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The view that the returns to educational investments are highest for early childhood interventions is widely held and stems primarily
from several influential randomized trials—Abecedarian, Perry, and the Early Training Project—that point to super-normal returns to early
interventions. This article presents a de novo analysis of these experiments, focusing on two core issues that have received limited attention
in previous analyses: treatment effect heterogeneity by gender and overrejection of the null hypothesis due to multiple inference. To address
the latter issue, a statistical framework that combines summary index tests with familywise error rate and false discovery rate corrections
is implemented. The first technique reduces the number of tests conducted; the latter two techniques adjust the p values for multiple
inference. The primary finding of the reanalysis is that girls garnered substantial short- and long-term benefits from the interventions, but
there were no significant long-term benefits for boys. These conclusions, which have appeared ambiguous when using “naive” estimators
that fail to adjust for multiple testing, contribute to a growing literature on the emerging female–male academic achievement gap. They also
demonstrate that in complex studies where multiple questions are asked of the same data set, it can be important to declare the family of
tests under consideration and to either consolidate measures or report adjusted and unadjusted p values.
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1. INTRODUCTION

The education literature contains dozens of papers showing
inconsistent or low returns to publicly funded human capital in-
vestments (Hanushek 1986; Stecher, McCaffrey, and Bugliari
2003). In contrast to these studies, several randomized early
intervention experiments have reported striking increases in
short-term IQ scores and long-term outcomes for treated chil-
dren (Gray, Ramsey, and Klaus 1982; Campbell, Ramey, Pun-
gello, Sparling, and Miller-Johnson 2002; Schweinhart et al.
2005). These results have been highly influential and often are
cited as proof of efficacy for many types of early interventions
(Currie 2001). The experiments underlie the growing move-
ment for universal prekindergarten education (Kirp 2005) and
play an important role in the debate over the optimal pattern
of human capital investments, with all parties agreeing that
early education is a crucial component of human capital pol-
icy (Carneiro and Heckman 2003; Krueger 2003).

This article focuses on the three prominent early interven-
tion experiments: the Abecedarian Project, the Perry Preschool
Program, and the Early Training Project. Beginning as early as
1962, these programs targeted disadvantaged African-Ameri-
cans in North Carolina, Michigan, and Tennessee. These
projects stand out from others because they implement a ran-
dom assignment research design, overcoming the problem of
confounding that affects many observational studies. After ini-
tial assignment to treatment and control groups, treated chil-
dren in each experiment received several years of preschool
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education (with intensity differing across programs). Interven-
tion continued until the children began regular schooling. At
that point, further intervention was limited to data collection.
Children in both treatment and control groups received a series
of standardized tests, and researchers conducted subject inter-
views and examined school and government records to collect
long-term follow-up data on academic, social, and economic
outcomes.

But serious statistical inference problems affect these studies.
The experimental samples are very small, ranging from approx-
imately 60 to 120. Statistical power is therefore limited, and the
results of conventional tests based on asymptotic theory may be
misleading. More importantly, the large number of measured
outcomes raises concerns about multiple inference: Significant
coefficients may emerge simply by chance, even if there are no
treatment effects. This problem is well known in the theoretical
literature (Romano and Wolf 2005) and the biostatistics field
(Hochberg 1988), but has received limited attention in the pol-
icy evaluation literature. These issues—combined with a puz-
zling pattern of results in which early test score gains disappear
within a few years and are followed a decade later by significant
effects on adult outcomes—have created serious doubts about
the validity of the results (Currie and Thomas 1995; Krueger
2003).

This article has two related objectives. First, it implements
a comprehensive statistical framework to directly address con-
cerns about sample size and multiple inference. This general
framework is broadly applicable to a range of program evalu-
ation studies, which often have small samples and many out-
comes. Second, in recognition of the emerging female–male
scholastic achievement gap (Lewin 2006), the article simulta-
neously examines all three studies to estimate the long-term ef-
fects of early intervention programs separately by gender. The
organization is as follows. Section 2 describes the data and each
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program’s experimental design. Section 3 sets out the statistical
framework. Section 4 presents results organized by outcome
stage—preteen, teen, and adult—and benchmarks the perfor-
mance of multiple inference adjustments when applied to a sin-
gle study. Section 5 summarizes the main results and places
them in the context of the broader literature. Section 6 con-
cludes. The results demonstrate that early interventions (inter-
ventions occurring prekindergarten) significantly improve later-
life outcomes for females, particularly academic achievement,
but that treatment effects are modest or nonexistent for males—
a fact that has been obscured when using “naive” analyses that
fail to account for multiple inference.

2. EXPERIMENTAL BACKGROUND AND DATA

2.1 The Abecedarian Project

The Abecedarian Project recruited and treated four cohorts
of children in the Chapel Hill, North Carolina area from 1972
to 1977. Children were randomly assigned to treated and con-
trol groups. The treated children entered the program very early
(mean age, 4.4 months). They attended a preschool center for 8
hours per day, 5 days per week, 50 weeks per year until reach-
ing schooling age. The program focused on developing cog-
nitive, language, and social skills in classes of about six. In
contrast to the other programs, Abecedarian control children re-
ceived some minor interventions: iron-fortified formula, free di-
apers, and supportive social services when appropriate (Camp-
bell and Ramey 1994). Of the three early intervention projects,
Abecedarian was by far the most intensive.

The Abecedarian data set contains 111 children, 57 as-
signed to the treatment group and 54 assigned to the control
group. Data collection began immediately and has continued,
with gaps, through age 21. The data come from three pri-
mary sources: interviews with subjects and parents, program-
administered tests, and school records. Children received IQ
tests on an annual basis from ages 2 through 8, and then once
at age 12 and once at age 15. Researchers collected informa-
tion on grade retention and special education at age 12 and 15
from school records. Data on high school graduation, college at-
tendance, employment, pregnancy, and criminal behavior come
from an interview at age 21. Follow-up attrition rates are low,
ranging from 3% to 6% for most outcomes.

2.2 The Perry Preschool Program

The Perry Preschool Program treated five waves of children
in Ypsilanti, Michigan from 1962 to 1967. Children were ran-
domly assigned to treated and control groups. Most treated chil-
dren entered the program at age 3 and remained in it for 2 years;
the first wave entered at age 4 and received 1 year of treatment.
The program implemented the ideas of Jean Piaget and focused
on language, socialization, numbers, space, and time in classes
of five to six. Treated children attended the program 5 morn-
ings per week from October through May and received one 90-
minute home visit per week (Schweinhart et al. 2005).

The Perry data set contains 123 individuals, 58 in the treat-
ment group and 65 in the control group. Researchers gathered
data from four primary sources: interviews with subjects and
parents, program-administered tests, school records, and crimi-
nal records. IQ tests were administered on an annual basis from

program entry until age 10, and then once more at age 14. In-
formation on special education, grade retention, and gradua-
tion status was collected from school records. Arrest records
were obtained from the relevant authorities, supplemented with
interview data on criminal behavior. Economic outcome data
come primarily from interviews conducted at age 19, 27, and
40. Follow-up attrition rates for most variables were generally
low, ranging between 0 to 10%.

2.3 The Early Training Project

The Early Training Project occurred in Murfreesboro, Ten-
nessee from 1962 to 1964. Two waves of 3- to 4-year-old chil-
dren were randomly assigned to treated and control groups.
The treated children attended preschool for 10 weeks during
the summer, 4 hours per day. The program continued until the
beginning of school, for a total of two to three summers of
preschool. Children received positive reinforcement and partic-
ipated in activities focusing on motivation and persistence in
classes of four to five. They also received one 90-minute home
visit per week for the program’s duration.

The Early Training Project gathered data on 92 children. The
study’s control group consisted of a local control group and a
distal control group. Of the 92 children in the study, 65 lived in
Murfreesboro, and 27 lived in another Tennessee town. The 65
children in Murfreesboro were randomly assigned to the treat-
ment group with approximately 2/3 probability and the local
control group with approximately 1/3 probability. The 27 chil-
dren in the distant town formed the distal control group. Be-
cause the children in the distal control group were not randomly
assigned and their observable characteristics were not similar
to the local control group (Anderson 2006), they are dropped
from the analysis. This choice resulted in a total sample of 65,
44 treated children and 21 control children.

Early Training Project data come from three sources: inter-
views with subjects and parents, program-administered tests,
and school records. IQ tests were given annually from age 4
through 8 and at age 10 and 17. Data on grade retention and
high school enrollment come from school records. Subject in-
terviews provide data on post–high school education and eco-
nomic outcomes. No crime data were collected. Attrition rates
for most variables were <10%, and females had virtually no
attrition for many variables.

