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ABSTRACT 
The Corner Table (CT) promoted by Rossignac et al. provides a 
simple and efficient representation of triangle meshes, storing 6 
integer references per triangle (3 vertex references in the V table 
and 3 references to opposite corners in the O table that accelerate 
access to adjacent triangles). The Compact Half Face (CHF) 
proposed by Lage et al. extends CT to tetrahedral meshes, storing 
8 references per tetrahedron (4 in the V table and 4 in the O table). 
We call it the Vertex Opposite Table (VOT) and propose a sorted 
variation, SVOT, which does not require any additional storage 
and yet provides, for each vertex, a reference to an incident corner 
from which an incident tetrahedron may be recovered and the star 
of the vertex may be traversed at a constant cost per visited 
element. We use a set of powerful wedge-based operators for 
querying and traversing the mesh. Finally, inspired by tetrahedral 
mesh encoding techniques used by Weiler et al. and by Szymczak 
and Rossignac, we propose our Sorted O Table (SOT) variation, 
which eliminates the V table completely and hence reduces 
storage requirements by 50% to only 4 references and 9 bits per 
tetrahedron, while preserving the vertex-to-incident-corner 
references and supporting our wedge operators with a linear 
average cost. 
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1. INTRODUCTION 
1.1 Problem 
Unstructured tetrahedral meshes are used in numerous 
applications, including finite element analysis [1, 11, 26], 
interpolation of samples [55], shape reconstruction [7], and 
medical image analysis [32, 47].  
A variety of data structures and operators have been proposed [2, 
10, 22, 21, 30, 43] for storing the connectivity of the tetrahedral 
mesh and for caching additional information that simplifies and 
accelerates common queries and traversal operators needed to 
support applications. In some applications, typical meshes contain 
millions of tetrahedra [29] and this complexity continues to 
increase. Therefore, it is desired to strive for further reduction of 
the storage cost associated with these data structures. 
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Several tetrahedral mesh compression schemes have been 
proposed [31, 61]. Some support progressive refinements [45] or 
streaming [8, 33, 66]. Unfortunately, the compressed format they 
offer is not suitable for traversing, simplifying [14, 22, 21, 67], 
refining [41], or improving [57, 42, 58] the mesh. Thus, an 
effective representation scheme is needed that provides efficient 
support for random access operators that traverse the mesh 
and which may be constructed efficiently from other (possibly 
compressed) formats or updated to reflect mesh modifications. 

1.2 Foundation 
The Corner Table [49] provides a simple and efficient 
representation of triangle meshes, storing 6 integer references per 
triangle (3 references to the vertices of a triangle are stored as 
consecutive entries in the V table and 3 references to opposite 
corners are stored in the corresponding entries of the O table). The 
Corner Table has been extended by Bischoff and Rossignac [8] 
and by Lage et al. [37] to support tetrahedral meshes. The 
resulting Vertex Opposite Table (VOT), which is called the 
Compact Half Face (CHF) in [37], stores 8 references per 
tetrahedron (4 references to the vertices of a tetrahedron—one per 
corner—stored as consecutive entries in the V table and 4 
references to opposite corners stored as corresponding entries in 
the O table). References to opposite corners cached in the O table 
are used to provide constant cost access to adjacent tetrahedral 
and their bounding cells. We illustrate it on a mesh of two 
tetrahedra in Fig. 1 right, where we have numbered the corners. 
The corner pairs (1,5), (2,7) and (3,6) each share the same vertex. 
Corners 0 and 4 are opposites of each other. The other corners do 
not have opposites. For each such border corner c, we set O[c]=c.  

 
Fig. 1: Left: The blue face f(c) is the opposite face of corner c 
(green vertex). Right: Corners 0 and 4 (green and blue balls) 
are opposites: O[0]=4 and O[4]=0. The two tetrahedra have 
been shrunk for clarity, but are in fact adjacent to each other: 
f(g)=f(b). 

 
c 0 1 2 3 4 5 6 7 

V[c] 0 1 2 3 4 1 3 2 

O[c] 4 1 2 3 0 5 6 7 

Table 1: VOT for Fig. 1, right. 
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1.3 Contributions 
For each corner c of each tetrahedron, the VOT stores the 
references V[c] to the corresponding vertex and the reference O[c] 
to the opposite corners in an adjacent tetrahedron, if one exists. It 
does not store any references from vertices to corners or to 
incident tetrahedra. Because such vertex-to-incident-corner or 
tetrahedron references are important in some applications, we 
introduce a Sorted VOT (SVOT) representation, which associates 
with each vertex v a reference to one of its incident corners V(c). 
Remarkably, SVOT caches this vertex-to-incident-corner 
reference without any additional storage. This “trick” is 
accomplished by rearranging the order in which the nT tetrahedra 
and their corners are stored in the VOT: When the mesh has nV 
vertices, for any index v<nV, vertex v is the location of the first 
corner of the vth tetrahedron.  

We provide a linear cost algorithm for computing the O table of 
the VOT from the V table and an algorithm for converting a VOT 
into a SVOT that has expected linear time complexity.  

Finally, we propose another extension of the VOT, which we call 
the Sorted O Table (SOT). The SOT further reduces the storage 
requirements to only 4 references and 9 service bits per 
tetrahedron, while preserving the direct vertex-to-incident-corner 
access. We hide the service bits in the integer representation of the 
references and hence, store the SOT using 4nT integers. To 
accomplish this saving, we eliminate the need for storing the V 
table entirely. The vertex references V(c) of a corner is inferred 
from information stored in the O table and the service bits. 

