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Abstract

During the last century, most of the meaningful frequency bands were licensed to emerging
wireless applications. Because of the static model of frequency allocation, the growing
number of spectrum demanding services led to a spectrum scarcity. However, recently,
series of measurements on the spectrum utilization showed that the different frequency
bands were underutilized (sometimes even unoccupied) and thus that the scarcity of the
spectrum resource is virtual and only due to the static allocation of the different bands to
specific wireless services. Moreover, the underutilization of the spectrum resource varies
on different scales in time and space offering many opportunities to an unlicensed user
or network to access the spectrum. Cognitive Radio (CR) and Opportunistic Spectrum
Access (OSA) were introduced as possible solutions to alleviate the spectrum scarcity issue.

In this dissertation, we aim at enabling CR equipments to exploit autonomously com-
munication opportunities found in their vicinity. For that purpose, we suggest decision
making mechanisms designed and/or adapted to answer CR related problems in general,
and more specifically, OSA related scenarios. Thus, we argue that OSA scenarios can
be modeled as Multi-Armed Bandit (MAB) problems. As a matter of fact, within OSA
contexts, CR equipments are assumed to have no prior knowledge on their environment.
Acquiring the necessary information relies on a sequential interaction between the CR
equipment and its environment. Finally, the CR equipment is modeled as a cognitive
agent whose purpose is to learn while providing an improving service to its user.

During a preliminary phase, we discuss different solutions borrowed from the Machine
Learning literature. We chose in the dissertation to focus on a simple yet efficient learning
algorithm known as UCB1 algorithm. The rest of the analysis aims at exploring the
performance of UCB1 in more complex and realistic scenarios. Namely, we consider one
secondary user (SU) willing to exploit communication opportunities left vacant by their
incumbent users. The SU in allowed to access a frequency band if he senses it free.
Consequently, he needs to learn the availability of the different bands in order to select the
most available one (i.e., the optimal band). The sensing process is unfortunately prone to
errors.

Thus, firstly we analyze the performance of UCB1 algorithm when dealing with OSA
problems with imperfect sensing. More specifically, we show that UCB1 can efficiently
cope with sensing errors. We prove its convergence to the optimal channel and quantify
its loss of performance compared to the case with perfect sensing. Secondly, we combine
UCB1 algorithm with collaborative and coordination mechanism to model a secondary
network (i.e. several SUs). We show that within this complex scenario, a coordinated
learning mechanism can lead to efficient secondary networks. These scenarios assume
that a SU can efficiently detect incumbent users’ activity while having no prior knowledge
on their characteristics. Usually, energy detection is suggested as a possible approach
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to handle such task. Unfortunately, energy detection in known to perform poorly when
dealing with uncertainty. Consequently, we ventured in this Ph.D. to revisit the problem
of energy detection limits under uncertainty. We present new results on its performances
as well as its limits when the noise level is uncertain and the uncertainty is modeled by a
log-normal distribution (as suggested by Alexander Sonnenschein and Philip M. Fishman
in 1992).

Within OSA contexts, we address a final problem where a sensor aims at quantifying
the quality of a channel in fading environments. In such contexts, UCB1 algorithms seem
to fail. Consequently, we designed a new algorithm called Multiplicative UCB (UCB) and
prove its convergence. Moreover, we prove that MUCB algorithms are order optimal (i.e.,
the order of their learning rate is optimal). This last work provides a contribution that
goes beyond CR and OSA. As a matter of fact, MUCB algorithms are introduced and
solved within a general MAB framework.



Résumé Général Français

L’allocation des ressources spectrales à des services de communications sans fil, sans cesse
plus nombreux et plus gourmands, a récemment mené la communauté radio à vouloir
remettre en question la stratégie de répartition des bandes de fréquences imposée depuis
plus d’un siècle. En effet une étude rendue publique en 2002 par la commission fédérale
des communications aux Etats-Unis (Federal Communications Commission - FCC) mit
en évidence une pénurie des ressources spectrales dans une large bande de fréquences
comprise entre quelques mégahertz à plusieurs gigahertz. Cependant, cette même étude
expliqua cette pénurie par une allocation statique des ressources aux différents services
demandeurs plutôt que par une saturation des bandes de fréquences. Cette explication
fut par la suite corroborée par de nombreuses mesures d’occupation spectrale, réalisées
dans plusieurs pays, qui montrèrent une forte sous-utilisation des bandes de fréquences en
fonction du temps et de l’espace, représentant par conséquent autant d’opportunité spec-
trale inexploitée. Ces constations donnèrent naissance à un domaine en plein effervescence
connu sous le nom d’Accès Opportuniste au Spectre (Opportunistic Spectrum Access).

Nos travaux suggèrent l’étude de mécanismes d’apprentissage pour la radio intelligente
(Cognitive Radio) dans le cadre de l’Accès Opportuniste au Spectre (AOS) afin de per-
mettre à des équipements radio d’exploiter ces opportunités de manière autonome. Pour
cela, nous montrons que les problématiques d’AOS peuvent être fidèlement représentées
par des modèles d’apprentissage par renforcement. Ainsi, l’équipement radio est modélisé
par un agent intelligent capable d’interagir avec son environnement afin d’en collecter des
informations. Ces dernières servent à reconnaître, au fur et à mesure des expériences,
les meilleurs choix (bandes de fréquences, configurations, etc.) qui s’offrent au système
de communication. Nous nous intéressons au modèle particulier des bandits manchots
(Multi-Armed Bandit appliqué à l’AOS).

Nous discutons, lors d’une phase préliminaire, différentes solutions empruntées au do-
maine de l’apprentissage machine (Machine Learning). Ensuite, nous élargissons ces ré-
sultats à des cadres adaptés à la radio intelligente. Notamment, nous évaluons les perfor-
mances de ces algorithmes dans le cas de réseaux d’équipements qui collaborent en prenant
en compte, dans le modèle suggéré, les erreurs d’observations. On montre de plus que ces
algorithmes n’ont pas besoin de connaître la fréquence des erreurs d’observation afin de
converger. La vitesse de convergence dépend néanmoins de ces fréquences. Dans un sec-
ond temps nous concevons un nouvel algorithme d’apprentissage destiné à répondre à des
problèmes d’exploitation des ressources spectrales dans des conditions dites de fading.

Tous ces travaux présupposent néanmoins la capacité de l’équipement intelligent à
détecter efficacement l’activité d’autres utilisateurs sur la bande (utilisateurs prioritaires
dits utilisateurs primaires). La principale difficulté réside dans le fait que l’équipement
intelligent ne suppose aucune connaissance a priori sur son environnement (niveau du
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bruit notamment) ou sur les utilisateurs primaires. Afin de lever le doute sur l’efficacité de
l’approche suggérée, nous analysons l’impact de ces incertitudes sur le détecteur d’énergie.
Ce dernier prend donc le rôle d’observateur et envoie ses observations aux algorithmes
d’apprentissage. Nous montrons ainsi qu’il est possible de quantifier les performances de
ce détecteur dans des conditions d’incertitude sur le niveau du bruit ce qui le rend utilisable
dans le contexte de la radio intelligente. Par conséquent, les algorithmes d’apprentissage
utilisés pourront exploiter les résultats du détecteur malgré l’incertitude inhérente liée
à l’environnement considéré et aux hypothèses (sévères) d’incertitude liées au problème
analysé.
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σ2
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σ2
n,t Noise’s power level.

Pfa,t The probability of false alarm.
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π A decision making policy.
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M
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M
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(
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∆
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W π
t Cumulated reward at the slot t.

W Tn(t) Averaged cumulated reward at the slot t.

Rπ
t Cumulated expected regret at the slot t.
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6 Twenty Years of Wireless Communication Innovations: Towards Cognitive Radio

1.1 Twenty years of Wireless Communications

1.1.1 The emergence of licensed cellular networks

In April 1973, in New York City, the first handset based wireless communication was
performed by Martin Cooper (former Motorola vice president and division manager). At
that time, the experiment was held to convince the Federal Communication Commission
to support wireless communication innovations (more specifically cellular networks) by
allocating and licensing specific frequency bands to private companies(1). Since then,
Radio technologies went a long way.

As a matter of fact, the advent of the digital wireless standard, Global System for Mo-
bile Communications (GSM), demonstrated in 1991 in Finland, allowed a global democ-
ratization of cellular phones, and opened the way to both voice and data transmissions(2).
The GSM standard, also known as 2nd generation wireless telephony technology, saw
many improvements and upgrades since its first design. On the one hand, General Packet
Radio Service (GPRS) then Enhanced Data rate for GSM Evolution (EDGE) aimed at
improving packet management and at raising the transmission speed. On the other hand,
the Universal Mobile Telecommunication System (UMTS), also referred to as 3rd genera-
tion wireless telephony technology, 3G for short, in Europe and Japan, aimed at providing
video based wireless -cellular- communications. Although, its design was mainly concerned
with mobile TV and video calls, it is however most of the time used for mobile Internet
access due to its satisfactory speed to fulfill the basic bandwidth requirements of Internet
communications.

The success of cellular technology is unarguable: today, according to the statistics pro-
vided by International Telecommunication Union (ITU), more than 86% of the worldwide
community has a mobile cellular subscription [1]. For illustration purpose, the global In-
formation and Communications Technology (ICT) developpments during the period 2001-
2011 are drawn in Figure 1.1

1.1.2 WLAN and unlicensed standards: the success of the WiFi stan-

dard

Complementary to licensed cellular networks, GSM, EDGE, UMTS and the future Long
Term Evolution (LTE) standard, but on a much smaller cellular scale, Wireless Local Area
Network (WLAN) were designed for short range and high speed data transmissions. No
specific license is required to deploy a fully operating network or to extend an existing
one in the Industrial, Scientific and Medical (ISM) band. Thus, it enables to create an
efficient personal or professional network at a low cost compared to a hard wired network.
Moreover, it enables all compatible machines to communicate on a relatively large cell
(around 50-300 meters depending on the environment).

One of the most famous unlicensed standards, Wireless Fidelity, IEEE 802.11 (Wi-Fi)
specifications first commercialized in 1999, quickly spread over the world. Its wide success
is probably due to the fact that Wi-Fi provides a mean of high rate communication, at a
low cost, with an application range only limited by the designer’s imagination. Wi-Fi is

(1)Amusing anecdote found at: http : //www.cellular.co.za/cellphoneinventor.htm
(2)Data transmissions started with short and instantaneous messages usually referred to as Short Message

Service (SMS)
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Figure 1.1: the global ICT developments during the period 2001-2011 [1].

today generally used for Internet access and machine to machine connections (e.g., with a
printer, a camera or other computers). However, Wi-Fi networks that are used to extend
Internet networks are also increasingly exploited to provide wireless voice services, e.g.,
Voice over IP (VoIP).

This latter application can also be useful to unload overcrowded licensed cellular net-
works and is currently exploited in France by the major wireless communication operators
and providers (SFR, Bouyges Telecom and Free). As a matter of fact, the democratization
and large deployment of the so called ‘ADSL(3) Boxes’ provided by the main operators to
private clients, led to quasi-ubiquitous wireless access points. As one can observe in Fig-
ure 1.2, all providers share the same space and obviously possess a dense Wi-Fi network.
The density of the network is however mainly due to private users’ Wi-Fi Access points.
These access points are shared by the providers in a transparent way, and the private
user (usually at home) is not necessarily aware that his ADSL Internet access might be
shared by external users through a virtual secondary Wi-Fi access managed by his Internet
provider. It is important to understand at this level, that the secondary access is virtual
and both access points share the same wireless network card. This matter will be dis-
cussed and further detailed later as it provides an interesting introduction and illustration
to Opportunistic Spectrum Access related concepts.

Wi-Fi networks also appear to become victims of their own success. As a matter of fact,
unlike cellular networks, no specific channel access coordination is planned among different

(3)Asymmetric Digital Subscriber Line (ADSL)
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Figure 1.2: Major France Telecommunication providers’ Wi-Fi access points in Rennes
around Saint-Anne metro station. To quickly densify their Wi-Fi network, main operators
exploit their subscribers’ ADSL box. Thus, usually the Wi-Fi connexion of an ADSL box
runs two or three virtual networks that share the same connexion. Usually we find two
virtual networks: the first wireless network is dedicated to the subscriber, whereas the
second wireless network is managed by the operator. This latter network is shared with
other mobile subscribers in the vicinity of the box. Both networks share the same wireless
physical card and thus share the same frequency band. Finally, we also noticed, in the
case of the operator Free, the existence of a third virtual network dedicated to VoIP.
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Wi-Fi networks. Consequently they interfere and their performances can rapidly degrade
when other similar networks are in their vicinity operating in the same band. Although
the case of Steve Jobs in June 2010 at Apple’s Worldwide Developers Conference might
seem extreme -where no less than 500 separate base stations (or Hot-Spots) were detected
for 5000 persons in the conference room - it yet offers an illustration full of teachings on the
limits of non-coordinated access among different users. Thus, due to the extreme traffic
congestion (and probably a very high collision rate) in the room, Steve Jobs was not able
to maintain a stable Wi-Fi connection on his new and fancy iPhone 4 , which led him to
fail the performed demo.

In general, nowadays, depending on the location, a Wi-Fi device can usually detect at
least a few Wi-Fi Hot-Spots. In residential and commercial zones, such a survey usually
exhibits no less than 10 or 20 -real and virtual- access points and up to a few hundreds
(between several commercial and residential buildings where all surrounding access points
are visible)(4). Unfortunately, from the user’s perspective, only few access points are open
and free. Moreover, since no high level coordination is available among the different access
points, to share time/frequency resources, harmful collisions might frequently occur in
crowded areas leading to very poor network performances.

Thus, the technological success of Wi-Fi network, approved by a large majority of
system designers and consumers, led to a major economical success. In general, and, as
suggested in Figure 1.3 presented by Dave Cleevely at the annual conference of Spectrum
management IEEE DySPAN2011 (which took place in Aachen, Germany), unlicensed use
of spectrum bands opens the way to technologies that seem to be profitable in terms of
revenue. Hence, he suggested to provide new bands to allow the development of such
technologies. The interpretation of these results as well as the credibility of the sources
supporting the presented analysis have naturally been questioned. However, as asked and
answered by Linda Doyle on her web blog in an article entitled ‘To License or Not to
License’:

I am not sure I completely buy into the message or interpretation of the data but I
find it an interesting suggestion. I wonder if it is possible to create an equivalent graph
showing the opposite? Having said that, David has gathered his facts and figures from
multiple reliable sources and did say that even if the calculations are off, the big difference
in magnitude between the value of the licensed and unlicensed remains.
In other words, the sources and the results seem to be solid enough to be accepted by the
community and to suggest opening new spectrum bands to allow new innovative commu-
nication services based on unlicensed spectrum use.

As a first conclusion, due to their astonishing success, both Cellular and Wireless Local
Area Networks grew to become crowded. However, WLANs are yet to be expanded, opti-
mized and coordinated in order to fully exploit the communication opportunities offered
by these technologies.

(4)The reported estimations were observed on my personal, not so fancy, smartphone relying a
free Wi-Fi analyzer application. A more rigorous survey is provided at the following web link:
http://www.silicon.com/technology/mobile/2007/01/31/peter-cochranes-blog-wi-fi-london-39165548/

Although the analysis was performance 5 years ago, in London, it appears to remain relevant, from my
point of view, to describe the situation in current middle sized towns.
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Figure 1.3: Estimated economical impact of both licensed and unlicensed radio technolo-
gies: results presented by Dave Cleevely during the annual conference of Spectrum man-
agement IEEE DySPAN2011. This figure support the idea that more bandwidth should
be opened to unlicensed radio exploitation.
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At this level a natural question arises: considering the increasing need for bandwidths
and higher data rates, which degrees of freedom are still to be exploited to introduce new
wireless communication opportunities?

To provide a piece of answer, we revisit the evolution of the overall effective simulta-
neously achievable throughput by all operating wireless systems(5).

1.1.3 Cooper’s law and the physical layer’s limits

1991-2011: Twenty years of digital wireless communication innovations. Twenty years
during which the increase of communication data rate provided by both licensed and un-
licensed networks, as illustrated in Figure 1.4, marched along with the improvements of
computing abilities: a higher electronic density and higher computing frequencies increas-
ing at a regular rate (as extrapolated by Gordon E. Moore in 1965). Indeed, with more
efficient computing tools, the wireless communication community was able to integrate and
compute more sophisticated and complex physical layer related algorithms (e.g., higher
sampling rate to probe larger bands, more efficient source coding as well as channel coding
and waveforms, adaptive equalization and channel estimation to name a few).

As illustrated in Figure 1.4, the increase of achievable data rates by wireless commu-
nication devices, due to the physical layer’s breakthroughs, is indeed substantial. Yet,
surprisingly enough, it only represents a small fraction of the capacity increase observed
during the last century of wireless communication! As a matter of fact, Martin Cooper
recently claimed that the ‘wireless capacity(6) has doubled every 30 months over the last
104 years’ [4]. However, the overall increase of wireless capacity can be fractioned into
three main technological contributors:

• Better use of the spectrum through advanced signal processing tools (coding and
modulation) and spectrum access management enabled a 25 fold increase.

• Managing wider bands allowed a 25 fold increase.

• Reducing cellular cells’ scales led to a 1600 fold improvement(7)!

Many straightforward conclusions can be drawn from this statement and several ques-
tions arise. On the one hand, both physical layer related contributions only provided a
625 fold improvement in the overall wireless capacity. Whereas, the reduction of cellular
networks’ scale improves frequency bands reuse [5] and thus enables an easy improvement
of the overall achievable throughput in a given region. Future wireless networks based on
Femto-cells and Heterogeneous networks tend to exploit this degree of freedom [4]. As a
matter of fact, as already noticed, unlicensed WLANs for instance enabled to intensify
drastically the density of the network and thus to significantly increase, at a low cost,
existing networks.

(5)Thus, anticipating the results, it naturally highly depends on the number of possible simultaneous
wireless connections.

(6)Personal note: the term capacity used in this statement seems to be different from the one introduced
in Information Theory. We thus prefer the following equivalent statement: ‘The number of simultaneous
voice and data connections has doubled every 2.5 years since wireless began (1900)’[3]

(7)It is not clear whether WLAN based networks are accounted in the final result proposed by Martin
Cooper or not.
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Figure 1.4: Evolution of the bandwidth of the main Radio communications standards
(found online: http://3g4g.blogspot.fr/2008_04_01_archive.html) . Similar graphs are
provided in [2].
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On the other hand, physical layer based improvements do not seem to be able to sustain
the increasing need for higher data rates. Considering that only minor improvement can
be expected from the physical layer to reach the fundamental Shannon limit, is it still
worth investigating [6]? The answer is of course yes: new opportunities appeared due
to techniques such as beam-forming and smart-antennas techniques offering new spatial
degrees of freedom allowing simultaneous communications in a same location.

However, these new degrees of freedom usually assume a high adaptability of radio
devices to their environment. Thus, it presupposes that future wireless communication
systems have the ability to probe their environment and to reconfigure on the fly their
architecture relying on appropriate decisions made depending on the context (user’s expec-
tation and environments constraints). Consequently, to maintain the growth of wireless
capacity at the pace estimated by Cooper’s law, hardware flexibility and basic cognition
abilities (sensing and decision making) need to be combined into both radio equipments
and networks.

1.2 Towards Cognitive Radio

1.2.1 Software Defined Radio

The increase of computational capacity associated with (rather) cheap flexible hardware
technologies (such as Programmable Logic Devices, Digital Signal Processors and Central
Processing Units) offer us a glimpse into new ways to designing and managing future non
military communication systems(8). As a matter of fact in 1991, Joseph Mitola III argued
that in a few years, at least in theory, software design of communication systems should
be possible. The term coined by Joseph Mitola to present such technologies is Software
Defined Radio (SDR).

For illustration purposes, today’s radio devices need a specific dedicated electronic
chain for each standard, switching from one standard to another when needed (known as
the Velcro approach). With the growth of the number of these standards (GSM, EDGE,
Wi-Fi, Bluetooth, LTE, etc.) in one equipment, the design and development of these radio
devices has become a real challenge and the practical need for more flexibility became
urgent. Recent hardware advances have offered the possibility to design, at least partially,
software solutions to problems which were requiring in the past hardware signal processing
devices: a step closer to SDR systems.