2.4 Summary Statistics

Table 1 lists means and standard deviations of key variables
for all three projects. The statistics highlight the degree to which
these children are disadvantaged. Average IQs in the teen years
ranged from 77.7 to 93.2. High school dropout rates ranged
from 30% to 40%. In one sample, a majority of the subjects had
a criminal record. When drawing inferences about the results’
external validity, it is important to note that these children are
not representative of the average American child; nevertheless,
many of their attributes are not unusual for African-American
youth in poor neighborhoods (Miller 1992).

2.5 Internal Study Group Findings

Each study group has documented the evolution of differ-
ences between the treatment and control groups over time. De-
spite substantial variation in treatment intensity across pro-
grams, similarities in outcome patterns emerge. All studies
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Table 1. Summary statistics

Early
Variable Abecedarian Perry Training

Percent treated 51.4 47.2 67.7
(50.2) (50.1) (47.1)

Percent female 53.2 41.5 46.2
(50.1) (49.5) (50.2)

IQ age 5 97.8 88.9 91.5
(12.6) (12.9) (13.6)

IQ age 14–17 93.2 80.9 77.7
(10.3) (11.0) (13.2)

Percent retained in grade 45.6 37.5 54.2
(50.1) (48.6) (50.2)

Percent graduate high school 69.9 61.8 60.0
(46.1) (48.8) (49.4)

Percent employed as adult 57.3 62.1 NA
(49.7) (48.7)

Percent with criminal record 43.3 52.8 NA
(49.8) (50.1)

NOTE: Parentheses contain standard deviations. NA, not applicable.

reported significant, meaningful effects on IQ scores during
the prekindergarten treatment period. These effects diminished
over time, however, and by high school the IQ effects decreased
by 70% to 100%. Nevertheless, all three studies reported in-
creases in schooling completion rates for treated children; high
school graduation or college attendance rates rose by as much
as 17 to 22 percentage points in each study. Thus it appears that
although the cognitive benefits of these programs faded out, the
noncognitive benefits persisted and manifested themselves in
improved schooling completion rates later in life (Gray et al.
1982; Schweinhart, Barnes, Weikart, Barnett, and Epstein 1993;
Campbell and Ramey 1994, 1995; Campbell et al. 2002).

Nevertheless, there are some important differences in these
studies’ findings. In particular, the Perry Preschool Program
reported large, statistically significant reductions in juvenile
and adult criminal behavior that were not replicated in the
Abecedarian Program. This divergence was not due to a low
base rate of criminal behavior among the Abecedarian sample;
the Abecedarian and Perry control groups displayed similar ar-
rest rates (Schweinhart et al. 1993; Clarke and Campbell 1998;
Campbell et al. 2002).

The findings become even more contradictory when effects
are reported separately by gender. The Early Training and
Abecedarian programs did not consistently report effects by
gender. For example, Gray et al. (1982) reported effects by gen-
der for 5 of the 17 sets of results that they presented, whereas
Campbell et al. (2002) reported treatment-by-gender interac-
tions for 3 of the 15 adult demographic outcomes that they pre-
sented. Nevertheless, both study groups suggested in summary
discussions that benefits for males may be modest. Early Train-
ing investigators cautioned that “as a whole, it looks as if the in-
tervention program . . . was more effective for the females than
the males” (Gray et al. 1982, p. 254). Abecedarian researchers
noted that “treated women made greater educational progress
relative to untreated women than was true for treated men rela-
tive to untreated men” and mentioned no significant long-term
effects for males (Campbell et al. 2002, p. 54).

The Perry Preschool Program reported effects separately by
gender when results were significant. In contrast to the other
studies, Perry investigators claimed no evidence of weaker ben-
efits for males. In summarizing the overall benefits of the pro-
gram, they stated: “There is no suggestion that from a pub-
lic policy perspective, preschool programs make sense for fe-
males but not for males, or vice versa” (Schweinhart et al. 1993,
p. 166). In fact, Schweinhart et al. (2005) concluded that the
total benefits for males were fourfold greater than the total ben-
efits for females.

Thus, on the whole, there is no consensus regarding the het-
erogeneity of early intervention effects by gender. This ambi-
guity may be due to the large numbers of outcomes tested in
each study; every study group reached a different conclusion,
because each focused on its subset of significant outcomes. In
applying a framework that is robust to multiple inference, this
article untangles the conflicting gender-specific findings in the
existing literature. Furthermore, it demonstrates that when ap-
plied to a single study, these methods generate robust conclu-
sions that are replicated in the other two studies. This perfor-
mance is encouraging and stands in contrast to the unstable
conclusions produced by “naive” analyses.

3. STATISTICAL FRAMEWORK

3.1 Identification and Inference

The random assignment process makes estimation of causal
effects straightforward. The primary approach compares treated
children (those who received the intervention) to untreated chil-
dren (those who did not) across a wide variety of outcomes.
To conduct inference, Huber–White standard errors that are
robust to heteroscedasticity (White 1980) are computed. Al-
though these standard errors are asymptotically consistent, the
samples are quite small—some groups contain as few as 10 in-
dividuals. Thus the Huber–White standard errors may be mis-
leading, particularly because the underlying data are distributed
nonnormally in some cases. To address this concern, we calcu-
late p values that do not rely on asymptotic theory or distribu-
tional assumptions.

Instead of a standard t test, we implement a variant of the
nonparametric permutation test (Efron and Tibshirani 1993).
This procedure computes the null distribution of the test sta-
tistic under minimal assumptions: random assignment and no
treatment effect. For a given sample size Nk , the procedure is
implemented as follows:

1. Draw binary treatment assignments z∗
i from the empir-

ical distribution of the original treatment assignments without
replacement.

2. Calculate the t statistic for the difference in means be-
tween treated and untreated groups.

3. Repeat the procedure 100,000 times and compute the fre-
quency with which the simulated t statistics—which have ex-
pectation zero by design—exceed the observed t statistic.

If only a small fraction of the simulated t statistics exceed the
observed t statistic, then reject the null hypothesis of no treat-
ment effect. This procedure tests the sharp null hypothesis of
no treatment effect, so rejection implies that the treatment has
some distributional effect. Formally, the two required assump-
tions are as follows:
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• Random assignment: Let yi0 be the outcome for individ-
ual i when untreated, and let yi1 be the outcome for individual
i when treated. (We only observe either yi0 or yi1.) Random
assignment implies that {yi0, yi1 ⊥ zi}.

• No treatment effect: yi0 = yi1∀i.

Note that no assumptions regarding the distributions or in-
dependence of potential outcomes are needed. This is because
the randomized design itself is the basis for inference (Fisher
1935), and preexisting clusters cannot be positively correlated
with the treatment assignments in any systematic way. Even if
the potential outcomes are fixed, the test statistic will still have
a null distribution induced by the random assignment. Because
the researcher knows the design of the assignment, it is always
possible to reconstruct this distribution under the null hypoth-
esis of no treatment effect, at least by simulation if not analyt-
ically. Thus this test always controls type I error at the desired
level (Rosenbaum 2007).

For binary yi , this test generally converges to Fisher’s exact
test; however, it differs slightly from Fisher’s exact test in that
Fisher’s test rejects for small p values, whereas this test rejects
for large t statistics. This test is also similar to bootstrapping
under the assumption of no treatment effect (Simon 1997), with
the only difference that the resampling is done without replace-
ment rather than with replacement. This highlights the fact that
the variance in the test statistic’s null distribution arises from
the randomization procedure itself rather than from unknown
variability in the potential outcomes.

The reported p values are correct for tests conducted in iso-
lation, but they do not address the issue of multiple inference.
Because each study examines hundreds of outcomes, some out-
comes should display significance even if no effect exists. Fur-
thermore, the small samples ensure that significant results are
necessarily of notable magnitude.

3.2 Multiple Inference Adjustments

Several works in the educational field have discussed the is-
sue of simultaneous inference with large numbers of outcomes
(Williams, Jones, and Tukey 1999), and some research orga-
nizations, such as the Institute of Education Sciences’ What
Works Clearinghouse, have technical standards that include
multiplicity adjustments. But most randomized evaluations in
the social sciences test many outcomes but fail to apply any
type of multiple inference correction. To gauge the extent of
the problem, we conducted a survey of randomized evaluation
works published from 2004 to 2006 in the fields of economic or
employment policy, education, criminology, political science or
public opinion, and child or adolescent welfare. Using the CSA
Illumina social sciences databases, we identified 44 such arti-
cles in peer-reviewed journals.

Of these 44 articles, 37 (84%) reported testing 5 or more out-
comes, and 27 (61%) reported testing 10 or more outcomes.
These figures represent lower bounds for the total number of
tests conducted, because many tests may be conducted but not
reported. Nevertheless, only three works (7%) implemented any
type of multiple-inference correction. Of these three works, two
applied the Bonferroni correction—the most rudimentary ad-
justment in general use—and one implemented a summary in-
dex that reduces the total number of tests. Although multiple-
inference corrections are standard (and often mandatory) in

psychological research (Benjamini and Yekutieli 2001), they re-
main uncommon in other social sciences, perhaps because prac-
titioners in these fields are unfamiliar with the techniques or
because they have seen no evidence that they yield more robust
conclusions.

