
SOT: Compact representation for tetrahedral meshes
Topraj Gurung and Jarek Rossignac

School of Interactive Computing, College of Computing,
Georgia Institute of Technology, Atlanta, GA

{topraj,jarek}@cc.gatech.edu

ABSTRACT
The Corner Table (CT) promoted by Rossignac et al. provides a
simple and efficient representation of triangle meshes, storing 6
integer references per triangle (3 vertex references in the V table
and 3 references to opposite corners in the O table that accelerate
access to adjacent triangles). The Compact Half Face (CHF)
proposed by Lage et al. extends CT to tetrahedral meshes, storing
8 references per tetrahedron (4 in the V table and 4 in the O table).
We call it the Vertex Opposite Table (VOT) and propose a sorted
variation, SVOT, which does not require any additional storage
and yet provides, for each vertex, a reference to an incident corner
from which an incident tetrahedron may be recovered and the star
of the vertex may be traversed at a constant cost per visited
element. We use a set of powerful wedge-based operators for
querying and traversing the mesh. Finally, inspired by tetrahedral
mesh encoding techniques used by Weiler et al. and by Szymczak
and Rossignac, we propose our Sorted O Table (SOT) variation,
which eliminates the V table completely and hence reduces
storage requirements by 50% to only 4 references and 9 bits per
tetrahedron, while preserving the vertex-to-incident-corner
references and supporting our wedge operators with a linear
average cost.

Keywords
Modeling, Tetrahedral Meshes, Data Structures, Storage

1. INTRODUCTION
1.1 Problem
Unstructured tetrahedral meshes are used in numerous
applications, including finite element analysis [1, 11, 26],
interpolation of samples [55], shape reconstruction [7], and
medical image analysis [32, 47].
A variety of data structures and operators have been proposed [2,
10, 22, 21, 30, 43] for storing the connectivity of the tetrahedral
mesh and for caching additional information that simplifies and
accelerates common queries and traversal operators needed to
support applications. In some applications, typical meshes contain
millions of tetrahedra [29] and this complexity continues to
increase. Therefore, it is desired to strive for further reduction of
the storage cost associated with these data structures.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
GD/SPM ’09 San Francisco, California USA
Copyright 2009 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Several tetrahedral mesh compression schemes have been
proposed [31, 61]. Some support progressive refinements [45] or
streaming [8, 33, 66]. Unfortunately, the compressed format they
offer is not suitable for traversing, simplifying [14, 22, 21, 67],
refining [41], or improving [57, 42, 58] the mesh. Thus, an
effective representation scheme is needed that provides efficient
support for random access operators that traverse the mesh
and which may be constructed efficiently from other (possibly
compressed) formats or updated to reflect mesh modifications.

1.2 Foundation
The Corner Table [49] provides a simple and efficient
representation of triangle meshes, storing 6 integer references per
triangle (3 references to the vertices of a triangle are stored as
consecutive entries in the V table and 3 references to opposite
corners are stored in the corresponding entries of the O table). The
Corner Table has been extended by Bischoff and Rossignac [8]
and by Lage et al. [37] to support tetrahedral meshes. The
resulting Vertex Opposite Table (VOT), which is called the
Compact Half Face (CHF) in [37], stores 8 references per
tetrahedron (4 references to the vertices of a tetrahedron—one per
corner—stored as consecutive entries in the V table and 4
references to opposite corners stored as corresponding entries in
the O table). References to opposite corners cached in the O table
are used to provide constant cost access to adjacent tetrahedral
and their bounding cells. We illustrate it on a mesh of two
tetrahedra in Fig. 1 right, where we have numbered the corners.
The corner pairs (1,5), (2,7) and (3,6) each share the same vertex.
Corners 0 and 4 are opposites of each other. The other corners do
not have opposites. For each such border corner c, we set O[c]=c.

Fig. 1: Left: The blue face f(c) is the opposite face of corner c
(green vertex). Right: Corners 0 and 4 (green and blue balls)
are opposites: O[0]=4 and O[4]=0. The two tetrahedra have
been shrunk for clarity, but are in fact adjacent to each other:
f(g)=f(b).

c 0 1 2 3 4 5 6 7

V[c] 0 1 2 3 4 1 3 2

O[c] 4 1 2 3 0 5 6 7

Table 1: VOT for Fig. 1, right.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
2009 SIAM/ACM Joint Conference on Geometric and Physical
Modeling (SPM ’09), October 4-9, 2009, San Francisco, CA.
Copyright 2009 ACM 978-1-60558-711-0/09/10…$10.00.

79

1.3 Contributions
For each corner c of each tetrahedron, the VOT stores the
references V[c] to the corresponding vertex and the reference O[c]
to the opposite corners in an adjacent tetrahedron, if one exists. It
does not store any references from vertices to corners or to
incident tetrahedra. Because such vertex-to-incident-corner or
tetrahedron references are important in some applications, we
introduce a Sorted VOT (SVOT) representation, which associates
with each vertex v a reference to one of its incident corners V(c).
Remarkably, SVOT caches this vertex-to-incident-corner
reference without any additional storage. This “trick” is
accomplished by rearranging the order in which the nT tetrahedra
and their corners are stored in the VOT: When the mesh has nV
vertices, for any index v<nV, vertex v is the location of the first
corner of the vth tetrahedron.

We provide a linear cost algorithm for computing the O table of
the VOT from the V table and an algorithm for converting a VOT
into a SVOT that has expected linear time complexity.

Finally, we propose another extension of the VOT, which we call
the Sorted O Table (SOT). The SOT further reduces the storage
requirements to only 4 references and 9 service bits per
tetrahedron, while preserving the direct vertex-to-incident-corner
access. We hide the service bits in the integer representation of the
references and hence, store the SOT using 4nT integers. To
accomplish this saving, we eliminate the need for storing the V
table entirely. The vertex references V(c) of a corner is inferred
from information stored in the O table and the service bits.

To support the constructions of our SVOT and SOT and the
traversal of the tetrahedral mesh, we have developed a set of
powerful corner and wedges operators that extend half-edge
operators proposed by Lage et al. [37]. A wedge is the association
of an edge with an incident tetrahedron and with a bounding
vertex. As they operate on wedges, a set of our operators mimic
the effect of corresponding triangle-mesh corner operators (next,
previous, opposite, left, right, and swing) that operate on the
triangle-mesh boundary of the star of the starting vertex of a
wedge. We include the details of an efficient implementation of
these operators, which have constant cost for VOT and SVOT,
and average constant cost for SOT (where their expected cost is
proportional to the valence of the base vertex).

Finally, we provide examples that demonstrate the ease of use of
these data structures and operators for retrieving—at a constant
(or average constant for SOT) cost per element—the tetrahedra
around an edge, the star of a vertex, and the connected
component of the boundary of the mesh.

2. BACKGROUND AND PRIOR ART
Vertices are stored in the G Table and hence implicitly associated
with integer references in [0,nV–1] where nV is the number of
vertices. G[v] is the location of the vertex with reference v. To
simplify exposition, we use the term vertex and symbol v to
define the reference or the location, depending on the context.