More specifically speaking, several possible definitions exist -and are still a matter of
debate in the community- to define SDR systems. For consistency reasons, we briefly
describe software related radio concepts as agreed on by the SDR Forum [7]. This matter
is further discussed in [8].

The SDR Forum defines Software Defined Radio as radio in which some or all of the
physical layer functions are software defined where physical layer and software defined
terms are respectively described as:

• Physical layer: The layer within the wireless protocol in which processing of Ra-
dio Frequency, Intermediate Frequency, or baseband signals including channel coding

(8)Both US and European military have been working on such flexible and inter-operable defense systems
since the late 70’s.
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occurs. It is the lowest layer of the ISO 7-layer model as adapted for wireless trans-
mission and reception.

• Software Defined: Software defined refers to the use of software processing within the
radio system or device to implement operating (but not control) functions.

Thus, SDR systems are defined only from the design and the implementation per-
spectives. Consequently it appears as a simple evolution from the usual hardwired radio
systems. However, with the added software layer, it is technically possible with current
technology to control a large set of parameters in order to adapt radio equipment to their
communication environment (e.g., bandwidth, modulation, protocol, power level adapta-
tion to name a few). However the control and optimization of reconfigurable radio devices
need the definition of optimization criteria related to the equipment hardware capabilities,
the users’ needs as well as the regulators’ rules. Introducing autonomous optimization
capabilities in radio terminals and networks is the basis of Cognitive Radio, term also
suggested and coined by Joseph Mitola III [9, 10].

1.2.2 The rise of Cognitive Radio

J. Mitola defined Cognitive Radio (CR), in his Ph.D. dissertation as follows [10]:
The term cognitive radio identifies the point at which wireless Personal Digital Assistant

(PDA) and the related networks are sufficiently computationally intelligent about radio
resources and related computer to computer communication to:

1. Detect user communication needs as a function of use context, and

2. Provide radio resources and wireless services most appropriate to these needs.

Thus, the purpose of this new concept is to autonomously meet the user’s expectations,
i.e., maximizing his ‘profit’, in terms of Quality of Service (QoS), throughput or power
efficiency to name a few, without compromising the efficiency of the network. Hence, the
needed intelligence to operate efficiently must be distributed in both the network and the
radio device.

To fulfill these requirements, J.Mitola and J.Q. Maguire introduced the notion of Cog-
nitive Cycle (CC) as described in Figure 1.5 [9, 10], where the Cognitive Cycle presupposes
the capacity to collect information from the surrounding environment (perception), to di-
gest it (i.e., learning, decision making and predicting tools) and to act in the best possible
way by considering several constraints and the available information. The reconfiguration
of radio equipment is not discussed in depth, however, it is generally accepted that SDR
technology is needed to support Cognitive Radio [8].

As illustrated in Figure 1.5, a full Cognitive Cycle(9) demands at every iteration five
steps: Observe, Orient, Plan, Decide and Act. The Observe step deals with internal as
well as external metrics. It aims at capturing the characteristics of the environment of
the communication device (e.g., channel state, interference level or battery level to name
a few.). This information is then processed by the three following steps : Orient, Plan
and Decide steps, where priorities are set, schedules are planed according to the systems
constraints, and decisions are made. Finally an appropriate action is taken during the

(9)It is called full cognitive radio to oppose it to other simplified versions suggested in the literature.
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Figure 1.5: Cognitive radio decision making context: the CR cycle as introduced by Joseph
Mitola III [10].

Act step (such as send a message, reconfigure, modify power level to name a few). In
order to complete the Cognitive Cycle, a last and final step is needed to enhance the
decision making engine of the communication device: the Learn step. As a matter of fact,
learning abilities enable communication equipment to evaluate the quality of their past
actions. Thus, the decision making engine learns from its past successes and failures to
tune its parameters and adapt its decision rules to its specific environment. Learning can
consequently help the decision making engine to improve the quality of future decisions.

As far as we can track the emergence of a Cognitive Radio literature and to the best of
our knowledge, the today’s plethoric publications started with three major contributions:
On the one hand, the Federal Communication Commission (FCC) pointed out in 2002 the
inefficiency of static frequency bands’ allocation to specific wireless applications, and sug-
gested Cognitive Radio as a possible paradigm to alleviate the resulting spectrum scarcity
[11]. Then, S. Haykin in Paper [12] in 2005, suggested a simplified Cognitive Cycle to
represent Cognitive Radio decision making engines as illustrated in Figure 1.6. Haykin’s
model tackled the particular dynamic spectrum management problem and discussed dif-
ferent possible models to design future Cognitive Radio Networks. Paper [12] inspired
many studies on Cognitive Radio application fields such as Spectrum Hole Detection and
Game Theory Based Cognitive Networks. Eventually, this two subjects led to two very
active research fields as illustrated in this recent surveys [13, 14, 15].

On the other hand, while the two contributions [11] and [12] focus on spectral efficiency,
C.J. Rieser suggested, through various publications, synthesized in his Ph.D. dissertation,
[16] in 2004, a biologically inspired cognitive radio engine that relies on Genetic Algo-
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Figure 1.6: Cognitive radio decision making context [12]. The Cognitive Cycle as intro-
duced by S. Haykin to answer Dynamic Spectrum Access related problems.

rithms. To the best of our knowledge, it was the first suggested and partially implemented
Cognitive Radio Engine presented to the community.

1.3 Ph.D. motivations

1.3.1 SDR and CR related topics

Within SDR and CR contexts, The SCEE lab at Supélec defined and explored, among
others, two main concepts related to this Ph.D.:

1. The Sensorial Radio bubble (SRB) [17, 18, 19].

2. Hierarchical and Distributed Cognitive Architecture Management (HDCRAM) [20].

On the one hand, the SRB models virtual bubbles through which radio equipment
observe various metrics related to their surrounding environment. As described in [19],
it relies on a plurality of sensors based on several signal processing elements. It gives to
communication systems the ability to explore the radio environment in order to provide
knowledge of the spatial and spectrum environment, and some context awareness. Such a
CR system knows all about the signals coming inside and going outside its bubble, as well
as the state of many parameters inside the bubble. Thus, it describes a concept that aims
at exploring and extracting useful information regarding the radio device. It can be seen
as a sensorial agent that gathers information on the environment and sends them to an
adequate analysis center for further processing.

On the other hand, the HDCRAM concept tackles both reconfigurations management
and distributed decision making related issues. Both topics arise when dealing with SDR
equipment and/or cognitive radios. As a matter of fact, the SDR concept allows the recon-
figuration of a large set of parameters. In theory, it enables the reconfiguration of a whole
communication chain on the fly. The reconfiguration process needs however to be transpar-
ent from the user’s point of view. To answer this challenge a reconfiguration and decision



1.3 Ph.D. motivations 17

making architecture named HDCRAM has been suggested as a possible solution to allow
distributed decision making and reconfiguration operations. The HDCRAM architecture
relies on three reconfiguration and decision making levels denoted (from the highest level):
L1, L2, L3 as illustrated in Figure 1.7. Figure 1.7 shows first the basic operators compos-
ing any HDCRAM system. Generically, we find two classes: a reconfigurable operator and
an operator referred to as sensor. Note that on the one hand a reconfigurable operator
receives orders from its dedicated L3_ReMU . On the other hand the defined sensor can
be any part of the system as long as it provides a given level L3_CRMU with a metric.
All blocks (·)_CRMU deal with decision making and send their decisions to the adequate
(·)_ReMU on their same level. This latter is the only one dealing with reconfiguration
matters as explicitly illustrated at the center of the figure. Of course a certain operator
can have both L3_ReMU and L3_CRMU . Finally, when a decision made at a low level,
i.e., at a local level, involves other parts of the system, the metrics are send to a cognitive
unit at a higher level. For further details on the HDCRAM concept, we would suggest the
following papers: [20, 21, 22, 23, 24].

During this Ph.D., I have been involved with both topics. However, the work presented
in this dissertation can be seen as a part of the HDCRAM architecture, where we deal
with local decision making. In other words, all suggested approaches in this dissertation
are to be implemented into appropriate CRMU units.

The work realized during my thesis on the SRB can be found online. The four first
papers concern the implementation of detection solutions on Universal Software Radio Pe-
ripheral (USRP) cards [25, 26, 27], and blind energy detection relying on the Expectation-
Maximization algorithm applied on real measurements using the USRP cards [28] (An
empirical evaluation). The last paper investigates the concept of hot-spot migration on
flexible hardwares in the context of Green Cognitive Radio [29]. The results related to
the aforementioned work are not reported in this dissertation. As a matter of fact,this
report focuses on fundamental theoretical results on learning and decision making under
uncertainty for CR, in general, and Opportunistic Spectrum Access in particular.

1.3.2 Research Objectives in this Ph.D.

At first, the goals of the thesis were threefold:

1. Exploration of the main decision making algorithms designed in the literature to
tackle recent cognitive radio related decision making and learning problems.

2. Focus on low complexity learning algorithms capable of learning with (almost) no
prior information.

3. Adaptation of the selected machine learning techniques to CR learning problems
(e.g., understanding the impact of sensing errors on the performance of the algo-
rithms applied to Opportunistic Spectrum Access).

Then, while exploring these matters new problems needed further investigation:

4. Quantifying energy detection uncertainty. Is it possible? If yes under what as-
sumptions? These questions are very important to evaluate the impact of imperfect
sensing on decision making and leaning.
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Figure 1.7: Hierarchical and Distributed Cognitive Radio Architecture Management (HD-
CRAM) [20, 21, 22, 23, 24]. A cognitive cycle management architecture is required to
efficiently cycle through the observe, decide and adapt steps. The specificity of the CR con-
text requires the management architecture to be hierarchical and distributed over several
processing units. This figure illustrates the basic components and behavior of HDCRAM
systems.
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5. Collaboration and Coordination among different CR users.

6. Adapting or designing learning algorithms to different contexts such detection in
fading environment.

We present in the next section the main contributions introduced in this dissertations
and detail the organization of this document.

1.4 Presentation and results

The contributions of the Ph.D., presented in this report, answer the previously asked
questions.

Chapter 2, explores CR related literature. It focuses on decision making and learning
for CR. We synthesize all decision making problems in CR through the Dynamic Config-
uration Adaptation (DCA) Problem. Within this framework, Dynamic Spectrum Access
(DSA) appears as a specific instantiation of DCA. While we briefly discuss DSA(10), we
focus on the literature that aims at defining Cognitive Decision Making Engines. Then we
introduce the conceptual notion of design space. This latter constrains the set of possible
decision making problems CR needs or might face. We argue that CR decision making
problem share the same design space. Finally, relying on the notion of design space and
the notion of prior knowledge, we suggest an original classification of decision making
techniques for CR engines.

Thus, The main contributions of Chapter 2:

• Definition of the DCA problem.

• Introduction of the notion of Design Space.

• General classification of decision making techniques for DCA relying on the design
space and prior knowledge.

The chapter 3 revisits the impact of noise uncertainty on the performance of the well
known energy detector and present new results on its limits.

Thus, The main contributions of Chapter 3

• Introduction of a new measure of uncertainty related to the variance of noise es-
timation. The distribution of noise uncertainty is assumed to follow Log-Normal
distributions.

• Analysis of Energy Detection characteristics with limited information on the noise
level. It relies on a Log-Normal approximation of Chi-square distributions (Log
Approximation). We define a new SNRwall as a function of the desired performances
and the uncertainty parameters.

• To support the Log Approximation, we evaluate the approximation error. Results
suggest to approximate (when needed) Chi-square distributions by Log-normal dis-
tributions rather than by Normal distributions.

(10)It contains various very actives sub-topics that would be impossible to extensively report in this Ph.D.
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This work highlights interesting information on the quality of the observations provided
to the decision maker. One key element can be stated as follows: the designed decision
making or/and learning algorithm must be able to operate without knowing the quality of
the observations. As a matter of fact, such information is not always available as discussed
in the case of Opportunistic Spectrum Access (OSA) in Chapters 4 and 5

The chapter 4 introduces, analyzes and discusses sequential learning applied to OSA.
More specifically, we suggest modeling OSA problems relying on Multi-Armed Bandit
models. Then we illustrate the performance of a low complexity algorithm known as
UCB1 to answer the designed academic OSA scenarios. We extend the theoretical results
of UCB1 in more realistic scenarios where the observation are soiled with errors due
to imperfect sensing. We show that UCB1 remains efficient and does not need prior
knowledge on the sensor’s performance.

Thus, The main contributions of Chapter 4

• Basic OSA scenarios modeled as MAB. We exploit UCB1 Algorithm to tackle them.

• Introduction of detection errors in OSA scenarios. We show that the learning process
still converges to the most available channel (i.e. optimal channel).

• We show that UCB1 algorithm does not require prior knowledge on the detectors
performances to converge to the optimal channel.

• Simulink based illustrations of our considered OSA scenario.

Several question arise from this chapter. More specifically:

• How to learn in Secondary Networks? Dealing with coordination and collaboration?

• How to deal with more complex scenario involving channel fading?

These questions are answered, respectively in Chapters 5 and 6. As a matter of fact,
their contributions are respectively:

Chapter 5:

• OSA problems are Modeled as Job Assignment under uncertainty. We suggest com-
bining Coordination Algorithms to UCB1 learning mechanism.

• Convergence results extended to the case of Multi-Secondary Users.

• We discuss the case of Heterogeneous Networks.

Chapter 6:

• We designed a multiplicative UCB form to deal with Gamma distributions.

• We prove the convergence of MUCB algorithm in the case of exponential distribu-
tions.

• Application: channel selection in fading environments.

This work has the potential to deal with several problems motivated by CR Networks
or Network Optimization under uncertainty.
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2.1 Introduction

Due to the plethoric, and constantly increasing, number of publications related to decision
making applied to CR, we do not intend to present an exhaustive state-of-the-art on
this topic. However, for consistency reasons, we suggest an analysis of the main decision
making problems tackled by the radio community during the first decade of CR research.
We propose to refer to the general problem as Dynamic Configuration Adaptation (DCA).
We define the problem and show that practically speaking it can be declined into two main
topics. On the one hand, the first topic aims at finding an adequate configuration (code
or modulation adaptation for instance) adapted to the channel used for the transmission.
In this topic various decision making tools were suggested. Mainly, these techniques were
borrowed from the Artificial Intelligence community. The first topic is usually terminal
centric. Namely, the interaction of several users is not considered or is assumed implicit.
The second Topic on the other hand, specifically tackles the urgent problem of efficient
spectrum allocation. This topic is usually referred to as Dynamic Spectrum Access (DSA)
problem. Once again a brief state-of-the-art is provided in this specific case. For the
occasion, we describe the main possible axis proposed by the community and look deeper
into Opportunistic Spectrum Access (OSA) problems, a sub-topic of DSA. Note that in
this case both terminal and network centric problems are considered. OSA problems are
further discussed in Chapters 4, 5 and 6.

The main contributions of this chapter are three fold: On the one hand we introduce
the concept of design space. It is presented as a conceptual object that defines a set
of cognitive decision making problems by their constraints rather than by their degrees
of freedom. On the other hand, relying on the notion of design space as well as prior
knowledge on the environment, we suggest a qualitative classification of decision making
techniques for Dynamic Configuration Adaptation problems. As a matter of fact we argue
that all CR related decision making problems can be embedded, as a first approximation,
in the same DCA framework. Finally, we briefly describe the main approaches presented in
the classification: Expert approaches, Exploration based approaches and finally learning
and partial monitoring based approaches.

The outline of the rest of this chapter is the following: Section 2.2 revisits extensively
the definitions and the main concepts related to CR and introduces the the basic cognitive
cycle. Then Section 2.3, discusses decision making for CR. More specifically, it introduces
the notion of design space as well as the general DCA Framework. Moreover, Dynamic
Spectrum Access, is discussed as a specific instantiation of DCA problems. Section 2.4
discusses the importance of prior knowledge to determine the decision making tool to
tackle a specific CR application. Then, it briefly reviews the main approaches suggested
in the literature to design CR decision making engines. Finally Section 2.5

2.2 Cognitive Radio

In this section, we remind the readers of various definitions for Cognitive Radio. These
definitions usually depend on the context of application the authors intend to tackle. Then
we describe the basic cognitive cycle well known in the AI community [30] and discuss it
in the case of CR contexts.
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2.2.1 Definitions

Since the original definition suggested by Joseph Mitola III, several other definitions were
proposed to define the edges of Cognitive Radio. We remind the reader in the next few
paragraphs of the main definitions found in the literature [8]:

Definition 1 (Cognitive Radio, by J. Mitola). The term cognitive radio identifies the
point at which wireless personal digital assistant (PDAs) and the related networks are suf-
ficiently computationally intelligent about radio resources and related computer to computer
communication to:

1. Detect user communication needs as a function of use context, and

2. Provide radio resources and wireless services most appropriate to these needs.

In 2005, F. K. Jondral [31] suggested a definition that insists on the one hand, on a
tight relationship between SDR technologies and CR paradigm and on the other hand,
on the importance of information exchange among different CRs. This definition however
keeps its generality and do not seem to tackle a particular application:

Definition 2 (Cognitive Radio, by F. K. Jondral [31]). A CR is an SDR that addition-
ally senses its environment, tracks changes, and reacts upon its findings. A CR is an
autonomous unit in a communication environment that frequently exchanges information
with the networks it is able to access as well as with other CRs.

Whether CR is necessarily based on SDR devices is still a matter of debate. The
evolution from SDR to CR seems relevant; however, CR can be seen as a paradigm that
allows the design of a general purpose decision making engine. This latter adapts then its
strategies to the flexibility of the equipment it is running on. Such vision is presented in
the work of C.J. Rieser [16] and T.W. Rondeau [32, 33](1). This approach has its pros and
cons. On the one hand it provides a general optimizer that can transform any adaptable
radio into a decent cognitive radio. On the other hand, for the same reasons it must be
recurrently updated to face new radio designs and capabilities. Eventually this approach
could lead to very complex and heavy systems that would probably be underutilized by
their host radio equipment. Thus dimensioning the decision making capabilities is an
important task. We discuss this problem later in this chapter while introducing the notion
of Design Space.

F. K. Jondral’s definition further stresses the importance of communication and in-
formation exchange between a CR and its surrounding environment, viz., the networks
it is able to access as well as with other CRs. Information exchange is usually synonym
of communication overhead and loss of throughput; however if the information exchange
enables interference mitigation and avoids conflicts, it is worth the time and energy spent
on it.

Anticipating later chapters, we shall take this point of view into account when dealing
with multi-users CR networks. In general we address scenarios where collaboration is

(1)From Virginia Tech under the supervision of J. Reed. Their approach based on Genetic Algorithms
is further discussed later in this Chapter.



24 Decision Making and Learning for Cognitive Radio

considered among the CR users (e.g., interference avoidance policies for instance when
accessing frequency bands resources). However it does not necessarily imply information
exchange.

During the same year 2005, the Federal Communications Commission (FCC) [34](2), in
the United-States, and S. Haykin [12], respectively, suggested more pragmatic definitions
that aim at defining cognitive radio as a possible mean to enable better spectrum use:

Definition 3 (Cognitive Radio, FCC 2005 [34]). A Cognitive Radio is a radio that can
change its transmitter parameters based on interaction with the environment in which it
operates.

Definition 4 (Cognitive Radio, S. Haykin 2005 [12]). Cognitive radio is an intelligent
wireless communication system that is aware of its surrounding environment (i.e. its out-
side world), and uses the methodology of understanding-by-building to learn from the envi-
ronment and adapt its internal states to statistical variations in the incoming RF stimuli
by making corresponding changes in certain operating parameters (e.g. transmit power,
carrier-frequency and modulation strategy) in real-time, with two primary objectives in
mind: highly reliable communications whenever and wherever needed and efficient utiliza-
tion of the radio spectrum.

Generally, the parameters considered in this definitions refer to, the transmission fre-
quency, the modulation scheme, the bandwidth or/and the power allocated to each user
for instance.