Two approaches exist to solving the multiple-inference prob-
lem. One approach reduces the number of tests being con-
ducted. This method avoids p value adjustments, which gen-
erally reduce the power of any given test, at the cost of limiting
the scope of hypothesis testing. The other approach maintains
the number of tests but adjusts the p values to reflect this fact.
This method allows for an arbitrarily large number of tests, but
the power of each specific test can fall as the number of tests
conducted grows. In this article both approaches are combined
to balance the trade-offs of each one.

We begin by limiting the total number of hypotheses being
tested. First, we choose a specific set of outcomes based on a
priori notions of importance. We then implement summary in-
dex tests in three broad outcome areas: preteen, adolescent, and
adult. These indexes combine multiple measures to reduce the
total number of tests conducted.

Nevertheless, we still test multiple indexes. Thus we adjust
the p values on the summary index tests to reflect this fact.
Specifically, we control the familywise error rate (FWER)—
the probability of rejecting at least one true null hypothesis—
using the free step-down resampling method. When reporting
results for specific outcomes, we control the false discovery rate
(FDR), or the proportion of rejections that are “false discover-
ies” (type I errors). FDR control is well suited to exploratory
analysis because it allows a small number of type I errors in
exchange for greater power than FWER control.

3.2.1 Summary Index Tests. In this study we define a set of
primary outcomes that includes IQ scores, grade retention, spe-
cial education, high school graduation, college attendance, em-
ployment, earnings, government transfers, arrests, convictions
or incarcerations, drug use, teen pregnancy, and marriage (see
Table 2). This list seems long but represents only a small frac-
tion of all available outcomes. Nevertheless, the total number
of outcomes tested reaches 47. Thus we implement summary
index tests that pool multiple outcomes into a single test.

Summary index tests originate in the biostatistics literature
(see O’Brien 1984). These tests have three advantages over
testing individual outcomes. First, they are robust to overtest-
ing because each index represents a single test. Therefore, the
probability of a false rejection does not increase as additional
outcomes are added to a summary index. Second, they provide
a statistical test for whether a program has a “general effect”
on a set of outcomes. Finally, they are potentially more pow-
erful than individual-level tests—multiple outcomes that ap-
proach marginal significance may aggregate into a single in-
dex that attains statistical significance. For example, consider
an underlying latent variable—human capital at a given age—
that is expressed through multiple measures, such as years of
education, employment, earnings, and criminal record. When
testing whether early intervention affects the latent variable,
two sources of random error exist. First, there is error that
arises from the random assignment procedure—the latent vari-
able will not be perfectly balanced across treatment and control
groups in any finite sample. Second, there is random error in
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Table 2. Summary index components

Project Stage Summary index components

ABC Preteen IQ (5, 6.5, 12), Retained in Grade (12), Special
Education (12)

Perry Preteen IQ (5, 6, 10), Repeat Grade (17), Special Educa-
tion (17)

ETP Preteen IQ (5, 7, 10), Retained in Grade (17), Special
Help (17)

ABC Teen IQ (15), HS Grad (18), Teen Parent (19)
Perry Teen IQ (14), HS Grad (18), Unemployed (19), Trans-

fers (19), Teen Parent (19), Arrested (19)
ETP Teen IQ (17), HS Dropout (18), Worked (18)
ABC Adult College (21), Employed (21), Convicted (21),

Felon (21), Jailed (21), Marijuana (21)
Perry Adult College (27), Employed (27, 40), Income (27,

40), Criminal Record (27), Arrests (27), Drugs
(27), Married (27)

ETP Adult College (21), Receive Income (21), On Wel-
fare (21)

NOTE: Age of measurement in parentheses. For Perry and Early Training grade repetition
and special education variables, it was not possible to isolate pre-9th grade outcomes in the
data.

each outcome measure—individuals with the same latent value
may realize different values for any given outcome. Summary
index tests can reduce the second source of error by combining
data from multiple outcome measures into a single index.

At the most basic level, a summary index is a weighted mean
of several standardized outcomes. The weights are calculated
to maximize the amount of information captured in the index.
A summary index test can be implemented through the follow-
ing steps (see App. A for a formal definition):

1. For all outcomes, switch signs where necessary so that
the positive direction always indicates a “better” outcome.

2. Demean all outcomes and convert them to effect sizes by
dividing each outcome by its control group standard deviation.
Call the transformed outcomes ỹ. This conversion normalizes
outcomes to be on a comparable scale.

3. Define J groupings of outcomes (also referred to as ar-
eas or domains). Each outcome yjk is assigned to one of these
J areas, giving Kj outcomes in each area j , with k indexing
outcomes within an area.

4. Create a new variable, sij , that is a weighted average of
ỹijk for individual i in area j . When constructing sij , weight its
inputs—outcomes ỹijk—by the inverse of the covariance matrix
of the transformed outcomes in area j . A simple way to do this
is to set the weight on each outcome equal to the sum of its row
entries in the inverted covariance matrix for area j . Formally,
sij = (1′�̂−1

j 1)−1(1′�̂−1
j ỹij ), where 1 is a column vector of

1’s, �̂−1
j is the inverted covariance matrix, and ỹij is a column

vector of all outcomes for individual i in area j . Note that this
is an efficient generalized least squares (GLS) estimator.

5. Regress the new variable, sij , on treatment status to esti-
mate the effect of treatment on area j . A standard t test assesses
the significance of the coefficient.

In this work we define three groupings based on age: preteen,
adolescent, and adult. Given the interest in these programs’
long-term impacts, testing for effects at the adolescent and adult

stages is natural. Nevertheless, the choice of outcome groupings
can theoretically affect the results, so one should check that re-
sults are robust to alternative grouping choices. For example,
in this article grouping outcomes by academic, economic, and
social domains rather than by stage-of-life domains does not
qualitatively change the results. (If the results are sensitive to
grouping choice, then summary index p values should be ad-
justed using the techniques in Sec. 3.2.2 or 3.2.3 to reflect the
fact that the most significant specification was chosen.)

The GLS weighting procedure in step 4 increases efficiency
by ensuring that outcomes that are highly correlated with each
other receive less weight, while outcomes that are uncorre-
lated and thus represent new information receive more weight.
O’Brien (1984) found this procedure to be more powerful than
other popular tests in the repeated-measures setting. Also, miss-
ing outcomes are ignored when creating sij . Thus this proce-
dure uses all of the available data, but it weights outcomes with
fewer missing values more heavily.

3.2.2 Familywise Error Rate Control. Each summary in-
dex consolidates several individual tests into a single test. But
we may wish to test for effects in several domains or across
multiple experiments, resulting in multiple summary indexes.
In this research, there are nine summary indexes per gender
(three domains by three experiments). One option is to further
reduce the number of tests by aggregating all summary indexes
together. But because differential effects by domain may be of
interest, there is substantial benefit to maintaining separation
between the indexes; for example, long-term outcomes may be
of greater policy interest than short-term test score gains. An
alternative approach is to maintain the number of summary in-
dexes and adjust their p values to reflect the multiple-inference
problem.

The most common approach to adjusting p values for mul-
tiple testing is to control the FWER. Suppose that a family of
M hypotheses, H1,H2, . . . ,HM , is tested, of which J are true
(J ≤ M). FWER is the probability that at least one of the J true
hypotheses in the family is rejected. In this research, the fam-
ily of tested hypotheses is the set of nine summary index tests
performed for each gender. As more hypotheses are added to
a family, the probability of rejecting at least one of them at a
given α level increases, and thus FWER increases. FWER con-
trol techniques adjust the p values of each test upward to reduce
the probability of a false rejection.

A popular technique for controlling FWER is the Bonferroni
correction. This technique multiplies each p value by M , the
number of tests performed. Its advantage is simplicity, but it
suffers from poor power. A more powerful technique that con-
trols FWER is the free step-down resampling method (West-
fall and Young 1993). This algorithm is more powerful than the
Bonferroni correction (and other algorithms) for three reasons.
First, the free step-down resampling method computes an exact
probability rather than an upper bound (e.g., it is common for
Bonferroni p values to exceed 1). Second, when a hypothesis
is rejected, the free step-down resampling method removes it
from the family being tested, increasing the power of the re-
maining tests. Bonferroni does not. Finally, unlike Bonferroni,
free step-down resampling incorporates dependence between
outcomes. This can substantially increase power if outcomes
are highly correlated. In an extreme case, if all outcomes are
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perfectly correlated, then FWER-adjusted p values and the un-
adjusted p values should be equal, and with the free step-down
resampling method they will be.