To support the constructions of our SVOT and SOT and the 
traversal of the tetrahedral mesh, we have developed a set of 
powerful corner and wedges operators that extend half-edge 
operators proposed by Lage et al. [37]. A wedge is the association 
of an edge with an incident tetrahedron and with a bounding 
vertex. As they operate on wedges, a set of our operators mimic 
the effect of corresponding triangle-mesh corner operators (next, 
previous, opposite, left, right, and swing) that operate on the 
triangle-mesh boundary of the star of the starting vertex of a 
wedge. We include the details of an efficient implementation of 
these operators, which have constant cost for VOT and SVOT, 
and average constant cost for SOT (where their expected cost is 
proportional to the valence of the base vertex).  

Finally, we provide examples that demonstrate the ease of use of 
these data structures and operators for retrieving—at a constant 
(or average constant for SOT) cost per element—the tetrahedra 
around an edge, the star of a vertex, and the connected 
component of the boundary of the mesh. 

2. BACKGROUND AND PRIOR ART 
Vertices are stored in the G Table and hence implicitly associated 
with integer references in [0,nV–1] where nV is the number of 
vertices. G[v] is the location of the vertex with reference v. To 
simplify exposition, we use the term vertex and symbol v to 
define the reference or the location, depending on the context. 

Mesh elements (triangles, quads, polygons, tetrahedra) may be 
represented by ordered sets of vertex references. When all 
elements have the same vertex-count k, these references may be 
stored as consecutive integer entries in the V Table. Although that 
information is sufficient for processing individual elements, it is 
not sufficient for providing efficient access to neighboring 
elements, which is important in many applications (such as 
curvature calculation or connected component identification). To 

accelerate these queries, a variety of data structures have been 
proposed for caching additional incidence and adjacency 
information. 

Several data structures for polygonal meshes operate on edge-
uses, which are each the association of an edge with a bounding 
vertex and with an incident face. Examples include Baumgart’s 
Winged-Edge [4, 3]; Guibas and Stolfi’s Quad-Edge [30], 
Mantyla’s Half-Edge [44], and Lienhardt’s dart [40].  
Extensions of these schemes to non-manifold and non-regularized 
complexes include Weiler’s Radial-Edge [68]. Extensions to 
three-cells arrangements include Dobkin and Laszlo’s Facet-Edge 
[22, 21] extension of the Quad-Edge and Lopes and Tavares’s 
Handle-Face [43] extension of the Half-Edge. Extensions to n-
complexes include Paoluzzi et al. model [46]. Extensions to n-
manifolds include Brisson’s Cell-Tuple [9] generalizing the Quad-
Edge and Facet-Edge. Extensions to more general n-dimensional 
complexes include Lienhardt’s n-Generalized Maps [39], 
Rossignac and O’Connor’s proposed Selective Geometric 
Complexes [52], and De Floriani and Hui’s Non-Manifold Indexed 
data structure with Adjacencies [25]. For additional discussion on 
data structures for simplicial complexes, we refer the interested 
reader to [24] and [35].  
Although these techniques are suitable for representing triangle 
meshes and support efficient query and traversal operators [8], 
they require significantly more storage [36, 51] than the 
representations discussed below, which have been optimized for 
triangular or tetrahedral meshes. For example, the quad-edge 
stores 3 references per edge-use (1 to a vertex and 2 to other edge-
uses), which amounts to 9nT references. 

More compact representations customized for triangle meshes 
include Campagna’s et al. Directed Edges [12] and Kallmann and 
Thalmann’s Star-Vertices representation [36], which, for each 
vertex, stores only the sorted list of references to its neighbors, 
and hence requires a total of 3nT references, plus a few indices for 
locating the lists boundaries.  

The Corner Table [54, 50, 49], which is the basis of the proposed 
solution, represents the connectivity of a manifold triangle mesh 
of nt triangles by two tables of 3nt integers each. The V-table lists 
the triangle/vertex incidence, such that the 3 vertices bounding a 
triangle are consecutive and listed in an order that is compatible 
with a consistent orientation of the mesh. Hence, each entry to the 
V[c] table represents a corner c associating a face f with a 
bounding vertex. The O-table stores the integer reference of the 
opposite corner. A set of corner operators, listed below and 
illustrated in Fig. 2, may be trivially implemented from the 
information contained in these two tables:  

int t(int c) {return int(c/3);}   // triangle of c  
int v(int c) {return V[c];}  // vertex of c 
int o(int c) {return O[c];}  // opposite  
int n(int c) {if ((c%3)==2) return c–1; else return c+1;}// next in t(c) 
int p(int c) {return n(n(c));}  // previous corner  
int l(int c) {return o(p(c));}   // tip on left 
int r(int c) {return o(n(c));}  // tip on right 
int s(int c) {return n(l(c));}  // next around v(c) 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Fig. 2: The corner operators for a triangle mesh.  

Several data structures have been customized for tetrahedral 
meshes [62, 43, 2, 30, 10, 26, 27, 48, 5, 56]. They, or their 
variations, have been used for mesh generation and processing 
[23, 28, 34, 63, 38, 17]. 