More recently, in 2009, the ITU [35] also suggested a general definition, that appears
to synthesize both the definitions proposed by the normalization task force P1900.1 and
the European Telecommunications Standards Institute (ETSI) [8]:

Definition 5 (Cognitive Radio, ITU). Cognitive Radio System (CRS) is a radio system
employing technology that allows the system to obtain knowledge of its operational and
geographical environment, established policies and its internal state ; to dynamically and
autonomously adjust its operational parameters and protocols according to its obtained
knowledge in order to achieve predefined objectives ; and to learn from the result obtained.

The definition proposed by the ITU is the closest to the one considered in our work
and introduced in [36](3):

Definition 6 (Cognitive Radio, W. Jouini). Cognitive Radio presents itself as a set of
concepts and technologies that enable radio equipments to have the autonomy and the

(2)(http://transition.fcc.gov/aboutus.htmlAbout) About the FCC: The Federal Communications Com-
mission (FCC) is an independent United States government agency. The FCC was established by the
Communications Act of 1934 and is charged with regulating interstate and international communications
by radio, television, wire, satellite and cable. The FCC’s jurisdiction covers the 50 states, the District of
Columbia, and U.S. possessions

(3)It is worth mentioning that the submission of our considered paper is prior to the publication of the
ITU’s CR definitions



2.2 Cognitive Radio 25

cognitive abilities to become aware of their environment as well as of their own opera-
tional abilities.

The purpose of this new concept is to meet the user’s expectations and to maximize
operators’ resources usage (e.g. spectral resource allocation) without compromising the
efficiency of the network.

Thus, it presupposes the capacity to collect information from its surrounding en-
vironment (perception), to digest it (learning and decision making problems) and
to act in the best possible way by considering several constraints (equipment parameters,
regulations, enforcement policies and so on).

This definition centers on three axis:

• First, it introduces the new characteristics of a CR device: autonomy and cognitive
abilities. These characteristics are carried out by a decision making engine that can
be seen as the brain of the equipment. Since it is commonly accepted that such
engine -also referred to as Cognitive Agent (CA) or Cognitive Engine (CE)- is a
software program, the device can be seen as a software agent.

• Then, it defines the purpose of such agents: optimization of the radio device depend-
ing on the objectives defined (explicitly or not) by the user while constrained by the
network. Consequently, the agent is an intelligent agent.

• Finally, the agent’s abilities are emphasized through a cognitive cycle: perception -
analysis and decision making - action. We refer to this cycle as basic cognitive cycle.

2.2.2 Basic Cognitive Cycle

Defining cognition is, in general, a harsh task. In the context of CR, basic cognitive
abilities are considered:

• environment perception (or Observation)

• and reasoning (or Analysis/Decision).

Based on these cognitive abilities, a CR needs to take appropriate actions to adapt itself
to its surrounding environment.

Once again these notions know several possible definitions that we do not explicit in
this report. However, the basic cognitive cycle considers three macro-steps as illustrated
in Figure 2.1 and that we can define as follows:

1. Observation: through its sensors the agent gathers information on its environment.
Raw data and preprocessed information helps the agent to build a knowledge base. In
this context, the term environment is used in a broad sense referring to any source of
information that could improve the CR’s behavior (internal state, interference level,
regulators’ rules and enforcement policies, to name a few).

2. Analysis/Decision: This macro-step, presented as a black box in this case, in-
cludes all needed operations before given specific orders to the actuators (i.e., before
reconfiguration in CR contexts). Depending on the level of sophistication, this step
can deal with metric analysis, performance optimization, scheduling and learning.
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Figure 2.1: Illustration of the basic Cognitive Cycle [38, 39]. As illustrated, an agent,
usually referred to as Cognitive Agent (CA) faces an Environment in a broad sense. The
CA repeats the Cognitive Cycle where he Observes the environment, Analyzes the collected
information and Decides the next action to take. Note that the arrow Action could
suggest always an action on the environment. This is possible to evaluate the reaction on
the environment to given stimuli. However, the arrow also suggests an action on the CR
in order to adapt to the environment

3. Action: Mainly parameter reconfiguration and waveform transmission. A reconfig-
uration management architecture needs to be implemented to ensure efficient and
quick reconfigurations [37].

This definition is quite general. It can incorporate simple designs as well as complex
ones. Most of the published papers deal however with a restricted problem : spectrum
management. In such context, the term environment finds more specific definitions such
as the followings to name a few.
An environment can refer to:

• Geolocation [40], [41], [42], [43].

• Spectrum Occupation [44], [45], [46], [47], [48].

• Interference level (or Interference Temperature [12]).

• Noise level uncertainty [49], [50], [51].

• Regulatory rules (that define the open opportunities [13] for instance).

Thus, depending on the considered environment, specific sensors are to be designed
[8, 19, 17]. The captured -and/or computed- metrics by the sensors are then processed
by the decision making engine. The kind of process highly depends on the quality of
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the metrics (level of uncertainty on the captured numerical value for instance) as well
as the global information held by the CR. Finally, the made decisions are translated to
appropriate bandwidth occupation and power allocation actions.

2.3 Decision Making Problems for Cognitive Radio

Within the basic cognitive cycle, we focus in this section on the analysis step, and more
specifically on learning and decision making. We mainly find, in the literature two ap-
proaches.

On the one hand, some of the papers focus on implementing smart behavior into radio
devices to enable more adequate configurations, adapted to their environment, than those
imposed by radio standards. As a matter of fact, standard configurations are usually over
dimensioned to meet the requirements of various critical communication scenarios. This
approach mainly focuses on a single equipment, ignoring the rest of the network. We
refer to the problem related to the first approach as Dynamic Configuration Adaptation
Problem.

On the other hand due to a more pressing matter, most of CR related papers focus
on spectrum management. These latter papers aim at enabling a more efficient use of the
frequency resources to alleviate its scarcity. This second problem is usually referred as
Dynamic Spectrum Access Problem

2.3.1 Design Space and Dynamic Configuration Adaptation Problem

In this subsection, we discuss some of the limits related to the idealized CR concept before
introducing the so called DCA problem. Several questions arise when designing a Cogni-
tive Radio Engine. We summarize our conceptual approach, presented in paper [52], to
dimension the decision making and learning abilities of a Cognitive Engine. Thus, we intro-
duce the notion of design space as a conceptual object that defines a set of cognitive radio
decision making problems by their constraints rather than by their degrees of freedom.
We identified, in our analysis work, three dimensions of constraints: the environment’s,
the equipment’s and the user’s related constraints.

Ideally speaking, CR concept -supported by an ideal SDR platform- opens the way to
infinite possibilities. Autonomous and aware of its surrounding environment as well as of
it own behavior (and thus of its own abilities), any part of the radio chain could be probed
and tested to evaluate its impact on the device’s performance. This however implies that
the equipment is also able, in its reasoning process, to validate its own choices. Namely,
it must self-reference its cognition components [53]. Unfortunately, this class of reasoning
is well known in the theory of computing to be a potential black hole for computational
resources. Specifically, any Turing-capable (TC) computational entity that reasons about
itself can enter a Gödel-Turing(4) loop from which it cannot recover [53].

To alleviate this paradox, time limited reasoning has been suggested by Mitola. As a
matter of fact, radio systems need to observe, decide and act within a limited amount of
time: The timer and related computationally indivisible control construct is equivalent to

(4)A specific example of such paradox can be illustrated by the following sentence: ‘This sentence is
false!’ [54] as suggested by Mitola during a recent seminar at Supélec.
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the computer-theoretic construct of a step-counting function over ‘finite minimalization’.
It has been proved that computations that are limited with reliable watchdog timers can
avoid the Gödel-Turing paradox to the reliability of the timer. This proof is a fundamental
theorem for practical self-modifying systems [53].

Realistic CR frameworks need to take into account a large set of possible configurations,
however, as mentioned hereabove through the Gödel-Turing paradox, the decision making
engine also needs to be constrained in order to avoid the system to crash. Thus, we argue
in the rest of this paragraph that, in general, cognitive radio decision making problems
are better defined by their constraints rather than by their degrees of freedom.

When designing such CR equipments the main challenge is to find an appropriate
way to correctly dimension its cognitive abilities according to its environment as well
as to its purpose (i.e., providing a certain service to the user). Several papers in the
literature have already been concerned by this matter however their description of the
problem usually remained fuzzy (e.g., [10, 16, 33, 39, 55]). We summarize their analysis
by defining three “constraints” on which the design of a CR equipment depends: First,
the constraints imposed by the surrounding environment, then the constraints related to
the user’s expectations and finally, the constraints inherent to the equipment. We argue
that these constraints help dimensioning the CR decision making engine. Consequently,
a prior formulation of these elements helps the designer to implement the right tools in
order to obtain a flexible and adequate cognitive radio.

• The environment constraints: since a cognitive radio is a wireless device that
operates in a surrounding communicating environment, it shall respect its rules:
those imposed by regulation for instance (e.g., allocated frequency bands, tolerated
interference,etc.) as well as its physical reality (propagation, multi-path and fading to
name a few) and network conditions (channel load or surrounding users’ activities for
instance). Thus the behavior of cognitive radio equipments is highly coordinated by
the constraints imposed by the environment. As a matter of fact, if the environment
allows no degrees of freedom to the equipments, this latter has no choice but to
obey and thus looses all cognitive behavior. On the other side, if no constraints are
imposed by the environment, the cognitive radio will still be constrained by its own
operational abilities and the expectations of the user.

• User’s expectations: when using his wireless device for a particular application
(voice communication, data, streaming and so on), the user is expecting a certain
quality of service. Depending on the awaited quality of service, the cognitive radio
can identify several criteria to optimize, such as, minimizing the bit error rate, min-
imizing energy consumption, maximizing spectral efficiency, etc. If the user is too
greedy and imposes too many objectives, the designing problem to solve might be-
come intractable because of the constraints imposed by the surrounding environment
and the platform of the cognitive radio. However if the user is expecting nothing,
then again there is no need for a flexible cognitive radio. Usually it is assumed
that the user is reasonable in a sense that he accepts the best he could get with a
minimum cost as long as the quality of service provided is above a certain level(5).

(5)Note that this assumption introduces the notion of satisfactory behavior that we also refer to, in this
report, as pragmatic behavior. We oppose it to rational thinking where the decision making engine always
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Figure 2.2: Cognitive radio decision making design space.

• Equipment’s operational abilities: These limitations are perhaps the most ob-
vious since one cannot ask the cognitive radio equipment to adapt itself more than
what it can perform (sense and/or act). It is usually assumed in the cognitive radio
literature that the equipment is an ideal software defined radio, and thus, that it has
all the needed flexibility for the designed framework. On a real application the effi-
ciency of cognitive radio equipments depends of course on the degrees of freedom (or
equivalently the constraints) inherent to the wireless platform used to communicate.
As examples of commonly analyzed degrees of freedom one can find: modulation,
pulse shape, symbol rate, transmit power, equalization to name a few. In all cases,
a CR is designed to target and support given scenarios. We do not consider that CR
can be designed to answer all scenarios or concepts [37].

The interaction between all three constraints is further emphasized through the notion
of design space. We denote by cognitive radio design space an abstract three dimensional
space that characterizes the CR decision making engine as shown in Figure 2.2. It is
indeed abstract since it does not have any rigorous mathematical meaning but it is only
used to visually and conceptually illustrate the dependencies of the CR decision making
engine to the ‘design dimensions’: environment, parameters (usually referred to as knobs)
and objectives (or criteria defined from the user’s expectations).

In Figure 2.2, we represent two sub-spaces referred to as actual design space and virtual
design space. On the one hand, the virtual design space refers to the upper bound support
of the design space where all three dimensions are considered independently from each
others. Its volume can be interpreted as the largest space of decision problems one could
define from the three dimensions. On the other hand, the actual design space is included

aims at the most rewarding option. Thus when the decision making engine needs to learn in an uncertain
environment, satisfaction based reasoning can be introduced to accelerate the convergence rate of learning
algorithms for instance.
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in the virtual design space. It results from the reduction of the design space when taking
into account the correlation between the different constraints imposed by every dimension
of the design space. For instance, some constraints on the environment such as, “imposed
fixed waveform” might limit some objectives such as “find a waveform that maximizes the
spectral efficiency”.

To define a specific decision making problem, one needs to introduce a last -possibly
implicit- function. This latter represents a functional relationship between all three dimen-
sions, more specifically the correlation between the different constraints as illustrated by
the design space. Thus, it models the interdependence of all three constraints. A simple
representation of this interdependence can be expressed through an explicit objective func-
tion which numerical value is computed as a function of the equipment parameters, the
environment’s conditions as well as the values of other objective functions. Unfortunately
such functions are not always available and might remain implicit. In such scenarios,
optimization might prove problematic without using appropriate learning tools.

Finally, based on the hereabove presented analysis, all configuration adaptation prob-
lems seem to have the same roots. However, to define a specific problem among the set of
possibilities in the design space, prior knowledge is important. This latter notion is further
detailed in Section 2.4, where a classification of decision making tools as a function prior
knowledge is suggested. Nevertheless, the general DCA problem can be described as the
most general decision making design space that we can state as follows [36, 52]:
Within this framework, we assume that the environment constrains the cognitive radio by
allowing only N possible configurations to use. This condition characterizes the environ-
ment and the equipment. Moreover we assume that there exist one or several objectives
that evaluates how well the equipment performs to meet the users expectations.

To conclude, we usually observe in the literature that these constrained based char-
acterizations are implicitly made, then final assumptions are done to define the decision
making framework. These assumptions concern what we refer to as the ‘a priori model
knowledge’. In Section 2.4, we introduce and explain the notion of a priori knowledge
and we present a brief state of the art on decision making for cognitive radio configuration
adaptation using the DCA design space. We show that although the design space is the
same, depending on the a priori model knowledge, different approaches are suggested by
the community to tackle the defined decision making problems.

The next section describes an important case of DCA know as Dynamic Spectrum
Access.

2.3.2 Spectrum Scarcity and Dynamic Spectrum Access

Since the early 90’s, the radio community captured the potential industrial and economic
opportunities that could emerge from a better frequency resource usage as noticed in 2004
in Paper [56]: A trend that has the potential to change the current industrial structure is
the emergence of alternative spectrum management regimes, such as the introduction of so
called ‘unlicensed bands’, where new technologies can be introduced if they fulfill some very
simple and relaxed ‘spectrum etiquette’ rules to avoid excessive interference on existing
systems. The most notable initiative in this area is the one of the FCC (Federal Commu-
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nications Commission, the regulator in USA) in the early 90’s driving the development of
short range wireless communication systems and WLANs (Wireless Local Area Networks).

Exploiting portions of the spectrum to unlicensed usage was a first step to introducing
alternative frequency management schemes. Rethinking the main regulatory frameworks
imposed for decades is the next step. As a matter of fact, during the last century, most of
the meaningful spectrum resources were licensed to emerging wireless applications, where
the static frequency allocation policy combined with a growing number of spectrum de-
manding services led to a spectrum scarcity. However, several measurements conducted in
the United-States first, and then in numerous other countries [11], [44], [45], [46], [47], [48],
showed a chronic underutilization of the frequency band resources, revealing substantial
communication opportunities.

With the advent of SDR technology, it became, at least theoretically, possible to design
agile systems capable of switching from one frequency band to another depending on given
communication constraints. Thus, during the years 2002 and 2003 several task forces and
researches suggested new frequency management policies and regulatory frameworks to
enable efficient use of the spectrum resource [11], [57], [58], [59], [58], [60], [61], [62]. The
consequences of this new framework are that the spectrum management model of today is
abolished for large parts of the spectrum. Instead, ‘free’(6) spectrum trading becomes the
preferred mechanism and technical systems that allow for the dynamic use and reuse of
spectrum becomes a necessity [56].

The DSA encompasses all suggested approaches that emerged from the early defini-
tions of efficient and ‘free’ spectrum access or trading. In 2007, Paper [63] suggested one
possible and simple taxomony(7) to classify the different suggested spectrum management
approaches as illustrated in Figure 2.3. Three main approaches can be discriminated:
Dynamic Exclusive Use Model, Open Sharing Model (Spectrum Commons Model) and
Hierarchical Access Model:

• Dynamic Exclusive Use Model (DEUM): the spectrum basically is allocated ex-
clusively to specific services or operators. However, the Spectrum Property Rights
framework allows opening a secondary market where the licensed users can sell and
trade portion of their spectrum, whereas the Dynamic Spectrum Allocation frame-
work aims at providing a better allocation of the spectrum, to exclusive services, by
adapting the spectrum allocation to space and time network load information.

• Open Sharing Model (OSM) or Spectrum Commons Model (SCM): Aims at gen-
eralizing the success encountered by WLAN technologies within the ISM band. In
other words, it mainly suggests opening new portions of the spectrum to unlicensed
users.

• Hierarchical Access Model (HAM): this framework introduced a secondary network
that aims at exploiting resources left vacant by the incumbent users (usually re-
ferred to as primary users). Secondary users are able to communicate as long as
they do not cause harmful interference to primary users. In this report, we do not
further subdivide this framework. As a matter of fact, there are as many subsets

(6)[...] ‘trade, lease and rent of licenses were possible without incurring excessive administrative proce-
dures and overhead costs’ [56].

(7)A different, more detailed and more exhaustive, DSA taxomony can be found in Paper [64].
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as the possible communication opportunities to exploit: power control, ultra-wide
band communication beneath primary users’ noise level, spectrum hole detection
and exploitation, and directional communications to name a few [13]. In general, it
is refered to as OSA.

Since the seminal paper of S. Haykin [12] in 2005, OSA research community has been,
to the best of our knowledge, the most active in the field of DSA. With several network
models based on Game Theory [15], Markov Chains optimization or Multi-Armed Bandit
(and machine learning in general) [65, 63, 66, 36, 67, 68, 69, 70, 71], to reference a few,
and relying on the concept of cognitive radio, the community tackled several challenges
encountered when dealing with OSA such as (non exhaustive): dynamic power allocation,
optimal band selection (with or without prior knowledge on the occupancy pattern of the
spectrum bands by primary users), as well as cooperation among the different secondary
users [14] centralized or decentralized, with or without observation errors.

In the next section, we introduce prior knowledge as a classification criteria among the
main (non exhaustive) learning and decision making tools suggested in CR papers.

2.4 Decision Making Tools for Dynamic Configuration Adap-
tation

The a priori knowledge is a set of assumptions made by the designer on the amount and
representation of the available information to the decision making engine when it first
deals with the environment. As a matter of fact, “knowledge” is defined by the Oxford
English Dictionary as: (i) expertise, and skills acquired by a person through experience or
education; the theoretical or practical understanding of a subject, (ii) what is known in a
particular field or in total; facts and information or (iii) awareness or familiarity gained
by experience of a fact or situation. Consequently, within the cognitive radio framework,
we can define the a priori knowledge as the set of theoretical or practical assumptions
provided by the designer to the CR decision making engine. These assumptions, if they
are accurate, provide the CR with valuable information on the problem to deal with.
These remarks lead us to suggest that the decision making problems the cognitive radio
has to deal with are defined by the set {design space, a priori knowledge}. In other
words, depending on the a priori knowledge on the environment, some decision making
approaches offer a better fit to the decision making framework than others. Moreover, we
assert that a few, if not many, different cognitive engines could cohabit in a single cognitive
radio equipment and will have to coordinate their actions [24]. Thus, recently (2011), a
cognitive radio decision making engine based on prior knowledge has been suggested in
[72], which supports our analysis.

In the next subsections we briefly describe the different approaches provided by the
community depending on the a priori knowledge assumed relevant to tackle the environ-
ment the CR might face during its life time. In Figure 2.4 we suggest [52, 73] to classify
these techniques depending on the a priori knowledge provided to the cognitive decision
making engine.
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Figure 2.3: Classification of several Dynamic Spectrum Access approaches as suggested in
Paper [63]. Three main approaches can be discriminated : Dynamic Exclusive Use Model,
Open Sharing Model (Spectrum Commons Model) and Hierarchical Access Model.
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Figure 2.4: Suggested decision making techniques depending on the assumed a priori
knowledge.

