic machinery described in the previous
chapter for answering queries over DL-LITER knowledge bases. Given a query posed to a
given peer, the application of the PerfectRef algorithm to the set of all the GLAV mappings
in the PDMS provides a set of reformulations. The union of the answer sets obtained by
evaluating each reformulation provides the answer set of the initial query. Note that a
reformulation is of the form:

R1@i1(~z1), . . ., Rk@ik(~zk)

where the different conjuncts Rj@ij(~zj) may refer to relations of different peer schemas.
Therefore, the evaluation of each reformulation may require the interrogation of different
peers and the combination of the answers returned by each such sub-queries.

This provides a centralized algorithm for computing the reformulations of answering
queries over a decentralized DL-LITER knowledge base. We next present a decentralized
algorithm that computes exactly the same thing, i.e., we present a decentralized version of
the PerfectRef algorithm seen in the previous chapter in order to deploy effectively DL-LITER
PDMSs that avoids having to centralize all the GLAV mappings.

We denote PerfectRef i(q) the reformulation algorithm running on the peer Pi applied to
a query q (asked to the peer Pi). The main procedure is the decentralized reformulation of
each atom of the query using the positive inclusion statements that are distributed over the
whole PDMS. Let us denote AtomRef i(g) the reformulation algorithm running on the peer Pi
to reformulate the atom g (built on a relation of the schema of the peer Pi).

Within each peer Pi we distinguish the local positive inclusion axioms of the form Ci ⊆ Di
where Ci and Di are built over relations in the schema of the peer Pi, from the mappings which
are positive inclusion mappings of the form Cj ⊆ Di or Di ⊆ Cj where Cj denotes a relation of
another peer Pj (while Di refers to a relation in the schema of the peer Pi).

Let us denote LocalRe f (g, PIi) the result of the reformulation of the atom g using the
set PIi of local positive inclusion atoms of the peer Pi. We refer to the previous chapter
(Definition 8.4.7, Section 8.4) for the computation of LocalRe f (g, PIi) by backward application
of the local PIs.

We just recall here that gr(g, I) denotes the reformulation of the atom g using the positive
inclusion axiom I. We also recall that the atoms g that can be found as conjunct of a query q
over a DL-LITER PDMS are of the following forms:

• A@i(x) where A@i is a unary relation in the schema of a peer Pi and x an (existential or
qualified) variable

• P@i(x,_), P@i(_, x) or P@i(x,y) where P@i is a binary relation in the schema of a peer
Pi, and _ denotes an unbounded existential variable of the query, while x and y denote
qualified variables or existential variables which are bounded in the query.

Running the algorithm AtomRef i on the peer Pi for reformulating the atom g consists
first in computing the set LocalRe f (g, PIi) of local reformulations of g, and then, for each
mapping m with a peer Pj applicable to a local reformulation g′, in triggering the application

For personal use only, not for distribution. 221

of AtomRef j(gr(g′,m)) on Pj (by sending a message to Pj). Other peers Pk may be solicited in
turn to run locally AtomRef k.

A loop may occur if a request of reformulation of an atom g initiated by a given peer P
generates a branch of requests reaching a peer P′ which in turn requests P to reformulate g.
Such loops can be easily handled by transmitting with every request the history of the current
reasoning branch. More precisely, an history hist is a sequence [(gk, Pk), . . . , (g1, P1)] of pairs
(gi, Pi) where gi is an atom of a peer Pi such that for each i ∈ [1..k− 1], gi+1 is a reformulation
of gi using a mapping between Pi and Pi+1.

This is summarized in Algorithm 6, which is the atom reformulation algorithm with history
running on Peer i.

Algorithm 6: The decentralized algorithm with history for reformulating atoms
AtomRefHisti(g, hist)
Input: An atom g in the vocabulary of the peer Pi, an history hist
Output: The set of its reformulations in the PDMS: R
(1) R← ∅
(2) if (g, Pi) ∈ hist return R
(3) else
(4) Let PIi be the local PIs of the peer Pi
(5) Let Mi be the mappings between the peer Pi and other peers
(6) for each g′ ∈ LocalRe f (g, PIi)
(7) for each mapping m ∈ Mi between Pi and a peer Pj applicable to g′

(8) R← R ∪ AtomRe f Histj(gr(g′,m), [(g, Pi)|hist])

Algorithm 7 is the atom reformulation algorithm (denoted AtomRef i) running on peer Pi,
which just calls AtomRefHisti with an empty history.

Algorithm 7: The decentralized algorithm for reformulating atoms
AtomRef i(g)
Input: An atom g in the vocabulary of the peer Pi
Output: The set of its reformulations in the PDMS
(1) AtomRefHisti(g,∅)

The decentralized version of the PerfectRef algorithm that computes all the reformulations
of a conjunctive query q is provided in Algorithm 8. The main difference with the centralized
version is that the simplification of the produced reformulations (which is required for making
some PIs applicable) are delayed after (decentralized) computation of the reformulations of
all the atoms in the query.

We recall here the notation used for denoting the simplification of some atoms within a
query under reformulation, which were introduced in the previous chapter when describing
the PerfectRef algorithm:

• The notation q[g/gr(g, I)] denotes the replacement of the atom g in the body of the
query q with the result gr(g, I) of the backward application of the PI I to the atom g,

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 222

• The operator reduce(q, g, g′) denotes the simplification of the body of q obtained by
replacing the conjunction of its two atoms g and g’ with their most general unifier (if g
and g’ can be unified),

• The operator τ replaces in the body of a query all the possibly new unbounded existential
variables with the anonymous variable denoted _.

For each atom in the query, it computes first (in the decentralized manner explained
previously) the set of all of its reformulations, and then a first set of reformulations of the
original query by building all the conjunctions between the atomic reformulations (denoted
⊕n

i=1AtomRefi(gi) at Line 5). These reformulations are then possibly simplified by unifying
some of their atoms (Lines 8 to 11), and the reformulation process is iterated on these newly
produced reformulations until no simplification is possible (general loop starting on Line 4).

Algorithm 8: The decentralized PerfectRef algorithm running on the peer Pi

PerfectRefi(q)
Input: a conjunctive query q over the schema of the peer Pi
Output: a set of reformulations of the query using the union of PIs and
mappings in the PDMS
(1) PR := {q}
(2) PR′ := PR
(3) while PR′ 6= ∅
(4) (a) foreach q′ = g1 ∧ g2 ∧ . . . ∧ gn ∈ PR′

(5) PR′′ := ⊕n
i=1 AtomRe f i(gi)

(6) PR′ := ∅
(7) (b) foreach q′′ ∈ PR′′

(8) foreach g′1, g′2 ∈ q′′

(9) if g′1 and g′2 unify
(10) PR′ := PR′ ∪ {τ(reduce(q′′, g′1, g′2))}
(11) PR := PR ∪ PR′ ∪ PR′′

(12) return PR

One can prove that the decentralized algorithm computes the same set of facts as the
centralized one, and thus is correct. The proof results (1) from the observation that the
centralized version of PerfectRefi (in which AtomRefi(gi) is computed by iterating the one-
step application of PIs on each atom gi of the query) produces the same results than the
original PerfectRef, and (2) from the completeness of AtomRefi(gi) ensuring the decentralized
computation of all the reformulations of gi.

9.7 Further reading

The Bucket and Minicon algorithms can be extended ([113, 137]) to handle (union of) con-
junctives queries with interpreted predicates. When a query q includes interpreted predicates,
finding all answers to q given the LAV mappings is co-NP hard in the size of the data. This
complexity result shows that answering such queries cannot be fully realized with a finite set
of conjunctive rewriting (unlike what we showed here in absence of interpreted predicates).

For personal use only, not for distribution. 223

The Inverse-rule algorithm does not handle interpreted predicates but is able to build recursive
query plans for data integration [59].

A survey on answering queries using views can be found in [87], and a survey on query
containment for data integration systems in [124].

More material can be found on PDMS in [88, 86].
Distributed reasoning in a peer to peer setting has been investigated in [14] as a basis

for querying distributed data through distributed ontologies [73, 1]. The subtle point that
we have not treated in this chapter concerns consistency checking. In contrast with the
centralized case, the global consistency of the PDMS cannot be checked at query time since
the queried peer does not know all the peers in the PDMS. However, it can get the identifiers
of the peers involved in a reformulation of the query. Then the (local) consistency of the
union of the corresponding knowledge bases can be checked in a decentralized manner. The
important point is that it can be shown that this local consistency is sufficient to guarantee
that the answers obtained by evaluating the reformulations (computed by the decentralized
algorithm that we have described) are well-founded.

The undecidability of the Dependency Implication Problem is shown in [42] even if σ is a
unary inclusion dependency. More on this topic may be found in [9])

9.8 Exercices

Exercise 9.8.1 By applying the query containment algorithm (see Algorithm 4), determine which
query is contained in which one among the three following queries. Are there equivalent queries ? (two
queries q and q′ are equivalent if q is contained in q′ and q′ is contained in q).

q1(x) :- A(x,y), B(x,y’), A(y,z’)

q2(x) :- A(x,y’), A(y’,z), B(x,x)

q3(x) :- B(x,y), A(x,y’), B(z,z’), A(y’,u)

Exercise 9.8.2 Consider a global schema defined by the following relations:
emp(E): E is an employee
phone(E,P): E has P as phone number
office(E,O): E has O as office
manager(E,M): M is the manager of E
dept(E,D): D is the department of E
Suppose that the three following data sources are available for providing data:
Source1 provides the phone number and the manager for some employees. It is modeled by the local

relation s1(E,P,M).
Source2 provides the office and the department for some employees. It is modeled by the local relation

s2(E,O,D).
Source3 provides the phone number of employees of the ’toy’ department. It is modeled by the local

relation s3(E,P).

1. Model the content of these sources by GAV mappings.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 224

2. Model the content of these sources by LAV mappings.

3. Consider the global query asking for Sally’s phone number and office:

q(x,y) :- phone(’sally’, x), office(’sally’, y)

Compute the reformulation of the query in terms of local relations:

• by applying the query unfolding algorithmto the GAV mappings of Question 1,

• by applying the Bucket algorithm to LAV mappings of Question 2.

Which algorithm is easier ?

4. Now Source1 disappears (becomes unavailable) and a new source comes in, that provides the
phone number of their manager for some employees. Do the updates in the GAV and LAV
mappings that are required to take into account these changes. What is the approach (GAV or
LAV) for which updating the mappings between the global and local relations is easier ?

Exercise 9.8.3 Consider the three following LAV mappings:
V1(x) ⊆ cite(x,y), cite(y,x)
V2(x,y) ⊆ sameTopic(x,y)
V3(x,y) ⊆ cite(x,z), cite(z,x), sameTopic(x,z)

1. Provide the FOL semantics of these LAV mappings

2. Suppose that the global relation cite(x,y) means that the paper x cites the paper y, and that the
global relation sameTopic(x,y) means that the two papers x and y have the same topic. Suppose
that each LAV mapping models the content of different available data sources. Express with an
english sentence which information on papers each data source provides.

3. Apply in turn the Bucket, Minicon and Inverse-rule algorithms to compute the different rewrit-
ings of the following query asking for papers that cite and are cited by a paper having the same
topic:

q(u) :- cite(u,v), cite(v,u), sameTopic(u,v)

10 Putting into Practice: Wrappers and Data
Extraction with XSLT

Besides languages to extract information such as XPath or XQuery, languages for transforming
XML documents have been proposed. One of them, XSLT, is very popular. The goal of this PiP
is to expose the reader to this aspect of XML and to languages based on tree-pattern rewriting.
A presentation of XSLT is beyond the scope of this book. The reader can read the present
PiP to get a feeling on standard tasks that are commonly performed with XSLT programs.
Of course, realizing the project that is described requires a reasonable understanding of the
language. Such an understanding can be obtained, for instance, from the companion Web site
of the book, i.e., at http://webdam.inria.fr/Jorge/. More references on XSLT may be
found there.

XSLT is an XML transformation language. Its principles are quite different from that of
XQuery, although they may roughly serve the same purpose: accessing and manipulating
XML content and producing an XML-formatted output. In practice, XQuery is used to
extract pieces of information from XML documents, whereas XSLT is often used to restructure
documents, typically for publishing them in different forms, different dialects. We show in
the present PiP chapter how XSLT can serve to write simple “wrappers” for XML pages. This
is taking us back to data integration. To integrate a number of data sources, the first step is
typically to wrap them all into a uniform schema. Since most data source now export XML,
the wrapping technique considered here can be used in a wide variety of contexts. We focus
in the PiP on HTML pages from the Web, after transforming them into XML.

Any XSLT processor can be used for the exercises of this chapter. Using an XSLT 2.0 proces-
sor, however, will make things much easier: features such as grouping or regular expression
matching are of great help in writing wrappers. Therefore, we recommend, for instance,
the open-source version of SAXON that is available at http://saxon.sourceforge.net/
and on the companion Web site. Applying a stylesheet yin.xsl to a document yang.xml
with SAXON is done with the following command line:

java -cp saxon8.jar net.sf.saxon.Transform yang.xml yin.xsl

10.1 Extracting Data from Web Pages

We first focus on the extraction of data from Web pages:

1. Choose a Web site that presents semi-structured information about some entities such as
products, movies, books, or persons. You should choose a collection of pages where
data follow a fixed template. To simplify your task, properties of these entities should
(at least partly) be clearly presented within the structure of the Web page, as in:

 Chez Chen Chinese food, <i>excellent Beijing Duck</i>

225

http://webdam.inria.fr/Jorge/
http://saxon.sourceforge.net/

For personal use only, not for distribution. 226

rather than simply given in text:

Chez Chen. Chinese food, excellent Beijing Duck.

Here are a few ideas, but you can also select your favorite Web sites:

• The Internet Movie Database (IMDb, http://www.imdb.com/);

• Amazon (http://www.amazon.com/) or any other e-commerce Web site;

• Ethnologue (http://www.ethnologue.com/), a resource on all languages of
the world;

• The Mathematics Genealogy Project (http://genealogy.math.ndsu.nodak.
edu/) that gives the scientific adviser of a given researcher in mathematics and
related fields;

• DBLP (http://www.informatik.uni-trier.de/~ley/db/), or some other
research publication database;

• The Yellow Pages service, or other kinds of phone directories.

A solution is proposed on the companion Web site. More precisely, we provide Web
pages, wrappers, and extracted data for the IMDb Web site. Depending on your
experience in XSLT, you may wish to study them before implementing your own
wrapper, refer to them as you progress, or consult them after finishing the exercises to
compare the approaches.

2. Select in the Web site you chose a few pages with the same structure presenting dif-
ferent entities. Save these Web pages on disk. Make sure your browser does not try
reformatting the Web page: request saving the Web page only or only the HTML.

3. With rare exceptions, HTML pages from the Web, even when supposedly written in
XHTML, the XML-ized variant of HTML, are not well-formed XML documents and
cannot be directly transformed by an XSLT processor. We will use the open-source tidy
utility, available as a command-line tool1 or through a Web interface2, to transform
HTML Web pages from the wild into well-formed XML documents valid against the
XHTML DTD.

To do this cleanly, we need to set up some options, notably to remove the document type
declaration in the output and to replace all named references with numeric references.
This is necessary so that the XSLT processor will not need to perform complex tasks
such as downloading and analyzing the XHTML DTD. If you use the command line,
the syntax is:

tidy -q -asxhtml --doctype omit
--numeric-entities yes file.html > file.xhtml

If you use the Web interface, be sure to set the same options. Do this on all the Web
pages you saved. Do not be rebuked by the (usually high) number of warnings!

1http://tidy.sourceforge.net/
2http://infohound.net/tidy/

http://www.imdb.com/
http://www.amazon.com/
http://www.ethnologue.com/
http://genealogy.math.ndsu.nodak.edu/
http://genealogy.math.ndsu.nodak.edu/
http://www.informatik.uni-trier.de/~ley/db/
http://tidy.sourceforge.net/
http://infohound.net/tidy/

For personal use only, not for distribution. 227

4. The documents are now ready to be processed. Before doing something too elab-
orate, write a minimalistic XSLT stylesheet that for instance outputs the title (that
can be retrieved with /html/head/title) of the XHTML documents you want
to process. Remember that XHTML elements live in the XHTML namespace http:
//www.w3.org/1999/xhtml. You should therefore either declare an XHTML names-
pace associated with some prefix and use this prefix before every element name in XPath
expressions, or (only in XSLT 2.0) use the xpath-default-namespace attribute of the
<xsl:stylesheet> element to specify the default namespace used in XPath expressions.
Test the stylesheet.

5. You should now decide what information to extract from the Web pages. Do not be
overly ambitious, start with simple things (e.g., for movies, title, and name of the
director). You can do this in an iterative manner (extracting one piece of information at
a time, testing it, and then adding another one). Design a DTD for the XML document
that will contain the extracted information.

6. For each piece of information, look into the XHTML source for robust ways of identi-
fying where the information is located, using an XPath pattern (since we will use this
pattern in a match attribute of a template, the context node does not need to be the
document root). Element names, class attributes, position predicates, and the like are
especially useful. For example,

if the movie title is given inside a element,
the pattern span[@class=’title’] can be used.

Write then a template definition in your stylesheet that makes use of this XPath expres-
sion to produce a new output element containing the extracted information. Because of
the restrictions on the kind of axes that may occur in a match attribute, it may be neces-
sary to put part of the pattern there and part of it in an <xsl:value−of select=""/>.

In some cases, there is not enough XHTML structure to precisely identify the location
of a particular property. When this happens, “regular expressions” can be used in the
template definition to only extract only relevant data. For regular expressions,

• XPath 2.0 provides the tokenize() function and

• XSLT 2.0, the <xsl:analyze-string> element.

7. Run your template on each XHTML document and check that each time the output doc-
ument is valid against the DTD you designed. If not, adapt your stylesheet accordingly.

8. We are now going to modify the stylesheet a little bit (and the DTD) so that it processes
all Web pages at a time, resulting in a single output document containing all information.
Create a file list.xml listing all your XHTML documents with the following structure:

<files>
<file href="a.xhtml" />
<file href="b.xhtml" />
<file href="c.xhtml" />

</files>

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

For personal use only, not for distribution. 228

Modify the stylesheet so that it takes as input document this list.xml file and pro-
cesses in turn (using the document() function) each referenced file. The result should
be an XML document data.xml collecting extracted information from all different
Web pages. Adapt the DTD as needed.

10.2 Restructuring Data

Up to now, the data we obtained closely follows the structure of the original Web source:
each item is described one after the other, with all its properties. But it is often needed to
restructure extracted information (e.g., to present a list of movies without their cast, and then
a list of actors referencing all movies this actor has played in). We now write a second XSLT
program to restructure data in this way.

1. Choose one of the properties of your items according to which data will be regrouped
(e.g., actors of movies, publication year of books). This will be called the grouping key.
The final XML file you need to produce should have a structure similar to what follows:

<data>
<item id="id1">

<property1> ... </property1>
<property2> ... </property2>

</item>
...
<item id="id9">

<property1> ... </property1>
</item>
<grouping-key name="...">

<item-ref ref="id3" />
<item-ref ref="id7" />

</grouping-key>
<grouping-key name="...">

<item-ref ref="id2" />
</grouping-key>

</data>

In other words, all items are listed one after the other as before, but the values of the
grouping key are not listed among their properties. They are listed separately after the
item descriptions, and items that share a given grouping key value are referred to in
the description of this grouping key. Write a DTD for the final document. Obviously,
choose more explicit element names than grouping-key or item.

2. Write an XSLT stylesheet that transforms the XML document previously obtained into
an identical document, with two exceptions:

• elements representing items now have an id attribute that uniquely identifies
them (one can use the XSLT function generate-id() for that);

• information about the grouping key is removed from the document.

For personal use only, not for distribution. 229

3. Modify this stylesheet to add after the list of items the list of all values of the grouping
key, without duplicates. This can be easily done in XSLT 2.0 with the <xsl:for−each−group>
element. In XSLT 1.0, this is more intricate. It can be done, for instance, by expressing
in XPath the fact that a specific occurrence of the grouping key value is the first in the
document.

4. Add to each element representing the value of a grouping key the list of items that have
this specific value. Test that the resulting document is valid against the DTD you have
designed.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

11 Putting into Practice: Ontologies in Practice
(by Fabian M. Suchanek)

This chapter proposes exercises to manipulate and query real-world RDFS ontologies, and
especially YAGO. YAGO was developed at the Max Planck Institute in Saarbrücken in Germany.
At the time of this writing, it is the largest ontology of human quality that is freely available.
It contains millions of entities such as scientists, and millions of facts about these entities such
as where a particular scientist was born. YAGO also includes knowledge about the classes
and relationships compositing it (e.g., a hierarchy of classes and relationships).

11.1 Exploring and installing YAGO

Go to the YAGO Web site, http://mpii.de/yago, click on the “Demo” tab and start the
textual browser. This browser allows navigating through the YAGO ontology.

1. Type “Elvis Presley” in the box. Then click on the Elvis Presley link. You will see all
properties of Elvis Presley, including his biographic data and his discography.

2. You can follow other links to explore the ontology. Navigate to the wife of Elvis Presley,
Priscilla.

3. The ontology is held together by a taxonomy of classes. Its top class is called “entity”.
Verify this by repeatedly following type and subClassOf links.

4. Go back to Elvis Presley. Navigate to one of his songs. You will see the date the song
was recorded. Can you find all songs together with their record dates? Why would this
be a tedious endeavor?

Then, to install YAGO on your machine, make sure that you have Java installed and around
5 GB free disk space. Proceed as follows:

1. Download the YAGO ontology. YAGO is available at the project homepage http:
//mpii.de/yago. We also provide a version of YAGO on the Web site of this book,
http://webdam.inria.fr/Jorge/. There are multiple versions of the ontology;
the easiest is to download the Jena TDB store, that can be directly queried. Select the
smallest data set available. Save the file on your hard drive and unzip it. This may take
some time.

2. Download the YAGO converters from the same site. Unzip the file to your hard drive.

You are all set, YAGO is installed on your machine and is ready for querying!

231

http://mpii.de/yago
http://mpii.de/yago
http://mpii.de/yago
http://webdam.inria.fr/Jorge/

For personal use only, not for distribution. 232

11.2 Querying YAGO

YAGO is expressed in RDFS. In RDFS, the facts and the ontological statements are written
as triples. These triples can be queried using SPARQL , the standard querying language for
RDFS facts. SPARQL was introduced in Chapter 8. The query engine of YAGO uses the Jena
framework http://openjena.org/. Jena is an open-source project that has grown out of
work with the HP Labs Semantic Web Program. Jena ships with YAGO, so that we only need
to download and install YAGO.

To query YAGO, open a terminal window, navigate to the folder where the converters live
and run the SPARQL script (called yago2sparql.bat on Windows and yago2sparql.sh
on Unix). You will be invited to type SPARQL queries for YAGO. For ease of notation, the
following namespaces are already defined:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

In addition, the default namespace, referred to as simply “:”, is already set to the namespace
of YAGO, http://www.mpii.de/yago/resource/. We can ask for simple YAGO facts
through SPARQL queries of the form

SELECT ?V WHERE { A R B }

Here, ?V is a variable name, as indicated by the question mark. The SELECT clause may
contain several variables separated with whitespace. A and B are entities (with proper
namespace prefix) and R is a relation (also with proper namespace prefix). Each of these
components may also be a variable. The WHERE clause possibly contains multiple triples,
separated by a dot. Try out the following:

1. Ask

SELECT ?x WHERE { :Elvis_Presley rdf:type ?x }

This query lists all classes that Elvis Presley is an instance of. (Be sure to type all
characters in the query exactly as written here.) Note that the results show the full URI
of the entities, not the equivalent short form with namespace prefixes.

2. Can you modify the query so that it lists all facts with Elvis Presley in the position of
the subject, not just the ones with the rdf:type relation? You should find facts about
his songs, his wife, his birth date and the movies he acted in.

3. List all the entities that Elvis created (with the relation :created). Now list only those
of them that were created on 1974-03-20. Use the relation :wasCreatedOnDate and
remember to put quotes around the literal 1974-03-20. Your query should retrieve the
entity :Good_Times_(Elvis_Presley_album). Can you imagine why the entity
is not simply called :Good_Times?

4. Knowing that rdfs:label is the relation between an entity and its name, retrieve all
entities that are called “Good Times”.

5. Write another query to list all entities called “Good Times” together with their creator.
Compare the results of this query to the results of the previous query. Verify that not

http://openjena.org/
http://www.mpii.de/yago/resource/

For personal use only, not for distribution. 233

all of the entities have a creator. Can you imagine why this is the case, even though
every entity was certainly created? What does this imply for the notion of negation in
SPARQL?

6. Write another query to retrieve all classes that Elvis Presley is an instance of. Is Elvis an
instance of the class singer? Can you imagine why?

In YAGO, the ontological statements expressing the subclass and subproperty relations
as well as the range and domain restrictions of properties are stored as RDFS triples.
However, the semantics of these statements is not taken into account. In particular, the
facts that follow from the RDFS entailment rules (see Chapter 7) are not derived. To
derive these facts, one can use the saturation algorithm given in Chapter 8. It is possible,
using the converters, to generate a Jena store of YAGO that includes (some of) these
derived facts. This requires, however, downloading the YAGO2 ontology in its default
format, and the conversion process can be a lenghty one.

Enter a blank line to quit the SPARQL interface.

11.3 Web access to ontologies

11.3.1 Cool URIs

An ontology refers to an entity through a URI. YAGO, for example, refers to the entity of Elvis
Presley as http://mpii.de/yago/resource/Elvis_Presley. Another ontology may
use a different identifier to refer to that entity. The DBpedia ontology, for instance, refers to
Elvis as http://dbpedia.org/resource/Elvis_Presley. In general, these URIs (i.e.,
identifiers) do not have to be URL (i.e., locators). In other words, they do not have to refer to
Web pages. In principle, when a URI is entered in a browser, one might simply get an error
message. However, some ontologies implement the “Cool URI” protocol1 of the W3C. This
means that each URI in the ontology is actually understood by a Web server that is configured
to respond to a request of this URI. (In other words, each such URI is also an URL.) This
allows a machine to retrieve fragments of the ontology from the server. Let us try this out:

1. If you do not have a Unix-based operating system, search online for a version of the tool
wget that works with your operating system. There should be a free version available.
Download and install this tool. wget allows accessing a URL and downloading its
content – much like a Web browser does it.

2. Open a terminal and type

wget -O elvis.html http://dbpedia.org/resource/Elvis_Presley

This accesses the URI as a URL, just like a Web browser. If you look into elvis.html,
you will see the Wikipedia page of Elvis.

3. Now we tell wget to ask the server specifically for RDFS files:

wget -O elvis.rdfs --header "Accept: application/rdf+xml"
http://dbpedia.org/resource/Elvis_Presley

1http://www.w3.org/TR/cooluris/

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://mpii.de/yago/resource/Elvis_Presley
http://dbpedia.org/resource/Elvis_Presley
http://www.w3.org/TR/cooluris/

For personal use only, not for distribution. 234

The file elvis.rdfs should now contain everything YAGO knows about Elvis Presley.
The file format is RDF, encoded in XML.

4. These facts in the answer contain again other URIs. Find one of Elvis’s albums in the
answer. Then use another wget command to retrieve information about that album.

By following the URIs in the results, a machine can navigate the entire ontology.

11.3.2 Linked Data

As we have seen, different ontologies can use different URIs to refer to the same entity. The
Linked Data Project, found at http://linkeddata.org/, tries to establish links between
such synonymous URIs. Such a link takes the form of an RDFS statement. The predicate is
sameAs of the OWL namespace:

http://mpii.de/yago/resource/Elvis_Presley
owl:sameAs http://dbpedia.org/resource/Elvis_Presley

These links allow jumping from one ontology to another. If both ontologies implement
the Cool URI protocol, a machine can gather information about one entity from multiple
servers. Let us try this out: Go to the Web site of the Sig.ma semantic Web search engine,
http://sig.ma/. This engine gathers information from different ontologies about a given
entity. It uses sameAs links, Cool URIs, and RDFa annotations hidden in HTML pages2. This
leads to a lot of data, but potentially also very noisy data. Ask Sig.ma for

http://mpii.de/yago/resource/Elvis_Presley.

You can also try out keywords (such as “United States”). See how Sig.ma gathers data from
multiple ontologies. The Linked Data project was pioneered by the DBpedia ontology, which
is therefore a hub in this Web of data.

2http://www.w3.org/TR/rdfa-syntax/

http://linkeddata.org/
http://sig.ma/
http://mpii.de/yago/resource/Elvis_Presley
http://www.w3.org/TR/rdfa-syntax/

12 Putting into Practice: Mashups with YAHOO!
PIPES and XProc

Mashups are Web applications that integrate and combine data from multiple Web sources
to present them in a new way to a user. This chapter shows two different ways to construct
mashup applications in practice: YAHOO! PIPES, a graphical user interface for building
mashups, and XProc, a W3C language for describing workflows of transformations over
XML documents. Pros and cons of either approach will be made clear as one follows the
indicated steps. The goal will be to present information about news events, each event being
accompanied by its localization displayed on a map. For that purpose, we integrate three
sources of information:

1. A Web feed about current events in the world, in RSS format (e.g., CNN’s top stories
at http://rss.cnn.com/rss/edition.rss). Any such RSS feed is fine, though
English is preferable to ensure precision of the geolocalization.

2. A geolocalization service. We use information from the GeoNames1 geographical
database, and specifically their RSS to GeoRSS converter, whose API is described at
http://www.geonames.org/rss-to-georss-converter.html.

3. A mapping service. We use Yahoo! Maps2.

12.1 YAHOO! PIPES: A Graphical Mashup Editor

YAHOO! PIPES3 allows creating simple mashup applications (simply called pipe) using a
graphical interface based on the construction of a pipeline of boxes connected to each other,
each box performing a given operation (fetching information, annotating it, reorganizing it,
etc.) until the final output of the pipeline. It can be used by non-programmers, though defining
complex mashups still requires skill and experience with the platform. The mashup we want
to build is demonstrated at http://pipes.yahoo.com/webdam/geolocalized_news:
it asks the user for a feed URL, and displays with markers on a map the result of the
geolocalization of each news item.

1. Go to the YAHOO! PIPES website and either log in using an existing Yahoo! account
or create a free account. Once you follow the links for creating a pipe, you will be
presented with the interface of the graphical editor: on the left, a list of all boxes that
can be used inside a pipe; in the center, the workspace where you can build your pipe;
in the bottom part, a debugger shows the output of the currently selected box.

1http://www.geonames.org/
2http://maps.yahoo.com/
3http://pipes.yahoo.com/

235

http://rss.cnn.com/rss/edition.rss
http://www.geonames.org/rss-to-georss-converter.html
http://pipes.yahoo.com/webdam/geolocalized_news
http://www.geonames.org/
http://maps.yahoo.com/
http://pipes.yahoo.com/

For personal use only, not for distribution. 236

2. Drag a “Fetch Feed” box on the workspace. Enter the URL in the box and connect it
to the “Pipe Output” box at the bottom of the workspace by dragging a link from the
output port of the initial box (shown as a circle on its bottom border) to the input port
of the final box. Save your pipe and click on “Run pipe. . . ” to see the result.

3. We are going to add some geolocalization information by using the “Location Extractor”
operator of YAHOO! PIPES, which should be put in the middle of the two existing boxes.
Save and run the pipe.

4. The location extractor of YAHOO! PIPES is not always as precise or complete as Geo-
Names. Study the documentation of the RSS to GeoRSS converter REST API. Use this
API by trying to form URLs directly in your browser until you fully understand how it
works. Then integrate it into your pipe by using a “URL Builder” whose output port is
connected to the url parameter of the existing “Fetch Feed” box. Compare the results to
what you had before.

5. To give a final touch to your pipe, add a “URL input” box to ask the user for the URL of
the feed to be geolocalized. Save and test.

You can decide to publish your pipe to give other users access to it; if you want to keep
playing with YAHOO! PIPES, you can try enriching your pipe by retrieving data from multiple
RSS feeds, using a Web search operator to discover feeds dealing with a given topic, adding
to feed items images obtained by querying Flickr with keywords from the description of
the item, and so on. You can also look at the vast library of published pipes to get some
inspiration.

12.2 XProc: An XML Pipeline Language

XProc is a W3C Recommendation for describing transformation workflows on XML docu-
ments. Throughout this section, refer to the XProc specification4 for more detail about the
language. As with YAHOO! PIPES, a workflow is seen as a pipeline of operations (here called
steps) that fetch or process information; these operations heavily rely on other XML standards
(XPath, XSLT, XInclude, XML Schema, XQuery, etc.). In YAHOO! PIPES, connections between
boxes are described in a graphical manner; in XProc they are described using an XML syntax.
Finally, contrary to YAHOO! PIPES, which deals with Web data at large, XProc is dedicated to
the processing of XML data only. Any XProc processor can be used; we recommend XML
CALABASH5, a Java implementation that is easy to install and to use.

1. Download the skeleton pipeline skeleton.xpl from the book website, http://
webdam.inria.fr/Jorge/. Test your XProc processor; if you use XML CALABASH

and its installation directory is in your path environment variable, you can just type

calabash skeleton.xpl > result.html

No error message should show (only information messages), and result.html should
contain a basic view of CNN’s feed.

4http://www.w3.org/TR/xproc/
5http://xmlcalabash.com/

http://webdam.inria.fr/Jorge/
http://webdam.inria.fr/Jorge/
http://www.w3.org/TR/xproc/
http://xmlcalabash.com/

For personal use only, not for distribution. 237

2. Look at the skeleton.xpl file. The whole pipeline is described inside a top-level
<p:pipeline> element. First, a variable is declared; declared variables can be used
in XPath expressions further in the file (all values of select attributes are XPath
expressions). Then the RSS file is loaded with the help of the standard <p:load>

step (again, see the XProc specification for the definition of standard steps). All items
of the RSS feed are put into a sequence (<p:for-each>), and this sequence is then
wrapped under a common item element (<p:wrap-sequence>); these two steps are
arguably not very useful, but this structure will help us in extending this pipeline.
Finally, an inline XSLT stylesheet is reformatting the list of items into a table, where each
line has a single cell, containing the title of the item and pointing to the corresponding
article.

3. Change the <p:load> so that a geolocalized version of the RSS feed is loaded instead
of the original one. Once again, refer to the documentation of the API of GeoNames
to determine which URL to load. You can use the XPath 2.0 function encode-for-uri() to
properly encode special characters in a URL.

4. Items should now have geo:lat and geo:long child elements with geolocalization
information. Test this by adding in the XSLT stylesheet, after the item’s title, two
<xsl:value-of> elements that show both coordinates. Test.

5. We now want to filter out items that do not have any geolocalization information (if any).
For this purpose, you can modify the select attribute of the <p:iteration-source>
to keep only items with geo:long and geo:lat child elements.

6. We will use the Yahoo! Maps Image API6 to add a map for each news item. Carefully
study the API documentation and apply for a Yahoo! Application ID.

7. Replace the <p:identity> step with a <p:load> step that calls the Yahoo! Maps Image
API appropriately. Remember you can use any XPath expression inside a select

attribute. In the XSLT stylesheet, add a cell:

<td><xsl:value-of select="." /></td>

before the existing cell to display the URL of the map image. The display of the title
and link to the article does not work any more because we discarded the news items to
keep only the map image. We are going to fix this later on.

8. Replace the display of the URL by an HTML element that loads this URL. In
XSLT, to input an XPath expression inside an arbitrary attribute, surround the XPath
expression with curly braces.

9. To keep in the sequence both map images and information about news items, you will
need two <p:for-each> steps and a <p:pack> step to combine the two sequences.
Refer to the XProc specification. The <p:pack> step will introduce an extra wrapping
element, so remember to adapt the XPath expressions used in the XSLT stylesheets.

6http://developer.yahoo.com/maps/rest/V1/

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://developer.yahoo.com/maps/rest/V1/

Part III

Building Web Scale Applications
“And is a library, then, an instrument
not for distributing the truth but for
delaying its appearance?” I asked,
dumbfounded.
“Not always and not necessarily. In
this case it is.”

(The Name of The Rose, Umberto
Eco)

239

13 Web search

With a constantly increasing size of dozens of billions of freely accessible documents, one of
the major issues raised by the World Wide Web is that of searching in an effective and efficient
way through these documents to find those that best suit a user’s need. The purpose of this
chapter is to describe the techniques that are at the core of today’s search engines (such as
Google1, Yahoo!2, Bing3, or Exalead4), that is, mostly keyword search in very large collections
of text documents. We also briefly touch upon other techniques and research issues that may
be of importance in next-generation search engines.

This chapter is organized as follows. In Section 13.1, we briefly recall the Web and the
languages and protocols it relies upon. Most of these topics have already been covered earlier
in the book, and their introduction here is mostly intended to make the present chapter
self-contained. We then present in Section 13.2 the techniques that can be used to retrieve
pages from the Web, that is, to crawl it, and to extract text tokens from them. First-generation
search engines, exemplified by Altavista5, mostly relied on the classical information retrieval
(IR) techniques, applied to text documents, that are described in Section 13.3. The advent
of the Web, and more generally the steady growth of documents collections managed by
institutions of all kinds, has led to extensions of these techniques. We address scalability
issues in Section 13.3.3, with focus on centralized indexing. Distributed approaches are
investigated in Chapter 14. The graph structure of the Web gives rises to ranking techniques
that very effectively complement information retrieval. We conclude with a brief discussion
of currently active research topics about Web search in Section 13.5.

13.1 The World Wide Web

Whereas the Internet is a physical network of computers (or hosts) connected to each other
from all around the world, the World Wide Web, WWW or Web in short, is a logical collection
of hyperlinked documents shared by the hosts of this network. A hyperlinked document
is just a document with references to other documents of the same collection. Note that
documents of the Web may refer both to static documents stored on the hard drive of some
host of the Internet and to dynamic documents that are generated on the fly. This means that
there is a virtually unlimited number of documents on the Web, since dynamic documents
can change at each request. When one speaks of the Web, it is mostly about the public
part of the Web, which is freely accessible, but there are also various private Webs that are
restricted to some community or company, either on private Intranets or on the Internet, with
password-protected pages.

1http://www.google.com/
2http://www.yahoo.com/
3http://www.bing.com/
4http://www.exalead.com/
5http://www.altavista.com/

241

http://www.google.com/
http://www.yahoo.com/
http://www.bing.com/
http://www.exalead.com/
http://www.altavista.com/

For personal use only, not for distribution. 242

Documents and, more generally, resources on the Web, are identified by a URL (Uniform
Resource Locator) which is a character string that follows a fixed format illustrated on the
imaginary URL below, with basic components, described next.

https︸ ︷︷ ︸
scheme

://www.example.com︸ ︷︷ ︸
hostname

:443︸ ︷︷ ︸
port

/path/to/document︸ ︷︷ ︸
path

?name=foo&town=bar︸ ︷︷ ︸
query string

#first-para︸ ︷︷ ︸
fragment

scheme: Describes the way the resource can be accessed; on the Web, it is generally one of
the Web protocols (http, https) that are described further.

hostname: This is the domain name of a host, as given by the domain name system (DNS).
Frequently on the Web, the hostname of a Web site will start with www., but this is only
a common convention, not a rule.

port: TCP port where the server listens on the host; it defaults to 80 for the http scheme and
443 for the https scheme and is rarely present.

path: The logical path of the document; for simple cases, this corresponds to a path leading
to the static document in the filesystem of the host.

query string: Additional parameters identifying the resource, mostly used with dynamic
documents.

fragment: Identifies a specific part of the document.

Query strings and fragments are optional (and, most of the time, absent) and the path can
be omitted, in which case the URL refers to the root of the Web host. URLs can also be relative
(by opposition to the absolute URL shown here), when both the scheme and hostname portions
are omitted. A relative URL is to be interpreted in a given URL context (for instance, the
URL of the current document) and is resolved in a straightforward way: if the context is that
of the URL above, the relative URLs /images6 and data would be resolved, respectively,
as https://www.example.com:443/images and https://www.example.com:443/
path/to/data in a way similar to (UNIX) relative paths resolution.

The usual format for documents (or, in this case, pages) on the Web is HTML (the HyperText
Markup Language), though one can find many documents, including hyperlinked documents,
in other formats. This is the case for PDF documents (another kind of hyperlinked structure),
documents from word-processing softwares, and non-textual, multimedia documents such as
images and audio files.

HTML is originally a dialect of SGML, the ancestor of XML, but is hardly ever parsed as
such. The most common versions found on today’s Web are HTML 4.01 and XHTML 1.0,
which is a direct XMLization of HTML 4.01, with minor differences. An example XHTML
document is given in Figure 13.1. As it is an SGML or XML file, an (X)HTML document is
made out of elements, attributes, and text content. Elements carry, between other things,
meta-information about the document (e.g., <meta>, <title>), structural information at
the document level (e.g., <table>, , <p>), structural information at the character level
(e.g., ,) or references to other media (e.g., , <object>). An element
of importance is <a>, which defines a hyperlink to another resource on the Web identified

6Note that here /images is considered as a relative URL, because it lacks the scheme and hostname part; the
path /images, however, is an absolute path.

data
https://www.example.com:443/images
https://www.example.com:443/path/to/data
https://www.example.com:443/path/to/data
/images

For personal use only, not for distribution. 243

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
lang="en" xml:lang="en">

<head>
<meta http-equiv="Content-Type"

content="text/html; charset=utf-8" />
<title>Example XHTML document</title>

</head>
<body>

<p>This is a
link to the
W3C!</p>

</body>
</html>

Figure 13.1: Example XHTML document

by the URL given as the href attribute. Both relative and absolute links are allowed here.
The context of resolution is the URL of the current page, unless it contains a <base> element
that indicates another context. HTML pages can also contain other disguised hyperlinks in
the form of JavaScript code that loads other URLs, of redirection after a timeout with some
specific use of the <meta> element, or of Flash or Java applets; all these links are less easy to
identify and then less accessible to users and Web robots.

Although HTML pages are primarily seen thanks to a browser (and, most of the time, a
graphical browser as Microsoft Internet Explorer or Mozilla Firefox), the HTML code is not
supposed to describe the way the page will appear in a browser (it is the role of a styling
language like CSS) but the core structure and content of the document in a way accessible to
all kind of browsers and a wide variety of user agents such as the crawlers that we describe
in Section 13.2.1. For this reason, it is important that HTML documents be valid against the
W3C specifications; tools like the W3C validator available at http://validator.w3.org/
can be of help. Sadly, because of a history of browser wars, browser limitations, browser
permissiveness, and author laziness, most of the (X)HTML pages on the Web are far from
being valid, or even well-formed in the sense of XML well-formedness, accounting for what
has been called tag soup.

Pages of the Web are accessed using the usual client-server architecture of the Internet: a Web
server on a remote host accepts requests from a client for a given resource, and provides it to
him. Two communication protocols are mainly used for this exchange: HTTP and HTTPS. The
latter allows for encryption, authentication and advanced features such as session tracking; it
is essential for e-commerce on the Web and all other sensitive applications, but rarely used for
regular documents and will not be discussed further. HTTP, or HyperText Transfer Protocol, is a
quite simple protocol built on top of the Internet protocols IP (Internet Protocol, for addressing)
and TCP (Transmission Control Protocol, for transportation) that is widely used on the World
Wide Web. Figure 13.2 shows an example request and response from, respectively, a Web client

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://validator.w3.org/

For personal use only, not for distribution. 244

Request
GET /myResource HTTP/1.1
Host: www.example.com

Response

HTTP/1.1 200 OK
Content-Type: text/html; charset=ISO-8859-1

<html>
<head><title>myResource</title></head>
<body><p>Hello world!</p></body>

</html>

Figure 13.2: HTTP request and response examples

and a Web server. The request asks for the resource identified by the path /myResource
on host www.example.com and the server answers that the document was found (code
200 OK; other common codes are 404 NOT FOUND or 500 SERVER ERROR) and provides
it. The reason why the hostname is given, whereas the server has already been contacted, is
that a given server may have several different domain names, with different content (thus,
www.google.com and www.google.fr point to the same machine). This virtual hosting is
one of the novel features of HTTP/1.1 with respect to previous versions. Other features of
the HTTP protocol include login and password protection, content negotiation (the content
served for a given URL is not fixed and depends on the preference indicated by the client, in
terms of file formats or languages), cookies (persistent chunks of information that are stored
on the client, e.g., for session management purpose), keep-alive requests (several requests can
be made to the same server without closing the connection), and more.

13.2 Parsing the Web

The first task to build a search engine over the Web is to retrieve and index a significant
portion of it. This is done by collecting Web documents through a navigation process called
Web crawling. These documents are then processed to extract relevant information. In case
of text documents, sets of words or tokens are collected. Web crawling is introduced in
Section 13.2.1. We describe in Section 13.2.2 general text preprocessing techniques that turn
out to be useful for document retrieval.

13.2.1 Crawling the Web

Crawling is done by user agents that are called crawlers, (Web) spiders or (Web) robots. Their
design raises a number of important engineering issues that will be discussed here.

Discovering URLs

Crawling the Web is basically just starting from a given URL or set of URLs, retrieving and
indexing this document, discovering hyperlinks (mostly from the <a> elements of the HTML
content) on the document and repeating the process on each link. There is no real termination
condition here, as it is vain to try to retrieve the entire Web (which is actually virtually infinite,
as already discussed), but the crawl can be terminated after some delay or after some number

For personal use only, not for distribution. 245

of URLs have been discovered or indexed. This is essentially a graph browsing problem,
which can be tackled by either breadth-first (all pages pointed by a page are indexed before
the links they contain are analyzed) or depth-first (a referred page is indexed, and its links
are extracted in turn, as soon as a link to it is discovered) techniques. Obviously, because of
the non-existence of termination conditions, and the possibility of being lost in robot traps
(infinite paths in the graph), a breadth-first approach is preferred here; actually, a mix of a
breadth-first browsing with depth-first browsing of limited depth of each discovered site can
be a good compromise.

There are other sources of URLs for Web crawlers than the ones found on Web pages. Web
search engines have access to information about the Web page that a Web user comes from
when she reaches the Web site of the search engine, thanks to the Referrer HTTP header. It
can be used to discover pages that are not referenced anywhere. Finally, Web masters can
provide search engines with sitemaps, a file, in XML format, that can be used to list all URLs in
a given Web site, along with some meta-information (date of last modification, refresh rate).
When this is available and properly used, for example automatically generated by a content
management system, the situation is ideal: a Web crawler can get the list of all URLs of a Web
site with a single HTTP request.

Deduplicating Web Pages

An important subtask of Web crawling is the identification of duplicate pages in the Web, in
order to avoid browsing them multiple times. Trivial duplicates are documents that share the
same URL, though it can be written in slightly different ways: this means that a canonization of
URLs has to be performed, to detect for instance that http://example.com:80/foo and
http://example.com/foo/../bar are actually the same resource. The identification of
other kind of duplicates, that do not have the same URL, is more intricate but also crucial,
since it would not be very interesting for a user to get a list of identical pages as a result to a
search engine query. Identical duplicates are easy to identify by hashing, but there are often
some little differences between two pages (for instance, a date that is automatically generated
at each request by the server, or random content such as Tips of the day) that present essentially
the same content.

The first approach to detect such near-duplicates is simply to compute the edit distance
between two documents, that is, the minimal number of basic modifications (additions or
deletions of characters or words, etc.) to obtain a document from another one. This is a good
notion of similarity between textual documents, and edit distance can be computed with
dynamic programming in O(m · n), where m and n are the size of the documents. This does
not scale to a large collection of documents, since it is definitely unreasonable to compute the
edit distance between every pair of documents found on the Web. An alternative is the use of
shingles: a shingle is a sequence of tokens (say, words) of a fixed length k (for instance, three
consecutive words), as found in a document. Consider the following two simple documents:

d = I like to watch the sun set with my friend.
d′ = My friend and I like to watch the sun set.

One can compute the set of shingles of length k = 2, disregarding punctuation and putting all

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://example.com:80/foo
http://example.com/foo/../bar

For personal use only, not for distribution. 246

User-agent: *
Allow: /searchhistory/
Disallow: /search

Figure 13.3: Example robots.txt robot exclusion file

tokens in lowercase:

S ={i like, like to, to watch,watch the, the sun,sun set,set with,with my,my friend}
S′ ={my friend, friend and,and i, i like, like to, to watch,watch the, the sun,sun set}

The similarity between two documents can then be computed as the proportion of common
shingles, using the Jaccard coefficient:

J(S,S′) =
|S ∩ S′|
|S ∪ S′| =

7
11
≈ 0.64

For a value of k between 2 to 10 depending on the applications, this gives a reasonable way
to compare two textual documents (the markup of a HTML page can be either considered
as part of the tokens, or disregarded altogether, depending on the granularity wished in the
comparison). However, this is still costly to compute, since one has to compute the similarity
between every two pair of documents. It is however possible to approximate J(S,S′) by
storing a summary (or sketch) of the shingles contained in a document of a fixed size. Let N be
a fixed integer, which is the size of the summary that will be kept for each document. The
following algorithm can be shown to approximate in an unbiased way the Jaccard similarity
between sets of shingles:

1. Choose N different and independent hash functions;

2. For each hash function hi and set of shingles Sk = {sk1 . . . skn}, store φik = minj hi(skj);

3. Approximate J(Sk,Sl) as the proportion of φik’s and φil’s that are equal:

J(Sk,Sl) ≈
|{i : φik = φil}|

N
.

Then, in order to test if a document is a near-duplicate of one that has already been found,
it is enough to compute its sketch of hashed shingles, and to make N accesses into a hash
table. The larger N is, the better the approximation, but the costlier the computation. It is
also possible to repeat the hashing on the set of hashed shingles to obtain a set of hashed
super-shingles, when one is only interested in very similar documents, as is the case for finding
near-duplicates.

Crawling Ethics

Going back to crawling per se, there are also some crawling ethics to abide to. A standard
for robot exclusion has been proposed to allow Webmasters to specify some pages not to be
crawled by Web spiders (the reasons can be varied: for confidentiality purposes, in order not

For personal use only, not for distribution. 247

to put too heavy a load on a resource-intensive Web application, to help robots not to fall
into robot traps, etc.). This standard is followed by all major search engines and consists in a
/robots.txt file that can be put at the root of every Web server and contains restrictions on
what part of the Web site spiders are allowed to crawl.

An example of such a file is given in Figure 13.3. It disallows the crawling of all URLs whose
path starts with /search, with the exception of those starting with /searchhistory/, to
any robots. Another way of expressing such limitations, at the level of a HTML page this
time (which can be useful if a Webmaster does not have control over the document root), is
through a <meta name="ROBOTS"> directive in the header of the document, such as

<meta name="ROBOTS" content="NOINDEX,NOFOLLOW">

which disallows robots to either index or follow links from the current Web page. Available
keywords are INDEX, FOLLOW, NOINDEX, NOFOLLOW, with a default of INDEX,FOLLOW. Yet
another way of influencing robot crawling and indexing is discussed in Section 13.4.3. A last
rule that a spider programmer should respect is to avoid too many requests in a short time to
a given host, since that could result in DOS (Denial Of Service) from the host. A good rule of
thumb is to wait between 100 ms and 1 s between two successive requests to the same Web
server.

Design Issues

Because of this last rule, and because network delays are typically much higher than the time
needed to process a Web page, it is crucial to send in parallel a large number of requests
to different hosts; this also means that a per-host queue of URLs to be processed has to be
managed. This parallel processing is typically performed using a multi-threaded environment,
although asynchronous input and outputs (with for instance the select POSIX C function)
provide the same functionality without the overhead introduced by threads. The keep-alive
feature of HTTP/1.1 can also be used to chain requests (after some delay) to the same host. In
large-scale crawlers for general Web search, the crawling itself will be run in parallel on a
number of machines, that have to be regularly synchronized, which raises further issues not
discussed here.

Another aspect of crawling is the refreshing of URLs. Though we stated earlier that we
did not want to crawl the same URL twice, it can be very important to do so in the context of
perpetually changing Web content. Furthermore, it is also important to identify frequently
changing Web pages in order to crawl them more often than others. Thus, the main page
of an online newspaper should probably be crawled every day or even more often, while
it may take up to a month to a large-scale crawler to crawl a significant portion of the Web.
The HTTP protocol proposes a way to retrieve a document only if it has been modified since
some given date (If-Modified-Since header), but this is often unreliable, even more so
in the context of dynamic documents which are regenerated at each request. Changes in Web
pages have then to be identified by the crawler, without taking into account minor changes,
for instance using techniques described above for identifying near-duplicates. Crawling
strategies have to be adapted accordingly.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 248

d1 The jaguar is a New World mammal of the Felidae family.
d2 Jaguar has designed four new engines.
d3 For Jaguar, Atari was keen to use a 68K family device.
d4 The Jacksonville Jaguars are a professional US football team.
d5 Mac OS X Jaguar is available at a price of US $199 for Apple’s new “family pack”.
d6 One such ruling family to incorporate the jaguar into their name is Jaguar Paw.
d7 It is a big cat.