The Corner Table has been extended by Bischoff and Rossignac’s 
VOT [6] and the equivalent Lage et al. Compact Half Faces 
(CHF) [37] independently extend the Corner Table to tetrahedral 
meshes. The VOT requires 8 references per tetrahedron (4 for 
vertex references and 4 for opposite corners). An index to these 
tables identifies a particular corner of a particular tetrahedron. 
Therefore, the V and O tables each have 4*nT entries. As was 
done for the triangle meshes, the corners of each tetrahedron are 
consecutive in the VOT (the 4 corners for the ith tetrahedron are 
stored at entries 4*i+j, where j = 0,1,2,3) and are listed in an order 
that is consistent with the orientation of the tetrahedron (the 
vertices of corners j=1,2,3 appear counter-clockwise from the 
vertex of corner j=0). When two tetrahedra share a face, the two 
corners, b and c, that do not lie on the shared face (f(b)=f(c)) are 
opposite (Fig. 1) and we cache this relation: O[b]=c and O[c]=b.  
Lage et al. [37] propose options to cache additional references, 
including a reference from each vertex to an incident tetrahedron. 
Weiler et al. [69] encode tetrahedral meshes in strips. Using a 
greedy stripification algorithm [69], they obtain an average of 4.3 
tetrahedra per strip. They also discuss a variation that builds 
longer strips by allowing duplicate vertex entries in a strip. A 
tetrahedral strip is stored as an ordered list of vertex references 
such that any 4-tuple of consecutive vertices bound a tetrahedron. 
Furthermore, each tetrahedron in a strip is face-adjacent to its 
predecessor and successor in the strip (when they exist). A strip 
with k tetrahedra has 3+k entries in V (one per vertex) and has 
2+2k external faces, for which they store opposites in the O-table. 
Hence, to produce a regular structure, they use 3 tables, each of 
size (3+k), one for the vertices, and two for the opposites, 
resulting in storage cost of 3(3+k) per strip, which results in 3nT + 
9nS total storage, where nT is the number of tetrahedra and nS is 
the number of strips. Since there are 2+2k external faces, but 6+2k 
locations in the opposites table, 4 locations in the opposites table 
do not contain any information. A bit per corner is used to identify 
the beginning and ending of strips. Assuming 4.3 tetrahedra per 
strip, the total storage cost is (3nT+9(nT/4.3))= 5.1nT, i.e. an 
average of 5.1 references per tetrahedron.  
Several techniques were proposed for compressing tetrahedral 
meshes [61, 31, 13], for streaming them [70, 6, 33], and for 
transferring refinements or simplifications [60, 45, 67]. But 
random access operators that traverse the mesh (such as those 
developed for triangle meshes [71]) are not supported in these 
approaches. 

Several representation schemes were developed to support multi-
resolution tetrahedral meshes [64, 15, 14, 35, 19, 16, 18, 20, 59]. 
In more direct relevance to our work, Szymczak and Rossignac 
[61] propose the Grow&Fold compression algorithm for 
tetrahedral meshes. In their Grow&Fold compression algorithm, 
Szymczak and Rossignac compute a Tetrahedron Spanning Tree 
(TST) and encode it using 3 bits per tetrahedron. Except at the 
root, the traversal of the TST enters a tetrahedron T by a face f. 
Each one of the 3 bits associated with T corresponds to a different 
face of T (excluding f) and indicates whether T has a child in the 
TST incident upon that face. Because the TST does not encode the 
complete connectivity, Szymczak and Rossignac also store two 
bits per border face of the TST to control a folding process that 
reconstructs the full connectivity. These bits indicate whether the 
face is a border face of the mesh and, when not, select one of its 
edges for folding. Since there are roughly 2nT such border faces, 
their scheme requires about 7nT bits to encode the connectivity of 
the mesh. It is impractical to require a full traversal of the TST to 
identify the parent of a tetrahedron and to require the executing of 
the folding algorithm to recover the references of the other two 
adjacent tetrahedra. Hence, these references must be cached. 
Furthermore, a tetrahedron may have 0, 1, 2, or 3 children in the 
TST. We must be able to locate these children in constant time, 
without having to traverse the rest of the TST.  

3. WEDGE OPERATORS  
The wedge operators, which we use for building SVOT and SOT 
and in our traversal algorithms are based on the following 
auxiliary bit-manipulation operators (as in [37]) 
boolean even(int c) {return ((c&1)==0);}   // c is even  
int m4(int c) {return c&0x3;}  // c modulo 4 
int d4(int c) {return c>>2;}  // c divided by 4 
int x4(int t) {return t<<2;}  //t multiplied by 4 
int fc(int c) {return x4(d4(c));}  // first corner of t(c) 

and on the following corner operators  
int T(int c) {return d4(c);}  // tetrahedron of c 
int N(int c) {return fc(c)+m4(m4(c)+1);}  // next corner in T(c)  
int P(int c) {return fc(c)+m4(m4(c)+3);}  // previous corner  
int V(int c) {return V[c];}  // vertex of c 
int O(int c) {return O[c];}  // opposite corner 
boolean B(int c) {return O(c)==c;}  // f(c) is a border face 

To traverse the mesh and to access the various elements (vertices, 
edges, faces, and tetrahedra) and their neighbors in an orderly 
fashion, we use the concept of a wedge, which is the association 
of a base vertex v with an incident edge e and an incident 
tetrahedron t. It corresponds to a “half-edge-use” [44] and to the 
half-edge [37]. In our figures, a wedge w defined by the triplet 
(v,e,t) is shown as a colored arrow along the half of e away from 
v. For simplicity, w.a denotes the starting corner of w and w.b its 
ending corner.  
We define 10 wedge operators (Fig. 3). Consider an interior 
vertex v. The boundary of its star is a triangle mesh M 
homeomorphic to a sphere. To each wedge w=(v,e,t) corresponds 
a corner c of M. We have named some of our wedge operators so 
that they preserve this correspondence. For example, as shown in 
Fig. 3 left, n(w) corresponds to n(c), p(w) corresponds to p(c), and 
o(w) corresponds to o(c). The triangle corners are not shown to 
avoid clutter, but are on the face to which the corresponding 
wedge arrow points. Similarly, as shown in Fig. 3 right, l(w) 
corresponds to l(c) and r(w) corresponds to r(c). Note that we 
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have underscored here the names of the triangle-mesh corner 
operators to better distinguish them from the corresponding 
tetrahedral mesh wedge operators. 