2.4.1 Expert approach

The expert approach relies on the important amount of knowledge collected by telecom-
munication engineers and researchers. This knowledge is based, on the one hand, on
theoretical consideration and practical measures on the environment and radio communi-
cation parameters, and on the other hand, on structured set of wireless communication
related concepts.

It was first suggested by Mitola in his Ph.D. dissertation on cognitive radio [10].
Through intensive off-line simulations, expert systems are provided with a set of infer-
ence rules. These rules are then used on-line to adapt the equipment depending on the
context faced by cognitive radio equipments. Thus, the more available knowledge, the
better the equipment can adapt itself to its surrounding dynamic environment. However,
this knowledge is usefully as long as if the cognitive radio can represent its knowledge in
a way that enables to exploit it and to react to the environment by adequate adaptations
of its operating configuration.

For that purpose, Mitola suggested representing the knowledge of cognitive radio equip-
ments using a new dedicated language radio communication: Radio Knowledge Represen-
tation Language (RKRL) [10, 53]. This representation of knowledge relies on web semantic
related tools such as eXtensible Markup Language (XML), Resource Description Frame-
work (RDF) and Web Ontology Language (OWL)(8). The expert knowledge based ap-
proach had a large success especially due to the neXt Generation (XG) project supported
by the DARPA (e.g. [75] and for spectrum sharing: [76]). As a matter of fact, if the
knowledge is well represented and provided to the equipment as a set of rules, the decision
making process becomes very simple. However this approach has a few drawbacks:

• The behavior of the designed system is not tuned to a particular user but to all
users and to a set of probable environments. Moreover in order to acquaint the CR
decision making engine with valuable and large knowledge, an important amount of
effort is needed from the designer.

• Expert knowledge is mainly based on models. Thus the system might behave in a
poor way when it is facing unexpected dynamics in the environment.

(8)Note that Mitola’s work on OWL was published during the period 1999-2001. OWL specifications
knew several improvements since then and it became recommended in 2004 by the World Wide Web
Consortium (W3C) [74].
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The techniques based on expert systems can, however be supported by several other tools
(some are discussed later) to help them acquire new knowledge on the environment or help
them avoid conflicts between different configuration adaptation rules.

A similar approach, based on an ontology to model the knowledge of the decision
making engine was recently suggested [77, 78, 79, 80]. Where a common language to radio
devices is suggested based on an ontology, expressed in OWL and implemented on the
USRP card [81] using GNU radio [82].

2.4.2 Exploration based decision making

In some contexts, one can consider that there is a priori knowledge available on the
complex relationships existing between, the metrics observed, the parameters to adapt
and the criteria to satisfy as described in Figure 2.5. In this case the problem appears to
be a multi-criteria optimization problem. Within this framework, the CR decision making
engine aims at finding the best parameters to meet the users expectations by solving a set
of equations as shown in Table II of paper [32] from which is extracted Figure 2.5). This
problem is known to be complex for several reasons:

• there exists no universal definition of optimality in this case. Thus the solution of
this problem are satisfactory (or not) with respect to a certain function, usually
named fitness that evaluates how well the criteria were satisfied.

• Thus usually a large space of possible “satisfactory” configurations can be available.

• The criteria are correlated and can be in conflict (e.g., Figure 2.5).

If we assume that the previously mentioned off-line expert rule extraction phase has
not been (or partially) accomplished, an exploration of the space of possible configurations
is needed.

There exists various possible algorithm to explore a large set of potential candidates.
The most obvious one is probably ‘exhaustive search’, where all possible candidates are
computed and evaluated in order to find the best solution. However, when the number
of candidates grows large, such approaches can become computationally burdensome and
miss the imposed decision making deadlines. Usually in such contexts, heuristics are
preferred.

In the context of Cognitive Radio, finding the best solution might not be necessary.
Instead, the Cognitive Engine would rather find, within the imposed limited amount of
time, a satisfactory solution.

Consequently, if the following criteria are met:

• Available a priori knowledge on the complex relationships existing between, the
metrics observed, the parameters to adapt and the criteria to satisfy.

• Possible heavy parallel computing.

Then a large set of decision making tools are possible such as: Simulated Annealing (SiA),
Genetic Algorithm (GA) and Swarm Algorithm (SwA) to name a few [30]. Note that
such approaches did not wait for Cognitive Radio to be used on radio technologies. In
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Figure 2.5: Multi-criteria optimization problem [32].

1993, Paper [83] already suggested simulated annealing as a possible solution to deal with
channel assignment for cellular networks(9).

GAs [16, 32, 33], SwAs [84, 85] and Insect Colony Algorithms (ICA) [86](10) techniques
are usually referred to as bio-inspired or evolutionary techniques.

Bio-inspired cognitive radio decision making framework was first analyzed by C. J.
Rieser and T. W. Rondeau. They suggested the use of Genetic Algorithms (GA) to
tackle this framework [16], [32], [33]. Genetic algorithms were first designed to mimic
Darwin’s evolutionary theory and are well known for their capacity to adapt themselves
to a changing environment. Without using our formalism, their work showed that under
what we define as design space and with the described a priori knowledge, the genetic
algorithms provide cognitive radios with an efficient and flexible decision making engine.
But we can not consider their model as a generality for all cognitive radio use cases, so
that other solutions have to be considered additionally. Further details on the different
versions suggested and implemented by Virginia Tech can be found in the following recent
survey [87](11).

Note that once again prior knowledge can substantially enhance the behavior of these
algorithms. An interesting illustration can be found in paper [72] in the case of genetic
algorithms based decision making engines, where the authors showed how prior knowledge
can improve the performance of GAs.

(9)It is indeed a very restrictive case of DCA and DSA where a centralized entity, seen as the Cognitive
Agent assigns frequency channels to its users depending on the channel conditions.
(10)To the best of our knowledge Swarm Algorithms have only been exploited in case of resource allocation.
No complex configuration adaptation decision making engine was found in the literature based on such
techniques.
(11)This document is presented as a survey of the various suggested decision making architectures for
CR. We notice however, that except the one designed by J. Mitola, during the DARPA XG Program,
and those designed and implemented by Virginia Tech, the community around this topic seems thin and
advances slowly toward efficient architectures. Other suggested architectures relying mostly on bio-inspired
techniques tackle spectrum resource allocation related problems.
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2.4.3 Learning approaches: exploration and exploitation

As we argued in the previous subsections and as several other authors [88, 55] noticed,
"Many CR proposals, such as [32, 89, 90], rely on a priori characterization of these per-
formance metrics which are often derived from analytical models. Unfortunately, [. . . ],
this approach is not always practical due to e.g., limiting modeling assumption, non-ideal
behaviors in real-life scenarios, and poor scalability" [88]. To avoid these limitations and in
order to tackle more realistic scenarios, many methods based on learning techniques were
suggested: Artificial Neuronal Networks (ANN), Evolving Connectionist Systems (ECS)
[91, 92], statistical learning [93], regression models and so on. All of these approaches
have their cons and pros, however they all have in common that they mainly rely on trials
conducted within a real environment to try and infer from it decision making rules for
CR equipments. Since this learning tools aim at representing the functional relationship
between the environment (through the sensed metrics), the systems parameters and the
criteria to satisfy, they need a direct interaction with the environment in order to build a
posteriori knowledge on their environment.

In this work we sub-classify these methods depending on the way they learn and exploit
their rules. On the on hand (i), we find a set of techniques that separates exploration and
exploitation phases. On the other hand (ii), we find other techniques more flexible that
combine both processes.

In the first mentioned case (i) we find several tools such as ANNs or statistical learning
already used and exploited in other domain requiring some cognitive abilities (robotics,
video games, etc.). These methods have two phases: a phase of pure “exploration” where
the CR decision making engine learns and infers to find (explicitly or implicitly) decision
making rules, then uses in a second phase this a posteriori knowledge to make decision.
Since these learning techniques rely on a first learning phase, a large amount of data
and computational power is needed in order to extract reliable knowledge. This difficulty
is already known concerning ANNs for instance. It is still true for statistical learning.
As noticed by Weingart in paper [93], the provided techniques are still computationally
prohibitive, and not ready yet to be used in a real equipment. However if the first phase
is well achieved the second phase is usually very simple and does not require much time
or energy [89].

In the second case (ii), we find promising techniques recently introduced to the com-
munity and still need to be further investigated [55, 36]. These techniques try to provide
the CR with a flexible and incremental learning decision making engine. In the case of
ECS based decision making engine, Colson suggested the use of an evolving neural network
[91, 92]. Unlike the usual ANN, the ECS-NN can change its structure without “forgetting”
already learned knowledge. Thus new rules can be learned by adding new neurons to the
neural structure. In order to be efficient the architecture proposed in [55] needs some
expert advice (a priori knowledge) on the several available configurations. These added
information ranks the different configurations based on some criteria (robustness, spectral
efficiency, etc.) but without knowing a priori which one is more adequate when facing a
certain environment.

More recently, we suggested in 2009 an approach to solving the problem without prior
knowledge [36]. Thus, the performance of the equipment can only be estimated when try-
ing a specific configuration. The associated tools are based on the so-called Multi-Armed
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Bandit (MAB) framework. Such approaches provide learning solutions while operating,
even if the CE is facing a completely new environment. Of course, performance increases
while the learning process progresses. Note that this approach is also proving its accuracy
in the opportunistic spectrum access (OSA) context [67, 68].

To conclude on this brief overview on decision making tools for CR, we would like to
emphasize the fact that the proposed classification in this thesis shows that a CR equip-
ment cannot depend on only one core decision making tool but on a pool of techniques.
Every time it faces an environment, the equipment needs to have an estimation of its a
priori knowledge and on its reliability. To tackle a particular context, the general process
can be summarized through three questions: What can’t I do (design space)? What do
I already know (a priori knowledge)? And what technique should I select to solve the
decision making problem?

Such a mixed approach can be efficiently handled by the HDCRAM architecture for
instance.

Since the main goals of this Ph.D. aims at analyzing decision making and learning
scenarios with minimum prior knowledge, we chose naturally to investigate an algorithm
from the class of partial monitoring algorithms. The chosen algorithm is known as UCB1

and is further described and analyzed in Chapters 4 and 5.

2.5 Conclusions

We analyzed in this Chapter decision making aspects related to CR. We showed that it is
possible to model CR decision making problems as one general statement. We refer to this
problem as DCA problem. Then, we ventured a classification of the main suggested tools
to tackle CR decision making problems. Thus, we showed, through the notion of design
space that all studies seem to tackle the same design space; however, the prior knowledge
assumed available differs. As a consequence, the chosen decision making techniques also
differ. Our classification offers a qualitative insight on the choices made by the community
to tackle decision making problem within the context CR.

As illustrated through the notion of basic cognitive cycle, decision making and learning
rely on prior observations of the environment. Consequently, the performance of the
implemented decision making tools highly depends on the quality of the observations.
Unfortunately, we could not find substantial quantitative material evaluating the impact
of sensing errors on decision making and learning tools.

In the next chapters we deal with sensing and decision making under uncertainty.
Thus, Chapter 3 analyses the performances of a very popular detector, known as energy
detector, under uncertain noise level. Then Chapter 4 analyses the impact of imperfect
sensing on a popular decision making algorithm known as UCB1 algorithm.
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40 Energy detection limits under noise uncertainty and Log-Normal approximation of Chi-square
distributions

Usually, learning algorithm assume perfect observations or labels. Thus, the designed
leaning mechanisms rely on relevant information to tackle their assigned tasks. Unfor-
tunately, such assumptions no longer hold in engineering fields in general and within
Cognitive Radio contexts in particular. Observation limits and uncertainties are major
issues to which learning is confronted. Such matter is discussed in this chapter.

Mainly, this chapter is divided into two parts. On the one hand, we remind the reader
that radio equipment sensors can lead to fundamental limits when it comes to signal
detection. These limits, due to the lack of knowledge of the decision maker regarding
the level of the noise (known as noise uncertainty), are particularly burdensome when
dealing with Opportunistic Spectrum Access for instance. This chapter only presents
such limits in the case of Energy Detectors. On the other hand, we revisit the impact of
noise uncertainty on the performance of the well known energy detector and present new
results on its limits. Mainly, we reconsider the case of a Log-Normal approximated noise
uncertainty suggested in the work of Alexander Sonnenschein and Philip M. Fishman in
1992. We show that under a Log-Normal noise uncertainty, closed form expressions of the
detector’s performances and limits can be provided. Thus we show that, relying on mild
approximations, we can design a detector with a fixed probability of false alarm function
of the uncertainty, and present a new expression of the SNR-wall (1) that depends on the
desired performances of the detector as well as the introduced uncertainty parameter.

(1)Signal-to-Noise Ratio (SNR)
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3.1 Introduction

The Neyman-Pearson Energy Detector (NP-ED) - also known as Energy Detector or ra-
diometric detector - is a commonly used spectrum sensor. It has been extensively analyzed
[94, 95] for its properties as a semi-blind low complexity spectrum sensor, since it ignores
the characteristics of the received signals and only relies on the perceived energy of the
signal. The main detection process relies on the comparison of the perceived energy to a
fixed threshold that depends on the desired performances of the detector as well as the
noise power level. However, despite its general assets, the NP-ED’s performances decrease
quickly in case of imperfect knowledge on the noise level [49, 50].

Recently, Energy Detectors have been the center of a lot of attention. They are mainly
explored as possible low complexity alternatives [13, 96] to tackle Cognitive Radio detection
problems. Usually, no a priori information is assumed available on the radio activity in
the vicinity of the detector (e.g., in Opportunistic Spectrum Access[63, 67, 68] or spectrum
measurement campaigns [46, 47]). Consequently, energy detection seems to offer simple
and low complexity tools to probe CR equipment electromagnetic environment.

However, despite its general assets, the NP-ED’s performances decrease quickly in
case of imperfect knowledge on the noise power level [49, 50]. Moreover, even if an energy
detector is combined with sophisticated signal processing techniques to extract information
on the noise, it only results on stochastic estimations of the noise level leading to noise
uncertainty. This led the radio communication community to address the problem of
energy detection with noise uncertainty [49, 50, 97].

Thus, in their seminal paper, Alexander Sonnenschein and Philip M. Fishman [49]
performed a worst case analysis on the performances of the energy detector in the case
of imperfect knowledge on the noise level, referred to as noise uncertainty. As a matter
of fact, depending on the information held by the decision maker on the noise level and
its uncertainty, the analysis suggested in [49] relies on an upper-bound of the probability
of false alarm and on a lower bound of the probability of detection. The main results
showed that if the noise power level is only known through a confidence bound, there
exists an SNR-wall, value of the Signal-to-Noise Ratio (SNR) beyond which detection is
theoretically impossible.

The first contribution of this chapter is to reconsider the case of a Log-Normal ap-
proximated noise uncertainty as suggested in [49]. However, rather than reducing the
analysis of the noise uncertainty to a bounded distribution, we suggest to redefine the
uncertainty based on the estimated noise distribution’s variance. This analysis, however,
involves the knowledge of the probability density function of a ratio of χ2 and Log-Normal
random variables. Unfortunately, the considered ratio distribution does not seem to have
a simple explicit form. To alleviate this mathematical problem, we suggest, as the second
contribution of this chapter to evaluate a Log-Normal approximation of χ2 distributions.
This approximation is then used to develop our analysis on energy detection limits under
Log-Normal uncertainty. Although, from this application’s point of view, the Log-Normal
approximation can seem as a convenient and opportunistic trick to by-pass the initial prob-
lem ; we show, relying on some mild calculus considerations, that from a mathematical
point of view, the Log-Normal approximation of χ2 distributions offers a better fit than
the usually used Normal approximation of χ2 distributions. Consequently, one should in
general prefer a Log-Normal approximation rather than a Normal approximation to a χ2
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distributions (if needed). Finally, relying on the introduced Log-Normal approximation of
χ2 distributions, we tackle the initial problem and propose a new expression of the SNR-
wall function of the uncertainty parameter. Moreover, unlike the previously introduced
SNR-wall expression [49], the herein introduced SNR-wall formula takes into account the
desired performances of the detector. Consequently, it enables an accurate evaluation of
the detection limits.

In order to make this chapter as self-content as possible, we made the choice to simulta-
neously introduce both mentioned contributions due to their connexity: On the one hand,
energy detection limits analysis under Log-Normal uncertainty, and on the other hand, a
Log-Normal approximation of χ2 distributions. As a matter of fact, without the analy-
sis of Log-Normal approximations for χ2 distributions, the first topic remains incomplete.
While, the considered framework for energy detection limits under Log-Normal uncertainty
offers a natural application for the second topic. However, the chapter is structured in a
way that enables the reader to focus on one topic or the other of these contributions. Of
course, we encourage the reader to follow the thread of the chapter.

The rest of this chapter is organized as follows: first, we start by presenting the general
system model related to energy detection in Section 3.2. Then, we introduce and evaluate
a Log-Normal approximation of χ2 distributions in Section 3.3. The validation of the
Log-Normal model for energy detection is then exploited in Section 3.4 where we analyze
the performances of the ED in case of Log-Normal noise uncertainty. Several simulations
illustrate and support the theoretical results of Section 3.3 and 3.4. These illustrations
are presented and commented in their related sections. Finally Section 3.5 concludes this
chapter.
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3.2 System model

In this section, we introduce the detection characteristics usually considered when dealing
with an Energy Detector, as well as the detection limits of the Energy Detector.

3.2.1 Network assumption

Let yt = [yt,0, yt,1, · · · , yt,M−1] be M independent and identically distributed (i.i.d.) sam-
ples gathered by the receiver at the current slot t ∈ N. The outcome of the sensing process
can be modeled as a binary hypothesis(2) test described as follows:

yt =

{

nt, H0

xt + nt, H1

where hypotheses H0 and H1 refer respectively to the case of an absent or a present signal
on the current slot. On the one hand, xt = [xt,0, xt,1, · · · , xt,M−1] refers to the source
signal where every sample xt,k is perceived as an i.i.d. realization of a Gaussian stochastic
distribution N (0, σ2

x,t). On the other hand, nt = [nt,0, nt,1, · · · , nt,M−1] refers to i.i.d.
Additive White Gaussian Noise (AWGN) samples N (0, σ2

n,t). Moreover, xt and nt are
assumed to be independent. Thus, we consider the following Gaussian received signals
under either hypothesis ∀yt,i i ∈ {0, · · · ,M − 1} :

{

H0 : yt,i ∼ N (0, σ2
n,t)

H1 : yt,i ∼ N (0, σ2
x,t + σ2

n,t)

Within this context, the detection outcome can be modeled as the output of a decision
making policy π that maps the current samples yt into a binary value dt = π(yt), dt ∈
{0, 1}, where 0 refers to the possible absence of signal and reciprocally 1 indicates the
detection of a signal.

It is worth mentioning that this work is motivated by the conclusions introduced in
Papers [49] and [50]. For the sake of consistency, we chose to work with the same network
assumptions, i.e., hypothesizes H0 and H1 follow both a central Gaussian distribution.
Strictly speaking however, from Wireless Communications’ perspective, samples under
H1 should follow a non-central Normal distribution. Consequently, the work presented
hereafter can be seen as a preliminary work that needs further investigations to answer
the more general mathematical framework that models energy detection under uncertainty.
This latter mathematical problem is a perspective of this thesis work and currently under
investigation.

In the next subsection, we summarize the usually used criteria to evaluate the perfor-
mance of a signal detection policy.

3.2.2 Performance evaluation of a detection policy π

Under the previously considered binary hypothesis test, one can define two probabilities
that characterize the performance of the detection policy π at the slot number t: The
probability of false alarm (Pfa,t) and the probability of detection (Pd,t):

{

Pfa,t = P (dt = 1|H0)
Pd,t = P (dt = 1|H1)

(2)In this chapter, we associate the numerical value 1 to the existence of a signal to detect and 0 otherwise.
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Figure 3.1: Illustration of the energy detection threshold based policy with two outcome
classes H0 and H1 (in this case ‘data’ refers to the estimated power statistic). On the one
hand, the fist curve on the left refers to the probability density function of the observed
energy of noise. On the other hand, the second curve on the right shows the probability
density function of the observed energy of the signal.