Figure 13.4: Example set of documents

d1 the1 jaguar2 is3 a4 new5 world6 mammal7 of8 the9 felidae10 family11
d2 jaguar1 has2 designed3 four4 new5 engines6
d3 for1 jaguar2 atari3 was4 keen5 to6 use7 a8 68k9 family10 device11
d4 the1 jacksonville2 jaguars3 are4 a5 professional6 us7 football8 team9
d5 mac1 os2 x3 jaguar4 is5 available6 at7 a8 price9 of10 us11 $19912 for13 apple’s14 new15 family16 pack17
d6 one1 such2 ruling3 family4 to5 incorporate6 the7 jaguar8 into9 their10 name11 is12 jaguar13 paw14
d7 it1 is2 a3 big4 cat5

Figure 13.5: Tokenization of document set of Figure 13.4

13.2.2 Text Preprocessing

The techniques described here are general techniques for dealing with text corpora. Depend-
ing upon the application, some variant or other has to be applied. Furthermore, the original
language or languages of the document have a major impact on the preprocessing made.

Tokenization

Let us consider the set of seven (one-sentence) documents represented in Figure 13.4. We
describe next and illustrate on this particular example how to process a collection of text
documents in a suitable way to efficiently answer keyword queries. This problem and related
ones are known as information retrieval or, simply, search problems.

The first step is to tokenize the initial documents into sequences or tokens, or simply words.
This is illustrated on our example document set in Figure 13.5. At this stage, inter-word
punctuation is generally removed and case is normalized (unless, obviously, the application
requires differently, as may be the case in a search engine dedicated to linguists researching
the usage of punctuations). This may seem like a very simple step where it is sufficient to
replace whitespaces and punctuation by token separators, but the problem is actually trickier
than this.

• Whereas words are immediately visible in a language such as English, other languages
(notably, Chinese or Japanese) do not use whitespace to mark word boundaries. Tok-
enization of such languages requires much more complex procedures that typically use
both advanced linguistic routines and dictionaries. Specifically for Chinese, an alterna-
tive is to use individual ideograms as tokens, but this may lead to invalid matches in
query answering.

• Some care has to be taken for a number of textual oddities, such as acronyms, elisions,

For personal use only, not for distribution. 249

numbers, units, URLs, and e-mail addresses. They should probably be preserved as
single tokens in most applications and, in any case, should be dealt with consistently.

• Even in English, tokenization is not always obvious, especially with respect to com-
pound words. An immediate question is whether to consider intra-word hyphens as
token separator, but the problem is broader. Consider for instance the term hostname,
which can be found in three variant forms: hostname, host-name, and host name. If we
want to be able to use any of these terms to query all three variants, some analysis has
to be performed, probably with the help of a lexicon, either to consider host name as a
single compound word, or to break hostname in two tokens. The latter solution will also
allow searching for host and name, which may be appropriate, depending on the context.
In languages where compounds are even more easily produced than in English (e.g.,
German or Russian), such an analysis is indispensable.

Stemming

Once tokens are identified, an optional step is to perform some stemming to remove morpho-
logical markers from inflected words or, more generally, to merge several lexically related
tokens into a single stem. Such a step is often needed, for instance to be able to retrieve
documents containing geese where goose is queried, but the degree of stemming varies widely
depending upon the application (and upon the considered language, obviously: the notion of
stemming does not make much sense in a language without any morphological variations
like Chinese). Here is a scale of possible stemming schemes, from finest to coarsest.

Morphological stemming: This consists in the sole removal of bound morphemes (such as
plural, gender, tense, or mood) from words. Note that this can be a very complex
task in morphologically rich languages such as Turkish or, in a lesser way, French,
which require advanced linguistic processing for resolutions of homographs (different
words that are written in the same way). Consider for instance the famous sentence
in French: “Les poules du couvent couvent.” (The hens of the monastery brood.)
Here, the first couvent [monastery] is an uninflected noun, which should stay as is,
whereas the second couvent [brood] is an inflected form of the verb couver [to brood],
which should be stemmed accordingly. In English, the situation is simpler and plain
procedures that remove final -s, -ed, -ing, etc., with a few adaptations for semi-regular (-
y/-ies) or irregular (mouse/mice) inflections, can be enough. Some ambiguities remain,
as illustrated with the words rose or stocking, which can be either uninflected nouns,
or inflected forms of the verb to rise and to stock, respectively. Depending upon the
application, one may choose either a cautious stemming (that does not remove all
morphological markers, and will then fail to retrieve some query matches) or a more
aggressive one (that will retrieve invalid query matches). Figure 13.6 shows the result
of a morphological stemming applied on our running example.

Lexical stemming: Stemming can be pushed further to merge lexically related words from
different parts of speech, such as policy, politics, political or politician. An effective
algorithm for such a stemming in English, Porter’s stemming, has been widely used.
Further ambiguities arise, with for instance university and universal both stemmed to
universe. This kind of stemming can also be coupled to the use of lexicons in order to
merge synonyms or near-synonyms.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 250

d1 the1 jaguar2 be3 a4 new5 world6 mammal7 of8 the9 felidae10 family11
d2 jaguar1 have2 design3 four4 new5 engine6
d3 for1 jaguar2 atari3 be4 keen5 to6 use7 a8 68k9 family10 device11
d4 the1 jacksonville2 jaguar3 be4 a5 professional6 us7 football8 team9
d5 mac1 os2 x3 jaguar4 be5 available6 at7 a8 price9 of10 us11 $19912 for13 apple14 new15 family16 pack17
d6 one1 such2 rule3 family4 to5 incorporate6 the7 jaguar8 into9 their10 name11 be12 jaguar13 paw14
d7 it1 be2 a3 big4 cat5

Figure 13.6: Document set of Figure 13.4, after tokenization and stemming

d1 jaguar2 new5 world6 mammal7 felidae10 family11
d2 jaguar1 design3 four4 new5 engine6
d3 jaguar2 atari3 keen5 68k9 family10 device11
d4 jacksonville2 jaguar3 professional6 us7 football8 team9
d5 mac1 os2 x3 jaguar4 available6 price9 us11 $19912 apple14 new15 family16 pack17
d6 one1 such2 rule3 family4 incorporate6 jaguar8 their10 name11 jaguar13 paw14
d7 big4 cat5

Figure 13.7: Document set of Figure 13.4, after tokenization, stemming, and stop-word
removal

Phonetic stemming: The purpose of phonetic stemming is to retrieve words despite spelling
variations or errors. Soundex is a widely used loose phonetic stemming for English,
especially known for its use in U.S. censuses, that stems for instance both Robert and
Rupert to R163. As can be seen from this example, it is a very coarse form of stemming
and should probably not be used in contexts where the precision of matches is important.

In some circumstances, it can be useful to produce different indexes that use different forms
of stemming, to support both exact and approximate queries.

Stop-word removal

The presence of some words in documents, such as determiners (the, a, this, etc.), function
verbs (be, have, make, etc.), and conjunctions (that, and, etc.), is very common and indexing
them increases storage requirements. Furthermore, they are not informative: A keyword
query on be and have is likely to retrieve almost all the (English) documents of the corpus.
It is then common to ignore them in queries, and sometimes in the index itself (although it
is hard to determine in advance whether an information can be useful or not). Figure 13.7
shows a further filtering of our running example that removes stop-words (to be compared
with Figure 13.6).

13.3 Web Information Retrieval

Once all needed preprocessing has been performed, the (text) document set can be indexed
in an inverted file (or inverted index) that supports efficient answering to keyword queries.
Basically, such an index implements a binary association (i.e., a matrix) between the docu-
ments and the terms they contain. Documents are represented by their ids, a compact key

For personal use only, not for distribution. 251

family d1, d3, d5, d6
football d4
jaguar d1, d2, d3, d4, d5, d6
new d1, d2, d5
rule d6
us d4, d5
world d1
. . .

Figure 13.8: Partial inverted index for document set of Figure 13.4

that uniquely identifies a document. Note that the search system is not required to store the
document itself, as long as it can be accessed from an external source using its id. Terms are,
as discussed before, stemmed tokens that are not stop words. An inverted index supports
very fast retrieval of the documents (ids) that contain the set of keywords in a query.

We describe next and illustrate on our running example how to index a collection of text
documents in a suitable way to efficiently answer keyword queries. This problem and related
ones are known as information retrieval or, simply, search problems. We present the inverted
index model in Section 13.3.1. We then proceed to the problem of answering keyword queries
using such an index. Large-scale indexing and retrieval is introduced in Section 13.3.3 and
clustering in Section 13.3.4. We discuss briefly at the end of this section how we can go beyond
traditional information retrieval techniques to search the Web.

13.3.1 Inverted Files

An inverted index is very similar to traditional indexes found at the end of printed books,
where each term of interest is associated to a list of page numbers. In the IR context, an
inverted index consists of a collection of posting lists L(T), one for each term t, storing the
ids (postings) of the documents where t occurs. A (partial) example of inverted index for our
example is given in Figure 13.8.

For small-scale applications where the index fits on a single machine, lists of occurrences
of documents are usually stored, packed, for each given term, in an inverted file that is
then mapped to memory (using the POSIX system call mmap). A secondary structure (the
vocabulary) gives the position of the list for each term in the index. In order to quickly find
this position given a term t, the vocabulary can be indexed by for example a B-tree.

Structure of

an entry
inverted list

B−tree

(t1,n1)

e1(t2,n2)

(tm,nm)

eie3e2

< di ,wi >

vocabulary

Figure 13.9: Structure of an inverted file

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 252

Figure 13.9 shows the structure of an inverted index. Some details are noteworthy. First, the
length of an inverted list is highly variable. This length depends on the number of referred
documents in the list, which is high for common terms (t1 in Figure 13.9), and small for
rare ones (tm in Figure 13.9). In text processing, skewness is the norm and often the handle
to strongly accelerate query processing by scanning the shortest lists first. The vocabulary
features, therefore, along with each term ti, the number ni of documents where ti occurs.

Second, a list consists of a sequence of homogeneous entries that can often be quite efficiently
compressed to limit the memory space required by the whole index. A key requirement
for efficient compression is the ordering of entries on the document id (represented as an
unsigned integer). The basic index illustrated in Figure 13.8 shows an ordering of each on the
di component, assuming that di < dj when i < j.

Here is a first concrete example giving some measures for a basic representation of an
inverted index.

Example 13.3.1 Consider an institution that wants to index its collection of e-mails. We
assume that the average size of an e-mail is 1,000 bytes and that each e-mail contains an
average of 100 words.

A collection of 1 million e-mails occupies 1 GB. It consists in 100× 106 words. Suppose that,
after parsing and tokenization, the number of distinct terms is 200,000. Then:

1. The index consists of 200,000 lists;

2. Each document appears in 80 lists, if we make the (rough) assumption that 20% of the
terms in a document appear twice;

3. Each list consists, on average, of 400 entries;

4. If we represent document ids as 4-bytes unsigned integers, the average size of a list is
1,600 bytes;

5. The whole index contains 400× 200,000 = 80,000,000 entries;

6. The index size is 320 MB (for inverted lists) plus 2,4 MB (200,000× 12) for the directory.

The index size is generally not negligible. It is more than 30% of the collection size on this
example, a ratio that can get even higher when additional information is added in inverted
lists, as explained next.

Content of inverted lists

Storing the document id is sufficient for Boolean querying (e.g., to determine which docu-
ment(s) contain a given term). However, applications sometimes require the position of each
term in the original document. This is, for instance, the case when phrases can be searched
(this is usually done in search engine interfaces by enclosing phrases between quotes), or
when the search engine allows operators that need this position information (e.g., the NEAR
operator of Altavista, that requires two terms to be close to each other). This information

For personal use only, not for distribution. 253

family d1/11, d3/10, d5/16, d6/4
football d4/8
jaguar d1/2, d2/1, d3/2, d4/3, d5/4, d6/8 + 13
new d1/5, d2/5, d5/15
rule d6/3
us d4/7, d5/11
world d1/6
. . .

Figure 13.10: Partial inverted index for document set of Figure 13.4, with positions

can easily be stored in the index, by simple addition of the positions (as integers) next to the
document id in an entry. See Figure 13.10 for an illustration.

When a term appears several times in a document, the sorted list of its positions is stored
after the document id. This additional information is likely to increase the size of the inverted
file. Storing a list of integers in increasing order allows some effective compression techniques
which are discussed in Section 13.3.3.

Note that this space overhead can be avoided at the price of a post-processing step at
run-time. In that case, a phrase query is processed just as a traditional bag-of-words query,
and proximity is checked once the document itself has been fetched. This method is however
ineffective at large scale, due to the cost of fetching many useless documents.

Finally, for ranking purposes, a weight wi is stored along with the document id di to
represent the relevancy of the document with respect to the term. The value of wi is discussed
next.

Assessing document relevance

In traditional databases, the result of a query (say, a SQL query) is the set of tuples that match
the query’s criterion, without any specific order. This constitutes a major difference with IR
queries. The set of documents (ids) that contain a term t is easily found by scanning the list
associated with t. But, clearly, some of these documents are more relevant to the term than
others. Assessing the relevance of documents during the matching process is essential in a
system where query results may consist of hundreds of thousands of documents.

Relevance is measured by assigning some weight to the occurrence of a term in a document,
depending on the relevance and informativeness of the term. A term that appears several
times in a document is more relevant for indexing the document than single occurrences. If the
term occurs rarely in the whole collection, this further strengthens its relevance. Conversely,
a term that occurs frequently in many documents is less discriminative. Based on these
principles, a common weighting scheme is tf–idf, or term frequency–inverse document frequency:
this scheme assigns a weight to a term that is proportional to its number of occurrences in the
document. It also raises the weight of terms that are present in few documents.

The term frequency is the number of occurrences of a term t in a document d, divided by
the total number of terms in d. The division normalizes the term frequency to avoid the
distorsion that would occur for large documents. In mathematical terms:

tf(t,d) =
nt,d

∑t′ nt′,d

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 254

family d1/11/.13, d3/10/.13, d5/16/.07, d6/4/.08
football d4/8/.47
jaguar d1/2/.04, d2/1/.04, d3/2/.04, d4/3/.04, d5/4/.02, d6/8 + 13/.04
new d1/5/.20, d2/5/.24, d5/15/.10
rule d6/3/.28
us d4/7/.30, d5/11/.15
world d1/6/.47
. . .

Figure 13.11: Partial inverted index for document set of Figure 13.4, with positions and tf-idf
weighting

where nt′,d is the number of occurrences of t′ in d.
The inverse document frequency qualifies the importance of a term t in a collection D of

documents. A term that is rarely found is more characteristic of a document than another one
that is very common. The idf is obtained from the division of the total number of documents
by the number of documents where t occurs, as follows:

idf(t) = log
|D|

|{d′ ∈ D |nt,d′ > 0}| .

Finally, the mathematical definition for the weight tfidf(t,d) of term t in document d is the
products of these two descriptors:

tfidf(t,d) =
nt,d

∑t′ nt′,d
· log

|D|
|{d′ ∈ D |nt,d′ > 0}|

The first term raises the weight of frequently occurring terms in the given document, whereas
the second term negatively depends of the global frequency of the term in the document set.
This weighting scheme can then be added to each entry in the index, as shown on Figure 13.11.

Adding the weight or the position has an impact on the index size.

Example 13.3.2 Consider again the e-mails collection of Example 13.3.1. We add the term
position and the weight to each entry, resulting in a storage overhead of 8 bytes, assuming a
4-byte representation for each component. The 80,000,000 entries now occupy 80× 12× 106 =
960 MB (i.e., almost the size of the whole collection).

13.3.2 Answering Keyword Queries

Given an inverted index built as described in the previous sections, we can answer to keyword
queries. This may involve some sophisticated operations if one wants to put the most
significant answers on top of the result set. We begin with the simple case of Boolean queries
that do not require to rank the result.

For personal use only, not for distribution. 255

Boolean queries

If we want to retrieve all documents containing a given keyword, we just need to look up the
(stemmed) keyword in the index and display the corresponding list of documents; associated
weights give an indication of the relevance of each result to the keyword query. Consider
now arbitrary multi-keyword Boolean queries (containing AND, OR, NOT operators), such
as:

(jaguar AND new AND NOT family) OR cat.

They can be answered in the same way, by retrieving the document lists from all keywords ap-
pearing in the query and applying the set operations corresponding to the Boolean operators
(respectively, intersection, union, and difference for AND, OR, and AND NOT). Assigning a
score to each document retrieved by the query is not completely straightforward, especially
in the presence of NOT operators. For queries that only contain either the AND or the OR
operator, some monotonous functions of the scores (or weights) of all matched terms can
be used; a simple and effective way to compute the global score of the document is just to
add all scores of matched terms. Another possibility is to use a similarity function, such as
cosine (see Section 13.3.4) and compute the similarity between the query and the documents.
Queries that give the location of terms relatively to each other (phrase queries or queries
with a NEAR operator) can be answered in the same way, by retrieving from the index all
matching documents with the associated positions, and checking whether the conditions
imposed by the query (such as, position of keyword t should be that of keyword t′ minus one
for the phrase query “t t′”) are satisfied.

In most applications, it is often desirable to return only a subset of the documents that
match a query, since a user cannot be expected to browse through thousands or even millions
of documents. This is achieved by ranking the result.

Ranked queries: basic algorithm

We consider conjunctive keyword queries of the form:

t1 AND . . . AND tn

and let k be a fixed number of documents to be retrieved (e.g., 10 or 50). We describe next two
algorithms based on inverted files for top-k queries.

Recall that the inverted lists are sorted on the document id. Starting from the beginning of
each list Lt1 , . . . , Ltn , a parallel scan is performed, looking for a tuple [d(1)i , . . . ,d(n)i] (in other
words, a document di matching all the terms). We denote by s(t,d) the weight of t in d
(e.g., tfidf) and g(s1, . . . , sn) the monotonous function that computes the global score of a
document given the weight of each term in the document (e.g., addition). The global score
Wi = g(s(t1,di), . . . , s(tn,di)) of di is then computed and the pair [di,Wi] inserted in an array.
When the parallel scans are finished, the array is sorted on the global score, and the k first
documents constitute the output.

The algorithm is linear in the size of the inverted lists (we neglect here the cost of sorting
the resulting array, which is in most cases much smaller than the inverted lists). In practice,
the efficiency depends on the semantics of the query. If at least one occurrence of each term
t1, . . . , tn is required in each document of the result set, then the scan may stop as soon as
one of the list is exhausted. However, in general (for a query involving the OR operator), a

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 256

family d1/11/.13, d3/10/.13, d6/4/.08, d5/16/.07
new d2/5/.24, d1/5/.20, d5/15/.10
. . .

Figure 13.12: Partial inverted index sorted on tf-idf weighting in descending order

document can obtain a high global score even if one or several query terms are missing. A
semantics that favors the global score and not the presence of each term requires a full scan of
the lists.

Fagin’s threshold algorithm

Fagin’s threshold algorithm (TA in short) allows answering top-k queries without having
to retrieve and compute the intersection of all documents where each term occurs. We now
make the assumption that, in addition to an inverted index that stores lists in increasing
documents identifier order, we have another inverted index sorted on the weights. The first
index can be used to directly check the weight of a term in a document with binary search.
The algorithm is as follows:

1. Let R, the result set, be the empty list.

2. For each 1≤ i ≤ n:

a) Retrieve the document d(i) containing term ti that has the next largest s(ti,d(i)).

b) Compute its global score gd(i) = g(s(t1,d(i)), · · · , s(tn,d(i))) by retrieving all s(tj,d(i))
with j 6= i. If the query is a conjunctive query, the score is set to 0 if some s(tj,d(i))
is 0.

c) If R contains less than k documents, add d(i) to R. Otherwise, if gd(i) is larger
than the minimum of the scores of documents in R, replace the document with
minimum score in R with d(i).

3. Let τ = g(s(t1,d(1)), s(t2,d(2)), . . . , s(tn,d(n))).

4. If R contains at least k documents, and the minimum of the score of the documents in R
is greater than or equal to τ, return R.

5. Redo step 2.

We now illustrate this algorithm on our running example with the top-3 query “new OR
family”, using the sum of weights as our aggregation function. A first index sorts the inverted
lists on the document ids (Figure 13.11), a second one on their weights (Figure 13.12 shows,
respectively, the lists for family and new).

Initially, R = ∅ and τ = +∞. The query evaluation must retrieve the k = 3 top-ranked
document in the result set. Here, n = 2 (the query consists of two keywords). We develop a
step-by-step progress of TA.

Let i = 1. Document d(1) is the first entry in the list Lfamily, hence d(1) = d1. We now need
s(new,d1), the weight of term new in d1. Note that we cannot afford to scan the entries
Lnew since this would involve a linear cost at each step of the algorithm. This is where a

For personal use only, not for distribution. 257

binary search on another inverted list L′new sorted on the document id is useful. One gets
s(new,d1) = 0.20. Finally, the global score for d1 is g(s(family,d1), s(new,d1)) = 0.13+ 0.20 =
0.33.

Next, i = 2, and the highest scoring document for new is d2. Applying the same process, one
finds that the global score for d2 is .24 (note that d2 does not appear in Lfamily, so its weight
for term family is 0). The algorithm quits the loop on i with R = 〈[d1,0.33], [d2,0.24]〉 and
τ = 0.13 + 0.24 = 0.37.

Since the termination condition is not fulfilled, we proceed with the loop again, taking d3
and d5 as, respectively, d(1) and d(2). The global score for d3 is 0.13 and the global score for
d5 is 0.10 + 0.07 = 0.17. The element [d5,0.17] is added to R (at the end) and the threshold
τ is now 0.10 + 0.13 = 0.23. Although R now contains three documents, as required, the
termination condition is not met because τ is larger than the minimal score in R. Therefore,
it is still possible to find a document whose score is higher than .17. Assume for instance a
document d at the next position in both lists, with weights 0.09 and 0.12. A last loop concludes
that the next candidate is d6, with a global score of 0.08 and τ = 0.08. The algorithm halts with

R = 〈[d1,0.33], [d2,0.24], [d5,0.17]〉.

13.3.3 Large-scale Indexing with Inverted Files

Inverted files must be able to process keyword-based queries on large collections of docu-
ments. As discussed earlier, the basic operation is a sequential scan of a list that retrieves
the set of document containing a given term. This operation is linear in the size of the list,
and therefore in the size (number of documents) of the collection. It is also linear in the
number of terms in the query. This seems to keep inverted files from being scalable to very
large collections. However, the following analysis shows that they actually constitute a quite
effective structure.

Table 13.1 summarizes a few important properties of modern hardware. Values are given
for a typical data server. The cost of a random disk access (about 5 ms) is several orders of
magnitudes larger than an access to main memory (about 100 ns). Most of this cost accounts
for positioning the disk head (seek time, or disk latency). A sequential read which avoids
the seek time can retrieve as much as 100 MB/s from the disk. A typical data server holds
tens of gigabytes of main memory, and stores several terabytes of data on disks. Two simple
guidelines for the design of efficient large scale systems are: (i) keep data in main memory
as much as possible and (ii) write and read, sequentially large chunks of contiguous data on
disks. Note that the discussion assumes a single data server.

Performance of inverted files

Consider an inverted file structure that does not store the position of terms in the lists. An
entry is a pair [di,wi]. The document id di can be represented with a 4-byte unsigned integer,
allowing 232 = more than four billions of documents ids. The weight wi only requires 2 bytes
by setting its value to nt,d. The tf–idf can then be computed on the fly.

A collection of 1 million documents can therefore be indexed with 1 million of entries that
occupy 6 MBs (the size of secondary structures is considered negligible). For a collection of
1 billion documents, a 6 GBs index suffices. Clearly such an index fits in the main memory
of any reasonable data server, and requires far less storage than the documents themselves.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 258

Type Size Speed
Processor Cache lines = a few MBs 3–4 GHz; typical processor clock

rate ≈ 0,310−9s.
Memory Tens of GBs Access time ≈ 10−9s − 10−8s (10–

100 ns)
Disk Several Terabytes Access time≈ 5× 10−3s (5 ms); Max.

disk transfer rate = 100 MB/s

Table 13.1: Hardware characteristics

Assume for a moment that the collection contains 10,000 terms uniformly distributed in the
documents. Each of the 10,000 lists contains 100,000 entries and occupies 600,000 bytes. Even
if the list is on disk, it takes less than 1/100 s. to scan it and process its content. It practice,
terms are not uniformly distributed, and this makes things even better, as explained later.
These figures assume a contiguous storage of inverted lists, which is essential to ensure a
high speed sequential disk-based retrieval.

If the index stores the positions of terms in the list entries, things become less pleasant.
In a naive approach, a position is stored with 2 bytes (this limits the size of documents to
216 = 65,536 positions/terms) or 3 bytes (16,777,216 positions). This constitutes a storage
overhead of at least 50% with respect to the position-free index if each term occurs only once,
and much more for terms with multiple occurrences in a same document.

What about Web-scale indexing? At the end of 2009, the size of the Web (a continuously
changing value) is at least 20 billion pages (see http://www.worldwidewebsize.com/
for an up-to-date estimate), and probably two of three times larger (note that a four-byte
storage is no longer sufficient for documents ids). Several hundreds of gigabytes are necessary
to index its content with the simplest possible inverted index, without storing the term
positions and without replication. For Web-scale applications, such as search engines, the
index is distributed over a cluster of machines. Distribution mechanisms are investigated in a
dedicated chapter.

Building and updating an inverted file

Building inverted files is a complex task because of their large size, and because of the need
to preserve the contiguous storage of inverted lists. We first discuss static construction, where
the collection of documents is known in advance, then dynamic maintenance of the index as
documents are added or removed.

The basic procedure consists in scanning the documents one by one, creating for each a
sorted list of the tokens. One creates a matrix with documents ids in rows and terms in
columns, which must then be inverted to obtain a row for each term. For large files, matrix
inversion cannot be processed in main memory. Moreover, writing each entry on the disk as
soon as it is found would result in a highly fragmented storage.

The index can be created in two passes. The first pass collects information on the frequency
of each term t. This determines the size of the inverted list for t, which can then be allocated
on the disk. During the second pass, each entry can be written sequentially in the appropriate
list. This results in a non-fragmented index.

http://www.worldwidewebsize.com/

For personal use only, not for distribution. 259

The drawback of any two-pass approach is that documents must be processed twice.
Another strategy relies on a preprocessing step, e.g., sorting. Sort-based algorithms first extract
triplets [d, t, f] from the collection, then sort the set of triplets on the term-docid pair [t,d].
Contiguous inverted lists can be created from the sorted entries.

The most commonly used algorithm for external sorting is an adaptation of the sort/merge
main memory algorithm. In the first phase, sorted subfiles called “runs” are created from the
data source. Assuming m blocks in main memory, each run occupies m pages and stores a
sorted subset of the input. In order to create the runs, one repeats the following sequence of
operations (Figure 13.13):

1. the m buffer pages in main memory are filled with triplets [d, t, f] extracted from the
documents;

2. the triplets in the m pages are sorted on [t,d] with an internal-memory algorithm (usually
quicksort);

3. the sorted blocks are written onto disk in a new run.

...

...

...Disk
Sorted "runs"

Main memory

m pages

Figure 13.13: The creation of initial runs

Starting from the runs created in the first phase, the merge phase begins. One block in main
memory is assigned to each run file: m− 1 runs are merged in a single pass, and the last block
in main memory is allocated to the output run.

...

o

o

...

...

...

input runs

i2

i1

output
run

initial runs

sorted output fan-in

i2 im−1

im−1i1

Figure 13.14: The merge phase

The process is illustrated in Figure 13.14. It can be represented by a tree, each node of
the tree corresponding to a single merge operation described in the right part of the figure.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 260

One reads the first page of each input run {i1, i2, . . . , im−1} in the main memory buffer (recall
that the input runs are sorted). The merge then begins on the data in main memory. The
record with the smallest t value is repeatedly picked in one of the m− 1 blocks and stored
in the output block (if several triplets with the same t exist, then the one with the smallest
d is chosen). When all the triplets in an input block, say j, have been picked, one reads
the following block in run ij. Once the output block is full it is written in the output run.
Eventually, an output run is full (m× (m− 1) blocks have been written in the run), it is ready
to be merged at a higher level with other runs obtained from the first-level merge operations,
etc.

The merge of runs is done in linear time. Each run is read once and the size of the output is
the sum of the sizes of the input runs. Therefore, at each level of the tree, one needs exactly 2n
I/Os. If the fan-in is m− 1, there are O(logm n) levels in the tree, and we obtain an Θ(n logm n)
algorithm.

As a final improvement, merge-based algorithms avoid the sort phase by directly constructing
sorted inverted lists in main memory. When the memory is full, sorted in-memory lists are
flushed on the disk, just like sorted runs in the sort-merge algorithm. When all documents
have been processed, the flushed lists that relate to a term t are merged and the result
constitutes the final inverted list for t.

This is illustrated with Figure 13.15. For each document d in the collection, the parsing
process extracts a set of terms, and a pair [d, f] is inserted in the in-memory list Li for each
term ti. Eventually the allocated memory gets full. A flush creates then a “run” on the disk. At
the end of collection, several such runs may have been created. A final merge operation carries
out a merge of the lists associated with each term. One obtains the final inverted index.

This algorithm enjoys several properties that make it widely used in practice. First, it
avoids both a double parsing of the input documents and a costly external sort. Second, it is
robust enough to behave correctly in the presence of large collections or moderate memory
availability. Finally, this algorithm turns out to be useful for evolving collections, as discussed
next.

parsing

sorted inverted list

Final inverted index

Disk

merge

flush

flush

document d1

document dm

entries

entries
run 1

run 2

...

entries

...

...

tn

ti

t1

...

Figure 13.15: The merge-based algorithm

Indexing dynamic collections

When new documents are added or removed continuously (which is the standard situation
in Web indexing), the inverted index must be updated to reflect the up-to-date knowledge

For personal use only, not for distribution. 261

acquired by the crawler, which constantly runs in parallel. Updating the index is typically
quite costly since it requires updating the document list of various terms, changing the
structure of each list. Actually, applying the naive approach of directly accessing the list for
each incoming document would result in awful performances.

The merge-based algorithm provides a solution to the problem. An in-memory index that
holds the information related to the new documents is maintained. Searches are performed
on the two indexes. When the index becomes full (that is, its size exceeds a given threshold),
it can be seen as the last run of a merge-based approach, and a merge with the main index
can be processed. During a merge, a copy of the old index must be kept to support the
current searches operations. This doubles the space requirements. The preceding description
disregards deletions, which can be processed thanks to a small variant (left as an exercise).

Compression of inverted lists

Compression of inverted lists is an important feature of text IR systems. It brings several
advantages:

1. Compressed files require less disk space;

2. The same amount of information can be read more quickly;

3. A larger part of the inverted index can be kept in main memory.

The price to pay is the need to uncompress the content of the lists when they are accessed.
A basic criterion is that the total cost of reading (on disk) a compressed inverted list followed
by its decompression should not exceed the cost of reading the uncompressed list. The com-
pression would otherwise jeopardize the query evaluation process. Efficient decompression
algorithms exist that take advantage of the very high speed of modern hardwares.

The standard storage size of an integer is 4 bytes (2 bytes for so-called “short” integers).
A 4-byte unsigned integer can represent values in the range [0;232 − 1] = 4,294,967,296 (the
maximal value is 65,535 for 2-bytes ints). The intuition behind the compression strategies
of inverted list is that they can be seen as sequences of positive integers such that the gap
between two consecutive entries in the list is typically small. Assume for instance that a term
t is represented in the following documents, put in ascending order:

[87;273;365;576;810].

Note that we need at least one byte to store the first id, and 2 bytes for the other ones. This
sequence of sorted documents id can be equivalently represented by the gaps between two
consecutive ids:

[87;186;92;211;234].

An immediate advantage of this latter representation is that, since the gaps are much
smaller that the absolutes ids, they can be represented (on this particular example) with
1-byte integers. More generally, the following facts help to greatly reduce the necessary
storage:

1. Relative gaps tend to be smaller than ids, and thus need on average a lot less space than
the standard 4-byte storage;

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 262

2. For very common terms that appear in many documents, the gap often is the minimal
value of 1, with high potential compression.

This representation, called delta-coding, is a very simple way to achieve a significant re-
duction of space requirements. Note, however, that although one may expect a lot of small
gaps, we must be ready to face large gaps in the inverted lists of rare terms. The compression
method must therefore adapt to these highly variable values, in order to choose the appropri-
ate storage on a case-by-case basis. As mentioned earlier, this method must also support a
very quick decompression mechanism.

We present later two efficient compression methods, which, respectively, attempt at using
the minimal number of bytes (bytewise compression) or the minimal number of bits (bitwise
compression) to represent gaps. Both methods are parameter-free in the sense that they do not
rely on any assumption on the distribution of gaps, and thus do not require the additional
storage of parameters that would describe this distribution. Bitwise compression achieves
a (slightly) better compression ratio than bytewise compression, at the price of a higher
decompression cost.

Variable byte encoding

As the name suggests, variable byte encoding (VByte in short) encodes integers on a variable
(but integral) number of bytes. The idea of VByte encoding is very simple. Given a positive
integer value v, one tests whether d is strictly less than 128. If yes, d can be encoded on the
last 7 bits of a byte, and the first bit is set to 1 to indicate that we are done. Otherwise:

1. Take the reminder v′ of v/128; encode v′ as explained above in a byte b;

2. Apply recursively the procedure to v/128, this time setting the first bit to 0; concatenate
the result with b.

Let, for example, v = 9. It is encoded on one byte as 10001001 (note the first bit set to 1).
Now consider a larger value, say v = 137.

1. The first byte encodes v′ = v mod 128 = 9, thus b = 10001001 just as before;

2. Next we encode v/128 = 1, in a byte b′ = 00000001 (note the first bit set to 0).

The value 137 is therefore encoded on two bytes:

00000001 10001001.

Decoding is very simple: one reads the bytes bn, · · · ,b2 with a leading 0, until one finds a
byte b1 with a leading 1. The value is:

bn × 128n−1 + · · ·+ b2 × 128 + b1.

The procedure is very efficient because it manipulates full bytes. It is also quite flexible
since very large integers (there is no upper bound) can be encoded just as very small ones.
The method also achieves a significant amount of compression, typically 1/4 to 1/2 of the
fixed-length representation.

For personal use only, not for distribution. 263

Variable bit encoding

We next illustrate bit-level encoding with γ-codes. Given an unsigned integer x, the starting
point is the binary representation with blog2 xc+ 1 bits. For instance, the binary representation
of 13 is 1101, encoded with blog2(13)c+ 1 = 4 bits. The binary representation is space-optimal,
but since its size obviously depends on x, we need to represent this varying length as well to
be able to decode the value.

Using γ-codes, the length blog2 xc+ 1 is encoded in unary: a length l is represented with
l − 1 ‘1’ bits terminated by a ‘0’ bit. The value 13 can therefore be represented by a pair
(1110,1101), where 1110, the length, is in unary format, followed by the value (called the offset,
see below) in binary.

γ-codes introduce an optimization based on the following observation: a non-null value x
is of the form 2blog2(x)c + d. In terms of binary representation, the first term corresponds to a
leading ‘1’, followed by the binary representation of d (the offset of x).

Since the first term 2blog2(x)c is determined by the length, which is known from the prefix of
the code, we only need to store the value of d in the suffix. So, still taking 13 as an illustration,
we put it in the form 23 + 5. We encode the length in unary as before as 1110, and we encode
the offset (5) in binary on 3 bits as 101. The γ-code for 13 is finally:

1110101.

Decoding first reads the number of leading ‘1’ bits until a ‘0’ is met. This gives us the length
of the binary code that follows. On our example, we determine that the length is 3. The value
is therefore 23 + decode(101) = 8 + 5 = 13.

The length of a γ-code for a value x is 2× blog2(x)c+ 1, that is, at most twice the minimal
possible storage required for x (recall that using this minimum representation is not possible
since we need to be able to find the boundaries of each value).

Better compression can only be achieved by using a model of the distribution of the values.
It turns out that using such a model for inverted list is never done because (i) it leads to a
compression/decompression cost which balances the gain of space reduction, and (ii) the
maintenance of encoding becomes too complicated if the distribution changes.

Experiments show that bitwise compression achieves a better compression than bytewise
(about 10 to 20% better, depending on the data set), at the price of a more expensive pre- and
post-processing of the inverted lists.

13.3.4 Clustering

If one wants to search on the Web some information about the jaguar animal, one is probably
not interested in the other meanings of the word jaguar, such as the car make or the version
of Mac OS X. Clustering can be used in such contexts to partition a set of documents (the
result of the keyword query) into a set of homogeneous document collections. The result of a
clustered search for jaguar on the Clusty7 search engine is shown on Figure 13.16.

One way to achieve such a clustering is the following. Start from some document set that
is to be clustered. We shall see this document set in a document vector space model, that is
the dual of the inverted index model: Documents are described by the terms that occur in
them, with associated weighting, and each term is seen as a dimension of a vector space

7http://clusty.com/

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://clusty.com/

For personal use only, not for distribution. 264

� � � � � � � � � 	
 � � � � � � � �
 � 	 � � �
 � � � � � � � � � �
� � � � � � � � � � � � � � �� � � � ! " � ! � � � � �# � ! � � � � $ �" � � � � � � �# % & � & � � � ' �# � (� % � ! � & () � � * + �, � (- � & . � ! � * / �� �) 0 � & (. 1 � � � � � � � ! � � * � �2 � 3 � (� 1 . � 4 5 � �) & (� � 6 �� � � ! 1 4 7 � 8 � � * 9 �" � � � � 1) � � � � ! � / �

) � � � � � ! � � � : � ; � � � � < � � = � � > ? > � � � : � < � � @ 	 < � � 	 � < A ? 4 B ? B 4 B B B � � < � � � C �
 @ � � < D � E : � � F G � � � ! H
 � @ � � � < � � � I H
 � < 	 � � � I J � 	 � ; D K � � : � < �LM N O P Q O R S T U V W X X Y Z [V \ \] U] ^ _ ` [a b] c [V \ c Z [d e f g b h ^ U i b V j k] _ _ [l O P Q O R S= D � � @ @ � ; � 	 � < � 	 � � � < � � � < D � ; � � � � m � � � � � < � � � m
 	 � � � ; D �
 : � � m 	 �
 � � � < � � L� � � L � 	
 : 	 � � L ; � � n o ; 	 ; D � p n q � C � m r � � � s � � � ; < � � F m t � �Lu l O P Q O R = D � G � � � ! H v w x y z { | w } x ~ w I � � 	 � 	 �
 � � � � � � � � @ < D � ; 	 < @ 	 � � � F � 	 < � C � < � � 	 � �� �
 � � � � � @ < D � t � � � � ; 	 � L � < � � ; � � � � � F � � � 	 < �
 < � < D � � � � � m < �
 � � m 	 �
 � � � � 	 �
 � @ < D � r �
� � � �
 m 	 �
 � � < D � � 	 �
 � � < � � � ; � � � � @ < D � ; 	 < @ 	 � � � F @ � : �
 � � < D � t � � � � ; 	 � L� � L � � � � � �
 � 	 L � �
 � � � � � � � 	
 : 	 � n o ; 	 ; D � p n � � � � � �
 � 	 m t � � m q � C �L� l O P Q O R � j c Z � b] ^ b c b g � _ � a� � � �
 � � � 	 �
 � � < � � � � ! � s 	 � � � � � � � : � L L L q 	 �
 � � < � � � � ! � � : � � � < D � � � � �
 m � � � C � �
 � C � � u � m � � �� � � � � � � L L L� � � L � � ; L � �
 L : � n o ; 	 ; D � p n t � � m r � � � s � � � ; < � � FL� � � ^ a ^ j � V j b a] � \ V � N O P Q O R � [U V k [� � � _ ^ j� � � � � � � � � � � = D � � � < � � � � � s � � 	 � < � � � < D 	 � 	 � 	 �
 � � �
 	 < < � � � < � < � ; � 	 @ < 	 � � ; � C � � F � � 	 � @ � � < D �� �
 	 �
 � � �
 G � � � ! � � ; 	 : � � < � � @ � � � @ < D � � 	 � � ; 	 < � D 	 C � � � � � � � � < < �
 	 � � �
 < D � J � : < D � � � < � �
 � � �� @ � � � � � � � ; � 	 �
 t � � � � � 	 < � � 	 � � 	 � < � : ; D 	 ; < � � � L J � � � ; � � < � ; � � @ < D �
 � ; � � � � � � 	 �
 = D : � �
 	 F < D �G � � � ! � � � � � �
 � 	 ; � � @ � ; �
 @ � � < D �
 � C � � � � � � < � � � � � � � �
 � � @ � � ; � m � D � ; D � �
 � � �
 : � 	 � � �
 � 	 � F � @ < D �� 	 � � 	 � � 	 � � D � � � < D � L L L D 	 � ; � � � � �
 � � < � < D � � � � < �
 J < 	 < � � @ � � � � � � � ; � L � @ < D � � L J L � � �
 � � 	 � � 	 �� � � �
 � � �
 � 	 < �
 ; � � < � ; 	 � � � ; � C � � F 	 � � 	 � @ � � < D � G � � � ! m < D � � � < � � : �
 ; � � � < � 	 � � < D � � � � � � 	 �
 J � ; : � � < Fs � � 	 � < � � � < � � � : � �
 � �
 < D � @ � � ; � m � 	 �
 � � � 	 � J : ; � � � �
 m � � � � ; F
 � � � ; < � � � @ < D � � � � < � � L L L� � � � L F 	 D � � L ; � � � � � 	 � � u � � ¡ � M M ¡ � 	 � ¢ � � ¢
 � ¢ ; 	 ¢ � < ¢ � � � � 	
 : 	 � ¢ � � ; � C � � F n o ; 	 ; D � p n £ 	 D � � ¤ � � � �L¥ ¦ ^ k] j § ¨ V V � a � [c V © [§ [W V j �ª « ¬ � ­ � ® ¯ � L L L � � � �
 ; � : � < � � � � ° � � � � �
 � � � � � < 	 � ; � � � ; � � � � � 	 < � @ � � 	 � ; � ± � C � � 	 @ < � �F � : � : � < � 	 ; < � D � � 	 L � D � � = 	 < 	 � @ � �
 � 	 � � C F � �
 < � � : F � � � � ! m F � : � � � � < D �� 	 �
 � ; 	 � � � @ � � � � � D 	 � ; D 	 �
 �
 L J � ; � �
 n � � � �
 ; � : � < � � � � 	 � � 	 � � � @ 	 � < � � ; � � � �
D : � � @ � � � � � 	 �
 < � � � � � m L L L� � � L � F < � � � � L ; � � � L L L M � ¥ ² � ² � � � � ³ � � ´ ; µ � @ � ¡ � M � ¶ ² @
 µ 	 � ³ � � ´ ¥ � ¡ ¡ ³ � 	 � < � � � ´ � � � � F < ³ � � ; ´ � � � n o ; 	 ; D � pn � £ = � � � �Lµ l O P Q O R� � � � ! � 	 F � � @ � � < � · t G � � � ! H v w x y z { | w } x ~ w I m 	 � 	 �
 � @ � � �
 � 	 < � C � < � J � : < D 	 �
 � � � < � 	 � t � � � � ; 	7 ! � 8 8 � (5 A B � � � � ! � 8 1 � 1 � � ! ¸ � 1 !) ! � 3 � ¹ º # º " � » � � � � ! m 	 � � � � < 	 � F 	 � � ; � 	 @ < � � � � ! " � ! � m ¼ � � < � � D	 : < � � � � � � � � 	 � � � � � � � ! � �) 1 (m 	 @ � � � � � ½ � � � : � 	 r � � < � 	 � m � � � K �
 ¼ : � � K 	 ; � �
 � � � ! 1 � � � � ! m 	¾ �
 � �
 	 � � ; � � � � � � � 	
 � � F t < 	 � � � 	 ; r J ¿ M � L u À � 	
 : 	 � À m < D � ; �
 � � 	 � � @ � � C � � � � � � M � L u � @ < D �� 	 ; r J ¿ r � � � 	 < � �
 J F � < � � � � � � ! � Á º . � (� m 	 � � � < � � � �) 0 � & (. 1 � � � � � � � ! � m 	 � � ½ q < � 	 � 	; D 	 � 	 ; < � � � � < D � � � C � � � 1 8 Â � � (- � � � � ! 	 ¼ � � < � � D � � ; � � < m � 	
 : 	 � H � � ; � � < I� � L � � � � � �
 � 	 L � �
 � � � � � � � 	
 : 	 � ¢ H
 � � 	 � � �
 : 	 < � � � I n o ; 	 ; D � p n � � � � � �
 � 	L¶ l O P Q O R � � X © V W [� � � � ! � J t r @ @ � ; � 	 � � � � � Ã 	
 � L L L� � � L � 	
 : 	 � : � 	 L ; � � n o ; 	 ; D � p n t � �L¡ l O P Q O RÃ 	 � < D � � 	 � � ; 	 L � £ J = Ä K � r � J � t = r ½ = � Ä t � t Å r � L r @ 	 � � < D � � �
 ; 	 < � m < D � G � � � ! � � � 	 � � � < D �� � 	 � < � < :
 � �
 L � D � � � � � � � � � @ � � � 	 < � � � ; � � � � @ � � � < D � � � �
 m � � � < � @ � D 	 < � � � � � � � 	 � � : < L L L� � � L � � : � � � � � L � �
 � � 	
 : 	 � L D < � n o ; 	 ; D � p n q � C � m t � �L² e ^ _ U V j b Z] � [h ^ § b g � W] c Z ^ b j [` U V ^ U Z� � � � Æ � � � � � � L L L < � 	 � � m 	 < � 	 ; � � � ; � �
 � @ � : ; ; � � � m 	 � � � �
 m � � 	 � < 	 � � � � 	 ; D < � < D �
 	 � � m 	 �
 D �
 D ; D 	 � 	 ; < � � 	 �
 � � < �
 � � < F L À J � � < D m < D � � � � � ! � �
 � @ � � � � C � ; � � �
 � � 	 < � �� � � ; � u � � � m D 	
 D � � � � ; � �
 � � < � � C � � � � � < D < D � ½ 	 � ; � � � � � ½ � �
 	 F L � � D 	 � � � C � �� � � � 	 � � ½ q D � 	
 L L L � � ; � �
 � � u � � µ 	 �
 � � � < D � � u � � ¥ L q � @ < � � ; D � 	 �
 J � � < D � � : �
� � C � � � � ; � � C � � � � :
 D ; � �
 � < � � � 	 ; � � � � C � � � � � � ; 	 : � � � 	 � F 	 � � : � �
 � � � � ! � ; � 	 ; D� 	 ; � s � � K � � m 	 @ � � � � �
 � @ � � � � C � ; � � �
 � � 	 < � � m � 	 � < D � � � 	 � � 	 � < � � � � �
 � @ < D �
 � @ � � � � L � � � � ! �
 � @ � � � � C � � �
 � 	 � ; � � � : � � � � � F L L L� � � � L F 	 D � � L ; � � � � � 	 � � u � � ¡ � M u � � 	 � ¢ � � ¢ � � ¢ @ � ¢ � � � @ � � ¢ @ 	 � ; � � � ¢ ; � 	 ; D n o ; 	 ; D � p n £ 	 D � � ¤ � � � �LM � ¦] _ _ � ^ � b e _ � ^ b e ^ b c ^ b c Z [Ç [c ^ � Z V � b Èª É ¯ Ê Ë ­ � ® ¯ � L L L 	 � 	 � � � @ < D � � � � < 	 < : � 	 �
 � : � � � : �
 � �
 � L t �
 � D � � 	 � � �
 	 � � : < < D � @ : < : � � � @ ½ � �
 ° �� � � � � � � 	 � � F � � � � F n � � � � �
 ¼ � � < � � D � � 	 �
 � m � � � � ! 	 �
 q 	 �
 K � C � � m � D � ; D 	 � � @ � � � 	 � � m � � L � : � 	 � � F� @ @ � � �
 < D � � 	 � � � � 	 : < � ; 	 � 	 � � � � � � � � < · Ì = D � F ° � � � � 	
 F < � < 	 � � � @ @ 	 �
 L L L� � � L � F < � � � � L ; � � � L L L M � ¥ ² � ² � � � � ³ � � ´ � ¥ u ¡ � � ¡ µ � ² u M � � � ; ³ � � ´ ¥ � ¡ ¡ ³ � 	 � < � � � ´ � � � � F < ³ � � ; ´ � � � n

Figure 13.16: Example clustering from Clusty of the results of the query jaguar

documents live in. The coordinate of a document d in this vector space, along the dimension
corresponding to t, will be the weight of t in d (say, tfidf(t,d)). We then consider the cosine
similarity between two documents d and d′, seen as vectors:

cos(d,d′) =
d · d′

‖d‖ × ‖d′‖

where d · d′ is the scalar product of d and d′ and ‖d‖ the norm of vector d. With this definition
(which is a simple extension of the usual cosine function in the Euclidean plane), cos(d,d) = 1
and cos(d,d′) = 0 if d and d′ are orthogonal, that is, if they do not share any common term.

This is illustrated on Figure 13.17 which shows a two-dimensional vector space built on
the terms (jaguar, Mac OS). Documents are represented as normalized vectors with two
coordinates representing respectively their scores for each term. The similarity is estimated
by the angle between two vectors (and measured by the cosine of this angle). The figure
shows that d1 and d3 share almost the same scores, resulting in a small angle θ and thus in a
cosine close to 1.

This definition of similarity is all that we need to apply standard clustering algorithms, for
instance the following simple agglomerative clustering:

1. Initially, each document forms its own cluster.

2. The similarity between two clusters is defined as the maximal similarity between
elements of each cluster.

3. Find the two clusters whose mutual similarity is highest. If it is lower than a given
threshold, end the clustering. Otherwise, regroup these clusters. Repeat.

Note that many other more refined algorithms for clustering exist.

For personal use only, not for distribution. 265

jaguar

Mac OS

θ′ θ

~v(d1)

~v(d3)

~v(d2)

Figure 13.17: Illustration of similarity in the document vector space

13.3.5 Beyond Classical IR

HTML Web pages are not just text, but text enriched with meta-information and document-
level and character-level structure. This enrichment can be used in different ways: A separate
index for the title or other meta-information of a page can be built and independently queried,
or the tokens of a document that are emphasized can be given a higher weight in the inverted
index. For some applications, the tree structure of Web pages can be stored and queried with
languages such as XPath or XQuery (cf. Chapter 2); because most Web pages, even when they
are well-formed and valid, do not really use HTML structural elements in a meaningful and
consistent way, this approach is not very useful on the Web as a whole (see the part of the
book devoted to the Semantic Web). Also present on the Web is multimedia content such as
images or videos. They can be described and searched as text (file names, text present in the
context of the content, etc.), or with more elaborate multimedia descriptors.

The material covered in this section is just a brief introduction to the field of Information
Retrieval, taken as the art of efficiently and accurately searching for relevant documents
in large collections. Note in particular that the techniques introduced here are by no way
restricted to Web search and apply to any collection of documents (e.g., a digital library). The
next section is devoted to IR extensions that address the specificities of the Web, namely its
graph structure. Modern search engines also use other kinds of information, especially query
logs, the list of all queries made by users to the engine, and, in some cases, also consider their
selection among the list of results returned. If a user never clicks on a link for a given query, it
makes sense to decrease its relevance score.

13.4 Web Graph Mining

As all hyperlinked environments, the World Wide Web can be seen as a directed graph in the
following way: Web pages are vertices of the graph, whereas hyperlinks between pages are
edges. This viewpoint has led to major advances in Web search, notably with the PageRank
and HITS algorithms presented in this section.

Extraction of knowledge from graphs, or graph mining, has been used on other graph
structures than the Web, for instance on the graph of publications, where edges are the
citation links between publications; cocitation analysis relies on the observation that two
papers that are cited by about the same set of papers are similar. Other graphs susceptible

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 266

to this kind of analysis include graphs of dictionaries, or encyclopedias, or graphs of social
networks.

13.4.1 PageRank

Though tf–idf weighting adds some relevance score to a document matching a keyword,
it does not distinguish between reference documents that are highly trusted and obscure
documents containing erroneous information. The idea of using the graph structure of the
Web to assign some score to a document relies in the following idea or variants of it: If a
document is linked by a large number of important documents, it is itself important.

PageRank, which was introduced with much success by the founders of the Google search
engine, is a formalization of this idea. The PageRank of a page i can be defined informally as
the probability pr(i) that the random surfer has arrived on page i at some distant given point
in the future. Consider for instance the basic graph on the left of Figure 13.18. A random
surfer will reach node A at step i if it reaches node B, C or D at step i− 1. Therefore:

pr(A) = pr(B) + pr(C) + pr(D)

Figure 13.18: PageRank – Basic idea

In less simplistic cases, the surfer may have to choose among several outgoing edges. In
that case one assumes that the probability is uniform. Looking at the right part of Figure 13.18,
the probability for a surfer residing on node B (or D) to reach node C i 1/2. Hence, the
probability to reach C at i given the position at i− 1 is:

pr(C) =
1
2

pr(B) +
1
2

pr(D)

In general, let G = (gij) be the transition matrix of the Web graph (or a large part of it), that
we assume to be normalized in the following way:{

gij = 0 if there is no link between page i and j;
gij =

1
ni

otherwise, with ni the number of outgoing links of page i.

This normalization ensures that the matrix is stochastic (all rows sum to 1) and that it describes
a random walk on the pages of the Web: a random surfer goes from page to page, choosing with
uniform probability any outgoing link.