Several wedge operators do not have corresponding corner 
operators. The mirror wedge m(w) returns Brisson’s swap0. The 
cross wedge operator k(w) returns the wedge whose edge is not 
adjacent to the edge of w, and that appears to go left, when seen 
from an observer aligned with  (the arrow used to show) w. 
We do not store wedges explicitly, since storing them would 
require a significant amount of memory. Instead, we represent a 
current wedge by an ordered pair of two references to corners of 
the same tetrahedron. Clearly, such an ordered pair of corners 
defines the triplet (v,e,t) of a staring vertex v, a supporting edge e, 
and an incident tetrahedron t. 

 
Fig. 3: Wedge w is shown as a red arrow. Left (basic wedge 
operators): next wedge n(w) in green, previous wedge p(w) in 
blue, mirror (reversed) wedge m(w) in magenta, cross wedge 
k(w) in brown (back), and the opposite wedge o(w) in yellow in 
an adjacent tetrahedron. Right (derived wedge operators): 
swing right wedge sl(w) in magenta, swing left wedge, sr(w) in 
yellow, right wedge r(w) in green, left wedge l(w) in blue, 
forward wedge f(w) in grey. Note that the left wedge when 
viewed from this direction appears right relative to w. 
The next, mirror and opposite wedge operators are similar to the 
next, mate, and radial half-edge operators respectively provided 
by Lage et al. [37].  

We use the following function to create a wedge (object). 
Wedge w(int a, int b) {return new Wedge(a,b);} 

We need only three basic wedge operators (Fig 3 left): 

Wedge m(Wedge w) {return w(w.b,w.a);}  // mirror  
Wedge n(Wedge w) {  // next  
  int nc=m4(m4(w.b)+(even(w.a)?3:1));  
  if(nc==m4(w.a)) {nc=m4(m4(w.b)+2);};  
  return w(w.a,fc(w.a)+nc);} 
Wedge o(Wedge w) { int na; int oc=O(w.b);  // opposite  
  if(oc==c) {return null;};   
   if(V(N(oc))==V(w.a)) {na=N(oc);}  
   else if(V(P(oc))==V(w.a)) {na=P(oc);} 
   else {na=N(N(oc));};  
   return w(na,oc);}; 

The mirror wedge operator m() simply reverses the starting and 
ending corner indices. The next wedge operator n(), based on 
whether corner w.a is odd or even, returns the proper next wedge. 
If we represent a tetrahedron by the corners 0, 1, 2 and 3, then by 
construction and our adopted tetrahedron orientation, (1,2,3) looks 
counter-clockwise from 0, (0,2,3) looks clockwise from 1, (0,1,3) 

looks counter-clockwise from 2 and (0,1,2) looks clockwise from 
3. Hence, we can see that even corners ce view face f(ce) as 
counter-clockwise and odd corners co view face f(co) as 
clockwise. The n() operator returns the next counter-clockwise 
wedge, i.e. corner n(w).b is counter-clockwise relative to corner 
w.b when viewed from corner w.a. The opposite wedge operator 
o() uses the corner operator O(w.b) to identify the corner b 
opposite to w.b in an adjacent tetrahedron. However, there are 
three wedges having b as starting vertex. We return the one 
whose end-corner is at a vertex that is not bounding the 
tetrahedron of w. We could accelerate o() by caching the rotation 
number indicating which of the three wedges has b as starting 
vertex. Although we do not cache the rotation number for the 
VOT and SVOT, we will cache that rotation number for the SOT, 
as discussed in Section 5. 
Also note that o() returns null when the wedge has no opposite. 
This software engineering decision facilitates the implementation 
of derived wedge operators by deferring the testing of border 
conditions. Our implementation of the m(), n() and o() operators 
(not shown here) returns null if a null wedge is received as input. 

From these three basic wedge operators, we construct seven 
convenient derived wedge operators listed below and shown in 
Fig. 3 right. For practice, we encourage the reader to visually 
verify their implementation using Fig. 3.  

Wedge p(Wedge w) {return n(n(w));}  // previous wedge  
Wedge l(Wedge w) {return o(n(w));}  // left wedge  
Wedge r(Wedge w) {return o(p(w));}  // right wedge  
Wedge k(Wedge w) {return n(m(p(w)));}  // cross wedge  
Wedge f(Wedge w) {return o(m(w));}  // forward wedge  
Wedge sl(Wedge w) {return n(l(w));}  // swing left wedge  
Wedge sr(Wedge w) {return p(r(w));}  // swing right wedge  

3.1 Using wedge operators 
To demonstrate the use of the wedge operator, we discuss here the 
VOT implementation of three common algorithms. 

3.1.1 Swinging around an edge 
Here, we explain how to visit all tetrahedra incident on an edge. 
Given a wedge w, we iteratively use the swing left operator until 
we return to w or reach a null wedge (meaning, we are outside of 
the mesh). If we reach the w, we are done. If we reach a null 
wedge, we repeat the process, but swinging right. The wedges we 
visit identify the tetrahedra incident on the given wedge and 
provide a starting reference for processing them (not included). 