Thus the performance of a detector highly depends on the distributions of the received
samples in both environments, viz. pure noise and noisy signal. This last remark is
illustrated in Figure 3.1. Indeed, it suggests an illustration of an energy detection threshold
based policy with two outcome classes (H0 and H1). On the one hand, the fist curve on the
left refers to the probability density function of the observed energy of noise (for illustration
purpose σ2

n,t = 1). On the other hand, the second curve on the right shows the probability
density function of the observed energy of the signal (for illustration purpose σ2

x,t = 0.5,
i.e., a signal-to-noise ratio equal to −3dB). Thus the probabilities of false alarm and miss
detection, respectively Pfa,t and Pmd,t = 1 − Pd,t are equal to the surface integral under
the density functions and limited by the threshold vertical line.

Usually, constraints impose to fix the Pfa,t under a given level αfa, such that Pfa,t ≤
αfa. The most powerful decision policy is then defined as the one having the largest Pd,t

value for a given Pfa,t = αfa. Note that Figure 3.1 shows a particular scenario where the
threshold is set at the intersection of both density functions such that the sum of the error
probabilities, Pfa,t + 1− Pd,t is minimized in the case of equi-probable Hypothesizes (i.e.,
in the case of Maximum Likelihood detection).
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3.2.3 Neyman-Pearson Energy Detector

NP-ED assumes known the noise level σ2
n,t at every slot number t. For the sake of simplicity

and without loss of generality, we consider in the rest of the chapter a constant noise level
for all t, σ2

n,t = σ2
n. Under these assumptions, the NP-ED is proven to be the most powerful

test.
To make a decision on the presence or absence of a signal, NP-ED relies on the com-

putation of the received energy statistic Tt at the slot number t defined such as:

Tt =
M−1
∑

i=0

|yt,i|2

The decision policy πNP−ED is a simple Heaviside function H(·) that only depends on
the evaluation of the statistic Tt at the current slot t:

dt = πNP−ED(yt)⇐⇒ dt = H(Tt − ξt(αfa))

where ξt(αfa) is the selected threshold to guaranty Pfa ≤ αfa. Such policies are usually
described using the following notation:

Tt ≶H0
H1

ξt(αfa)

The following equations remind us of the expressions of Pfa,t and Pd,t (where Tt ∼ χ2
M )

as well as their approximations for large M (where Tt is assumed to follow a Gaussian
distribution):







Pfa,t = 1− Fχ2
M

(

ξt(αfa)

σ2
n

)

Pd,t = 1− Fχ2
M

(

ξt(αfa)

σ2
n+σ2

x,t

)

where Fχ2
M
(·) refers to the cumulative distribution function of a χ2-distribution with M

degrees of freedom.
When the number of gathered samples is large enough (M ≥ 200) Normal approxi-

mation of Chi-Square distributions is generally considered as satisfactory [94, 49] (note
however that in general such approximations are not necessary):















Pfa,t ≈ Q

(

√

M
2

(

ξt(αfa)/M

σ2
n

− 1
)

)

Pd,t ≈ Q

(

√

M
2

(

ξt(αfa)/M

σ2
n+σ2

x,t
− 1
)

)

where Q(·) is the complementary cumulative distribution function of Gaussian random
variable (also known as Marcum function) [98]:

Q(x) =
1√
2π

∫ ∞

x
e−

y2

2 dy

NP-ED provides satisfactory behavior when σ2
n is known. Unfortunately, when such

knowledge is unavailable, its performances, through a worst-case analysis, is shown to
significantly degrade[49, 50].
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3.2.4 Energy detection with noise uncertainty

The authors of Paper [49] suggested to analyze the impact of noise uncertainty on the per-
formances of an energy detector. Two models were discussed at different levels : on the one
hand, they introduced a bounded model of the noise estimation. Within this framework,
they performed a worst case analysis on the performances of the energy detector. Thus,
they proved the existence of an SNR-wall, value of the SNR beyond which detection is the-
oretically impossible. On the other hand, they suggested a more realistic description of the
noise power estimation as a Log-Normal distribution. However, its analysis would involve
the knowledge of the Probability Density Function (PDF) of a ratio statistic composed of
a χ2 and a Log-Normal distribution. Since its analytical expression has no known simple
form, the problem was reduced to a bounded distribution leading to the same hereabove
stated results.

Mainly, to summarize, the bounded model for the noise uncertainty impose an upper
bound on the probability of false alarm, while it analyzes the lower bound of the probability
of miss detection. Which leads to an underestimation of the system capabilities, resulting
in the assumed “fragile” behavior of energy detectors toward noise uncertainty.

In our work, we are motivated by the case of a Log-Normal approximated noise uncer-
tainty, as suggested in [49]. As a matter of fact, in order to provide an accurate estimation
of the behavior of an energy detector with imperfect knowledge, it is important to analyt-
ically approximate the hereabove described ratio statistic.

To that purpose, we suggest in the next Section to approximate the considered χ2

distribution by an adequate Log-Normal distribution. Thus, this approximation reduces
the problem to the analysis of a ratio of Log-Normal distributions.

3.3 Log-Normal Approximation of χ2 distributions

In this section, we introduce and analyze a Log-Normal approximation of χ2 distributions.
The purposes of this approximation are twofold : on the one hand, it offers a better
fit, than the usually used Normal approximation. While on the other hand, it offers a
convenient mathematical solution to tackle ratios of χ2 and Log-Normal random variables
as it is further detailed in the next paragraphs.

3.3.1 Mathematical Model

Definition 7 (Distributions). Let fχ2
M
(·), fLogN (µL,σ2

L)
(·) and fN (µN ,σ2

N )(·) denote, re-

spectively, the Probability Density Function (PDF) of a χ2 distribution with M degrees of
freedom, a Log-Normal distribution with parameters {µL, σ2

L} and a normal distribution
with parameters {µN , σ2

N }, such that:



























fχ2
M
(x) = 1

2M/2Γ(M/2)
xM/2−1e−x/2, x ∈ R+, 0 otherwise

fLogN (µL,σ2
L)
(x) = 1

x
√

2πσ2
L
e
− (log(x)−µL)2

2σ2
L , x ∈ R+, 0 otherwise

fN (µN ,σ2
N )(x) =

1√
2πσ2

N
e
− (x−µN )2

2σ2
N , x ∈ R

(3.1)
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Anticipating the analysis of energy detection limits under Log-Normal approximation,
we consider in the rest of this chapter the following specific parameters such that:

{

{µL, σ2
L} = {log(M)− σ2

L/2, log(1 + 2/M)}
{µN , σ2

N } = {M, 2M} (3.2)

These parameters were chosen such that all three distributions have the same mean and
variance.

Fact 1. (3)[Convergence to Gaussian Distributions] Let fχ2
M
(·), fLogN (µL,σ2

L)
(·) and fN (µN ,σ2

N )(·)
be the distribution described in Definition 7, then for k →∞:

fχ2
M
→ fN (µN ,σ2

N ) (3.3)

Moreover, since for M large enough, the expectation of the the Log-Normal distribution
(equal to M by definition) is much larger than its standard deviation (equal to

√
2M by

definition), for M →∞, it converges to a Gaussian distribution with the same mean and
variance, i.e., in this case and with respect to the previously introduced notations:

fLogN (µL,σ2
L)
→ fN (µN ,σ2

N ) (3.4)

Thus we aims at evaluating the converging rates of the following error functions:
{

∆1(x) = fLogN (µL,σ2
L)
(x)− fχ2

M
(x)

∆2(x) = fχ2
M
(x)− fN (µN ,σ2

N )(x)
(3.5)

For that purpose, we propose to develop and approximate both functions ∆1(x) and
∆2(x) as polynomial series. This approach is further detailed in the rest of this subsection.

Definition 8 (Partial Taylor polynomial). Let fD(·) the PDF of a distribution D ∈
{χ2,LogN}. We denote by TD,x0(·) the following polynomial evaluated at the finite real
point x0:

T
(n)
x0,D(x) =

fD(x)
fN (µN ,σ2

N )(x)
= 1 +

n
∑

j=0

Cj,D(x− x0)
j + ǫ

(n)
D (x) (3.6)

where n is the approximation order, {Cj,D}j=0,··· ,n are the polynomial components of the

power series and ǫ
(n)
D (·) is an implicit function that contains the missing terms to respect

the equality. ǫ
(n)
D (·) is very small compared to the other terms and converges to 0 as x

tends to x0.

In the case of our analysis, the polynomial components of the considered series :
T
(n)

M,χ2
M
(·) and T

(n)

M,LogN (µL,σ2
L)
(·) are regular functions of the parameter M . Their ex-

pression is usually very complex. However, since we are only interested in the asymptotic
behavior of these functions, we simplify the general expression of these parameters using
the first existing order of their polynomial expression evaluated as M tends to infinity
such that for all j = {1, · · · , n}:

Cj,D(M) =

∞
∑

i=0

ci,j,D
M i

≈ ci0,j,D
M i0

(3.7)

where i0(j) is the first index in N such that ci0(j),j,D 6= 0.

(3)Although these well known properties are presented as facts, no clear references of anteriority could
be found.
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Definition 9 (Approximation and evaluated functions). Let C̃j,D(M) =
ci0(j),j,D

M i0
be the

asymptotically approximated polynomial component, and T̃
(n)
x0,D(·) the partial approximation

of Taylor series as defined in Definition 8:

T̃
(n)
x0,D(x) = 1 +

n
∑

j=0

C̃j,D(x− x0)
j (3.8)

We evaluate in this chapter the asymptotic behavior of the following error functions for
large M :






∆1(x) = fLogN (µL,σ2
L)
(x)− fχ2

M
(x) ≈

(

T̃
(n)

M,LogN (µL,σ2
L)
(x)− T̃

(n)

M,χ2
M
(x)
)

fN (µN ,σ2
N )(x)

∆2(x) = fχ2
M
(x)− fN (µN ,σ2

N )(x) ≈
(

T̃
(n)

M,χ2
M
(x)− 1

)

fN (µN ,σ2
N )(x)

(3.9)

In the rest of this section, we focus on the analysis of the approximations :






∆̃1(x) =
(

T̃
(n)

M,LogN (µL,σ2
L)
(x)− T̃

(n)

M,χ2
M
(x)
)

fN (µN ,σ2
N )(x)

∆̃2(x) =
(

T̃
(n)

M,χ2
M
(x)− 1

)

fN (µN ,σ2
N )(x)

(3.10)

Relying on the previously introduced definitions, we present hereafter the main contri-
butions related to the Log-Normal approximation of χ2 distributions. Since, the analytical
results provided rely on asymptotic approximations for large M , they cannot be generalized
to small values of M . Some of the stated properties, are however empirically generalized
and illustrated in the last part of this section.

Note that we do not present the following results as “Lemmas” or “Theorems”: as a
matter of fact, they are mainly based on heavy yet straightforward calculus(4). Moreover,
such calculus were possible because of some justified approximations that need, nonethe-
less, to be further investigated to validate them from a rigorous mathematical perspective.
We, however, detail the mathematical protocols and approximations that led to the stated
results when needed.

3.3.2 Main Results

We focus on an approximation of the third order n = 3 and analyze the extrema of the
functions ∆̃1(·) and ∆̃2(·). The choice of a third order approximation was motivated by
the necessity of obtaining analytical solutions for the extrema.

Property 1 (Approximated error functions). Let the function ∆̃1(·) and ∆̃2(·) two ap-
proximation errors function as defined in Equation 3.10, then we can show that:







∆̃1(x) =
(

− 1
6M − x−M

M + (x−M)2

M2 + (x−M)3

6M2

)

fN (µN ,σ2
N )(x)

∆̃2(x) =
(

− 5
12M − x−M

2M + 5(x−M)2

8M2 + (x−M)3

12M2

)

fN (µN ,σ2
N )(x)

(3.11)

(4)The results introduced hereafter were obtained relying on Mathematica. Consequently, they do not
constitute proof. They are however introduced to support the suggested approximations of Chi-Square
distributions by Log-Normal distributions. Nevertheless, further investigations are needed to rigorously
confirm and proof these results.
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Property 2 (Extrema : position and amplitude). Let the real values {y1,i(M)}4i=1 and
{y2,i(M)}4i=1 denote the approximated extrema amplitudes, of, respectively, ∆̃1(·) and ∆̃2(·)
at the positions {x1(M) < x2(M) < x3(M) < x4(M)}. Then there exist two real constants
{a, b} such that:

{a, b} = {4− 2
1
3 − 2

2
3 , 2 + 2

1
3 + 2

2
3 } such that for large M :































x1(M) ≈M +
(

−√a−
√
b
)√

M

x2(M) ≈M +
(√

a−
√
b
)√

M

x3(M) ≈M +
(

−√a+
√
b
)√

M

x4(M) ≈M +
(√

a+
√
b
)√

M

(3.12)

Which leads to the following expressions for the approximated extrema of ∆̃1(·) for large
M :


































∆̃1(x1(M)) ≈ y1,1(M) ≈ e−
1
4 (

√
a+

√
b)2

24
√
π

(

− 2
M

√
ab
(√

a+
√
b
)

+ 5
2M3/2

(

2 + 3(
√
a+
√
b)2
))

∆̃1(x2(M)) ≈ y1,2(M) ≈ e−
1
4 (12−(

√
a+

√
b)2)

24
√
π

(

− 2
M

√
ab
(√

a−
√
b
)

+ 5
2M3/2

(

38− 3(
√
a+
√
b)2
))

∆̃1(x3(M)) ≈ y1,3(k) ≈ e−
1
4 (12−(

√
a+

√
b)2)

24
√
π

(

2
M

√
ab
(√

a−
√
b
)

+ 5
2M3/2

(

38− 3(
√
a+
√
b)2
))

∆̃1(x4(M)) ≈ y1,4(M) ≈ e−
1
4 (

√
a+

√
b)2

24
√
π

(

2
M

√
ab
(√

a+
√
b
)

+ 5
2M3/2

(

2 + 3(
√
a+
√
b)2
))

(3.13)
As well as the following expressions for the approximated extrema of ∆̃2(·) for large M :


































∆̃2(x1(M)) ≈ y2,1(M) ≈ e−
1
4 (

√
a+

√
b)2

12
√
π

(

− 2
M

√
ab
(√

a+
√
b
)

+ 1
M3/2

(

−1 + 6(
√
a+
√
b)2
))

∆̃2(x2(M)) ≈ y2,2(M) ≈ e−
1
4 (12−(

√
a+

√
b)2)

12
√
π

(

− 2
M

√
ab
(√

a−
√
b
)

+ 1
M3/2

(

71− 6(
√
a+
√
b)2
))

∆̃2(x3(M)) ≈ y2,3(M) ≈ e−
1
4 (12−(

√
a+

√
b)2)

12
√
π

(

2
M

√
ab
(√

a−
√
b
)

+ 1
M3/2

(

71− 6(
√
a+
√
b)2
))

∆̃2(x4(M)) ≈ y2,4(M) ≈ e−
1
4 (

√
a+

√
b)2

12
√
π

(

2
M

√
ab
(√

a+
√
b
)

+ 1
M3/2

(

−1 + 6(
√
a+
√
b)2
))

(3.14)

Sketch of the proof: Let us consider the approximation functions ∆̃1(·) and ∆̃2(·) as
defined in Equation 3.11. The analysis of their derivative functions is equivalent to a root
analysis of a fourth degree polynomial, which can be solved using the well known Ferrari
approach. This latter provides us with values which leading terms (for large M) are equal
to {x1(M) < x2(M) < x3(M) < x4(M)}. These solutions appear to be the same for both
error functions. Equations 3.13 and 3.14 are, then, computed as the evaluation of ∆̃1(·)
and ∆̃2(·) at the positions {x1(M) < x2(M) < x3(M) < x4(M)}.

One can notice from the previous property, that for large M the function ∆̃1(·) is
approximately two times smaller than ∆̃2(·). Moreover the ratio of their respective am-
plitudes tends to 2 as M tends to infinity, which suggests preferring Log-Normal approxi-
mations of χ2 distributions rather than the usually used Normal approximation.

This last result is a corollary of Property 2

Property 3 (Maximum absolute error). Let, {y1,i(M)}4i=1 and {y2,i(M)}4i=1 the real val-
ues defined in Property 2, then we can show that,

{

max{|y1,i(M)|}4i=1 = |y1,2(M)|
max{|y2,i(M)|}4i=1 = |y2,2(M)| (3.15)
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Figure 3.2: Approximation Error functions. Both left and right figures plot the functions
∆1(·), ∆2(·), ∆̃1(·) and ∆̃2(·). However, the left figure shows these functions for a param-
eter M = 1000, while the right figure shows them for M = 25000. We observe in this
figure that the theoretical approximation introduced in Property 1 seems to converge to
the real values as M grows large.

Moreover:
{

|y1,2(M)| < |y2,2(M)|
|y1,2(M)| ≈ |y2,2(M)|/2, as M →∞ (3.16)

This last property investigates the maximum absolute error due to the approximation of
χ2 distribution by Log-Normal or Normal distributions. It shows once again that the bias
due to a Log-Normal approximation is smaller than the bias due to a Normal distribution.

3.3.3 Simulations and Empirical Evaluation of Log-Normal based Ap-

proximations

Finally, we illustrate in this part the previously introduced results.
Figure 3.2 plots the errors functions ∆1(·) and ∆2(·) as well as their evaluated ap-

proximations, ∆̃1(·) and ∆̃2(·), as computed in Equation 3.11. The left subplot shows
the approximation errors for a parameter M = 1000 while the right subplot considers a
parameter M = 25000. The purpose of these figures is twofold: on the one hand, they
aim at illustrating the error of fit due to Log-Normal or Normal approximations of χ2

distributions. This aspect is highlighted by the curves ∆1(·) and ∆2(·) on the figures,
appearing respectively, in red and blue solid lines. On the other hand, this figure shows
the accuracy of the introduced approximations of this error functions ∆̃1(·) and ∆̃2(·) as
the parameter M grows large.
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Figure 3.3: Maximum Absolute Error. In this figure, four curves are represented: two
of them, in solid line, illustrate the decreasing rate of the global maximum of the error
functions ∆1(·) and ∆2(·). Whereas, the two other curves, plot the theoretical maximum
of the approximations ∆̃1(·) and ∆̃2(·). As we can notice, the theoretical approximations
developed in Equations 3.13 and 3.14 describe well the reality in both cases.

Firstly, we observe that the errors functions, ∆1(·) and ∆2(·), have similar forms
however, the error due to a Normal approximation of χ2 distributions seems to have a
higher amplitude than a Log-Normal approximation. This indicates, as already suggested
in Property 3, that a Log-Normal approximation should be preferred in general.

Secondly, we observe that the approximations ∆̃1(·) and ∆̃2(·) seem to be reasonably
accurate especially when it comes to evaluating the maximum of the functions. Thus, this
observation validates the properties introduced in this section. As one can observe, the
higher the value of the parameter M are, the closer the results get to the real values.

Figure 3.3 emphasizes this last remark. As a matter of fact, it describes the evolution
of the absolute value of the maximum of the functions ∆1(·) and ∆2(·), as well as their
theoretical approximations: ∆̃1(·) and ∆̃2(·). We observe, on the one hand, that the
amplitude of the maximum absolute error of both ∆1(·) and ∆2(·) decrease at the same
rate, as illustrated by the red and blue curves. On the other hand, this figure plots
the theoretically computed functions of the maximums y1,2(k) and y2,2(k) as shown in
Property 3. We observe that the reported results in Equations 3.13 and 3.14, fit well the
reality even for small values of M in spite of the approximations.
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3.4 Energy Detector under Log-Normal noise uncertainty

In this section, We investigate the design of an energy detector that takes into account
Log-Normal noise uncertainty. We show that we can accurately control the false alarm,
and deduce explicit formulas for the probability of detection as well as the SNR-wall. To
that purpose, we exploit the Log-Normal approximation of χ2 distributions, introduced
and analyzed in Section 3.3, and apply it within the considered framework detailed in
Section 3.2.