For personal use only, not for distribution. 267

1
2

3

6

7

9

4

5

10

8

Figure 13.19: Illustration of PageRank: Example graph

Example 13.4.1 Consider the graph of Figure 13.19. Its normalized transition matrix is as
follows:

G =



0 1 0 0 0 0 0 0 0 0
0 0 1

4 0 0 1
4

1
4 0 1

4 0
0 0 0 1

2
1
2 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1

2 0 0 0 1
2

1
3

1
3 0 1

3 0 0 0 0 0 0
0 0 0 0 0 1

3 0 1
3 0 1

3
0 1

3 0 0 0 0 0 0 1
3

1
3

0 1
2

1
2 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0


Thus, the probability that a random surfer goes from page 2 to page 6 or, in other words, the
probability of transition between nodes 2 and 6 in the random walk on the graph, is g2,6 =

1
4 .

Observe that if v denotes the initial position as a column vector (say, a uniform column
vector would mean that the random surfer starts with uniform probability on each page),
(GT)v is a column vector indicating the position after one step of the random walk. The
PageRank can then be defined as the limit of this process, that is the PageRank of page i is the
i-th component of the column vector:

lim
k→+∞

(GT)kv

if such a limit exists.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 268

0.100
0.100

0.100

0.100

0.100

0.100

0.100

0.100

0.100

0.100

Figure 13.20: Illustration of PageRank: Initial uniform distribution

Example 13.4.2 Let us continue with the graph of Example 13.4.1. Let v be the uniform
column vector of sum 1. This measure over the graph nodes can be displayed as in Figure 13.20.
Consider one iteration of the PageRank computation. It amounts to multiplying the matrix of
GT by v, which gives:

GTv =
[1

30
19
60

3
40

5
60

3
20

13
120

1
40

1
30

7
120

7
60

]T

≈
[
0.033 0.317 0.075 0.083 0.150 0.108 0.025 0.033 0.058 0.117

]T

This is the vector of probabilities of reaching a given node after one step, assuming a uniform
probability for the initial node.

If we iterate this computation, we converge towards the measure displayed in Figure 13.21,
the PageRank measure. Here, node 2 has the highest PageRank score because it is somehow
more central in the graph: the probability of reaching node 2 after an arbitrarily long random
walk in the graph is the greatest.

Some problems arise with this definition of the PageRank score. The convergence that is
observed in the previous example is not guaranteed. The limit (if it exists) can be dependent
on the initial position of the random surfer, which is kind of disappointing from a robustness
point of view. Besides, some pages may have no outgoing links (they are called sinks),
which means that the random surfer will eventually be blocked on these pages. Note that
one can show that none of these problems occurs when the graph is aperiodic (the greatest
common divisor of the length of all cycles is 1, a condition that is always verified in real-world
examples) and strongly connected (i.e., there is a path in the graph from every node to every
node). These assumptions were verified in Example 13.4.2, but the Web graph as a whole can
definitely not be assumed to be strongly connected.

For this reason, we introduce some change in our random surfer model: At each step of
the random walk, with some fixed probability d (typically around 15%; 1− d is called the

For personal use only, not for distribution. 269

0.050
0.234

0.091

0.149

0.058

0.065

0.095

0.142

0.097

0.019

Figure 13.21: PageRank (damping factor of 1) for graph of Figure 13.19

damping factor), the surfer goes to an arbitrary uniformly chosen page of the Web; otherwise,
it follows the outgoing links of the page with uniform probability as before (and if there are
no outgoing links, the surfer goes in all cases to an arbitrary uniformly chosen page of the
Web). With these modifications, the PageRank of page i is defined as the i-th component of
the column vector:

lim
k→+∞

((1− d)GT + dU)kv,

where G has been modified so that sink pages are replaced by pages with outgoing links to
any page of the Web, and U is the matrix with all 1

N values where N is the number of vertices.
One can show that this limit indeed exists, whenever d > 0 (Perron–Frobenius theorem) and
is independent of the choice of the vector v, whenever ‖v‖ = 1. This formula can be used
to compute the PageRank scores of all pages in an iterative way: starting from, say, the
uniform column vector v, ((1− d)GT + dU)v is computed by simple matrix multiplication,
then ((1− d)GT + dU)2v by another matrix multiplication, ((1− d)GT + dU)3v, and so forth,
until convergence.

It is important to understand that PageRank assigns a global importance score to every page
of the Web graph. This score is independent of any query. Then, PageRank can be used to
improve scoring of query results in the following way: Weights of documents in the inverted
index are updated by a monotonous function of the previous weight and of the PageRank,
say,

weight(t,d) = tfidf(t,d)× pr(d),

thus raising the weight (and therefore their order in query results) of important documents.

Online Computation

The computation of PageRank by iterative multiplication of a vector by the dampened
transition matrix requires the storage of, and efficient access to, the entire Web matrix. This

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 270

can be done on a cluster of PCs using an appropriate distributed storage technique (see the
chapters devoted to distributed indexing and distributed computing). An alternative is to
compute PageRank while crawling the Web, on the fly, by making use of the random walk
interpretation of PageRank. This is what the following algorithm, known as OPIC for Online
PageRank Importance Computation, does:

1. Store a global cashflow G, initially 0.

2. Store for each URL u its cash C(u) and history H(u).

3. Initially, each page has some initial cash c0.

4. We crawl the Web, with some crawling strategy that accesses repeatedly a given URL.

5. When accessing URL u:

• we set H(u) := H(u) + C(u);

• we set C(u′) := C(u)/nu for all URL u′ pointed to by u, with nu the number of
outgoing links in u.

• we set G := G + C(u) and C(u) := 0.

6. At any given time, the PageRank of u can be approximated as H(u)
G .

It can be shown that this gives indeed an approximation of the PageRank value, whatever
the crawling strategy is, as long as a URL is repeatedly accessed. A reasonable strategy is
for instance a greedy one, to crawl the URL with the largest amount of cash at each step.
Finally, much like the use of the damping factor in the iterative computation of PageRank,
convergence can be ensured by adding a virtual node u that is pointed to by each URL and
that points to all URLs. In addition to making the storage of the Web matrix unnecessary,
such an online algorithm also is more adapted to the case of a changing Web, when pages are
added continuously. However, since computation power tends to be cheap and the storage of
the content of Web pages already necessitates appropriate storage, search engines currently
stick with the classical iterative computation of PageRank.

13.4.2 HITS

The HITS algorithm (Hypertext Induced Topic Selection) is another approach proposed by
Kleinberg. The main idea is to distinguish two kinds of Web pages: hubs and authorities. Hubs
are pages that point to good authorities, whereas authorities are pages that are pointed to
by good hubs. As with PageRank, we use again a mutually recursive definition that will
lead to an iterative fixpoint computation. For example, in the domain of Web pages about
automobiles, good hubs will probably be portals linking to the main Web page of car makers,
that will be good authorities.

More formally, let G′ be the transition matrix (this time, not normalized, i.e., with Boolean
0 and 1 entries) of a graph (say, a subgraph of the Web graph). We consider the following
iterative process, where a and h are column vectors, initially of norm 1:{

a := 1
‖G′Th‖ G′Th

h := 1
‖G′a‖ G′a

For personal use only, not for distribution. 271

If some basic technical conditions on G′ hold, we can show that this iterative process converges
to column vectors a and h which represent, respectively, the authority and hub scores of
vertices of the graph. Kleinberg proposes then the following way of using authority scores to
order query results from the Web:

1. Retrieve the set D of Web pages matching a keyword query.

2. Retrieve the set D∗ of Web pages obtained from D by adding all linked pages, as well
as all pages linking to pages of D.

3. Build from D∗ the corresponding subgraph G′ of the Web graph.

4. Compute iteratively hubs and authority scores.

5. Sort documents from D by authority scores.

The process is here very different from PageRank, as authority scores are computed for
each request (on a subgraph kind of centered on the original query). For this reason, and
although HITS give interesting results, it is not as efficient as PageRank, for which all scores
can be precomputed and top-k optimization is possible.

13.4.3 Spamdexing

The term spamdexing describes all fraudulent techniques that are used by unscrupulous
Webmasters to artificially raise the visibility of their Web site to users of search engines. As
with virus and antivirus, or spam and spam fighting, spamdexing and the fight against
it is an unceasing series of techniques implemented by spamdexers, closely followed by
countertechniques deployed by search engines. The motivation of spamdexers is to bring
users to their webpages so as to generate revenue from pay-per-view or pay-per-use content
(especially in the industries of online gambling and online pornography), or from advertising.

A first set of techniques consists in lying about the document by adding to a page keywords
that are unrelated to its content; this may be done either as text present in the page but invisible
to users through the use of CSS, JavaScript or HTML presentational elements, or in the meta-
information about the page that can be provided in the <meta name="description">
or <meta name="keywords"> tags in the header. As a result, current search engines tend
not to give a strong importance to this kind of meta-information, or even to ignore them
altogether. Furthermore, they implement automatic methods to find text hidden to a regular
user and ignore it. In some cases, this is even used as a reason to lower the importance of the
Web page.

PageRank and similar techniques are subject to link farm attacks, where a huge number
of hosts on the Internet are used for the sole purpose of referencing each other, without
any content in themselves, to raise the importance of a given Web site or set of Web sites.
Countermeasures by search engines include detection of Web sites with empty or duplicate
content, and the use of heuristics to discover subgraphs that look like link farms. A collection
of algorithms have also been proposed to assign importance scores to Web pages in a way that
is more robust to these kind of attacks. TrustRank, for instance, is defined using the same kind
of iterative computation as PageRank, except that random jumps toward uniformly selected
Web pages are replaced by random jumps to a small subset of “safe” seed pages, to prevent

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 272

being trapped in link farms; this has the downside of artificially raising the importance of the
set of seed pages, and thus of biasing the computation.

An assumption made by the graph mining techniques described earlier is that the addition
of a link to a Web page is a form of approval of the content of the linked page, thus raising its
importance. While this is mostly true when Web pages are written by a single individual or
entity, this does not hold with user-editable content, such as wikis, guestbooks, blogs with
comment systems, and so on. Spamdexers have an incentive to use these platforms to add
links to their Web site. They can also exploit security faults in Web applications to achieve the
same effect. While most Webmasters take care to control whatever is added to their Web sites
and to remove spam content, this cannot be assumed on a global level. A partial solution to
this is the possibility of adding a rel="nofollow" attribute to all <a> links that have not
been validated or are not approved by the Webmaster (some content management systems
and blog platforms automatically add this attribute to any link inside content provided by
users). Most current-day Web spiders recognize this attribute and ignore this link.

13.4.4 Discovering Communities on the Web

The graph structure of the Web can be used beyond the computation of PageRank-like
importance scores. Another important graph mining technique that can be used on the Web
is graph clustering: using the structure of the graph to delimitate homogeneous sets of Web
pages (e.g., communities of Web sites about the same topic). The assumption is that closely
connected set of pages in a Web page will share some common semantic characteristic.

Various algorithms for graph clustering have been studied, in this context and others (to
isolate local networks of interest on the Internet, to find communities of people in social
networks, etc.). Let us just present briefly one of them, which has the advantage of being
simple to understand. Given a graph, the purpose is to separate it, hierarchically, into smaller
and smaller, and more and more homogeneous, communities of nodes. We introduce the
notion of betweenness of an edge, as the number of shortest paths between any two nodes of the
graph that use this edge. The main idea of the algorithm is that edges with high betweenness
tend to be connecting distinct communities. The algorithm proceeds by computing the
betweenness of all edges (i.e., computing all shortest paths between pairs of nodes) removing
the edge with highest betweenness, and then iterating the whole procedure, recomputing
all betweenness values at each step. The algorithm ends when enough components of the
graph have been separated, or when the highest betweenness is less than a given threshold.
This is not a particularly efficient technique (the number of required operations is cubic in the
number of nodes). Cubic-time algorithms are not appropriate for the whole graph of the Web,
but such an algorithm might be used to cluster subgraphs.

Other graph clustering methods, usually more efficient, rely on another principle, namely
that of minimum cut in a transport network. This is a classical algorithmic problem: given a
directed graph with weights (positive numbers) on the edges, one wants to find the set of
edges of minimum weight to remove from the graph to separate two given nodes. This can be
used to cluster the Web: in order to find the community to which a given Web page belongs,
just compute the minimum cut (with some appropriate weighting of the edges) that separate
this page from the rest of the Web, represented as a virtual node all pages point to. Such an
approach differs from the previous one in that it is more local: We are not looking for a global
partition into clusters, but for the cluster of a given Web page.

For personal use only, not for distribution. 273

13.5 Hot Topics in Web Search

We conclude this chapter with some research topics related to the search of information on
the Web that are particularly active at the moment of writing.

Web 2.0

Web 2.0 is a buzzword that has appeared recently to refer to recent changes in the Web, notably:

• Web applications with rich dynamic interfaces, especially with the help of AJAX tech-
nologies (AJAX stands for Asynchronous JavaScript And XML and is a way for a browser
to exchange data with a Web server without requiring a reload of a Web page); it is
exemplified by GMail8 or Google Suggest9;

• User-editable content, collaborative work and social networks (e.g., in blogs, wikis such
as Wikipedia10, and social network Web sites like MySpace11 and Facebook12);

• Aggregation of content from multiple sources (e.g., from RSS feeds) and personalization,
that is proposed for instance by Netvibes13 or YAHOO! PIPES (see Chapter 12).

Though Web 2.0 is more used in marketing contexts than in the research community, some
interesting research problems are related to these technologies, especially in the application
of graph mining techniques similar to those employed on the graph of the Web to the graph
of social network Web sites, and in the works about mashups for aggregating content from
multiple sources on the Web.

Deep Web

The deep Web (also known as hidden Web or invisible Web) is the part of Web content that lies
in online databases, typically queried through HTML forms, and not usually accessible by
following hyperlinks. As classical crawlers only follow these hyperlinks, they do not index
the content that is behind forms. There are hundreds of thousands of such deep Web services,
some of which with very high-quality information: all Yellow pages directories, information
from the U.S. Census bureau, weather or geolocation services, and so on.

There are two approaches to the indexing of the deep Web. A first possibility is an extensional
approach, where content from the deep Web is generated by submitting data into forms,
and the resulting Web pages are stored in an index, as with classical Web content. A more
ambitious intensional approach is to try to understand the structure and semantics of a service
of the deep Web, and to store this semantic description in an index. A semantic query from a
user would then be dispatched to all relevant services, and the information retrieved from
them. Whatever the method, searching the deep Web requires first discovering all relevant
forms, and some analysis to understand what data to submit to a form. In the intensional
approach, deep Web search is also needed to extract information from the pages resulting
from the submission of a form, which is the topic of the next section.

8http://mail.google.com/
9http://www.google.com/webhp?complete=1

10http://www.wikipedia.org/
11http://www.myspace.com
12http://www.facebook.com/
13http://www.netvibes.com/

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://mail.google.com/
http://www.google.com/webhp?complete=1
http://www.wikipedia.org/
http://www.myspace.com
http://www.facebook.com/
http://www.netvibes.com/

For personal use only, not for distribution. 274

Figure 13.22: Example pages resulting from the submission of a HTML form

Information Extraction

Classical search engines do not try to extract information from the content of Web pages, they
only store and index them as they are. This means that the only possible kind of queries
that can be asked is keyword queries, and results provided are complete Web pages. The
purpose of Web information extraction is to provide means to extract structured data and
information from Web pages, so as to be able to answer more complex queries. For instance,
an information extractor could extract phone numbers from Web pages, as well as the name
of their owner, and provide an automatically built directory service. Information extraction is
facilitated by very structured Web pages, such as those that are dynamically generated on
response to the submission of an HTML form (e.g., Figure 13.22); a wrapper for this kind of
dynamic site can be generated, in order to abstract away its interface.

Most research works in information extraction are in a supervised or semi-supervised
context, where humans pre-annotate Web pages whose content is to be extracted, or where
human give some feedback on automatic wrapper construction. Unsupervised approaches
rely either on the detection of linguistic or sentence-level patterns that express some concept
or relation between concepts (e.g., addresses usually follow some kind of fixed format that can
be discovered in corpus; textual patterns like was born in year can be found to automatically
extract birth dates of individuals), or the detection of structural patterns in the Web page (e.g.,
repetitive structures such as tables or lists).

13.6 Further Reading

We provide references on the material found in this chapter. More information, as well as
in-depth coverage of some other parts of this chapter, can be found in [41].

Web Standards

HTML 4.01 [162] is described by a recommendation of the World Wide Web Consortium (or
W3C), an organism that regroups academics and industrials for the development of standards

For personal use only, not for distribution. 275

about the World Wide Web, as is XHTML 1.0 [164]. The W3C is working at the time of writing
on the successor to both languages, HTML5 [177]. The DNS and HTTP protocols, which are
Internet protocols, are published by the Internet Engineering Task Force (IETF) and can be
found, respectively, in [94] and [95].

The standard for robot exclusion and sitemaps both have unofficial specifications, not
supported by any normalization organization. The former is described in [110]. Sitemaps are
an initiative of Google, that has been embraced by other search engines. The specification of
sitemaps is available in [149].

Web Parsing and Indexing

Computation of the edit distance between two text documents is a classical problem, and a
dynamic algorithm for solving it can be found in textbooks on algorithmics, such as [49]. The
Jaccard similarity coefficient has been introduced by the botanist Paul Jaccard for comparing
floral populations across areas [100]. Hashing shingles of a document to build a compact
sketch that can be used to efficiently detect near-duplicates has been proposed in [35].

The stemming technique described in the text is from Porter [136]. Soundex [157] is a
widely used loose phonetic stemming for English.

[189] is a recent and accurate survey on inverted files. From the same authors, the
book [179] provides a larger (but less up-to-date) coverage of the field, including a de-
tailed presentation of the most useful text and index compression techniques. The re-
cent book [120] covers information retrieval techniques and supplies on-line material at
http://nlp.stanford.edu/IR-book/information-retrieval-book.html. The
byte-level compression technique has been developed and experimented in [144, 18, 19]. Ex-
perimental results show that byte-level compression is twice as fast as bit-level compression.
The compression loss with respect to the latter approach is reported to be approximately 30%.
Integer compression methods have been studied for a long time in computer science. The γ
code presented here is from [60].

Efficient external memory algorithms to construct index structures that cannot fit in memory
is one of the core issues in databases and information retrieval. See for instance [160] for an
in-depth survey. The external sort/merge is a standard algorithm implemented in all DBMS
(and used, for instance, during non-indexed joins or grouping operations). [90] cover in detail
the one-pass construction algorithm outlined in the present chapter.

Fagin’s threshold algorithm (TA) that computes the top-k result of a ranked query is
from [64]. It improves an earlier algorithm proposed by Fagin in [63].

Graph mining

PageRank was introduced in [34] by the founders of the Google search engine, Sergey Brin
and Lawrence Page. The OPIC algorithm is from [7]. HITS has been proposed by Kleinberg
in [109]. TrustRank has been presented by researchers from Stanford University and Yahoo!
in [85]. Interestingly, Google registered TrustRank as a trademark in 2005, suggesting they
might adopt the technology, but the trademark was abandoned in 2008.

The graph clustering algorithm relying on betweenness is the work of two physicists,
published in [126]. The idea of using minimum cuts on the Web graph has been proposed
in [65, 66]. A large number of graph clustering techniques exist, some of them are reviewed

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://nlp.stanford.edu/IR-book/information-retrieval-book.html

For personal use only, not for distribution. 276

in [143]. One particular technique of interest, particularly interesting because of its effi-
ciency and the availability of an optimized implementation, is MCL, the Markov CLustering
algorithm [158].

The Deep Web and Information Extraction

The first study about the amount of content is [33]. Other works [45] have confirmed the
fact that an impressive amount of content is hidden to current-day search engines. Google
believes in an extensional approach to crawling the deep Web, see [119]. Research works that
go towards intensional indexing include [46, 145].

A survey of existing information extraction techniques on the Web can be found in [43].
Unsupervised techniques, which are probably the only relevant at the scale of the whole
world, include RoadRunner [51], ExAlg [21], and the various works derived from the MDR
system [117, 187].

13.7 Exercises

Exercise 13.7.1 (1) Use Google. For each query, note the number of answers. Query “Bonnie and
Clyde”, “bonnie clyde”, “bonny and Clyde”, “Bonnie or Clyde”, “bonnieclyde”, “Bonnie and Bonnie”.
(2) Analyze your results. (3) Consider the same queries with AltaVista, Ask Jeeves, Yahoo! and MSN
Search. Compare.

Exercise 13.7.2 A user poses a query and ask for the top-10 documents. There are n = 2 relevant
documents in the result.

1. What is the precision?

2. The user knows that the collection contains six documents relevant to her query. What is the
recall?

3. Repeat questions 1 and 2 with n = 4.

4. What would be a result with recall = 1 and precision = 0.5?

5. What would be a result with recall = 0.5 and precision = 1?

Exercise 13.7.3 Consider the following documents:

1. d1 = I like to watch the sun set with my friend.

2. d2 = The Best Places To Watch The Sunset.

3. d3 = My friend watches the sun come up.

Construct an inverted index with tf–idf weights for terms “Best” and “sun”. What would be the
ranked result of the query “Best and sun”?

Exercise 13.7.4 Consider the document set example from Figure 13.4. Suppose that we want to index
the term be (we consider therefore that it is not a stop-word). Compute the line of the inverted index
for term be, with positions and tf–idf weighting.

For personal use only, not for distribution. 277

Exercise 13.7.5 Give the pseudo-code of the naive algorithm that builds an inverted index from a
large documents collection. Explain why the result is not satisfactory.

Exercise 13.7.6 Use Fagin’s threshold algorithm to compute the top-2 result of the query:

jaguar OR new

on the inverted index of Figure 13.11.

Exercise 13.7.7 Prove that the Fagin’s TA algorithm is correct for monotone aggregation functions.
(A function g is monotone if g(x1, x2, · · · , xn) ≤ g(x′1, x′2, · · · , x′n) whenever xi ≤ x′i for every i.)

Exercise 13.7.8 Analyze the time and space complexities of the merge-based algorithm.

Exercise 13.7.9 Explain how deletions can be handled in a dynamic inverted index. Hint: Propose a
small variant of the dynamic insertion strategy described in the chapter.

Exercise 13.7.10 (logarithmic merging) For simplicity, it is implicitly assumed in the text that
each inverted list is stored in a separate file. This greatly reduces the complexity of merging operations.
In pratice, though, the number of files would be far too large, and efficient index implementation would
attempt to limit this number.

1. Assume first that the inverted index is maintained as a single file that concatenates all the
inverted lists. Describe the merge operation and analyze its complexity (count how many times
an entry has to be accessed during the maintenance operations of a file).

2. (project) Study the binomial heap structure and propose an adaptation to the problem of
merging inverted files. The main idea is to maintain a set of runs in exponentially growing size,
leading to an amortized build complexity of log |F|(|F|/r).

Exercise 13.7.11 The inverted list of a term t consists of the following document ids:

[345;476;698;703].

Apply the VBytes compression technique to this sequence. What is the amount of space gained by
the method?

Exercise 13.7.12 Implement the PageRank algorithm as described in the section for a graph of up to
one thousand pages. Then:

1. Test it on the graph of Figure 13.19.

2. Add a few sinks, and test your algorithm again.

3. Pick the page p with the least PageRank. Add some new nodes to simulate a link farm. How
many pages do you need to introduce to promote p as the most popular?

Exercise 13.7.13 Find a free crawler on the Web and play with it.

Exercise 13.7.14 Write a “mini” crawler. Its input is a few words and the URL of a “seed page” (e.g.,
your homepage). The crawler should crawl, say, one hundred pages, and sort the words based on their
number of occurrences. Try different crawling strategies: depth first, breadth first, popular first. Bonus:
use some stemming.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 278

Exercise 13.7.15 Choose a few interesting pages (e.g., news, music). Try to find metadata for these
pages: author, date, purpose, citation of sources, copyright, etc. How much metadata could be found
inside the pages?

Exercise 13.7.16 When asked a keyword query, a metasearch engine queries several search engines
and aggregates their answers. Find some on the Web (e.g., metacrawler), and test them.

Exercise 13.7.17 Find the homepages of the authors of this book. Add pointers to these pages from
your own homepage. This will be tested using Google “Find pages that link to page X”.

Exercise 13.7.18 Here are some document sketches:

docId Terms

1 France, Recession, Slowing, IMF
2 USA, Financial, Paulson, Slowing, Crisis
3 Crisis, Government, Slowing, IMF
4 GDP, France, Crisis, Slowing

1. Create for each term present in documents the corresponding posting list.

2. Transform the following sentences into Boolean queries of terms and evaluate them on the posting
lists (skip missing terms).

• “The crisis is slowing down”

• “In France, the IMF criticizes the GDP”

• “In the USA, Paulson and the crisis”

3. Based on this intuitive process, propose an algorithm that processes a query.

4. How can we choose term order to optimize evaluation?

5. Very long posting lists take time to process. How can we optimize skipping non-merging docIds,
since posting lists are small?

6. Modify the algorithm with this optimization.

Exercise 13.7.19 In an inverted index, each posting list must be stored on the disk. Because they are
often read, it is essential to compress them. In this exercise, we consider an index of 100,000 distinct
terms, over 10 million of documents. Let us say that, on average, each term is associated to 500,000
documents (from 10,000 to 5 million). We are interested in determining how much space the index
uses. The physical characteristics of the index are given below:

• Dictionary: a term (20 bytes), an idf value (4 bytes), a pointer (8 bytes);

• Posting list entry: a docId (X bytes), a tf value (4 bytes).

For personal use only, not for distribution. 279

Compressing the dictionary

1. Give the size of the dictionary (i.e., not counting posting lists themselves).

2. Propose a term compression method.

3. Replace terms by terms identifiers. Give the new size of the dictionary.

4. How can we find the term identifier from a given term?

Compressing the posting lists

1. According to the number of documents, give the encoding size of a docId.

2. Give the average encoding size of each posting list and the global index size.

3. Propose a solution to compress document identifiers.

4. Compress the following posting list with the previous encoding method: 105, 117, 222, 702,
3002

5. How much storage does the index use if two-fifths of the document identifiers are encoded on a
byte and the others on 3 bytes (on average). Do not forget tf values.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

14 An Introduction to Distributed Systems

This chapter is an introduction to very large data management in distributed systems. Here,
“very large” means a context where Gigabytes (1,000 MB = 109 bytes) constitute the unit size
for measuring data volumes. Terabytes (1012 bytes) are commonly encountered, and many
Web companies, scientific or financial institutions must deal with Petabytes (1015 bytes). In
a near future, we can expect Exabytes (1018 bytes) data sets, with the world-wide digital
universe roughly estimated (in 2010) as about 1 Zetabytes (1021 bytes).

Distribution is the key for handling very large data sets. Distribution is necessary (but not
sufficient) to bring scalability, i.e., the means of maintaining stable performance for steadily
growing data collections by adding new resources to the system. However, distribution brings
a number of technical problems that make the design and implementation of distributed
storage, indexing and computing a delicate issue. A prominent concern is the risk of failure. In
an environment that consists of hundreds or thousands of computers (a common setting for
large Web companies), it becomes very common to face the failure of components (hardware,
network, local systems, disks), and the system must be ready to cope with it at any moment.

Our presentation covers principles and techniques that recently emerged to handle Web-
scale data sets. We examine the extension of traditional storage and indexing methods to
large-scale distributed settings. We describe techniques to efficiently process point queries
that aim at retrieving a particular object. Here there typically is a human being waiting for
an answer in front of a screen. So, efficient means a response time in the order of a few
milliseconds, a difficult challenge in the presence of Terabytes of data. We also consider the
batch analysis of large collections of documents to extract statistical or descriptive information.
The problem is very different. Possibly Terabytes of data are streamed into a program.
Efficient computation now means hours or even days and a most critical issue is the reliable
execution of processes that may run so long, in spite of the many glitches that are likely to
affect the infrastructure in such a time frame. We should keep in mind these specificities in
the presentation that follows, as it motivates many design choices.

The present chapter introduces the essentials of distributed systems devoted to large scale
data sets. Its material represents by no means an in-depth or accurate coverage of the topic,
but merely aims at supplying the neophyte reader with the minimal background. As usual,
the Further Reading section points to complementary references.

14.1 Basics of distributed systems

A distributed system is piece of software that serves to coordinate the actions of several com-
puters. This coordination is achieved by exchanging messages, i.e., pieces of data conveying
information. The system relies on a network that connects the computers and handles the
routing of messages.

281

For personal use only, not for distribution. 282

14.1.1 Networking infrastructures

We limit the discussion in this chapter to the following two classes of networks: Local Area
Networks and P2P Networks.

server

switch

segment
client

message

message

Figure 14.1: A simplified view of a local network

Local Area Network (LAN). LANs are for instance used in data centers to connect hundreds
or even thousands of servers. Figure 14.1 shows the main features of a typical Local Area
Network (LAN) in this context. We roughly distinguish three communication levels:

• First, servers are grouped on “racks", linked by a high-speed cable. A typical rack
contains a few dozens of servers.

• Second, a data center consists of one to a large number of racks connected by routers (or
switches) that transfer non-local messages.

• A third (slower) communication level, between distinct clusters, may also be considered.
It may for instance allow some independent data centers to cooperate, e.g., to consolidate
global statistics.

In all cases, servers only communicate via message passing. They do not share storage or
computing resources. The architecture is said “shared-nothing”.

Example 14.1.1 At the beginning of 2010, a typical Google data center consists of 100-200 racks,
each hosting about 40 servers. The number of servers in such a center is roughly estimated around
5,000. The number of data centers is constantly evolving, and the total number of servers is probably
already above one million.

For personal use only, not for distribution. 283

Figure 14.2: Internet networking

Peer-to-Peer Network (P2P). A P2P network is a particular kind of overlay network, a graph
structure build over a native physical network. The physical network we consider here is the
Internet. Nodes, or “peers” communicate with messages sent over the Internet. The route that
connects two peers on the Internet is typically intricate. Typically (Figure 14.2), a message
sent by peer A first reaches a local router, that forwards the message to other routers (local,
regional, or world-wide) until it is delivered to peer B. By abstracting this complexity, a P2P
network imagines a direct link between A and B, as if they were directly connected, as soon as
they know the IP addresses of each other. This pseudo-direct connection that may (physically)
consist of 10 or more forwarding messages, or “hops”, is called an overlay link, therefore the
term overlay network.

Example 14.1.2 If you are connected to the Internet, you can use the traceroute utility program
to inspect the routers involved in the connection between your computer and a site of your choice. For
instance: traceroute Webdam.inria.fr gives the list of routers on the forwarding Internet
path to the Webdam INRIA Web site. Several sites propose a traceroute interface if you do not have
access to a console. One can find some, e.g., at traceroute.org.

For our purposes, we will assimilate nodes to computers running programs of interest to
the distributed system. A computer often runs several programs involved in different kinds
of services. A process on computer A may for instance be in charge of file accesses, while
another, running on A as well, handles HTTP requests. If we focus on a specific task of the
distributed system, there is generally one and only one process that fulfills this task on each
computer. This allows blurring the distinction, and we will simply denote as node a process
running on a computer at a specific location of the network, and in charge of the particular
task.

Next, it is often convenient to distinguish server nodes from client nodes. A server node
provides, through cooperation with other server nodes, a service of the distributed system.
A client node consumes this service. Nothing prevents a client node to run on the same
computer than a server node (this is typically the case in P2P networks), but the point is most
often irrelevant to the discussion. In practice, a client node is often a library incorporated in a
larger application, that implements the communication protocol with the server nodes. When
no ambiguity arises, we will simple use “Client” and “Server” to denote respectively a client
node and a server node it communicates with.

14.1.2 Performance of a distributed storage system

Nodes exchange messages following a particular protocol. The Ethernet protocol is the most
widely used. It splits messages into small packets of, typically, 1,500 bytes each. At the
time of writing, the data transfer rate of a local Ethernet network can (theoretically) reach 1

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 284

Type Latency Bandwidth
Disk ≈ 5× 10−3s (5 millisec.); At best 100 MB/s
LAN ≈ 1− 2× 10−3s (1-2 millisec.); ≈ 1GB/s (single rack); ≈ 100MB/s

(switched);
Internet Highly variable. Typ. 10-100 ms.; Highly variable. Typ. a few MBs.;

Table 14.1: Disk vs. network latency and bandwidth

Gigabytes/s. The bandwidth is higher that the maximal disk rate which is at most 100 MB/s.
Roughly speaking, it is one order of magnitude faster to exchange in-memory data between
two computers connected by a high-speed LAN, than for a single computer to read the same
data written on the disk. However, bandwidth is a resource that many participants compete
for, and this invites to use it with care in data intensive applications. The latency (time to
initiate an operation) is also cheaper with networks, although the gap is less impressive.

Internet figures for latency and bandwidth are highly varying, as they depend both on the
distance between the communicating nodes, and on the network devices involved, particu-
larly at local ends. (For instance, a Wifi connection in an Internet cafe is a nightmare for data
intensive manipulations!) As an illustration, the latency of a connection between INRIA Paris
and Stanford University is less than 200 ms., and the bandwidth is 7 MB/s (download) and 3
MB/s (upload). You are encouraged to test these values on your own infrastructure, with the
ping command or some of the numerous Web sites. For instance, see

http://www.pcpitstop.com/internet/Bandwidth.asp.

The latency of the average Internet path is estimated at 10 ms. The performance of Internet
is definitely at least one order of magnitude worse than LANs. Table 14.1 summarizes the
values that should be kept in mind.

Figure 14.3: Distributed data management: why?

For personal use only, not for distribution. 285

The following reasoning helps understand the advantage of distributed storage (see Fig-
ure 14.3 for an illustration):

Sequential access. Consider a typical 1 Terabytes disk with 100 MB/s maximal transfer rate.
It takes 166 mns (more than 2 hours and a half!) to read the whole content of the disk.

Parallel access. Now imagine the 1 TB data set spread over 100 disks on a same machine. In
order to read this data set (i.e., to bring it in the computer’s main memory), we must
retrieve 10 GBs from each disk. This is done, assuming that the disks work in parallel,
in a little more that 1mn 30s. But, when the size of the data set increases, the CPU of
the computer is typically overwhelmed at some point by the data flow and it is slowed
down.

Distributed access. The same disk-memory transfer time can be achieved with 100 computers,
each disposing of its own local disk. The advantage now is that the CPU will not be
overwhelmed as the number of disks increases.

This is a good basis to discuss some important aspects of data distribution. Note first that
we assume that the maximal transfer rate is achieved for each disk. This is only true for
sequential reads, and can only be obtained for operations that fully scan a data set. As a result,
the seek time (time to position the head on appropriate disk track) is negligible regarding
the transfer time. Therefore the previous analysis mostly holds for batch operations that
access the whole collection, and is particularly relevant for applications where most files are
written once (by appending new content), then read many times. This scenario differs from the
classical behavior of a centralized database.

Now consider in contrast a workload consisting of lots of operations, each one randomly
accessing a small piece of data in a large collection. (Such an operation is more in the spirit
of a database operation where a row in a large table is accessed.) The access may be a read
or a write operation. In both cases, we have to perform a random access to a large file and
seek time cannot be ignored. Distribution is here of little help to speed up a single operation.
However, if we can afford to replicate the data on many servers, this is an opportunity to
balance the query load by distributing evenly read and/or write requests. Architectures for
such transactional scenarios can actually be classified by their read/write distribution policy:
distributing writes raises concurrency issues; distributing reads raises consistency issues. We
further develop this important point in the following.

Finally, look again at Figure 14.3. The distribution mechanism shows two possible data
flows. The first one comes from the disk to the local CPU, the second one (with dotted arrows)
represents exchanges between computers. The performance of network exchanges depends
both on the latency and on the network bandwidth. As said above, the typical transfer rate is
100 MB/s and can reach 1 GB/s, one order of magnitude higher than disks, but bandwidth is
a shared resource that must be exploited with care.

A general principle, known as the data locality principle, states that a data set stored on a
disk should be processed by a task of the local CPU. The data locality principle is valid for
data intensive applications. The architecture adopted in such cases is different from that of
High Performance Computing or Grid Computing that distribute a task across a set of CPU
that share a common file system. This works as long as the task is CPU intensive, but becomes
unsuited if large data exchanges are involved.

To summarize:

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 286

1. disk transfer rate is a bottleneck for batch processing of large scale data sets; paral-
lelization and distribution of the data on many machines is a means to eliminate this
bottleneck;

2. disk seek time is a bottleneck for transactional applications that submit a high rate of
random accesses; replication, distribution of writes and distribution of reads are the
technical means to make such applications scalable;

3. data locality: when possible, program should be “pushed” near the data they need to
access to avoid costly data exchange over the network.

14.1.3 Data replication and consistency

Most of the properties required from a distributed system depend on the replication of data.
Without replication, the loss of a server hosting a unique copy of some data item results in
unrecoverable damages. As already said, replication also brings other advantages, including
the ability to distribute read/write operations for improved scalability. However, it raises the
following intricate issues:

Performance. Writing several copies of an item takes more time, which may affect the through-
put of the system.

Consistency. Consistency is the ability of a system to behave as if the transaction of each user
always run in isolation from other transactions, and never fails. Consider for instance
a transaction on an e-commerce site. There is a “basket” which is progressively filled
with bought items. At the end the user is directed to a secure payment interface. Such
a transaction involves many HTTP accesses, and may last an extended period of time
(typically, a few minutes). Consistency in this context means that if the user added an
item to her basket at some point, it should remain there until the end of the transaction.
Furthermore, the item should still be available when time comes to pay and deliver the
product.

Data replication complicates the management of consistency in a distributed setting. We il-
lustrate next four typical replication protocols that show the interactions between performance
considerations and consistency issues (Figure 14.4). The scenario assumes two concurrent
Client applications, A and B, that put/read a data idem d which is replicated on two servers
S1 and S2. The four cases depicted in Figure 14.4 correspond to the possible combinations of
two technical choices: eager (synchronous) or lazy (asynchronous) replication, and primary
or distributed versioning:

Eager, primary. Consider the first case (a). Here, the replication policy is “eager”: a put(d)
request sent by Client A to Server 1 is replicated at once on Server 2. The request is
completed only when both S1 and S2 have sent an acknowledgment; meanwhile, A is
frozen, as well as any other Client that would access d. Moreover, the second design
choice in case (a) is that each data item has a primary copy and several (at least one)
secondary copies. Each update is first sent to the primary copy.

From an application point of view, such a design offers some nice properties. Because
the replication is managed synchronously, a read request sent by Client 2 always access

For personal use only, not for distribution. 287

Client A

put(d)

replication
Primary copy Replica

a) Eager replication with primary copy

Synchronous

Client B

Server N1

put(d)

read(d)

Server N2

Client A

put(d)

replication
Primary copy Replica

b) Lazy replication with primary copy

Asynchronous

Client B

Server N1

put(d)

read(d)

Server N2

Client A

put(d)

replication
Primary copy Replica

c) Eager replication, distributed

Synchronous

Client B

Server N1

put(d)

Server N2

Client A

put(d)

replication
Primary copy Replica

d) Lazy replication, distributed

Synchronous

Client B

Server N1

put(d)

Server N2

Figure 14.4: Four replication policies in a distributed system

a consistent state of d, whether it reads from S1 or S2. And because there is a primary
copy, requests sent by several clients relating to a same item can be queued, which
ensures that updates are applied sequentially and not in parallel. The obvious downside
is that these applications have to wait for the completion of other clients’ requests, both
for writing and reading.

Async, primary. Case (b) (often referred to as “Master-slave" replication) shows a slightly
different design choice. There is still a primary copy, but the replication is asynchronous.
Thus, some of the replicas may be out of date with respect to Client’s requests. Client
B for instance may read on S2 an old version of item d because the synchronization is
not yet completed. Note that, because of the primary copy, we can still be sure that
the replicas will be eventually consistent because there cannot be independent updates
of distinct replicas. This situation is considered acceptable in many modern, “NoSQL”
data management systems that accept to trade strong consistency for a higher read
throughput.

Eager, no primary. Case (c), where there is no primary copy anymore (but eager replication),
yields a complex situation where two Clients can simultaneously write on distinct repli-
cas, whereas the eager replication implies that these replications must be synchronized
right away. This is likely to lead to some kind of interlocking, where both Clients wait
for some resource locked by another one.

Async, no-primary. The most flexible case is (d) (often referred to as “Master-Master" replica-
tion), in which both primary copies and synchronous replication are given up. There
is an advantage (often viewed as decisive for Web-scale data intensive applications):
Client operations are never stalled by concurrent operations, at the price of possibly
inconsistent states

Inconsistencies sometimes entailed by asynchronous protocols never occur in centralized
database systems whose transactional model guarantees ACID properties. This may however

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 288

be the preferred choice of distributed systems that favor efficiency and adopt a more per-
missive consistency model. A pending issue in that case is the management of inconsistent
versions, a process often called data reconciliation. What happens when the system detects that
two replicas have been independently modified? It turns out that the answer is, in most cases,
quite practical: data reconciliation is seen as application-dependent. The system is brought
back to a consistent state, possibly by promoting one of the versions as the “current” one, and
notifying the Client applications that a conflict occurred. Readers familiar with Concurrent
Versioning Systems like CVS or Subversion will recognize the optimistic, lock-free mechanism
adopted by these tools.

It has been argued that a distributed system cannot simultaneously satisfy consistency and
availability while being tolerant to failures (“the CAP theorem”, discussed further). Therefore
a system designer has to choose which property should be (at least partly) sacrificed. This
often leads to giving up strong consistency requirements, in favor of availability and fault
tolerance.

In summary, data replication leads to distinguishing several consistency levels, namely:

• Strong consistency (ACID properties), requires a (slow) synchronous replication, and
possibly heavy locking mechanisms. This is the traditional choice of database systems.

• Eventual consistency trades eager replication for performance. The system is guaranteed
to converge toward a consistent state (possible relying on a primary copy).

• Weak consistency chooses to fully favor efficiency, and never wait for write and read
operations. As a consequence, some requests may serve outdated data. Also, inconsis-
tencies typically arise and the system relies on reconciliation based on the application
logic.

Existing database systems are often seen as too heavy and rigid in distributed systems that
give up strong consistency to achieve better performance. This idea that the strong consistency
requirements imposed by RDBMS are incompatible with distributed data management, is
one of the founding principles of the “NoSQL” trend.

14.2 Failure management

In a centralized system, if a program fails for any reason, the simple (and, actually, standard)
solution is to abort then restart its transactions. On the other hand, chances to see a single
machine fail are low. Things are quite different in the case of a distributed system with
thousands of computers. Failure becomes a possibly frequent situation, due to program bugs,
human errors, hardware or network problems, etc. For small tasks, it is just simpler to restart
them. But for long lasting distributed tasks, restarting them is often not an acceptable option
in such settings, since errors typically occur too often. Moreover, in most cases, a failure
affects a minor part of the task, which can be quickly completed providing that the system
knows how to cope with faulty components.

Some common principles are met in all distributed systems that try to make them resilient
to failures. One of the most important is independence. The task handled by an individual
node should be independent from the other components. This allows recovering the failure
by only considering its initial state, without having to take into account complex relation-
ships or synchronization with other tasks. Independence is best achieved in shared-nothing

For personal use only, not for distribution. 289

architectures, when both the CPU and the local disk of a server run in isolation of the other
components of the servers.

Thanks to replication methods examined earlier, a failure can usually be recovered by
replacing the faulty node by a mirror. The critical question in this context is to detect that a
system met a failure. Why for instance is a Client unable to communicate with a server? This
may be because of a failure of the server itself, of because the communication network suffers
from a transient problem. The Client can wait for the failed node to come back, but this runs
against availability, since the application becomes idle for an unpredictable period of time.

14.2.1 Failure recovery

Figure 14.5: Recovery techniques for centralized (left) and replicated architectures (right)

Figure 14.5 recalls the main aspects of data recovery in a centralized data management
system, and its extension to distributed settings.

Consider first a client-server application with a single server node (left part). (1) The Client
issues a write(a). The server does not write immediately a in its repository. Because this
involves a random access, it would be very inefficient to do so. Instead, it puts a in its volatile
memory. Now, if the system crashes or if the memory is corrupted in any way, the write is
lost. Therefore, the server writes in a log file (2). A log is a sequential file which supports very
fast append operations. When the log manager confirms that the data is indeed on persistent
storage (3), the server can send back an acknowledgment to the Client (4). Eventually, the
main memory data will be flushed in the repository (5).

This is standard recovery protocol, implemented in centralized DBMSs. In a distributed
setting, the server must log a write operation not only to the local log file, but also to 1, 2 or
more remote logs. The issue is close to replication methods, the main choice being to adopt
either a synchronous or asynchronous protocol.

Synchronous protocol. The server acknowledges the Client only when all the remote nodes
have sent a confirmation of the successful completion of their write() operation. In
practice, the Client waits until the slower of all the writers sends its acknowledgment.
This may severely hinder the efficiency of updates, but the obvious advantage is that all
the replicas are consistent.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 290

Asynchronous protocol. The Client application waits only until one of the copies (the fastest)
has been effectively written. Clearly, this puts a risk on data consistency, as a subsequent
read operation may access an older version that does not yet reflect the update.

The multi-log recovery process, synchronous or asynchronous, has a cost, but it brings
availability (and reliability). If the server dies, its volatile memory vanishes and its local log
cannot be used for a while. However, the closest mirror can be chosen. It reads from it own
log a state equivalent to that of the dead server, and can begin to answer Client’s requests.
This is standard REDO protocol, described in detail in any classical textbook on centralized
database. We do not elaborate further here.

14.2.2 Distributed transactions

A transaction is a sequence of data update operations, that is required to be an “all-or-nothing”
unit of work. That is, when a commit is requested, the system has to perform all the updates in
the transaction. We say the transaction has been validated. In case of problem, the system has
also the option to perform nothing of it. We say the transaction has been aborted. On the other
hand, the system is not allowed to perform some of the updates and not others, i.e., partial
validation is forbidden.

In a distributed setting, the update operations may occur on distinct servers {S1, . . . ,Sn},
called participants. A typical case is the eager replication explained earlier. The problem is
to find a protocol, implemented and controlled by a distinct node called coordinator, that
communicates with the participants so that the all-or-nothing semantics is ensured. The main
algorithm that is used to achieve this goal is the two-phase commit (2PC) protocol:

1. first, the coordinator asks each participant whether it is able to perform the required
operation with a Prepare message;

2. second, if all participants answered with a confirmation, the coordinator sends a Decision
message: the transaction is then committed at each site.

Figure 14.6: The two-phase commit protocol (details are given for the Coordinator-Server 1
communications only)

For personal use only, not for distribution. 291

Assume for the time being that everything proceeds gracefully, without node failure or
network communication problem. In this ideal scenario, a distributed data update transaction
conforms to the following workflow (Figure 14.6, with focus on S1). Initially (1) the Coordina-
tor sends a Prepare message. Each participant then takes appropriate measures to guarantee
that it will be able to fulfill its task in the second phase. Typically, updated data stored in
volatile memory is written on a safe temporary persistent storage to prevent a loss due to a
system crash (2). The participant can then send a confirmation message to the Coordinator
(3), either confirm if the participant is ready to commit, or refuse.

The second phase begins when the Coordinator got all the answers from the participating
nodes. It sends then a Decision message (4) which can either be commit or abort. The rule is
that if at least one participant refused its part of the transaction, the whole operation must be
aborted. If all confirm their readiness, the Coordinator can send a commit. (Although it is
not compelled to do so: a refuse is also acceptable).

In case of commit, each participant copies the data from the temporary area to the main
repository (5), else it can simply remove the temporary storage associated to the ongoing
transaction. An acknowledgment of success is required for this second round, so that the
Coordinator closes the transaction.

Now, the question is: what if a failure occurs somewhere? We can distinguish between
network communication problems and node failures. In addition, we have to examine
separately the roles of the Coordinator from that of the participants. We start with the
latter and examine the appropriate recovery action, depending on the instant of the failure
occurrence.

Initial failure Such a failure occurs when the Participant pi is unable to receive the prepare
message; in that case it cannot answer, and the Coordinator aborts the transaction.

Failure in prepared state. pi received the prepare message and took the appropriate measures
to ensure that it is indeed ready to commit if required to. Note that, at this point, pi
probably allocates resources to the transaction and holds some locks that possibly hinder
the overall system throughput. The protocol must ensure that it will eventually (and as
soon as possible) receive a decision from the Coordinator, even if it fails and restart.

Failure in commit or abort state. pi learned the decision of the Coordinator, and is com-
pelled to carry out the operations that do implement this decision, even if it undergoes
one or several failures.

Technically speaking, such a distributed protocol must preserve some vital information
regardless of the failures that affect a node. For instance, a Participant that fails in the prepared
state must be able to figure out, when it recovers, whether the Coordinator sent its decision.
For instance, it could contact the Coordinator to learn the current state. In commit state, a
failure may occur while pi is proceeding with the validation of the transaction. After restart,
the validation needs to be re-executed, which implies that it is implemented as an idempotent
operation (a property common to all recovery mechanisms).

We now turn our attention to the Coordinator. A first remark is that it must implement
the necessary actions to preserve its ability to monitor the distributed transaction, even if it
fails. For instance, before sending the Decision message, the commit or abort choice must
be logged in a safe (persistent) area. Indeed, if the Coordinator fails after sending its decision,
it would restart in an undefined status if this information could not be recovered.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 292

In general, if the Coordinator fails, the distributed process may be in an intermediate
state which can only be solved if the Coordinator restarts and is able to resume properly the
transaction. If, for instance, failure occurs when the Coordinator is sending prepare messages,
some Participants may be informed of the transaction request, while others may not. On
restart, the Coordinator should look for pending transactions in its log and re-send the
message.

The same approach holds for dealing with Coordinator failure in the various steps of the
protocol. The main problem is that the Coordinator may fail permanently, or suffer from
network communication problems that leave the process pending for an unbounded time
period. Meanwhile, the Participants are blocked and maintain their locks on the resources
allocated to the transaction.

Note that a Participant cannot decide independently to commit or abort. (We could imagine
for instance a timeout mechanism that triggers an abort if the Participant is left in a prepared
state without receiving the decision.) Indeed, it may be the case that the Coordinator sent
a commit decision that reached all the participants save one. Aborting this part of the
transaction would break the all-or-nothing requirements. Several techniques have been
proposed to overcome the blocking nature of the 2PL protocol, including communication
among the Participants themselves. We invite the reader to consult the last section of the
chapter for references.

The 2PL protocol is a good illustration of the difficulty to coordinate the execution of
several related processes, in particular in case of failures. Applications that need to execute
distributed transactions enter in a mechanism where nodes become dependent from one
another, and this makes the whole data management much more intricate. Moreover, the
mechanism tends to block the operations of other applications and therefore restricts the
global throughput of the system. In general, solutions implemented by organizations dealing
with Web scale data tend to adopt a non-transactional approach, or at least consistency rules
less strict than the standard semantics.

14.3 Required properties of a distributed system

There is a long list of “**-ity” that characterize the good properties of distributed systems:
reliability, scalability, availability, etc. We briefly review some of particular interest to the
book’s scope. The end of the section proposes a discussion on the ability of distributed
systems to simultaneously maintain these good properties.

14.3.1 Reliability

Reliability denotes the ability of a distributed system to deliver its services even when one or
several of its software of hardware components fail. It definitely constitutes one of the main
expected advantages of a distributed solution, based on the assumption that a participating
machine affected by a failure can always be replaced by another one, and not prevent the
completion of a requested task. For instance, a common requirements of large electronic Web
sites is that a user transaction should never be canceled because of a failure of the particular
machine that is running that transaction. An immediate and obvious consequence is that
reliability relies on redundancy of both the software components and data. At the limit, should
the entire data center be destroyed by an earthquake, it should be replaced by another one that

For personal use only, not for distribution. 293

has a replica of the shopping carts of the user. Clearly, this has a cost and depending of the
application, one may more or less fully achieve such a resilience for services, by eliminating
every single point of failure.

14.3.2 Scalability

The concept of scalability refers to the ability of a system to continuously evolve in order to
support a growing amount of tasks. In our setting, a system may have to scale because of
an increase of data volume, or because of an increase of work, e.g., number of transactions.
We would like to achieve this scaling without performance loss. We will favor here horizontal
scalability achieved by adding new servers. But, one can also consider vertical scalability
obtained by adding more resources to a single server.

To illustrate these options, suppose we have distributed the workload of an application
between 100 servers, in a somehow perfect and abstract manner, with each holding 1/100
of the data and serving 1/100 of the queries. Now suppose we get 20% more data, or 20%
more queries, we can simply get 20 new servers. This is horizontal scalability that is virtually
limitless for very parallelizable applications. Now we could also add extra disk/memory
to the 100 servers (to handle the increase in data), and add extra memory or change the
processors to faster ones (to handle the increase in queries). This is vertical scalability that
typically reaches rather fast the limits of the machine.

In parallel computing, one further distinguishes weak scalability from strong scalability (see
Figure 14.7). The former analyzes how the time to obtain a solution varies with respect to
the processor count with a fixed data set size per processor. In the perfect case, this time
remains constant (per processor), indicating the ability of the system to maintain a perfect
balance. Strong scalability refers to the global throughput of a system, for a fixed data set size.
If the throughput raises linearly as new servers are added, the system does not suffer from an
overhead due to the management tasks associated to a distributed job. (Note that the above
discussion assumes a linear complexity of the system behavior, which is true at least for basic
read/write/search operations.)

Figure 14.7: Dimensions of scalability

It is actually a common situation that the performance of a system, although designed (or
claimed) to be scalable, declines with the system size, due to the management or environment

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 294

cost. For instance network exchanges may become slower because machines tend to be far
apart from one another. More generally, it may happen that some tasks are not distributed,
either because of their inherent atomic nature or because of some flaw in the system design.
At some point, these tasks (if any) limit the speed-up obtained by distribution (a phenomenon
known as Amdahl’s law in the related context of parallel computing).