Mesh elements (triangles, quads, polygons, tetrahedra) may be
represented by ordered sets of vertex references. When all
elements have the same vertex-count k, these references may be
stored as consecutive integer entries in the V Table. Although that
information is sufficient for processing individual elements, it is
not sufficient for providing efficient access to neighboring
elements, which is important in many applications (such as
curvature calculation or connected component identification). To

accelerate these queries, a variety of data structures have been
proposed for caching additional incidence and adjacency
information.

Several data structures for polygonal meshes operate on edge-
uses, which are each the association of an edge with a bounding
vertex and with an incident face. Examples include Baumgart’s
Winged-Edge [4, 3]; Guibas and Stolfi’s Quad-Edge [30],
Mantyla’s Half-Edge [44], and Lienhardt’s dart [40].
Extensions of these schemes to non-manifold and non-regularized
complexes include Weiler’s Radial-Edge [68]. Extensions to
three-cells arrangements include Dobkin and Laszlo’s Facet-Edge
[22, 21] extension of the Quad-Edge and Lopes and Tavares’s
Handle-Face [43] extension of the Half-Edge. Extensions to n-
complexes include Paoluzzi et al. model [46]. Extensions to n-
manifolds include Brisson’s Cell-Tuple [9] generalizing the Quad-
Edge and Facet-Edge. Extensions to more general n-dimensional
complexes include Lienhardt’s n-Generalized Maps [39],
Rossignac and O’Connor’s proposed Selective Geometric
Complexes [52], and De Floriani and Hui’s Non-Manifold Indexed
data structure with Adjacencies [25]. For additional discussion on
data structures for simplicial complexes, we refer the interested
reader to [24] and [35].
Although these techniques are suitable for representing triangle
meshes and support efficient query and traversal operators [8],
they require significantly more storage [36, 51] than the
representations discussed below, which have been optimized for
triangular or tetrahedral meshes. For example, the quad-edge
stores 3 references per edge-use (1 to a vertex and 2 to other edge-
uses), which amounts to 9nT references.

More compact representations customized for triangle meshes
include Campagna’s et al. Directed Edges [12] and Kallmann and
Thalmann’s Star-Vertices representation [36], which, for each
vertex, stores only the sorted list of references to its neighbors,
and hence requires a total of 3nT references, plus a few indices for
locating the lists boundaries.

The Corner Table [54, 50, 49], which is the basis of the proposed
solution, represents the connectivity of a manifold triangle mesh
of nt triangles by two tables of 3nt integers each. The V-table lists
the triangle/vertex incidence, such that the 3 vertices bounding a
triangle are consecutive and listed in an order that is compatible
with a consistent orientation of the mesh. Hence, each entry to the
V[c] table represents a corner c associating a face f with a
bounding vertex. The O-table stores the integer reference of the
opposite corner. A set of corner operators, listed below and
illustrated in Fig. 2, may be trivially implemented from the
information contained in these two tables:

int t(int c) {return int(c/3);}   // triangle of c  
int v(int c) {return V[c];}  // vertex of c 
int o(int c) {return O[c];}  // opposite  
int n(int c) {if ((c%3)==2) return c–1; else return c+1;}// next in t(c) 
int p(int c) {return n(n(c));}  // previous corner  
int l(int c) {return o(p(c));}   // tip on left 
int r(int c) {return o(n(c));}  // tip on right 
int s(int c) {return n(l(c));}  // next around v(c) 

80

Fig. 2: The corner operators for a triangle mesh.

Several data structures have been customized for tetrahedral
meshes [62, 43, 2, 30, 10, 26, 27, 48, 5, 56]. They, or their
variations, have been used for mesh generation and processing
[23, 28, 34, 63, 38, 17].

The Corner Table has been extended by Bischoff and Rossignac’s
VOT [6] and the equivalent Lage et al. Compact Half Faces
(CHF) [37] independently extend the Corner Table to tetrahedral
meshes. The VOT requires 8 references per tetrahedron (4 for
vertex references and 4 for opposite corners). An index to these
tables identifies a particular corner of a particular tetrahedron.
Therefore, the V and O tables each have 4*nT entries. As was
done for the triangle meshes, the corners of each tetrahedron are
consecutive in the VOT (the 4 corners for the ith tetrahedron are
stored at entries 4*i+j, where j = 0,1,2,3) and are listed in an order
that is consistent with the orientation of the tetrahedron (the
vertices of corners j=1,2,3 appear counter-clockwise from the
vertex of corner j=0). When two tetrahedra share a face, the two
corners, b and c, that do not lie on the shared face (f(b)=f(c)) are
opposite (Fig. 1) and we cache this relation: O[b]=c and O[c]=b.
Lage et al. [37] propose options to cache additional references,
including a reference from each vertex to an incident tetrahedron.
Weiler et al. [69] encode tetrahedral meshes in strips. Using a
greedy stripification algorithm [69], they obtain an average of 4.3
tetrahedra per strip. They also discuss a variation that builds
longer strips by allowing duplicate vertex entries in a strip. A
tetrahedral strip is stored as an ordered list of vertex references
such that any 4-tuple of consecutive vertices bound a tetrahedron.
Furthermore, each tetrahedron in a strip is face-adjacent to its
predecessor and successor in the strip (when they exist). A strip
with k tetrahedra has 3+k entries in V (one per vertex) and has
2+2k external faces, for which they store opposites in the O-table.
Hence, to produce a regular structure, they use 3 tables, each of
size (3+k), one for the vertices, and two for the opposites,
resulting in storage cost of 3(3+k) per strip, which results in 3nT +
9nS total storage, where nT is the number of tetrahedra and nS is
the number of strips. Since there are 2+2k external faces, but 6+2k
locations in the opposites table, 4 locations in the opposites table
do not contain any information. A bit per corner is used to identify
the beginning and ending of strips. Assuming 4.3 tetrahedra per
strip, the total storage cost is (3nT+9(nT/4.3))= 5.1nT, i.e. an
average of 5.1 references per tetrahedron.
Several techniques were proposed for compressing tetrahedral
meshes [61, 31, 13], for streaming them [70, 6, 33], and for
transferring refinements or simplifications [60, 45, 67]. But
random access operators that traverse the mesh (such as those
developed for triangle meshes [71]) are not supported in these
approaches.

Several representation schemes were developed to support multi-
resolution tetrahedral meshes [64, 15, 14, 35, 19, 16, 18, 20, 59].
In more direct relevance to our work, Szymczak and Rossignac
[61] propose the Grow&Fold compression algorithm for
tetrahedral meshes. In their Grow&Fold compression algorithm,
Szymczak and Rossignac compute a Tetrahedron Spanning Tree
(TST) and encode it using 3 bits per tetrahedron. Except at the
root, the traversal of the TST enters a tetrahedron T by a face f.
Each one of the 3 bits associated with T corresponds to a different
face of T (excluding f) and indicates whether T has a child in the
TST incident upon that face. Because the TST does not encode the
complete connectivity, Szymczak and Rossignac also store two
bits per border face of the TST to control a folding process that
reconstructs the full connectivity. These bits indicate whether the
face is a border face of the mesh and, when not, select one of its
edges for folding. Since there are roughly 2nT such border faces,
their scheme requires about 7nT bits to encode the connectivity of
the mesh. It is impractical to require a full traversal of the TST to
identify the parent of a tetrahedron and to require the executing of
the folding algorithm to recover the references of the other two
adjacent tetrahedra. Hence, these references must be cached.
Furthermore, a tetrahedron may have 0, 1, 2, or 3 children in the
TST. We must be able to locate these children in constant time,
without having to traverse the rest of the TST.