3.4.1 Noise Uncertainty and Energy Statistic’s Approximation

Let σ̂2
n denote the estimated noise power level. Assuming that σ̂2

n follows a unbiased Log-
Normal distribution [49], such that the expectation and the variance of the estimated noise
level, respectively, verify E

[

σ̂2
n

]

= σ2
n and V

[

σ̂2
n

]

= u.σ4
n, with u the defined uncertainty

parameter, also defined through a (non conventional) decibel value u = 10UdB/10−1, then:

σ̂2
n ∼ LogN (µu,Vu) , s.t. :

{

Vu = log (1 + u)

µu = 2 log (σn)− Vu
2

(3.17)

where µu and Vu respectively refer to the mean and variance parameters of the uncertainty
noise distribution.

Moreover, for mathematical reasons, we consider a Log-Normal approximation of the
χ2 distribution as described in Section 3.3. Approximation analytically and empirically
validated in Figure 3.3 for M usually considered large enough, i.e., M > 50. As a matter
of fact, we can observe in Figure 3.2, that the Log-Normal approximation induces an
estimation error on the probability density function. However, the amplitude of this error
function, called residual function, is uniformly bounded by a function that mainly decreases
as 1/M . This results are analytically corroborated in Equations 3.14 and 3.13 where we
can observe that asymptotically, the amplitudes of the extrema of the error functions
mainly decrease as 1/M . Thus for the rest of this chapter we assume that Log-Normal
approximations of Chi-Square distributions is valid. We exploit this approximation to
analyze energy detection limits under Log-Normal uncertainty as suggested in Paper [49]
by Alexander Sonnenschein and Philip M. Fishman.

Thus, let us assume that the power statistic Tt/M can be accurately approximated by
a Log-Normal distribution such that E [Tt/M ] = σ2

T and V [Tt/M ] = 2σ4
T /M then:

Tt
M
∼ LogN (µT ,VT ) , s.t. :

{

VT = log
(

1 + 2
M

)

µT = 2 log (σT )− VT
2

(3.18)

where σ2
T is the value of the power level of the collected samples depending on the current

state of the channel at the slot t such that:
{

H0 : σ2
T = σ2

n

H1 : σ2
T = σ2

n + σ2
x,t

(3.19)

Finally, we introduce the following statistic Wt defined as:

Wt = log

( Tt
Mσ̂2

n

)

(3.20)

In the next subsection, we analyze the performance of the Energy Detector based on
the statistic Wt.
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3.4.2 Energy Detector’s Performances and Limits

Under the previously introduced assumptions, we present the main results of the chapter.
For that purpose, anticipating the next results, we use the following notations: the Signal-
to-Noise Ratio γt = σ2

x,t/σ
2
n and:











E (Wt|H0) =
1
2 (Vu − VT ) =

1
2 log

(

1+u
1+2/M

)

E (Wt|H1) = log (1 + γt) + E [Wt|H0]
V (Wt) = Vu + VT = log

(

(1 + 2
M )(1 + u)

)

(3.21)

Lemma 1 (Distribution of Wt). Let Wt be the random variable defined in Equation 3.20.
We assume that the previously introduced assumptions hold, then:

Wt − E [Wt|H0]
√

V [Wt]
∼







H0 : N (0, 1)

H1 : N
(

log(1+γt)√
V[Wt]

, 1

)

(3.22)

Sketch of the proof: Note that we can write :

Wt = log

( Tt
M

)

− log
(

σ̂2
n

)

(3.23)

Thus, Wt is a linear combination of two independent Gaussian random variables with,
respectively, parameters: {µT , VT } and {µu, Vu}. Consequently,

Wt ∼ N (µT − µu,VT + Vu) (3.24)

which can be written as:

Wt ∼ N
(

log

(

σ2
T

σ2
n

)

+
1

2
(Vu − VT ),VT + Vu

)

(3.25)

We can notice that if the channel is idle, log
(

σ2
T

σ2
n

)

= 0, otherwise log
(

σ2
T

σ2
n

)

= log (1 + γt).

Finally, using the previously introduced notations, we can write:

Wt ∼ N
(

log

(

σ2
T

σ2
n

)

+ E [Wt|H0] ,V [Wt]

)

(3.26)

which concludes this proof.

It is interesting to notice that the variance ofWt does not depend on the hypothesizes;
it only depends on the uncertainties. Thus, it illustrates the uncertainty of the energy
detector.

More specifically, when the noise level is perfectly known, u = 0, we can reach any
desired performance by simply increasing, if possible, the sample’s size M . This is no more
the case, when there exist an uncertainty on the level of the noise.

As a matter of fact, when an uncertainty u 6= 0 exists, one can notice that even if the
number of samples M tends to infinity, the distribution ofWt, with either hypothesis, still
has a positive variance, leading to unavoidable detection errors.

We next present the performances of the herein analyzed detector.
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Theorem 1 (Detector’s performances). Let ξt(αfa) be a real value such that the threshold

based policy is: Wt ≶
H0
H1

log (ξt(αfa)), then the probabilities of false alarm and detection
have the following forms:































Pfa,t = Q





log

(

ξt(αfa)
√

1+2/M
1+u

)

√
log((1+2/M)(1+u))





Pd,t = Q





log

(

ξt(αfa)

1+γt

√

1+2/M
1+u

)

√
log((1+2/M)(1+u))





(3.27)

Sketch of the proof:
Since Wt follows a Gaussian distribution under either hypothesizes, we can write the

probabilities of false alarm Pfa,t and detection Pd,t of this energy detector as follows:














Pfa,t = Q

(

log(ξt(αfa))−E[Wt|H0]√
V[Wt]

)

Pd,t = Q

(

log(ξt(αfa))−E[Wt|H1]√
V[Wt]

) (3.28)

Using the previously introduced notations, we obtain the stated results.

The contributions of Theorem 1 are twofold: On the one hand, Theorem 1 provides
closed form expressions of Pfa,t and Pd,t. On the other hand, as a corollary, it provides an
explicit expression of the threshold for a given probability of false alarm:

log (ξt(αfa)) = Q−1 (Pfa)
√

V [Wt] + E [Wt|H0]

Thus, it shows one asset of the Log-Normal model for the noise uncertainty compared
to the usually considered bounded uncertainty. As a matter of fact, it enables to define a
priori, the values of the threshold depending on the false alarm and on the uncertainties.
This enables objective and theoretical evaluations of the loss of performance due to noise
uncertainty, in terms of probability of detection, for a given false alarm. This comparison
was not possible in the case of bounded noise uncertainty, since, by definition, the chosen
false alarm only guaranties an upper bound on the desired false alarm.

The following result provides a general form of the SNR-wall as a function of the
desired performances of the detector and the uncertainties {2/M ;u}.

Theorem 2 (SNR-wall). Let Wt be the random variable defined in Equation 3.20 and
let ∆ = Q−1 (Pfa)−Q−1 (Pd), then the SNR-wall of the ED under a Log-Normal approx-
imated noise level is equal to:

γwall,t = e∆
√

V[Wt] − 1 (3.29)

Sketch of the proof:
Note that by inversing the equations of the probabilities of false alarm and detection,

we can write:

log (ξt(αfa)) =







Q−1 (Pfa)
√

V [Wt]− log
(√

1+2/M
(1+u)

)

Q−1 (Pd,t)
√

V [Wt]− log
(√

1+2/M
(1+u)(1+γt)2

) (3.30)
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Figure 3.4: Probability of detection (left) and SNR-wall (right). On the left figure, we
observe the impact of noice uncertainty, as defined in this chapter, on the detection per-
formances. The right curves shows that the lost of performances can be predicted using
the new formula of the SNR-wall. Note that the impact of the “classic” uncertainty[49, 50]
does not appear in these curves since it is, generally, impossible to impose a given false
alarm, which would make any comparison biased.

which lead to the following expression:

log (1 + γt) = ∆
√

V [Wt] (3.31)

which concludes the proof.

As already mentioned, the expression of the SNR-wall, within a Log-Normal model
for noise uncertainty, depends on the desired performances, in terms of probability of
false alarm an probability of detection, as well as on the values on the uncertainties. Thus,
rather than an “SNR-wall”, this results offers a function that accurately predicts the needed
SNR to reach given desired performances depending on the uncertainties. In the case of
the bounded model for the uncertainty, the SNR-wall is due to an underestimation of the
system capabilities, resulting from a worst case analysis.

The impact of noise uncertainty on the detection performances, as described in the
equations of Theorem 1, is illustrated in Figure 3.4 (left figure).

On the left figure seven curves of probability of detection are drawn for a false alarm
equal to 0.1. The first curve entitled “NP-Energy Detector” represents the results ob-
tained by the NP-ED with no approximation and with no uncertainty on the noise level
as described in Section 3.2. The second curve, entitled ‘Energy Detector U = 0 dB’, that
matches the first curve, illustrates the results as described in Section 3.4 with UdB = 0.
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The other five curves show the impact of the uncertainty on the herein introduced detector
under a Log-Normal model for the noise uncertainty. As expected, we can notice that the
detection abilities of the suggested detector degrade as the uncertainty increases. How-
ever, the loss of performances can be accurately predicted. As a matter of fact, the right
figure of Figure 3.4 illustrates the result of Theorem 2, where we can observe the evolution
of the SNR-wall as a function of the uncertainty (in this case to achieve a probability of
false alarm equal to 0.1 and a probability of detection equal to 0.9). We can notice that
the existing gap between the second and third curves (left figure), i.e. the case where
the uncertainties are respectively equal to 0dB (i.e., with no uncertainty) and 0.5dB, and
referred to as ∆SNR1 in both figures, matches the result of Theorem 2 (right figure). Sim-
ilar comments apply for the gap ∆SNR2. Finally, this results show that, indeed, Theorem
1 and 2 enable to evaluate the detection limits of the system and conclude this chapter.

3.5 Conclusion

This chapter tackled simultaneously two challenges: on the one hand, we investigated the
goodness of a Log-Normal approximation for χ2 distributions. We showed that not only
does the Log-Normal model provide a satisfactory approximation for χ2 distributions, it,
in fact, offers a better fit than the usually suggested Normal approximation. On the one
hand, exploiting this result, we revisited the impact of Log-Normal noise uncertainty on
energy detection. We showed that the problem involved the analysis of a ratio statistic
composed of χ2 and Log-Normal distributions. The exact analysis of the PDF of the
ratio statistic being complex, we suggested to simplify the analysis relying on a Log-
Normal approximation of χ2 distributions. Thus, the considered new model, as well as the
mathematical approximation, enabled us to design a detector with a fixed false alarm in
spite of the uncertainty. Moreover relying on those results we were able to present a new
expression of the SNR-wall that depends on the desired performances of the detector as
well as the noise uncertainty parameter.

The theoretical analysis of Log-Normal approximations of χ2 distributions can however
be improved. Moreover, the relationship between uncertainty and SNR-wall could further
be exploited to estimate the uncertainty. These topics are currently under investigation
and should lead to new advances in low complexity signal detection for cognitive radio.



Chapter 4

Learning for Opportunistic Spectrum

Access: A multi-Armed Bandit

Framework

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Network assumption . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Performance evaluation of a detection policy π . . . . . . . . . . 43

3.2.3 Neyman-Pearson Energy Detector . . . . . . . . . . . . . . . . . 45

3.2.4 Energy detection with noise uncertainty . . . . . . . . . . . . . . 46

3.3 Log-Normal Approximation of χ2 distributions . . . . . . . . 46

3.3.1 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.3 Simulations and Empirical Evaluation of Log-Normal based Ap-

proximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Energy Detector under Log-Normal noise uncertainty . . . . 52

3.4.1 Noise Uncertainty and Energy Statistic’s Approximation . . . . . 52

3.4.2 Energy Detector’s Performances and Limits . . . . . . . . . . . . 53

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

57



58 Learning for Opportunistic Spectrum Access: A multi-Armed Bandit Framework

Introducing decision making algorithms to tackle wireless communication related issues
is not new. However usually, either a substantial amount of information is available to
answer the decision making problems in an efficient way, or the system is over-dimensioned
to provide satisfactory behavior within a large set of communication scenarios. In other
words, one can consider that the basic cognitive cycle has already been implemented,
however only in the case where few sensors and possible parameters were operational.
As a matter of fact, the sensors are carefully implemented for very specific purposes and
parameters already tuned to meet communications standards’ requirements. Consequently,
the decision making design space, discussed in Section 2.3 is shrunk to its minimal volume,
leaving few degrees of freedom to radio equipment to optimize their behavior regarding
their environment and the user’s expectations.

We focus in the sequel on OSA problems. As a matter of fact, these problems appear
as a particular instance of the general DCA problems (cf. Section 2.3 and Papers [52,
73]). However due to the scarcity of the spectrum and the need to quickly provide smart
allocation techniques, we have decided to tackle this problem. It can be formulated as
follows: one (or several) CR user(s) seek to exploit spectrum opportunities left vacant by
incumbent users. How should the CA learn to access the most profitable resource while
providing a service and without excessively interfering with primary users?

As further detailed in this sequel, the general framework selected for this matter is the
so called Multi-Armed Bandit paradigm. It is worth noting that when we started working
on the DCA problems in 2008, only few papers were dealing with this matter. Today, we
count a large number of papers dealing with MAB models for CR. Moreover, the period
2008-2011 proved to be a prolific period for the MAB community as shown in our brief
state of the art in this chapter, Section 4.2.
Our main contributions, as depicted in the next chapters, can be summarized as follows:

• We modeled CR online learning problems as MAB problems. Then we applied the
existing results on a basic OSA framework to emphasize its potentials.

• We introduced sensing errors into the OSA model and proved the convergence of any
consistent MAB algorithm (under mild assumptions).

• We analyzed the case of multi-secondary users and showed their consistency when
they collaborate. We moreover discuss the limits of theoretical guaranties versus
empirical ‘risky’ yet satisfactory behavior of the algorithms.

• We discuss the limits of our model in the case of heterogeneous networks and show
the conditions for consistency. This problem combines both resources allocation
techniques and machine learning techniques.

• We designed a new form of algorithms to deal with gamma distributions in a simple
way. This new algorithm opens the way to dealing with more complex environments
such as Rayleigh channels or multi-paths networks.

In this specific chapter, we introduce the considered MAB framework, the considered
algorithm, the OSA model as well as the first results, namely investigating the impact of
detection errors on the considered MAB based OSA problem.
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4.1 Introduction

4.1.1 General Context and Challenges

There are many cognitive radio related problems that can be formalized as follows: to a
(or many) radio device(s) is (are) associated a performance criterion which is a (finite)
sum of terms, named rewards, observed sequentially. Every reward of the sum is the
realization of a random function called reward function which is influenced by the value
of the parameters of the devices and the environment. The objective is to determine the
sequence of values for the parameters to maximize the expected value of the performance
criterion, often while having only limited information about the reward function itself. For
example, there is poor knowledge on the reward function when one seeks to operate a radio
device in a minimum energy consumption mode (under various operational constraints).
Indeed, in such a case, it is very difficult to find the ‘right’ analytical or even algorithmic
expression that could model the power consumption. Intuitively, the appropriate way for
solving these problems would be to try to overcome this lack of information on the reward
function by exploiting past information on the rewards obtained, the environment and the
values of the parameters. Moreover, the parameters should be modified to address at best
the trade-off between the exploitation of existing past information to generate immediately
as high as possible rewards and the generation of new information which could lead to
strategies to get perhaps even better rewards, but probably in a more distant future.

From the CR perspective, and as already depicted in Chapter 2, several challenges
arise. As a matter of fact designing a CA for CR equipments is challenging for the following
reasons:

1. The environment in which the CA operates is stochastic and unknown.

2. The CR device has multiple objectives that involve trade-offs. For instance a CR
should minimize its power consumption, while maximizing its transmission range.

To the environment model we add user oriented communication constraints that should
influence the cognitive agent’s design:

1. A CR equipment must behave at least as well as current non-CR equipments.

2. The CA should lead to a service that improves over time.

3. The algorithms used by the CA should be able to operate with limited memory and
computational resources in order to be embedded in a CR equipment.

These constraints led us to consider sequential decision making problems under uncer-
tainty.

In our research work, solutions for these cognitive radio problems have been built based
on research results related to the Multi-Armed Bandit (MAB) [99, 100, 101, 102, 103].

4.1.2 Classic Illustration: Opportunistic Spectrum Access

We discussed in Chapter 2 the concept of Dynamic Spectrum Access (DSA). More specifi-
cally, we noted that it has been suggested as a promising approach to exploiting frequency
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band resources efficiently, taking advantage of the various available communication oppor-
tunities. As a matter of fact, during the last century, most of the meaningful spectrum
resources were licensed to emerging wireless applications, where the static frequency al-
location policy combined with a growing number of spectrum demanding services led to
a spectrum scarcity. However, several measurements conducted in the United-States [11],
first, and then in numerous other countries, showed a chronic underutilization of the fre-
quency band resources, revealing substantial communication opportunities.

Thus, DSA was introduced as a possible concept that could alleviate spectrum scarcity
[11, 12, 63]. This concept however embed several different approach to manage and allocate
spectrum resources among users. We invite the reader to refer to the chapter 2 for further
details.

Among the suggested approaches to alleviate spectrum scarcity, Opportunistic Spec-
trum Access (OSA) has been the center of a lot of attention [12, 63]. The general concept
of OSA, as considered in this chapter, defines two types of users: a Primary User (PU)
or primary users (PUs) and a Secondary User (SU) or secondary users (SUs). PUs access
spectrum resources dedicated to the services provided to them, while SUs refer to a pool
of users willing to exploit the spectrum resources unoccupied by PUs at a particular time
in a particular geographical area. Since SUs need to access the spectrum while ensur-
ing minimum interference with PUs and without a priori knowledge on the behavior of
PUs, cognitive abilities (sensing its environment, processing the gathered information, and
finally adapting its behavior depending on the environment constraints and users’ expecta-
tions) are required to enable the coexistence of SUs and PUs. To fulfill these requirements,
Cognitive Radio (CR) has been suggested as a promising technology to enable the OSA
concept [9, 11, 34, 12, 63].

Although, to the best of our knowledge, there are still no commercialized OSA services,
an interesting illustration of this concept can be provided. This example was introduced
in Chapter 1. Briefly, to quickly densify their (Wi-Fi) network, main operators in France
exploit their subscribers ADSL box. Usually the Wi-Fi connexion of an ADSL box runs
two or three virtual networks that share the same connexion. Measurements showed, in
most cases, two virtual networks: the first wireless network is dedicated to the subscriber,
whereas the second wireless network is managed by the operator. This latter network is
shared with other mobile subscribers in the vicinity of the box. Thus, both networks share
the same wireless physical card, therefore share the same frequency band. Finally, we also
noticed, in the case of the operator Free, the existence of a third virtual network dedicated
to VoIP. Consequently, in this example, the primary users, refer naturally the incumbent
ADSL users. While the secondary users refer to the other subscribers of the same provider
in the vicinity of the ADSL box.

This example shows the necessity to quickly provide means to exploit communication
opportunities. Although this illustration provides a convenient introduction to OSA, it
does not face the same challenges we suggest to tackle. As a matter of fact, in this case,
the operator has a full knowledge and control regarding the allocated frequencies. Thus,
it may face resource allocation problems yet no specific learning challenges arise. For
instance, and for illustration purpose, the models we deal with might design a SU willing
to exploit the most interesting ADSL box among those surrounding him, with no prior
knowledge on their availability or QoS. Such essential knowledge must be acquired through
a learning process.
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4.1.3 Outline and contributions

The rest of the chapter is organized as follows. First, we describe the Multi-Armed Bandit
paradigm and related to OSA problems in Section 4.2. Moreover, the algorithms designed
to tackle MAB problems are briefly discussed depending on the nature of the MAB problem
(e.g., stochastic or adversarial). Then, Section 4.3 introduces our first main contribution:
a MAB mathematical model for OSA. The model considers detection errors and thus
provides a first basic yet realistic model. Section 4.5 provides our second main contribution
of this chapter: the evaluation of the performance of the UCB1 algorithm under the model
of Section 4.3. Finally, Section 4.7 concludes on this work and suggests perspectives
discussed in Chapter 5 and Chapter 6.