Wedge swing(Wedge w) {  //swing around wedge 
    Wedge sw = w(w.a, w.b);  //start wedge  
    while(w!=null){  //not a boundary wedge 
        if(eqW(sw, w)) break;  //reached start wedge 
        w = sl(w);}   //swing left 
   if(w==null) {  //start wedge  
       w = w(sw.a, sw.b);    
       while(w!=null){ w = sr(w);  }}}  //swing right  
boolean eqW(Wedge u, Wedge w) {  //equal wedges 
         return (u.a==w.a && u.b==w.b);}  //u and w equal? 

3.1.2 Visiting components of the boundary 
Here, we explain how to traverse connected components of the 
boundary of a tetrahedral mesh using the VOT. 
We can traverse a shell (connected manifold component) of a 
triangle mesh by starting from a corner c and recursively walking 
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to neighboring triangles using the l() and r() Corner Table 
operators. We can either mark the visited triangles and use 
recursive calls, or mark visited vertices and triangles to avoid 
most recursive calls, as done in the Edgebreaker traversal [53]. 

Note that to each corner b of a border triangle of a tetrahedron 
mesh corresponds a unique wedge w=wedge(a,b). Using the 
analogy between wedge and corner operators, we can execute the 
above traversal algorithm and visit the faces of the connected 
component of the boundary of the mesh. All we need is the wedge 
counterparts lc(), and rc() of the l() and r() operators. We provide 
their implementation below, along with oc(). 

Wedge rc(Wedge w){return swing(p(m(w)));}   //right boundary 
Wedge lc(Wedge w){return swing(n(k(w)));}   //left boundary  
Wedge oc(Wedge w){return swing(m(k(w)));}   //opposite  
Wedge swing(Wedge w){   //swing around w until we.. 
  while(true){ if(B(k(w).a) break; w = sr(w);}   //.. hit boundary 
  return k(w);}   //return proper wedge  

3.1.3 Visiting the TST 
Here we describe how to visit a Tetrahedron Spanning Tree, 
which is used in several compression solutions [61, 31].  

We use the right, left, opposite and forward wedge operators. A 
temporary array of bits or flags is maintained to record the visited 
status of all tetrahedra. (We use the most significant bit of the 
Vertex Table to store them.) The recursive version of the code is 
provided below. 

void dfs(Wedge w) {  //depth first traversal 
  if(w!=null && !VisitedT(T(w.a))) {  //if tet not visited 
   setVisitedT(T(w.a), true);   //set visited status 
   dfs(r(w)); dfs(l(w));   //visit right and left tets 
   dfs(o(w)); dfs(f(w));}  //visit opposite and forward tets 
 

4. SVOT 
4.1 Motivation 
All algorithms that we have encountered may be easily expressed 
by looping through or manipulating tetrahedra, corners (or 
equivalently their opposite oriented faces) or wedges. For 
example, one may find all tetrahedra that lie inside a given ball 
visiting all tetrahedra and accessing their corners and testing the 
corresponding vertices for inclusion in the ball. Temporary flags 
could be used to avoid testing the same vertex more than once. 
Similarly, one may find the tetrahedron with the sharpest edge by 
looping through all tetrahedra and for each one, by looping 
through its six wedges.  
However, some developers prefer to have direct access from a 
vertex to its star, because some of their algorithms operate 
directly on vertices (not through corners) or because some of their 
auxiliary data structures refer directly to vertices. A natural 
solution [37] is to add a vertex-to-corner lookup table C, such 
that C[v] contains the index of corner c, such that V[c]=v. This 
approach requires storing additional nV references. The SVOT 
solution described below provides the same information though a 
constant cost function call C(v) and avoids storing the C table. 

4.2 Proposed SVOT solution 
To provide constant cost access to a corner C(v) for each vertex v, 
and this without additional storage, we reorder the tetrahedra and 
their corners in the VOT so the corner C(v) incident upon vertex v 
may be simply computed as 4*v. This mapping works for most 

meshes. However, for thin meshes, we may need a slightly more 
complex special mapping, as shown in Fig. 4 which we discuss in 
Section 4.3.4. 

4.3 SVOT construction algorithm 
We explain here how to compute SVOT from the V table alone in 
linear time. The process involves 3 steps: 
1) CONSTRUCTION: Compute O 
2) MAPPING: Establish a mapping, M(t)=v, between each 

tetrahedron t and a bounding vertex v so that no two 
tetrahedra map to the same vertex. 

3) SORTING: Reorder the VOT  

 
Fig. 4: Left: General SVOT mapping. Right: Special mapping. 

4.3.1 Construction 
The O-table does not need to be archived since it may be 
recomputed from the V-table when the V table is loaded. We 
discuss here four algorithms for rebuilding the O-table from the 
V-table. Their timings on two meshes of different complexity are 
listed in Table 2.  

The all-pairs algorithm (trivial, yet impractical for large values of 
nT) has asymptotic computational complexity O(nT

2). It considers 
each pair of different corners c and b: if f(b)=f(c), then b and c are 
opposite. We simply set O[b]=c and O[c]=b. 

The tuple-sort algorithm, which is O(nT log nT), first constructs a 
table of 4-tuples (v1,v2,v3,c), where the vi are vertices of f(c) 
sorted so that v1<v2<v3, and then sorts the table. Consecutive 
entries (v1,v2,v3,b) and (v1,v2,v3,c) with matching first 3 references 
define opposite corners b and c. Entries with no matching triplets 
define border corners with no opposite. 

The bin-sort algorithm, which has complexity O(nV d2) where d is 
the maximum vertex valence, avoids the above global sort by 
using v1 to bin all the 4-tuples incident upon vertex v1. All 
quadruplets in a bin are then sorted and used as above. Since 
typically d is small, we use a trivial O(d2) sort, which of course 
may be replaced with an O(dlogd) sort if desired.  