3. WEDGE OPERATORS
The wedge operators, which we use for building SVOT and SOT
and in our traversal algorithms are based on the following
auxiliary bit-manipulation operators (as in [37])
boolean even(int c) {return ((c&1)==0);}   // c is even  
int m4(int c) {return c&0x3;}  // c modulo 4 
int d4(int c) {return c>>2;}  // c divided by 4 
int x4(int t) {return t<<2;}  //t multiplied by 4 
int fc(int c) {return x4(d4(c));}  // first corner of t(c) 

and on the following corner operators
int T(int c) {return d4(c);}  // tetrahedron of c 
int N(int c) {return fc(c)+m4(m4(c)+1);}  // next corner in T(c)  
int P(int c) {return fc(c)+m4(m4(c)+3);}  // previous corner  
int V(int c) {return V[c];}  // vertex of c 
int O(int c) {return O[c];}  // opposite corner 
boolean B(int c) {return O(c)==c;}  // f(c) is a border face 

To traverse the mesh and to access the various elements (vertices,
edges, faces, and tetrahedra) and their neighbors in an orderly
fashion, we use the concept of a wedge, which is the association
of a base vertex v with an incident edge e and an incident
tetrahedron t. It corresponds to a “half-edge-use” [44] and to the
half-edge [37]. In our figures, a wedge w defined by the triplet
(v,e,t) is shown as a colored arrow along the half of e away from
v. For simplicity, w.a denotes the starting corner of w and w.b its
ending corner.
We define 10 wedge operators (Fig. 3). Consider an interior
vertex v. The boundary of its star is a triangle mesh M
homeomorphic to a sphere. To each wedge w=(v,e,t) corresponds
a corner c of M. We have named some of our wedge operators so
that they preserve this correspondence. For example, as shown in
Fig. 3 left, n(w) corresponds to n(c), p(w) corresponds to p(c), and
o(w) corresponds to o(c). The triangle corners are not shown to
avoid clutter, but are on the face to which the corresponding
wedge arrow points. Similarly, as shown in Fig. 3 right, l(w)
corresponds to l(c) and r(w) corresponds to r(c). Note that we

81

have underscored here the names of the triangle-mesh corner
operators to better distinguish them from the corresponding
tetrahedral mesh wedge operators.

Several wedge operators do not have corresponding corner
operators. The mirror wedge m(w) returns Brisson’s swap0. The
cross wedge operator k(w) returns the wedge whose edge is not
adjacent to the edge of w, and that appears to go left, when seen
from an observer aligned with (the arrow used to show) w.
We do not store wedges explicitly, since storing them would
require a significant amount of memory. Instead, we represent a
current wedge by an ordered pair of two references to corners of
the same tetrahedron. Clearly, such an ordered pair of corners
defines the triplet (v,e,t) of a staring vertex v, a supporting edge e,
and an incident tetrahedron t.

Fig. 3: Wedge w is shown as a red arrow. Left (basic wedge
operators): next wedge n(w) in green, previous wedge p(w) in
blue, mirror (reversed) wedge m(w) in magenta, cross wedge
k(w) in brown (back), and the opposite wedge o(w) in yellow in
an adjacent tetrahedron. Right (derived wedge operators):
swing right wedge sl(w) in magenta, swing left wedge, sr(w) in
yellow, right wedge r(w) in green, left wedge l(w) in blue,
forward wedge f(w) in grey. Note that the left wedge when
viewed from this direction appears right relative to w.
The next, mirror and opposite wedge operators are similar to the
next, mate, and radial half-edge operators respectively provided
by Lage et al. [37].

We use the following function to create a wedge (object).
Wedge w(int a, int b) {return new Wedge(a,b);} 

We need only three basic wedge operators (Fig 3 left):

Wedge m(Wedge w) {return w(w.b,w.a);}  // mirror  
Wedge n(Wedge w) {  // next  
  int nc=m4(m4(w.b)+(even(w.a)?3:1));  
  if(nc==m4(w.a)) {nc=m4(m4(w.b)+2);};  
  return w(w.a,fc(w.a)+nc);} 
Wedge o(Wedge w) { int na; int oc=O(w.b);  // opposite  
  if(oc==c) {return null;};   
   if(V(N(oc))==V(w.a)) {na=N(oc);}  
   else if(V(P(oc))==V(w.a)) {na=P(oc);} 
   else {na=N(N(oc));};  
   return w(na,oc);}; 

The mirror wedge operator m() simply reverses the starting and
ending corner indices. The next wedge operator n(), based on
whether corner w.a is odd or even, returns the proper next wedge.
If we represent a tetrahedron by the corners 0, 1, 2 and 3, then by
construction and our adopted tetrahedron orientation, (1,2,3) looks
counter-clockwise from 0, (0,2,3) looks clockwise from 1, (0,1,3)

looks counter-clockwise from 2 and (0,1,2) looks clockwise from
3. Hence, we can see that even corners ce view face f(ce) as
counter-clockwise and odd corners co view face f(co) as
clockwise. The n() operator returns the next counter-clockwise
wedge, i.e. corner n(w).b is counter-clockwise relative to corner
w.b when viewed from corner w.a. The opposite wedge operator
o() uses the corner operator O(w.b) to identify the corner b
opposite to w.b in an adjacent tetrahedron. However, there are
three wedges having b as starting vertex. We return the one
whose end-corner is at a vertex that is not bounding the
tetrahedron of w. We could accelerate o() by caching the rotation
number indicating which of the three wedges has b as starting
vertex. Although we do not cache the rotation number for the
VOT and SVOT, we will cache that rotation number for the SOT,
as discussed in Section 5.
Also note that o() returns null when the wedge has no opposite.
This software engineering decision facilitates the implementation
of derived wedge operators by deferring the testing of border
conditions. Our implementation of the m(), n() and o() operators
(not shown here) returns null if a null wedge is received as input.

From these three basic wedge operators, we construct seven
convenient derived wedge operators listed below and shown in
Fig. 3 right. For practice, we encourage the reader to visually
verify their implementation using Fig. 3.

Wedge p(Wedge w) {return n(n(w));}  // previous wedge  
Wedge l(Wedge w) {return o(n(w));}  // left wedge  
Wedge r(Wedge w) {return o(p(w));}  // right wedge  
Wedge k(Wedge w) {return n(m(p(w)));}  // cross wedge  
Wedge f(Wedge w) {return o(m(w));}  // forward wedge  
Wedge sl(Wedge w) {return n(l(w));}  // swing left wedge  
Wedge sr(Wedge w) {return p(r(w));}  // swing right wedge  

3.1 Using wedge operators
To demonstrate the use of the wedge operator, we discuss here the
VOT implementation of three common algorithms.

3.1.1 Swinging around an edge
Here, we explain how to visit all tetrahedra incident on an edge.
Given a wedge w, we iteratively use the swing left operator until
we return to w or reach a null wedge (meaning, we are outside of
the mesh). If we reach the w, we are done. If we reach a null
wedge, we repeat the process, but swinging right. The wedges we
visit identify the tetrahedra incident on the given wedge and
provide a starting reference for processing them (not included).