A scalable architecture avoids this situation and attempts to balance evenly the load on
all the participating nodes. Let us consider the simple case of a server that would carry
out 10% more work that the others, due to some special role. This is a source of non-
scalability. For small workloads, such a difference is unnoticeable, but eventually it will reach
an importance that will make the “stressed” node a bottleneck. However, a node dedicated to
some administrative tasks that is really negligible or that does not increase proportionally to
the global workload is acceptable.

Many architectures presented in the rest of this chapter are of type “one Master – many
Servers”. The Master is a node that handles a few specific tasks (e.g., adding a new server to
the cluster or connecting a client) but does not participate to the core functionalities of the
application. The servers hold the data set, either via a full replication (each item is present on
each each server) or, more commonly, via “sharding”: the data set is partitioned and each
subset is stored on one server and replicated on a few others. This Master-Server approach is
easier to manage than a cluster where all nodes play an equivalent role, and often remains
valid on the long run.

14.3.3 Availability

A task that is partially allocated to a server may become idle if the server crashes or turns
out to be unavailable for any reason. In the worst case, it can be delayed until the problem is
fixed or the faulty server replaced by a replica. Availability is the capacity of a system to limit
as much as possible this latency (note that this implicitly assumes that the system is already
reliable: failures can be detected and repair actions initiated). This involves two different
mechanisms: the failure (crash, unavailability, etc.) must be detected as soon as possible, and
a quick recovery procedure must be initiated. The process of setting up a protection system
to face and fix quickly node failures is usually termed failover.

The first mechanism is handled by periodically monitoring the status of each server (“heart-
beat”). It is typically assigned to the node dedicated to administrative tasks (the “master”).
Implementing this mechanism in a fully distributed way is more difficult due to the absence of
a well-identified manager. Structured P2P networks promote one of the nodes as “Super-peer”
in order to take in charge this kind of background monitoring surveillance. Note that some
P2P approaches assume that a node will kindly inform its companions when it needs to leave
the network, an assumption (sometimes called “fail-stop") that facilitates the design. This
may be possible for some kinds of failures, but is unrealistic in many cases, e.g., for hardware
errors.

The second mechanism is achieved through replication (each piece of data is stored on
several servers) and redundancy (there should be more than one connection between servers
for instance). Providing failure management at the infrastructure level is not sufficient. As
seen above, a service that runs in such an environment must also take care of adopting
adapted recovery techniques for preserving the content of its volatile storage.

For personal use only, not for distribution. 295

14.3.4 Efficiency

How do we estimate the efficiency of a distributed system? Assume an operation that runs
in a distributed manner, and delivers a set of items as result. Two usual measures of its
efficiency are the response time (or latency) that denotes the delay to obtain the first item,
and the throughput (or bandwidth) which denotes the number of items delivered in a given
period unit (e.g., a second). These measures are useful to qualify the practical behavior of a
system at an analytical level, expressed as a function of the network traffic. The two measures
correspond to the following unit costs:

1. number of messages globally sent by the nodes of the system, regardless of the message
size;

2. size of messages representing the volume of data exchanges.

The complexity of operations supported by distributed data structures (e.g., searching for
a specific key in a distributed index) can be characterized as a function of one of these cost
units.

Generally speaking, the analysis of a distributed structure in terms of number of messages
is over-simplistic. It ignores the impact of many aspects, including the network topology,
the network load and its variation, the possible heterogeneity of the software and hardware
components involved in data processing and routing, etc. However, developing a precise cost
model that would accurately take into account all these performance factors is a difficult task,
and we have to live with rough but robust estimates of the system behavior.

14.3.5 Putting everything together: the CAP theorem

We now come to the question of building systems that simultaneously satisfy all the properties
expected from a large-scale distributed system. It should scale to an unbounded number of
transactions on unlimited data repositories, always be available with high efficiency (say, a
few milliseconds to serve each user’s request) and provide strong consistency guarantees.

In a keynote speech given in 2000 at the Symposium on Principles of Distributed Computing,
Eric Brewer proposed the following conjecture: no distributed system can simultaneously
provide all three of the following properties: Consistency (all nodes see the same data at the
same time), Availability (node failures do not prevent survivors from continuing to operate),
and Partition tolerance (the system continues to operate despite arbitrary message loss). This
conjecture, formalized and proved two years later, is now known as the CAP theorem, and
strongly influences the design of Web-scale distributed systems.

The problem can be simply explained with a figure (Fig. 14.8). Assume two applications A
and B running on two distinct servers S1 and S2. A executes writes to a repository, whereas
B reads from a replicated version of the repository. The synchronization is obtained by
replication messages sent from S1 to S2.

When the Client application sends a put(d) to update a piece of data d, A receives the
request and writes in its local repository; S1 then sends the replication message that replaces
d′, the older replica, with d, and a subsequent read(d) sent by the Client retrieves from S2 the
updated version. So, the system seems consistent.

Now, assume a failure in the system that entails a loss of messages. If we want the system
to be fault-tolerant, it continues to run, and the replica is out of date: the Client receives an old

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 296

Figure 14.8: The CAP theorem illustrated

version of its data (inconsistency). If S1 synchronizes the write operation and the replication
message M as an atomic transaction, this goes against availability, because waiting for the
acknowledgment of S2 may take an unpredictable amount of time.

The CAP theorem essentially says that there is a trade-off between availability and consis-
tency (partition tolerance is something we have to deal with anyway) in large-scale distributed
systems. In an “eventual consistency” model, the replication message is asynchronous, but S1
resends the messages if it does not receive an acknowledgment until, eventually, the replica
on S2 is known to be consistent with S1. Meanwhile, the Client may have to deal with an
inconsistent state. In concrete terms, if you remove an item from your basket, it possibly
re-appears later in the transaction! Obviously, this is a better choice for the e-commerce site
than a user who gives up her transaction due to high system latency.

The CAP theorem gave rise to debates regarding its exact definition and consequences. We
already noted that the partition tolerance property is not symmetric to the other ones, since
we do not really have the choice to give it up. This leaves two possible combinations: CP
(consistent and partition tolerant) and AP (available and partition tolerant). Moreover, the
concept of availability (a transaction always terminates) ignores the efficiency aspect (how
long does it take?) which is an important factor. Still, the theorem points out that consistency
and availability are central, and somehow incompatible, issues in the design of distributed
systems, and that a clear trade-off should be made explicit.

14.4 Particularities of P2P networks

A peer-to-peer network is a large network of nodes, called peers, that agree to cooperate in
order to achieve a particular task. A P2P system is a distributed system, and as such it shares
a lot of features with the settings previously presented.

What makes P2P systems particular with respect to the cluster systems examined so far
is their very loose and flexible (not to say unstable) organization. Peers often consist of
personal computers connected to the network (e.g., the Internet) participating in a specific
task. The rationale behind P2P emergence is the huge amount of available CPU, memory,

For personal use only, not for distribution. 297

disk, network resources available on the Web. One would like to use these existing resources
to support heavy applications as close to zero hardware cost. Furthermore, this approach
allows achieving high scalability using massively distribution and parallel computation.

A second particularity is that a peer plays simultaneously the role a client (of other peers)
and a server (to other peers). This is in fact not such a strong specificity, if we recall that “Client”
and “Server” actually denote processes hosted on possibly the same computer. Nothing in a
distributed architecture prevents the same machine from running several processes, possibly
client/server from one another. In P2P systems, however, this situation becomes the rule. A
canonical application is file-sharing: a Client (node) gets a file from another (Server) node,
and the file, once stored on the Client disk, becomes available to other peers (so, the former
Client becomes indeed a Server). In theory, this leads to high availability, reliability (due to
large replication) and adequate load balancing.

P2P systems raise many problems, though, even if we set aside the somewhat illegal nature
of their most popular applications. First, the behavior of each peer is fully autonomous.
A peer owns its computing power and storage resource and can independently choose to
allocate these resources to a particular task. A peer can also join or leave the system at will (as
mentioned above, the fail-stop hypothesis hardly holds in practice). Second, P2P networks
connect nodes via a possibly slow communication channel (usually, the Internet) and this
may bring a quite high communication overhead compared to a cluster of machine on a
very high-speed local network (See Table 14.1, page 284). Finally, the lack of control on the
infrastructure makes P2P networks not adapted to very rapidly changing data and high
quality of services, and in particular not adapted to transactional tasks.

Peers in a P2P network refer to each other by their IP addresses, forming a structure over
the Internet called an overlay network (e.g., a graph laid over a physical infrastructure). A
peer p in this structure is connected to a few other peers (often called its “friends") which
are its primary (and possibly) unique way to communicate with the rest of the system. P2P
systems mostly differ by the topology of their overlay network, which dictates how dictionary
operations (insert, search, update) can be implemented. We should be aware nevertheless
that even if two peers p1 and p2 seem friends in the overlay, a message sent from p1 to p2
must actually follow a physical route in the underlying Internet graph, with possibly many
hops. So, things may not work as nicely as expected when considering the overlay topology.

A general (although not very efficient) search technique is flooding: a peer p disseminates
its request to all its friends, which flood in turn their own friends distinct from p, and so on
until the target of the request (e.g., a peer holding the requested music file) is reached. A
P2P system that only supports flooding is called an unstructured P2P network. The approach
is simple and works as follows. A peer only needs to know some friends to join a network.
From them, it can discover new friends. Queries are then supported using flooding typically
limited by a “Time to live” bound (abbreviated TTL). The TTL limits the number of times a
particular query is forwarded before it should be discarded to avoid using too much resource
on a single query. Unstructured P2P networks are not very efficient. They are in particular
inherently unstable. Because the peers in the community are autonomous and selfish, one
can often observe a very high rate of peers going in and out of the system (one speaks of high
churn). As a consequence, it is difficult to guarantee that a node stays connected to the system,
or that the overall topology remains consistent.

More structured ways of looking up the network (“Structured P2P networks") have been
designed to avoid the blind and uncontrolled nature of the flooding mechanism among which
Distributed Hash Tables (DHTs) are probably the most popular. Joining the network becomes

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 298

more involved, but the performance and stability are improved. We will consider DHTs in
Chapter 15.

14.5 Case study: a Distributed File System for very large files

To conclude this introductory part, we study a simple distributed service: a file system
that serves very large data files (hundreds of Gigabytes or Terabytes). The architecture
presented here is a slightly simplified description of the Google File System and of several of
its descendants, including the HADOOP Distributed File System (HDFS) available as an open-
source project. The technical environment is that of a high speed local network connecting a
cluster of servers. The file systems is designed to satisfy some specific requirements: (i) we
need to handle very large collections of unstructured to semi-structured documents, (ii) data
collections are written once and read many times, and (iii) the infrastructure that supports
these components consists of thousands of connected machines, with high failure probability.
These particularities make common distributed system tools only partially appropriate.

Figure 14.9: Distributed file systems for large files

14.5.1 Large scale file system

Why would we need a specialized architecture for distributing large files (DFS) in the first
place? The answer is summarized by Figure 14.9 that shows, on the left side, a standard
solution to share files among computers (a widespread implementation of this solution is
NFS, the Network File System, in the Unix world). Assume that server A needs to access the
files located in the directory dirC on server B. The DFS allows dirC to be “mounted” in the
local file system as, say, a subdirectory of dirB. From the user point of view, this is transparent:
s/he can navigate to the files stored in /dirA/dirB/dirC just as if it was fully located on its
local computer. The network calls that maintain dirC as part of the Server A namespace are
handled by the DFS.

Modern distributed systems like NFS care about reliability and availability, and provide for
instance mechanisms to replicate files and handle node failures. In the context of large scale
data-intensive applications, this solution is nevertheless not convenient because it breaks

For personal use only, not for distribution. 299

several of the principles mentioned so far, and does not satisfy some of its expected properties.
The main broken principle is data locality. A process running on Server A in charge of
manipulating data stored on Server B will strongly solicit the network bandwidth. Regarding
the properties, one notes that the approach is hardly scalable. If we store 10% of our data set
in file1 and 90% in file2, Server B will serve (assuming a uniform access pattern) 90% of the
Client requests. One could carefully monitor the size and location of files to explicitly control
load balancing, but this would lose the benefits of using a transparent file system namespace.

An NFS-like system is not natively designed to meet the specific requirements of a large
scale repository. The right part of Figure 14.9 shows a different approach which explicitly
addresses the challenge of very large files. Essentially, the difference lies in the fact that a file is
no longer the storage unit, but is further decomposed in “chunks” of equal size, each allocated
by the DFS to the participating nodes (of course, this works best for systems consisting of
large files).

There exists a global file system namespace, shared by all the nodes in the cluster. It defines
a hierarchy of directories and files which is “virtual”, as it does not affect in any way the
physical location of its components. Instead, the DFS maps the files, in a distributed manner,
to the cluster nodes viewed as blind data repositories. File file1 in the right part of Figure 14.9
is for instance split in three chunks. Each chunk is duplicated and the two copies are each
assigned to a distinct node.

Because the DFS splits a file is equal-size chunks and evenly distributes the files, a fair
balancing is natively achieved. Reliability is obtained by replication of chunks, and availability
can be implemented by a standard monitoring process.

14.5.2 Architecture

We now turn to the architecture of GFS, summarized on Figure 14.10. The distributed system
consists of a Master node and many server nodes. The Master plays the role of a coordinator:
it receives Client connections, maintains the description of the global file system namespace,
and the allocation of file chunks. The Master also monitors the state of the system with
“heartbeat” messages in order to detect any failure as early as possible. The role of Servers
is straightforward. They receive files chunks, and must take appropriate local measures to
ensure the availability and reliability of their (local) storage.

A single-master architecture brings simplicity to the design of the system but gives rise
to some concern for its scalability and reliability. The scalability concern is addressed by a
Client cache, called Client image in the following. Let us examine in detail how the system
handles a read() request, as illustrated on Figure 14.10 with dotted arrows:

1. The Client sends a first read(/dirB/file1) request; since it knows nothing about the file
distribution, the request is routed to the Master (1).

2. The Master inspects the namespace and finds that file1 is mapped to a list of chunks;
their location is found in a local table (2).

3. Each server holding a chunk of file1 is required to transmit this chunk to the Client (3).

4. The Client keeps in its cache the addresses of the nodes that serve file1 (but not the file
itself); this knowledge can be used for subsequent accesses to file1 (4).

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 300

Figure 14.10: Architecture of the GFS system (after [71])

The approach is typical of distributed structures, and will be met in several other distributed
services further on. The Client cache avoids a systematic access to the Master, a feature that
would make the structure non scalable. By limiting the exchanges with the Master to messages
that require metadata information, the coordination task is reduced and can be handled by a
single computer.

From the Client point of view1, the distributed file system appears just like a directory
hierarchy equipped with the usual Unix navigation (chddir, ls) and access (read, write)
commands.

Observe again that the system works best for a relatively small number of very large files.
GFS (and similar systems) expects typical files of several hundreds of MBs each, and sets
accordingly the chunk size to 64 MBs. This can be compared to the traditional block-based
organization of centralized storage systems (e.g., databases) where is block size is a small
multiple of the disk physical block (typically, 4KB-8KB in a database block).

The design of GFS is geared toward batch processing of very large collections. The archi-
tectural choices are in line with the expected application features. For instance, having large
chunks limits the size of the internal structure maintained by the Master, and allows keeping
them in memory. On the other hand, it appears clearly that using a GFS-like system for a lot
of small files would be counter-productive. The Master would have to deal with a lot more
references that could not be held in memory anymore, and each file would consist of a single
chunk, with poor exploitation of the distribution leverage.

14.5.3 Failure handling

Failure is handled by standard replication and monitoring techniques. First, a chunk is not
written on a single server but is replicated on at least 2 other servers. Having three copies
of the same chunk is sufficient to face failures (the number of replicas can be chosen by
administrator to adapt to special applications). The Master is aware of the existing replicas
because each server that joins the clusters initially sends the chunk that it is ready to serve.

1We recall that “Client” here technically means a component integrated to the Client application and implement-
ing the communication protocol with the system.

For personal use only, not for distribution. 301

Second, the Master is in charge of sending background heartbeat messages to each server.
If a server does not answer to a heartbeat messages, the Master initiates a server replacement
by asking to one of the (at least 2) remaining servers to copy to a new server the chunks that
fell under their replication factor.

The Master itself must be particularly protected because it holds the file namespace. A
recovery mechanism is used for all the updates that affect the namespace structure, similar
to that presented in Figure 14.5, page 289. We refer the reader to the original paper (see last
section) for technical details on the management of aspects that fall beyond the scope of our
limited presentation, in particular access rights and data consistency.

14.6 Further reading

Distributed computing systems have constituted an intensive area of research for more
than three decades, and the area has been boosted further by the success of the Internet
and the profusion of distributed resources now available. A wide coverage of distributed
systems issues and techniques is [29], with strong emphasis on the reliability of distributed
applications. In a data management perspective, [131] is a general reference for distributed
databases, while [78] specializes on transaction management. The notion of scalability is
analyzed in [122]. Failure management is an essential topic in the context of large scale
distributed systems. Beyond the general principles that can be found in the text books
mentioned above, the reader is referred to [84] for an in-depth approach. Replication protocols
are ubiquitous in distributed systems design, along with the related problems of consistencies
and availability: see [77] which clearly exposes the trade-offs involved in replication policies,
and well as the recent survey in [142].

Properties expected from a cluster-based system are analyzed in [68]. A counterpart to
ACID properties, called BASE (Basically Available, Soft-state, Eventually consistent) is proposed
there. The CAP theorem has been conjectured during a keynote speech by Eric Brewer at
PODC’2000, formalized in [72] (Figure 14.8 is a simplified illustration of the proof) and has
been an active topic of discussion since then. The trade-off between consistency, availability
and fault-tolerance has been investigated in several research works; see for instance [186].
Eventual consistency is the level adopted by many Web-scale systems, including Ebay and
Amazon [52]. See also the on-line text from Werner Voegels on consistency models2.

The necessity to adopt a trade-off between availability and consistency in large-scale
distributed systems is often presented as a reason of the “NoSQL systems” emergence. Since
relational DBMS are not designed to satisfy eventual consistency, storage systems specifically
designed to operate at large-scale have been implemented by several Web companies. They
often adopt a very simplified data model based on key-value pairs (hence the “key-value
stores” term). See the http://nosql-database.org/ site for a list of these systems.

Peer-to-peer networks emerged at the beginning of the millennium and have been since
then mostly targeted toward file sharing. P2P systems are accountable for a major part of the
Internet traffic (about 50%, sometimes more for certain parts of the world). P2P opponents
argue that with P2P is mostly used to share illegal content. However, this is ignoring that P2P
also has a growing number of legitimate uses (such as SKYPE).

A P2P system is deemed resilient to failures (due to the large replication factor) and scalable.
This is probably true for basic applications (e.g., file management), but building complex

2http://www.allthingsdistributed.com/2008/12/eventually_consistent.html

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://nosql-database.org/
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html

For personal use only, not for distribution. 302

and efficient data management systems over a P2P architecture is quite challenging. A major
problem is the lack of control on nodes that appear and vanish at will. A trend in P2P system
design is therefore to distinguish several classes of participants, ranging from the basic clients
whose contributions to the overall computing effort are quite unreliable, to “super-peers” that
provide dependable services that help stabilize the system.

The Google File System is presented in [71]. The paper contains detailed material on its
internal design and implementation. Consistency issues in particular are presented in depth,
as well as replicas management. Since its presentation, GFS inspired several other systems,
often distributed in Open Source. HADOOP3 is the most widely used (it is, for instance,
adopted and supported by Yahoo!), free implementation of the GFS principles. KOSMOS

FILESYSTEM (now available as CLOUDSTORE4) is another derivation of GFS, implemented
in C++. The technical documentation of these system shows that they quite closely match
the design of GFS. A consequence is that they also target the same application range: large,
append-only data files mostly subject to batch analysis.

3http://hadoop.apache.org/
4http://kosmosfs.sourceforge.net/

http://hadoop.apache.org/
http://kosmosfs.sourceforge.net/

15 Distributed Access Structures

In large scale file systems presented in the previous chapter, search operations are based on
a sequential scan that accesses the whole data set. When it comes to finding a specific object,
typically a tiny part of the data volume, direct access is much more efficient than a linear scan.
The object is directly obtained using its physical address that may simply be the offset of the
object’s location with respect to the beginning of the file, or possibly a more sophisticated
addressing mechanism.

An index on a collection C is a structure that maps the key of each object in C to its (physical)
address. At an abstract level, it can be viewed as a set of pairs (k, a), called entries, where k is
a key and a the address of an object. For the purpose of this chapter, an object is seen as raw
(unstructured) data, its structure being of concern to the Client application only. You may
want to think, for instance, of a relational tuple, an XML document, a picture or a video file.
It may be the case that the key uniquely determines the object, as for keys in the relational
model.

An index we consider here supports at least the following operations that we thereafter call
the dictionary operations:

1. insertion insert(k, a),

2. deletion delete(k),

3. key search search(k): a.

If the keys can be linearly ordered, an index may also support range queries of the form
range(k1,k2) that retrieves all the keys (and their addresses) in that range. Finally, if the key
space is associated to a metric (a distance function f), one may consider a nearest neighbor
search kNN(o) that retrieves the k objects closest (in other words, most similar) to a query
object o.

Given a cost unit, the efficiency of an index is expressed as the number of cost units required
to execute an operation. In the centralized databases case, the cost unit is usually the disk
access. We are more concerned here with communication, so we will assume that the cost
unit is the transmission of one message, and this (to simplify), regardless of the message size.

For indexing, two main families of access structures have been considered, namely, hash
tables, with constant search complexity, and search trees, with logarithmic search complexity.
In the next two chapters, we consider in turn the distribution of these two kinds of access
structures.

15.1 Hash-based structures

Let us first recall the basics of hash-based indexing in centralized databases. The hash file struc-
ture consists of a memory-resident directory D and a set of M disk buckets {b0,b1, . . . ,bM−1}.
The directory is an array with M cells, each referring to one of the buckets (Figure 15.1).

303

For personal use only, not for distribution. 304

The placement of objects in the buckets is determined by a hash function h. Consider a
collection C of objects where each item I in it has a property I.A. (A is called the hash field.)
Each item I in C is stored in the bucket bj such that j = h(I.A). So, note that the hash function
takes as input a value from the hash field domain, and outputs an integer in the range
[0, M− 1]. The hash function should also follow the requirement that it uniformly assigns
objects to buckets.

hash file

Figure 15.1: The hash file structure

Figure 15.1 shows a simple example. The hash file contains a collection of Person objects.
The hash field is the name of each person. We find that h(′Suzanne′) = 3 and h(′John′) = 3.
To insert the Suzanne object in the hash file, one computes its hash value, namely 3, finds in
the Directory the address of Bucket 3, and places the object there. To retrieve the Suzanne
object, one similarly finds the hash value and retrieve Bucket 3. Observe that both Suzanne
and John objects are put in Bucket b3. Indeed, two objects with totally different hash field
values may be mapped to the same bucket. This is called a collision. Collisions are quite
acceptable in hash files because the purpose of a hash function is indeed to group objects to
buckets independently from the hash field distribution. A problem only arises when a bucket
is full and there is no place for new objects in this bucket. This is somewhat difficult to control,
and may lead to degenerate hash structures. We will discuss further how to handle this issue.

Hash files support dictionary operations in constant time. In non-degenerated cases, one
disk access is sufficient.

1. insertion insert(k, a): compute h(k), find the address of bh(k) in D[h(k)] and insert a there;

2. deletion delete(k): find the bucket as in search, remove from it all objects with key k;

3. key search search(k): {a}: compute h(k), find the address of bh(k) in the directory, read
bh(k) and take all objects in the bucket with key k (if any).

In the simple variant presented so far, the number M of buckets must be chosen in advance
so that the entire collection can be accommodated. If cB is a bucket capacity, and |C| the
expected collection size, then M should be of the order d |C|cB

e. In fact, it has to be somewhat
greater because even if in theory, the hash function does distribute uniformly the objects into
the buckets, for a particular distribution, there will always be some buckets more used than
others.

For personal use only, not for distribution. 305

Observe that the hash file is very efficient for point queries, but does not support range
search. If range search is required, search trees will be preferred. An important issue that
affects the basic version presented so far is that it does not adapt easily to a dynamic collection
that expands or shrinks rapidly. More sophisticated versions exist, but the previous simple
presentation is enough to examine the main issues that must be addressed when we want to
distribute a hash structure.

Dynamicity

The first issue we consider relates to dynamicity. A straightforward distribution strategy
consists in assigning each bucket of the hash file to one of the participating servers. For this
to work, all the nodes (Clients or Servers) that access the structure have to share the same
hash function. In real life, though, data sets evolve, and servers must be added or removed.
A naive solution would require the modification of the hash function. For instance, we use a
function h̄ here and throughout the chapter that maps the domain of keys to integer. Then we
do as follows:

• Suppose the servers S0, ...,SN−1 for some N are available.

• We use the hash value h(key) = modulo(h̄(key), N).

• We assign each key of hash value i to server Si for each i ∈ [0, N − 1].

If a server SN is added, the hash function is modified to:

h(key) = modulo(h̄(key), N + 1)

Observe that this “naive” strategy typically results in modifying the hash value of most
objects, moving them to different buckets, so essentially totally rebuilding the hash file.
Also, the new function h has to be transmitted to all the participants, notably all the Clients.
While these changes take place, the use of the old hash function is likely to result in an error.
Guaranteeing the consistency of such an addressing when the hash function is changing, in a
highly dynamic, distributed environment, is a challenging task.

Location of the hash directory

The second issue that needs to be considered when distributing a hash file is the location of
the hash directory itself. Recall that this directory establishes a mapping between the hashed
values and the physical locations of data repositories. Any operation on the structure requires
an access to the directory which therefore constitutes a potential bottleneck.

We present next two hash-based indexing techniques adapted to a distributed setting. The
first one called linear hashing (an extension of the well-known dynamic hashing method) has
been proposed a while ago in the context of centralized systems. We recall it and consider its
distribution. The second one, called consistent hashing, is a direct attempt at instantiating the
hashing paradigm in a distributed context. We will see that it is better adapted when servers
enter and leave the system at a rapid pace. Both approaches provide interesting insights on
common design patterns for data-centric distributed structures: caching, replication, routing
tables, and lazy adjustment. Consistent hashing is further illustrated with the system CHORD,
a Distributed hash tables (DHT) designed for P2P environments.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 306

15.1.1 Distributed Linear Hashing

The goal of linear hashing (LH) is to maintain an efficient hash structure when the collection
is very dynamic, and in particular when it may grow very rapidly. The maintenance involves
a dynamic enlargement of the hash directory that entails an extension of the hash function,
and the reorganization of the buckets. As we will see, linear hashing provides a linear growth
of the file one bucket at a time. We first recall the method in a centralized case, then develop
the distributed version.

Linear hashing

The simple manner of expending a hash file, when the collection expands, and a bucket b
become too small, consists in introducing an overflow bucket. More precisely, this consists in (i)
adding a new bucket b′ to the file, (ii) moving some items from b to b′, adding a pointer from
b to b′. If we are not careful and the collection keeps expanding, we have to perform more and
more linear scans in the buckets corresponding to one hash value. To avoid this issue, in linear
hashing, when we introduce an overflow bucket, we simultaneously augment the number
of hash values. The LH innovative idea is to decouple the extension of the hash function
from the overflowing bucket. More precisely, when a bucket b overflows, this triggers the
following modifications:

1. An overflow bucket is linked from b, in order to accommodate the new items.

2. The bucket bp (or the chain list of buckets) corresponding to the hash value p, usually
distinct from b, is split, where p is a special index value maintained by the structure and
called the split pointer.

Observe that a bucket that overflows is not split. It is just linked to an overflow bucket. This
bucket together with the overflow bucket will eventually be split when the split pointer will
point to it. Surprisingly, this behaves nicely. Hash values that raise problems are eventually
dealt with and the number of hash values somewhat gracefully adapt to the size of the
collection.

Initially, p = 0, so bucket b0 is the first that must split, even if it does not overflow. The value of
p is incremented after each split. Look at Figure 15.2. We abstractly represented the presence
of an object of key k in a bucket by placing h̄(k) in it. So, for instance, some object k with
h(k) = 17 is in b1. Here, the size of the hash directory is 4 and we assume that each bucket
holds at most 4 objects (we only show h(k) for each key k). For simplicity, we use the mod()
function for hashing, so h(k) = h̄(k) mod N, where N is the size of the hash directory.

An object with key 42 must be inserted in bucket b2, which overflows its capacity. A bucket
is linked to b2, and receives object 42. At the same time, bucket b0 (recall that p = 0) is split.
Its content is partially reassigned to a new bucket added to the hash file, b4.

This reassignment raises an issue: if we keep unchanged the hash function, all the objects
moved to bucket b4 cannot be found anymore. This is where the hash function extension
occurs. Linear hashing actually relies on a pair of hash functions (hn, hn+1), where for each n:

1. hn : k→ h̄(k) mod 2n, so in particular,

2. hn+1 : k→ h̄(k) mod 2n+1

For personal use only, not for distribution. 307

Figure 15.2: Split process in linear hashing

Initially, the pair is (h0, h1), p = 0 and h0 applies to all the buckets. As the structure evolves,
p is incremented and h0 applies to the buckets in the range [p, N − 1], while h1 applies to all
other buckets. (Recall that N is the size of the hash directory.) For the example of Figure 15.2,
after the first split, we have:

1. h0 applies to buckets b1,b2, and b3,

2. h1 applies to buckets b0 and b4: the ones that just split.

It can be verified in the example that all objects such that h1(k) = h̄(k) mod 23 = 4 have been
moved to bucket b4, while those for which h1(k) = h̄(k) mod 23 = 0 stay in bucket b0. This
extension of the hash function is therefore consistent, and allows for a limited reorganization
of the hash file.

What happens next? Bucket b1 is the next one to split, if any of the buckets (including b1
itself) overflows. Then p will be set to 2, and b2 becomes the split target. When the split
of b2 occurs, its content and that of its associated overflow bucket will be distributed in
two first-range buckets, and this will likely eliminate the need for a linked chain. In this
perspective, linear hashing can be seen as a delayed management of collision overflows.

Eventually, p will take the value 3. When b3 splits in turn, the hash function h1 is applied
for all the buckets and h0 is no longer used. The hash file is “switched” one level up, the pair
of hash function becomes (h1, h2), p is reset to 0 and the process goes on gracefully. Observe
that a large part of the hash directory is left unchanged when we modify the hash function.
This is an important advantage of the technique since we avoid having to resend it entirely.

A dictionary operation on some key value k uses the following computation (called the LH
algorithm in what follows) to obtain the address a of the bucket that contains k:

a := hn(k);
i f (a < p) a := hn+1(k)

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 308

In words: one applies first hn, assuming that no split occurred, and obtain a hash value a in
the range [0,2n − 1]. Next, one checks whether this value corresponds to a bucket that did
split, in which case the correct address is obtained with hn+1.

Distributed linear hashing

We now turn to LH*, a distributed version of LH. The mapping of a LH file structure to a
cluster of servers is straightforward. Assume for the time being that there exists a global
knowledge of the file level, n, with hash functions (hn, hn+1), and of the split pointer p.
Suppose the cluster consists of the servers {S0,S1, . . . ,SN}, 2n ≤ N < 2n+1, each holding a
bucket. When the bucket of a server Si overflows, the server referred to by the split pointer
p, Sp, splits. This involves the allocation of new server SN+1 to the structure, and a transfer
from Sp to SN+1 of objects, similar to the LH case. This results in a partition of data among
servers, often denoted as “sharding”, each bucket being a “data shard”. To perform this split,
we can either wait to have a new server available, or better, have each physical server plays
the role of several “virtual servers”.

Recall that, as already mentioned, the Linear Hashing technique does not require resending
entirely the hash directory each time the hash function is modified. When this happens, we
have to let the servers know:

• the level n that determines the pair of hash functions (hn, hn+1) currently in use,

• the current split pointer p,

• changes of the hash directory.

We meet again a standard trade-off in distributed data structures:

• either all the participants have an accurate and up-to-date view of the whole structure;
then searches are fast, but changes to the structure involve a costly propagation of the
update to each node (including Client nodes).

• or they only maintain a partial representation, possibly lagged with respect to the actual
structure status; in that case, the maintenance cost is possibly much lighter, but searches
may have to follow non trivial paths before reaching their targets.

For LH*, for instance, each server and each Client could store a local copy of the localization
information: the pair (n, p) as well as the list of all the server nodes addresses. Let us call Loc
this information. Whenever the LH* evolves by adding or removing a server, an update must
be sent to every participant. This yields a gossiping system, a perfectly valid choice in a rather
controlled environment, assuming the set of participating peers does not evolve at a rapid
pace.

Reducing maintenance cost by lazy adjustment

LH* provides a more flexible solution to cope with the maintenance problem. Each Client
keeps its local copy Loc′ of Loc, but this copy may be out-of-date with respect to the “true”
Loc, e.g., p may have been incremented since Loc′ was acquired. This may lead the Client
to addressing errors: a dictionary operation with key k may be sent to a wrong server, due
to some distributed file evolution ignored by the Client. LH* then applies a forwarding

For personal use only, not for distribution. 309

path algorithm that eventually leads to the correct server. This latter server carries out the
required operations. Furthermore, with the acknowledgment, it sends back to the Client
some information for Client to refresh its copy of Loc. The next client request, based on this
refreshed information, will be more accurate than the initial one.

We call client image the knowledge maintained by a Client on the distributed structure. An
image is some partial replication of the global structure in the client cache. It is partial because
parts of the structure that the Client does not need are not mirrored in the image. Also, it may
not record recent evolutions of the structure that followed the image acquisition.

Keeping an outdated replica is imposed for a number of reasons. First, a Client may be
temporarily disconnected, and thus incapable of updating its image. Of course, one can
imagine that the Client refreshes asynchronously its image when it reconnects. But this is
complex and very expensive if Clients connect/reconnect often. Also, the maintenance of all
Clients and Servers completely up-to-date is likely to represent an important traffic overhead.
A (reasonably) outdated image represents a good trade-off, providing that the Client knows
how to cope with referencing errors. We examine next how LH* adjusts to addressing errors.

Details on the LH* algorithms

The adjustment mechanism principles are illustrated in Figure 15.3. Here, we assume that the
Client image is (nC = 1, pC = 1), whereas several splits led the LH* to the status (n = 3, p = 2).

Figure 15.3: The LH* adjustment mechanism.

The Client sends a request search(5). It computes the bucket address with the LH algorithm
(see above):

1. a = hnC(5) = 5 mod 21 = 1

2. since a ≥ pC, we keep a = 1 and the request is sent to S1.

When a LH* server receives a request, it first checks whether it is indeed the right recipient
by applying the following algorithm (called the forward algorithm). The algorithm attempts

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 310

to find the correct hash value for key k, using the local knowledge of the server on the file
structure.

// Here, j denotes the server level
a′ := hj(k)
if (a′ 6= a)

a” := hj−1(k)
if (a′′ > a and a” < a′) then a′ := a′′

If a′, obtained by the above algorithm is not the server address, then the Client made an
addressing error. The request is then forwarded to server a′. In our example, S1 receives the
Client request. S1 is the last server that split, and its level is 3. Therefore, a′ = h3(5) = 5 mod
23 = 5. The request is forwarded to S5 where the key is found.

It can be shown that the number of messages to reach the correct server is three in the
worst case. This makes the structure fully decentralized, with one exception: when a Server
overflows, the exact value of p, the (other) Server that splits, must be accurately determined.
The LH* recommendation is to assign a special role to one of the servers, called the Master,
to keep the value of p and inform the other nodes when necessary. Since this only happens
during a split, the structure remains scalable. We omit the other technical details. For more,
see the bibliographical notes at the end of the section; see also exercises.

The main lesson that can be learned from this design is that a relative inaccuracy of the
information maintained by a component is acceptable, if associated to a stabilization protocol
that guarantees that the structure eventually converges to a stable and accurate state. Note
also that, in order to limit the number of messages, the “metadata” information related to the
structure maintenance can be piggybacked with messages that answer Client requests.

We mentioned in the discussion what happens when some Client gets temporarily dis-
connected. We implicitly assumed that Servers are somewhat stable. We will remove this
assumption in the next technique that also addresses settings where there is a high churn
within the Servers, i.e., Servers come and go at a rapid pace.

15.1.2 Consistent Hashing

Consistent hashing is a method initially proposed in the context of distributed caching
systems. Consider for instance a Web Site that receives an intensive flow of HTTP requests.
A useful strategy to distribute the query load is to keep the results of the most common
queries in the caches of several servers. A dedicated proxy machine records which servers
store which query results. When a query is received, the proxy detects whether its result has
been cached and when this is the case, it forwards the query to one of the servers that cached
this particular result. This is where consistent hashing helps: the assignment of queries to
servers is based on the hash value of the query, and the scheme is designed to gracefully
adapt itself to a varying number of servers (see the http://memcached.org Web site for details).

Distributing data with Consistent Hashing

In the context of data distribution, the same mechanism can be adopted, the only difference
lying in the handling of the hash directory, discussed at the end of this section. The first idea
is to use a simple, non-mutable hash function h that maps both the server address and the

For personal use only, not for distribution. 311

object keys to the same large address space A. Assume for instance that we choose a 64-bits
addressing space A. The hash function can be implemented as follows: take the server IP
(resp., the object key) and apply the cryptographic MD5 algorithm that yields a 32-bytes
string; then interpret the first 8 bytes of the MD5 value as an unsigned integer in the range
[0,264 − 1]. And similarly for keys. So, now, both the servers and the keys are mapped to the
same very large domain, [0,264 − 1].

IP3-1

IP2-2

IP1-1

IP1-2

Object a

Object b

map

Mapping of objects to servers

IP3-1

IP2-2

IP1-1

IP1-2

Object a

Object bNew server

IP3-2

Objects that need to
be moved from IP1-2
to IP3-2

Server IP3-2 is added, with local re-hashing

Figure 15.4: The ring of hash values in Consistent Hashing

The second idea is to organize A as a ring, scanned in clockwise order. That is, each
element has a successor, the successor of 264 − 1 being 0. The situation is depicted in the left
part of Figure 15.4. The large circle is A; small circles represent servers; and small squares
represent objects. Clearly, we do not have 264 available servers, the large size of A being
merely intended to avoid collisions. We must therefore define a rule for assigning objects to
servers. The Consistent Hashing mapping rule is as follows:

If S and S′ are two adjacent servers on the ring,
all the keys in range [h(S), h(S′)[are mapped to S.

Looking again at Figure 15.4, Object a is hashed to a position of the ring that comes after
(the hash value of) IP3-1 and before (the hash value of) IP1-2. Thus, a is mapped to the server
IP3-1, and the object is stored there. By a similar mechanism, object b is mapped to IP1-1. One
obtains a partition of the whole data sets in “shards” where each server is fully responsible
for a subset of the whole collection. The scheme is often completed by a replication of shards
on a few nodes for failure management purposes: see further.

What did we gain? The immediate advantage is that when a new server is added, we
do not need to re-hash the whole data set. Instead, the new server takes place at a position
determined by the hash value on the ring, and part of the objects stored on its successor must
be moved. The reorganization is local, as all the other nodes remain unaffected. Figure 15.4,
right, shows an example, with a new server IP3-2 inserted on the ring. The set of objects
whose hash belongs to the arc between IP3-2 and IP1-1 were initially stored on IP1-2, and
must be reallocated on IP3-2. A similar local process holds when a server leaves the ring.
Because the hash function remains unaffected, the scheme maintains its consistency over the
successive evolutions of the network configuration.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 312

Refinements

The global scheme we just presented may be improved. The most important improvement
aims at balancing the load between the servers, a concern that is not addressed by the basic
approach. The example of Figure 15.4 shows that the size of the arcs allocated to servers may
vary. Server IP3-1 for instance receives all the objects hashed to the arc between itself and its
successor. If objects are uniformly hashed (as they should be with a correct hash function),
the load of IP3-1 is likely to be much more important than that of, say server IP1-1.

IP3-1

IP2-2

IP1-1

IP1-2

Object a

Object b

IP3-2

Virtual nodes
of IP2-2

IP2-2

IP2-2

Figure 15.5: Load balancing with Consistent Hashing

To fix this shortcoming, we extend Consistent Hashing with the concept of virtual nodes.
Basically, the ring consists of a large number of virtual machines, and several virtual machines
are hosted on a same physical server. This is illustrated in Figure 15.5. Server IP2-2 has been
(virtually) split in three nodes assigned to multiple points of the ring. In practice, a physical
server is assigned to hundreds of virtual nodes. This obviously helps balancing the storage
and query load: a server may be “lucky” and get assigned a virtual machine with very little
data, but is unlikely to be randomly assigned many such virtual machines. So, the workload
is more evenly distributed between the physical machines. Moreover, when a physical server
is removed from the ring, all its objects are not assigned to a unique unlucky neighbor, but
are split between all the successors of its virtual nodes. Similarly, when a server joins the ring,
it takes a piece of the workload of many physical servers and not just some of one. Last but
not least, observe that virtualization also helps dealing with heterogeneity of servers. A very
powerful machine can support many more virtual servers than a very slow one.

A second useful refinement relates to failure management. Data must be replicated to
prevent any loss due to server failure. There are many possible replication strategies. One
may for instance use several hash functions, say h1, h2, h3 for a replication factor of 3. An object
of key k is replicated on the servers in charge of hi(k) for each i. One can fix the replication

For personal use only, not for distribution. 313

factor depending on the needs of the application.

The hash directory

A last question pertains to the location of the hash directory. Recall that this directory
maintains the mapping between hash values and the location (i.e., IP address) of servers. As
previously mentioned, Consistent Hashing was originally designed for distributing cache
hits. In such an environment, a proxy server hosts the directory and routes requests to the
appropriate node on the ring. The equivalent architecture in a large-scale data management
system would be a single Master – many servers organization, where a dedicated machine,
the Master, receives queries and forwards them to data servers. This is a simple choice, that
raises concerns regarding its scalability.

Other solutions are possible, the choice depending mostly on the level of dynamicity of the
system. We consider two:

Full duplication. The hash directory is duplicated on each node. This enables a quite efficient
structure, because queries can be routed in one message to the correct server. It requires
a notification of all the participants when a server joins or leaves the network, so this
solution is better adapted when the network is stable.

Partial duplication. If the system is highly dynamic, in particular in a P2P context, the amount
of “gossiping” required by the full duplication may become an important overhead. In
that case, a partial duplication that only stores O(log N) entries of the hash directory
on each server, N being the total number of servers, is a choice of interest. It allows in
particular the routing of queries in O(log N) messages, and thus constitutes a convenient
trade-off between the cost of network maintenance and the cost of dictionary operations.

Full duplication is used, for instance, in the DYNAMO system, a distributed hash table
implemented by Amazon for its internal infrastructure needs (see references). A typical
example of partial duplication is CHORD, a Distributed Hash Table, that we present next.

15.1.3 Case study: CHORD

A distributed hash table is a hash structure distributed in a fully decentralized manner, and
thus particularly adapted to unstable networks where nodes can leave or join at any moment.
“Decentralized” in this context has a strong implication: there cannot be a node, or a group of
nodes, responsible for any critical part of the system maintenance. DHTs are mostly used in
P2P systems, and the presentation that follows explicitly adopts this context. We now call
peers the server nodes, each peer being identified by a unique pId (e.g., URI).

Overview

A DHT supports the search, insert and delete dictionary operations. Range queries are not
possible, although range structures can be “overlaid” upon a DHT infrastructure (see last
section). Since a DHT is itself already overlaid over the Internet, a specialized range structure
based on the search tree paradigm is better adapted to range searches. We will consider search
trees in the next section.

A DHT must also handle the following operations related to the network topology:

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 314

• join(pId): let a peer pId joins the network, and possibly transfer some objects to this new
player;

• leave(pId): peer pId leaves the network; its objects are distributed to other peers.

CHORD is one of the first DHTs proposed at the beginning of the millennium as a complete
solution to the problem of indexing items stored in a P2P network. CHORD is based on
Consistent Hashing, as presented above. Figure 15.6 (left) shows a CHORD ring over an
address space A = 23. Each peer with Id n is located at node n mod 8 on the ring (e.g., peer
22 is assigned to location 6). Each peer has a successor, the next peer on the ring in clockwise
order, and a predecessor.

Figure 15.6: The CHORD ring, with m = 3 (left part), and key assignment in CHORD (right
part)

Each peer p is responsible for a range of keys: an object is assigned to the server that precedes
its hash value on the ring. Object 13 for instance is hashed to h(13) = 5 and assigned to the
peer p with the largest h(p) ≤ 5. So far, this is a direct application of Consistent Hashing. A
main contribution of CHORD comes from the design of its routing tables.

Routing tables

Let A = 2m be the address space, i.e., the number of positions of the ring. Each peer maintains
a routing table, called f riendsp, that contains (at most) log2m = m peer addresses. For each i
in [1 . . . m], the ith friend pi is such that

• h(pi) ≤ h(p) + 2i−1

• there is no p′ such that h(pi) < h(p′) ≤ h(p) + 2i−1

In other words, pi is the peer responsible for key h(p) + 2i−1. Figure 15.7 shows the friends
of peer 16, with location 0 (note the collisions). Peer 16 does not know peer 22.

Example 15.1.1 Let m = 10, 2m = 1024; consider peer p with h(p) = 10. The first friend p1
is the peer responsible for 10 + 20 = 11; the second friend p2 is the peer responsible for
10 + 21 = 12; finally the last friend p10 is the peer responsible for 10 + 512 = 522

For personal use only, not for distribution. 315

Figure 15.7: The friend nodes in CHORD

The CHORD routing tables imply some important useful properties. First, a peer’s routing
table contains at most m references. Each peer has no more than 16 friends in a ring with
m = 16 and 216 = 65,536 nodes. Second, each peer knows better the peers close on the ring that
the peers far away. Finally, a peer p cannot (in general) find directly the peer p′ responsible
for a key k, but p can always find a friend that holds a more accurate information about k.

CHORD operations

We illustrate the operations supported by CHORD with the search() algorithm (the other can
be easily inferred). Assume that p searches for key k. Two cases occur:

• if p is responsible for k, we are done;

• else let i such that h(p) + 2i−1 ≤ h(k) < h(p) + 2i: p forwards the search to its friend pi.

For instance, looking at Figure 15.8, peer 16 receives a request for item k, with h(k) = 7.
First, peer 16 forwards the request to peer 11, its third friend; then peer 11 forwards to peer
22, its third friend; and, finally, peer 22 finds k locally. As a matter of fact, the search range is
(at worse) halved at each step, and thus the search converges in O(log2m) = O(m) messages.

In a P2P network, nodes can join and leave at any time. When a peer p wants to join, it uses
a contact peer p′ which helps p carry out three tasks: (i) determine the friends of p, (ii) inform
the peers for which p becomes a friend, and (iii) move some objects to p.

Let N be the current number of nodes. In order to locate the friends of p, p′ uses its own
routing table. This involves O(log N) times (the number of friends) a lookup that costs
O(log N) messages, hence a total cost of O(log2 N) messages (see exercises).

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 316

Figure 15.8: The search() operation in CHORD

Next, the routing table of the existing nodes must be updated to reflect the addition of p.
This is the trickiest part of the process. We note first that p becomes the ith friend of a peer p′

if and only if the following conditions hold:

1. h(p)− 2i−1 ≤ h(p′) < h(p)− 2i−2

2. The current ith friend of p′ is before p on the ring.

And, finally, p takes from its predecessor all the items k such that h(p)≤ h(k). At this point
the join procedure is completed and the network is consistent.

Example 15.1.2 Consider the example of Figure 15.9 that shows how peer 13 joins the ring,
taking the slot 5. We assume that its contact node is peer 22. First, peer 22 computes the
routing table of peer 13. Next, one finds that peer 13 is the third friend of either a peer at slot
2 (5− 23−2 − 1), or 1 (5− 23−1). Finally, peer 13 receives part of the data stored on peer 11.
Details of the process are left to the reader as an exercise.

We do not elaborate the leaving procedure which is essentially similar in its principles with
the operations seen so far. As usual for failure handling, one distinguishes two cases:

Cold. Peer p leaves “cold” when it knows it is leaving and has the time to take appropriate
measures. This case is sometimes called “fail-stop”. The local part of the file stored at p
must be transmitted to the predecessor, and the routing tables must be updated.

Hot. This is the more difficult case resulting from a failure, and all kinds of failures typically
happen often. We want to reach eventually and as fast as possible a consistent state,

For personal use only, not for distribution. 317

Figure 15.9: Joining a node in CHORD

with as in the cold case, the local part of the file stored at p transmitted to its predecessor,
and the routing tables updated. For the local part of the file, we rely on replication. More
precisely, the content of a peer is replicated on r predecessors, where the replication
factor r depends on the expected network stability. The general rule to fix addressing
errors to a peer p that does not answer is to re-route the query to a predecessor of p
which chooses another route.

This concludes our presentation of hash-based indexing structures. In short, these structures
are very efficient. Both LH* and DHT are quite adapted to rapidly evolving collections. DHT
also support very well high churn of the network.

15.2 Distributed indexing: Search Trees

Hash-based data structures do not support range queries or nearest-neighbors searches. This
is a well-known limitation that justifies the coexistence, in centralized systems, of hash tables
and tree indexes (generally, B+trees). We study in this section the design of distributed search
trees.

15.2.1 Design issues

A general problem with tree structures is that operations usually execute a top-down traversal
of the tree. A naive distribution approach that would assign each tree node to a server would
result in a very poor load balancing. The server hosting the root node, in particular, is likely
to become overloaded. Figure 15.10 shows a tree structure, where each black dots represents

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 318

both a node of the tree and the server where it resides. For the sake of illustration we assume
a binary tree but the discussion holds for any node fanout.

Consider a query that searches for objects located on node (i.e., a server) e. The left part of
the figure illustrates what happens in naive implementation. A client node always contacts
the root node a which forwards the query down the tree, eventually reaching e. Statistically,
a receives twice more messages that its children, and generally 2h more messages than any
node located at level h.

Figure 15.10: Design issues for distributed trees

The design of distributed tree structures attempts to avoid such bottlenecks with a combi-
nation of three ideas:

1. caching of the tree structure, or part of it, on the Client node, so that the Client node can
directly access the server that can serve its request,

2. replication of the upper levels of the tree, to avoid overloading servers in charge of nodes
in these levels.

3. routing tables, stored at each node, enabling horizontal and vertical navigation in the
tree.

With respect to caching, a standard means of improving the search for a particular server is
to keep in the Client cache an image that records the part of the tree already visited by the
Client. If, for instance, a previous query led the client to node f through node c, this local part
of the structure can be memorized in the client image. Any query in that Client addressing
the same part of the key space can then directly access node c, avoiding a full traversal from
the root to f . Otherwise, the client must still use the standard algorithm. If the client only
knows c, the query must be first forwarded up from c to the nearest ancestor (here, b) that
covers the query criteria, then down to the leaf. Thus, the use of such caching does not avoid
an imbalance of the servers load.

A more drastic approach is to replicate the whole tree on each node of the cluster. This way,
a client node can directly send its query to any server of the cluster and get an exact answer.
It suffices to apply a protocol that evenly distributes the keys over all the servers to solve the
load balancing issue. As already seen with hash-based approaches, this clearly trades one

For personal use only, not for distribution. 319

problem for another, namely the maintenance of an exact replica of the whole tree at each
node. For instance, in some variant, a server sends the whole tree image to the client at each
request. In a system with say, hundreds of servers, hundreds of thousands of clients, and
millions of queries every day, this represents a huge overhead.

Finally, assume that each node of the distributed tree stores the list of its siblings, along
with the part of the key space covered by each (Figure 15.10, right part). The navigation is
not anymore limited to the “parent” and “child” axis (borrowing the XPath terminology).
A search that targets node e can start from c (assuming the client identifies in its image this
node as the closest to its query) which inspects its local routing table and forwards the query
to its sibling d. From d, a short top-down path leads to the leaf.

We next present in detail two representative approaches to the distribution of a search
tree. The first one, namely BATON, is tailored to P2P networks, whereas the second, namely
BIGTABLE, is built for clusters of machines.

15.2.2 Case study: BATON

BATON is a P2P tree structure that aims at efficiently supporting range queries. It is actually
representative of several data structures designed to overcome the limitation of hash-based
approaches regarding range queries. The goal is to index a collection of objects using keys
from a linearly ordered domain. We assume a homogeneous collection of servers, each with
maximal capacity of B entries (an entry is a pair [k,o], k being the key and o an object).

Kernel structure

The structure of the distributed tree is conceptually similar to that of a binary tree (e.g., AVL
trees). It satisfies the following properties (for some fixed value B):

• Each internal node, or routing node, has exactly two children.

• To each node a of the tree is associated a range:

– The range of the root is]−∞,+∞[.

– The range of a nonleaf node is the union of the ranges of its children. The “cut”
point is assigned to the right child. (For instance, a node of range [12,72[may have
children with ranges [12,42[and [42,72[with 42 belonging to the second.)

• Each leaf node, or data node, stores the subset of the indexed objects whose keys belong
to its range.

• Each leaf node contains at least B/2 and at most B entries.