For a family of M outcomes tested in an experimental set-
ting, the free step-down resampling procedure is implemented
as follows:

1. Sort outcomes y1, . . . , yM in order of decreasing signif-
icance (increasing p value), that is, such that p1 < p2 < · · · <

pM .
2. Simulate the data set under the null hypothesis of no

treatment effect using the resampling procedure described in
Section 3.1.

3. Calculate a set of simulated p values, p∗
1, . . . , p∗

M , for
outcomes y1, . . . , yM using the simulated treatment status vari-
able. Note that they will not display the same montonicity as
p1, . . . , pM .

4. Enforce the original monotonicity: Compute p∗∗
r =

min{p∗
r ,p

∗
r+1, . . . , p

∗
M}, where r denotes the original signifi-

cance rank of the outcome, with r = 1 being the most signifi-
cant and r = M the least significant.

5. Perform L ≥ 100,000 replications of steps 2–4. For each
outcome yr , tabulate Sr , the number of times that p∗∗

r < pr .

6. Compute p
fwer∗
r = Sr/L.

7. Enforce monotonicity a final time: p
fwer
r = min{pfwer∗

r ,

p
fwer∗
r+1 , . . . , p

fwer∗
M }. (This final monotonicity enforcement en-

sures that larger unadjusted p values always correspond to
larger adjusted p values.)

The crucial steps of this algorithm are steps 2–4. Steps 2
and 3 ensure that the dependence structure between outcomes
is preserved, because each case is resampled with the corre-
lation structure of its outcomes intact. Therefore, we expect

p∗
1, . . . , p∗

M to be positively correlated (if the original outcomes
were positively correlated), and the minimum p value of a set
of M positively correlated p values is generally greater than the
minimum p value of a set of M independent p values. Incorpo-
rating dependence thus increases the probability that pr < p∗∗

r ,
reducing Sr and increasing the probability of rejection.

Step 4 performs the key multiplicity adjustment when
the simulated p value for outcome yr,p

∗
r , is replaced with

min{p∗
r ,p

∗
r+1, . . . , p

∗
M}. The original p value, pr , is thus

judged against the distribution of the minimum p value of a
set of M − r + 1 p values. This makes the adjusted p value
more conservative than a standard p value, which is implicitly
judged against the distribution of the minimum p value of a
set of one p value but less conservative than the Bonferroni
correction, which implicitly judges every p value against the
distribution of the minimum p value of a set of M p values.

An example may aid interpretation of FWER-adjusted p val-
ues. In this research, M = 9 summary indexes were tested for
each gender. Consider the smallest summary index p value of
the nine male summary indexes, which occurs for adult Early
Training males (Table 3). The unadjusted p value is approx-
imately .011. The corresponding adjusted p value, calculated
by the free step-down resampling method for the entire family
of male summary tests, is pfwer = .090. Suppose that we simu-
late the male data 100,000 times under the null hypothesis of no
treatment effect. If we compute an entire set of nine summary
effect p values for each simulation, then the minimum p value
of that set will be less than or equal to the unadjusted p value of
.011 approximately 9% of the time. Thus a minimum observed
p value of .011 is not unlikely under the null given the number
of tests conducted—a fact that helps explain why this particular
effect goes in the “wrong” (negative) direction. For unadjusted

Table 3. Summary index effects

Female Male
Gender

difference
t statistic

Naive FWER Naive FWER
Project Age Effect p value p value n Effect p value p value n

ABC Preteen .445 .026 .125 54 .417 .026 .184 51 .11
(.194) (.181)

Perry Preteen .537 .004 .028 51 .150 .387 .943 72 1.53
(.177) (.172)

ETP Preteen .362 .160 .349 30 .148 .552 .958 34 .61
(.251) (.245)

ABC Teen .422 .042 .156 53 .162 .407 .943 51 .93
(.202) (.194)

Perry Teen .613 0 .003 51 .035 .716 .977 72 3.32
(.156) (.096)

ETP Teen .456 .138 .349 29 .123 .747 .977 32 .68
(.299) (.377)

ABC Adult .452 .003 .024 53 .312 .066 .372 51 .64
(.144) (.166)

Perry Adult .353 .022 .125 51 −.012 .927 .977 72 1.83
(.150) (.130)

ETP Adult −.069 .714 .701 29 −.710 .011 .090 31 1.98
(.186) (.260)

NOTE: Parentheses contain OLS standard errors. Naive p values are unadjusted p values based on the t distribution. FWER p values adjust for multiple testing at the summary index
level and are computed as described in Section 3.2.2. The t statistics test the difference between female and male treatment effects. See Table 2 for the components of each summary
index.



Anderson: Abecedarian, Perry Preschool, and Early Training Projects 1487

p values above the family’s minimum p value, the number of
tests in the family effectively decreases, making the adjustment
less severe.

The free step-down resampling method strongly controls
FWER. For any subset of the family of hypotheses, it ensures
that the probability of falsely rejecting at least one hypothesis is
less than α even if some of hypotheses outside of that subset are
false. (Weak control of FWER only guarantees the size of a test
if every hypothesis in the family is true.) The only assumption
necessary for this algorithm to provide strong control is subset
pivotality, or the assumption that the distribution of any subset
of the family of test statistics depends only on the validity of
the hypotheses in that subset. For tests of multiple outcomes,
such as this one, that assumption is met (Westfall, Tobias, Rom,
Wolfinger, and Hochberg 1999, p. 237).

3.2.3 False Discovery Rate Control. FWER control limits
the probability of making any type I error. It is thus well suited
to cases in which the cost of a false rejection is high. In this
research, for instance, incorrectly concluding that early inter-
ventions are effective could result in a large-scale misalloca-
tion of teaching resources. In exploratory analysis, we may be
willing to tolerate some type I errors in exchange for greater
power, however. For example, the effects of early intervention
on specific outcomes may be of interest, and because overall
conclusions about program efficacy will not be based on a sin-
gle outcome, it seems reasonable to accept a few type I errors
in exchange for greater power. This trade-off is particularly ap-
pealing when, as in this case, we are testing a large number of
hypotheses, because FWER adjustments become increasingly
severe as the number of tests grows—it is inherent in control-
ling the probability of making a single false rejection. An alter-
native method of addressing the multiplicity problem that often
affords better power is to control the FDR, or the expected pro-
portion of rejections that are type I errors. FDR formalizes the
trade-off between correct and false rejections and reduces the
penalty to testing additional hypotheses.

Define V as the number of false rejections, U as the num-
ber of correct rejections, and t = V + U as the total number
of rejections. FWER is the probability that V is greater than 0.
FDR is the expected proportion of all rejections that are type I
errors, or E[Q = V/t]. When t = 0, Q is defined to be 0. If all
null hypotheses are true, then V = t , and FWER and FDR are
equivalent. Q equals 0 when there are no rejections and 1 when
there are one or more rejections, so FDR = E[Q] = P(t > 0) =
P(V > 0) = FWER. But when some false hypotheses are cor-
rectly rejected, FDR is less than FWER, because the expected
proportion of rejections that are type I errors is less than the
probability of making any type I error. Thus controlling FDR at
a given level often requires less stringent p value adjustments
than controlling FWER at the same level, resulting in increased
power.

Benjamini and Hochberg (1995) proposed a simple method
for controlling FDR (referred to as BH from this point on). As in
Section 3.2.2, suppose that we test hypotheses H1, . . . ,HM , and
let the hypotheses be sorted in order of decreasing significance,
such that p1 < p2 < · · · < pM . Suppose that q ∈ (0,1). Let c

be the largest r for which pr < qr/M . Rejecting all hypothe-
ses H1, . . . ,Hc controls the FDR at level q for independent or
positively dependent p values. (In other words, beginning with

pM , check whether each p value meets pr < qr/M . When one
does, reject it and all smaller p values.) This procedure is in fact
conservative in that it controls FDR at level q(m0/M), where
m0 is the number of true null hypotheses (Benjamini and Yeku-
tieli 2001). We do not observe m0, but if we did, then we could
“sharpen” the procedure by replacing qr/M with qr/m0. Be-
cause qr/m0 ≥ qr/M , the sharpened procedure would provide
greater power if at least one null hypothesis were false.

Benjamini, Krieger, and Yekutieli (2006) proposed a two-
stage procedure that estimates the number of true hypotheses to
achieve sharpened FDR control. The procedure is implemented
as follows:

1. Apply the BH procedure at level q ′ = q/(1 + q). Let c

be the number of hypotheses rejected. If c = 0, stop; otherwise,
continue to step 2.