Wedge swing(Wedge w) {  //swing around wedge 
    Wedge sw = w(w.a, w.b);  //start wedge  
    while(w!=null){  //not a boundary wedge 
        if(eqW(sw, w)) break;  //reached start wedge 
        w = sl(w);}   //swing left 
   if(w==null) {  //start wedge  
       w = w(sw.a, sw.b);    
       while(w!=null){ w = sr(w);  }}}  //swing right  
boolean eqW(Wedge u, Wedge w) {  //equal wedges 
         return (u.a==w.a && u.b==w.b);}  //u and w equal? 

3.1.2 Visiting components of the boundary
Here, we explain how to traverse connected components of the
boundary of a tetrahedral mesh using the VOT.
We can traverse a shell (connected manifold component) of a
triangle mesh by starting from a corner c and recursively walking

82

to neighboring triangles using the l() and r() Corner Table
operators. We can either mark the visited triangles and use
recursive calls, or mark visited vertices and triangles to avoid
most recursive calls, as done in the Edgebreaker traversal [53].

Note that to each corner b of a border triangle of a tetrahedron
mesh corresponds a unique wedge w=wedge(a,b). Using the
analogy between wedge and corner operators, we can execute the
above traversal algorithm and visit the faces of the connected
component of the boundary of the mesh. All we need is the wedge
counterparts lc(), and rc() of the l() and r() operators. We provide
their implementation below, along with oc().

Wedge rc(Wedge w){return swing(p(m(w)));}   //right boundary 
Wedge lc(Wedge w){return swing(n(k(w)));}   //left boundary  
Wedge oc(Wedge w){return swing(m(k(w)));}   //opposite  
Wedge swing(Wedge w){   //swing around w until we.. 
  while(true){ if(B(k(w).a) break; w = sr(w);}   //.. hit boundary 
  return k(w);}   //return proper wedge  

3.1.3 Visiting the TST
Here we describe how to visit a Tetrahedron Spanning Tree,
which is used in several compression solutions [61, 31].

We use the right, left, opposite and forward wedge operators. A
temporary array of bits or flags is maintained to record the visited
status of all tetrahedra. (We use the most significant bit of the
Vertex Table to store them.) The recursive version of the code is
provided below.

void dfs(Wedge w) {  //depth first traversal 
  if(w!=null && !VisitedT(T(w.a))) {  //if tet not visited 
   setVisitedT(T(w.a), true);   //set visited status 
   dfs(r(w)); dfs(l(w));   //visit right and left tets 
   dfs(o(w)); dfs(f(w));}  //visit opposite and forward tets 

4. SVOT
4.1 Motivation
All algorithms that we have encountered may be easily expressed
by looping through or manipulating tetrahedra, corners (or
equivalently their opposite oriented faces) or wedges. For
example, one may find all tetrahedra that lie inside a given ball
visiting all tetrahedra and accessing their corners and testing the
corresponding vertices for inclusion in the ball. Temporary flags
could be used to avoid testing the same vertex more than once.
Similarly, one may find the tetrahedron with the sharpest edge by
looping through all tetrahedra and for each one, by looping
through its six wedges.
However, some developers prefer to have direct access from a
vertex to its star, because some of their algorithms operate
directly on vertices (not through corners) or because some of their
auxiliary data structures refer directly to vertices. A natural
solution [37] is to add a vertex-to-corner lookup table C, such
that C[v] contains the index of corner c, such that V[c]=v. This
approach requires storing additional nV references. The SVOT
solution described below provides the same information though a
constant cost function call C(v) and avoids storing the C table.

4.2 Proposed SVOT solution
To provide constant cost access to a corner C(v) for each vertex v,
and this without additional storage, we reorder the tetrahedra and
their corners in the VOT so the corner C(v) incident upon vertex v
may be simply computed as 4*v. This mapping works for most

meshes. However, for thin meshes, we may need a slightly more
complex special mapping, as shown in Fig. 4 which we discuss in
Section 4.3.4.

4.3 SVOT construction algorithm
We explain here how to compute SVOT from the V table alone in
linear time. The process involves 3 steps:
1) CONSTRUCTION: Compute O
2) MAPPING: Establish a mapping, M(t)=v, between each

tetrahedron t and a bounding vertex v so that no two
tetrahedra map to the same vertex.

3) SORTING: Reorder the VOT

Fig. 4: Left: General SVOT mapping. Right: Special mapping.

4.3.1 Construction
The O-table does not need to be archived since it may be
recomputed from the V-table when the V table is loaded. We
discuss here four algorithms for rebuilding the O-table from the
V-table. Their timings on two meshes of different complexity are
listed in Table 2.

The all-pairs algorithm (trivial, yet impractical for large values of
nT) has asymptotic computational complexity O(nT

2). It considers
each pair of different corners c and b: if f(b)=f(c), then b and c are
opposite. We simply set O[b]=c and O[c]=b.

The tuple-sort algorithm, which is O(nT log nT), first constructs a
table of 4-tuples (v1,v2,v3,c), where the vi are vertices of f(c)
sorted so that v1<v2<v3, and then sorts the table. Consecutive
entries (v1,v2,v3,b) and (v1,v2,v3,c) with matching first 3 references
define opposite corners b and c. Entries with no matching triplets
define border corners with no opposite.

The bin-sort algorithm, which has complexity O(nV d2) where d is
the maximum vertex valence, avoids the above global sort by
using v1 to bin all the 4-tuples incident upon vertex v1. All
quadruplets in a bin are then sorted and used as above. Since
typically d is small, we use a trivial O(d2) sort, which of course
may be replaced with an O(dlogd) sort if desired.

The hash-sort algorithm, which has expected O(nT)
computational complexity, uses hashing to sort the c-values of the
above 4-tuples using the 3-tuples (v1,v2,v3) as the key. Given a
good hash key, hash table lookups can be performed in constant
time. The hash-sort algorithm is used by Lage et al. [37] where
they use an associative container to construct the O table.

Our bbin-sort algorithm was inspired by [65, 66]. It has O(nT)
time and O(nT+nV) space complexity. First, with each vertex u, we
associate a bin Bu of wedges emanating from u. To do so, for each
corner c, we visit the 3 wedges of T(c) that start at c and add them
to BV(c). This process has linear complexity. Then, for each vertex
u, we (i) bin-sort the wedges of Bu into edge-bins Bu,v and (ii)
process the edge-bins.

83

(i) To bin-sort the wedges, we proceed as follows. Assume that
we have w wedges in Bu. Using the Euler formula, we have t=w/3
tetrahedra and assume we have e edges incident upon u. We
construct a hash injective function, he, that maps integers in
{0..nV-1} into integers in {0..e-1} and use it to bin-sort [37] each
wedge of Bu into the edge-bin Bu,e associated with
edge(u,he(V(w.b))). We can construct the mapping he in linear
time O(e) and linear space O(e+nV) by maintaining appropriate
lookup data structures. Also, note that Bu,e is a temporary data
structure constructed for each vertex u. The cost of storing all Bu,e
is O(t).
(ii) We process an edge-bin, Bu,v as follows. Assume that it has s
entries. This implies that there are s tetrahedra and assume it has f
faces incident upon edge(u,v). We use a hash injective function hf,
that maps integers in {0..nV-1} into integers in {0..f-1}. We can
construct the mapping hf in linear time O(f) and linear space
O(f+nV) by maintaining appropriate lookup data structures. For
each wedge w of Bu,v, for each corner c of T(w) that is not in
{w.a,w.b}, we bin-sort c into a face-bin Bu,v,x, where x is the
fourth vertex of T(w). Bu,v,x is a temporary data structure
constructed for each (u,v) vertex pair. The cost of storing all Bu,v,x
is O(s). Now each face-bin Bu,v,x contains the opposite corners of
face(u,v,x). When it has a single entry, c, then we set O[c]=c.
When it has two entries, c, and d, we set O[c]=d and O[d]=c.