4.2 Learning for Opportunistic Spectrum Access: Multi-Armed
Bandit Paradigm and Motivations

4.2.1 Multi-Armed Bandit Paradigm: Conceptual Problem Statement

As discussed in Chapter 2 and, stated hereabove, decision making for CR appears in many
scenarios as a sequential decision making problem. In general, sequential decision making
problems face a dilemma between the exploration of a space of choices, or solutions, and
the exploitation of the information available to the decision maker. The problem described
herein, within OSA contexts, is known as sequential decision making under uncertainty.

In this thesis we focus on a sub-class of this problem, where the decision
maker has a discrete set of stateless choices and the added information is a
real valued sequence (of feedbacks, or rewards) that quantifies how well the
decision maker behaved in the previous time steps. This particular instance
of sequential decision making problems is generally known as the multi-armed
bandit (MAB) problem. Throughout this thesis we focus on a stochastic for-
mulation of the MAB problem (cf., next subsection 4.2.2 for a discussion on
the different models the MAB paradigm).

A traditional analogy to this problem is a slot machine (one-armed bandit) with more
than one arm. The decision maker (the gambler in the analogy) has to make a choice be-
tween several levers(1) to pull. If the gambler had all the information about the expected
rewards of the different levers, he would always pull the one maximizing his expected
reward. However, since he lacks that essential information, he has no choice but to try
all levers to earn an estimation of their performances. This example illustrates the ex-
ploration versus exploitation dilemma: the gambler has to find a policy that balances the
exploration of the different levers, in order to collect information, and the exploitation of
the already gathered estimations by selecting the arm that seems to provide the highest
expected reward. Consequently, solving a MAB problem consists in finding a good arm
selection strategy. Such a strategy maps the current information about the different arms
to the next decision. Playing a given policy results in a cumulated reward over the ex-
ecution. The largest expected cumulated reward is obtained by the policy which always
pulls the arm providing the maximum expected one-step reward. The difference between

(1)We use indifferently the words “lever”, “arm”, or “machine” in the remainder of this document.



62 Learning for Opportunistic Spectrum Access: A multi-Armed Bandit Framework

this maximum cumulated reward and the expected reward of a given policy is called the
expected cumulated loss or expected (cumulated) regret for this policy.

We refer to the sequence of three steps: arm selection, action and reward computation
as the MAB cycle. We argue that the MAB cycle can accurately model the basic cognitive
cycle, as illustrated in Figure 4.1. This matter is further detailed and illustrated through
OSA related scenarios. These scenarios are detailed when needed throughout the sequel
of this report.

4.2.2 Multi-Armed Bandit Paradigm: Stochastic Environment Vs Ad-

versarial Environment

When modeling the rewards observed from the environment there exist mainly two ap-
proaches: stochastic or adversarial (also referred to as non-stochastic). The stochastic
model, assumes that the observed rewards are drawn form a stochastic distribution. De-
pending on the working assumptions, the distributions can be stationary i.e., with the
same statistic parameters throughout the learning process, or non stationary. In the lat-
ter, the distribution’s parameters can evolve depending on either a deterministic function
or a stochastic function. In either one of these cases, the rewards are drawn randomly
from the defined distribution at the considered iteration. The adversarial model, however,
considers that an opponent choses the rewards to be provided on the set of arms available.
The gambler aims at maximizing the cumulated sum of the collected rewards.

Both topics are still under investigation. Recently, extensive work was published on
both stochastic or non-stochastic models [102, 104, 105, 106, 107, 108, 109, 110, 111,
112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128] as
well as many possible related topics (extension to trees, convex functions, infinite number
of arms to name a few). These results open the way to many applications, in general,
and in particular to CR related problems: spectrum allocation problems, power allocation
problems, resource allocation problems under uncertainty, network optimization problems,
finding the shortest path in a network, cooperation and/or collaboration in OSA networks,
smart wireless communication jamming, and so on. In a more general scope, this work
could also target, clinical trials, strategy games (such as Go), advertisement, Smart-Grid
applications, to name a few.

The algorithms suggested by the machine learning community to tackle the main MAB
problems can be divided into three sets that target respectively (without been exhaustive):

• stochastic-stationary MAB such as Bayesian [129] approach (e.g., Gittings index),
or non Bayesian techniques such as: Epsilon-greedy [102] and UCB algorithms [100,
101, 102, 103] to name a few.

• stochastic-non-stationary MAB, e.g., with the discounted UCB algorithms (D-UCB)
and sliding-window UCB (SW-UCB) [113].

• Adversarial e.g., Exp3 algorithm [104, 107] (the most popular algorithm which be-
longs to the class of Softmax algorithms).

For specific problems, this method can be combined with other optimization techniques
in order to obtain efficient optimization solutions to problems under uncertainty.
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Although, the designed algorithms are getting closer to optimal performances, the
machine learning community faces however a remaining challenge: the algorithm that
prove to efficiently deal with stochastic MAB behave very poorly with adversarial MAB
problems and vice-versa. Finding an algorithm that presents satisfactory performances in
either cases is still an open challenge.

Thus, the MAB literature offers solutions to problems currently encoun-
tered within the CR community. In our work, we identified the simple stochas-
tic MAB model as a promising framework for our OSA related applications.
Among this prolific MAB contributions, available in 2008, we aimed at finding,
investigating and exploiting an algorithm that offers a satisfactory compromise
between optimality and complexity. The general class of algorithm of interest is the
so-called index policies. This class of algorithms is further detailed in the next subsection.

4.2.3 Multi-Armed Bandit Paradigm: Index based Policies

A common approach to solving the exploration versus exploitation dilemma consists in as-
signing an utility value to every arm. An arm’s utility aggregates all the past information
about the lever and quantifies the gambler’s interest in pulling it. Such utilities are called
indexes. Paper [101], in 1995, emphasized the family of indexes minimizing the expected
cumulated loss and called them Upper Confidence Bound (UCB) indexes. UCB indexes
provide an optimistic estimation of the arms’ performances while ensuring a rapidly de-
creasing probability of selecting a suboptimal arm. The decision maker builds its policy
by greedily selecting the largest index. In his work, Agrawal [101] provided explicit formu-
lae for such indexes and analyzed their performances asymptotically for different reward
distributions. Unfortunately, although the complexity of the indexes suggested therein
was smaller than those previously analyzed in the work of [100], evaluating these indexes
remained computationally costly. Paper [102], in 2002, focused on the case of bounded
distributions (with an extension to the case of Gaussian distributions). They showed that
a simple index form, named UCB1, induces an expected cumulated loss which is upper
bounded by a logarithmic function of the total number of pulls. Thus, UCB1 algorithms
are said to be order optimal (2).

Since the work of Auer et al. in 2002 [102], several studies were presented. The
suggested studies aim: on the one hand at improving the theoretical guaranties of the
algorithm UCB1 [103, 130], and on the other hand at introducing alternative UCB forms
[103, 119, 120, 126, 128](3) to reach the optimal performance predicted by Robbins in 1985
[100].

In this thesis, we mainly consider the algorithm UCB1. As a matter of fact, the state
of the art conducted in 2008 showed that it presented an interesting complexity-efficiency
compromise compared to Robbins’ indexes [100], Agrawal’s indexes [101] and even other
algorithms suggested by Auer [102]. Note that Auer et al, in 2002, also suggested in [102]
a new Epsilon-greedy algorithm, as well as two other algorithms UCB2 and UCBtuned.

The Epsilon-greedy algorithm presented constraining conditions to converge. As a
matter of fact, the decision making engine needs to know a priori the lower bound on

(2)The notion of optimality and order optimality are thoroughly explained in Section 4.3
(3)Since 2008 and with major contributions in 2011.
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the difference between the expected income of the best arm and the second best arm.
Condition that is usually unknown prior to the learning process. UCB2 presents a more
complex form than UCB1 and proves to behave well. Convergence guaranties for UCB2

are also provided. However, the paper [103], in 2008, proves that the parameter used in
UCB1 can still be tuned. Consequently, UCB2 provides a more complex form without
providing a substantial improvement in the performances compared to UCB1. We believe
today that with the new guaranties provided on UCB1, relying on a tuned parameter,
UCB1 competes fairly with, UCB2 [130]. Finally, Auer et al. also suggested a UCB form
called UCBtuned. It was shown empirically to outperform the other suggested algorithms.
However, we discarded its use in this thesis as we seek strong mathematical guaranties. As
a matter of fact, since our scenarios are mainly based on simulations, we need to be able
to guaranty the soundness of the algorithm for a large set of problems, not only on a set
of (perhaps well chosen) scenarios. It is worth mentioning that with the new theoretical
guaranties provided recently on UCB1 algorithms [130], this latter shows, in practice, a
regret twice as large as UCBtuned as well. However, the convergence of UCB1 to the
optimal choice is proven; which is not the case for UCBtuned. To improve even more
the performance of UCB1, beyond the theoretical bounds, its parameter can be tuned
empirically. In this case, UCB1 and UCBtuned have fairly similar results. This latter
matter is briefly discussed in Section 4.4.

Consequently, during this thesis we solely focus on the UCB1 algorithm(4).
Thus we ventured the analysis of it potential to answer CR related problems. More-

over, we investigated the possibility to generalize it theoretical results to meet wireless
communication intrinsic constraints: for illustration purposes we can note that detection
errors lead to deceitful rewards, Rayleigh channels lead to different reward distributions
to consider, many gamblers competing on the same machines can lead to interference and
reward loss, and so on. These generalizations are discussed in this chapter as well as the
next chapters.

We end this section by depicting, in the next subsection, a simple yet important OSA
scenario where we insist on the MAB-OSA equivalence.

4.2.4 Opportunistic Spectrum Access Modeled as a Multi-Armed Ban-

dit Problem

As a first approximation, we consider the simplest OSA framework within which a single
CR device aims at exploring and exploiting vacant communication opportunities. Thus,
the gambler is the SU. More specifically, the CA represents the gambler in this example.

The communication opportunities can be of different nature as illustrated in Figure 4.2
found in Paper [13]. However, for the sake of simplicity and without loss of generality we
consider, in this illustration, frequency bands as the sole exploitable opportunities if they
appear unused. Consequently, the arms of the slot machine, that the CR can play are the
frequency bands.

It is usually assumed that there exist a network of users, referred to as primary users,
that have the priority on the resources. The secondary user however, does not assume
prior knowledge on the behavior of the Primary Network (PN). In other words, the CA

(4)We however quickly describe a promising algorithm known as UCBV [103, 130].
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Figure 4.1: Opportunistic Spectrum Access Modeled as a Multi-Armed Bandit Problem.
MAB problems represent simple machine learning problems where a gambler have the
choice between several machines (or equivalently different arms on a single machine). With
no prior knowledge on the machine, the gambler sequentially plays the machines in order
to earn information on their expected rewards.Meanwhile, the gambler aims at maximizing
his cumulated gains. This last conflict between the time spent on testing the machines and
the time spent at playing the machines that seem to be the most profitable is known as
Exploration Vs Exploitation dilemma. This figure illustrates side by side the MAB cycle
and the CR cycle in OSA contexts. The mean objective is to show that both problems
have similar models. In an OSA problem Exploration Vs Exploitation dilemma appears
when a secondary user aims at maximizing his cumulated transmitted data parquets while
earning more information on the availability of the frequency bands.
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Figure 4.2: Communication Opportunities in Wireless Communication for Cognitive Ra-
dio. This figure borrowed from the survey [13] illustrates several possible communication
dimensions that could be exploited by a SU within the OSA context. Whether SUs can
exploit or not these opportunities depends on their abilities to detect them and to use the
available resources while ensuring minimum interference with primary users.
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Multi-Armed Bandit Context Opportunistic Spectrum Access Context

Gambler Secondary User (Equivalently: CR or CA)
1-Armed bandit Frequency channel to exploit
Observe payoff at every iteration Instantaneous availability or number of transmitted packets.

Table 4.1: Summary of the equivalence between MAB paradigm and OSA related prob-
lems.

cannot deterministically predict the behavior of primary users, viz., the occupancy or non
occupancy of the resources by the primary network. Consequently, every time the CA
explores a frequency band, the observed state appears as a random variable. In this case
the random variable can be labeled as either idle or busy. Other scenarios where the reward
is related to the Signal-to-Noise Ratio (SNR) in fading environments are also considered
in Chapter 6. The reward obtained by the CA is thus a function of the numerical values
affected to these labels at every iteration.

The OSA scenarios introduced in this thesis rely on a discrete and sequential decision
making process. In this case ‘iteration’ refers to the set of computations needed to complete
a MAB cycle. This cycle is similar, as summarized in both Figure 4.1 and Table 4.1, to
the basic cognitive cycle. The exact structure of the slot depends on the amount of
computations needed. Consequently, we propose to detail the slot structure every time
needed, with the mathematical models, depending on the considered scenarios. Such
explicit mathematical models are proposed, first in the the next sections, and then in the
next chapters depending on the scenarios.
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4.3 Opportunistic Spectrum Access Mathematic Model : a
Multi-Armed Bandit problem

In this section, we introduce the mathematical notations related to MAB problems as well
as those related to UCB algorithms.

4.3.1 Basic Opportunistic Spectrum Access Model : Multi-Armed Ban-

dit Notations

OSA related problems introduce several constraints that are not, to the best of our knowl-
edge, considered within the MAB framework. Thus, for clarity reasons, in order to empha-
size the contributions of this thesis, we start by modeling a basic OSA problem as a MAB
problem. In this case we consider, as will be detailed in the next paragraphs, that there
is one SU and that the sensing and detections abilities of the SU are flawless. In other
words, no observation errors are considered during the evaluation of the state of a probed
channel. However in order to avoid unnecessary redundancies, we introduce a complete
model, that includes a model of the sensing abilities of the CR(5).

We consider the case of one secondary user willing to opportunistically exploit the
available spectrum in its vicinity. The spectrum of interest is licensed to a primary network
providing N independent but non-identical channels. We denote by n ∈ {1, · · · , N} the
nth most available channel. Every channel n can appear, when observed, in one of these
two possible states {idle, busy}. In the rest of the dissertation, we associate the numerical
value 0 to a busy channel and 1 to an idle channel. The temporal occupancy pattern of
every channel n is thus supposed to follow an unknown Bernoulli distribution θn. Moreover,
the distributions Θ = {θ1, θ2, · · · , θn, · · · , θN} are assumed to be stationary.

In this thesis, we tackle the particular case where PUs are assumed to be synchronous
and the time t = 0, 1, 2 · · · , is divided into slots. We denote by St the channels’ state at
the slot number t: St = {S1,t, · · · , SN,t} ∈ {0, 1}N . For all t ∈ N, the numerical value
Sn,t is assumed to be an independent random realization of the stationary distributions
θn ∈ Θ. Moreover, the realizations {Sn,t}t∈N drawn from a given distribution θn are
assumed to be independent and identically distributed. The expected availability of a
channel is characterized by its probability of being idle. Thus, we define the availability
µn of a channel n, for all t as:

µn
∆
=E[θn] = P(channel n is free) = P(Sn,t = 1) (4.1)

where µ1 > µ2 ≥ · · · ≥ µn ≥ · · · ≥ µN without loss of generality.
At every slot number t, the SU has to choose a channel to sense. To do so, the cognitive

agent relies on the outcome of past trials. We denote by it the gathered information until
the slot t. We assume, for simplicity reasons, that the SU can only sense one channel per
slot. Thus selecting a channel can be seen as an action at ∈ A where the set of possible
actions A = {1, 2, . . . , N} refers to the set of channels available.

(5)We would like to stress that although there exists a paper dealing with MAB modeling for OSA [131]
(found online in 2008 on Arxiv), the found paper did not consider imperfect sensing. Thus, one of our
contributions is to suggest such a model. Of course, anticipating next sections, the analysis of the impact
of sensing errors on the behavior of the chosen algorithms is also part of our contributions.
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Thus, we can model the CA as a policy π that maps for all t ∈ N, the information it
to an action at:

at = π(it) (4.2)

The outcome of the sensing process is denoted by the binary random variable Xt ∈
{0, 1}. In the case of perfect sensing, Xt = Sat,t, where at refers to the channel selected at
the slot number t. However since we assumed that sensing errors can occur, the value of
Xt depends on the receiver operating characteristic (ROC). The ROC defines the accuracy
and the reliability of a sensor through the measure of two types of errors: on the one hand,
detecting a PU on the channel when it is free usually referred to as false alarm. On the
other hand, assuming the channel free when a PU is occupying it usually referred to as
miss detection. Let us denote by ǫ and δ, respectively the probability of false alarm, and
the probability of miss-detection characterizing the CR equipment:

{

ǫ = Pfa = P (Xt = 0|Sat,t = 1)
δ = Pmd = P (Xt = 1|Sat,t = 0)

(4.3)

Finally, the outcome of the sensing process can be seen as the output of a random
policy πs(ǫ, δ, Sat,t) such that:

Xt = πs(ǫ, δ, Sat,t) (4.4)

The design of such policies is however out of the scope of this chapter. Thus we invite
the reader to refer to the survey [13] for a general overview on sensing techniques. In the
context of uncertainty, we invite the reader to refer to Chapter 3.

Depending on the sensing outcome Xt ∈ {0, 1}, the CA can choose to access the
channel or not. We denote by πa(Xt) ∈ {0, 1} the access decision, where 0 refers to access
denied and 1 refers to access granted. The access policy πa chosen in this chapter can be
described as: “access the channel if sensed available”, i.e. πa(Xt) = 1{Xt=1}(6).

Note that we assume the ROC to be designed such that the probability of miss detection
δ is smaller or equal to a given interference level allowed by the primary network, although
{ǫ, δ} are not necessarily known (7).

Moreover, we assume that if interference occurs, it is detected and the transmission
of the secondary user fails. When channel access is granted, the CA receives a numerical
acknowledgment. This feedback informs the CA of the state of the transmission {suc-
ceeded, failed}. Finally, we assume that for every transmission attempt, a packet Dt is
sent. At the end of every slot t, the CA can use the different information available to
compute a numerical value, usually referred to as reward rt in the MAB literature. This
reward informs the CA of its current performance. The form of the reward as well as the
evaluation of the selection policy π are described and discussed in the next subsection.

Finally, the sequential steps described hereabove formalize the OSA framework we are
dealing with as a MAB problem with sensing errors. A schematic representation of a CA
observing and accessing an RF environment is illustrated in Figure 4.3.

(7)As discussed in Chapter 3, in case of uncertainty, it might be difficult to know the exact values of {ǫ,
δ}. We show in Section 4.5 that the UCB1 algorithm does not require that knowledge to converge.

(7)Indicator function: 1{logical_expression}={1 if logical_expression=true ; 0 if logical_expression=false}.
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Figure 4.3: Representation of a CA observing and accessing an RF environment.

4.3.2 General Performance Evaluation of a Learning Policy and Opti-

mality

The purpose of this subsection are two-fold. On the one hand, we explicit the notions of
reward and regret with the mathematical model introduced in the previous subsection as
first described in our paper [68]. On the other hand, we summarize the main criteria and
results that enable a fair analysis of learning algorithms. These latter results are the fruit
of an early study conducted by T.L. Lai . and H. Robbins in Paper [100] in 1985.

Thus, at the end of every slot t, the CA can compute a numerical value that evaluates
its performance. In the case of OSA, we focus on the transmitted throughput. Relying
on the previously introduced notations, the throughput achieved by the SU at the slot
number t can be defined as:

rt
∆
=DtSat,tπa(Xt) (4.5)

which is the reward considered in this particular framework. For the sake of simplicity we
assume a normalized transmitted packet for all channels and all t, Dt = 1 bit. We can
notice that the choices made on the access policy πa and Dt, simplify the expression of
the reward such that:

rt = Sat,tXt (4.6)

where rt equals 1 only if the channel is free and the CA senses it free. Consequently, the
expected reward achievable using a channel at ∈ A can be easily computed:

E[rt] = P(Xt = 1|Sat,t = 1)P(Sat,t = 1) = (1− ǫ)µat
(8) (4.7)

We refer to the channel µ1 = maxn µn, that maximizes the reward, as optimal whereas
the other channels are said to be suboptimal. We usually evaluate the performance of a
policy by its expected cumulated throughput after t slots defined as:

W π
t = E

[

t−1
∑

m=0

rm

]

(4.8)

An efficient policy π is assumed to maximize the quantity W π
t .