2. Let m̂0 = M − c.
3. Apply the BH procedure at level q∗ = q ′M/m̂0.

By incorporating the number of hypotheses rejected in the
first stage into the second stage, this procedure provides bet-
ter power than the standard BH procedure while controlling
FDR at level q for independent p values. Simulations indicate
that the two-stage procedure also works well for positively de-
pendent p values (Benjamini et al. 2006), such as the ones in
this research. Thus we use the two-stage procedure to control
FDR when reporting results for specific outcomes (e.g., high
school graduation, employment). However, researchers dealing
with negatively dependent p values may need to adopt a more
conservative modification of the BH procedure (Benjamini and
Yekutieli 2001, p. 1169).

The BH and two-stage procedures both report whether a hy-
pothesis was rejected at level q , but do not report the smallest
level q at which the hypothesis would be rejected. This value—
the natural analog to the standard p value—can be easily com-
puted for all hypotheses by performing the procedure for all
possible q levels (e.g., 1.000, .999, .998) and recording when
each hypothesis ceases to be rejected. Stata code to calculate
these FDR “q values” is available from the author on request.

To understand in practice why FDR control is less con-
servative than FWER control, consider how the BH and free
step-down resampling procedures treat the median p value,
p′ = pM/2, in a set of M p values. Roughly, the BH proce-
dure rejects H ′ = HM/2 if pM/2 < α(M/2)/M = α/2, whereas
the free step-down resampling procedure rejects HM/2 if pM/2

exceeds the minimum of a family of M/2 simulated p values at
a rate less than α. The former equates to adjusting the p value
by a factor of 2, whereas the latter equates to adjusting the p

value by a factor of up to M/2. For large M , the difference be-
comes substantial. Also note that M does not appear on the right
side of the expression pM/2 < α/2. If additional p values—
distributed similarly to the existing p values—are added to the
family of tests, then the FDR adjustment to the existing p val-
ues need not become more stringent in expectation.

3.2.4 Summary. Three types of multiple-inference ad-
justments are presented (and applied): summary index tests,
FWER-adjusted p values, and FDR-adjusted p values. The first
technique reduces the total number of tests performed, whereas
the second and third techniques maintain the number of tests
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and adjust the p values. Given the substantial differences be-
tween these techniques, it is important that researchers under-
stand the benefits and drawbacks of each technique when de-
ciding which ones are most appropriate for their own work.

Summary index tests make sense when testing for an inter-
vention’s overall effect and when there is an a priori reason to
believe that a group of outcomes will be affected in a consistent
direction. In those cases, a summary index test often has better
power than a series of FWER- or FDR-adjusted individual tests.
This research applies summary indexes to estimate the overall
effects of each program at different stages in life.

Athough they are more likely to reject, summary index tests
yield less information when they do reject, because it is im-
possible to conclude which underlying outcomes were signifi-
cantly affected. If effects on specific outcomes are of interest,
or if there is no reason to believe that outcomes are affected
in a consistent direction, then testing all outcomes of interest
and adjusting the p values is a logical strategy. In that case,
the choice between FWER and FDR adjustments may be dom-
inated by the cost of a type I error. When controlling FDR with
many outcomes, there is a high probability that some false pos-
itives with occur. In contrast, when controlling FWER, all re-
jections will be correct with high probability. Therefore, if the
cost of a type I error is high, then a researcher likely will opt for
FWER control, but if the cost of a type I error is low to moder-
ate, then the increased power of FDR control will be appealing,
particularly if the family of hypotheses being tested is large.
This research applies FWER adjustments to the summary index
p values to ensure that programs are not erroneously judged
to be effective at different life stages. It applies FDR adjust-
ments to tests of individual outcomes to facilitate exploratory
analysis while controlling the number of false rejections. Con-
clusions about overall program effectiveness should be based
on the FWER adjusted summary index p values, however.

4. RESULTS

4.1 Graphical Analysis

Figure 1 presents a graphical summary of the treatment ef-
fect t statistics for long-term outcomes. This figure plots t sta-
tistics for teenage and adult coefficients across all experiments
for each gender (see rows “Teen” and “Adult” in Table 2). Each
point corresponds to the t statistic for a single outcome, and
all outcomes have been recoded so that the positive direction
always corresponds to a “better” outcome. The first column of
points plots male t statistics, and the second column plots fe-
male t statistics. Visual inspection clearly shows that the distri-
bution of female t statistics is centered well above the distribu-
tion of male t statistics, suggesting that females accrue greater
long-term benefits from these programs.

The third column of points plots a set of t statistics generated
by randomly assigning treatment status to children and com-
puting the corresponding t statistics. This procedure guarantees
that any significant “treatment effects” visible in the column are
due simply to chance. The procedure is equivalent to sampling
randomly from the t distribution, except that it preserves the in-
herent correlation between t statistics within each experiment.

The second and third columns are immediately distinguish-
able from each other, implying that females realize long-term

Figure 1. Effects of preschool on teen and adult outcomes. Each
point is a t statistic for a single outcome, and the positive direction
corresponds to a “better” outcome. The first column plots male t sta-
tistics, the second column plots female t statistics, and the third column
plots a set of randomly generated t statistics.

benefits from these programs. Comparing the first and third
columns, however, reveals that the distribution of male t sta-
tistics is difficult to distinguish from a draw of randomly gen-
erated t statistics. The minimum value in the third column ex-
ceeds the minimum value in the first column, but the first col-
umn has more t statistics clustered above 1.5. In both the first
and third columns, a case for positive treatment effects could be
made by focusing on the set of outcomes near the top. This fact
highlights the importance of correcting for multiple inference.

The following sections analyze program effects by life-stage
and experiment, and also explore effects for specific outcomes.
Two families of tests for calculating FWER and FDR adjusted
p values, one for each gender, are defined. All female outcomes
constitute one family, and all male outcomes constitute a second
family. A case can be made for analyzing Abecedarian—the
most intensive program—as a separate family; however, doing
so does not change our central conclusions. The reported sum-
mary effects control for FWER, or the probability of any false
rejection, whereas the effects for specific outcomes control for
FDR, or the expected proportion of false discoveries.

4.2 Preteen Outcomes

The interventions affect females positively at the preteen
stage. Table 3 reports summary index results by outcome stage
and experiment. Like all tables in this section, it presents re-
sults for both genders. Coefficients in this table represent effect
sizes. For comparison, the average effect size of a wide range
of elementary school interventions summarized by Hill, Bloom,
Black, and Lipsey (2007) is .33, and the black–white test score
gap corresponds to an effect size of .8–1.0. At the preteen stage,
the programs improve outcomes for Abecedarian and Perry fe-
males, with respective summary effect size increases of .45 and
.54. Controlling FWER using the free step-down resampling
method, the Perry p value is significant, but the Abecedarian
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p value falls short of marginal significance. Early Training fe-
males experience an insignificant summary effect size increase
of .36.

Males do not experience consistent gains in preteen out-
comes, however. Abecedarian males realize a summary effect
size increase of .42, but this is insignificant when adjusting for
multiple inference. The Perry and Early Training males expe-
rience summary effect size increases of .15, not approaching
significance.

The disaggregated results suggest that the interventions raise
early IQ scores for both genders and reduce early grade reten-
tion and special education for females. They have limited ef-
fects on grade retention and special education for males, how-
ever.

Table 4 reports effects on preteen IQ scores. For each gen-
der, the first column reports coefficients and standard errors, the
second column reports control group means, the third column
reports nonparametric p values (which in general are qualita-
tively similar to the standard parametric p values), the fourth
column reports FDR q values (computed using the two-stage
procedure from Sec. 3.2.3), and the fifth column reports sample
size. The last column in each table tests for differences between
female and male treatment effects.

All projects demonstrate similar IQ effects at early ages. In
each project, there is a large IQ effect for at least one gender
on completion of preschool; in five cases (including two cases
for males), results are significant when controlling FDR at q =
.10. Females continue to display large IQ effects at age 10 in
Abecedarian and Early Training. Males display no significant
IQ effect in any project at age 10, however.

The results given in Table 5 suggest that the early IQ gains
may translate into better performance in primary school, but no
result rejects when controlling FDR at q = .10. Female grade

retention falls by 20 to 30 percentage points in all three pro-
grams, and female special education placement falls by 26 per-
centage points in the Perry program. Abecedarian males ex-
perience (insignificant) 19 and 27 percentage point declines in
grade retention and special education placement. Males in the
Perry and Early Training programs demonstrate no notable de-
creases in grade retention or special education placement, how-
ever.

Gender differences in treatment effects emerge by age 10.
At age 10, female IQ effects are higher than male IQ effects
in both the Perry and Early Training programs. Females also
experience greater drops in grade retention than males in both
the Perry and Early Training programs. Most importantly, in
every experiment the summary female preteen effect is higher
than the summary male preteen effect.