The hash-sort algorithm, which has expected O(nT) 
computational complexity, uses hashing to sort the c-values of the 
above 4-tuples using the 3-tuples (v1,v2,v3) as the key. Given a 
good hash key, hash table lookups can be performed in constant 
time. The hash-sort algorithm is used by Lage et al. [37] where 
they use an associative container to construct the O table. 

Our bbin-sort algorithm was inspired by [65, 66]. It has O(nT) 
time and O(nT+nV) space complexity. First, with each vertex u, we 
associate a bin Bu of wedges emanating from u. To do so, for each 
corner c, we visit the 3 wedges of T(c) that start at c and add them 
to BV(c). This process has linear complexity. Then, for each vertex 
u, we (i) bin-sort the wedges of Bu into edge-bins Bu,v and (ii) 
process the edge-bins. 
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(i) To bin-sort the wedges, we proceed as follows. Assume that 
we have w wedges in Bu. Using the Euler formula, we have t=w/3 
tetrahedra and assume we have e edges incident upon u. We 
construct a hash injective function, he, that maps integers in 
{0..nV-1} into integers in {0..e-1} and use it to bin-sort [37] each 
wedge of Bu into the edge-bin Bu,e associated with 
edge(u,he(V(w.b))). We can construct the mapping he in linear 
time O(e) and linear space O(e+nV) by maintaining appropriate 
lookup data structures. Also, note that Bu,e is a temporary data 
structure constructed for each vertex u. The cost of storing all Bu,e 
is O(t). 
(ii) We process an edge-bin, Bu,v as follows. Assume that it has s 
entries. This implies that there are s tetrahedra and assume it has f 
faces incident upon edge(u,v). We use a hash injective function hf, 
that maps integers in {0..nV-1} into integers in {0..f-1}. We can 
construct the mapping hf in linear time O(f) and linear space 
O(f+nV) by maintaining appropriate lookup data structures. For 
each wedge w of Bu,v, for each corner c of T(w) that is not in 
{w.a,w.b}, we bin-sort c into a face-bin Bu,v,x, where x is the 
fourth vertex of T(w). Bu,v,x is a temporary data structure 
constructed for each (u,v) vertex pair. The cost of storing all Bu,v,x 
is O(s). Now each face-bin Bu,v,x contains the opposite corners of 
face(u,v,x). When it has a single entry, c, then we set O[c]=c. 
When it has two entries, c, and d, we set O[c]=d and O[d]=c.  

Note that each wedge and each face is hashed only once and the 
number of wedges and faces are linear functions of nT. Hence, the 
total number of hashing steps is O(nT). The final pass that sets the 
O table is also linear in the number of faces. Consequently, the 
expected running cost of bbin-sort is O(nT). Additionally, the Bu, 
Bu,e, Bu,v,x data structures each require O(nT), O(t) and O(s) space, 
which is bounded by O(nT). Constructing the hash injective 
function requires additional O(e+nV) and O(f+nV) space. 
Therefore, the expected space cost of bbin-sort is O(nT+nV). 

 
Tetrahedra BBin-sort Hash-sort Tuple-sort Bin-sort 

482,867 1,192ms 2,087ms 2,490ms 6,253ms 

1,239,990 3,230ms 5,897ms 7,295ms 16,368ms 
Table 2: Performance tests for various O-table rebuilding 
algorithms. Tests were done on a Macbook with 2GB memory 
and 2.1Ghz dual-core processor. The naive all-pairs algorithm 
is impractical. 

4.3.2 Mapping 
The mapping phase involves three steps: Initialization, Traversal, 
and Termination.  

To represent the mapping M() computed in the mapping phase, 
we use a temporary table M which stores the vertex M[t] 
associated with tetrahedron t. We traverse the TST (as discussed 
in 3.1.3) and, as we enter a new tetrahedron t through a face f, 
associate T with the reference to its tip vertex (the vertex not 
bounding f), unless that vertex has already been associated with 
another tetrahedron. This idea is similar to the association of the 
tip vertex of each type-C triangle in the Edgebreaker compression 
scheme [54] for triangle meshes. Unfortunately, unless we take 
special precautions, this simple idea may not always work, 
because the traversal may associate each tetrahedron incident 
upon a vertex v with a vertex other than v, leaving an orphan 
vertex. To eliminate the possibility of orphan vertices, we propose 
a special initialization step, which guarantees that this approach 

produces a correct mapping (where each vertex is associated with 
a different tetrahedron). 

Initialization: During the initialization step, we pick a seed 
tetrahedron S so that none of its vertices bounds a border face.  

Let c be the first corner of the seed tetrahedron S. We set 
M[S]=V(c) and mark (as visited) all vertices of S.  

Note that this approach assumes that a suitable seed exists. 
Finding S, when it exists is trivial. However, it must be noted that 
the proposed approach may not work on thin meshes or crusts 
[28] in which each tetrahedron has at least one external face. We 
address such issues at the end of the section. Furthermore, our 
approach requires performing the proposed reordering process for 
each connected component of the mesh. For multiple components, 
we need multiple seed tetrahedra. After selecting a seed 
tetrahedron S, we mark S and start a depth first traversal of the 
TST with S as root and T(O(c)) as the first child, where c is the 
first corner of S. 

We use three arrays of auxiliary tables: visitedV[v] keeps track of 
visited vertices, visitedT[t] keeps track of visited tetrahedra, 
whichCorner[t] stores the corner c in tetrahedron t such that 
M[T(c)]=V(c). 