Note that each wedge and each face is hashed only once and the
number of wedges and faces are linear functions of nT. Hence, the
total number of hashing steps is O(nT). The final pass that sets the
O table is also linear in the number of faces. Consequently, the
expected running cost of bbin-sort is O(nT). Additionally, the Bu,
Bu,e, Bu,v,x data structures each require O(nT), O(t) and O(s) space,
which is bounded by O(nT). Constructing the hash injective
function requires additional O(e+nV) and O(f+nV) space.
Therefore, the expected space cost of bbin-sort is O(nT+nV).

Tetrahedra BBin-sort Hash-sort Tuple-sort Bin-sort

482,867 1,192ms 2,087ms 2,490ms 6,253ms

1,239,990 3,230ms 5,897ms 7,295ms 16,368ms
Table 2: Performance tests for various O-table rebuilding
algorithms. Tests were done on a Macbook with 2GB memory
and 2.1Ghz dual-core processor. The naive all-pairs algorithm
is impractical.

4.3.2 Mapping
The mapping phase involves three steps: Initialization, Traversal,
and Termination.

To represent the mapping M() computed in the mapping phase,
we use a temporary table M which stores the vertex M[t]
associated with tetrahedron t. We traverse the TST (as discussed
in 3.1.3) and, as we enter a new tetrahedron t through a face f,
associate T with the reference to its tip vertex (the vertex not
bounding f), unless that vertex has already been associated with
another tetrahedron. This idea is similar to the association of the
tip vertex of each type-C triangle in the Edgebreaker compression
scheme [54] for triangle meshes. Unfortunately, unless we take
special precautions, this simple idea may not always work,
because the traversal may associate each tetrahedron incident
upon a vertex v with a vertex other than v, leaving an orphan
vertex. To eliminate the possibility of orphan vertices, we propose
a special initialization step, which guarantees that this approach

produces a correct mapping (where each vertex is associated with
a different tetrahedron).

Initialization: During the initialization step, we pick a seed
tetrahedron S so that none of its vertices bounds a border face.

Let c be the first corner of the seed tetrahedron S. We set
M[S]=V(c) and mark (as visited) all vertices of S.

Note that this approach assumes that a suitable seed exists.
Finding S, when it exists is trivial. However, it must be noted that
the proposed approach may not work on thin meshes or crusts
[28] in which each tetrahedron has at least one external face. We
address such issues at the end of the section. Furthermore, our
approach requires performing the proposed reordering process for
each connected component of the mesh. For multiple components,
we need multiple seed tetrahedra. After selecting a seed
tetrahedron S, we mark S and start a depth first traversal of the
TST with S as root and T(O(c)) as the first child, where c is the
first corner of S.

We use three arrays of auxiliary tables: visitedV[v] keeps track of
visited vertices, visitedT[t] keeps track of visited tetrahedra,
whichCorner[t] stores the corner c in tetrahedron t such that
M[T(c)]=V(c).

Traversal: During the traversal step, we reach a new unvisited
tetrahedron t by arriving from a parent tetrahedron through the
opposite face f(b) of a corner b. We mark t as visited. If the vertex
V(b) has not yet been visited, we mark it as visited, set
M[t]=V(b), and store in whichCorner[T(b)] corner b.

Termination: We match the three tetrahedra incident upon seed S
(T(O(c)) where c is not the first corner of S) with 3 vertices of S,
as shown in Fig. 5. Given the precaution we took with the
selection of the seed (S has four adjacent tetrahedra), the other 3
tetrahedra adjacent to S have been reached while coming from
tetrahedra other than S and hence will not be associated with a
vertex (since their tip vertex was marked with S during
initialization and is no longer available to be associated with
them).

Since we performed a depth first traversal starting from S, we visit
all face connected tetrahedra which implies we visit all the
vertices.

Fig. 5: The seed tetrahedron S (shown in green) with the
corner c (shown as a green ball), its first neighbor T(O(c))
(shown in yellow), and the other three adjacent neighbors of S
(shown in red, blue and magenta). Each tetrahedron shown is
matched with a vertex of the same color. The other tetrahedra
are not shown.

84

4.3.3 Sorting
We sort the tetrahedra in the order of M[T] and write them into a
new copy of V, performing a permutation of the corners of each
tetrahedron so that the remembered corner b (stored in
whichCorner[T]) is listed first as corner of index zero in T.
Finally, we recompute the O table as explained in 4.3.1.

The sorting discussed above requires O(nT) time and O(nT+nV)
temporary space for marking tetrahedra and vertices. The sorting
needs to be performed only once, since its result (i.e. the sorted V-
table) may be archived for future uses. As this sorting is a
permutation where each element knows the location of the bin it
wants to be in the sorted order, it requires O(nT) time instead of
the traditional O(nTlognT) that is associated with sorting.

4.3.4 Special cases of thin meshes
It was pointed out in the mapping phase that an internal seed
tetrahedron S might not exist. Should an internal tetrahedron not
exist, we use an alternate method. Initially choose any tetrahedron
as the seed tetrahedron S. We place S as the first tetrahedron in
the V table. Let the four vertex references for S be v0, v1, v2 and
v3. We swap the vertices in the geometry table. We swap v0 with
the 0th entry in the geometry table, v1 with the 1st entry in the
geometry table, likewise for v2 and v3. We then reorder the rest of
the tetrahedra as described in the construction section for the
general case. Now, the vertex-to-corner mapping is as follows: for
i<4, the ith vertex maps to the ith corner. For i>=4, the ith vertex
maps to the ((i-3)*4)th corner. This mapping has been shown in
Figure 4, right.

4.4 Reaching for the stars
Given an integer reference v to a vertex, the SVOT gives us direct
access to the corresponding corner C(v), using:

int C(int v) {return x4(v);}   //x4(v) = v*4 

The auxiliary operator x4 was introduced in Section 3. The
corner and wedge operators for the VOT work without
modification on the SVOT. 

Since the ith vertex is mapped to the (4*i)th corner in the SVOT, to
visit the star of the ith vertex, we simply call star(4*i). Using this,
we can traverse all tetrahedra incident on a vertex by performing a
depth first traversal utilizing the right, left and opposite wedge
operators. It is similar to depth first traversal but we do not use the
forward wedge operator. If we are given the corner c then we
recursively visit all the right, left and opposite wedges of w where
w.a=c and w.b = N(c).

void star(int c) { Wedge w = w(c, N(c)); star(w);} //star of corner c 
void star(Wedge w) {  //star traversal 
  if(w!=null && !VisitedT(T(w.a))) {  //if tet not visited 
   setVisitedT(T(w.a), true);   //set visited status 
   process(T(w.a));   //process the tetrahedron 
   star(r(w)); star(l(w)); star(o(w));}}  //visit neighbors 

5. SOT
The VOT and our SVOT variation each store 8 references per
tetrahedron (4 to vertices and 4 to opposite corners). We discuss
here an approach to reduce this storage to 4 references and 9
service bits per tetrahedron (2 bits per opposite corner = 8 bits per
tetrahedron and 1 bit for visited state).