Although the interventions positively affect preteen out-
comes, the implications for long-term success are unclear.
A short-term IQ gain may not result in any long-term bene-
fits, and decreased grade retention at an early age may not af-
fect graduation rates a decade later. For example, Currie and
Thomas (1995) concluded that for African-Americans, Head
Start initially boosts test scores but does not have a lasting ef-
fect on academic achievement. Conversely, diminishing effects
on standardized tests may mask improvements in noncognitive
skills that affect earnings and achievement (Heckman and Ru-
binstein 2001). The next sections focus on long-term teenage
and adult outcomes.

4.3 Teenage Outcomes

Overall, the interventions have consistent, positive effects on
female teen outcomes. Teen summary effects increase by .42,
.61, and .46 standard deviations for females in the Abecedarian,
Perry, and Early Training programs (see Table 3). The Perry

Table 4. Effects on preteen IQ scores

Female Male
Gender

difference
t statistic

Naive FDR Naive FDR
Outcome Age Project Effect CM p value q value n Effect CM p value q value n

IQ 5 ABC 4.94 96.76 .176 .304 48 10.19 90.81 .005 .082 47 −1.05
(3.58) (3.52)

IQ 6.5 ABC 5.13 92.96 .134 .271 46 7.18 92.10 .053 .517 45 −.41
(3.35) (3.65)

IQ 12 ABC 8.35 87.35 .004 .048 52 3.21 90.48 .294 1.000 49 1.24
(2.75) (3.10)

IQ 5 Perry 12.67 81.65 .004 .048 39 10.61 84.79 .001 .049 54 .40
(4.30) (2.84)

IQ 6 Perry 3.75 87.16 .241 .318 48 5.66 85.82 .037 .451 72 −.46
(3.21) (2.68)

IQ 10 Perry 4.96 81.79 .173 .304 43 −2.33 86.03 .372 1.000 71 1.70
(3.45) (2.56)

IQ 5 ETP 13.55 87.60 .015 .077 30 4.43 87.18 .232 1.000 34 1.28
(6.09) (3.75)

IQ 7 ETP 8.61 89.89 .118 .271 29 4.11 92.89 .344 1.000 30 .57
(6.69) (4.25)

IQ 10 ETP 9.79 81.56 .067 .216 29 −3.17 88.33 .511 1.000 27 1.68
(5.73) (5.15)

NOTE: Parentheses contain robust standard errors. CM refers to control mean. Sample size varies within experiments due to attrition for some variables. The p and q values are computed
as described in Section 3; t statistics test the difference between female and male treatment effects.
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Table 5. Effects on preteen primary school outcomes

Female Male
Gender

difference
t statistic

Naive FDR Naive FDR
Outcome Age Project Effect CM p value q value n Effect CM p value q value n

Retained 12 ABC −.229 .429 .080 .216 53 −.188 .545 .197 1.000 50 −.21
(.125) (.142)

Special education 12 ABC −.066 .296 .567 .453 53 −.269 .591 .057 .517 50 1.10
(.123) (.140)

Repeat grade 12 Perry −.201 .409 .133 .271 46 .078 .389 .520 1.000 66 −1.51
(.137) (.124)

Special education 17 Perry −.262 .462 .061 .216 51 −.037 .462 .733 1.000 72 −1.28
(.129) (.119)

Retained 17 ETP −.284 .600 .154 .290 29 .100 .600 .552 1.000 30 −1.40
(.195) (.192)

Special help 17 ETP .116 .200 .504 .446 29 .036 .364 .817 1.000 31 .31
(.171) (.188)

NOTE: Parentheses contain robust standard errors. CM refers to control mean. Sample size varies within experiments due to attrition for some variables. The p and q values are computed
as described in Section 3; t statistics test the difference between female and male treatment effects.

effect is highly significant (p < .001; pfwer = .003). The in-
terventions have no significant effect on male teen outcomes;
male summary effects increase by only .16, .04, and .12 in the
Abecedarian, Perry, and Early Training programs.

The disaggregated results suggest that early intervention im-
proves high school graduation, employment, and juvenile arrest
rates for females but has no significant effect on male outcomes.
Table 6 presents program effects on teen academic outcomes,
including IQ scores and high school graduation rates. By age
14, initial IQ effects dissipate in all three programs; however,
the minimal IQ effects belie strong gains among females for
several important teen outcomes.

High school graduation effects are sizeable for females. Fe-
males display increases in high school graduation rates (or de-
creases in dropout rates) of 23, 49, and 29 percentage points
in the Abecedarian, Perry, and Early Training programs. The
Perry result is highly significant (p < .001; q = .001); how-
ever, the Abecedarian and Early Training results, do not reject
when controlling FDR at q = .10.

Male high school graduation effects are weak or negative,
however. Graduation rates decline by 10 and 6 percentage
points for Abecedarian and Perry males. Early Training males
are 10 percentage points less likely to drop out. No effect is
significant.

Table 7 presents results for teenage economic and social out-
comes. Females appear to experience positive economic effects
from at least one intervention as teenagers. In the Perry pro-
gram, the teen unemployment rate is 31 percentage points lower
in treated females than in untreated females (p = .03; q = .11).
Treated females also receive roughly $1,600 less in annual gov-
ernment transfers at age 19 (p = .04; q = .13). Males derive
no significant economic benefits from the interventions during
their teenage years, however.

One program has a significant effect on female teen criminal
behavior; Perry females are 34 percentage points less likely to
have a juvenile record (p = .01, q = .05). This result is not
mirrored in Perry males.

Table 6. Effects on teenage academic outcomes

Female Male
Gender

difference
t statistic

Naive FDR Naive FDR
Outcome Age Project Effect CM p value q value n Effect CM p value q value n

IQ 15 ABC 4.22 89.50 .144 .281 53 4.66 92.48 .094 .674 51 −.11
(2.85) (2.79)

IQ 14 Perry 2.64 76.77 .311 .359 46 −.96 83.26 .755 1.000 64 .91
(2.57) (3.03)

IQ 17 ETP 2.08 76.11 .739 .524 25 1.64 76.78 .741 1.000 28 .05
(6.80) (5.09)

High school graduate 18 ABC .226 .607 .081 .216 52 −.096 .739 .468 1.000 51 1.80
(.122) (.131)

High school graduate 18 Perry .494 .346 0 .001 51 −.061 .667 .575 1.000 72 3.32
(.121) (.115)

Ever dropout of 18 ETP −.289 .500 .101 .245 29 −.095 .545 .654 1.000 31 −.72
high school (.190) (.193)

NOTE: Parentheses contain robust standard errors. CM refers to control mean. Sample size varies within experiments due to attrition for some variables. The p and q values are computed
as described in Section 3; t statistics test the difference between female and male treatment effects.
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Table 7. Effects on teenage economic and social outcomes

Female Male
Gender

difference
t statistic

Naive FDR Naive FDR
Outcome Age Project Effect CM p value q value n Effect CM p value q value n

Unemployed 19 Perry −.308 .708 .027 .111 49 −.021 .385 .877 1.000 72 −1.60
(.138) (.116)

Transfers 19 Perry −1,569 2,828 .035 .134 51 −28 398 .936 1.000 72 −1.96
(722) (319)

Ever work 18 ETP .125 .500 .591 .453 22 −.063 1.000 .674 1.000 23 .73
(.249) (.063)

Teen parent 19 ABC −.211 .571 .125 .271 53 −.126 .304 .325 1.000 51 −.47
(.137) (.123)

Had child 19 Perry −.187 .667 .205 .304 49 −.044 .256 .665 1.000 72 −.82
(.142) (.101)

Arrested 19 Perry −.337 .417 .005 .048 49 −.079 .564 .550 1.000 72 −1.54
(.117) (.119)

NOTE: Parentheses contain robust standard errors. CM refers to control mean. Sample size varies within experiments due to attrition for some variables. The p and q values are computed
as described in Section 3; t statistics test the difference between female and male treatment effects.

During the teenage years, females clearly benefit more than
males from these interventions. The female–male difference in
high school graduation effects is substantial in the Abecedar-
ian and Perry programs (t = 3.32). Female–male differences
also emerge among Perry teens for effects on unemployment,
criminal behavior, and government transfers. At the summary
index level, Perry females benefit significantly more than Perry
males (t = 3.32). For the other two experiments, female sum-
mary effects are at least .25 standard deviation higher than male
summary effects. With the exception of Abecedarian IQ scores,
every reported teen effect is greater for females than for males.

4.4 Adult Outcomes

Overall, females benefit from at least one of the programs as
adults. In the Abecedarian and Perry programs, females display
positive general effects of .45 and .35 standard deviations (see
Table 3); the former effect is statistically significant (p < .01;
pfwer = .02). Early Training females demonstrate no general
treatment effect as adults, however. This could be due to differ-
ences in the Early Training project’s intervention program, or it
could be due to low statistical power.