Traversal: During the traversal step, we reach a new unvisited 
tetrahedron t by arriving from a parent tetrahedron through the 
opposite face f(b) of a corner b. We mark t as visited. If the vertex 
V(b) has not yet been visited, we mark it as visited, set 
M[t]=V(b), and store in whichCorner[T(b)] corner b.  

Termination: We match the three tetrahedra incident upon seed S 
(T(O(c)) where c is not the first corner of S) with 3 vertices of S, 
as shown in Fig. 5. Given the precaution we took with the 
selection of the seed (S has four adjacent tetrahedra), the other 3 
tetrahedra adjacent to S have been reached while coming from 
tetrahedra other than S and hence will not be associated with a 
vertex (since their tip vertex was marked with S during 
initialization and is no longer available to be associated with 
them).  

Since we performed a depth first traversal starting from S, we visit 
all face connected tetrahedra which implies we visit all the 
vertices. 

 
Fig. 5: The seed tetrahedron S (shown in green) with the 
corner c (shown as a green ball), its first neighbor T(O(c)) 
(shown in yellow), and the other three adjacent neighbors of S 
(shown in red, blue and magenta). Each tetrahedron shown is 
matched with a vertex of the same color. The other tetrahedra 
are not shown. 
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4.3.3 Sorting 
We sort the tetrahedra in the order of M[T] and write them into a 
new copy of V, performing a permutation of the corners of each 
tetrahedron so that the remembered corner b (stored in 
whichCorner[T]) is listed first as corner of index zero in T. 
Finally, we recompute the O table as explained in 4.3.1. 

The sorting discussed above requires O(nT) time and O(nT+nV)  
temporary space for marking tetrahedra and vertices. The sorting 
needs to be performed only once, since its result (i.e. the sorted V-
table) may be archived for future uses. As this sorting is a 
permutation where each element knows the location of the bin it 
wants to be in the sorted order, it requires O(nT) time instead of 
the traditional O(nTlognT) that is associated with sorting. 

4.3.4 Special cases of thin meshes 
It was pointed out in the mapping phase that an internal seed 
tetrahedron S might not exist. Should an internal tetrahedron not 
exist, we use an alternate method. Initially choose any tetrahedron 
as the seed tetrahedron S. We place S as the first tetrahedron in 
the V table. Let the four vertex references for S be v0, v1, v2 and 
v3. We swap the vertices in the geometry table. We swap v0 with 
the 0th entry in the geometry table, v1 with the 1st entry in the 
geometry table, likewise for v2 and v3. We then reorder the rest of 
the tetrahedra as described in the construction section for the 
general case. Now, the vertex-to-corner mapping is as follows: for 
i<4, the ith vertex maps to the ith corner. For i>=4, the ith vertex 
maps to the ((i-3)*4)th corner. This mapping has been shown in 
Figure 4, right. 

4.4 Reaching for the stars 
Given an integer reference v to a vertex, the SVOT gives us direct 
access to the corresponding corner C(v), using: 

int C(int v) {return x4(v);}   //x4(v) = v*4 

The auxiliary operator x4 was introduced in Section 3. The 
corner and wedge operators for the VOT work without 
modification on the SVOT. 

Since the ith vertex is mapped to the (4*i)th corner in the SVOT, to 
visit the star of the ith vertex, we simply call star(4*i). Using this, 
we can traverse all tetrahedra incident on a vertex by performing a 
depth first traversal utilizing the right, left and opposite wedge 
operators. It is similar to depth first traversal but we do not use the 
forward wedge operator. If we are given the corner c then we 
recursively visit all the right, left and opposite wedges of w where 
w.a=c and w.b = N(c).  

void star(int c) { Wedge w = w(c, N(c)); star(w);} //star of corner c 
void star(Wedge w) {  //star traversal 
  if(w!=null && !VisitedT(T(w.a))) {  //if tet not visited 
   setVisitedT(T(w.a), true);   //set visited status 
   process(T(w.a));   //process the tetrahedron 
   star(r(w)); star(l(w)); star(o(w));}}  //visit neighbors 

5. SOT 
The VOT and our SVOT variation each store 8 references per 
tetrahedron (4 to vertices and 4 to opposite corners). We discuss 
here an approach to reduce this storage to 4 references and 9 
service bits per tetrahedron (2 bits per opposite corner = 8 bits per 
tetrahedron and 1 bit for visited state).  

5.1 High level description 
The Sorted Opposite Table (SOT) uses the same O-table as the 
one produced in SVOT, but does not store the V table at all. 
Therefore, the resulting SOT has no references to vertices. How 
then is it possible to find vertex references V(c) of a corner c? The 
solution comes from a combination of three ideas. 

1) Because the O table is sorted in SVOT, to each vertex v 
corresponds a matching tetrahedron tv=v of which the first corner 
is incident on v. Note that such tetrahedra are easily recognized 
because their index t is less than the number of vertices nV. A 
slightly modified test is used for thin meshes. 

2) By construction of the SVOT, in the star of every vertex v, 
there is a matching tetrahedron tv = v. 

3) Starting from any corner c, we can visit the star of its vertex 
V(c), even though we do not yet know the index of v. On average, 
we need to visit 13.3 tetrahedra of the star of v, before finding a 
matching tetrahedron, but the associated performance cost may be 
justified by the reduction of storage, and hence of page faults. 

To visit the star, our operators use the O-table and the service bits. 
Two of these bits per corner are used to indicate the rotation 
number (as described in section 3 for the o() wedge operator). 