Observe that the definition is almost that of a standard binary tree, except for the leaves
data storage. We note also that a binary tree with n leaves has exactly n− 1 internal nodes.
This permits a simple mapping of the conceptual structure to a set of n servers. Each server
Si (except server Sn) stores exactly a pair (ri, li), ri being a routing node and li a leaf node. As
a leaf node, a server acts as an objects repository up to its maximal capacity.

Figure 15.11 shows a first example with three successive evolutions. Leaf nodes are shown
with circles, internal (routing) nodes with rectangles, and each node, whether leaf or internal,
is associated to the server where it resides. Initially (part 1) there is one node a on server S0

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 320

S0:a

l0(−∞,∞)

(1) Initial node

S0:a

(-∞,∞)

S0:b

l0(−∞,λ1)

S1:c

l1[λ1,∞)

(2) After a first split

S0:a

(−∞,∞)

S0:b

l0(−∞,λ1)

S1:c

[−λ1,∞)

S1:d

l1[λ1,λ2)

S2:e

l2[λ2,∞) (3) After a second split

Figure 15.11: Evolution of the binary search tree

storing the leaf l0, and its range is]−∞,∞[. Any insert request will put the new entry on this
server, whatever its key.

When S0 gets full because it contains B entries, a split occurs (part 2). A new server S1
stores the new leaf l1. The entries initially stored in l0 have been distributed among the two
servers by considering the median value λ1, or pivot key, just like the standard B-tree split.

A routing node a is stored on S0. The range of this routing node is the union of the ranges
of its children, e.g.,]−∞,∞[. A routing node maintains links to its left and right children,
and to its parent node, which is a difference with standard binary trees in the centralized
context where upward pointers are rarely kept. A link is simply a pair (Id, range), where
Id is the Id of the server that stores the referenced node, and range is its range. For our
example, the left link of a if 〈S0 : b,]−∞,λ1[〉 and its right link is 〈S1 : c, [λ1,∞[〉. Links are
used during top-down traversals of the distributed tree.

When it is the turn of server S1 to split, its collection of entries is further divided and the
objects distributed among S1 and a new server S2 that will store a new leaf node. A routing
node c is created with range [λ1,∞[, and the ranges of its left and right children S1 : d and
S2 : e are respectively [λ1,λ2[and [λ2,∞[.

Performance

This basic distribution schema yields reasonable storage balancing. After a certain number
of key insertions and assuming keys are not removed from the access structure, one can see
that each server is at least half-full. However, as previously discussed, load balancing is not
achieved: servers corresponding to upper-levels of the tree get more work. To perform a

For personal use only, not for distribution. 321

a

b

d

h i
2

e

j k
4

p q

c

f

l
5

m
6

g

n o ← level 3

r s

Node m – level: 3 – pos: 6
Parent: f
Lchild: null – Rchild: null
Left adj.: f – Right adj.: c

Left routing table
i node left right range
0 l null null [lmin, lmax]
1 k p q [kmin,kmax]
2 i null null [imin, imax]

Right routing table
i node left right range
0 n null null [nmin,nmax]
1 o s t [omin,omax]
Routing tables of node m

Figure 15.12: Routing information in BATON

dictionary operation, a client sends the query to the root node, that forwards it the query to
the appropriate nodes down the tree. Since all searches start from the root node, the server
that hosts it, is both a bottleneck and a single point of failure. As the number of clients
increases, so does the number of incoming requests that this root server must handle. As a
result the structure (as just described) does not scale.

What about efficiency? Any dictionary operation takes as input a key value, starts from the
root node and follows a unique path down to a leaf. If the insert() requests are independently
and uniformly distributed, the complexity is logarithmic in the number of servers assuming
the tree is balanced. However, such a binary tree may degenerate to a worst case linear behavior
for all dictionary operations. (This is left as an exercise). To fix this issue, some “rotation”
operations are applied to maintain the balance of the tree. Rotations techniques for trees are
standard and details may be found in textbooks. We rather focus now on the management of
routing tables, which is more specific to the distributed context.

Routing tables

In addition to the structural information presented above, nodes maintain routing tables that
guide tree traversals to find the appropriate nodes. More precisely, each node stores the
following information:

1. its level l in the tree (starting from the root, at level 0);

2. its position pos in this level, 0≤ pos < 2l);

3. the addresses of its parent, left and right children;

4. the address of the previous and next adjacent nodes in in-order traversal;

5. left and right routing tables, that reference nodes at the same level and at position
pos + /− 2i for i = 0,1,2,

For instance, for the binary tree of Figure 15.12, node m is at level 3, and its position in this
level, for the whole tree, is 6. The left routing table refers to nodes at respective positions

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 322

a

b

d

h i

e

j k
4

p q

c

f

l
5

m

g

n
7

o

r s

Figure 15.13: Searching with routing tables

6− 20 = 5, 6− 21 = 4, and 6− 24 = 2. This is strongly reminiscent of the friends in CHORD. A
node knows better the nodes that are close, and the number of friends is clearly logarithmic
in the total number of nodes. BATON records the range and children of its friends. Note that,
since the tree is not complete at each level, a friend may be set to null.

BATON operations

First consider search. A client may send a search(k) request to any peer p in the tree; so, it
suffices to know a single server to access information. A left or right traversal is first initiated,
to find the node p′ at the same level as p whose range covers k. The process is somewhat similar
to CHORD search: if p′ is not part of the friends of p, p finds, among its friends, the one that
is “closest” to p′. Specifically, assuming that k is larger than the upper bound of its range, p
chooses the furthest friends p” whose lower bound is smaller than k. The search continues
until p′ is found. Then the search continues downwards to the leaf in charge of k.

Looking at figure 15.13, assume a request sent to node j for a key that belongs to node
r. From the friends of j, the one that satisfies the horizontal search condition is n, the third
friend in the right routing table. Then, the horizontal traversal continues with n forwarding
the search to o, its first friend. From o, the top-down search phase leads to node r.

In summary, BATON proceeds with a CHORD-like search in a given tree level, and with a
top-down search when the node at the current level whose subtree contains the searched key
has been found. The first phase, enabled by the routing tables, enables a horizontal navigation
in the tree that avoids to always have to access the root.

Recall that a P2P structure, in addition to dictionary operations (that include range search
in the present case), must also provide join() and leave() operations that affect the network
topology.

Just like in CHORD, a peer p that wants to join the network uses any contact peer p′ to initiate
the join in the structure. In BATON, a peer that joins always becomes a leaf, and receives half
of the objects of an existing leaf (that becomes its sibling). The join process first searches for
the appropriate insertion location for p, then proceeds with the update of routing tables to
reflect the role of the new participant.

Intuitively, we choose for insert location, an existing leaf with the smallest possible level
(that is, one of the leaves which are nearest to the root). Possible candidates in Figure 15.12
are h, i, j, l, m, and n. The main difficulty is to update the data structure and notably the
routing tables.

For personal use only, not for distribution. 323

The last operation is the departure of a node from the network. When a leaf peer p declares
that it leaves (“cold” departure), two cases occur:

1. p is one of the deepest leaves in the tree and the balance of the tree is in principle not
affected by the departure of p. The main ask is then to distribute keys of p to neighbors.

2. p is one of the deepest leaves. We then need to find a replacement for p and for that we
choose one of the deepest leaves in the tree that is moved from its previous location in
the tree.

Again the difficulty is the maintenance of the routing tables, in particular in the second case.
If the BATON structure is difficult to maintain when new information is entered (possibly

requiring tree balancing) and servers joining/leaving (possibly leading to moving servers in
the tree), it is very efficient for search. Also, it clusters objects based on the values of their
keys, and supports range queries. The two-phase mechanism based on horizontal navigation
in the tree followed by some constant number of vertical navigation, leads to an O(logn)
cost. A design principle that we can see at work in BATON is: find an appropriate trade-off
between the amount of replication (here by the number of “friends” at each node) and the
efficiency of the structure.

To conclude with BATON , observe that “hot” departures in such a complex structure
become very difficult to handle. Although the redundancy of routing tables provides the
means of rebuilding the information of a lost peer, this comes at the cost of lots of work and
in particular, lots of communications. As a consequence, it becomes difficult to guarantee
robustness in a highly changing environment.

15.2.3 Case Study: BIGTABLE

In 2006, the Google Labs team published a paper on “BIGTABLE: A Distributed Storage
System for Structured Data”. It describes a distributed index designed to manage very large
data sets (“petabytes of data") in a cluster of data servers. BIGTABLE supports key search,
range search and high-throughput file scans. BIGTABLE also provides a flexible storage for
structured data. As such, it can also be seen as a large distributed database system with a
B-tree-like file organization.

The presentation that follows highlights the main architectural and technical aspects of
BIGTABLE. Many details are omitted. Please refer to the Further Reading section at the end of
the chapter.

Structure overview

Figure 15.14 gives an overview of the structure. The data representation is roughly similar
to the relational model. A table contains a list of rows. Each row consists of a key and a list
of columns. The rows are sorted in lexicographic order by the key values. A large table is
partitioned horizontally in “tablets” which constitute the leaves of the distributed tree. The
size of a tablet is typically a few hundreds of megabytes.

The content of a row differs from those of standard relational tables. First, columns can
be grouped in “families” which form the basic data management unit in BIGTABLE. The
columns of a same family are stored independently from those of the other families. Hence,
BIGTABLE captures both aspects of a row store (several columns in one family) and that of

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 324

a tablet T

row 1

row 2

(...)

so
rt

e
d
 o

n
 k

e
y
s

key columns

"metadata" tablets

k1

k2

k'1

k'2

a tablet T'

row 1

row 2

(...)

key columns

km row m

[km, loc][k'p, loc]

Root tablet

(...)

(...)

"metadata" tablets

so
rt

e
d
 o

n
 k

e
y
s

other tablets

k'p row p

Figure 15.14: Overview of BIGTABLE structure

a column-oriented store, with the typical advantage that compression can benefit from the
homogeneity of the values stored in a column. Moreover, a “cell” (i.e., the intersection of a
row and a column) can store many versions of a same content (e.g., a Web page collected
from the Web), each identified by a timestamp. This completes the multi-map organization of
BIGTABLE which can therefore be summarized as a four-level access pattern:

key→ family→ column→ timestamp

It is possible to access each content independently from the others by combining those four
criteria. Note finally that the data model is flexible enough to allow for the addition of new
columns on a per-row basis.

The tablets of a table are distributed in a cluster. In order to perform efficient lookups
during exact and range search, tablets are indexed on the range of the keys. At this point, the
BIGTABLE organization differs from our generic search tree. Instead of a binary tree reflecting
the split history of the structures, BIGTABLEs collects the tablet ranges and store them in
another table, called the “metadata” table. One obtains what would be called, in a centralized
context, a non-dense index on a sorted file. Since the metadata table is managed just as any
other table, it is itself partitioned into tablets. The indexing process can be applied recursively
by creating upper levels until the collection of ranges occupies a single tablet, the root of a
distributed tree, quite similar to centralized B-trees.

Figure 15.14 shows the first level of metadata. Its rows consist of pairs (key, loc), where loc
is a tablet location, and key is the key of the last row in the tablet. Note that, because the table
is sorted, this is sufficient to determine the range of a table. The first pair in the metadata
table represented on Figure 15.14 for instance refers to a tablet covering the range]−∞,km].

Conceptually, the number of levels in the distributed tree is unbounded. In practice,
BIGTABLE limits the number of levels to 3: the root node is a tablet above the metadata table
which is never split. This suffices to potentially index very large data sets. Indeed, assume a
(realistic) tablet size of 228 = 268 MBs, and 1 KB entries in the metadata tablet. Then:

1. a metadata tablet can index 268000≈ 218 data tablets,

2. the root tablet can index in turn up to 218 metadata tablets, hence 236 data tablets.

For personal use only, not for distribution. 325

Since the capacity of a tablet is 228 bytes, this represents a maximal storage of 264 bytes for
a single table (16,384 Petabytes!).

Note that a single metadata tablet is already sufficient to index a 246 bytes data set. If this
metadata tablet were stored without replication, and without using Client caches, it would
likely become a bottleneck of the system. BIGTABLE uses caching and replication to distribute
the load evenly over many servers.

Distribution strategy

A BIGTABLE instance consists of a Master server, many (tablet) servers, and Client nodes. The
Master acts as a coordinator for a few tasks that would be complicated to handle in a fully
decentralized setting. This includes:

1. maintenance of the table schemas (columns names, types, families, etc.);

2. monitoring of servers and management of failures;

3. assignment of tablets to server.

Each tablet server handles the storage and access to a set of tablets (100-1000) assigned by
the Master. This involves persistence management, error recovery, concurrency, and split
request when the server capacity is exhausted. The tablet server also provides search and
update services on all the rows that belong to its range.

The evolution of the tree is rather different from that of a P2P structure like BATON. Three
cases occur: (i) a tablet server decides to split and to distribute a part (about half) of its tablets
to another server, (ii) a tablet server merges its content with another server and (iii) a failure
(of any kind) occurs and keeps the server from participating to the cluster.

The failure is handled by the Master which sends heartbeat messages and initiates replace-
ment, in a way similar to that already seen for GFS (see Section 14.5.2, page 299). The other
two cases modify the range of the tablet server. At this point we have two choices: either the
modification is reported to all the participants, including the Client nodes, or a lazy strategy
is adopted. This is the same kind of trade-off already encountered with the LH* structure,
CHORD and BATON.

BIGTABLE relies on lazy updates. This may affect the result of operations required by
other components of the system because their requests may fall “out of range” due to some
discrepancy between their local information and the actual status of the structure. The system
is always ready to handle such errors. An “internal” out-of-range can be met when the Master
requires from a server a tablet which does not correspond to its range. In that case, there is
a discrepancy between the actual range covered by the server, and the range stored at the
metadata level, which can be viewed as an replicated “image” of the tablet range. The tablet
server then initiates an adjustment message that informs the Master of the past split. Another
case of out-of-range affects Client nodes: the stabilization protocol in case of out-of-range is
explained next.

Adjustment of the Client image

A Client is a Google application that uses the BIGTABLE client library. A Client initially
connects to the cluster through the Master, which sends back information regarding the tablet

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 326

servers of interest to the Client initial requests. This information is stored in the Client local
cache (its image in our terminology) and used to directly communicate with tablet servers
later on. The Master is therefore rarely involved in the message exchanges, and this keeps it
from being overloaded. So far, this is akin to GFS.

The Client maintains its image regardless of the changes that affect the tree. If a request is
sent to a server that does no longer hold the required key, an out-of-range answer is sent back.
The Client requires then the correct address to the metadata level. In the worse case, this
induces a new out of range request, and another round-trip with the root is necessary. Assume
that, initially, the situation is that shown on Figure 15.15. The Client stores an outdated image
of the tree with only five tablets (including one metadata tablet, and the root). Since the last
refresh of the Client image, the tree has actually grown to the state shown on the right, with
ten tablets. The figure gives the range owned by each leaf.

Figure 15.15: Example of an out-of-range request followed by an adjustment

The Client sends a search(856) request. From its image, it determines that node 3 should
own the key. When node 3 processes the message, it observes an out of range. The search is
forwarded to node 7, which forwards it to the root node. From there, a standard top-down
traversal finally leads to the true owner of key 856. The Client image is then refreshed with
the information collected during this process, so that the addressing error does not repeat (at
least for this part of the tree). In case of an out of range request, 6 networks round trips may
be necessary in the worse case (three for an upward path, three for a downward one).

Persistence

Each tablet server manages locally the persistence of its tablets. Figure 15.16 shows the
components involved in write() and read() operations (the latter being a full scan) of a single
tablet. Recall first that a tablet is sorted by its key. It would be very inefficient to attempt an
insertion of each new row in a sorted file, because of the time necessary to find its location,
and to the complicated space management incurred by the order maintenance. BIGTABLE

uses a more sophisticated, yet rather classical strategy, which can be summarized as an
incremental sort-merge with REDO logging. When a row must be inserted in the tablet, the
write() operates in two steps:

For personal use only, not for distribution. 327

1. the row is appended to a log file;

2. after the log has acknowledged the append operation, the row is put in an in-memory
sorted table.

The log file belongs to the persistent storage, resilient to failures (and managed by GFS). As
soon as a row has been written to the log, GFS guarantees that it can be recovered, even if
the tablet server crashes. Moreover, the log is an append-only file. A row can be added with
minimal overhead because it is always inserted right away at the end of the current log file.

read() write()

sorted file sorted file Log
file

(redo
entries)

in-memory sorted map

(2)

(1)

Google File System

tablet server
memory

persistent
storage

merge()

flush()

Figure 15.16: Persistence management in a tablet server

The second step puts the row in a sorted table in memory. This does not require a disk
access, and can therefore be performed efficiently. Moreover, rows in this table can be merged
very quickly with the rest of the tablet content, to satisfy read requests. Thus, the row becomes
immediately accessible even though it is still not in the sorted file.

The memory table grows and eventually reaches a predefined threshold. At this point the
sorted table is reconstructed and stored. The space of the memory table becomes available for
subsequent write(). So, eventually, a tablet therefore consists in a set of files (called SSTables in
Google terminology), each sorted by the key, and an in-memory collection also sorted by the
key. Now, if a read() requests the content of the tablet, this content must be supplied in key
order. This is achieved with a merge() of the files that constitutes the tablet, plus the current
content of the in-memory table. Note that the hybrid process that involves persistent file and
in-memory structures is reminiscent of the merge-based construction of an inverted index.

As the number of SSTables increases, so does the cost of their merging. A practical obstacle
is that a merge, to be efficient, requires a sequential scan of the SSTables, which can only be
achieved if each is stored on a distinct disk entirely devoted to the scan operation. Therefore,
in order to limit the fan-in, merges are carried out periodically between the sorted files to
limit their number.

Example 15.2.1 Take the example of a server with eight disks and a 2 GB volatile memory
allocated to the sorted map. Each time the map gets full, a flush creates a new 2GB SSTable,
and we take care of assigning each of them to a distinct disk. When seven such “runs” have
been created, the periodic merge should be triggered: each of the seven used disk carries

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 328

out a sequential scan of its SSTable, the merge occurs in memory, and the result is sequentially
written on the eigth disk.

15.3 Further reading

Centralized indexing can be found in any textbook devoted to database management [61].
Linear hashing [114, 112] is implemented in most off-the-shelf relational databases. LH*
is presented in [116]. Consistent Hashing is proposed and analyzed in [107]. The tech-
nique is used in the Open Source memcached library (http://memcached.org), in the
Amazon’s DYNAMO system [52] and in the CHORD DHT [150]. The authors of [52] describe
in detail the design of DYNAMO, whose data structure is a large distributed hash table in-
tended to provide fast and reliable answer to point queries. Beyond the indexing aspect,
DYNAMO features many interesting aspects representative of the main issues that must be
addressed during the design and implementation of a large-scale data-centric system. The
data model for instance is limited to a “keystore", i.e., pairs (key,value), and supports only
a few basic operations: put() and get(). Several open-source implementation of Amazon’s
project now exist, including VOLDEMORT http://project-voldemort.com/, and CAS-
SANDRA http://cassandra.apache.org/. DYNAMO has inspired many of the recent
distributed key-value stores collectively known as “NoSQL” (Not Only SQL) databases (see
http://nosql-databases.org/).

Distributed hash tables is a term coined by [53] who first proposed the extension of hash
techniques to distributed systems. Several DHT structures have been proposed, notably,
CHORD [150], Pastry [141], Tapestry [188], and CAN [140]. Distributed hash tables have
been developed as a means of overcoming shortcomings of the flooding strategy used in
early P2P systems such as Napster. The O(log N) number of messages required to route a
query incurs a latency which may be deemed unsuitable for highly demanding application.
Through extended replication, a O(1) message cost can be reached: see [139], and the already
mentioned DYNAMO paper. DHTs are widely used in P2P systems: BitTorrent, the Kad
network, the Storm botnet, YaCy, and the Coral Content Distribution Network.

Distributed strategies for tree-based structures has been first tackled in [115, 111] which
propose several important principles later adopted for Web-scale indexing. In particular,
details on the maintenance of a tree image in the Client cache can be found in [111]. BATON

is a P2P tree structure presented in [102]. See also [101] for a multiway tree structure based
on the same principles and [103] for a multidimensional structure, the VBI-tree. Another
proposal for offering range search is the P-tree [50] which is essentially a B+tree distributed
over a CHORD network. Each node stores a leaf of the B+tree, as well as the path from the
root to the leaf. Point and range queries can be answered in O(log N), but the maintenance
of the structure as peers join or leave the network is costly: in addition to the log N + log2 N
costs of adding the new peer to CHORD, information must be obtained on the tree structure
to build the tree branch.

BIGTABLE has inspired several other projects outside Google, including the HYPERTABLE

Open source project (http://www.hypertable.org/), the HBASE data structure of HADOOP, and
CASSANDRA, which combines features from both DYNAMO and BIGTABLE. BIGTABLE is
described in [44]. Its canonical usage is the storage of documents extracted from the Web
and indexed by their URL. BIGTABLE (and its Open-source variants) is more than just an

http://memcached.org
http://project-voldemort.com/
http://cassandra.apache.org/
http://nosql-databases.org/

For personal use only, not for distribution. 329

indexing mechanism, as it features a data model that can be roughly seen as an extension of
the relational one, with flexible schema and versioning of cell values.

15.4 Exercises

Exercise 15.4.1 (Static and extendible hashing) The following is a list of French “départements”:

3 Allier 36 Indre 18 Cher 75 Paris
39 Jura 9 Ariege 81 Tarn 11 Aude
12 Aveyron 25 Doubs 73 Savoie 55 Meuse
15 Cantal 51 Marne 42 Loire 40 Landes
14 Calvados 30 Gard 84 Vaucluse 7 Ardeche

The first value is the key. We assume that a bucket contains up to 5 records.

1. Propose a hash function and build a static hash file, taking the records in the proposed order
(left-right, then top-bottom).

2. Same exercise, but now use an linear hash file based on the following hash values:

Allier 1001 Indre 1000 Cher 1010 Paris 0101
Jura 0101 Ariege 1011 Tarn 0100 Aude 1101
Aveyron 1011 Doubs 0110 Savoie 1101 Meuse 1111
Cantal 1100 Marne 1100 Loire 0110 Landes 0100
Calvados 1100 Gard 1100 Vaucluse 0111 Ardeche 1001

Exercise 15.4.2 (LH*) Consider Figure 15.3, page 309. What happens if we insert an object with key
47, still assuming that the maximal number of objects in a bucket is 4.

Exercise 15.4.3 (LH*) Prove that the number of messages for LH* insertion is three in the worst case.

Exercise 15.4.4 (Consistent Hashing) Assume that someone proposes the following solution to the
problem of distributing the hash directory: each node maintains the hash value and location of its
successor. Discuss the advantage and disadvantages of this solution, and examine in particular the
cost of the dictionary operation (insert, delete, search) and network maintenance operations (join and
leave).

Exercise 15.4.5 (CHORD friends) Express the gap between friends[i] and friends[i + 1] in the
routing table of a CHORD peer, and and use the result to show formally that a search operations
converges in logarithmic time.

Exercise 15.4.6 Consider the CHORD ring of Figure 15.17. What are the friends of p11, located at 3?

Exercise 15.4.7 Develop an example of the worst case for the search() operation in CHORD, with
m = 10.

Exercise 15.4.8 (BATON range search) Explain the range search algorithm of BATON.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 330

Figure 15.17: A CHORD ring

Exercise 15.4.9 (BATON range search) Complete the description of the Join algorithm in BATON

regarding the modification of routing tables in order to take into account the new node.

Exercise 15.4.10 (BIGTABLE) Describe the split algorithm of BIGTABLE. Compare with standard
B-tree algorithms.

Exercise 15.4.11 Compare two of the index structures presented in the Chapter and identify, beyond
their differences, some of the common design principles adopted to cope with the distribution problem.
Take for instance distributed linear hashing and BIGTABLE and consider how a Client communicates
with the structure.

16 Distributed Computing with MAPREDUCE and
PIG

So far, the discussion on distributed systems has been limited to data storage, and to a few
data management primitives (e.g., write(), read(), search(), etc.). For real applications, one also
needs to develop and execute more complex programs that process the available data sets
and effectively exploit the available resources.

The naive approach that consists in getting all the required data at the Client in order to
apply locally some processing, often looses in a distributed setting. First some processing
may not be available locally. Also centralizing all the information then processing it, would
simply miss all the advantages brought by a powerful cluster of hundreds or even thousands
machines. We have to use distribution. One can consider two main scenarios for data
processing in distributed systems.

Distributed processing and workflow. In the first one, an application disposes of large data-
sets and needs to apply to them some processes that are available on remote sites.
When this is the case, the problem is to send the data to the appropriate locations,
and then sequence the remote executions. This is a workflow scenario that is typically
implemented using web services and some high-level coordination language.

Distributed data and MAPREDUCE. In a second scenario, the data sets are already distributed
in a number of servers, and, conversely to the previous scenario, we “push” programs
to these servers. Indeed, due to network bandwidth issues, it is often more cost-effective
to send a small piece of program from the Client to Servers, than to transfer large data
volumes to a single Client. This leads to the MAPREDUCE approach that we present in
this chapter.

This second scenario is illustrated in Figure 16.1. Ideally, each piece of program running as
a process on a server n should work only on the data stored locally at n, achieving an optimal
reduction of network traffic. More practically, we should try to limit communications by
applying local processing as much as possible. We refer to this as the data locality principle, i.e.,
the distribution strategy must be such that a program component operates, as much as possible, on data
stored on the local machine. In such a setting, the Client plays the role of a coordinator sending
pieces of code to each server, initiating, and possibly coordinating a fully decentralized
computation.

Enabling a sound, efficient and reliable distributed data processing gives rise to the follow-
ing complex issues:

Parallelization. Can we split a particular task into tasks executing concurrently on indepen-
dent data sets and cooperating to compute a final result? It is not always clear how to
answer that question and take advantage of distributed resources. The important word
here is independence. If a relevant data set can be partitioned, and each part be processed

331

For personal use only, not for distribution. 332

Client node

disk

process1

disk

disk

program()
program()

program()

process2

process3

coordinator()
result

result

result

Figure 16.1: Distributed computing with distributed data storage

independently, the answer is: yes. Also, if, on the other hand, a program can be split in
several tasks that operate independently, the answer is also: yes. If both conditions are
satisfied, this is even better. For complex tasks, the answer may not be that simple. In
other words, it is not always obvious to see which part of a program can take advantage
of parallelization

Failure resilience. When there are a large number of participants involved in a complex task,
it becomes necessary to cope with potential system failures. Trying to address them
with traditional programming environments used in everyday application develop-
ment would be a daunting task. What is called for is a programming model, and an
associated software support, to facilitate the deployment, monitoring and control of
such distributed programs.

In the first part of the chapter, we introduce MAPREDUCE, a programming model for
large-scale parallel computing that addresses these issues. Even if developing applications
with MAPREDUCE greatly reduces the effort of applications programmers, the task remains
very challenging. In the second part, we present the PIGLATIN language that, based on
a rich model and high-level language primitives, further allows simplifying the design of
distributed data processing applications.

At the time of writing, considerable research and development efforts are devoted to
the design of high-level languages that express parallel and distributed data processing.
MAPREDUCE is often nowadays taken as a kind of de facto standard for the robust execution
of large data-oriented tasks on dozens of computer, at least at a low, “physical” level. However,
MAPREDUCE is by no means the universal solution to parallel data processing problems. The
area is still a moving territory subject to debates and alternative proposals. The last section of
the chapter attempts, as usual, to provide useful references and discussions.

For personal use only, not for distribution. 333

16.1 MAPREDUCE

Initially designed by the Google labs and used internally by Google, the MAPREDUCE

distributed programming model is now promoted by several other major Web companies
(e.g., Yahoo! and Amazon) and supported by many Open Source implementations (e.g,
HADOOP, COUCHDB, MONGODB, and many others in the “NoSQL” world). It proposes a
programming model strongly influenced by functional programming principles, a task being
modeled as a sequential evaluation of stateless functions over non-mutable data. A function
in a MAPREDUCE process takes as input an argument, outputs a result that only depends
on its argument, and is side-effect free. All there properties are necessary to ensure an easy
parallelization of the tasks.

Let us start by highlighting important features that help understand the scope of this
programming model within the realm of data processing:

Semistructured data. MAPREDUCE is a programming paradigm for distributed processing of
semistructured data (typically, data collected from the web). The programming model
is designed for self-contained “documents” without references to other pieces of data,
or at least, very few of them. The main assumption is that such documents can be
processed independently, and that a large collection of documents can be partitioned at
will over a set of computing machines without having to consider clustering constraints.

Not for joins. Joins (contrary to, say, in a relational engine) are not at the center of the picture.
A parallel join-oriented computing model would attempt, in the first place, to put
on the same server, documents that need to be joined. This is a design choice that is
deliberately ignored by MAPREDUCE. (We will nonetheless see how to process joins
using simple tweaks of the model.)

Not for transactions. MAPREDUCE is inappropriate to transactional operations. In a typical
MAPREDUCE computation, programs are distributed to various servers and a server
computation typically involves a scan its input data sets. This induces an important
latency, so is not adapted to a workload consisting of many small transactions.

So, how come such an approach that does not seem to address important data processing
issues such as joins and transactions, could become rapidly very popular? Well, it turns out to
be very adapted to a wide range of data processing applications consisting in analyzing large
quantities of data, e.g., large collections of Web documents. Also, its attractiveness comes
from its ability to natively support the key features of a distributed system, and in particular
failure management, scalability, and the transparent management of the infrastructure.

16.1.1 Programming model

Let us begin with the programming model, ignoring for the moment distribution aspects. As
suggested by its name, MAPREDUCE operates in two steps (see Figure 16.2):

1. The first step, MAP, takes as input a list of pairs (k,v), where k belongs to a key
space K1 and v to a value space V1. A map() operation, defined by the programmer,
processes independently each pair and produces (for each pair), another list of pairs
(k′,v′) ∈ K2 ×V2, called intermediate pairs in the following. Note that the key space and
value space of the intermediate pairs, K2 and V2, may be different from those of the
input pairs, K1 and V1.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 334

2. Observe that the MAP phase may produce several pairs (k′1,v′1), · · · , (k′1,v′p), · · · , for the
same key value component. You should think that all the values for the same key as
grouped in structures of type (K2, list(V2)), for instance (k′1, 〈v′1, · · · ,v′p, · · · 〉).

3. The second step, REDUCE, phase operates on the grouped instances of intermediate
pairs. Each of these instances is processed by the procedure independently from the
others. The user-defined reduce() function outputs a result, usually a single value. On
Figure 16.2, the grouped pair (k′1, 〈v′1, · · · ,v′p, · · · · · · 〉) is processed in the REDUCE phase
and yields value v′′.

 ... ,(kn, vn) , ... , (k2,v2), (k1, v1)

Input: a list of (key, value) pairs

 map(k1, v1)

Map operator
(k' 1, v'1)
...
(k'2, v'2)
...
(k'1, v'p)
...
(k'1, v'q)
...

 reduce(k'1, <v'1, v'p, v'q, ...>)

 (k'2, <v'2, ...>)

Reduce operator

(v")

 (k'1, <v'1, v'p, v'q, ...>)

Intermediate
structure

Figure 16.2: The programming model of MAPREDUCE

Example 16.1.1 As a concrete example, consider a program CountWords() that counts the
number of word occurrences in a collection of documents. More precisely, for each word w,
we want to count how many times w occurs in the entire collection.

In the MAPREDUCE programming model, we will use a user-defined function mapCW that
takes as input a pair (i,doc), where i is a document id, and doc its content. Given such a pair,
the function produces a list of intermediate pairs (t, c), where t is a term occurring in the
input document and c the number of occurrences of t in the document. The MAP function
takes as input a list of (i,doc) pairs and applies mapCW to each pair in the list.

mapCW(String key, String value):
// key: document name
// value: document contents

// Loop on the terms in value
for each term t in value:
let result be the number of occurrences of t in value
// Send the result
return (t,result);

Now as a result of the MAP phase, we have for each word w, a list of all the partial counts
produced. Consider now the REDUCE phase. We use a user-defined function reduceCW
that takes as input a pair (t, list(c)), t being a term and list(c) a list of all the partial counts
produced during the MAP phase. The function simply sums the counts.

For personal use only, not for distribution. 335

reduceCW(String key, Iterator values):
// key: a term
// values: a list of counts
i n t result = 0;

// Loop on the values list; accumulate in result
for each v in values:
result += v;

// Send the result
return result;

The REDUCE function applies reduceCW to the pair (t, list(c)) for each t occurring in any
document of the collection. Logically, this is all there is in MAPREDUCE. An essential feature
to keep in mind is that each pair in the input of either the MAP or the REDUCE phase is
processed independently from the other input pairs. This allows splitting an input in several
parts, and assigning each part to a process, without affecting the program semantics. In
other words, MAPREDUCE can naturally be split into independent tasks that are executed in
parallel.

Now, the crux is the programming environment that is used to actually take advantage of a
cluster of machines. This is discussed next.

16.1.2 The programming environment

The MAPREDUCE environment first executes the MAP function and stores the output of the
MAP phase in an intermediate file. Let us ignore the distribution of this file first. An important
aspect is that intermediate pairs (k′,v′) are clustered (via sorting or hashing) on the key value.
This is illustrated in Figure 16.2. One can see that all the values corresponding to a key k are
grouped together by the MAPREDUCE environment. No intervention from the programmer
(besides optional parameters to tune or monitor the process) is required.

Programming in MAPREDUCE is just a matter of adapting an algorithm to this peculiar
two-phase processing model. Note that it not possible to adapt any task to such a model,
but that many large data processing tasks naturally fit this pattern (see exercises). The
programmer only has to implement the map() and reduce() functions, and then submits
them to the MAPREDUCE environment that takes care of the replication and execution of
processes in the distributed system. In particular, the programmer does not have to worry
about any aspect related to distribution. The following code shows a program that creates a
MAPREDUCE job based on the above two functions1.

// Include the declarations of Mapper and Reducer
// which encapsulate mapWC() and reduceWC()
include "MapWordCount.h"
include "ReduceWourdCount.h"

1This piece of C++ code is a slightly simplified version of the full example given in the original Google paper on
MAPREDUCE.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 336

// A specification object for \mapreduce/ execution
MapReduceSpecification spec;

// Define input files
MapReduceInput* input = spec.add_input();
input->set_filepattern("documents.xml");
input->set_mapper_class("MapWordCount");

// Specify the output files:
MapReduceOutput* out = spec.output();
out->set_filebase("wc.txt");
out->set_num_tasks(100);
out->set_reducer_class("ReduceWourdCount");

// Now run it
MapReduceResult result;
i f (!MapReduce(spec, &result)) abort();
// Done: ’result’ structure contains info
// about counters, time taken, number of
// machines used, etc.
return 0;

}

The execution of a MAPREDUCE job is illustrated in Figure 16.3. The context should be now
familiar to the reader. The job is distributed in a cluster of servers, and one of these servers
plays the special role of a Master. The system is designed to cope with a failure of any of its
components, as explained further.

Figure 16.3: Distributed execution of a MAPREDUCE job.

The Client node is, as usual, a library incorporated in the Client application. When the

For personal use only, not for distribution. 337

MapReduce() function is called, it connects to a Master and transmits the map() and reduce()
functions. The execution flow of the Client is then frozen. The Master considers then the
input data set which is assumed to be partitioned over a set of M nodes in the cluster. The
map() function is distributed to these nodes and applies to the local subset of the data set
(recall the data locality principle), called “bag” in what follows. These bags constitute the
units of the distributed computation of the MAP: each MAP task involved in the distributed
computation works on one and only one bag. Note that the input of a MAPREDUCE job can be
a variety of data sources, ranging from a relational database to a file system, with all possible
semistructured representations in between. In the case of a relational system, each node hosts
a DBMS server and a bag consists of one of the blocks in a partition of a relational table. In
the case of a file system, a bag is a set of files stored on the node.

Whatever the data source, it must support an iterator-like mechanisms that extracts pieces
of data from the local bag. A piece of data may be a row in a relational DB, or a line from a
file. More generally it is a self-contained object that we call document in the following of the
chapter.

Example 16.1.2 Turning back to the WordCount() example, suppose the input consists of a
collection of, say, one million 100-terms documents of approximately 1 KB each. Suppose we
use as data source a large-scale file system, say GFS, with bags of 64 MBs. So, each bag consists
of 64,000 documents. Therefore the number M of bags is d1,000,000/64,000e ≈ 16,000 bags.

The number of REDUCE tasks, is supplied by the programmer, as a parameter R, along with
a hash() partitioning function that can be used to hash the intermediate pairs in R bags for
sharding purposes. If, for example, the intermediate keys consist of uniformly distributed
positive integer values, the simple modulo(key, R) partitioning function is an acceptable
candidate. In general, a more sophisticated hash function, robust to skewed distribution, is
necessary.

At runtime, the MAPREDUCE Master assigns to the participating servers, called Mappers,
the MAP task for their local chunks. The mapper generates a local list of (k2,v2) intermediate
pairs that are placed into one of the R local intermediate bags based on the hash value of k2
for some hash function. The intermediary bags are stored on the local disk, and their location
is sent to the Master. At this point, the computation remains purely local, and no data has
been exchanged between the nodes.

Example 16.1.3 Consider once more the WordCount() example in a GFS environment. Each
chunk contains 64,000 documents, and 100 distinct terms can be extracted from each document.
The (local) MAP phase over one bag produces 6,400,000 pairs (t, c), t being a term and c its
count. Suppose R = 1,000. Each intermediate bag i,0 ≤ i < 1000, contains approximately
6,400 pairs, consisting of terms t such that hash(t) = i.

At the end of the MAP phase, anyway, the intermediate result is globally split into R
bags. The REDUCE phase then begins. The tasks corresponding to the intermediary bags
are distributed between servers called Reducers. A REDUCE task corresponds to one of the R
bags, i.e., it is specified by one of the values of the hash function. One such task is initiated

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 338

by the Master that sends to an individual Reducer the id of the bag (the value of the hash
function), the addresses of the different buckets of the bag, and the reduce() function. The
Reducer processes its task as follows:

1. the Reducer reads the buckets of the bag from all the Mappers and sorts their union by
the intermediate key; note that this now involves data exchanges between nodes;

2. once this has been achieved, the intermediate result is sequentially scanned, and for each
key k2, the reduce() function is evaluated over the bag of values 〈v1,v2, · · · , 〉 associated
to k2.

3. the result is stored either in a buffer, or in a file if its size exceeds the Reducer capacity.

Each Reducer must carry out a sort operation of its input in order to group the intermediate
pairs on their key. The sort can be done in main memory or with the external sort/merge
algorithm detailed in the chapter devoted to Web Search.

Example 16.1.4 Recall that we assumed R = 1,000. We need 1,000 REDUCE tasks Ri, i ∈
[0,1000[. Each Ri must process a bag containing all the pairs (t, c) such that hash(t) = i.

Let i = 100, and assume that hash(’call’) = hash(’mine’) = hash(’blog’) = 100. We focus on three
Mappers Mp, Mq and Mr, each storing a bag Gi for hash key i with several occurrences of
’call’, ’mine’, or ’blog’:

1. Gp
i =(〈 . . . , (’mine’, 1), . . . , (’call’,1), . . . , (’mine’,1), . . . , (’blog’, 1) . . . 〉

2. Gq
i =(〈 . . . , (’call’,1), . . . , (’blog’,1), . . . 〉

3. Gr
i =(〈 . . . , (’blog’, 1), . . . , (’mine’,1), . . . , (’blog’,1), . . . 〉

Ri reads Gp
i , Gq

i and Gr
i from the three Mappers, sorts their unioned content, and groups

the pairs with a common key:

. . . , (’blog’, 〈 1, 1, 1, 1〉), . . . , (’call’, 〈 1, 1〉), . . . , (’mine’, 〈 1, 1, 1〉)

Our reduceWC() function is then applied by Ri to each element of this list. The output is
(’blog’, 4), (’call’, 2) and (’mine’, 3).

When all Reducers have completed their task, the Master collects the location of the R
result files, and sends them to the Client node, in a structure that constitutes the result of the
local MapReduce() function. In our example, each term appears in exactly one of the R result
files, together with the count of its occurrences.

As mentioned before, the ideal situation occurs when R servers are idle and each can
process in parallel a REDUCE task. Because of the two-phases process, a server playing the
role of a Mapper may become a Reducer, and process (in sequence) several REDUCE tasks.
Generally, the model is flexible enough to adapt to the workload of the cluster at any time.
The optimal (and usual) case is a fully parallel and distributed processing. At the opposite, a
MAPREDUCE job can be limited to a single machine.

For personal use only, not for distribution. 339

16.1.3 MAPREDUCE internals

A MAPREDUCE job should be resilient to failures. A first concern is that a Mapper or a
Reducer may die or become laggard during a task, due to networks or hardware problems.
In a centralized context, a batch job interrupted because of hardware problem can simply be
reinstantiated. In a distributed setting, the specific job handled by a machine is only a minor
part of the overall computing task. Moreover, because the task is distributed on hundreds or
thousands of machines, the chances that a problem occurs somewhere are much larger. For
these reasons, starting the job from the beginning is not a valid option.

The interrupted task must be reassigned to another machine. The Master periodically
checks the availability and reacheability of the “Workers” (Mapper or Reducer) involved in a
task. If the Worker does not answer after a certain period, the action depends on its role:

Reducer. If it is a Reducer, the REDUCE task is restarted by selecting a new server and
assigning the task to it.

Mapper. If it is a Mapper, the problem is more complex, because of the intermediate files.
Even if the Mapper finished computing these intermediary files, a failure prevents this
server to serve these files as input to some reducers. The MAP task has to be re-executed
on another machine, and any REDUCE task that has not finished to read the intermediate
files from this particular failed node must be re-executed as well.

This leads to the second important concern: the central role of the Master. In summary:

1. It assigns MAP and REDUCE tasks to the Mappers and the Reducers, and monitors their
progress;

2. It receives the location of intermediate files produced by the Mappers, and transmits
these locations to the Reducers;

3. It collects the location of the result files and sends them to the Client.

The central role of the Master is a potential architectural weakness. If the Master fails,
the MAPREDUCE task is jeopardized. However, there is only one Master, and many more
workers. The odds for the Master to fail are low. So it may be tolerable for many applications
that when a Master fails, its clients resubmit their jobs to a new master, simply ignoring all
the processing that has already been achieved for that task. Alternatively, one can realize
that the issue is not really the failure of a Master but the loss of all the information that had
been gathered about the computation. Using standard techniques based on replication and
log files, one can provide recovery from Master failure that will avoid redoing tasks already
performed.

It should be clear to the reader how complex data processing tasks can be performed using
MAPREDUCE. However, the reader may be somewhat afraid by the complexity of the task
facing the application programmer. In a second part of this chapter, we present the PIGLATIN

language. The goal is to use a rich model and high-level language primitives, to simplify the
design of distributed data processing applications.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 340

16.2 PIG

The MAPREDUCE processing model is low-level. The computation of complex tasks with
MAPREDUCE typically requires combining several jobs. Frequently used operations such as
sort or group must be repeatedly introduced in applications as map/reduce functions, and
integrated with more application specific operations. To design large-scale data processing
applications, it would be definitely useful to dispose of a language that would save the burden
of these low-level tasks while preserving the assets of MAPREDUCE. In some sense, this can
be compared to introducing declarative languages such as SQL in databases, to facilitate
the task of developing applications and thereby improve the productivity of application
programmers.

To illustrate the use of high-level language primitives, we present the PIG environment and
PIG (or PIGLATIN) language. In spite of sometimes clumsy ad hoc features, the language is in
general quite adapted to standard large scale data processing tasks. Another advantage is that
it can be tested with minimal installation overhead. PIG brings two important features with
respect to the MAPREDUCE approach: (i) a richer data model, with nested data structures,
and (ii) expressive data manipulation primitives that can be combined in data flows to obtain
complex operations.

In brief, a PIG program takes as input a “bag” represented in a file. We will detail the bag
data structure further, but it is a roughly speaking a nested relation, i.e., a relation where the
entries may themselves be relations. A PIG program also produces a bag, either stored in a
file or displayed on screen.

We begin with a short illustrative session, and then develop the data and processing
model of PIG. The Putting into Practice chapter devoted to HADOOP gives practical hints and
exercises to experiment with PIG.

16.2.1 A simple session

Consider the following simple example: given a file with a list of publications in a scientific
journal, determine the average number of papers published each year. We use data coming
from DBLP, a large collection of information on scientific publications, publicly available2 in
XML.

The PIG loader accepts a variety of input formats. We use here the default file format that it
accepts. Each line of the file is interpreted as an entry (here a publication). Within a line, the
attributes are separated by tabs. Suppose the input consists of the following lines:

2005 VLDB J. Model-based approximate querying in sensor networks.
1997 VLDB J. Dictionary-Based Order-Preserving String Compression.
2003 SIGMOD Record Time management for new faculty.
2001 VLDB J. E-Services - Guest editorial.
2003 SIGMOD Record Exposing undergraduate students to system internals.
1998 VLDB J. Integrating Reliable Memory in Databases.
1996 VLDB J. Query Processing and Optimization in Oracle Rdb
1996 VLDB J. A Complete Temporal Relational Algebra.
1994 SIGMOD Record Data Modelling in the Large.
2002 SIGMOD Record Data Mining: Concepts and Techniques - Book Review.
...

2http://www.sigmod.org/dblp/db/index.html

For personal use only, not for distribution. 341

Each line gives the year a publication was published, the journal it was published in (e.g.,
the VLDB Journal) and its title.

Here is the complete PIG program that computes the average number of publications per
year in SIGMOD RECORD.

-- Load records from the journal-small.txt file (tab separated)
articles = load ’../../data/dblp/journal-small.txt’

as (year: chararray, journal:chararray, title: chararray) ;
sr_articles = f i l t e r articles BY journal==’SIGMOD Record’;
year_groups = group sr_articles by year;
avg_nb = foreach year_groups generate group, COUNT(sr_articles.title);
dump avg_nb;

When run on a sample file, the output may look as follows:

(1977,1)
(1981,7)
(1982,3)
(1983,1)
(1986,1)
...

The program is essentially a sequence of operations, each defining a temporary bag that
can be used as input of the subsequent operations. It can be viewed as a flow of data
transformation, that is linear in its simplest form but can more generally be an acyclic workflow
(i.e., a directed acyclic graph).

We can run a step-by-step evaluation of this program with the grunt command interpreter
to better figure out what is going on.

Load and filter. The load operator produces as temporary result, a bag named articles.
PIG disposes of a few atomic types (int, chararray, bytearray). To “inspect” a bag,
the interpreter proposes two useful commands: describe outputs its type, and illustrate
produces a sample of the relation’s content.

grunt> DESCRIBE articles;
articles: {year: chararray,journal: chararray,title: chararray}

grunt> ILLUSTRATE articles;

| articles | year: chararray | journal: chararray | title: chararray |

| | 2003 | SIGMOD Record | Call for Book Reviews.|

The file contains a bag of tuples, where the tuple attributes are distinguished by position.
After loading, articles also contains a bag of tuples, but the tuple attributes are now
distinguished by name.

The filter operation simply selects the elements satisfying certain conditions, pretty much
like a relational selection.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 342

Group. In the example, the bags resulting from the load or from the filter do not look
different than standard relations. However, a difference is that they may have two identical
elements. This would happen, in the example, if the file contains two identical lines. Note that
this cannot happen in a relation that is a set of tuples. Bags allow the repetition of elements.
Furthermore, like nested relations, PIG bags can be nested. The result of a group for instance
is a nested bag. In the example, the group operation is used to create a bag with one element
for each distinct year:

grunt> year_groups = GROUP sr_articles BY year;

grunt> describe year_groups;
year_groups: {group: chararray,

sr_articles: {year: chararray,journal: chararray,title:chararray}}

grunt> illustrate year_groups;
group: 1990
sr_articles:
{
(1990, SIGMOD Record, An SQL-Based Query Language For Networks of Relations.),
(1990, SIGMOD Record, New Hope on Data Models and Types.)

}

PIG represents bags, nested or not, with curly braces {}. Observe the year_groups exam-
ple provided by the illustrate command. Note that the grouping attribute is by convention
named group. All the elements with the same year compose a nested bag.

Before detailing PIG, we summarize its main features essentially contrasting it with SQL:

• Bags in PIG allow repeated elements (therefore the term bag) unlike relations that are
sets of elements.

• Bags in PIG allow nesting as in nested relations, but unlike classical relations.

• As we will see further, in the style of semistructured data, bags also allow further
flexibility by not requiring any strict typing, i.e., by allowing heterogeneous collections.

• For processing, PIG is deliberately oriented toward batch transformations (from bags to
bags) possibly in multiple steps. In this sense, it may be viewed as closer to a workflow
engine than to an SQL processor.

Note that these design choices have clear motivations:

• The structure of a bag is flexible enough to capture the wide range of information
typically found in large-scale data processing.

• The orientation toward read/write sequential data access patterns is, of course, moti-
vated by the distributed query evaluation infrastructure targeted by PIG program, and
(as we shall see) by the MAPREDUCE processing model.

• Because of the distributed processing, data elements should be processable indepen-
dently from each other, to make parallel evaluation possible. So language primitives
such as references or pointers are not offered. As a consequence, the language is not
adapted to problems such as graph problems. (Note that such problems are notoriously
difficult to parallelize.)

For personal use only, not for distribution. 343

The rest of this section delves into a more detailed presentation of PIG’s design and
evaluation.

16.2.2 The data model

As shown by our simple session, a PIG bag is a bag of PIG tuples, i.e., a collection with possibly
repeated elements. A PIG tuple consist of a sequence of values distinguished by their positions
or a sequence of (attribute name, attribute value) pairs. Each value is either atomic or itself a
bag.

To illustrate subtle aspects of nested representations, we briefly move away from the
running example. Suppose that we obtain a nested bag (as a result of previous computations)
of the form:

a : { b : chararray, c : { c’ : chararray }, d : { d’ : chararray } }

Examples of tuples in this bag may be:

〈a : { 〈b : 1, c : {〈c′ : 2〉, 〈c′ : 3〉},d : {〈d′ : 2〉}〉, 〈b : 2, c : ∅,d : {〈d′ : 2〉, 〈d′ : 3〉}〉 }〉

Note that to represent the same bag in the relational model, we would need identifiers for
tuples in the entire bag, and also for the tuples in the c and d bags. One could then use a
relation over bidb, one over bidcidc and one over biddidd:

bid b bid cid c bid did d
i1 1 i1 j1 2 i1 j2 2
i2 2 i1 j3 3 i2 j4 2

i2 j5 3

Observe that an association between some b, c and d is obtained by sharing an id, and requires
a join to be computed. The input and output of a single PIG operation would correspond to
several first-normal-form relations3. Joins would be necessary to reconstruct the associations.
In very large data sets, join processing is very likely to be a serious bottleneck.

As already mentioned, more flexibility is obtained by allowing heterogeneous tuples to
cohabit in a same bag. More precisely, the number of attributes in a bag (and their types)
may vary. This gives to the programmer much freedom to organize her dataflow by putting
together results coming from different sources if necessary.

Returning to the running example, an intermediate structure created by our program
(year_groups) represents tuples with an atomic group value (the year) and a nested
article value containing the set of articles published that year.

Also, PIG bags introduce lots of flexibility by not imposing a strong typing. For instance,
the following is a perfectly valid bag in PIG:

{
(2005, {’SIGMOD Record’, ’VLDB J.’}, {’article1’, article2’})
(2003, ’SIGMOD Record’, {’article1’, article2’}, {’author1’, ’author2’})

}

3A relation is in first-normal-form, 1NF for short, if each entry in the relation is atomic. Nested relations are also
sometimes called not-first-normal-form relations.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 344

This is essentially semistructured data, and can be related to the specificity of applications
targeted by PIG. Input data sets often come from a non-structured source (log files, documents,
email repositories) that does not comply to a rigid data model and needs to be organized
and processed on the fly. Recall also that the application domain is typically that of data
analysis: intermediate results are not meant to be persistent and they are not going to be used
in transactions requiring stable and constrained structures.

PIG has a last data type to facilitate look-ups, namely maps. We mention it briefly. A map
associates to a key, that is required to be a data atom, an arbitrary data value.

To summarize, every piece of data in PIG is one of the following four types:

• An atom, i.e., a simple atomic value.

• A bag of tuples (possibly heterogeneous and possibly with duplicates).

• A PIG tuple, i.e., a sequence of values.

• A PIG map from keys to values.

It should be clear that the model does not allow the definition of constraints commonly met
in relational databases: key (primary key, foreign key), unicity, or any constraint that needs to
be validated at the collection level. Thus, a collection can be partitioned at will, and each of
its items can be manipulated independently from the others.

16.2.3 The operators

Table 16.1 gives the list of the main PIG operators operating on bags. The common charac-
teristic of the unary operations is that they apply on a flow of tuples, that are independently
processed one-at-a-time. The semantics of an operation applied to a tuple never depends on
the previous or subsequent computations. Similarly, for binary operations: elementary opera-
tions are applied to a pair of tuples, one from each bag, independently from the other tuples
in the two bags. This guarantees that the input data sets can be distributed and processed in
parallel without affecting the result.

Operator Description
foreach Apply one or several expression(s) to each of the input tuples.
filter Filter the input tuples with some criteria.
order Order an input.
distinct Remove duplicates from an input.

cogroup Associate two related groups from distinct inputs.
cross Cross product of two inputs.
join Join of two inputs.
union Union of two inputs (possibly heterogeneous, unlike in SQL).