Unlike females, males show little evidence of positive effects
as adults. Summary effects for Abecedarian and Perry males
increase by .31 and −.01 standard deviations. The Abecedar-
ian result appears to be marginally significant (p = .07) but in

fact is insignificant (pfwer = .37). Early Training males experi-
ence a decline of .71 standard deviations in the summary index.
This decrease—due primarily to low college attendance rates
of Early Training males—appears to be highly significant (p =
.01) but in fact is only marginally significant (pfwer = .09). This
unexpected finding in the “wrong” direction underscores the
importance of multiplicity adjustments.

The disaggregated results suggest that for females, early in-
tervention may raise college attendance rates, improve eco-
nomic outcomes, and reduce criminal behavior. The effects for
males, however, are weaker and inconsistent, however. There
is evidence of a modest positive effect on male economic out-
comes, but this is accompanied by evidence of a negative effect
on male college attendance and a mixed effect on male criminal
behavior. No male effect is statistically significant at levels of
≤ .05 after FDR adjustment. Thus the discussion here focuses
on possible female effects.

Table 8 reports treatment effects on college attendance. Early
intervention may increase the probability of college attendance
for females. College attendance rates are 29 percentage points
higher in Abecedarian females than in their control counter-
parts (p = .02; q = .08). Perry and Early Training post–high
school education attendance rates increase by 12 to 16 percent-
age points, although neither effect is significant.

Table 8. Effects on adult academic outcomes

Female Male
Gender

difference
t statistic

Naive FDR Naive FDR
Outcome Age Project Effect CM p value q value n Effect CM p value q value n

In college 21 ABC .293 .107 .016 .077 53 .148 .174 .267 1.000 51 .87
(.116) (.121)

Any college 27 Perry .160 .280 .260 .336 50 −.005 .308 .971 1.000 72 .94
(.137) (.110)

In post–high school 21 ETP .121 .300 .524 .453 29 −.486 .636 .004 .082 31 2.37
education (.191) (.171)

NOTE: Parentheses contain robust standard errors. CM refers to control mean. Sample size varies within experiments due to attrition for some variables. The p and q values are computed
as described in Section 3; t statistics test the difference between female and male treatment effects.



1492 Journal of the American Statistical Association, December 2008

Table 9. Effects on adult economic outcomes

Female Male
Gender

difference
t statistics

Naive FDR Naive FDR
Outcome Age Project Effect CM p value q value n Effect CM p value q value n

Employed 21 ABC .104 .536 .427 .405 53 .188 .455 .199 1.000 50 −.43
(.137) (.142)

Employed 27 Perry .255 .545 .078 .216 47 .036 .564 .773 1.000 69 1.20
(.136) (.121)

Annual income 27 Perry 2,567 8,986 .347 .390 47 2,363 12,495 .391 1.000 66 .05
(2,686) (2,708)

Monthly income 27 Perry 396 651 .101 .245 47 537 830 .026 .388 68 −.41
(236) (247)

Employed 40 Perry .015 .818 .931 .574 46 .200 .500 .112 .741 66 −1.12
(.115) (.120)

Annual income 40 Perry 3,492 17,374 .538 .453 46 6,228 21,119 .299 1.000 66 −.34
(5,491) (5,958)

Monthly income 40 Perry 162 1,615 .704 .505 46 436 1,839 .459 1.000 66 −.39
(431) (562)

Receive income 21 ETP −.074 .600 .697 .505 29 −.159 .909 .304 1.000 31 .36
(.200) (.134)

Receive welfare 21 ETP −.042 .200 .826 .537 30 NA
(.157)

NOTE: Parentheses contain robust standard errors. CM refers to control mean. Sample size varies within experiments due to attrition for some variables. The p and q values are computed
as described in Section 3; t statistics test the difference between female and male treatment effects. Males are ineligible for welfare.

Table 9 reports results for adult economic outcomes. There
is weak evidence of a positive effect on female economic out-
comes. Perry females are 26 percentage points more likely to
be employed at age 27 (p = .08; q = .22), and they earn more
at age 27 and age 40 than their control counterparts (although
these effects are statistically insignificant). Early Training fe-
males are less likely to receive welfare at age 21, but the ef-
fect is insignificant. It is possible that potential employment ef-
fects at age 21 for Abecedarian and Early Training females are
masked by increased college attendance rates; however, con-

trolling for college attendance does not appreciably change the
employment coefficients for either program.

Table 10 presents effects on adult social behavior. Treated fe-
males report some reductions in criminal behavior. Abecedar-
ian females are 32 percentage points less likely to use marijuana
(p < .01; q = .05), although they experience no significant re-
duction in conviction or incarceration rates by age 21. Perry fe-
males have 86% fewer lifetime arrests (−1.95 arrests per capita,
p = .01; q = .07), though they are only 15 percentage points
less likely to have a criminal record.

Table 10. Effects on adult social outcomes

Female Male
Gender

difference
t statistics

Naive FDR Naive FDR
Outcome Age Project Effect CM p value q value n Effect CM p value q value n

Convicted 21 ABC −.101 .143 .240 .318 52 −.089 .348 .532 1.000 50 −.08
(.079) (.133)

Felony 21 ABC NA −.113 .261 .364 1.000 50
(.117)

Jailed 21 ABC −.030 .071 .761 .529 52 −.177 .391 .165 1.000 51 1.01
(.065) (.131)

Marijuana user 21 ABC −.317 .357 .003 .048 53 −.127 .435 .376 1.000 49 −1.10
(.101) (.140)

Criminal record 27 Perry −.146 .346 .268 .336 51 −.021 .718 .828 1.000 72 −.75
(.125) (.109)

Lifetime arrests 27 Perry −1.95 2.27 .011 .069 49 −2.31 6.10 .126 .771 72 .21
(.83) (1.50)

Ever used drugs 27 Perry −.157 .300 .213 .304 41 .198 .189 .070 .560 68 −2.08
(.131) (.110)

Married 27 Perry .317 .083 .009 .066 49 .002 .256 .969 1.000 70 2.01
(.115) (.107)

NOTE: Parentheses contain robust standard errors. CM refers to control mean. Sample size varies within experiments due to attrition for some variables. The p and q values are computed
as described in Section 3; t statistics test the difference between female and male treatment effects. No female in the Abecedarian treatment or control group was arrested for a felony.
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There is some evidence that early intervention affects mar-
riage rates. At age 27, Perry females have a significantly higher
marriage rate than untreated females. The 32 percentage point
increase represents a 382% rise over the control group’s base
rate (p = .01; q = .07).

Female treatment effects are generally higher than corre-
sponding male effects, although the effect heterogeneity is
less pronounced than during the teen years. The difference in
female–male summary effects is substantial in the Perry and
Early Training projects. Large female–male treatment effect
differences emerge for drug use and marriage among Perry par-
ticipants and post–high school education among Early Training
participants. For drug use and post–high school education, the
differential is due in part to negative male treatment effects;
nevertheless, it still constitutes evidence of greater benefits for
females—the female effects are centered around a higher mean,
so even in the event of adverse shocks, they do not become neg-
ative and significant.

4.5 Perry Reanalysis

As a final demonstration of the value of correcting for multi-
ple inference, we conduct a stand-alone reanalysis of the Perry
Preschool Project, arguably the most influential of the three ex-
periments. For both male and female effects, we use the point
estimates and standard errors for all Perry outcomes presented
in Tables 4–10. We compute FDR q values (not shown in the ta-
bles) using all Perry outcomes as the family of tests under con-
sideration, as the original Perry researchers would have done
had they applied this technique.

Under these conditions, we find that two effects—early male
IQ scores and female high school graduation rates—reject when
controlling FDR at q = .05. Three more effects—early fe-
male IQ scores, female marital rates, and female juvenile ar-
rest rates—reject when controlling FDR at q = .10. Do these
findings replicate in the other two studies? In general, yes. The
early male IQ effect replicates strongly in Abecedarian. The fe-
male high school graduation effect replicates in both Abecedar-
ian and Early Training, and the early female IQ effect replicates
weakly in Abecedarian and strongly in Early Training. The only
conclusion that fails to replicate is the female juvenile arrest
rate effect, with a FDR q value of .07. (No data on adult marital
rates are available for Abecedarian and Early Training.) Thus
a simple application of the two-stage FDR procedure that re-
quires no resampling and even can be implemented in a spread-
sheet proves sufficient to generate robust conclusions that repli-
cate in independent studies.

Now consider a conventional research design based on unad-
justed p values. Rejecting effects with “naive” (unadjusted) p

values of < .10 adds eight more significant or marginally signif-
icant outcomes: female adult arrests, female employment, male
monthly income, female government transfers, female special
education rates, male drug use (in the adverse direction), male
employment, and female monthly income. Of these eight out-
comes, two (male and female monthly income) are not included
in the other two studies. The remaining six fail to replicate in
either of the other studies. The sharp contrast in replication per-
formance between findings that reject when controlling FDR
and findings that reject based on unadjusted p values empha-
sizes the benefits of applying even simple adjustments for mul-
tiple inference.