5.1 High level description
The Sorted Opposite Table (SOT) uses the same O-table as the
one produced in SVOT, but does not store the V table at all.
Therefore, the resulting SOT has no references to vertices. How
then is it possible to find vertex references V(c) of a corner c? The
solution comes from a combination of three ideas.

1) Because the O table is sorted in SVOT, to each vertex v
corresponds a matching tetrahedron tv=v of which the first corner
is incident on v. Note that such tetrahedra are easily recognized
because their index t is less than the number of vertices nV. A
slightly modified test is used for thin meshes.

2) By construction of the SVOT, in the star of every vertex v,
there is a matching tetrahedron tv = v.

3) Starting from any corner c, we can visit the star of its vertex
V(c), even though we do not yet know the index of v. On average,
we need to visit 13.3 tetrahedra of the star of v, before finding a
matching tetrahedron, but the associated performance cost may be
justified by the reduction of storage, and hence of page faults.

To visit the star, our operators use the O-table and the service bits.
Two of these bits per corner are used to indicate the rotation
number (as described in section 3 for the o() wedge operator).

To traverse the star, we use a tetrahedral version of the corner
table traversal of the triangle mesh that bounds the star (as
explained in section 4.4). We use one service bit per tetrahedron
to remember which ones were visited. We perform a second pass
to erase them.

5.2 Construction of SOT:
We first construct the SVOT. We then construct the SOT by
eliminating the V table in the SVOT. In the O table, we store the
two service bits per corner to encode the rotation number, which
provides information about the relative orientation of two face
adjacent tetrahedra.
Specifically, consider two tetrahedra t1 with corner c and t2 with
corner O(c) that share a common face f(c). Imagine that we do not
know the vertex references for the individual corners in f(c).
There are three ways in which we can “glue” t1 and t2 at f. We can
rotate t1 clockwise, counter-clockwise, or not at all.
Correspondingly, the rotation number rn(c) for corner c is either
be 0, 1 or 2. The rotation number is computed by using the V table
in SVOT. We cache the rotation number, rn(c) for each corner c
as the most significant bits of each entry in the opposites table.
The code below computes the rotation number for a given corner.

int RotationNumber(int c) {  //rotation number for corner c 
  Wedge w = w(O(c), N(O(c)));  //create a wedge 
  if(V(N(c))==V(w.b)) return 0;  //no rotation required 
  if(V(N(c))==V((n(w)).b)) return 1;  //1 rotation required 
  return 2;}  // 2 rotations required 
 
Note that the SOT maintains the property of the SVOT where the
ith vertex vi maps to the ith tetrahedron Ti and the corner ci=4*i is
incident on the vertex vi. The special case of thin meshes also
generalizes easily to the SOT.

5.3 Determining vertex references:
We explain here in details how the vertex for an arbitrary corner b
can be inferred from the O table of the SOT and from the service
bits.

85

The idea is to traverse the star (see Section 4.4) of V(b) to
determine the corners bi incident on V(b). We must do that of
course without knowing V(b), since V(b) is the desired result. The
traversal stops when we find a matching tetrahedron t<nV.

Finding the vertex reference can require that we visit at most d
tetrahedra, where d is the valence of the vertex v. Our experiments
indicate that we need to visit, on average, about 13.3 tetrahedra.

5.4 Wedge operators on SOT
In the SOT, we need to redefine two operators, the V() corner
operator and the o() wedge operator. All other corner and wedge
operators from the VOT remain the same. In the original VOT
implementation, the o() wedge operator utilizes the V Table, but
since the SOT doesn’t store the V table, we rely on the rotation
number to determine the proper o() wedge operator. The o()
wedge operator takes constant steps for each call. The V()
operator traverses the star to determine the vertex reference. When
computing the star of the vertex, we need to maintain a visited
state for each tetrahedron. We store it as the most significant bit
of O[c], where c is the first corner in its tetrahedron. To unmark
the tetrahedra that were visited, we use the star traversal again.
The code for these two operators is provided below.

int V(int c) {  //returns SOT vertex id 
  Wedge w = w(c, N(c));  //create wedge w 
  return StarV(w);}   //utilize star to get vertex id 

int StarV(Wedge w) {  //star to determine vertex id 
  int rv = ‐1;   //default value 
  if(w!=null) {  //if wedge exists 
    int t = T(w.a);   //tetrahedron id 
    if(!VisitedT(t)) {  //if tetrahedron not visited 
      setVisitedT(t, true);   //mark as visited 
      if(t<v && m4(w.a)==0) {rv = t;}   //if first corner and t<|G| 
      if(rv==‐1) v = StarV(r(w));   //visit right wedge 
      if(rv==‐1) v = StarV(l(w));   //visit left wedge 
      if(rv==‐1) v = StarV(o(w));}}   //visit opposite wedge 
  return rv;}   //return vertex id 
 

Wedge o(Wedge w) {  //SOT opposite operator 
  if(w==null) return null;   //wedge does not exist 
  if(O(c)==c) return null;   //wedge does not exist 

int c = w.b;   //corner c 
  Wedge ow = w(O(c), N(oc));   //no rotation 
  if(rn(c)==1) ow = n(ow, tm);   //1 rotation 
  if(rn(c)==2) ow = p(ow, tm);   //2 rotation 

Wedge cw = w(c, N(c));   //no rotation 
  if(cw.b==w.a) {return w(ow.b, ow.a);}  //no aligning 
  if(n(cw, tm).b==w.a) { return w(p(ow, tm).b, ow.a);}//align next 
return w(n(ow, tm).b, ow.a);}   //align with prev 

6. CONCLUSION
The VOT representation of tetrahedral meshes requires 8
references per tetrahedron. We propose two variations: (1) The
SVOT affords references from a vertex to one of its incident
corners without increasing storage. It permits to access all incident
and adjacent cells to a corner, a vertex, or a tetrahedron with a
constant cost per cell. (2) The SOT further reduces storage cost to
4 references and 9 service bits per tetrahedron, but makes the

computational cost of accessing neighboring cells proportional to
the valence of a common vertex.

To facilitate the use of these new representations, we introduce a
small set of powerful wedge operators for querying and traversing
the tetrahedral mesh and provide efficient implementations that
work directly off the VOT or SOT. These wedge operators are a
natural and intuitive extension to tetrahedral meshes of the
familiar Corner Table operators originally developed for triangle
meshes. We illustrate their power by providing reasonably simple
source code for several common algorithms that process
tetrahedral meshes.

7. REFERENCES
[1] H. Allik and T. J. R. Hughes, Finite element method for

piezoelectric vibration, International Journal for
Numerical Methods in Engineering, 2 (1970), pp. 151-
157.

[2] F. Aurenhammer, Voronoi diagrams- a survey of a
fundamental geometric data structure, ACM Comput.
Surv., 23 (1991), pp. 345-405.

[3] B. G. Baumgart, A polyhedron representation for
computer vision, Proceedings of the May 19-22, 1975,
national computer conference and exposition, ACM,
Anaheim, California, 1975.

[4] B. G. Baumgart, Winged edge polyhedron
representation, Stanford University, 1972.