To traverse the star, we use a tetrahedral version of the corner 
table traversal of the triangle mesh that bounds the star (as 
explained in section 4.4). We use one service bit per tetrahedron 
to remember which ones were visited. We perform a second pass 
to erase them.  

5.2 Construction of SOT: 
We first construct the SVOT. We then construct the SOT by 
eliminating the V table in the SVOT. In the O table, we store the 
two service bits per corner to encode the rotation number, which 
provides information about the relative orientation of two face 
adjacent tetrahedra.  
Specifically, consider two tetrahedra t1 with corner c and t2 with 
corner O(c) that share a common face f(c). Imagine that we do not 
know the vertex references for the individual corners in f(c). 
There are three ways in which we can “glue” t1 and t2 at f. We can 
rotate t1 clockwise, counter-clockwise, or not at all. 
Correspondingly, the rotation number rn(c) for corner c is either 
be 0, 1 or 2. The rotation number is computed by using the V table 
in SVOT. We cache the rotation number, rn(c) for each corner c 
as the most significant bits of each entry in the opposites table. 
The code below computes the rotation number for a given corner.  

int RotationNumber(int c) {  //rotation number for corner c 
  Wedge w = w(O(c), N(O(c)));  //create a wedge 
  if(V(N(c))==V(w.b)) return 0;  //no rotation required 
  if(V(N(c))==V((n(w)).b)) return 1;  //1 rotation required 
  return 2;}  // 2 rotations required 
 
Note that the SOT maintains the property of the SVOT where the 
ith vertex vi maps to the ith tetrahedron Ti and the corner ci=4*i is 
incident on the vertex vi. The special case of thin meshes also 
generalizes easily to the SOT. 

5.3 Determining vertex references: 
We explain here in details how the vertex for an arbitrary corner b 
can be inferred from the O table of the SOT and from the service 
bits. 
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The idea is to traverse the star (see Section 4.4) of V(b) to 
determine the corners bi incident on V(b). We must do that of 
course without knowing V(b), since V(b) is the desired result. The 
traversal stops when we find a matching tetrahedron t<nV. 

Finding the vertex reference can require that we visit at most d 
tetrahedra, where d is the valence of the vertex v. Our experiments 
indicate that we need to visit, on average, about 13.3 tetrahedra. 

5.4 Wedge operators on SOT 
In the SOT, we need to redefine two operators, the V() corner 
operator and the o() wedge operator. All other corner and wedge 
operators from the VOT remain the same. In the original VOT 
implementation, the o() wedge operator utilizes the V Table, but 
since the SOT doesn’t store the V table, we rely on the rotation 
number to determine the proper o() wedge operator. The o() 
wedge operator takes constant steps for each call. The V() 
operator traverses the star to determine the vertex reference. When 
computing the star of the vertex, we need to maintain a visited 
state for each tetrahedron. We store it as the most significant bit 
of O[c], where c is the first corner in its tetrahedron. To unmark 
the tetrahedra that were visited, we use the star traversal again. 
The code for these two operators is provided below. 

int V(int c) {  //returns SOT vertex id 
  Wedge w = w(c, N(c));  //create wedge w 
  return StarV(w);}   //utilize star to get vertex id 

int StarV(Wedge w) {  //star to determine vertex id 
  int rv = ‐1;   //default value 
  if(w!=null) {  //if wedge exists 
    int t = T(w.a);   //tetrahedron id 
    if(!VisitedT(t)) {  //if tetrahedron not visited 
      setVisitedT(t, true);   //mark as visited 
      if(t<v && m4(w.a)==0) {rv = t;}   //if first corner and t<|G| 
      if(rv==‐1) v = StarV(r(w));   //visit right wedge 
      if(rv==‐1) v = StarV(l(w));   //visit left wedge 
      if(rv==‐1) v = StarV(o(w));}}   //visit opposite wedge 
  return rv;}   //return vertex id 
 

Wedge o(Wedge w) {  //SOT opposite operator 
  if(w==null) return null;   //wedge does not exist 
  if(O(c)==c) return null;   //wedge does not exist 

int c = w.b;   //corner c 
  Wedge ow = w(O(c), N(oc));   //no rotation 
  if(rn(c)==1) ow = n(ow, tm);   //1 rotation 
  if(rn(c)==2) ow = p(ow, tm);   //2 rotation 

Wedge cw = w(c, N(c));   //no rotation 
  if(cw.b==w.a) {return w(ow.b, ow.a);}  //no aligning 
  if(n(cw, tm).b==w.a) { return w(p(ow, tm).b, ow.a);}//align next 
return w(n(ow, tm).b, ow.a);}   //align with prev 

6. CONCLUSION 
The VOT representation of tetrahedral meshes requires 8 
references per tetrahedron. We propose two variations: (1) The 
SVOT affords references from a vertex to one of its incident 
corners without increasing storage. It permits to access all incident 
and adjacent cells to a corner, a vertex, or a tetrahedron with a 
constant cost per cell. (2) The SOT further reduces storage cost to 
4 references and 9 service bits per tetrahedron, but makes the 

computational cost of accessing neighboring cells proportional to 
the valence of a common vertex. 

To facilitate the use of these new representations, we introduce a 
small set of powerful wedge operators for querying and traversing 
the tetrahedral mesh and provide efficient implementations that 
work directly off the VOT or SOT. These wedge operators are a 
natural and intuitive extension to tetrahedral meshes of the 
familiar Corner Table operators originally developed for triangle 
meshes. We illustrate their power by providing reasonably simple 
source code for several common algorithms that process 
tetrahedral meshes. 
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