5. DISCUSSION

A clear pattern emerges from a detailed examination of treat-
ment effects by gender: Females display significant long-term
effects from the interventions, whereas males show weaker and
inconsistent effects. Treated females show particularly sharp in-
creases in high school graduation and college attendance rates,
but there also is evidence of positive effects for economic out-
comes, criminal behavior, drug use, and marriage.

In contrast to females, males appear to not derive lasting ben-
efits from the interventions. A few positive, long-term outcomes
achieve or approach significance for Perry males (when using
unadjusted p values), including monthly earnings at age 27 and
employment at age 40; however, these positive results are off-
set by several negative, significant male outcomes in Perry and
other programs.

A summary test that pools all teen outcomes together across
experiments finds an overall effect size of .51 for females (stan-
dard error, .13) and .08 for males (standard error, .14). The gen-
der difference is significant (p = .029; pfwer = .029). A sum-
mary test that pools all adult outcomes together across experi-
ments finds an overall effect size of .27 for females (standard
error, .09) and −.05 for males (standard error, .11). The gen-
der difference is again significant (p = .027; pfwer = .029).
(FWER p values are adjusted for the fact that gender differ-
ences are tested as teens and adults.) Of course, we can never
reject arbitrarily small effects for males, and precision is lim-
ited by the relatively small samples. Some point estimates are
of notable magnitude despite being insignificant. Also of note is
the fact that summary effects for males are larger at every stage
in Abecedarian program than in the Perry and Early Training
programs. Perhaps males retain some benefits from highly in-
tensive programs. Regardless, the overall results indicate that
positive male treatment effects are likely modest at best.

Our results help clarify several inconsistencies in the pre-
vious literature. First, they establish that girls benefited more
than boys from these interventions. Previous findings demon-
strating significant long-term effects for boys, primarily from
the Perry program, do not survive multiplicity adjustment and
do not replicate in the other experiments. They also help re-
solve the discrepancy in crime effects between the Perry and
Abecedarian projects. No adult Perry crime effect rejects when
controlling FDR at the 5% level, and only one rejects at the
10% level (adult female arrests). It is thus unsurprising that
these effects fail to replicate in the Abecedarian study. These
facts are noteworthy because much of the Perry program’s eco-
nomic benefits (67%) accrued in the form of reduced crime by
participants (Schweinhart et al. 2005, pp. 148–149). If crime
effects are weaker than has been believed, then the oft-cited 7-
to-1 (or greater) benefit–cost ratio for early intervention will be
overstated.

The female–male gap in treatment effects is consistent with
previous findings in the nonexperimental literature and rein-
forces a general perception that schooling helps girls more than
it does boys (Tyre 2006). For example, Oden, Schweinhart,
Weikart, Marcus, and Xie (2000) reported that Head Start par-
ticipation significantly raises high school graduation rates and
lowers arrest rates for females but not for males. These results
also parallel experimental findings in other areas of the human
capital literature. Kling, Liebman, and Katz (2007) reported
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that the Moving to Opportunity program improves educational
outcomes and mental health for females but appears to have
negative effects on male participants. Abadie, Angrist, and Im-
bens (2002) found that services provided under the Job Training
Partnership Act (JTPA) significantly increase female earnings
at all quantiles, including a 35% increase at the lowest quantile,
but that JTPA services have no significant effect on males at
any quantile below the median, suggesting that disadvantaged
males have particular trouble benefiting from these programs.

Compared with the ongoing randomized evaluation of Head
Start, the three programs discussed in this research demonstrate
stronger early effects. Scores on early cognitive tests increase
by an average of .60 standard deviations in these programs, but
only by .14 standard deviations in the Head Start evaluation
(U.S. Department of Health and Human Services 2005). It is
difficult to forecast how these reduced early cognitive effects
will affect later life outcomes, however, and cognitive effects
are not reported separately by gender.

6. CONCLUSION

This article reports a de novo analysis of the influential early
intervention experimental literature using statistical techniques
that adjust for multiple inference. It partially confirms previ-
ous findings, presenting strong evidence that females benefit
from these interventions. Female effects appear in the domains
of criminal behavior, marriage, and economic success, but the
most consistent improvement is in total years of schooling.
These interventions have positive, significant overall long-term
effects on females in two of the three programs when adjusting
for multiple inference.

There is limited evidence of positive long-term treatment ef-
fects for males, however. Despite several positive and signif-
icant (unadjusted) results, most coefficients are insignificant,
and several of the significant coefficients imply an adverse ef-
fect. The overall pattern of male coefficients is consistent with
the hypothesis of a minimal treatment effect at best—significant
(unadjusted) effects go in both directions and appear at a fre-
quency that would be expected due simply to chance. Previous
work has missed this finding, because there has been no sys-
tematic analysis by gender across experiments and because re-
searchers have emphasized the subset of unadjusted significant
outcomes rather than applying a statistical framework that is
robust to problems of multiple inference.

These results highlight both methodological and substan-
tive points. First, they underscore the importance of multiple-
inference corrections in the context of the program evaluation
literature. Many studies in this field test dozens of outcomes and
focus on the subset of results that achieve significance. In re-
sponse, the statistical framework presented in this article gives
researchers tools to address the issue of multiple testing while
minimizing the loss in statistical power. The simulated stand-
alone analysis of the most famous (and dramatic) preschool ex-
periment, the Perry program, demonstrates that applying these
tools can generate robust conclusions that are more likely to
replicate.

In addition, the article makes clear several points in the con-
text of the current human capital literature. Foremost, inten-
sive intervention early in life can positively affect later-life out-
comes, at least for disadvantaged African-American females;

however, there is little evidence of strong long-term benefits
for males. This fact suggests that investments in early educa-
tion alone may not dramatically improve opportunities for dis-
advantaged males. The indicated treatment effect heterogeneity
also calls into question the external applicability of these ex-
periments at a time when advocates are invoking them to sup-
port funding for universal preschool education. If treatment ef-
fects vary by gender, then they likely also vary by race or class.
Richer variation in sample demographics is needed for the de-
sign of optimal human capital policy.
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sij = 1

Wij

∑

k∈Kij

wjk

yijk − yjk

σ
y
jk

,

where k indexes outcomes within area j , Kij is the set of nonmissing

outcomes for observation i in area j , σ
y
jk

is the control group standard
deviation for outcome k in area j , wjk is the outcome weight from

the inverted covariance matrix �̂−1
j

, and Wij = ∑
k∈Kij

wjk . If Kj is
the total number of outcomes for area j , and Njmn is the number of
observations not missing for both outcome m and outcome n in area j ,
then

wjk =
Kj∑

l=1

cjkl,

�̂−1
j

=

⎡

⎢⎢⎢⎢⎣

cj11 cj12 . . . cj1K

cj21 cj22 . . . . . .

...
...

. . .
. . .

cjK1
...

. . . cjKK

⎤

⎥⎥⎥⎥⎦
,

and �̂j consists of elements

�̂jmn =
Njmn∑

i=1

yijm − yjm

σ
y
jm

yijn − yjn

σ
y
jn

.

APPENDIX B: POTENTIAL COMPLICATIONS

Several complications, analyzed in-depth by Anderson (2006),
threaten the validity of the results. A quick summary of the compli-
cations and their resolutions follows.

Attrition affects all three experiments. If this attrition were caused
by treatment status, then systematic differences unrelated to the treat-
ment could emerge between the two groups. In these experiments, the
direction of the induced bias is ambiguous. Thus we impute miss-
ing values for key outcomes and examine “worst-case” scenarios. Un-
der reasonable assumptions, the article’s central conclusions are un-
changed.

Another complication is violation of the original random assign-
ment. The most serious case occurred in the Perry Preschool Program;
for logistical reasons, several children with working mothers in the
treatment group were switched to the control group. Perry researchers
did not record the identities of these children. If children with work-
ing mothers performed differently than the average child, then these
swaps could induce bias. We address this issue by conditioning out-
comes on initial maternal employment status. We also study an entire
range of possible switches that could have occurred and examine the
sensitivity of the estimates to these switches. Again, the main results
are unchanged.
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A final complication is the possibility of dependence between ob-
servations, or clustering. In these experiments, the possibility of class-
room peer effects and the systematic assignment of siblings to iden-
tical treatment groups are reasons for concern. If the peer effects or
intrafamily correlations are strong, then the standard errors could be
too small. We address the problem by estimating standard errors that
adjust for clustering at the class-by-year level or at the family level.
These adjustments do not substantially affect key results.

[Received November 2006. Revised December 2007.]
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