[5] M. W. Beall and M. S. Shephard, A General Topology-
based Mesh Data Structure, International Journal for
Numerical Methods in Engineering, 40 (1997), pp.
1573-1596.

[6] U. Bischoff and J. Rossignac, TetStreamer: Compressed
Back-to-Front Transmission of Delaunay Tetrahedra
Meshes, Proceedings of the Data Compression
Conference, IEEE Computer Society, 2005.

[7] J.-D. Boissonnat, Shape reconstruction from planar
cross sections, Comput. Vision Graph. Image Process.,
44 (1988), pp. 1-29.

[8] M. Botsch, M. Pauly, C. Rössl, S. Bischoll and L.
Kobbelt, Geometric modeling based on triangle meshes,
Course Notes, ACM SIGGRAPH 2006, ACM Press,
2006.

[9] E. Brisson, Representing geometric structures in d
dimensions: topology and order, Proceedings of the fifth
annual symposium on Computational geometry, ACM,
Saarbruchen, West Germany, 1989.

[10] E. Bruzzone and L. D. Floriani, Two data structures for
building tetrahedralizations, Vis. Comput., 6 (1990),
pp. 266-283.

[11] J. C. Caendish, D. A. Field and W. H. Frey, An
apporach to automatic three-dimensional finite element
mesh generation, International Journal for Numerical
Methods in Engineering, 21 (1985), pp. 329-347.

[12] S. Campagna, L. Kobbelt and H.-P. Seidel, Directed
edges-A scalable representation for triangle meshes,
Journal of Graphics Tools, 3 (1998), pp. 1-11.

[13] D. Chen, Y. J. Chiang, N. Memon and X. Wu,
Geometry compression of tetrahedral meshes using
optimized prediction, European Conference on Signal
Processing (2005).

[14] P. Chopra and J. Meyer, TetFusion: an algorithm for
rapid tetrahedral mesh simplification, Proceedings of

86

the conference on Visualization '02, IEEE Computer
Society, Boston, Massachusetts, 2002.

[15] P. Cignoni, D. Constanza, C. Montani, C. Rocchini and
R. Scopigno, Simplification of Tetrahedral meshes with
accurate error evaluation, Proceedings of the
conference on Visualization '00, IEEE Computer
Society Press, Salt Lake City, Utah, United States,
2000.

[16] P. Cignoni, L. D. Floriani, P. Magillo, E. Puppo and R.
Scopigno, Selective Refinement Queries for Volume
Visualization of Unstructured Tetrahedral Meshes,
IEEE Transactions on Visualization and Computer
Graphics, 10 (2004), pp. 29-45.

[17] CUBIT, CUBIT Mesh Generation Toolkit, Tech. report
Sandia National Laboratories (2001).

[18] B. Cutler, J. Dorsey and L. McMillan, Simplification
and improvement of tetrahedral models for simulation,
Proceedings of the 2004 Eurographics/ACM
SIGGRAPH symposium on Geometry processing, ACM,
Nice, France, 2004.

[19] E. Danovaro, L. d. Floriani, M. Lee and H. Samet,
Multiresolution Tetrahedral Meshes: An Analysis and a
Comparison, Proceedings of the Shape Modeling
International 2002 (SMI'02), IEEE Computer Society,
2002.

[20] E. Danovaro, L. D. Floriani, P. Magillo, E. Puppo, D.
Sobrero and N. Sokolovsky, The Half-Edge Tree: A
Compact Data Structure for Level-of-Detail Tetrahedral
Meshes, Proceedings of the International Conference on
Shape Modeling and Applications 2005, IEEE
Computer Society, 2005.

[21] D. P. Dobkin and M. J. Laszlo, Primitives for the
manipulation of three-dimensional subdivisions,
Algorithmica, 1989, pp. 3-32.

[22] D. P. Dobkin and M. J. Laszlo, Primitives for the
manipulation of three-dimensional subdivisions,
Proceedings of the third annual symposium on
Computational geometry, ACM, Waterloo, Ontario,
Canada, 1987.

[23] H. Edelsbrunner, Geometry and Topology for Mesh
Generation, Cambridge University Press, 2001.

[24] L. D. Floriani and A. Hui, Data structures for simplicial
complexes: an analysis and a comparison, Proceedings
of the third Eurographics symposium on Geometry
processing, Eurographics Association, Vienna, Austria,
2005.

[25] L. D. Floriani and A. Hui, A scalable data structure for
three-dimensional non-manifold objects, Proceedings of
the 2003 Eurographics/ACM SIGGRAPH symposium on
Geometry processing, Eurographics Association,
Aachen, Germany, 2003.

[26] R. V. Garimella, Mesh data structure selection for mesh
generation and FEA applications, International Journal
for Numerical Methods in Engineering, 2002, pp. 451-
478.

[27] R. V. Garimella, MSTK - A Flexible Infrastructure
Library for Developing Mesh Based Applications,
Proceedings of 13th International Meshing Roundtable,
2004, pp. 203-212.

[28] R. V. Garimella and M. S. Shephard, Tetrahedral Mesh
Generation With Multiple Elements Through the

Thickness, International Meshing Roundtable, 1995, pp.
321-333.

[29] B. Gregorski, M. Duchaineau, P. Lindstrom, V.
Pascucci and K. I. Joy, Interactive view-dependent
rendering of large isosurfaces, Proceedings of the
conference on Visualization '02, IEEE Computer
Society, Boston, Massachusetts, 2002.

[30] L. Guibas and J. Stolfi, Primitives for the manipulation
of general subdivisions and the computation of Voronoi,
ACM Trans. Graph., 4 (1985), pp. 74-123.

[31] S. Gumhold, S. Guthe and W. Straser, Tetrahedral mesh
compression with the cut-border machine, Proceedings
of the conference on Visualization '99: celebrating ten
years, IEEE Computer Society Press, San Francisco,
California, United States, 1999.

[32] U. Hartmann and F. Kruggel, A Fast Algorithm for
Generating Large Tetrahedral 3D Finite Element
Meshes from Magnetic Resonance Tomograms,
Proceedings of the IEEE Workshop on Biomedical
Image Analysis, IEEE Computer Society, 1998.

[33] M. Isenburg, P. Lindstrom, S. Gumhold and J.
Shewchuk, Streaming compression of tetrahedral
volume meshes, Proceedings of Graphics Interface
2006, Canadian Information Processing Society,
Quebec, Canada, 2006.

[34] B. Joe, GEOMPACK - A Software Package for the
Generation of Meshes Using Geometric Algorithms,
Advances in Engineering Software, 1991, pp. 325-331.

[35] K. I. Joy, J. Legakis and R. MacCracken, Data
Structures for Multiresolution Representation of
Unstructured Meshes, Hierarchical Approximation and
Geometric Methods for Scientific Visualization, 2002.

[36] M. Kallmann and D. Thalmann, Star-vertices: a
compact representation for planar meshes with
adjacency information, Journal of Graphics Tools, 6
(2001), pp. 7-18.

[37] M. Lage, T. Lewiner, H. Lopes and L. Velho, CHF: A
Scalable Topological Data Structure for Tetrahedral
Meshes, Proceedings of the XVIII Brazilian Symposium
on Computer Graphics and Image Processing, IEEE
Computer Society, 2005.