Table 16.1: List of PIG operators

We illustrate some important features with examples applied to the following tiny data
file webdam-books.txt. Each line contains a publication date, a book title and the name of an
author.

For personal use only, not for distribution. 345

1995 Foundations of Databases Abiteboul
1995 Foundations of Databases Hull
1995 Foundations of Databases Vianu
2010 Web Data Management Abiteboul
2010 Web Data Management Manolescu
2010 Web Data Management Rigaux
2010 Web Data Management Rousset
2010 Web Data Management Senellart

-- Load records from the webdam-books.txt file (tab separated)
books = load ’../../data/dblp/webdam-books.txt’

as (year: int, title: chararray, author: chararray) ;
group_auth = group books by title;
authors = foreach group_auth generate group, books.author;
dump authors;

Figure 16.4: Example of group and foreach

The first example (Figure 16.4) shows a combination of group and foreach to obtain a bag
with one tuple for each book, and a nested list of the authors.

The operator foreach applies some expressions to the attributes of each input tuple. PIG

provides a number a predefined expressions (projection/flattening of nested sets, arithmetic
functions, conditional expressions), and allows User Defined Functions (UDF) as well. In the
example, a projection expressed as books.authors is applied to the nested set result of the
group operator. The final authors nested bag is:

(Foundations of Databases,
{(Abiteboul),(Hull),(Vianu)})

(Web Data Management,
{(Abiteboul),(Manolescu),(Rigaux),(Rousset),(Senellart)})

The flatten expression serves to unnest a nested attribute.

-- Take the ’authors’ bag and f l a t t e n the nested set
flattened = foreach authors generate group, f l a t t e n(author);

Applied to the nested bag computed earlier, flatten yields a relation in 1NF:

(Foundations of Databases,Abiteboul)
(Foundations of Databases,Hull)
(Foundations of Databases,Vianu)
(Web Data Management,Abiteboul)
(Web Data Management,Manolescu)
(Web Data Management,Rigaux)
(Web Data Management,Rousset)
(Web Data Management,Senellart)

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 346

The cogroup operator collects related information from different sources and gathers them
as separate nested sets. Suppose for instance that we also have the following file webdam-
publishers.txt:

Fundations of Databases Addison-Wesley USA
Fundations of Databases Vuibert France
Web Data Management Cambridge University Press USA

We can run a PIG program that associates the set of authors and the set of publishers for
each book (Figure 16.5).

--- Load records from the webdam-publishers.txt file
publishers = load ’../../data/dblp/webdam-publishers.txt’

as (title: chararray, publisher: chararray) ;
cogrouped = cogroup flattened by group, publishers by title;

Figure 16.5: Illustration of the cogroup operator

The result (limited to Foundations of databases) is the following.

(Foundations of Databases,
{ (Foundations of Databases,Abiteboul),

(Foundations of Databases,Hull),
(Foundations of Databases,Vianu)

},
{(Foundations of Databases,Addison-Wesley),
(Foundations of Databases,Vuibert)

}
)

The result of a cogroup evaluation contains one tuple for each group with three attributes.
The first one (named group) is the identifier of the group, the second and third attributes
being nested bags with, respectively, tuples associated to the identifier in the first input bag,
and tuples associated to the identifier in the second one. Cogrouping is close to joining the
two (or more) inputs on their common identifier, that can be expressed as follows:

-- Take the ’flattened’ bag, join with ’publishers’
joined = join flattened by group, publishers by title;

The structure of the result is however different than the one obtained with cogroup.

(Foundations of Databases,Abiteboul,Fundations of Databases,Addison-Wesley)
(Foundations of Databases,Abiteboul,Fundations of Databases,Vuibert)
(Foundations of Databases,Hull,Fundations of Databases,Addison-Wesley)
(Foundations of Databases,Hull,Fundations of Databases,Vuibert)
(Foundations of Databases,Vianu,Fundations of Databases,Addison-Wesley)
(Foundations of Databases,Vianu,Fundations of Databases,Vuibert)

For personal use only, not for distribution. 347

In this example, it makes sense to apply cogroup because the (nested) set of authors and
the (nested) set of publishers are independent, and it may be worth considering them as
separate bags. The join applies a cross product of these sets right away which may lead to
more complicated data processing later.

The difference between cogroup and join is an illustration of the expressiveness brought by
the nested data model. The relational join operator must deliver flat tuples, and intermediate
states of the result cannot be kept as first class citizen of the data model, although this could
sometimes be useful from a data processing point of view. As another illustration, consider
the standard SQL group by operator in relational databases. It operates in two, non-breakable
steps that correspond to a PIG group, yielding a nested set, followed by a foreach, applying
an aggregation function. The following example is a PIG program that computes a 1NF
relation with the number of authors for each book.

-- Load records from the webdam-books.txt file (tab separated)
books = load ’webdam-books.txt’

as (year: int, title: chararray, author: chararray) ;
group_auth = group books by title;
authors = foreach group_auth generate group, COUNT(books.author);
dump authors;

The possible downside of this modeling flexibility is that the size of a tuple is unbounded:
it can contain arbitrarily large nested bags. This may limit the parallel execution (the extreme
situation is a bag with only one tuple and very large nested bags), and force some operators
to flush their input or output tuple to the disk if the main memory is exhausted.

16.2.4 Using MAPREDUCE to optimize PIG programs

The starting point of this optimization is that a combination of group and foreach operators
of PIG can be almost directly translated into a program using MAPREDUCE. In that sense, a
MAPREDUCE job may be viewed as a group-by operator over large scale data with build-in
parallelism, fault tolerance and load balancing features. The MAP phase produces grouping
keys for each tuple. The shuffle phase of MAPREDUCE puts these keys together in intermediate
pairs (akin to the nested bags, result of the PIG group). Finally, the REDUCE phase provides
an aggregation mechanism to cluster intermediate pairs. This observation is at the core of
using a MAPREDUCE environment as a support for the execution of PIG programs.

Basically, each (co)group operator in the PIG data flow yields a MAPREDUCE tasks that
incorporates the evaluation of PIG operators surrounding the (co)group. As previously
explained, a join, can be obtained using a cogroup followed by a flattening of the inner nested
bags. So, joins can also benefit from the MAPREDUCE environment.

To conclude, we illustrate such a MAPREDUCE evaluation with two of the examples
previously discussed.

Example: group and foreach. In a first example, we use the program given in Figure 16.4,
page 345. Following the classical query evaluation mechanism, the compilation transforms
this program through several abstraction levels. Three levels are here represented. The “logi-
cal” level directly represents the dataflow process. At this point, some limited reorganization

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 348

may take place. For instance, a filter operator should be “pushed” as near as possible to the
load to decrease the amount of data that needs to be processed.

Figure 16.6: Compilation of a PIG program in MAPREDUCE

The second level represents the sequence of physical operations that need to be executed
in a parallel query processing environment. PIG targets several parallel execution models,
and this intermediate level provides the means to describe and manipulate a physical plan
independently from a specific infrastructure.

The blocks in the physical plan introduce some new operators, namely REARRANGE (LOCAL

and GLOBAL), and PACKAGE. REARRANGE denotes a physical operator that groups tuples
with the same key, via either hashing or sorting. The distinction between LOCAL and GLOBAL

stems from the parallelization context. The LOCAL operator takes place on a single node,
whereas the GLOBAL operator needs to collect and arrange tuples initially affected to many
nodes. The algorithms that implement these variants may therefore be quite different.

PACKAGE relates to the PIG data model. Once a set of tuples sharing the same key are put
together by a REARRANGE, a nested bag can be created and associated with the key value to
form the typical nested structure produced by the (co)group operation. Expressions in the
foreach operator can then be applied.

The lower level in Figure 16.4 shows the MAPREDUCE execution of this physical plan.
There is only one MAPREDUCE job, and the physical execution proceeds as follows:

1. MAP generates the key of the input tuples (in general, this operation may involve the
application of one or several functions), and groups the tuples associated to given key
in intermediate pairs;

2. the GLOBAL REARRANGE operator is natively supported by the MAPREDUCE frame-
work: recall that intermediate pairs that hash to a same value are assigned to a single
Reducer, that performs a merge to “arrange” the tuples with a common key together;

3. the PACKAGE physical operator is implemented as part of the reduce() function, that
takes care of applying any expression required by the foreach loop.

Example: join and group. Our second example involves a join followed by a group. It
returns the number of publishers of Victor Vianu. Note that one might want to remove
duplicates from the answer; this is left as an exercise.

Figure 16.8 shows the execution of this program using two MAPREDUCE jobs. The first one
carries out the join. Both inputs (books and publishers) are loaded, filtered, sorted on the title,

For personal use only, not for distribution. 349

-- Load records from the webdam-books.txt file (tab separated)
books = load ’../../data/dblp/webdam-books.txt’

as (year: int, title: chararray, author: chararray) ;
-- Keep only books from Victor Vianu
vianu = f i l t e r books by author == ’Vianu’;
--- Load records from the webdam-publishers.txt file
publishers = load ’../../data/dblp/webdam-publishers.txt’

as (title: chararray, publisher: chararray) ;
-- Join on the book title
joined = join vianu by title, publishers by title;
-- Now, group on the author name
grouped = group joined by vianu::author;
-- Finally count the publishers (nb: we should remove duplicates!)
count = foreach grouped generate group, COUNT(joined.publisher);

Figure 16.7: A complex PIG program with join and group

tagged with their provenance, and stored in intermediate pairs (MAP phase). Specifically, the
map() function receives rows:

1. either from the books input with year, title, and author.

2. or from the publishers input with title and publisher. again recording provenance.

Each row records its provenance, either books or publishers.
These intermediate pairs are sorted during the shuffle phase, and submitted to the reduce()

function. For each key (title), this function must take the set of authors (known by their
provenance), the set of publishers (idem), and compute their cross product that constitutes a
part of the join result. This output can then be transmitted to the next MAPREDUCE job in
charge of executing the group.

Figure 16.8: A multi-jobs MAPREDUCE execution

Clearly, this complex query would require an important amount of work with MAPREDUCE

programming, whereas it is here fulfilled by a few PIG instructions. The advantage is more
related to the software engineering process than to the efficiency of the result. the Due to
the rather straighforward strategy applied by the PIG evaluator, early performance reports
show that PIG execution is, not surprisingly, slightly worse than the equivalent MAPREDUCE

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 350

direct implementation. This is notably due to the overhead introduced by the translation
mechanism. The next section mentions alternative approaches that pursue similar goal that
PIG.

16.3 Further reading

Distributed computing now has a long history, with Web services as a recent popular outcome.
We refer the reader to the general references [153] for distributed systems and [31] for parallel
algorithms. At the center of distributed computing we find the possibility of activating some
computation on a distant machine. This leads to remote procedure call, an abstraction that
allows interacting with a remote program while ignoring its details. Some data is sent as
argument of the call. The remote program is activated with this data as input. Its result is
shipped back to the caller. Note that this involves transmission of data in both directions,
from the caller to the callee (parameters of the call) and back (results).

To support such communications, one needs to provide end-points for these communica-
tions, e.g. sockets. A communication happens between a local socket and a remote one. To
understand each other, they need to use some common protocol for the messages, e.g., TCP,
UDP, raw IP, or, in the Web Services realm, SOAP.

Based on such communications, middleware systems have been developed since the 1960’s,
the so-called message-oriented middleware. They are based on asynchronous calls, i.e., the call
is made and the caller is not blocked waiting for an answers. The messages are managed in
queues. Examples of such systems are IBM Websphere and Microsoft MQ serie.

The object-oriented paradigm proved to be very successful for distributed computing.
Indeed, it is very natural to see an external resource as an object, i.e., a black box with a set of
methods as interface. This lead to very popular systems, object brokers.

From a data management perspective, one may want to support transactions between the
distributed machines. This leads to transaction processing monitors, , e.g., IBM CICS or BEA
Tuxedo. Such systems provide support for persistence, distributed transactions, logging and
error recovery.

By merging, object brokers and TP monitors, one obtains the object monitors. These systems
became popular in the 1990’s, notably with Corba from the Object Management Group and
DCOM by Microsoft

Closer to us and targeting the Web, we find XML-RPC (in the late 1990’s) that, as indicated
by its name, is based on remote procedure calls using XML as underlying data format. The
calls are performed using HTTP-POST.

Finally, we briefly discuss Corba that had a very important influence in the evolution
of distributed computing. Corba stands for Common Object Request Broker Architecture. As
previously mentioned, it is based on RPC and the object-oriented paradigm. The development
of Corba-based components is somewhat independent of the programming language, e.g.,
C++ or Java may be used. An implementation of Corba consists of the deployment of a
system (called an ORB) that provides the interoperability between applications distributed
on different machines. The ORB provides a large set of services, e.g., persistence, transaction,
messaging, naming, security, etc. Corba and DCOM were the main supports for distribution
before Web services.

There is a long history of research on so-called nested relations, e.g., [4], or complex objects,
e.g., [3], that somehow paved the way for semistructured data models. An algebra for bags,

For personal use only, not for distribution. 351

vs. sets of tuples, is considered in [79].
Parallel query processing is an old research topic. Issues related to scalable query exe-

cution in shared-nothing architecture have been investigated since the emergence of rela-
tional systems. See [55, 69] for important milestones, and [56] for a position paper. The
proposed techniques are now available in several commercial systems, including Teradata
(http://www.teradata.com), a leading datawarehouse software company. The systems based on
Google technology, and in particular MAPREDUCE have been criticized for ignoring previous
advances in database technology [54]. A detailed discussion of the MAPREDUCE limits and
contributions, viewed in a database perspective, is reported in [151]. MAPREDUCE is suitable
for text processing, and more generally for data sets where relational schema does not fit.
It is also a convenient tool for cost-effective environments (e.g., commodity hardware) that
allow an inexpensive horizontal scalability but lead to unreliable infrastructures where the
resilience brought by MAPREDUCE is a valuable asset.

In practical terms, a major restriction of MAPREDUCE is the high latency that stems from
both the initial dissemination of a program in the cluster prior to any execution, and the
need to fully achieve the MAP phase before running the REDUCE one. This is justified for
batch analysis of large data sets but make it unsuitable for transactional applications [133]. Its
attractiveness on the other hand lies in its scalability and fault-tolerance, two features where
parallel databases arguably show their limits, at least for web-scale data sets.

Recently, research attempts to benefit from the best of the two worlds have been undertaken.
HADOOPDB [10] is an “hybrid” distributed data management system that uses a standard
relational DBMS (e.g., PostgreSQL) at each node, and uses MAPREDUCE as a communication
layer between nodes. The relational system instance acts as a source to MAPREDUCE jobs,
with the advantage of being able to run complex SQL query plans that exploit database
index, saving the otherwise mandatory full scan of the data sets. Other approaches aims at
providing high-level data processing languages which can then be executed in a MAPREDUCE-
like environment: SCOPE [40], PIG [129, 70], JAQL http://code.google.com/p/jaql/,
and Hive [155] are examples of some recent or ongoing efforts.

16.4 Exercises

Exercise 16.4.1 (Log processing with MAPREDUCE) A big company stores all incoming emails
in log files. How can you count the frequency of each email address found in these logs with MAPRE-
DUCE?

Exercise 16.4.2 (Optimizing the MAP and REDUCE phases) The REDUCE phase needs to down-
load intermediate pairs produced by the mappers. How can we reduce the cost of this exchange? The
following gives some hints:

1. Consider again the WordCount example; propose a post-processing step, running on the mapper,
that reduces the size of the files sent to the reducers.

2. Now, consider a MAPREDUCE task aiming at retrieving the inverse document frequency; does
the foregoing optimization still help?

3. Finally, one could sort the intermediate pairs before sending them to the reducer; discuss the
pros and cons of this approach.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://code.google.com/p/jaql/

For personal use only, not for distribution. 352

Exercise 16.4.3 (SP relational queries) A Selection-Projection-Aggregation relational query corre-
sponds to the simple SQL syntax:

SELECT <list-attributes>
FROM <someTable>
WHERE <list-conditions>
GROUP BY <attribute>

Propose a MAPREDUCE job (using pseudo-code for map() and reduce()) for the following queries:

1.
SELECT title, year
FROM paper
WHERE author=’Jeff Ullman’
AND published=’ACM’

2.
SELECT title, count(author)
FROM paper
WHERE year=2011
GROUP BY title

When is the reduce function really useful? How would you express these queries with PIG.

Exercise 16.4.4 (Sorting with MAPREDUCE) How can you obtain a parallel sort with MAPRE-
DUCE? For instance, what would be the MAPREDUCE parallel execution of the following SQL
query:

SELECT title
FROM paper
ORDER BY year

Hint: partition the input in R intervals with map(), then sort each local interval with reduce().

Exercise 16.4.5 (Joins with MAPREDUCE) And, finally, how can you express joins? For instance:

SELECT title, journalName
FROM paper p, journal j
WHERE p.idJournal = j.id

Hint: this requires to somewhat distord the MAPREDUCE principles. The reduce() function should
receive pairs (id,< p1, · · · , pn >) where id is a journal id and each pi is a row from paper. By
unnesting the structure, one gets the expected result. Note that the reduce phase does not reduce at all
the output in that case! Such a tweak may not be accepted by all MAPREDUCE environments.

Exercise 16.4.6 (Distributed Monte Carlo) We want to create a distributed program that approxi-
mates π. The method is based on the inscription of a circle in a square (Fig. 16.9).

For personal use only, not for distribution. 353

Figure 16.9: A method to computing π

Note that the area of the square is As = (2r)2 = 4r2; the area of the circle is Ac = π× r2. Therefore

π = 4× Ac

As

1. Propose a parallel program that computes an approximation of π; how can you express such a
program in MAPREDUCE?

2. The previous computation of π is actually a simple instance of the classical Monte Carlo method.
Assume now a very large data set of geographic regions. Each region is identified by a key, we
know its contour and can test whether a point belongs to a region thanks to a point-in-polygon
(PinP()) function. We can also obtain the minimal bounding box of aa region thanks to the
mbb() function. We want to calculate their areas. Propose a distributed implementation based
on MAPREDUCE.

Exercise 16.4.7 (Distributed inverted file construction) Describe a MAPREDUCE job that con-
structs an inverted file for a very large data set of Web documents. Give the map() and reduce()
functions in pseudo-code, and explain the data flow in a distributed system.

Exercise 16.4.8 (Distributed PageRank) Describe a MAPREDUCE job that computes one iteration
of the PageRank algorithm over a collection of documents. Some hints:

1. the map() function takes as input the doc id, the list of URLs that refer to the document, and the
current rank;

2. the reduce() takes as input a URL and a list of ranks; you can assume that the damping factor is
a constant in this function.

Exercise 16.4.9 (PIG) Refer to the Putting into Practice chapter on HADOOP (page 387) for a list of
PIG queries.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

17 Putting into Practice: Full-Text Indexing with
LUCENE (by Nicolas Travers)

LUCENE1 is an open-source tunable indexing platform often used for full-text indexing
of Web sites. It implements an inverted index, creating posting lists for each term of the
vocabulary. This chapter proposes some exercises to discover the LUCENE platform and test
its functionalities through its Java API.

17.1 Preliminary: a LUCENE sandbox

We provide a simple graphical interface that lets you capture a collection of Web documents
(from a given Website), index it, and search for documents matching a keyword query. The
tool is implemented with LUCENE (surprise!) and helps to assess the impact of the search
parameters, including ranking factors.

Figure 17.1: The LUCENE sandbox of WDM

You can download the program from our Web site. It consists of a Java archive that can be
executed right (providing a decent Java installation on your computer). Figure 17.1 shows a
screenshot of the main page. It allows you to

1. Download a set of documents collected from a given URL (including local addresses).

2. Index and query those documents.

3. Consult the information used by LUCENE to present ranked results.

1http://lucene.apache.org/java/docs/

355

http://lucene.apache.org/java/docs/

For personal use only, not for distribution. 356

Use this tool as a preliminary contact with full text search and information retrieval.
The projects proposed at the end of the chapter give some suggestions to realize a similar
application.

17.2 Indexing plain-text with LUCENE – A full example

We embark now in a practical experimentation with LUCENE. First, download the Java
packages from the Web site http://lucene.apache.org/java/docs/. The examples
and exercises that follow have been tested with version 3.0.2, so check whether something
changed if you use another version.

You will find several packages.

• lucene-core-3.0.2.jar: the main package; put it right away in your CLASSPATH or in your
project environment if you use an IDL;

• lucene-demos-3.0.2.jar: a set of demonstration programs;

• luceneWeb.war: a simple LUCENE Web application installer based on a demonstrator;

• contrib, a set of packages that complement the core functions.

– analyzers: main languages analyzers (lucene-analyzers-3.0.2.jar); mandatory with
most LUCENE indexing and querying applications;

– collation: change LUCENE analyzer to optimize ranking and range queries;

– db: the berkeleyDB database management system

– instantiated: RAM-based LUCENE indexing;

– queryparser: tuning of the query parser

– snowball: stemming package that extract stems over terms within a given language;

– spellchecker: words spell checking; suggests replacement by the nearest valid word;

– spatial: sort LUCENE results with distance based scoring;

– wordnet: the Wordnet API is integrated to LUCENE in order to check words and
synonyms in the dictionnary.

The packages lucene-core-3.0.2.jar (for indexing and querying) and lucene-analyzers-3.0.2.jar
(for text analyzer features) are required for the examples and exercises below. We will use
them in the following to create our LUCENE application.

17.2.1 The main program

We will detail in the next pages a simple example that creates a LUCENE index, adds a few
documents, and executes some searches. The main java program follows this open-create-
query structure:

public c l a s s Simple {
String directory = "index";

public s t a t i c void main(String[] args) {

http://lucene.apache.org/java/docs/

For personal use only, not for distribution. 357

// Name of the directory that holds the index
String directory = "index";

// Instantiate a new Lucene tool
MyLucene lucene = new MyLucene();

// Open the directory
lucene.openIndex(directory, t rue);

// Add a few documents
lucene.addDoc("Web Data Management");
lucene.addDoc("Data on the Web");
lucene.addDoc("Spatial Databases -- with Application to GIS");

// Close the index
lucene.closeIndex();

// Now, search for some term
String query[] = {"Web"};
lucene.search(query);

}
}

Everything is handled by the MyLucene class, which is now detailed (the full code can be
found on the book’s Web site). Note that the program is for illustration purposes, and thus
makes a poor job at catching exceptions.

17.2.2 Create the Index

The openIndex method creates an index, or opens an existing index.

public void openIndex(String directory, boolean newIndex) {
t r y {
// Link the directory on the FileSystem to the application
index = FSDirectory.open(new File(directory));

// Check whether the index has already been locked
// (or not properly closed).
i f (IndexWriter.isLocked(index))
IndexWriter.unlock(index);

i f (writer == null)
// Link the repository to the IndexWriter
writer = new IndexWriter(index, analyzer, newIndex,

IndexWriter.MaxFieldLength.LIMITED);
} catch (Exception e) {
System.out.println("Got an Exception: " + e.getMessage());

}
}

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 358

The LUCENE index repository must be opened prior to any access. When the newIndex
Boolean value is true, LUCENE creates the repository name directory. When newIndex is false,
the previously created index is reused. Only one IndexWriter at a time can be access the
repository. Be careful, each time newIndex is set to true, the index will be entirely replaced.

The StandardAnalyzer object is the document analyzer process (instantiated in the construc-
tor). It takes into account the specifics of the input language. For consistency reasons, the
same analyzer must be used for the creation and for searches.

Once an index is generated, you can look at the repository generated by LUCENE, which
contains several files:

• segments_X / segments.gen. The segment index files.

• write.lock. Lock file, modified each time an IndexWriter instance works on the repository.

• _X.cfs. Compound files. Describe all indexed files.

• _X.cfx. Compound files for storing field values and term vectors.

The index must be closed when inserts and updates are finished.

public void closeIndex() {
t r y {
writer.optimize();
writer.close();

} catch (Exception e) {
System.out.println("Got an Exception: " + e.getMessage());

}
}

Each call to optimize() applies a compression and store the modified values in the repository.

17.2.3 Adding documents

Once the index is created, we can populate it with documents. LUCENE defines an abstraction
of documents as instances of the Document class. Such an instance contains several Fields that
define which information will be stored, indexed and queried. The following example defines
a single field, named content. You will be invited to create multi-fields documents in the labs.

public void addDoc(String value) {
t r y {
// Instantiate a new document
Document doc = new Document();
// Put the value in a field name content
Field f = new Field("content", value, Field.Store.YES,

Field.Index.ANALYZED);
// Add the field to the document
doc.add(f);
// And add the document to the index
writer.addDocument(doc);

} catch (Exception e) {
System.out.println("Got an Exception: " + e.getMessage());

For personal use only, not for distribution. 359

}
}

Modeling a document as a list of fields is tantamount to defining how the information is
analyzed, indexed, and stored.

17.2.4 Searching the index

We can instantiate the IndexSearcher class, giving as a parameter the index repository name.
We also provide to the constructor an Analyzer object, which must be of the same type as the
one used during the indexing process. The QueryParser instance applies the analyzer to the
the query string, ensuring that the tokenization and other transformations applied to terms is
consistent. We must also specify which fields will be queried by default for each query.

public void search(String[] args) {
// Nothing given? Search for "Web".
String querystr = args.length > 0 ? args[0] : "Web";

t r y {
// Instantiate a query parser
QueryParser parser = new QueryParser(Version.LUCENE_30, "content",

analyzer);
// Parse
Query q = parser.parse(querystr);
// We look for top-10 results
i n t hitsPerPage = 10;
// Instantiate a searcher
IndexSearcher searcher = new IndexSearcher(index, t rue);
// Ranker
TopScoreDocCollector collector = TopScoreDocCollector.create(

hitsPerPage, t rue);
// Search!
searcher.search(q, collector);
// Retrieve the top-10 documents
ScoreDoc[] hits = collector.topDocs().scoreDocs;

// Display results
System.out.println("Found " + hits.length + " hits.");
for (i n t i = 0; i < hits.length; ++i) {

i n t docId = hits[i].doc;
Document d = searcher.doc(docId);
System.out.println((i + 1) + ". " + d.get("content"));

}

// Close the searcher
searcher.close();

} catch (Exception e) {
System.out.println("Got an Exception: " + e.getMessage());

}
}

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 360

17.2.5 LUCENE querying syntax

The LUCENE querying syntax is almost simple. A query is composed of a set of words, each
of which check in the index the posting lists and provide a tf/idf value. The global rank of
the query is the sum of these values, as we saw previously. Here is a sketch of query:

Web Data Management

This query is composed of three words that will be searched into the index. The score of
each document depends of the sum of scores for “Web”, “Data” and “Management”.

In order to complexify queries, LUCENE provides some more features that helps to creates
richer queries. All these features follow a specific syntax. For each feature, we will illustrate it
by modifying the previous query:

• Negation: NOT xxx
The given word must not be present into the document. All documents containing this
words will be removed from the result set (i.e. the score is equal to zero).
Web Data NOT Management - The document will contain “Web” and “Data” but never “Management”

• Mandatory keywords: +xxx
The given word must be present in the document. In fact, although a word is asked
in the query and its score in a document is equal to zero, this document could appear
(other words bring a good score). This feature forbids documents that do not mention
this word.
+Web Data Management - The word Web must be contained in the document, Data and Management may be present

• Exact matching: “xxx yyy”
Bringing a sentence into quotes makes an exact matching query, for which the document
must contains this sentence:
“Web Data” Management - The document must contain the sentence “Web Data”, the word “Management” brings

an additional score to the document.

• Word importance: xxxˆX
A word may be more important than others in a query, for this you can increase the
scoring weight of this word in the document. This weight is applied on the score before
making the sum of all scores.
Webˆ3 Data Management - The resulting score of the word “Web” in the documents is three times bigger than “Data”

and “Management”.

• Wildcard search: xx*
LUCENE will search for words that matches with given letters, completing the wildcard
with existing words in the index. A word must not begin with a wildcard.
Web Data Manag* - All documents that contain a words beginning with “Manag” will be returned (like Management,

Manage, Managing, Manager. . .)

• Querying fields: FFF:xxx
As we saw during indexing, we can specify fields (title, content, path). By default, we
specified that the “content” field is used for queries. By specifying a field, LUCENE

searches the given word into it.
title:Web Data Management - The word “Web” will be searched into the field “title”, while “Data” and “Manage-

ment” will be searched into the default field.

For personal use only, not for distribution. 361

• Similarity search: xxx ˜
A similarity search corrects misspelling of a given word, LUCENE will search this words
with different spelling. The tilda can optionally be followed by a numeric value, this
value gives the distance of similarity between the given word and the proposed one.
Web Data ˜ Management - Documents will contain “Web” and “Management”, but also words similar to “data”

(like date, tata, sata)

• Range queries: xxx TO yyy
A query can ask for a range of values for corresponding documents. This range can be
numeric values, dates, or words (with lexicographic orders).
tit title:“Web Data Management” title:{1 TO 3} - All documents must have the exact sentence “Web Data Management”

and also a numeric (book’s version) value between 1 and 3.

17.3 Put it into practice!

You should first make our simple example run and examine carefully all the methods. Note
that the following improvements would be useful:

1. handle more carefully the exceptions raised by LUCENE classes;

2. instead of printing the result right away in the search method, implement an iterator-like
mechanism that allows to retrieve the documents in the result one by one;

3. add some optional, yet useful features, such as for instance a management of a list of
stop words (this is a first opportunity to look at the LUCENE API).

Once these changes are effective, you should then be ready to implement your first search
engine.

17.3.1 Indexing a directory content

A sample of several files with two “fields”, respectively “title” and “content”, can be found
on the Website (lucene directory). Download them in a files directory. Next, create a parsing
function that takes as input a file path, open this file, and extracts title, content according to
the following pattern:

title:XXXX
content:YYYY

Create a directory extractor to get all the files from the files directory and index them with
LUCENE (do not forget to call the closeIndex() function).

Your index is created. Now, implement a function that considers a list of words given on
the standard input stream for querying the index. Here are some possible searches:

• Information Research

• Research NOT Lucene

• +Research Information

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 362

• "Information Research"

• Researchˆ3 Information

• Research Info*

• title:Research

• Research Information 2̃

• title:{Research TO Information}

17.3.2 Web site indexing (project)

To index the content of a whole Web site, create a class that “crawls” the document belonging
to a given domain (e.g., http://Webdam.inria.fr/). Index the documents content, ex-
tract titles from the appropriate HTML tags (<title> or h1 – hint: use java.util.regex.Matcher).
Once a document is loaded, find the embedded links in order to recursively process the whole
Web site (hint: look for href attributes).

Be careful to not index a document twice, and do not process external links (not belonging
to the given domain), nor images or generally non-html documents.

17.4 LUCENE – Tuning the scoring (project)

As previously discussed, LUCENE computes a score values for each document with respect
to the query terms. This score is based on the tf-idf measures. Here is the detailed scoring
function used in LUCENE:

score(q,d) =∑[tf(td)× idf(t)× boost(t. f ieldd)× lengthNorm(t. f ieldd)]× coord(q,d)× qNorm(q)

where q is the query, d a document, t a term, and:

1. tf is a function of the term frequency within the document (default:
√

f req);

2. idf : Inverse document frequency of t within the whole collection (default: log(numDocs
docFreq+1)+

1);

3. boost is the boosting factor, if required in the query with the “ˆ “ operator on a given
field (if not specified, set to the default field);

4. lengthNorm: field normalization according to the number of terms. Default: 1√
nbTerms

5. coord: overlapping rate of terms of the query in the given document. Default: overlap
maxOverlap

6. qNorm: query normalization according to its length; it corresponds to the sum of square
values of terms’ weight, the global value is multiplied by each term’s weight.

Only underlined functions can be modified in LUCENE: tf, idf, lengthNom and coord. Default
functions are given and can be modified by creating a new Similarity class with overloaded
methods. Specifically:

http://Webdam.inria.fr/

For personal use only, not for distribution. 363

1. Create a new class that inherits the org.apache.lucene.search.DefaultSimilarity class;

2. Overload and implement default similarity functions:

• public float tf(float freq);

• public float idf(int docFreq, int numDocs);

• public float lengthNorm(String fieldName, int numTerms);

• public float coord(int overlap, int maxOverlap);

3. Add some parameters to allow changing the similarity functions as follows:

• tf :
√

f req, 1, f req,
√
(1− f req);

• idf : log(numDocs
docFreq+1) + 1, 1, numDocs

docFreq+1 , log(1− numDocs
docFreq+1) + 1;

• lengthNorm : 1√
numTerms

, 1, 1− 1√
numTerms

;

• coord : overlap
maxOverlap , 1, 1− overlap

maxOverlap ;

4. Change the similarity function in the querying class previously created with:
searcher.setSimilarity(similarity);

5. Compute previous queries with different combinations of similarity functions.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

18 Putting into Practice: Recommendation
Methodologies (by Alban Galland)

This chapter proposes an introduction to recommendation techniques and suggests some
exercises and projects. We do not present a recommendation system in particular but rather
focus on the general methodology. As an illustrative example, we will use the MovieLens
data set to construct movie recommendations.

The chapter successively introduces recommendation, user-based collaborative filtering
and item-based collaborative filtering. It discusses different methods parameterizations and
evaluates their result with respect to the quality of the data set. We show how to generate
recommendations using SQL queries on the MovieLens data set. Finally, we suggest some
projects for students who want to investigate further the realm of recommendation systems.

18.1 Introduction to recommendation systems

Given a set of ratings of items by a set of users, a recommendation system produces a list of
items for a particular user, possibly in a given context. Such systems are widely used in Web
applications. For example, content sites like Yahoo! Movies (movies), Zagat (restaurants),
LibraryThing (books), Pandora (music), StumbleUpon (website) suggest a list of items of
interest by predicting the ratings of their users. E-commerce sites such as Amazon (books) or
Netflix (movies) use recommendations to suggest new products to their users and construct
bundle sales. Usually, they exploit the recent browsing history as a limited context. Finally,
advertisement companies need to find a list of advertisements targeted for their users. Some
of them, like Google AdSense, rely more on the context (e.g., keywords) than on an estimation
of the user’s taste based on her/his recent browsing history. Nevertheless, techniques close
to recommendation methodologies are successfully used, for example, by DoubleClick or
Facebook ads.

One usually distinguishes two kinds of tasks on data: information retrieval and information
filtering. Information retrieval is the problem of answering dynamic queries on static content.
Typical examples are answering keyword queries on the Web or SQL queries on a database.
The general method relies on data modeling, providing structure and semantics to the data,
that is then organized using indexes. Information filtering is the problem of answering static
queries on dynamic content. A typical example is the monitoring of Web server logs. The
general method is to model the queries, which are then organized as filters. Under this
general perspective, recommendation stands between information retrieval and information
filtering: data (the set of ratings) varies slowly at the scale of a user but quickly at the scale of
the system; queries (a user and possibly some context) depend on a few parameters, each
having a wide domain.

Specifically, a recommendation system may either produce top-k ranking (list of “best”
items) or prediction of ratings. The focus of the result may be generic (everyone receives

365

For personal use only, not for distribution. 366

the same recommendations), demographic (everyone in the same category receives the same
recommendations) or personal. In the present chapter, we are mostly interested in personal
recommendation. The context may rely on the user’s current activity or on her/his long-term
interests

The information that serves as a basis to recommendation systems consists of the following
components:

1. the users’ description (e.g., sex, age, localization, profession of the user);

2. the items’ description (e.g., genre, author, date, price of the item);

3. and the ratings matrix, giving the rating of each item by each user.

The ratings matrix is incomplete, being fed only by either acquiring data from the user
(e.g., an item is bought, or a level of interest is explicitly collected), or by monitoring her/his
activity (an item is visited, which gives some hint on the user’s interests). Recommendation
is indeed the process of filling empty cells of the matrix with predicted ratings derived from
the other sources of information, including known ratings.

18.2 Pre-requisites

This chapter uses SQL: we assume the reader familiar with the language. You will need
access to a relational database, for example by installing MYSQL on your computer: see
http://www.mysql.com. Here is a very brief introduction to MYSQL commands (refer to
the Web for information on any other SQL database systems). Assuming that you have an
account on the MYSQL server, the connection is established with:

mysql -h [servername] -P [port] -u [login] -p

The utility asks for your passwords and gives you access to the command-line interpreter.
You may directly type SQL commands, or execute command(s) stored in a file myCom.sql:

mysql> source myCom.sql;

We will play with the MovieLens (http://www.movielens.org) data set to generate
recommendations of movies. The data set must first be imported in your database. Create the
following tables and indexes (the SQL scripts can be found on the book’s site):

Tables creation
c r e a t e table ratingsdata (

userid int ,
itemid int ,
rating int ,
timestamp int ,
primary key (userid, itemid));

c r e a t e table items (
itemid i n t primary key,
title tex t ,
date tex t ,

http://www.mysql.com
http://www.movielens.org

For personal use only, not for distribution. 367

videodate tex t ,
imdb tex t ,
unknown boolean,
action boolean,
adventure boolean,
animation boolean,
childrens boolean,
comedy boolean,
crime boolean,
documentary boolean,
drama boolean,
fantasy boolean,
noir boolean,
horror boolean,
musical boolean,
mystery boolean,
romance boolean,
scifi boolean,
thriller boolean,
war boolean,
western boolean);

c r e a t e table users (
userid i n t primary key,
age int ,
gender char,
occupation tex t ,
zip i n t);

Indexes creation
c r e a t e index usersdata_index on ratingsdata (userid);
c r e a t e index itemsdata_index on ratingsdata (itemid);

You can get the MovieLens 100K Ratings data set from http://www.grouplens.org/
node/73. The files are respectively named u.data, u.item, and u.user. They are loaded
in the database as follows

load data i n f i l e ’[path to u.data]’ into table ratingsdata;
load data i n f i l e ’[path to u.item]’ into table items fields

terminated by ’|’;
load data i n f i l e ’[path to u.user]’ into table users fields

terminated by ’|’;

Table ratingsdata table now contains the list of ratings. Most of the computation
presented further rely on its content. Table items and users contain respectively the list of
movies and the list of users.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://www.grouplens.org/node/73
http://www.grouplens.org/node/73

For personal use only, not for distribution. 368

18.3 Data analysis

The quality of a given recommendation method highly depends on the quality of the input.
It can be characterized by the support (number of users and items, and distribution of the
number of ratings by users and by items) and by the rating quality (distribution of the ratings
by user and by movies). Let us consider the support first, which can be determined by the
following SQL commands:

• number of users, movies and ratings;

s e l e c t count(d i s t i n c t userid) as nbusers,
count(d i s t i n c t itemid) as nbitems, count(*) as nbratings

from ratingsdata;

• distribution of the number of ratings by user (histogram rounded to a precision of 10
ratings);

s e l e c t count(userid) as nbusers, nbratings
from (s e l e c t round(count(itemid)/10,0)*10 as nbratings, userid

from ratingsdata
group by userid

) as nbratingsbyusers
group by nbratings
order by nbratings desc;

• distribution of the number of ratings by movies (histogram rounded to 10 ratings).

s e l e c t count(itemid) as nbitems, nbratings
from (s e l e c t round(count(userid)/10,0)*10 as nbratings, itemid

from ratingsdata
group by itemid

) as nbratingsbyitems
group by nbratings
order by nbratings desc;

1. Run the queries and examine the result. Note first that there is no user with less than
20 ratings, since such users have already been filtered out by MoviesLens. However,
one can find some movies with very few ratings. Recommending an item with a small
support yields unreliable results. The problem is known as “cold-start” in the area of
recommendation system, and is difficult to solve: we will not elaborate further on this
aspect.

2. Can you determine the law followed by these distributions? This law is frequently
observed in practice, and means that a few users are very productive and a few items
are very famous, while the huge majority of items are hardly rated by any user. A good
recommendation method should avoid giving more importance to items or users based
on their number of ratings, since quantity does not always implies quality.

For personal use only, not for distribution. 369

We now examine the quality of the ratings with the following SQL queries:

• average rating

s e l e c t avg(rating) as avgrating
from ratingsdata;

• ratings distribution

s e l e c t count(*) as nbratings, rating
from ratingsdata
group by rating
order by rating desc;

• distribution of the average ratings by users (histogram rounded to 0.1)

s e l e c t count(userid) as nbusers, avgrating
from (s e l e c t round(avg(rating),1) as avgrating, userid

from ratingsdata
group by userid

) as avgratingbyusers
group by avgrating
order by avgrating desc;

• distribution of the average ratings by movies (histogram rounded to 0.1)

s e l e c t count(itemid) as nbitems, avgrating
from (s e l e c t round(avg(rating),1) as avgrating, itemid

from ratingsdata
group by itemid

) as avgratingbyitems
group by avgrating
order by avgrating desc;

Run the queries and examine the result. Can you determine the distribution law? What
happens regarding the distribution of the average ratings by movies, compared to the natural
expectation? Try to figure out what would be the normal curve for such an application, and
explain the “picks” associated to each rounded rating. Also note the curve behavior for
extreme values, and provide an explanation. Finally note that the distribution of ratings is
not centered. Why?

As for most data analysis tasks, raw data has to be cleaned up during a preprocessing
step. We will limit ourselves to the centering of the ratings distribution. This normalization
makes easier the comparison of the users’ behavior. A more involved normalization would,
among others, also correct the standard deviation. This is left as an exercise. The centering is
obtained by the following query:

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 370

c r e a t e table ratings (
userid int ,
itemid int ,
rating int ,
timestamp int ,
primary key (userid, itemid));

c r e a t e index usersratings_index on ratings (userid);
c r e a t e index itemsratings_index on ratings (itemid);
i n s e r t into ratings (userid,itemid,rating,timestamp)

(s e l e c t ratingsdata.userid, ratingsdata.itemid,
ratingsdata.rating-avgratingbyusers.avgrating,
ratingsdata.timestamp

from ratingsdata,
(s e l e c t userid, avg(rating)

from ratingsdata
group by userid

) as avgratingbyusers
where ratingsdata.userid=avgratingbyusers.userid

);

18.4 Generating some recommendations

18.4.1 Global recommendation

Global recommendation roughly retrieves the movies with the best average rating. The query
is straightforward:

s e l e c t title, avgrating, nbratings
from items,

(s e l e c t round(avg(rating),1) as avgrating,
count(userid) as nbratings, itemid

from ratings
group by itemid
order by avgrating desc
l i m i t 10

) as avgratingbyitems
where items.itemid = avgratingbyitems.itemid
order by avgrating desc;

If you carefully look at the result, you should observe that items with the best average
ratings are those with a very small support (only a few ratings are known). This is a classic
problem in statistics: an estimation of the average cannot be accurate if the support is too small.
Problems related to the low quality of the support are very common in recommendation. In
practice, a safe rule is to base any estimation on at least ten measurements. How can you
correct the query to obtain a better result? Write and run the corrected query.

The next query retrieves the 40 movies with the largest number of ratings.

s e l e c t title, items.itemid, avgrating, nbratings

For personal use only, not for distribution. 371

from items,
(s e l e c t round(avg(rating),1) as avgrating,

count(userid) as nbratings, itemid
from ratings
group by itemid
order by nbratings desc
l i m i t 40

) as avgratingbyitems
where items.itemid = avgratingbyitems.itemid
order by nbratings desc;

Pick 20 of those movies (if possible those you know) and give them a rating using the
command:

c r e a t e table me (
itemid i n t primary key,
rating i n t);

i n s e r t into me values (id1,rating1), (id2,rating2), ... (id20,rating20);

You may want to check your updates with:

s e l e c t title, me.itemid, rating
from me, items
where me.itemid=items.itemid;

We will use this table to compute some movie recommendations for you. Keep in mind
that in a real recommendation system, one has to find recommendation for every user, so
scaling is a real issue.

18.4.2 User-based collaborative filtering

The collaborative filtering class of methods focuses on the ratings matrix and ignores the users
or items description. It usually proceeds in two steps: first the correlation step determines a
similarity between users (for the user-based approach) or between items (item-based), then
the aggregation step predicts new rating from this similarity information.

user users ratingscorrelation aggregation

Figure 18.1: User-based collaborative filtering

In the case of user-based collaborative filtering (Figure 18.1), the correlation between a pair
of users is computed by comparing their ratings. For simplicity (and efficiency), we only
compute the correlation between you and all the other users. Then the ratings of these users
for a given item are aggregated to predict the rating of the initial user for this item.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 372

Correlation

There exist several possible measures of correlations. Let Ui be the vector of ratings of user ui
(seen as a line), then

• the scalar product similarity is:

sim(uj,ul) = Uj
tUl

• the cosine similarity is:

sim(uj,ul) =
Uj

tUl

‖Uj‖‖Ul‖

The cosine correlation is obtained by the following query:

s e l e c t distances.userid as userid, dist/(sqrt(my.norm)*sqrt(users.norm))
as score

from (s e l e c t userid, sum((me.rating)*(ratings.rating)) as dist
from ratings, me
where me.itemid = ratings.itemid
group by userid

) as distances,
(s e l e c t userid, sum((rating)*(rating)) as norm

from ratings
group by userid

) as users,
(s e l e c t sum((rating)*(rating)) as norm

from me
) as my

where users.userid = distances.userid
order by score desc
l i m i t 30;

You can compare the ratings of user ui to yours with the following query:

s e l e c t me.itemid as itemid, me.rating as myrating,
ratings.rating as herrating

from ratings, me
where userid=ui and ratings.itemid=me.itemid
order by me.itemid;

You should observe that the estimation of the correlation is not accurate for pairs of users
with a small support (i.e., users who rated only a few common items). How can you modify
the correlation formula to take the support into account? You should in particular try the
other formula suggested above. This should lead to the conclusion that there is a trade-off
regarding the support: giving too much weight to the support may bias the result toward
popular items, whereas simply ignoring it leads to a bad estimation quality.

We used the normalized table in the SQL commands. What could happen if we had used
the initial, non-normalized data?

For personal use only, not for distribution. 373

We keep the correlated users whose behavior is close to yours, into the sim table, using the
following command:

c r e a t e table sim (
userid i n t primary key,
score double);

i n s e r t into sim (userid,score)
(s e l e c t ...)

Recommendation

Let r̂(ui, ik) be the rating prediction of user ui and item ik and let St(ui) be the user highly
correlated with ui (the users that you put in the sim table). The following formula represent
some possible ways of computing aggregated values:

• Means on the best users (the rating of a user for an item is considered to be equal to 0 if
it does not exist in the rating matrix).

r̂(uj, ik) =
1

|St(uj)| ∑
ul∈St(uj)

r(ul , ik)

• Weighted average on the best users.

r̂(uj, ik) =
∑ul∈St(uj) sim(uj,ul)r(ul , ik)

∑ul∈St(uj) sim(uj,ul)

The means aggregation is obtained by:

s e l e c t title, items.itemid, score, nbratings
from items,

(s e l e c t itemid, sum(ratings.rating)/simsize.size as score,
count(sim.userid) as nbratings

from sim, ratings,
(s e l e c t count(*) as size from sim) as simsize

where sim.userid= ratings.userid
group by itemid
order by score desc
l i m i t 10

) as itemscores
where items.itemid = itemscores.itemid
order by score desc;

You probably want to remove the movies that you already know by adding the following
filter to the where clause:

and itemid not in (s e l e c t itemid from me)

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 374

You may also want to see the movies you probably dislike, replacing desc by asc in the
previous command.

1. We used the normalized table. What may happen if you use the raw data?

2. You may have already observed that we kept only the 30 closest users. Try a different
number as intermediate seeds (clean first the sim table with delete from sim;).
Usually, the choice of St(ui) is very sensitive. If you are too selective, you get results
with very small support (few aggregated ratings by items), and a bad estimation. If you
are not selective enough, you get results very close to the global recommendation (the
majority wins), and thus a bad precision. This is another illustration of the concerns
related to the support: there is a trade-off between sparsity (bad estimation) and noise
(bad precision).

3. To soften the previous problem, one may try to estimate the quality of the correlation.
For example, try the weighted average (or even a quadratic weight). Try also to use a
threshold on the value of the correlation

18.4.3 Item-based collaborative filtering

item items ratingscorrelation aggregation

Figure 18.2: Item-based collaborative filtering

For item-based collaborative filtering (Figure 18.2), we compute the correlation between
any pairs of items by comparing their ratings. We then aggregate the ratings of a user for these
items to predict the rating of this user for the initial item. To avoid too much computation
time, you may only compute the correlation between all items and yours. Let Ik be the vector
of ratings of item ik (seen as a column). You may use:

sim(il , ik) =
tIl Ik

r̂(uj, ik) =
1

|St(ik)| ∑
il∈St(ik)

r(uj, il)

1. How can you rewrite the previous queries to do item-based collaborative filtering?

2. What is usually the benefit of using item-based collaborative filtering instead of user-
based collaborative filtering, from the support point of view? In particular, what changes
if some attacker in the system attempts to improve the recommendation of some items
by adding new ratings?

18.5 Projects

The following projects outline some suggestions to extend the basic recommendation scheme
presented above.

For personal use only, not for distribution. 375

18.5.1 Scaling

So far, we limited the computation to recommendations for a single user. In general, recom-
mendation systems attempt to provide recommendations to every of their users. Several
methods can be envisaged to achieve scalability:

1. distribution,

2. clustering methods to group similar users and similar items,

3. or by reducing the dimension on the ratings matrix.

Any of these methods can be used as a starting point for a project aiming at scalable
computation of the recommendations. Distribution is a suitable objective if you wish to
investigate in the context of a practical project some of the main techniques described in
the book. You could for instance design and experiment the computation of the correlation
and aggregation indicators with the MAPREDUCE paradigm, taking the opportunity of
implementing your functions in one of the systems that we present in other Putting into
Practice chapters (e.g., HADOOP or COUCHDB).

18.5.2 The probabilistic way

Some recommendation methods are fully based on a probabilistic model. In general, they
consist in choosing a probabilistic model of generation (e.g., using Markov Chains), followed
by an estimation of the model parameters (e.g., using Expectation Maximization). The
project can be conducted by finding academic references to model-based recommendation.
You should then choose a probabilistic model of generation and use the standard statistics
methods to estimate the ratings.

18.5.3 Improving recommendation

Many refinements can improve the recommendations obtained by the basic methods pre-
sented here. In particular, in some cases, content filtering, i.e., prediction of ratings given the
description of items and users, provides some useful additional information. The description
can also be used to increase diversity. For example, one may look for the list of items that
maximize the sum of aggregated ratings under the constraint that the elements do not share
all their attributes. The description of users and items are respectively in the files u.user
and u.item of the MovieLens database. The imdb field of the item table can be used to get
more attributes from the IMDB database.

Another standard improvement is to manage more precisely serendipity, i.e., to suggest
items that are more risked. It may happen for instance that an item has been rated by only
few users. If it turns out that all of them are enthusiastic, it may be worth proposing the
item even if the support is low. For example, in user-based collaborative filtering the first
aggregation function can be modified to base the means only on users who have produced
ratings. It yields the same problem of trade-off between sparsity and noise

Taking context into account to filter the recommendation results is another interesting
issue. For example, one may try to produce a recommendation for a given bag of keywords
looked up in the attributes of the items. Explanation is another direction of improvement
of recommendation (i.e., help the user to understand why s/he got this recommendation).

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 376

The cold start problem (users or items with very few ratings) is also an important topic of
research and can be easily experimented. Recommendation can benefit from interacting with
the user to modify the recommendation process based on feedback. Finally, one may try to
recommend to a group of users instead of a single user.

The project will try to improve the recommendation in some of these directions.

19 Putting into Practice: Large-Scale Data
Management with HADOOP

The chapter proposes an introduction to HADOOP and suggests some exercises to initiate
a practical experience of the system. The following assumes that you dispose of a Unix-
like system (Mac OS X works just fine; Windows requires Cygwin). HADOOP can run in
a pseudo-distributed mode which does not require a cluster infrastructure for testing the
software, and the main part of our instructions considers this mode. Switching to a real cluster
requires some additional configurations that are introduced at the end of the chapter. Since
HADOOP is a relatively young system that steadily evolves, looking at the on-line, up-to-date
documentation is of course recommended if you are to use it on a real basis. We illustrate
HADOOP, MAPREDUCE and PIG manipulations on the DBLP data set, which can be retrieved
from the following URL:

http://dblp.uni-trier.de/xml/

Download the dblp.dtd and dblp.xml files. The latter is, at the time of writing, almost 700 MB.
Put both files in a dblp directory. In addition, you should take some smaller files extracted
from the DBLP archive, that we make available on the book web site.

The content of the dblp directory should be similar to the following:

ls -l dblp/
total 705716
-rw-r--r-- 1 webdam webdam 108366 author-medium.txt
-rw-r--r-- 1 webdam webdam 10070 author-small.txt
-rw-r--r-- 1 webdam webdam 7878 dblp.dtd
-rw-r--r-- 1 webdam webdam 720931885 dblp.xml
-rw-r--r-- 1 webdam webdam 130953 proceedings-medium.txt
-rw-r--r-- 1 webdam webdam 17151 proceedings-small.txt

19.1 Installing and running HADOOP

First, get a stable release from the HADOOP site (http://hadoop.apache.org/) and
unpack the archive on your machine. In order to set up your environment, you need a
HADOOP_HOME variable that refers to the HADOOP installation directory. For instance:

export HADOOP_HOME=/users/webdam/hadoop

This can also be set up in the /path/to/hadoop/conf/hadoop-env.sh script. HADOOP features
a command-line interpreter, written in Java, named hadoop. Add the HADOOP_HOME/bin
directory to your path, as follows:

export PATH=$PATH:$HADOOP_HOME/bin

377

http://hadoop.apache.org/

For personal use only, not for distribution. 378

You should be able to run hadoop:

bash-3.2$ hadoop version
Hadoop 0.20.2

Now, you are ready to make some preliminary tests with HADOOP. We will begin with
simple filesystem manipulations, in a mode called “pseudo-distributed” which runs the
HADOOP servers on the local machine. In order to set up this mode, you need first to edit the
conf/core-site.xml configuration file (all relative paths are rooted at $HADOOP_HOME) to add
the following parameters.

<configuration>
<property>

<name>fs.default.name</name>
<value>hdfs://localhost:9000</value>

</property>
</configuration>

This tells HADOOP that the current installation runs with a local HDFS Master node (the
“NameNode" in HADOOP terminology) on the port 9000. The file system is initialized with
the format command:

$ hadoop namenode -format

This initializes a directory in /tmp/hadoop-<username>/dfs/name. The hadoop program is a
Java command-line interpreter used to execute HADOOP commands. The general usage is:

$ hadoop <command> [parameters]

where command is one of namenode (commands sent to the Master node), fs (filesystem
commands), job (commands that control MAPREDUCE jobs), etc.

Once the file system is formatted, you must launch the HDFS Master node (namenode).
The name node is a process responsible for managing file server nodes (called datanodes in
HADOOP) in the cluster, and it does so with ssh commands. You must check that SSH is
properly configured and, in particular, that you can log in the local machine with SSH without
having to enter a passphrase. Try the following command:

$ ssh localhost

If it does not work (or if you are prompted for a passphrase), you must execute the following
commands:

$ ssh-keygen -t dsa -P ’’ -f ~/.ssh/id_dsa
$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

This generates a new SSH key with an empty password. Now, you should be able to start
the namenode server:

$ start-dfs.sh &

For personal use only, not for distribution. 379

This launches a namenode process, and a datanode process on the local machine. You
should get the following messages

starting namenode, logging to (...)
localhost: starting datanode, logging to (...)
localhost: starting secondarynamenode, logging to (...)

The secondary namenode is a mirror of the main one, used for failure recovery. At this
point you can check that the HDFS is up and running with

$ hadoop fs -ls /

and look for errors If anything goes wrong, you must look at the log files that contain a
lot of report messages on the initialization steps carried out by the start procedure. Once the
servers are correctly launched, we can copy the dblp directory in the HDFS file system with
the following command:

$ hadoop fs -put dblp/ /dblp

This creates a dblp directory under the root of the HDFS filesystem hierarchy. All the basic
filesystem commands can be invoked through the hadoop interface. Here is a short session
that shows typical Unix-like file manipulations.

$ hadoop fs -ls /dblp/dblp*
Found 2 items
-rw-r--r-- 1 wdmd supergroup 7878 2010-03-29 10:40 /DBLP/dblp.dtd
-rw-r--r-- 1 wdmd supergroup 719304448 2010-03-29 10:40 /DBLP/dblp.xml
$ hadoop fs -mkdir /DBLP/dtd
$ hadoop fs -cp /DBLP/dblp.dtd /DBLP/dtd/
$ hadoop fs -ls /DBLP/dtd
Found 1 items
-rw-r--r-- 1 wdmd supergroup 7878 2010-03-29 10:55 /DBLP/dtd/dblp.dtd
$ hadoop fs -get /DBLP/dtd/dblp.dtd my.dtd
bash-3.2$ ls -l my.dtd
-rw-r--r-- 1 wdmd staff 7878 29 mar 10:56 my.dtd

The output of the ls command is quite similar to the standard Unix one, except for the
second value of each line that indicates the replication factor in the distributed file system. The
value is, here, 1 (no replication), the default parameter that can be set in the conf/hdfs-site.xml
configuration file.

<?xml version="1.0"?>
<configuration>

<property>
<name>dfs.replication</name>
<value>1</value>

</property>
</configuration>

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 380

Figure 19.1: Browsing the HDFS file system

The Namenode also instantiates a rudimentary web server at http://localhost:50070/. It shows
some information on the current status of the file system and provides a simple Web interface
to browse the file hierarchy. Figure 19.1 shows a screen shot of this interface, with the list of
our sample files loaded in the HDFS server. Note the replication factor (here, 1) and the large
block size of 64 MBs.

19.2 Running MAPREDUCE jobs

We can now run MAPREDUCE job to process data files stored in HDFS. The following gives
first an example that scans text files extracted from the DBLP data set. We then suggest some
improvements and experiments. You must first start the MAPREDUCE servers:

start-mapred.sh

Our example processes data files extracted from the DBLP data set and transformed in flat
text files for simplicity. You can take these data inputs of various sizes, named authors-xxx.txt
from the book web site, along with the Java code. The smallest file size is a few KBs, the
largest 300 MBs. These are arguably small data sets for HADOOP, yet sufficient for an initial
practice.

The file format is pretty simple. It consists of one line for each pair (author, title), with
tab-separated fields, as follows.

<author name> <title> <year>

Our MAPREDUCE job counts the number of publications found for each author. We
decompose the code in two Java files, available as usual from the site. The first one, below,
provides an implementation of both the MAP and REDUCE operations.

package myHadoop;

/**
* Import the necessary Java packages

For personal use only, not for distribution. 381

*/

import java.io.IOException;
import java.util.Scanner;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;

/**
* A Mapreduce example for Hadoop. It extracts some basic

* information from a text file derived from the DBLP data set.

*/
public c l a s s Authors {

/**
* The Mapper class -- it takes a line from the input file and

* extracts the string before the first tab (= the author name)

*/
public s t a t i c c l a s s AuthorsMapper extends

Mapper<LongWritable, Text, Text, IntWritable> {

private f i n a l s t a t i c IntWritable one = new IntWritable(1);
private Text author = new Text();

public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {

/* Open a Java scanner object to parse the line */
Scanner line = new Scanner(value.toString());
line.useDelimiter("\t");
author.set(line.next());
context.write(author, one);

}
}

/**
* The Reducer class -- receives pairs (author name, <list of counts>)

* and sums up the counts to get the number of publications per author

*/
public s t a t i c c l a s s CountReducer extends

Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values,
Context context)

throws IOException, InterruptedException {

/* Iterate on the list to compute the count */
i n t count = 0;
for (IntWritable val : values) {

count += val.get();
}
result.set(count);

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 382

context.write(key, result);
}

}
}

HADOOP provides two abstract classes, Mapper and Reducer, which must be extended
and specialized by the implementation of, respectively, a map() and reduce() methods. The
formal parameters of each abstract class describe respectively the types of the input key, input
value, output key and output value. The framework also comes with a list of serializable
data types that must be used to represent the values exchanged in a MAPREDUCE workflow.
Our example relies on three such types: LongWritable (used for the input key, i.e., the
line number), IntWritable (used for counting occurrences) and Text (a generic type
for character strings). Finally, the Context class allows the user code to interact with the
MAPREDUCE system.

So, consider first the map() method of our (extended) Mapper class AuthorMapper. It
takes as input pairs (key, value), key being here the number of the line from the input file
(automatically generated by the system, and not used by our function), and value the line
itself. Our code simply takes the part of the line that precedes the first tabulation, interpreted
as the author name, and produces a pair (author, 1).

The reduce() function is almost as simple. The input consists of a key (the name of an author)
and a list of the publication counts found by all the mappers for this author. We simply iterate
on this list to sum up these counts.

The second Java program shows how a job is submitted to the MAPREDUCE environment.
The comments in the code should be explicit enough to inform the reader. An important
aspect is the Configuration object which loads the configuration files that describe our
MAPREDUCE setting. The same job can run indifferently in local or distributed mode, de-
pending on the configuration chosen at run time. This allows to test a (map, reduce) pair of
functions on small, local data sets, before submitted a possibly long process.

package myHadoop;

/**
* Example of a simple MapReduce job: it reads

* file containing authors and publications, and

* produce each author with her publication count.

*/

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import myHadoop.Authors;

/**
* The follozing class implements the Job submission, based on

For personal use only, not for distribution. 383

* the Mapper (AuthorsMapper) and the Reducer (CountReducer)

*/
public c l a s s AuthorsJob {

public s t a t i c void main(String[] args) throws Exception {

/*
* Load the Haddop configuration. IMPORTANT: the

* $HADOOP_HOME/conf directory must be in the CLASSPATH

*/
Configuration conf = new Configuration();

/* We expect two arguments */

i f (args.length != 2) {
System.err.println("Usage: AuthorsJob <in> <out>");
System.exit(2);

}

/* Allright, define and submit the job */
Job job = new Job(conf, "Authors count");

/* Define the Mapper and the Reducer */
job.setMapperClass(Authors.AuthorsMapper. c l a s s);
job.setReducerClass(Authors.CountReducer. c l a s s);

/* Define the output type */
job.setOutputKeyClass(Text. c l a s s);
job.setOutputValueClass(IntWritable. c l a s s);

/* Set the input and the output */
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

/* Do it! */
System.exit(job.waitForCompletion(t rue) ? 0 : 1);

}
}

The second object of importance is the instance of Job that acts as an interface with the
MAPREDUCE environment for specifying the input, the output, and the map() and reduce()
functions. Our example presents the bare minimal specification.

The Job can be directly run as java AuthorsJob <inputfile> <outputdir>. It
produces an output directory outputdir (which must not exist prior to the job execution)
with a set of files, one for each reducer, containing the result. Be sure to add all the HADOOP

Jar files (found in HADOOP home directory) in your CLASSPATH before running the job. Here
is for instance a part of the result obtained by processing the author-small.txt data file:

(...)
Dominique Decouchant 1
E. C. Chow 1
E. Harold Williams 1

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 384

Edward Omiecinski 1
Eric N. Hanson 1
Eugene J. Shekita 1
Gail E. Kaiser 1
Guido Moerkotte 1
Hanan Samet 2
Hector Garcia-Molina 2
Injun Choi 1
(...)

Note that the authors are alphabetically ordered, which is a desirable side effect of the map
reduce framework. Sorting is done during the shuffle phase to bring together intermediate
pairs that share the same key value.

19.3 PIGLATIN scripts

PIGLATIN can be found at http://hadoop.apache.org/pig/. Download a recent and stable archive,
and uncompress it somewhere (say, in $home/pig). Add the pig/bin subdirectory to your path
variable (change the directories to reflect your own setting):

$ export PATH=$HOME/pig/bin:$PATH

Check that the command-line interface is ready. The pig -x local should produce the
following output.

$ pig -x local
[main] INFO org.apache.pig.Main - Logging error messages to: xxx.log
grunt>

PIG accepts commands from an interpreter called grunt which runs either in “local” mode
(files are read from the local filesystem) or “MAPREDUCE” mode. The former is sufficient to
take a grasp on the main features of PIGLATIN. It is also useful for testing new scripts that
could run for hours on large collections.

We refer to the presentation of PIGLATIN that can be found in the chapter devoted to
distributed computing. Running PIGLATIN with the command line interpreter is a piece of
cake. As an initial step, we invite the reader to run a script equivalent to the MAPREDUCE Job
described in the previous section.

19.4 Running in cluster mode (optional)

We give now some hints to run HADOOP in a real cluster. As far as experimental data
manipulations are involved, this is not really necessary, because neither the principles nor
the code change depending on the pseudo-distributed mode. If you need to process really
large data sets, and/or use HADOOP in real-life environment, a real cluster of machines is
of course required. Understanding the architecture of a real HADOOP cluster may also be
interesting on its own. You need, of course, at least two connected machines, preferably
sharing a regular distributed filesystem like NFS, with system administration rights. Before
going further, please note that if your objective is real-life processing of large data sets,

For personal use only, not for distribution. 385

you do not need to set up your own cluster, but can (at least for some non-committing
experiments) use a cloud computing environment supporting HADOOP, e.g., Amazon Web
Services (http://aws.amazon.com) or Cloudera (http://www.cloudera.com) to name a few.

19.4.1 Configuring HADOOP in cluster mode

Most of the parameters that affect the running mode of HADOOP are controlled from the
configuration files located in the conf directory. In order to switch easily from one mode
to the other, you can simply copy conf as (say) conf-cluster. The choice between the two
configurations is set by the environement variable HADOOP_CONF_DIR. Set this variable to
the chosen value:

export HADOOP_CONF_DIR=$HADOOP_HOME/conf-cluster

For simplicity, we assume that all the nodes in the cluster share the same configuration file
(accessible thanks to a NFS-like distribution mechanism). If your machines are heterogeneous,
you may have to refine the configuration for each machine.

The slaves file contains the list of nodes in the cluster, referred to by their name or IP. Here
is for instance the content of slaves for a small 10-node cluster located at INRIA:

node1.gemo.saclay.inria.fr
node2.gemo.saclay.inria.fr
node3.gemo.saclay.inria.fr
...
node10.gemo.saclay.inria.fr

There exists a masters file, which contains the name of the secondary Nameserver. You can
leave it unchanged.

Before attempting to start your cluster, you should look at the XML configuration file core-
site.xml, hdfs-site.xml and mapred-site.xml. They contain parameter (or “properties”) relative
respectively to core HADOOP, HDFS and MAPREDUCE. Here is for instance a self-commented
hdfs-site.xml file with some important properties.

<?xml version="1.0"?>

<configuration>
<! Amount of replication of

each data chunk -->
<property>

<name>dfs.replication</name>
<value>3</value>

</property>

<!-- Disk(s) and directory/ies
for filesystem info -->

<property>
<name>dfs.name.dir</name>
<value>/disk1/hdfs/name</value>

</property>

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 386

<!-- Disk(s) and directory/ies
for data chunks -->

<property>
<name>dfs.data.dir</name>
<value>/disk1/hdfs/data</value>

</property>
</configuration>

19.4.2 Starting, stopping and managing HADOOP

HADOOP servers are launched with the start-dfs.sh script (located in bin). It starts the Namen-
ode on the local machine (that is, the machine the script is run on), one datanode on each of the
machines listed in the slaves file, and a secondary Namenode on the machine listed in the mas-
ters file. These scripts report error messages in log files located in the HADOOP_HOME/logs
directory. Before your cluster is up and running, you will probably have to inspect these
files more than once to find and correct the (hopefully small) problems specific to your
environment. The HDFS system is of course halted with stop-dfs.sh.

A MAPREDUCE environment is launched with the start-mapred.sh script which starts a
JobTracker (a MAPREDUCE Master node) on the local machine, and a tasktracker (the Workers
in Google MAPREDUCE terminology) on the machines listed in slaves.

Another useful script is hadoop-env.sh where many parameters that affect the behavior of
HADOOP can be set. The memory buffer used by each node is for instance determined by
HADOOP_HEAPSIZE. The list of these parameters goes beyond the scope of this introduction:
we refer the reader to the online documentation.

19.5 Exercises

If you succesfully managed to run the above examples, you are ready to go further in the
discovery of HADOOP and its associated tools.

Exercise 19.5.1 (Combiner functions) Once a map() function gets executed, it stores its result on
the local filesystem. This result is then transferred to a Reducer. The performance of the Job may
therefore be affected by the size of the data. A useful operation is thus to limit the size of the MAP

result before network transmission: HADOOP allows the specification of Combiner functions to this
end. This can be seen as performing locally (that is, on the Mapper) a part of the REDUCE task at the
end of the MAP phase.

Not all Jobs are subject to Combiner optimization. Computing the average of the intermediate
pairs value for instance can only be done by the Reducer. In the case of associate functions like
count(), a Combiner is quite appropriate. The exercise consists in defining a Combiner function for
the MAPREDUCE job of Section 19.2. We let the reader investigate the HADOOP documentation (in
particular Java APIs) to learn the interface that allows to define and run Combiner functions.

Exercise 19.5.2 Consider the XML files representing movies. Write MAPREDUCE jobs that take
these files as input and produce the following flat text files with tab-separated fields:

For personal use only, not for distribution. 387

• title-and-actor.txt: each line contains the title, the actor’s name, year of birth and role.
Example:

The Social network Jesse Eisenberg 1983 Mark Zuckerberg
The Social network Mara Rooney 1985 Erica Albright
Marie Antoinette Kirsten Dunst 1982 Marie-Antoinette

• director-and-title.txt: each line contains the director’s name and the movie title.
Example:

David Fincher The Social network 2010
Sofia Coppola Lost in translation 2003
David Fincher Seven 1995

You must write an input function that reads an XML file and analyzes its content with either SAX
or DOM: refer to the PiP chapter on the XML programming APIs.

Exercise 19.5.3 Run the following PIGLATIN queries on the files obtained from the previous exercise.

1. Load title-and-actor.txt and group on the title. The actors (along with their roles)
should appear as a nested bag.

2. Load director-and-title.txt and group on the director name. Titles should appear as
a nested bag.

3. Apply the cogroup operator to associate a movie, its director and its actors from both sources.

4. Write a PIG program that retrieves the actors that are also director of some movie: output a tuple
for each artist, with two nested bags, one with the movies s/he played a role in, and one with the
movies s/he directed.

5. write a modified version that looks for artists that were both actors and director of a same movie.

Exercise 19.5.4 (Inverted file project) The goal of the project is to build a simple inverted file using
a MAPREDUCE job. You can either use Java programming, or PIG programs with a few additional
functions used to process character strings and compute tf and idf indicators.

Design and implement a process that takes as input a set of text files (consider for instance the
abstracts of our movies collection) and outputs a list of the terms found in the texts, along with their
frequency. Associate to each term the list of documents, along with the idf indicator.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

20 Putting into Practice: COUCHDB, a JSON
Semi-Structured Database

This PiP chapter proposes exercises and projects based on COUCHDB, a recent database
system which relies on many of the concepts presented so far in this book. In brief:

1. COUCHDB adopts a semi-structured data model, based on the JSON (JavaScript Object
Notation) format; JSON offers a lightweight alternative to XML;

2. a database in COUCHDB is schema-less: the structure of the JSON documents may vary
at will depending on their specific features;

3. in order to cope with the absence of constraint that constitutes the counterpart of this
flexibility, COUCHDB proposes an original approach, based on structured materialized
views that can be produced from document collections;

4. views are defined with the MAPREDUCE paradigm, allowing both a parallel computa-
tion and incremental maintenance of their content;

5. finally, the system aspects of COUCHDB illustrate most of the distributed data man-
agement techniques covered in the last part of the present book: distribution based on
consistent hashing, support for data replication and reconciliation, horizontal scalability,
parallel computing, etc.

COUCHDB is representative of the emergence of so-called key-value store systems that
give up many features of the relational model, including schema, structured querying and
consistency guarantees, in favor of flexible data representation, simplicity and scalability. It
illustrates the “No[tOnly]SQL” trend with an original and consistent approach to large-scale
management of “documents” viewed as autonomous, rich pieces of information that can be
managed independently, in contrast with relational databases which take the form of a rich
graph of interrelated flat tuples. This chapter will help you to evaluate the pros and cons of
such an approach.

We first introduce COUCHDB and develop some of its salient aspects. Exercises and projects
follow. As usual, complementary material can be found on the Web site, including JSON data
sets extracted from the DBLP source. We also provide an on-line testing environment that lets
you play with COUCHDB, insert data and run MAPREDUCE scripts.

20.1 Introduction to the COUCHDB document database

This section is an introduction to the COUCHDB features that will be explored in the project
and exercises. We left apart many interesting aspects (e.g., security, load balancing, view man-
agement) that fall beyond the scope of this introductory chapter. The presentation successively
covers the data model, the definition of views, and data replication and distribution.

389

For personal use only, not for distribution. 390

20.1.1 JSON, a lightweight semi-structured format

JSON is a simple text format initially designed for serializing Javascript objects. For the
record, Javascript is a scripting language (distinct from Java) which is intensively used in Web
browsers for “dynamic HTML” applications. In particular, a Javascript function can access
and modify the DOM tree of the document displayed by a browser. Any change made to
this document is instantaneously reflected in the browser window. This gives a means to
react to user’s actions without having to request a new page from the server (a development
technique know as AJAX), and therefore enables the creation of rich, interactive client-side
applications.

Although JSON comes from the Javascript world, the format is language-independent.
There exist libraries in all programming languages to read and parse JSON documents, which
makes it a simple alternative to XML. This is particularly convenient when persistent data
must be tightly integrated in a programming environment because objects can be instantiated
from the JSON serialization with minimal programming effort.

Key-value pairs

The basic construct of JSON is a key-value pair of the form "key": value. Here is a first example,
where the value is a character string:

"title": "The Social network"

Usual escaping rules apply: the character ’"’ for instance must be escaped with ’\’. Special
characters like tabs and newlines are also escaped:

"summary": "On a fall night in 2003, Harvard undergrad and computer\n
programming genius Mark Zuckerberg sits down at his computer\n
and heatedly begins working on a new idea. (...)"

JSON accepts a limited set of basic data types: character strings, integers, floating-point
numbers and Booleans (true or false). Non-string values need not be surrounded by ’"’.

"year": 2010

Complex values: objects and arrays

Complex values are built with two constructors: objects and arrays. An object is an unordered
set of name/value pairs, separated by commas, and enclosed in braces. The types can be
distinct, and a key can only appear once. The following is an object made of three key-value
pairs.

{"last_name": "Fincher", "first_name": "David", "birth_date": 1962}

Since constructors can be nested, an object can be used as the (complex) value component
of a key-value construct:

For personal use only, not for distribution. 391

"director": {
"last_name": "Fincher",
"first_name": "David",
"birth_date": 1962

}

An array is an ordered collection of values that need not be of the same type (JSON
definitely does not care about types). The list of values is enclosed in square brackets []. The
following key-value pairs represents a list of actors’ names.

"actors": ["Eisenberg", "Mara", "Garfield", "Timberlake"]

JSON documents

A document is an object. It can be represented with an unbounded nesting of array and object
constructs, as shown by the following example which provides a JSON representation of the
movie The Social Network.

{
"title": "The Social network",
"year": "2010",
"genre": "drama",
"summary": "On a fall night in 2003, Harvard undergrad and computer
programming genius Mark Zuckerberg sits down at his computer
and heatedly begins working on a new idea. In a fury of blogging
and programming, what begins in his dorm room soon becomes a global
social network and a revolution in communication. A mere six years
and 500 million friends later, Mark Zuckerberg is the youngest
billionaire in history... but for this entrepreneur, success leads
to both personal and legal complications.",
"country": "USA",

"director": {
"last_name": "Fincher",
"first_name": "David",
"birth_date": "1962"

},
"actors": [

{
"first_name": "Jesse",
"last_name": "Eisenberg",
"birth_date": "1983",
"role": "Mark Zuckerberg"

},
{

"first_name": "Rooney",
"last_name": "Mara",
"birth_date": "1985",
"role": "Erica Albright"

},

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 392

{
"first_name": "Andrew",
"last_name": "Garfield",
"birth_date": "1983",
"role": " Eduardo Saverin "

},
{

"first_name": "Justin",
"last_name": "Timberlake",
"birth_date": "1981",
"role": "Sean Parker"

}
]

}

To summarize, JSON relies on a simple semi-structured data model, and shares with XML
some basic features: data is self-described, encoded independently from any application or
system, and the representation supports simple but powerful constructs that allow building
arbitrarily complex structures. It is obvious that any JSON document can be converted to an
XML document. The opposite is not true, at least if we wish to maintain all the information
potentially conveyed by XML syntax. Namespaces are absent from JSON, documents are
always encoded in UTF-8, and the language lacks from a built-in support for references (the
ID-IDREF mechanism in XML).

Moreover, at the time of writing, there is nothing like a “JSON schema” that could help to
declare the structure of a JSON database (some initiatives are in progress: see the references).
The attractiveness from JSON comes primarily from its easy integration in a development
framework, since a JSON document can directly be instantiated as an object in any program-
ming language. The absence of typing constraint requires some complementary mechanisms
to ensure that a JSON database presents a consistent and robust data interface to an appli-
cation. Documents should be validated before insertion or update, and data access should
retrieve documents whose structure is guaranteed to comply to at least some common struc-
tural pattern. COUCHDB is an interesting attempt to provide answers to these issues.

20.1.2 COUCHDB, architecture and principles

A COUCHDB instance is based on a Client/Server architecture, where the COUCHDB server
handles requests sent by the client, processes the requests on its database(s), and sends an
answer (Figure 20.1). Unlike most of the database management systems that define their
own, proprietary client-server communication protocol, COUCHDB proposes a REST-based
interface. Requests sent by the Client to the server are REST calls, and take actually the
form of an HTTP request, together with parameters transmitted with one of the basic HTTP
method: GET, POST, PUT and DELETE.

It is probably worth recalling at this point the essential features of the HTTP requests that
constitute a REST interface. First, we aim at manipulating resources, in our case, essentially
JSON documents or collections of documents. Second, each resource is referenced by a
Universal Resource Identifier (URI), i.e., a character string that uniquely determines how and
where we access the resource on the Internet. And, third, we apply operations to resources.
Operations are defined by the HTTP protocol as follows:

For personal use only, not for distribution. 393

GET retrieves the resource referenced by the URI.

PUT creates the resource at the given URI.

POST sends a message (along with some data) to an existing resource.

DELETE deletes the resource.

The difference between PUT and POST, often misunderstood, is that PUT creates a new
resource, whereas POST sends some data to an existing resource (typically, a service that pro-
cesses the data). The difference is harmless for many applications that ignore the specificities
of REST operation semantics, and simply communicate with a web server through HTTP. A
so-called RESTful service takes care of the meaning of each operation, and deliberately bases
its design of the concept of resources manipulation.

This is the case of a COUCHDB server. It implements a REST interface to communicate
with the client application. HTTP calls can be encapsulated either by a REST client library,
or even expressed directly with a tool like curl (see below). The server answers through
HTTP, with messages encoded in JSON. Here is a first, very simple communication with
an hypothetical COUCHDB server located at, say, http://mycouch.org: we send a GET
request and receive a JSON-encoded acknowledgment message.

$ curl -X GET http://mycouch.org
{"couchdb":"Welcome","version":"1.0.1"}

A nice feature of the approach is that is quite easy to directly communicate with a server.
Keeping in mind the three main REST concepts (resource, URI and operation semantics) helps
figuring out the purpose of each request.

The server maintains one or several collections of JSON documents. In addition to the
JSON structure which constitutes the description of a document d, non-structured files can
be attached to d. COUCHDB adds to each document an id and a revision number. The id of
a document is unique in the collection (an error is raised by COUCHDB if one attempts to
create a document with an already existing id), and is stored as the value of the _id key in
the JSON document. In case the value of _id is not part of the inserted document, COUCHDB
automatically assigns a unique value (a long, obscure character string).

Revisions correspond to the versioning feature of COUCHDB: each update to a document
creates a new version, with the same _id but a new revision number, represented by the
value of a _rev key.

A collection in a COUCHDB collection has no schema: a document d1 with a structure A
can cohabit with a document d2 with a structure B, potentially completely different from A.
Basically, this means that the application is in charge of checking the structural constraints
before insertion or updates.

COUCHDB proposes some support to solve the problem. First, validation functions can be
assigned to a collection: any document inserted or updated must be validated by these func-
tions; else the modification request is rejected. This is somewhat equivalent to implementing
a specific type-checking function instead of a declarative specification.

Second, COUCHDB allows the definition of views. A view is a new key-document collection,
specified via a function (actually the specification is based on MAPREDUCE: see below), and
organized as a B-tree built on the key. Defining a view is tantamount to a virtual restructuring
of the document collection, generating new keys, new documents and new ways of exploring

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://mycouch.org

For personal use only, not for distribution. 394

the collection. Since the view is structured as a B-tree, an important advantage is that it
supports efficient key and range queries. Views are a means in COUCHDB of presenting a
structured and well-organized content to applications.

Finally, the last COUCHDB aspect illustrated by Figure 20.1 is data replication. It is possible
to ask a COUCHDB instance to synchronize itself with another instance located anywhere
on the Web. This enables a replication mechanism that copies each document to the remote
servers. Replication is useful for security (replicated data is safer data) and for scalability. It
also gives rise to consistency concerns, since two client applications may modify indepen-
dently two replicas of a same document. COUCHDB detects update conflicts and reports
them, but does not attempt an automatic reconciliation.

These are the basics of COUCHDB principles. Let us now delve into practice.

20.1.3 Preliminaries: set up your COUCHDB environment

From now on, we will guide you through a step-by-step exploration of a few salient features
of COUCHDB: creating data and views, replication and distribution. You are invited to
download a sample of our movies data set, encoded in JSON, from the book web site. You
also need an access to a running COUCHDB server. You can set up your own environment
(see the site http://couchdb.apache.org), or use our on-line environment. Please look
at the site for details. In the following, $COUCHDB will refer to the IP of the COUCHDB server.
In case you would use a Unix console, this variable can be defined with:

export COUCHDB=http://<couchIP>:5984

where couchIP denotes the IP address of the host1. In order to communicate with the
server, you need a client application that sends HTTP requests to your COUCHDB server.
The universal command-line tool to do so is curl, which should be available on any Unix-like
system. For instance the following command:

curl $COUCHDB

sends an HTTP request GET (the default method) to the server, which should answer:

{"couchdb":"Welcome","version":"1.0.1"}

Using the option -v unveils the details of the HTTP protocol.

$ curl -v $COUCHDB

* About to connect() to xx.xxx.xxx port 5984 (#0)

* Trying xx.xxx.xxx... connected

* Connected to xx.xxx.xxx (xx.xxx.xxx) port 5984 (#0)
> GET / HTTP/1.1
> User-Agent: curl/7.19.7
> Host: xx.xxx.xxx:5984
> Accept: */*
>
< HTTP/1.1 200 OK
< Server: CouchDB/1.0.1 (Erlang OTP/R13B)

1If you use our COUCHDB server, you must add you login/password to this IP.

http://couchdb.apache.org

For personal use only, not for distribution. 395

< Date: Tue, 09 Nov 2010 08:34:36 GMT
< Content-Type: text/plain;charset=utf-8
< Content-Length: 40
< Cache-Control: must-revalidate
<
{"couchdb":"Welcome","version":"1.0.1"}

* Connection #0 to host xx.xxx.xxx left intact

* Closing connection #0

Every interaction with the server can in principle be handled by curl. Of course, a graphical
interface is more pleasant that a command-line tool. Our site proposes such an interface. If
you have your own installation of COUCHDB, Futon is an application, shipped with any
COUCHDB environment, that lets you manage your databases. Futon is actually a Javascript
application natively stored in a COUCHDB server, so that it works without any further
installation step. It can be accessed at the following URL:

$COUCHDB/_utils

Fig. 20.2 shows a screen copy of the Futon home page. In the following, we will describe
the interactions with COUCHDB through the curl command line interface. Most of them can
also be expressed with Futon.

20.1.4 Adding data

Let us create our first database. We simply send a PUT request to the COUCHDB server, asking
for the creation of a resource. The following command creates the movies database.

$ curl -X PUT $COUCHDB/movies
{"ok":true}

Now the resource exists at the given URI, and a GET request will retrieve some information
about the database.

$ curl -X GET $COUCHDB/movies
{"db_name":"movies",
"doc_count":0,
"doc_del_count":0,
"update_seq":0,
"purge_seq":0,
"compact_running":false,
"disk_size":79,
"instance_start_time":"1289290809351647",
"disk_format_version":5,
"committed_update_seq":0}

That’s all: we send HTTP requests to COUCHDB, which answers with a JSON document.
COUCHDB offers an “API” which takes the form of REST services whenever appropriate
(not all services can be conveniently implemented as REST calls). The _all_dbs service for
instance returns an array with the list of existing databases.

$ curl -X GET $COUCHDB/_all_dbs
["movies","_users"]

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 396

It is time now to add documents. Get the JSON-encoded documents of the movies database
from the book’s web site. We shall first insert The Social Network.

$ curl -X PUT $COUCHDB/movies/tsn -d @The_Social_Network.json
{"ok":true,"id":"tsn","rev":"1-db1261d4b2779657875dafbed6c8f5a8"}

This deserves some explanations. First, we follow the very same logic as before, asking
COUCHDB to create a new resource at URI $COUCHDB/movies/tsn. The resource content
must be JSON-encoded: we transfer the content of the The_Social_Network.json file. Note the
-d curl option which must be followed by the content of the HTTP request message. Note
also that this content can be extracted from a file with the special syntax @fileName.

COUCHDB answers with a resource that contains several information. First, "ok":true
means that the document has been successfully inserted. Then we get the id, and the revision
number. The id (or key) of the document is the means by which it can be retrieved from the
database. Try the following request:

$ curl -X GET $COUCHDB/movies/tsn

You should get the document just inserted. In this case, the document id, tsn is user-
defined. We must be careful to ensure that the id does not already exist in the database.
COUCHDB generates an error if we attempt to do so:

$ curl -X PUT $COUCHDB/movies/tsn -d @The_Social_Network.json
{"error":"conflict","reason":"Document update conflict."}

A conflict has been detected. COUCHDB uses an “eventually consistent” transaction model,
to be described next.

If we want COUCHDB to generate the id of the document, we must send a POST request,
along with the content and its MIME encoding. Recall that POST sends some data to an
existing resource, here the database in charge of inserting the document:

$ curl -X POST $COUCHDB/movies -d @The_Social_Network.json \
-H "Content-Type: application/json"

{"ok":true,
"id":"bed7271",
"rev":"1-db126"}

A new id has been generated for us by COUCHDB, and the document has been stored as a
resource whose URI is determined by this id, e.g., $COUCHDB/movies/bed7271.

In order to update a document, you must send a PUT request that refers to the modified
document by its id and its revision number. The multi-version protocol of COUCHDB requires
that both values must be given to refer to a document value. The usual update mechanism
involves thus (i) getting the document from the database, including its revision number, (ii)
modify locally the document and (iii) put back the document to COUCHDB which creates a
new version with a new revision id.

Let us show how to update a document by adding an attachment. We execute a PUT request
on the previous movie to associate its poster (a JPEG file). We must provide the file content in
the request body, along with the MIME type. The version of the document which is modified
is referred to by its revision number. Here is the curl command, which specifies the MIME
type of the attachment:

For personal use only, not for distribution. 397

$ curl -X PUT $COUCHDB/movies/tsn/poster?rev=1-db1261 -d
@poster-tsn.jpg -H "Content-Type: image/jpg"
{"ok":true,"id":"tsn","rev":"2-26863"}

As a result, a new revision "2-26863" has been created. The poster can be retrieved from
COUCHDB with the URI $COUCHDB/movies/tsn/poster.

Finally, a document can be deleted with the REST DELETE command. The revision number
must be indicated. Here is an example:

$ curl -X DELETE $COUCHDB/movies/tsn?rev=2-26863
{"ok":true,"id":"tsn","rev":"3-48e92b"}

A surprising aspect of the result is that a new revision is created! Indeed, the deletion is
“logical”: old revisions still exist, but the latest one is marked as “deleted”, as shown by the
following query that attempts to retrieve the current version of tsn.

$ curl $COUCHDB/movies/tsn
{"error":"not_found","reason":"deleted"}

We invite you now to load in your collection the movies documents available on our Web
site. The following section shows how to query COUCHDB databases with views.

20.1.5 Views

A view in COUCHDB is the result of a MAPREDUCE job. The main rationale behind this
seemingly odd choice is, first, the ability to run in parallel the evaluation of view queries in
a distributed environment, and, second, the incremental maintenance of view results. Both
aspects are closely related: because the MAP phase is applied to each document independently,
the evaluation process is inherently scalable; and because COUCHDB records any change
that affects a document in a collection, view results can be maintained by re-evaluating the
MAPREDUCE job only on changed documents.

Views definition are stored in the COUCHDB database as special documents called design
documents. Temporary views can also be created using the Futon interface which provides a
quite convenient tool for interactive view definition and testing. From your favorite browser,
access the $COUCHDB/_utils URL, move to the movies database and select the temporary
views choice form the Views menu. You should obtain the form shown on Figure 20.3.

The form consists of two text windows: the left one (mandatory) for the MAP function,
and the right one (optional) for the REDUCE function. Functions are written in Javascript
(we use simple examples that are self-explanatory). We begin with a simple MAP function
that takes as input a document (i.e., a representation of a movie, see above) and produces
a (key,value) pair consisting of the movie title (key) and the movie’s director object (value).
Write the following text in the left window and press the Run button: you should obtain the
list of (title,director) pairs shown on Figure 20.3.

function(doc)
{

emit(doc.title, doc.director)
}

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

$COUCHDB/_utils

For personal use only, not for distribution. 398

A MAP function always takes as input a document of the collection. The reader is referred
to Chapter 16 for a detailed description of the MAPREDUCE parallel computation principles.
Essentially, the point is that the above function can be spread over all the nodes that participate
to the storage of a COUCHDB database, and run on the local fragment of the database.

Here is a second example that shows how one can create a view that produces a list of
actors (the key) along with the movie they play in (the value). Note that, for each document,
several pairs are produced by the MAP function

function(doc)
{

for each (actor in doc.actors) {
emit({"fn": actor.first_name, "ln": actor.last_name}, doc.title) ;

}
}

Note that the key component may consist of a complex JSON object. From Futon, save the
first function as “director” and the second one as “actors” in a design document called
(“examples”). The views are now stored in the movies database and can be queried from the
REST interface, as shown below:

$ curl $COUCHDB/movies/_design/examples/_view/actors
{"total_rows":16,"offset":0,
"rows":[
{"id":"bed7271399fdd7f35a7ac767ba00042e",

"key":{"fn":"Andrew","ln":"Garfield"},"value":"The Social network"},
{"id":"91631ba78718b622e75cc34df8000747",

"key":{"fn":"Clint","ln":"Eastwood"},"value":"Unforgiven"},
{"id":"91631ba78718b622e75cc34df80020d3",

"key":{"fn":"Ed","ln":"Harris"},"value":"A History of Violence"},
...
{"id":"91631ba78718b622e75cc34df800016c",

"key":{"fn":"Kirsten","ln":"Dunst"},"value":"Spider-Man"},
{"id":"91631ba78718b622e75cc34df800028e",

"key":{"fn":"Kirsten","ln":"Dunst"},"value":"Marie Antoinette"},
...
]

}

Two comments are noteworthy. First, COUCHDB keeps in the view result, for each
(key,value) pair, the id of the document from which the pair has been produced. This
might be useful for getting additional information if necessary.

Second, you will notice that the result is sorted on the key value. This relates to the
underlying MAPREDUCE process: the (key,value) pairs produced by the MAP function are
prepared to be merged and aggregated in the REDUCE phase, and this requires an intermediate
“shuffle” phase that puts together similar key values. In the above results samples, movies
featuring Kirsten Dunst are consecutive in the list.

From this sorted representation, it is easy to derive “reduced” result by applying a REDUCE

function. It takes as input a key value k and an array of values v, and returns a pair (k,v′)
where v′ is a new value derived from v and, hopefully, smaller. Here is a first, generic example,
that return the number of values associated to a key:

For personal use only, not for distribution. 399

function (key, values) {
return values.length;

}

Add this REDUCE function to the actors view, and compute the result (be sure to set the
“reduce” option in Futon, or pass a group=true parameter to activate the reduction). You
should see indeed with each actor’s name the number of movies s/he features in.

$ curl $COUCHDB/movies/_design/examples/_view/actors?group=true
{"rows":[
{"key":{"fn":"Andrew","ln":"Garfield"},"value":1},
{"key":{"fn":"Clint","ln":"Eastwood"},"value":1},
...
{"key":{"fn":"Kirsten","ln":"Dunst"},"value":2},
{"key":{"fn":"Maria","ln":"Bello"},"value":1},
{"key":{"fn":"Morgan","ln":"Freeman"},"value":1}
...
]}

20.1.6 Querying views

In COUCHDB, views are materialized. The MAPREDUCE job is run once, when the view is
created, and the view content is maintained incrementally as documents are added, updated
or deleted. In addition, this content is a represented as a B-tree which supports efficient
search on either key value or ranges. Create a third view, called “genre”, with the following
definition.

function(doc)
{

emit(doc.genre, doc.title) ;
}

This is tantamount to issuing the following command in a relational database:

c r e a t e index on movies (genre);

Now the database system (whether relational or COUCHDB) can efficiently evaluate a
query that refers to the key value. Here is the REST request searching for all documents in
genre with key value “Drama”.

$ curl $COUCHDB/movies/_design/examples/_view/genre?key=\"Drama\"
{"total_rows":5,"offset":2,"rows":[
{"id":"91631ba78718b622e75cc34df800028e",

"key":"Drama","value":"Marie Antoinette"},
{"id":"bed7271399fdd7f35a7ac767ba00042e",

"key":"Drama","value":"The Social network"}
]}

Range queries can be expressed by sending two parameters startkey and endkey.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 400

View creation (based on MAPREDUCE) and view querying (based on view materialization
and B-tree indexing on the results’ key) constitute in essence the solution proposed by
COUCHDB to the challenge of satisfying both the flexible data structuring of semi-structured
models, and the robust data representation needed by applications. Views provide a means
to clean up and organize a collection of documents according to the regular representation
expected by application programs. MAP and REDUCE functions act first as filters that check
the content of input documents, and second as data structuring tools that create the virtual
document representation put as values in a view.

The cost of computing the view representation each time a query is submitted by such a
program is avoided thanks to the incremental materialization strategy. The design is also
strongly associated to the distribution features of a COUCHDB instance, described next.

20.1.7 Distribution strategies: master-master, master-slave and shared-nothing

Several distribution strategies can be envisaged with COUCHDB. The system does not impose
any of them, but rather provides a simple and powerful replication functionality which lies at
the core of any distribution solution.

Replication

Replication is specified in COUCHDB with a POST request sent to the _replicate utility.
The following example requires a replication from local database movies to the local database
backup. The continuous option is necessary to ensure that any future update to a document in
movies will be reflected in backup (otherwise a one-shot replication is made).

curl -X POST $COUCHDB/_replicate \
-d ’{"source": "movies", "target": "backup", "continuous": true}’ \
-H "Content-Type: application/json"

Futon proposes actually an interface which makes trivial the specification of a replication.
Note that the command defines a one-way copy of the content of a database. Full, symmetric
replication can be obtained by submitting a second command inverting the target and
source roles.

You are invited to experiment right away the replication feature: create a second database
on one of your available COUCHDB server, and replicate your movies database there. You
should be able to verify that the content of movies can be found in the replica, as well as any
subsequent change. Replication is basically useful for security purposes, as it represents a
backup of the database (preferably on a remote server). It also serves as a basic service of the
distribution options, presented next.

Distribution options

A first distribution strategy, called master-slave, is illustrated on Figure 20.4, left part (refer
also to the introduction given in Chapter 14). It relies on a Master server and one or several
slaves (for the sake of simplicity we illustrate the ideas with a 2-machines scenario, but the
extension to any number of participants is straightforward). The master receives all write
requests of the form w(d) by Clients. A replication service at the Master’s site monitors all

For personal use only, not for distribution. 401

the writes and replicates them to the slave(s). Replication in COUCHDB is asynchronous: the
Client does not have to wait for the completion of the write on the slave.

Read requests, on the other hand, can be served either by the Master or by the slave.
This approach avoids inconsistencies, because writes are handled by a single process, and
therefore implicitly serialized. On the other hand, it may happen that a Client issues a w(d)
to the Master, then a read r(d) to the slave, and receives an outdated version of d because the
replication has not yet been carried out. The system is said to be eventually consistent (see,
again, Chapter 14).

Remark 20.1.1 Recall that “Client” in our terminology refers to any software component in charge
of communicating with the distributed storage system. It may take the form of a library incorporated
in the client application, of a proxy that receives network requests, etc.

A second strategy, called master-master, allows write operations to take place at any node of
the distributed system. So, each server plays the role of a “Master”, as defined above, and
the replication now works both sides. In a cluster with n machines, each COUCHDB servers
replicates its write request to the n− 1 other nodes. This avoids the bottleneck of sending
writes to a single machine, but raises consistency issues. It may happen that a same document
d is modified concurrently on two distinct sites S1 and S2, thereby creating two conflicting
versions.

Conflict management

When a replication is attempted from, say, S1 to S2, COUCHDB detects the conflict. The
detection is based on a classical transaction protocol called Multi-Versions Concurrency
Control (MVCC) that relies heavily on the revision numbers. The protocol is simple and
easily understood from an example (summarized in Figure 20.5). Assume a document d with
revision number r, denoted d(r). This document is replicated on S1 and S2, and each replica is
going to be modified by two client transactions denoted respectively T1 and T2.

1. T1: d(r) is modified on S1 by the local COUCHDB server which assigns a new revision,
r′; the current version becomes d(r′)

2. T2: d(r) is modified on S2 by the local COUCHDB server which assigns a new revision,
r′′; the current version becomes d(r′′)

3. now, the replication mechanism must be triggered; S1 sends to S2 a transaction request
specifying that d evolves from revision r to revision r′; S2 detects that its current revision
is not r but r′′ and concludes that there is an update conflict.

A conflict is also detected when S2 attempts a replication of its own transaction to S1.
Basically, the protocol describes the modification of a document d by specifying the initial and
final revisions, and each replica must check that it is able to execute the very same transaction,
which is only possible if its own current revision is the initial one specified by the transaction.
Else, the document has been modified meanwhile by another application and we are in
presence of two conflicting versions.

What happens then? COUCHDB takes two actions. First, a current version is chosen with
a deterministic algorithm that operates similarly for each replica. For instance, each local
COUCHDB server chooses d(r′′) as the current revision, both at S1 and S2. No communication

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 402

is required: the decision algorithm is guaranteed to make the same decision at each site. This
can be seen as a serialization a posteriori of the concurrent transactions T1→ T2, resulting in a
revision sequence d(r)→ d(r′)→ d(r′′). Second, the conflict is recorded in both d(r′) and d(r′′)
with a _conflict attribute added to the document.

COUCHDB does not attempt any automatic reconciliation, since the appropriate strategy
is clearly application dependent. A specific module should be in charge on searching for
conflicting documents versions (i.e, those featuring a _conflicts attribute) in order to
apply an ad hoc reconciliation mechanism.

Conflict management is easy to investigate. Run the following simple scenario: in your
replicated, backup, database, edit and modify with Futon one of the movies (say, The Social
Network). Then change (in a different way) the same movie in the original database movies.
The continuous replication from movies to backup will generate a conflict in the latter. Conflicts
can be reported with the following view:

function(doc) {
if(doc._conflicts) {

emit(doc._conflicts, null);
}

}

It returns an array of the conflicting versions. A reconciliation-aware application should
implement a module that monitors conflicts and determines the correct current version
content, based on the specific application needs.

Shared-nothing architecture

The third replication option is an implementation of the shared-nothing architecture presented
in Chapter 15, based on consistent hashing and data partition (often called “sharding”). A set
of COUCHDB servers is (logically) assigned to a position on a ring, and documents are stored
on the server that follows their hash value on the ring. The topology of the ring is replicated
on each server, so that Client requests can be forwarded in one message to the relevant server.
We do not further elaborate the design which closely follows that presented in Chapter 15,
and tends to become a standard in the world of distributed storage system (see CASSANDRA,
VOLDEMORT, MONGODB, and other “NoSQL” emerging platforms).

20.2 Putting COUCHDB into Practice!

We now propose several exercises and projects to further discover the features of COUCHDB
that relate to the book scope, namely data representation, semi-structured data querying, and
distribution features. Recall that you can create an account on our COUCHDB server and one
or several database to play with the system.

20.2.1 Exercises

The following exercises apply to the movies database. You should first load the JSON docu-
ments available on our site. Then create and query MAPREDUCE views to obtain the required
results. Views can be created with Futon, and searched with the following HTTP request:

For personal use only, not for distribution. 403

/database/_design/application/_view/viewname?key=value

Many of these queries are similar to those suggested in the Chapter devoted to EXIST.

1. Give all titles.

2. Titles of the movies published after 2000.

3. Summary of “Spider-Man”.

4. Who is the director of Heat?

5. Title of the movies featuring Kirsten Dunst.

6. What was the role of Clint Eastwood in Unforgiven?

7. Get the movies whose cast consists of exactly three actors?

8. Create a flat list of all the title-role pairs. (Hint: recall that you can emit several pairs in
a MAP function.)

9. Get a movie given its title. (Hint: create a view where movies are indexed by their title,
then query the view.)

10. Get the movies featuring an actor’s name.

11. Get the title of movies published a given year or in a year range.

12. Show the movies where the director is also an actor.

13. Show the directors, along with the list of their films.

14. Show the actors, along with the list of directors of the film they played in.

Note: some of the above queries are joins. Expressing joins in MAPREDUCE is not the
most natural operation but it can be achieved with a few tricks. Hint: recall that the result
of the MAP phase is sorted on the key because it is stored in a Btree (and because this can
be convenient if a subsequent REDUCE operation must be carried out). The order thereby
defined on the MAP results helps to obtain the join result.

20.2.2 Project: build a distributed bibliographic database with COUCHDB

The proposed project consists in building a (simple) distributed bibliographic database based
on a master-master architecture. Here are the full specifications:

1. there should be several (at least two!, up to the number of participants) COUCHDB
instances (or “master”), storing a fully replicated collection of bibliographic entries;
each update on one master should be replicated to all the other masters;

2. there should be a view that produces the Bibtex entry;

3. PDF files can be associated with entries (COUCHDB uses “attachments” to associate file
in any format with a JSON document: see the documentation for details);

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 404

4. several views should be created to allow the presentation (and search) of the biblio-
graphic collection with respect to the following criteria: title, author, journal or publisher,
year.

5. (advanced) COUCHDB manages a log of changes that records all the modifications
affecting a database; use this log to create (with a view) a notification mechanism
showing all the recently created entries of interest to a user (for instance: all the entries
referring to a publication in JACM).

We provide a collection of JSON bibliographic entries extracted from the DBLP data sets as
a starting point. The project could include the development of an interface to add / update /
remove entries.

20.3 Further reading

The main source of information on COUCHDB is the Wiki available at http://couchdb.
apache.org. The book [17], available on-line at http://wiki.apache.org/couchdb/,
covers the main practical aspects of the system. The incremental maintenance of views built
using a MAPREDUCE is inspired from the Sawzall language presented in [135].

http://couchdb.apache.org
http://couchdb.apache.org
http://wiki.apache.org/couchdb/

For personal use only, not for distribution. 405

CouchDB
server

Client
application

HTTP (REST) requests
disk

Documents

view A

Btree Btree

view B

Btree

view X

...

disk

Server Server

Replication
Replication

DB
access

Figure 20.1: Overview of a COUCHDB instance

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 406

Figure 20.2: Futon, the admin interface of COUCHDB

For personal use only, not for distribution. 407

Figure 20.3: The view creation form in Futon

Figure 20.4: Distribution strategies with COUCHDB

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 408

Figure 20.5: Multi-version concurrency in COUCHDB

References

[1] N. Abdallah, F. Goasdoué, and M.-C. Rousset. DL-LITER in the Light of Propositional
Logic for Decentralized Data Management. In Proc. Intl. Joint Conference on Artificial
Intelligence (IJCAI), 2009.

[2] S. Abiteboul, S. Alstrup, H. Kaplan, T. Milo, and T. Rauhe. Compact labeling scheme
for ancestor queries. SIAM J. Comput., 35(6):1295–1309, 2006.

[3] S. Abiteboul and C. Beeri. The power of languages for the manipulation of complex
values. Very Large Databases Journal (VLDBJ), 4(4):727–794, 1995.

[4] S. Abiteboul and N. Bidoit. Non first normal form relations: An algebra allowing data
restructuring. J. Comput. Syst. Sci., 33(3):361–393, 1986.

[5] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to Semistructured
Data and XML. Morgan-Kaufman, 1999.

[6] S. Abiteboul, S. Cluet, V. Christophides, T. Milo, G. Moerkotte, and J. Simeon. Querying
documents in object databases. Intl. Journal on Digital Libraries, 1:5–19, 1997.

[7] S. Abiteboul, M. Preda, and G. Cobena. Adaptive on-line page importance computation.
In Proc. Intl. World Wide Web Conference (WWW), 2003.

[8] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel query language
for semistructured data. Intl. Journal on Digital Libraries, 1:68–88, 1997.

[9] S. Abiteboul, R.Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
[10] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin, and A. Silberschatz.

HadoopDB: An Architectural Hybrid of MAPREDUCE and DBMS Technologies for
Analytical Workloads. Proceedings of the VLDB Endowment (PVLDB), 2(1):922–933, 2009.

[11] A.Cali, G.Gottlob, and T. Lukasiewicz. Datalog+-: a unified approach to ontologies and
integrity constraints. In Proc. Intl. Conf. on Database Theory (ICDT), 2009.

[12] A.Cali, G.Gottlob, and T. Lukasiewicz. A general datalog-based framework for tractable
query answering over ontologies. In Proc. ACM Symp. on Principles of Database Systems
(PODS), 2009.

[13] A. Acciarri, D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, M. Palmieri, and
R. Rosati. Quonto: Querying ontologies. In Proc. Intl. Conference on Artificial Intelligence
(AAAI), 2005.

[14] P. Adjiman, P. Chatalic, F. Goasdoué, M.-C. Rousset, and L. Simon. Distributed reason-
ing in a peer-to-peer setting. Journal of Artificial Intelligence Research, 25, 2006.

[15] S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas, and D. Srivastava. Structural
joins: A primitive for efficient XML query pattern matching. In Proc. Intl. Conf. on Data
Engineering (ICDE), 2002.

[16] D. Allemang and J. Hendler. Semantic Web for the Working Ontologist: Effective Modeling
in RDFS and OWL. Morgan-Kaufman, 2008.