[38] LaGrit, LaGriT - Los Alamos Grid Toolbox, Tech.
report Los Alamos National Laboratory (1995).

[39] P. Lienhardt, N-dimensional Generalized Combinatorial
Maps and Cellular Quasi-Manifolds, International
Journal of Computational Geometry & Applications,
1994, pp. 275-324.

[40] P. Lienhardt, Subdivisions of n-dimensional spaces and
n-dimensional generalized maps, Proceedings of the
fifth annual symposium on Computational geometry,
ACM, Saarbruchen, West Germany, 1989.

[41] A. Liu and B. Joe, Quality local refinement of
tetrahedral meshes based on 8-subtetrahedron
subdivision, Math. Comput., 65 (1996), pp. 1183-1200.

[42] Y. Liu and J. Snoeyink, A comparison of five
implementations of 3d Delaunay tessellation,
Combinatorial and Computational Geometry, MSRI
series, 2005, pp. 439-458.

[43] H. Lopes and G. Tavares, Structural operators for
modeling 3-manifolds, Proceedings of the fourth ACM
symposium on Solid modeling and applications, ACM,
Atlanta, Georgia, United States, 1997.

87

[44] M. Mantyla, Introduction to Solid Modeling, W. H.
Freeman & Co., 1988.

[45] R. Pajarola, J. Rossignac and A. Szymczak, Implant
sprays: compression of progressive tetrahedral mesh
connectivity, Proceedings of the conference on
Visualization '99: celebrating ten years, IEEE
Computer Society Press, San Francisco, California,
United States, 1999.

[46] A. Paoluzzi, F. Bernardini, C. Cattani and V. Ferrucci,
Dimension-independent modeling with simplicial
complexes, ACM Trans. Graph., 12 (1993), pp. 56-102.

[47] J. Pescatore, L. Garnero and I. Bloch, Tetrahedral finite
element meshes of head tissues from MRI for the
MEG/EEG forward problem, 12th Scandinavian
Conference on Image Analysis, 2001, pp. 71-80.

[48] J. F. Remacle, B. K. Karamete and M. S. Shephard,
Algorithm Oriented Mesh Database, Proceedings of the
9th International Meshing Roundtable (2000), pp. 349-
359.

[49] J. Rossignac, 3D Mesh Compression, in C. Hansen and
C. Johnson, eds., The Visualization Handbook,
Academic Press, 2006.

[50] J. Rossignac, Surface simplification and 3D geometry
compression, in Goodman and O'Rourke, eds., The
Handbook of Discrete and Computational Geometry
(2nd edition), CRC Press, 2004.

[51] J. Rossignac, Through the cracks of the solid modeling
milestone, in S. Coquillart, W. Strasser and P. Stucki,
eds., From object modelling to advanced visualization,
Springer Verlag, 1994, pp. 1-75.

[52] J. Rossignac and M. O'Connor, SGC: A Dimension-
independent Model for Pointsets with Internal
Structures and Incomplete Boundaries, Geometric
Modeling for Product Engineering, 1989, pp. 145-180.

[53] J. Rossignac, A. Safonova and A. Szymczak, 3D
Compression Made Simple: Edgebreaker on a Corner-
Table, 3D Compression Made Simple: Edgebreaker
with Zip&Wrap on a Corner-Table, IEEE Computer
Society, 2001.

[54] J. Rossignac, A. Safonova and A. Szymczak,
Edgebreaker on a Corner Table: A simple technique for
representing and compressing triangulated surfaces,
Hierarchical and Geometrical Methods in Scientific
Visualization, 2003, pp. 41-50.

[55] M. Sambridge, J. Braun and H. McQueen, Geophysical
parametrization and interpolation of irregular data
using natural neighbours, Geophysical Journal
International, 122 (1995), pp. 837-857.

[56] M. S. Shephard and P. M. Finnigan, Integration of
geometric modeling and advanced finite element
preprocessing, Finite Elements in Analysis and Design,
1988, pp. 147-162.

[57] J. R. Shewchuk, Tetrahedral mesh generation by
Delaunay refinement, Proceedings of the fourteenth
annual symposium on Computational geometry, ACM,
Minneapolis, Minnesota, United States, 1998.

[58] H. Si and K. Gaertner, Meshing piecewise linear
complexes by constrained Delaunay tetrahedralizations,

Proceedings of the 14th International Meshing
Roundtable, 2005, pp. 147-163.

[59] R. Sondershaus and W. Straser, View-dependent
tetrahedral meshing and rendering, Proceedings of the
3rd international conference on Computer graphics and
interactive techniques in Australasia and South East
Asia, ACM, Dunedin, New Zealand, 2005.

[60] O. G. Staadt and M. H. Gross, Progressive
tetrahedralizations, Proceedings of the conference on
Visualization '98, IEEE Computer Society Press,
Research Triangle Park, North Carolina, United States,
1998.

[61] A. Szymczak and J. Rossignac, Grow & fold:
compression of tetrahedral meshes, Proceedings of the
fifth ACM symposium on Solid modeling and
applications, ACM, Ann Arbor, Michigan, United
States, 1999.

[62] T. J. Tautges, K. Merkley, C. J. Stimpson and R. J.
Meyers, The Sandia Mesh Database Component
(MDB), Proceedings of the Seventh Us National
Congress on Computational Mechanics, 2003.

[63] TetMesh, TetMesh - GHS3D, Ver. 3.1, Tech. report
INRIA/SIMULOG (2001).

[64] I. J. Trotts, B. Hamann and K. I. Joy, Simplification of
Tetrahedral Meshes with Error Bounds, IEEE
Transactions on Visualization and Computer Graphics,
5 (1999), pp. 224-237.

[65] S.-K. Ueng and K. Sikorski, A Note on a Linear Time
Algorithm for Constructing Adjacency Graphs of 3D
FEA Data, The Visual Computer, 1996, pp. 445-450.

[66] S.-K. Ueng and K. Sikorski, An out-of-core method for
computing connectivities of large unstructured meshes,
Proceedings of the Fourth Eurographics Workshop on
Parallel Graphics and Visualization, Eurographics
Association, Blaubeuren, Germany, 2002.

[67] H. T. Vo, S. P. Callahan, P. Lindstrom, V. Pascucci and
C. T. Silva, Streaming Simplification of Tetrahedral
Meshes, IEEE Transactions on Visualization and
Computer Graphics, 13 (2007), pp. 145-155.

[68] K. Weiler, The radial-edge data structure: a topological
representation for non-manifold geometric boundary
modeling, Geometric Modeling for CAD Appl., 1988,
pp. 3-36.

[69] M. Weiler, P. N. Mallon, M. Kraus and T. Ertl, Texture-
Encoded Tetrahedral Strips, Proceedings of the 2004
IEEE Symposium on Volume Visualization and
Graphics, IEEE Computer Society, 2004.

[70] C.-K. Yang, T. Mitra and T.-C. Chiueh, On-the-Fly
rendering of losslessly compressed irregular volume
data, Proceedings of the conference on Visualization
'00, IEEE Computer Society Press, Salt Lake City,
Utah, United States, 2000.

[71] S.-e. Yoon and P. Lindstrom, Random-Accessible
Compressed Triangle Meshes, IEEE Transactions on
Visualization and Computer Graphics, 13 (2007), pp.
1536-1543.

88