[17] J. C. Anderson, J. Lehnardt, and N. Slater. CouchDB: the Definitive Guide. O’Reilly, 2010.
Available at http://wiki.apache.org/couchdb/.

[18] V. N. Anh and A. Moffat. Inverted Index Compression Using Word-Aligned Binary
Codes. Inf. Retrieval, 8(1):151–166, 2005.

409

http://wiki.apache.org/couchdb/

For personal use only, not for distribution. 410

[19] V. N. Anh and A. Moffat. Improved Word-Aligned Binary Compression for Text
Indexing. IEEE Transactions on Knowledge and Data Engineering, 18(6):857–861, 2006.

[20] G. Antoniou and F. van Harmelen. A Semantic Web Primer. The MIT Press, 2008.
[21] A. Arasu and H. Garcia-Molina. Extracting structured data from Web pages. In Proc.

ACM Intl. Conf. on the Management of Data (SIGMOD), pages 337–348, June 2003.
[22] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.

The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, 2003.

[23] J.-F. Baget, M. Croitoru, A. Gutierrez, M. LeclÃĺre, and M.-L. Mugnier. Translations
between rdf(s) and conceptual graphs. In Proc. Intl. Conference on Conceptual Structures
(ICCS), pages 28–41, 2010.

[24] M. Benedikt and C. Koch. XPath leashed. ACM Computing Surveys, 41(1), 2008.
[25] M. Benedikt and C. Koch. From XQuery to relational logics. ACM Trans. on Database

Systems, 34(4), 2009.
[26] V. Benzaken, G. Castagna, and A. Frisch. Cduce: an xml-centric general-purpose

language. SIGPLAN Notices, 38(9):51–63, 2003.
[27] G. J. Bex, F. Neven, T. Schwentick, and S. Vansummeren. Inference of concise regular

expressions and DTDs. ACM Trans. on Database Systems, 35(2), 2010.
[28] G. J. Bex, F. Neven, and S. Vansummeren. Inferring xml schema definitions from xml

data. In Proc. Intl. Conf. on Very Large Databases (VLDB), pages 998–1009, 2007.
[29] K. P. Birman, editor. Reliable distributed systems: technologies, Web services, and applications.

Springer, 2005.
[30] P. Blackburn, J. V. Benthem, and F. Wolter. Handbook of Modal Logic. Springer, 2006.
[31] G. E. Blelloch. Programming Parallel Algorithms. Commun. ACM, 39(3):85–97, 1996.
[32] P. A. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J. Teubner. MonetD-

B/XQuery: a fast XQuery processor powered by a relational engine. In Proc. ACM Intl.
Conf. on the Management of Data (SIGMOD), pages 479–490, 2006.

[33] BrightPlanet. The Deep Web: Surfacing Hidden Value. White Paper, July 2000.
[34] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine.

Computer Networks, 30(1–7):107–117, Apr. 1998.
[35] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic clustering of the

Web. Computer Networks, 29(8-13):1157–1166, 1997.
[36] J. D. Bruijn, E. Franconi, and S. Tessaris. Logical reconstruction of normative RDF. In

Proc. OWL: Experiences and Directions Workshop (OWLED’05), 2005.
[37] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: optimal XML pattern

matching. In Proc. ACM Intl. Conf. on the Management of Data (SIGMOD), 2002.
[38] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable Reason-

ing and Efficient Query Answering in Description Logics: The DL-LITE Family. Journal
of Automated Reasoning, 39(3):385–429, 2007.

[39] R. G. G. Cattell, editor. The Object Database Standard: ODMG-93. Morgan Kaufmann,
1994.

[40] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou.
SCOPE: easy and efficient parallel processing of massive data sets. Proc. Intl. Conf. on
Very Large Databases (VLDB), 1(2):1265–1276, 2008.

[41] S. Chakrabarti. Mining the Web: Discovering Knowledge from Hypertext Data. Morgan
Kaufmann, 2003.

[42] A. Chandra and M. Vardi. The implication problem for functional and inclusion

For personal use only, not for distribution. 411

dependencies is undecidable. SIAM Journal on Computing, 14(3):671–677, 1985.
[43] C.-H. Chang, M. Kayed, M. R. Girgis, and K. F. Shaalan. A survey of Web information

extraction systems. IEEE Transactions on Knowledge and Data Engineering, 18(10):1411–
1428, Oct. 2006.

[44] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. E. Gruber. Bigtable: A Distributed Storage System for Structured Data.
In Intl. Symp. on Operating System Design and Implementation (OSDI), 2006.

[45] K. C.-C. Chang, B. He, C. Li, M. Patel, and Z. Zhang. Structured Databases on the Web:
Observations and Implications. SIGMOD Record, 33(3):61–70, 2004.

[46] K. C.-C. Chang, B. He, and Z. Zhang. Toward Large Scale Integration: Building a
MetaQuerier over Databases on the Web. In Proc. Intl. Conference on Innovative Data
Systems Research (CIDR), Jan. 2005.

[47] M. Chein and M.-L. Mugnier. Graph-based Knowledge Representation. Springer, 2008.
[48] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,

and M. Tommasi. Tree automata techniques and applications. http://www.grappa.
univ-lille3.fr/tata, 2007.

[49] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT
Press, 1990.

[50] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasundaram. Querying Peer-to-Peer
Networks Using P-Trees. In Proc. Intl. Workshop on the Web and Databases (WebDB), pages
25–30, 2004.

[51] V. Crescenzi, G. Mecca, and P. Merialdo. RoadRunner: Towards Automatic Data
Extraction from Large Web Sites. In Proc. Intl. Conf. on Very Large Databases (VLDB),
2001.

[52] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: amazon’s highly available
key-value store. In Proc. ACM Symposium on Operating Systems Principles (SOSP), pages
205–220, 2007.

[53] R. Devine. Design and Implementation of DDH: A Distributed Dynamic Hashing
Algorithm. In Intl. Conf. on Foundations of Data Organization and Algorithms (FODO),
pages 101–114, 1993.

[54] D. DeWitt and M. Stonebraker. MAPREDUCE, a major Step Backward. DatabaseColumn
blog, 1987. http://databasecolumn.vertica.com/database-innovation/mapreduce-a-
major-step-backwards/.

[55] D. J. DeWitt, R. H. Gerber, G. Graefe, M. L. Heytens, K. B. Kumar, and M. Muralikrishna.
GAMMA - A High Performance Dataflow Database Machine. In Proc. Intl. Conf. on Very
Large Databases (VLDB), 1996.

[56] D. J. DeWitt and J. Gray. Parallel Database Systems: The Future of High Performance
Database Systems. Commun. ACM, 35(6):85–98, 1992.

[57] P. Dietz. Maintaining order in a linked list. In Proc. ACM SIGACT Symp. on the Theory of
Computing (STOC), 1982.

[58] Document Object Model. w3.org/DOM.
[59] O. Duschka, M. Genesereth, and A. Y. Levy. Recursive query plans for data integration.

Journal of Logic Programming, 43(1):49–73, 200.
[60] P. Elias. Universal code word sets and representations of the integers. IEEE Transactions

on Information Theory, 21(2):194–203, 1975.
[61] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Addison-Wesley, 200.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata

For personal use only, not for distribution. 412

[62] FaCT++. http://owl.cs.manchester.ac.uk/fact++/.
[63] R. Fagin. Combining fuzzy information from multiple systems. Journal of Computer and

System Sciences, 58:83–99, 1999. Abstract published in PODS’96.
[64] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. Jour-

nal of Computer and System Sciences, 66:614–656, 2003. Abstract published in PODS’2001.
[65] G. Flake, S. Lawrence, and C. L. Giles. Efficient Identification of Web Communities. In

Proc. ACM Intl. Conf. on Knowledge and Data Discovery (SIGKDD), pages 150–160, 2000.
[66] G. W. Flake, S. Lawrence, C. L. Giles, and F. Coetzee. Self-Organization of the Web and

Identification of Communities. IEEE Computer, 35(3):66–71, 2002.
[67] D. Florescu and D. Kossmann. Storing and Querying XML Data using an RDMBS. IEEE

Data Eng. Bull., 22(3):27–34, 1999.
[68] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier. Cluster-Based Scalable

Network Services. In Proc. ACM Symposium on Operating Systems Principles (SOSP),
pages 78–91, 1997.

[69] S. Fushimi, M. Kitsuregawa, and H. Tanaka. An overview of the system software of a
parallel relational database machine grace. In Proc. Intl. Conf. on Very Large Databases
(VLDB), pages 209–219, 1986.

[70] A. Gates, O. Natkovich, S. Chopra, P. Kamath, S. Narayanam, C. Olston, B. Reed,
S. Srinivasan, and U. Srivastava. Building a HighLevel Dataflow System on top of
MAPREDUCE: The PIG Experience. Proceedings of the VLDB Endowment (PVLDB),
2(2):1414–1425, 2009.

[71] S. Ghemawat, H. Gobioff, , and S.-T. Leung. The Google File System. In Proc. Intl. ACM
Symposium on Operating Systems Principles (SOSP), 2003.

[72] S. Gilbert and N. A. Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

[73] F. Goasdoué and M.-C. Rousset. Querying distributed data through distributed on-
tologies: A simple but scalable approach. IEEE Intelligent Systems (IS), 18(5):60–65,
2003.

[74] C. Goldfarb. The SGML Handbook. Calendon Press, Oxford, 1990.
[75] R. Goldman and J. Widom. Dataguides: Enabling query formulation and optimization

in semistructured databases. In Proc. Intl. Conf. on Very Large Databases (VLDB), pages
436–445, 1997.

[76] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath queries.
ACM Trans. on Database Systems, 30(2):444–491, 2005.

[77] J. Gray, P. Helland, P. E. O’Neil, and D. Shasha. The Dangers of Replication and a
Solution. In Proc. ACM Intl. Conf. on the Management of Data (SIGMOD), pages 173–182,
1996.

[78] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann,
1993.

[79] S. Grumbach and T. Milo. An algebra for pomsets. Inf. Comput., 150(2):268–306, 1999.
[80] T. Grust. Accelerating XPath location steps. In Proc. ACM Intl. Conf. on the Management

of Data (SIGMOD), pages 109–120, 2002.
[81] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL hosts. In Proc. Intl. Conf. on Very Large

Databases (VLDB), pages 252–263, 2004.
[82] T. Grust, M. van Keulen, and J. Teubner. Staircase join: Teach a relational DBMS to

watch its (axis) steps. In Proc. Intl. Conf. on Very Large Databases (VLDB), pages 524–525,
2003.

http://owl.cs.manchester.ac.uk/fact++/

For personal use only, not for distribution. 413

[83] T. Grust, M. van Keulen, and J. Teubner. Accelerating XPath evaluation in any RDBMS.
ACM Trans. on Database Systems, 29:91–131, 2004.

[84] I. Gupta, T. D. Chandra, and G. S. Goldszmidt. On Scalable and Efficient Distributed
Failure Detectors. In Proc. ACM Intl. Symposium on Principles of Distributed Computing
(PODC), 2001.

[85] Z. Gyöngyi, H. Garcia-Molina, and J. O. Pedersen. Combating Web Spam with
TrustRank. In Proc. Intl. Conf. on Very Large Databases (VLDB), 2004.

[86] A. Halevy, Z. Ives, D.Suciu, and I. Tatarinov. Schema Mediation for Large-Scale Seman-
tic Data Sharing. Very Large Databases Journal (VLDBJ), 14(1):68–83, 2005.

[87] A. Y. Halevy. Answering queries using views: A survey. Very Large Databases Journal
(VLDBJ), 10(4):270–294, 2001.

[88] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema mediation in peer data
management systems. In Proc. Intl. Conf. on Data Engineering (ICDE), 2003.

[89] E. R. Harold. Effective XML. Addison-Wesley, 2003.
[90] S. Heinz and J. Zobel. Efficient single-pass index construction for text databases. Journal

of the American Society for Information Science and Technology (JASIST), 54(8):713–729,
2003.

[91] J. Hopcroft, R. Motwani, and J. Ullman. Introduction to automata theory, languages, and
computation. Addison-Wesley, 2006.

[92] H. Hosoya and B. C. Pierce. Xduce: A statically typed xml processing language. ACM
Trans. Internet Techn., 3(2):117–148, 2003.

[93] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression types for xml. ACM Trans.
Program. Lang. Syst., 27(1):46–90, 2005.

[94] IETF. Request For Comments 1034. Domain names—concepts and facilities. http:
//www.ietf.org/rfc/rfc1034.txt, June 1999.

[95] IETF. Request For Comments 2616. Hypertext transfer protocol—HTTP/1.1. http:
//www.ietf.org/rfc/rfc2616.txt, June 1999.

[96] ISO. Specification of astraction syntax notation one (asn.1), 1987. Standard 8824,
Information Processing System.

[97] ISO. ISO/IEC 19757-2: Document Schema Definition Language (DSDL). Part 2: Regular-
grammar-based validation. RELAX NG. International Standards Organization, 2008.

[98] ISO. ISO/IEC 19757-3: Document Schema Definition Language (DSDL). Part 3: Rule-based
validation. Schematron. International Standards Organization, 2008.

[99] ISO/IEC 9075-14:2003, Information technology – Database languages – SQL – Part 14:
XML-Related Specifications (SQL/XML), 2003.

[100] P. Jaccard. Étude comparative de la distribution florale dans une portion des Alpes et
du Jura. Bulletin de la Société Vaudoise des Sciences Naturelles, 37, 1901.

[101] H. V. Jagadish, B. C. Ooi, K.-L. Tan, Q. H. Vu, and R. Zhang. Speeding up search in
peer-to-peer networks with a multi-way tree structure. In Proc. ACM Intl. Conf. on the
Management of Data (SIGMOD), pages 1–12, 2006.

[102] H. V. Jagadish, B. C. Ooi, and Q. H. Vu. BATON: A Balanced Tree Structure for Peer-
to-Peer Networks. In Proc. Intl. Conf. on Very Large Databases (VLDB), pages 661–672,
2005.

[103] H. V. Jagadish, B. C. Ooi, Q. H. Vu, R. Zhang, and A. Zhou. VBI-Tree: A Peer-to-Peer
Framework for Supporting Multi-Dimensional Indexing Schemes. In Proc. Intl. Conf. on
Data Engineering (ICDE), 2006.

[104] Jena - a semantic web framework for java. http://jena.sourceforge.net/.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt

For personal use only, not for distribution. 414

[105] H. Jiang, H. Lu, W. Wang, and J. X. Yu. XParent: An efficient RDBMS-based XML
database system. In Proc. Intl. Conf. on Data Engineering (ICDE), pages 335–336, 2002.

[106] H. Kaplan, T. Milo, and R. Shabo. Compact labeling scheme for XML ancestor queries.
Theory Comput. Syst., 40(1):55–99, 2007.

[107] D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, M. S. Levine, and D. Lewin.
Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving
Hot Spots on the World Wide Web. In Proc. ACM SIGACT Symp. on the Theory of
Computing (STOC), pages 654–663, 1997.

[108] M. Kay. XSLT 2.0 and XPath 2.0 Programmer’s Reference. Wrox, fourth edition, May 2008.
[109] J. M. Kleinberg. Authoritative Sources in a Hyperlinked Environment. Journal of the

ACM, 46(5):604–632, 1999.
[110] M. Koster. A standard for robot exclusion. http://www.robotstxt.org/orig.

html, June 1994.
[111] B. Kröll and P. Widmayer. Distributing a Search Tree Among a Growing Number of

Processors. In Proc. ACM Intl. Conf. on the Management of Data (SIGMOD), pages 265–276,
1994.

[112] P.-Å. Larson. Dynamic hash tables. Commun. ACM, 31(4):446–457, 1988.
[113] A. Y. Levy, A. Rajaraman, and J. Ordille. Querying heterogeneous information sources

using source descriptions. In Proc. Intl. Conf. on Very Large Databases (VLDB), 1996.
[114] W. Litwin. Linear Hashing, a new tool for file and table addressing. In Proc. Intl. Conf.

on Very Large Databases (VLDB), 1980.
[115] W. Litwin, M.-A. Neimat, and D. Schneider. RP∗: A Family of Order-Preserving Scalable

Distributed Data Structures. In Proc. Intl. Conf. on Very Large Databases (VLDB), 1994.
[116] W. Litwin, M.-A. Neimat, and D. A. Schneider. LH* - A Scalable, Distributed Data

Structure. ACM Trans. Database Syst., 21(4):480–525, 1996.
[117] B. Liu, R. L. Grossman, and Y. Zhai. Mining Web Pages for Data Records. IEEE Intelligent

Systems, 19(6):49–55, 2004.
[118] J. Lu, T. W. Ling, C. Y. Chan, and T. Chen. From region encoding to extended Dewey:

On efficient processing of XML twig pattern matching. In Proc. Intl. Conf. on Very Large
Databases (VLDB), 2005.

[119] J. Madhavan, A. Y. Halevy, S. Cohen, X. Dong, S. R. Jeffery, D. Ko, and C. Yu. Structured
Data Meets the Web: A Few Observations. IEEE Data Engineering Bulletin, 29(4):19–26,
Dec. 2006.

[120] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval.
Cambridge University Press, 2008. Online version at http://informationretrieval.org/.

[121] J. Melton and S. Buxton. Querying XML: XQuery, XPath, and SQL/XML in context.
Morgan Kaufmann, Mar. 2006.

[122] M. Michael, J. Moreira, D. Shiloach, and R. Wisniewski. Scale-up x Scale-out: A Case
Study using Nutch/Lucene. In Proc. Intl. Parallel Processing Symposium (IPPS), 2007.

[123] P. Michiels, I. Manolescu, and C. Miachon. Toward microbenchmarking XQuery. Inf.
Systems, 33(2):182–202, 2008.

[124] T. D. Millstein, A. Y. Halevy, and M. Friedman. Query containment for data integration
systems. Journal of Computer and System Sciences, 66(1):20–39, 2003.

[125] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. Journal of Computer
and System Sciences, 66(1):66–97, 2003.

[126] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in
networks. Physical Review E, 69(2), 2004.

http://www.robotstxt.org/orig.html
http://www.robotstxt.org/orig.html

For personal use only, not for distribution. 415

[127] OASIS. RELAX NG specification. http://www.relaxng.org/spec-20011203.
html, Dec. 2001.

[128] OASIS. RELAX NG compact syntax. http://www.relaxng.org/
compact-20021121.html, Nov. 2002.

[129] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-
foreign language for data processing. In Proc. ACM Intl. Conf. on the Management of Data
(SIGMOD), pages 1099–1110, 2008.

[130] P. E. O’Neil, E. J. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury. ORDPATHs:
Insert-friendly XML node labels. In Proc. ACM Intl. Conf. on the Management of Data
(SIGMOD), pages 903–908, 2004.

[131] M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems, Third Edition.
Prentice-Hall, 2010.

[132] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across hetero-
geneous information sources. In Proc. Intl. Conf. on Data Engineering (ICDE), 1995.

[133] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and M. Stonebraker.
A comparison of approaches to large-scale data analysis. In Proc. ACM Intl. Conf. on the
Management of Data (SIGMOD), pages 165–178, 2009.

[134] P.Buneman, S. Davidson, and D. Suciu. Programming constructs for unstructured data.
In Proc. Intl. Workshop on Database Programming Languages (DBLP), 1995.

[135] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the Data: Parallel
Analysis with Sawzall. Scientific Programming Journal, Special Issue on Grids and Worldwide
Computing Programming Models and Infrastructure, 13(4):227–298, 2005.

[136] M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, July 1980.
[137] R. Pottinger and A. Y. Halevy. Minicon: A scalable algorithm for answering queries

using views. Very Large Databases Journal (VLDBJ), 10(2-3):182–198, 2001.
[138] Racerpro. http://www.racer-systems.com/.
[139] V. Ramasubramanian and E. G. Sirer. Beehive: O(1) Lookup Performance for Power-

Law Query Distributions in Peer-to-Peer Overlays. In Intl. Symposium on Networked
Systems Design and Implementation (NSDI), pages 99–112, 2004.

[140] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker. A scalable content-
addressable network. In ACM-SIGCOMM, pages 161–172, 2001.

[141] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Location,
and Routing for Large-Scale Peer-to-Peer Systems. In Middleware 2001, IFIP/ACM
International Conference on Distributed Systems Platforms Heidelberg, volume 2218 of
Lecture Notes in Computer Science, pages 329–350. Springer, 2001.

[142] Y. Saito and M. Shapiro. Optimistic replication. ACM Computing Surveys, 37(1):42–81,
2005.

[143] S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.
[144] F. Scholer, H. E. Williams, J. Yiannis, and J. Zobel. Compression of inverted indexes for

fast query evaluation. In Proc. ACM Symp. on Information Retrieval, pages 222–229, 2002.
[145] P. Senellart, A. Mittal, D. Muschick, R. Gilleron, and M. Tommasi. Automatic Wrapper

Induction from Hidden-Web Sources with Domain Knowledge. In Proc. Intl. Workshop
on Web Information and Data Management (WIDM), pages 9–16, Oct. 2008.

[146] J. Shanmugasundaram, E. J. Shekita, R. Barr, M. J. Carey, B. G. Lindsay, H. Pirahesh,
and B. Reinwald. Efficiently publishing relational data as XML documents. In Proc. Intl.
Conf. on Very Large Databases (VLDB), pages 65–76, 2000.

[147] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F. Naughton.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://www.relaxng.org/spec-20011203.html
http://www.relaxng.org/spec-20011203.html
http://www.relaxng.org/compact-20021121.html
http://www.relaxng.org/compact-20021121.html

For personal use only, not for distribution. 416

Relational databases for querying XML documents: Limitations and opportunities. In
Proc. Intl. Conf. on Very Large Databases (VLDB), 1999.

[148] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical OWL-DL
reasoner. Journal of Web Semantics, 5(2):51–53, 2007.

[149] sitemaps.org. Sitemaps XML format. http://www.sitemaps.org/protocol.php,
Feb. 2008.

[150] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and H. Bal-
akrishnan. Chord: a scalable peer-to-peer lookup protocol for internet applications.
IEEE/ACM Trans. Netw., 11(1):17–32, 2003.

[151] M. Stonebraker, D. J. Abadi, D. J. DeWitt, S. Madden, E. Paulson, A. Pavlo, and A. Rasin.
MAPREDUCE and parallel DBMSs: friends or foes? Commun. ACM, 53(1):64–71, 2010.

[152] D. Suciu. The XML Typechecking Problem. SIGMOD Record, 31(1):89–96, 2002.
[153] A. S. Tanenbaum and M. van Steen. Distributed Systems: Principles and Paradigms.

Prentice Hall, 2001.
[154] B. ten Cate and M. Marx. Navigational XPath: calculus and algebra. SIGMOD Record,

36(2):19–26, 2007.
[155] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and

R. Murthy. Hive - A Warehousing Solution Over a Map-Reduce Framework. Proceedings
of the VLDB Endowment (PVLDB), 2(2):1626–1629, 2009.

[156] J. Ullman. Principles of Database and Knowledge Base Systems, Volume I. Computer Science
Press, 1988.

[157] US National Archives and Records Administration. The Soundex indexing system.
http://www.archives.gov/genealogy/census/soundex.html, May 2007.

[158] S. M. van Dongen. Graph Clustering by Flow Simulation. PhD thesis, University of
Utrecht, May 2000.

[159] M. Vardi. The Complexity of Relational Query Languages. In Proc. ACM SIGACT Symp.
on the Theory of Computing (STOC), pages 137–146, 1982.

[160] J. S. Vitter. External memory algorithms and data structures. ACM Computing Surveys,
33(2):209–271, 2001.

[161] World wide web consortium. http://www.w3.org/.
[162] W3C. HTML 4.01 specification, Sept. 1999. http://www.w3.org/TR/

REC-html40/.
[163] W3C. XML path language (XPath). http://www.w3.org/TR/xpath/, Nov. 1999.
[164] W3C. XHTML 1.0: The extensible hypertext markup language (second edition). http:

//www.w3.org/TR/xhtml1/, Aug. 2002.
[165] W3C. XML Schema Part 0: Primer. http://www.w3.org/TR/xmlschema-0/, Oct.

2004.
[166] W3C. XML Schema Part 1: Structures. http://www.w3.org/TR/xmlschema-1/,

Oct. 2004.
[167] W3C. XML Schema Part 2: Datatypes. http://www.w3.org/TR/xmlschema-2/,

Oct. 2004.
[168] W3C. XML path language (XPath) 2.0. http://www.w3.org/TR/xpath20/, Jan.

2007.
[169] W3C. XQuery 1.0: An XML query language. http://www.w3.org/TR/xquery/,

Jan. 2007.
[170] W3C. XQuery 1.0 and XPath 2.0 data model (XDM). http://www.w3.org/TR/

xpath-datamodel/, Jan. 2007.

http://www.sitemaps.org/protocol.php
http://www.archives.gov/genealogy/census/soundex.html
http://www.w3.org/TR/REC-html40/
http://www.w3.org/TR/REC-html40/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xpath-datamodel/

For personal use only, not for distribution. 417

[171] W3C. XQuery 1.0 and XPath 2.0 formal semantics. http://www.w3.org/TR/
xquery-semantics/, Jan. 2007.

[172] W3C. XQuery 1.0 and XPath 2.0 functions and operators. http://www.w3.org/TR/
xquery-operators/, Jan. 2007.

[173] W3C. XSLT 2.0 and XQuery 1.0 serialization. http://www.w3.org/TR/
xslt-xquery-serialization/, Jan. 2007.

[174] W3C. Extensible markup language (XML) 1.0. http://www.w3.org/TR/REC-xml/,
Nov. 2008.

[175] W3C. SPARQL query language for RDF. http://www.w3.org/TR/
rdf-sparql-query/, Jan. 2008.

[176] W3C. Owl 2 web ontology language profiles. http://www.w3.org/2004/OWL/,
2009.

[177] W3C. HTML5, 2010. Working draft available at http://dev.w3.org/html5/spec/
Overview.html.

[178] P. Walmsley. XQuery. O’Reilly, Mar. 2007.
[179] I. Witten, A. Moffat, and T. Bell. Managing Gigabytes: Compressing and Indexing Documents

and Images. Morgan-Kaufmann, 1999.
[180] X. Wu, M. L. Lee, and W. Hsu. A prime number labeling scheme for dynamic ordered

XML trees. In Proc. Intl. Conf. on Data Engineering (ICDE), 2004.
[181] Y. Wu, J. M. Patel, and H. V. Jagadish. Structural join order selection for XML query

optimization. In Proc. Intl. Conf. on Data Engineering (ICDE), pages 443–454, 2003.
[182] XML Query (XQuery). http://www.w3.org/XML/Query.
[183] The Extensible Stylesheet Language Family. http://www.w3.org/Style/XSL.
[184] L. Xu, T. W. Ling, H. Wu, and Z. Bao. DDE: from Dewey to a fully dynamic XML

labeling scheme. In Proc. ACM Intl. Conf. on the Management of Data (SIGMOD), 2009.
[185] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. XRel: a path-based approach

to storage and retrieval of XML documents using relational databases. ACM Trans. on
Internet Technology, 1(1):110–141, 2001.

[186] H. Yu and A. Vahdat. Design and evaluation of a continuous consistency model for
replicated services. ACM Trans. Comput. Syst., 20(3):239–282, 2002.

[187] Y. Zhai and B. Liu. Web data extraction based on partial tree alignment. In Proc. Intl.
World Wide Web Conference (WWW), 2005.

[188] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. Kubiatowicz. Tapestry:
a resilient global-scale overlay for service deployment. IEEE Journal on Selected Areas in
Communications, 22(1):41–53, 2004.

[189] J. Zobel and A. Moffat. Inverted Files for Text Search Engines. ACM Computing Surveys,
38(2), 2006.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://www.w3.org/TR/xquery-semantics/
http://www.w3.org/TR/xquery-semantics/
http://www.w3.org/TR/xquery-operators/
http://www.w3.org/TR/xquery-operators/
http://www.w3.org/TR/xslt-xquery-serialization/
http://www.w3.org/TR/xslt-xquery-serialization/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/2004/OWL/
http://dev.w3.org/html5/spec/Overview.html
http://dev.w3.org/html5/spec/Overview.html
http://www.w3.org/XML/Query

Index

Abox, 157, 158, 160–162, 164, 167, 172–175,
179, 181–191

absolute path, see path
ACID, 287, 288, 301
asynchronous, 247, 273, 286, 287, 289, 290,

296, 350, 401
availability, see distributed systems

BATON, 319, 321–323, 325, 328, 329, 413
BIGTABLE, 319, 323–326, 328, 330
bottom-up automaton, see tree automaton
browser, see Web browser, 7, 15, 27, 64, 124–

127, 226, 231, 233, 236, 243, 273, 390,
397

Bucket (algorithm), 202–206

Calabash, see XML Calabash
CAP theorem, 288, 295, 296, 301
CASSANDRA, 328, 402
CHORD, 305, 313–317, 322, 325, 328–330
class

disjointness, 153
hierarchy, 22, 143–145, 149
intentional definition, 153, 154
intersection, 153, 155
union, 153, 155

clustering, 251, 263–265, 275, 333, 375
of graphs, 272, 275

collaborative filtering, 365, 371, 374, 375
item-based, 365, 371, 374
user-based, 365, 371, 374, 375

concurrency, ii, 285, 325, 401
consistency, see data consistency

eventual, 288, 296, 301, 396, 401
strong, 287, 288, 295
weak, 288

consistency checking, see satisfiability check-
ing

consistent hashing, see hashing, consistent
constraints

disjointness, 143, 177, 200

domain, 143, 152, 157
functionality, 154, 189, 211
key, 69, 143, 169, 176, 178, 180–182, 185,

188, 189
containment, see query, containment
cosine, 255, 263, 264, 372
COUCHDB, 333, 375, 389–408
crawler, see Web crawler
CSS, 243, 271

damping factor, 269, 270, 353
data

consistency, 69, 159, 170, 178–180, 182–
184, 190, 213–216, 223, 285, 286,
288, 290, 292, 296, 301, 302, 305,
311, 358, 389, 394, 401

reconciliation, 288, 389, 394, 402
recovery, 289–291, 294, 301, 325, 339,

350, 379
replication, 258, 286–290, 294–297, 299–

301, 305, 309, 311, 312, 317, 318,
323, 325, 328, 335, 339, 379, 380,
389, 394, 400–402

data locality, 285, 286, 299, 331, 337
DBpedia, 233, 234
deduplication (of Web pages), 245
deep Web, 193, 273, 276
delta-coding, 261
Description Logics

atomic concept, 157–159, 161–167
axioms, 142, 156–159, 161, 164–166
complex concept, 157, 159, 160
DL-LITE, 165, 179, 190
role, 157–160, 162–166

Dewey identifier, see XML, node
DHT, 297, 298, 305, 313, 314, 317, 328
distributed file system, 298, 300, 379
Distributed Hash Table, see DHT
distributed system, 281, 283, 286, 288, 292,

295, 296, 298, 299, 301, 328, 331,

418

For personal use only, not for distribution. 419

333, 335, 350, 353, 401
availability, 288–290, 292, 294, 296–299,

301, 339
efficiency, 288, 289, 295, 296, 303, 321,

323, 349, 371
reliability, 290, 292, 297–299, 301
scalability, 281, 286, 292, 293, 297, 299,

301, 313, 333, 351, 375, 389, 394
DL, see Description Logics
DNS, 242, 244, 249, 275
document vector space, 263
dynamic type checking, see type checking
DYNAMO, 313, 328

edit distance, 245, 275
entailment, 142, 156, 159, 167, 233
entity, 12, 34, 142, 146, 225, 226, 231–234,

272
EXIST, iii, 36, 51, 56, 64, 65, 113–116, 121,

124, 125, 127, 403

Fagin’s threshold algorithm, 256, 275, 277
fail-stop, 294, 297, 316
failover, 294
failure, 111, 281, 288, 289, 291–295, 298–301,

311, 312, 316, 321, 325, 327, 332,
333, 336, 339, 379

fault tolerance, 288, 301, 347, 351
feed (RSS), 235–237, 273
First Order Logic, ii, 31, 58–63, 65, 77, 142,

148, 156, 208
flooding, 297, 328
FOL, see First Order Logic

GAV, see Global As Views
GCI, see Description Logics
GeoNames, 235–237
GFS, 299, 300, 302, 325–327, 337
Global As Views, 195, 197–202, 208, 209,

211, 213–217, 223, 224
gossiping, 308, 313
graph mining, 265, 272, 273, 275
grouping, 57, 225, 228, 229, 275, 342, 347

HADOOP, 298, 302, 328, 333, 340, 353, 375,
377, 378, 380, 382–386

HADOOPDB, 351

hashing, 245, 246, 275, 305, 306, 329, 335,
348

consistent, 305, 310–314, 328, 329, 389,
402

linear, 305–308, 328, 330
HBASE, 328
HDFS, 298, 378–380, 385, 386
HITS, 265, 270, 271, 275, 313
holistic twig join, 105
hostname, see DNS
HTML, iii, 3, 7, 17, 20, 26, 27, 79, 124, 194,

225, 226, 234, 237, 242–244, 246,
247, 265, 271, 273, 274, 362, 390

validator, 27, 84, 243
HTTP, 25, 27, 114, 121, 124, 126, 127, 165,

189, 242–245, 247, 275, 283, 284,
286, 310, 328, 340, 351, 377, 380,
384, 385, 392–396, 402

HTTPS, 25, 242, 243
hyperlink, 242–244, 265, 273
HYPERTABLE, 328

information extraction, 274, 276
information filtering, 365
information retrieval, i–iv, 8, 24, 27, 66, 106,

108, 115, 116, 125–127, 141, 142,
171, 233, 234, 236, 241, 244, 245,
247, 248, 250–252, 256, 258, 260,
261, 263, 265, 266, 270, 271, 273–
276, 278, 297, 303–305, 308, 309,
313, 315–326, 328, 329, 331, 338,
355, 356, 358, 360, 361, 365, 399,
404

Internet, i, iii, v, 3, 6, 16, 18, 24, 27, 115, 226,
241, 243, 271, 272, 275, 283, 284,
296, 297, 301, 313, 392

Inverse-rules algorithm, 208–211
inverted file, 250–258, 260, 261, 263, 265,

269, 275–278, 327, 353, 355, 387
compression, 252, 253, 261–263, 275,

277, 279, 324, 358
construction, 38, 39, 61, 62, 75, 152, 182,

190, 200, 205, 208, 210, 219, 235, 258,
274, 275, 327, 353

maintenance, 258, 263, 277, 306, 308–
310, 313, 319, 323, 325, 326, 328,
329, 389, 397, 404

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 420

inverted index, see inverted file
inverted list, see posting list
IP, 243, 283, 297, 311, 313, 350, 385, 394

Jaccard coefficient, 246
JavaScript, 5, 20, 64, 243, 271, 273, 389, 390,

395, 397
Jena, 165, 190, 231–233
JSON, 390–392

keyword query, 248, 250, 251, 254, 255, 263,
271, 274, 278, 355, 365

latency, 257, 284, 285, 294–296, 328, 333, 351
LAV, see Local As Views
linear hashing, see hashing, linear
link farm, 271, 272, 277
linked data, 234
load balancing, 297, 299, 312, 317, 318, 320,

347, 389
local area network, i, ii, 282
Local As Views, 195, 200–209, 211, 213, 215–

217, 222–224
locality, see data locality
logging, 289, 326, 327, 339, 344, 350, 351,

379, 386
LUCENE, 355, 356, 358, 360–362

MapReduce, 331–340, 342, 347–349, 351–
353, 375, 377, 378, 380, 382–387,
389, 393, 397–400, 402–404, 409, 411,
412, 416

mashup, 235, 273
master-master, see sharding, 287, 400, 401,

403
master-slave, see sharding, 287, 400
MathML, 19, 27, 28, 67, 69
mediation, 16, 193–195, 197, 198, 200, 211,

216
Minicon, 202, 206–208, 211, 213, 216, 222,

224
Monadic Second-Order logic, 76, 77
MONETDB, 64, 109
MONGODB, 333, 402
MovieLens, 365–367, 375
MSO, see Monadic Second-Order logic
MusicXML, 18, 126, 127

namespace, see XML namespace, 13, 14, 33,
47, 64, 66, 79, 81, 120, 134, 146, 147,
227, 232, 234, 298, 299, 301, 392

prefix, 79, 120, 232
navigation, 20, 21, 24, 29, 31, 37, 41, 42, 44,

58, 59, 92, 96, 142, 244, 300, 318,
319, 322, 323

navigational, see navigation
navigational XPath, 58–60, 63
NavXPath, see navigational XPath
NFS, 298, 384
NoSQL, 287, 288, 301, 328, 333, 402

OASIS, 83, 87
OEM, 26, 84–87
ontology, iv, 24, 141–143, 145, 146, 149, 150,

152, 156–158, 165, 166, 169, 170,
172–180, 190, 211, 213, 223, 231,
233, 234

OPIC, 270, 275
ORDPATH identifier, see XML, node
overlay network, 283, 297
OWL, 141, 142, 145–147, 152–158, 160, 164–

166, 169, 190, 234

P2P, see Peer to Peer
P2P network, see peer-to-peer network
PageRank, iii, 265–271, 275, 277, 353
path

absolute, 61, 242
expression, 31, 33, 37–42, 51, 60, 62
relative, 41, 61, 242, 378

Peer to Peer, 195, 216, 223, 283, 294, 296, 297,
301, 302, 305, 313, 319, 322, 325, 328

peer-to-peer network, 282, 283, 296, 297,
301, 314, 315, 319

structured, 294, 297
unstructured, 297

PIGLATIN, 332, 339–353, 377, 384, 387, 412
pipe, 235, 236
pipeline, 235–237
posting list, 251, 252, 255, 256, 258, 260, 261,

263, 277–279, 355, 360
preorder, 22, 28, 91, 97, 99, 101, 129, 132,

137
processing instruction, 12, 13, 34
prologue (XML), 10, 12

For personal use only, not for distribution. 421

QEXO, 64
QIZX, 64
query

Boolean, 173, 183, 184, 213, 215, 216,
254, 255, 278

containment, 194–197, 200, 205, 206,
208, 212, 213, 222, 223

reformulation, 179, 184–190, 213–216,
220–224

unfolding, 161, 163, 198–200, 208–211,
213, 214, 224

query log, 265

random surfer, see PageRank
ranking, 241, 253, 255, 355, 356, 365
RDF, 69, 84, 115, 141, 142, 145–154, 165, 169–

171, 173, 175, 185, 189, 190, 232, 234
semantics, 148
triple, 146–156, 158, 166, 167, 190, 258,

259
RDF Schema, see RDFS
RDFa, 234
RDFS, 142, 145–147, 149–156, 158, 165–167,

169, 173–178, 180, 189, 190, 231–234
Really Simple Syndication, see RSS
recommendation, 9, 26, 34, 63, 64, 87, 142,

171, 236, 274, 310, 365–376
reconciliation, see data reconciliation
reformulation, see query, reformulation
regular expression, 13, 52, 71, 72, 75, 77, 78,

81, 225, 227
regular language, 71, 72, 74, 83, 85
relationship, 11, 95, 99, 100, 103, 105, 142,

143, 145–147, 149, 150, 152, 153,
159, 193, 194, 231, 288

relative path, see path
Relax NG, 83, 87, 88
relevance, 206, 253, 255, 265, 266
reliability, see distributed systems
Remote Procedure Call, see RPC, 25, 350
replication, see data replication
Resource Description Framework, see RDF
REST, 121, 124–126, 218, 236, 272, 294, 297,

327, 343, 392, 393, 395, 397–399
reverse document order, 44
robot exclusion, 246, 275
robot trap, 245, 247

robots.txt, see robot exclusion protocol
RSS, 17, 235–237, 273

feed, see feed

satisfiability checking, 159, 160, 165, 166
saturation algorithm, 233
SAX, 6, 20, 21, 28, 29, 78, 79, 84, 129, 134,

137, 387
SAXON, 64, 225
scalability, see distributed systems
Scalable Vector Graphics, see SVG
schematron, 83, 87
search, see information retrieval
seek time, see latency, 257, 285, 286
semantic heterogeneity, 193
semantic mapping, 193–195
serialization, 3, 5, 7, 9, 20, 26, 64, 84, 96, 390,

402
Service Oriented Architecture Protocol, see

SOAP
SGML, 6, 8, 26, 77, 242
sharding, 294, 308, 311, 337, 402
shared-nothing, 282, 288, 351, 400, 402
shingle, 245, 246, 275
Sig.ma, 234
Simple API for XML, see SAX
sitemap, 245, 275
SOAP, 6, 24, 25, 350
Soundex, 250, 275
spamdexing, 271
SPARQL, 152, 165, 170, 171, 190, 232, 233
SQL, 20, 24, 31, 33, 39, 52, 53, 55, 57, 64, 109,

110, 179, 184, 253, 328, 340, 342, 344,
347, 351, 352, 365, 366, 368, 369,
372, 389

STA join, see stack-based join
stack-based join, 100–103
Standard Generalized Markup Language,

see SGML
static type checking, see type checking
STD join, see stack-based join
stemming, 249, 250, 275, 277, 356

lexical, 249
morphological, 249
phonetic, 250, 275
Porter’s, 249

stop word, 250, 251, 276, 361

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 422

storage balancing, 320
structural join, 99–105, 108–110
subsumption, 159, 160, 163–167
super-peer, 294, 302
SVG, 18, 27

tableau method, 160–162, 164, 167
tableau rules, 161, 162, 164, 167
taxonomy, 143, 231
Tbox, 157–161, 163–166, 172–175, 179–186,

188, 190, 191, 213–216
closure, 191
NI-closure, 180–184

TCP, 242, 243, 350
tf–idf, 253, 254, 256, 258, 266, 276, 362
tidy, 226
token, 20, 28, 241, 244–246, 248, 249, 251,

258, 265
tokenization, 248–250, 252, 359
top-down automaton, see tree automaton
topology, see network, topology
topology (network), 295, 297, 313, 322, 402
transaction, 19, 21, 286, 288, 290–293, 295,

296, 301, 333, 344, 350, 396, 401, 402
distributed, ii, 290–292, 350

transforming XML documents, see XML
transformation

tree automaton, 4, 73–78, 82, 87, 89
bottom-up, 73, 74, 76, 87, 89
top-down, 74, 80, 82, 87

tree pattern, 97, 100, 103–106, 108–111, 129–
136, 225

triple, 170, 173, 175, 189, 190, 232, 233
TrustRank, 271, 275
TwigStack join, see holistic twig join
two-phase commit, 290
type checking, 69, 70, 87, 393

dynamic, 69, 70
static, 69, 70, 85

unfolding, see query, unfolding
Uniform Resource Identifier, see URI
Uniform Resource Locator, see URL
Uniform Resource Name, see URN
URI, 12, 36, 120, 124, 146, 147, 232–234, 313,

392, 393, 395–397
cool, 233, 234

URL, 24, 79, 87, 110, 113, 114, 121, 124, 146,
233, 235–237, 242–245, 247, 249, 270,
277, 328, 353, 355, 377, 395, 397

absolute, 242
fragment, 242
query string, 242, 359
relative, 242

URN, 25

valid document, 14, 19, 69, 70, 79, 82
variable bit encoding, 262
variable byte encoding, 262
verification, 34, 70, 71, 78, 169, 202
VOLDEMORT, 328, 402

W3C, 9, 26, 27, 31, 33, 39, 63, 64, 69, 77, 79,
82, 84, 87, 142, 169, 171, 233, 235,
236, 243, 274, 275

Web 2.0, 273
Web application, 16, 39, 125–127, 235, 247,

272, 273, 356, 365
Web browser, 3, 8, 18, 26, 79, 114, 125, 233,

390
Web client, 15, 243
Web crawler, 243–247, 260, 270, 272, 273,

276, 277
ethics, 246

Web graph, 265, 266, 268–271, 275
Web robot, see Web crawler
Web server, ii, iv, 15, 16, 25, 26, 70, 233, 243,

244, 247, 273, 365, 380, 393
Web service, i–iii, 13, 20, 24, 25, 79, 121, 146,

331, 350, 385
Web Service Description Language, see WSDL
Web spider, see Web crawler
well-formed documents, 12, 14, 27, 71, 78,

96, 226, 243, 265
wget, 233, 234
word automaton, 72–74, 87
workflow, 235, 236, 291, 331, 341, 342, 382
wrapper, 16, 194, 225, 226, 274
wrapping, 225, 237
WSDL, 6, 24, 25, 79

XHTML, 3, 7, 16, 17, 20, 27, 39, 69, 74, 79,
84, 125, 226, 227, 242, 275

XInclude, 236
XML fragmentation, 92, 95

For personal use only, not for distribution. 423

XML node
attribute node, 33, 34, 44, 45, 51, 66, 129
Dewey identifiers, 61, 97–99, 109
element node, 33, 34, 42, 45, 46, 52, 53,

66, 129, 146
identifiers, 59, 60, 76, 92, 93, 95, 96, 98,

109
ORDPATH identifiers, 108, 109
root, 33–37, 41, 42, 46, 47, 91, 317, 318,

321, 324, 326
sibling, 20, 45, 47, 59, 66, 75, 97, 99, 319,

322
XML Schema, 6, 13, 34, 51, 58, 64, 69, 71, 77,

79–85, 87, 88, 236
XML shredding, see XML fragmentation
XML transformation, 15, 39, 225
XML CALABASH, 236
XPath, 6, 9, 20, 24, 29, 31, 33, 34, 36–41,

44, 45, 47–53, 57–60, 62–66, 70, 71,
79, 83, 91, 93–95, 109–111, 115–117,
119, 121, 124, 125, 132, 225, 227, 229,
236, 237, 265, 319

XPath 1.0, 33, 38, 40, 41, 50–52, 58–63,
65, 67, 116, 119

XPath 2.0, 38, 40, 51, 52, 56, 57, 59, 63–
65, 67, 79, 119, 227, 237

XProc, 235–237
XQuery, 6, 9, 16, 20, 24, 31, 33–40, 51–54, 56–

58, 64, 65, 67, 70, 71, 79, 109, 115,
116, 118, 119, 121, 124, 125, 132, 171,
225, 236, 265

XSLT, 7, 9, 15, 20, 24, 31, 39–41, 54, 64, 70,
79, 119, 121, 124, 125, 225–229, 236,
237

template, 38, 41, 225, 227
XSLT 1.0, 40, 229
XSLT 2.0, 40, 64, 79, 225, 227, 229

YAGO, 231–234
Yahoo! Maps, 235, 237
YAHOO! PIPES, 235, 236, 273

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 424

	Introduction
	Modeling Web Data
	Data Model
	Semistructured data
	XML
	XML documents
	Serialized and tree-based forms
	XML syntax
	Typing and namespaces
	To type or not to type

	Web Data Management with XML
	Data exchange
	Data integration

	The XML World
	XML dialects
	XML standards

	Further reading
	Exercises
	XML documents
	XML standards

	XPath and XQuery
	Introduction
	Basics
	XPath and XQuery data model for documents
	The XQuery model (continued) and sequences
	Specifying paths in a tree: XPath
	A first glance at XQuery expressions
	XQuery vs XSLT

	XPath
	Steps and path expressions
	Evaluation of path expressions
	Generalities on axes and node tests
	Axes
	Node tests and abbreviations
	Predicates
	XPath 2.0

	FLWOR expressions in XQuery
	Defining variables: the for and let clauses
	Filtering: the where clause
	The return clause
	Advanced features of XQuery

	XPath foundations
	A relational view of an XML tree
	Navigational XPath
	Evaluation
	Expressiveness and first-order logic
	Other XPath fragments

	Further reading
	Exercises

	Typing
	Motivating Typing
	Automata
	Automata on Words
	Automata on Ranked Trees
	Unranked Trees
	Trees and Monadic Second-Order Logic

	Schema Languages for XML
	Document Type Definitions
	XML Schema
	Other Schema Languages for XML

	Typing Graph Data
	Graph Semistructured Data
	Graph Bisimulation
	Data guides

	Further reading
	Exercises

	XML Query Evaluation
	XML fragmentation
	XML identifiers
	Region-based identifiers
	Dewey-based identifiers
	Structural identifiers and updates

	XML evaluation techniques
	Structural join
	Optimizing structural join queries
	Holistic twig joins

	Further reading
	Exercises

	Putting into Practice: Managing an XML Database with eXist
	Pre-requisites
	Installing eXist
	Getting started with eXist
	Running XPath and XQuery queries with the sandbox
	XPath
	XQuery
	Complement: XPath and XQuery operators and functions

	Programming with eXist
	Using the XML:DB API with eXist
	Accessing eXist with Web Services

	Projects
	Getting started
	Shakespeare Opera Omnia
	MusicXML on line

	Putting into Practice: Tree Pattern Evaluation using SAX
	Tree-pattern dialects
	CTP evaluation
	Extensions

	Web Data Semantics and Integration
	Ontologies, RDF, and OWL
	Introduction
	Ontologies by example
	RDF, RDFS, and OWL
	Web resources, URI, namespaces
	RDF
	RDFS: RDF Schema
	OWL

	Ontologies and (Description) Logics
	Preliminaries: the DL jargon
	ALC: the prototypical DL
	Simple DLs for which reasoning is polynomial
	The DL-lite family: a good trade-off

	Further reading
	Exercises

	Querying Data through Ontologies
	Introduction
	Querying RDF data: notation and semantics
	Querying through RDFS ontologies
	Answering queries through DL-lite ontologies
	DL-lite
	Consistency checking
	Answer set evaluation
	Impact of combining DL-liteR and DL-liteF on query answering

	Further reading
	Exercises

	Data Integration
	Introduction
	Containment of conjunctive queries
	Global-as-view mediation
	Local-as-view mediation
	The Bucket algorithm
	The Minicon algorithm
	The Inverse-rules algorithm
	Discussion

	Ontology-based mediators
	Adding functionality constraints
	Query rewriting using views in DL-liteR

	Peer-to-Peer Data Management Systems
	Answering queries using GLAV mappings is undecidable
	Decentralized DL-liteR

	Further reading
	Exercices

	Putting into Practice: Wrappers and Data Extraction with XSLT
	Extracting Data from Web Pages
	Restructuring Data

	Putting into Practice: Ontologies in Practice (by Fabian M. Suchanek)
	Exploring and installing Yago
	Querying Yago
	Web access to ontologies
	Cool URIs
	Linked Data

	Putting into Practice: Mashups with Yahoo! Pipes and XProc
	Yahoo! Pipes: A Graphical Mashup Editor
	XProc: An XML Pipeline Language

	Building Web Scale Applications
	Web search
	The World Wide Web
	Parsing the Web
	Crawling the Web
	Text Preprocessing

	Web Information Retrieval
	Inverted Files
	Answering Keyword Queries
	Large-scale Indexing with Inverted Files
	Clustering
	Beyond Classical IR

	Web Graph Mining
	PageRank
	HITS
	Spamdexing
	Discovering Communities on the Web

	Hot Topics in Web Search
	Further Reading
	Exercises

	An Introduction to Distributed Systems
	Basics of distributed systems
	Networking infrastructures
	Performance of a distributed storage system
	Data replication and consistency

	Failure management
	Failure recovery
	Distributed transactions

	Required properties of a distributed system
	Reliability
	Scalability
	Availability
	Efficiency
	Putting everything together: the CAP theorem

	Particularities of P2P networks
	Case study: a Distributed File System for very large files
	Large scale file system
	Architecture
	Failure handling

	Further reading

	Distributed Access Structures
	Hash-based structures
	Distributed Linear Hashing
	Consistent Hashing
	Case study: Chord

	Distributed indexing: Search Trees
	Design issues
	Case study: Baton
	Case Study: BigTable

	Further reading
	Exercises

	Distributed Computing with MapReduce and Pig
	MapReduce
	Programming model
	The programming environment
	MapReduce internals

	Pig
	A simple session
	The data model
	The operators
	Using MapReduce to optimize Pig programs

	Further reading
	Exercises

	Putting into Practice: Full-Text Indexing with Lucene (by Nicolas Travers)
	Preliminary: a Lucene sandbox
	Indexing plain-text with Lucene – A full example
	The main program
	Create the Index
	Adding documents
	Searching the index
	Lucene querying syntax

	Put it into practice!
	Indexing a directory content
	Web site indexing (project)

	Lucene – Tuning the scoring (project)

	Putting into Practice: Recommendation Methodologies (by Alban Galland)
	Introduction to recommendation systems
	Pre-requisites
	Data analysis
	Generating some recommendations
	Global recommendation
	User-based collaborative filtering
	Item-based collaborative filtering

	Projects
	Scaling
	The probabilistic way
	Improving recommendation

	Putting into Practice: Large-Scale Data Management with Hadoop
	Installing and running Hadoop
	Running MapReduce jobs
	PigLatin scripts
	Running in cluster mode (optional)
	Configuring Hadoop in cluster mode
	Starting, stopping and managing Hadoop

	Exercises

	Putting into Practice: CouchDB, a JSON Semi-Structured Database
	Introduction to the CouchDB document database
	JSON, a lightweight semi-structured format
	CouchDB, architecture and principles
	Preliminaries: set up your CouchDB environment
	Adding data
	Views
	Querying views
	Distribution strategies: master-master, master-slave and shared-nothing

	Putting CouchDB into Practice!
	Exercises
	Project: build a distributed bibliographic database with CouchDB

	Further reading

	References