An alternative representation of the expected performance of a policy π until the slot
number t is described through the notion of regret Rπ

t (or expected regret). The regret
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is defined as the gap between the maximum achievable performance in expectation, if the
most available channel is chosen, and the expected cumulated throughput achieved by the
policy π:

Rπ
t =

t−1
∑

m=0

max
at∈A

E[rt]−W π
t (4.9)

Hence, we define the regret of a channel selection policy π when sensing errors can occur
as:

Rπ
t =

t−1
∑

m=0

(1− ǫ)µ1 −W π
t (4.10)

The general idea behind the notion of regret can be explained as follows: if the CA
knew a priori the values of {µn}n∈A, the best choice would be to always select the op-
timal channel µ1. Unfortunately, since usually the CA lacks that information, it has to
learn it. For that purpose, the CA explores the different channels to acquire better esti-
mations of their expected availability. While exploring it should also exploit the already
collected information to minimize the regret during the learning process. This leads to an
exploration-exploitation trade-off. Thus, the regret represents the loss due to suboptimal
channel selections during the learning process.

Maximizing the expected throughput is equivalent to minimizing the cumulated ex-
pected regret. In the rest of the chapter, we use the following equivalent formula of the
regret:

Rπ
t = (1− ǫ)

N
∑

n=1

∆n.E [Tn(t)] (4.11)

where ∆n = µ1 − µn and Tn(t) refers to the number of times the channel n has been
selected from instant 0 to instant t− 1.

Finally we introduce a loss function Lπ(t) that evaluates the loss of performance due
to sensing errors compared to the perfect sensing framework.

Lπ(t) = tmax
at∈A

µat −W π
t (4.12)

An efficient policy is one that maximizes the cumulated expected reward of the gambler.
In order to provide a general and fair formalization of the the notion of efficiency, Lai and
Robbins introduced the notions of regret as well as beta-consistency [100]. Using our own
words we can define both notions as:

Definition 10 (β-Consistent Strategy). A policy π is said to be β−consistent, 0 < β ≤ 1,
if it satisfies:

lim
t→∞

E[Rπ
t ]

tβ
= 0 (4.13)
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This notion gives information on the growth rate of the regret.
We usually expect a good policy to be at least 1-consistent, i.e.:

lim
t→∞

∑t−1
m=0 rm
t

= max
at∈A

E[rt] (4.14)

As a matter of fact, this property ensures that asymptotically the mean expected reward
is optimal.

In their seminal paper, Lai and Robbins [100] defined an uniformly good policy as a
β−consistent policy for all positive β. A fundamental result shows that any uniformly good
policy suffers, in expectation, a regret that grows asymptotically at least as a logarithmic
function of the number of iterations. In other words, there exists a fundamental real
positive constant Cθ that depends on the reward distributions involved, such that for any
uniformly good policy π, we can write:

lim
t→∞

Rπ
t

ln(t)
≥ Cθ (4.15)

Moreover Lai and Robbins [100] provided explicit formulas of leaning policies, for several
distributions (Bernoulli and Normal distributions for instance) able to achieve such bounds.
However the policies introduced in [100] were based on complex indexes whose computation
is burdensome. The machine learning community dealing with MAB issues aim at finding
simple policies π verifying at least:

lim
t→∞

Rπ
t

ln(t)
≥ Cπ

θ (4.16)

where Cπ
θ is real positive constant that depends on both the reward distributions involved

as well as the learning policy. Note that we always have Cπ
θ ≥ Cθ. Since the growth rate

of the regret still follows a logarithmic function of the number of trials, such policies are
said to be order optimal.

Considering the context of OSA and its related constraints as described, in Subsection
4.1.1, we focus on a particular class of order optimal policies. As explained in Section 4.2,
these algorithms are particularly simple to compute, have strong mathematical guaranties
uniformly over time, rather than only asymptotically, and show satisfactory behavior since
they are order optimal. Thus we chose to illustrate them in this Chapter. Then, we shall
focus on the performances of the UCB1 on several scenarios.

4.3.3 Sample Mean Based Upper Confidence Bound Algorithms and

Theoretical Performance Results

Building a Cognitive Agent for a CR device requires to find a policy π for this agent that
offers satisfactory performances. In this section, we describe an approach for designing
well-performing policies π when the CA faces a decision problem that can be formalized
as a Multi-Armed Bandit problem, as we believe it is often the case for cognitive radio’s
decision making problems. The approach is based on the computation of Upper Confidence
Bound (UCB) indexes introduced first in [100, 101]. From the UCB indexes computed from
the information vector it at time t, the action at can be inferred in a straightforward way.
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Parameters: N , exploration coefficient α
Input: it = [I0, r0, I1, r1, . . . , It−1, rt−1]
Output: at
Algorithm:

If: t ≤ N return at = t+ 1
Else:

• Tn(t)←
∑t−1

m=0 1{Im=n}, ∀n

• ATn(t) ←
√

α. ln(t)
Tn(t)

, ∀n

• BTn(t) ←W Tn(t) +ATn(t), ∀n

• return at = argmax
k

(BTn(t))

Figure 4.4: A tabular version of a π(it) policy using a UCB1 algorithm for computing
actions at.

As we will see later in this section, these UCB based policies offer good performance
guarantees and lend themselves to software implementations compliant with the limited
computational resources of a CA embedded in a CR device. The empirical performances
of these policies will be evaluated on academic CR and OSA problems in Section 4.4.

At every instant t, an upper confidence bound index is computed for every machine n.
This upper confidence bound index, denoted by BTn(t), is computed from it and gives an
optimistic estimation of the expected reward of machine n.

Let BTn(t) denote the index of the policies we are dealing with:

BTn(t) = W Tn(t) +ATn(t) (4.17)

where W Tn(t) is the sampled mean of the machine n after been played Tn(t) times at the
step t, and ATn(t) is an upper confidence bias added to the sampled mean.

A policy π computes from it these indexes from which it deduces an action at as follows:

at = π(it) = argmax
n

(BTn(t)) (4.18)

In the rest of this section, we describe two specific upper confidence biases ATn(t) that
are illustrated in our simulations in Section 4.4 and discuss the theoretical properties of
the policies associated to these indexes.

4.3.3.1 UCB1

When using the following upper confidence bias:

ATn(t) =

√

α. ln(t)

Tn(t)
(4.19)
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with α > 1, we obtain an upper confidence index referred to as UCB1 in the literature.
Under some mild assumptions, given in the following theorem, a UCB policy (cf. tabular
version Figure 4.4) using this index is order optimal uniformly over time.

Theorem 1. (cf. [103] for proofs) For all N ≥ 2, if policy UCB1(α > 1) is run on N
machines/arms having arbitrary reward distributions θ1, · · · , θN with support in [0, 1],
then:

E[Rπ=UCB1
t ] ≤

∑

n:∆n>0

4.α

∆n
. ln(t) (4.20)

Note that a similar theorem could be written if the reward distributions had a bounded
support rather than a support in [0, 1]. Moreover, in 2009, Paper [130] showed that for
α > 0.5, UCB1 algorithm remains order-optimal, whereas for α < 0.5 the algorithm has a
polynomial regret. Consequently α = 0.5 appears a fundamental limit on the mathematical
guaranties provided by the machine learning community.

4.3.3.2 UCBV

A UCBV policy refers to a policy which uses as upper confidence bias:

ATn(t) =

√

2ξ.Vn(t). ln(t)

Tn
+

3.c.ξ. ln(t)

Tn(t)
(4.21)

The UCBV upper confidence index was first introduced in [103]. In the same research
paper, the authors have also proven the theorem given hereafter which shows that UCBV

policies are also order optimal uniformly over time.

Theorem 2. (cf. [103] for proofs) For all N ≥ 2, if policy UCBV (ξ ≥ 1, c = 1) is run on
N machines/arms having arbitrary reward distributions θ1, · · · , θN with support in [0, 1],
then ∃Cξ s.t.

E[Rπ=UCBV
t ] ≤ Cξ

∑

n:∆n>0

(
σ2
n

∆n
+ 2). ln(t) (4.22)

Actually a similar result would still hold if c 6= 1 but satisfies nonetheless 3.ξ.c > 1.
By anticipating on the simulation results reported in the next subsection to illustrate

the performance of these algorithms, due to the chosen parameters for the algorithms, the
UCBV index performs better on our test problem than the UCB1 index. This is due to the
fact that by adapting its behavior according to the empirical variance of every arm (see the

term
√

2ξ.Vn. ln(t)
Tn(t)

in Equality 4.21), a UCBV based policy sems to be able to better address
the exploration-exploitation tradeoff. Other authors have also noticed that by using upper
confidence bound indexes based on the empirical variance, better performances could be
obtained (see, e.g., [102]).

However, when tuning the parameter of UCB1, α = 0.6, UCB1 performs much better
than the UCBV on the horizon that we could simulate (around 107 slots). As a matter
of fact, with a smaller parameter, UCB1 algorithms explore less suboptimal channels and
focuses on the optimal one.
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4.3.4 Complexity

A Cognitive Agent which exploits the tabular version of the UCB1 algorithm given in
Figure 4.4 or its UCBV counterpart will have at every instant t to carry out a number
of operations which is proportional to t and store an information vector whose length
grows linearly with t. Therefore, after a certain time of interaction with its environment,
a Cognitive Agent having limited computational and memory resources won’t be unable
to store the information vector it and process it fast enough. To overcome this problem,
one can program the UCB1 and UCBV policy in such a way that part of the solution
computed at time t can be used at time t + 1, and so that the time required to compute
a new solution can be bounded and the memory requirements independent from t.

This can be achieved by noticing that the upper confidence bounds from which the ac-
tion at is computed at time t (see Equations 4.19 and 4.21) are functions of the arguments
W Tn(t), Tn(t) and also Vn(t) for UCBV and that these arguments can be computed from
the only knowledge of their values at time t−1, at−1 and rt−1. Indeed if n = at−1 we have:

Tn(t) = Tn(t− 1) + 1 (4.23)

D
∆
=rt −W Tn(t) (4.24)

W Tn(t) = W Tn(t) +
D

Tn(t)
(4.25)

Vn(t) =
Vn(t− 1) +D.(rt −W Tn(t))

Tn(t− 1)
(4.26)

and if k 6= It−1, Tk(t), Xk,Tk(t), Vk(t) are equal Tk(t−1), Xk,Tk(t−1), Vk(t−1), respectively.

4.4 Algorithm Illustration, Limits and Discussion

In papers [36, 67], we suggested the use of the algorithms UCB1 and UCBV to tackle CR
related learning problems in general and OSA access related problems in particular. More-
over we illustrated their performances through several simulations. The paper considered
flawless detectors. In other words the detectors parameters {ǫ, δ} were both chosen equal
to 0.

Note that for the sake of clarity, notation and definition redundancies might occur in
the next subsections.

4.4.1 Configuration Adaptation Problem

This illustration is extracted from our early work published in 2009 in [36]. We con-
sider Configuration Adaptation Problem, where the performance of several configuration
is perceived as a Gaussian or truncated Gaussian distribution. The illustration presented
hereafter is reported as described in our paper [36], in 2009.
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Figure 4.5: UCB based policies and dynamic configuration problem: simulation results.
Figure on top plots the average cumulated reward as a function of the number of slots
for the different UCB based policies. The figures on the bottom represent the number of
times every configuration has been selected after a specific number of time slots. From the
left to the right, 100 slots, 250 slots, 2500 slots and 5000 slots.
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1-CR equipment:

• N possible configurations Cn, n ∈ {n = 1, ..., N}, verifying the operational con-
straints but with unknown performances.

• A Cognitive Agent: can learn and make decisions to help the CR equipment to im-
prove its behavior.

2-Time representation:

• Time divided into slots t = 0, 1, 2, ... (Figure 4.7)

• At the beginning of every slot t, the CA decides to reconfigure or not the CR equip-
ment.

3-Environment and performance evaluation:

• Typical observations: SNR, BER, network load, throughput, spectrum bands, etc.

• A numerical signal is computed at the end of every slot t and informs the CA of
the performance of the CR equipment. The numerical signal obtained when using
configuration Cn is a function of the observations and the configurations.

• The numerical results computed with a configuration Cn are assumed to be i.i.d. and
drawn from an unknown stochastic distribution θn.

Figure 4.6: Description of the Dynamic Configuration Adaptation problem.

Figure 4.7: Slot representation for a radio equipment controlled by a CA. A slot is divided
into 4 periods. During the first period , the CA chooses the next configuration. If the new
configuration is different from the current one, a reconfiguration is carried out during the
second period before communicating. If a reconfiguration is not needed, the CR equipment
keeps the current configuration to communicate. At the end of every slot, the CA computes
a reward that evaluates its performance during the communication process. It is assumed
here that τ1 + τ2 +τ4 are small with respect τ3.
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The followed experimental protocol is the following. The CA can choose between 25
configurations. To every of these configurations is associated a reward distribution which
is Gaussian distribution truncated to the interval [0,1]. The pdf of such a distribution is
given by

Gauss(µ,σ2)(x)

EX∼Gauss(µ,σ
2)[1{X∈[0,1]}]

(4.27)

where Gauss(µ,σ2)(.) refers to the pdf of a non-truncated Gaussian distribution having a
mean µ and a standard deviation σ. The parameter σ has always been chosen equal to
0.1 in our simulations. The parameter µ differs from one distribution to another and has
been selected by drawing a number at random and with uniform probability in [0, 1] for
every configuration.

Every numerical result reported hereafter is the average of the values obtained over
100 experiments. For each experiment, new reward distributions are first generated. To
ease the presentation of the results, we will in each experiment refer by n the configuration
to which is associated the reward distribution having the nth smallest mean.

In this section, the parameter α of the UCB1 algorithm is chosen either equal to 1.2
(in which case the algorithm is referred to as UCB1(1.2)) or to 2 (referred to as UCB1(2)).
The parameters ξ and c of the UCBV algorithm are equal to 1 and 0.4, respectively.(9)

The simulation results are reported in the figures of this subsection. Figure 4.5-top
shows the evolution of the average cumulated regret for the different UCB policies. For
all three policies, the cumulated regret first increases rather rapidly with the slot number
and then more and more slowly. This shows that UCB policies are able to process the
past information in an appropriate way such that configurations leading to high rewards
are favored with time. This is further illustrated by the four graphics on the bottom of
Figure 4.5. These graphics show the number of times every individual configuration has
been selected after a specific slot number. As we observe, the UCB policies indeed select
more often the best configurations when the slot number increases. The coefficient α
seems to affect significantly the performance of the UCB1 policies (see Figure 4.5). This
in turn suggests that tuning well the parameters of UCB based policies is important. With
respect to this particular parameter α, theory suggests to take α as close as possible to 1
to have the smallest possible upper bound on the expected cumulated regret. As we can
observe, we have indeed obtained better results with the smallest value of α considered in
our simulations.

In this academic problem, the number of possible configurations was relatively small
(25). One may wonder how the UCB policies would scale up to larger sets of configu-
rations. In an attempt to answer this question, we have run also simulations by using
50 configurations. The results are reported on Figure 4.8. The bold curve represents for
different number of slots the percentage of times the optimal configuration was selected
when using 50 configurations. The dashed curve shows the results obtained with 25 con-
figurations. As we observe, the dashed curve stands well-above the plain one when the
number of slots is small. When the numbers of slots starts growing, the distance between
both curves decreases and almost vanishes after a large number of slots.

(9)With such values for c and ξ, the condition 3.ξ.c > 1 is satisfied and the bound of Equation 4.22 of
the expected cumulated regret still holds.
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Figure 4.8: Percentage of times a UCB-based policy selects the optimal configuration.

These results suggest that when dealing with larger set of configurations, UCB based
policies still lead to acceptable performances if the number of slots is large enough.

4.4.2 OSA under perfect Channel State Information

In Chapter 2, we defined OSA as a particular instance of DCA problems. In this subsection,
we provide results similar to the previous subsection. However since spectrum availability
is the interesting resources, the distribution of the rewards is modeled through a Bernoulli
distribution as formalized in Section 4.3.

Figure 4.9-top shows similar results as Figure 4.5. This is further illustrated by the
3 graphics on the bottom of Figure 4.9. These graphics show the average throughput
achieved by the UCB policies. As we observe, the throughput increases with time. Ac-
tually, one has the theoretical guarantee that it will converge to 0.9, which is the largest
probability of availability of a channel. Figure 7 shows the percentage p of times a UCB

policy selects the optimal channel until the slot number t (p = 100.
∑t−1

m=0 1{am=K}
t ). As

one can observe, this percentage tends to get closer and closer to 100 as the slot number
increases.

Although, both UCB policies converge to the optimal channel (i.e. the most avail-
able channel), their learning process is different. As a matter of fact, as illustrated in
Figure 4.10, while UCB1 seems to have a balanced behavior between exploration and
exploitation, UCBV tends to spend more time collecting information on the different
channels in a first phase (around 300 slots in our case), then exploiting them efficiently
taking advantage of the empirical variances. Consequently even though, the behavior of
UCB1 seems better in the first slots, a UCBV based agent is actually having a more
satisfying behavior from the user point of view. As a matter of fact, one might note that



80 Learning for Opportunistic Spectrum Access: A multi-Armed Bandit Framework

Figure 4.9: UCB based policies and opportunistic spectrum access problem: simulation
results. Figure on top plots the average cumulated reward as a function of the number
of slots for the different UCB based policies. The figures on the bottom represent the
evolution of the normalized average throughput achieved by these policies.



4.4 Algorithm Illustration, Limits and Discussion 81

Figure 4.10: Percentage of time a UCB-based policy selects the optimal channel in case of
perfect channel state information at every iteration t.
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starting from a slot number T0 where the distance between the two curves is maximal
(around 300 slots), the growth rate of UCBV ’s curve increases faster than UCB1’s curve.
This means that the UCBV based agent selects more often the best channel than UCB1

which also leads to good performance in terms of regret and throughput.
In our simulations results, we found out that UCB1(α > 1) seems to outperform UCBV

at the beginning of the learning process and that, afterwards, UCBV outperforms UCB1.
This may be explained by the fact at the beginning of the learning UCBV spends more
time collecting information on the different channels than UCB1 since it also depends on
the variances of the different channels and not only on their empirical mean. During this
phase, it mainly has a pure exploration strategy while UCB1 starts already exploiting the
information that has been gathered

However, once it starts having good estimates of these variances, it addresses the
exploration-exploitation tradeoff, in this example, in a more efficient way than UCB1.

The performance of UCB1 algorithm highly depends on its exploration parameter α.
Relying on recent results in [130], when the exploration parameter of UCB1 is smaller
than 1, viz., 1 > α > 0.5, UCB1 is still order optimal while it seems to always out perform
UCBV algorithm on the time horizon that we were able to simulate (around 107 slots).

Finally, it is worth noticing that although some algorithms still have no convergence
proofs, they seem to out perform those that do. We can refer to UCBtuned for instance.
This matter led the machine learning community to investigate the performance of UCB
algorithms beyond the limits and constraints fixed by the theory [132].

4.4.3 Limits of the Theory and Discussion

In the case of UCB1 for instance, we usually consider that it is risky to chose an exploration
parameter α smaller than 0.5. However, at the ICML2011 conference, J.-Y. Audibert and
R. Munos presented an empirical evaluation suggesting that the lowest regret in average
is observed for a parameter α ≈ 0.2 as illustrated in Figure 4.11. The results suggest that
for non infinite horizons, small values of α, that seem to contradict the limits imposed by
the theory, can lead to better results that those predicted by the theory.

The fact is that it does not contradict theory. As a matter of fact, in the case of UCB1

algorithms for instance, for α > 0.5, the algorithm is order optimal; however for α < 0.5
theory shows that the expected cumulated regret increases as a sub-linear function. Yet,
there exists a finite interval where the sub-linear function is smaller than the logarithmic
function predicted by the theory. This explains why for values of α close to 0.2, and
for relatively short time horizons, the average computed regret is smaller that the regret
computed with parameters larger than 0.5.
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Figure 4.11: Presented by J.-Y. Audibert and R. Munos at ICML 2011. Averaged empirical
Regret plotted as a function of the exploration parameter α. It considers N = 5 machines
and a time horizon of 1000 slots. The results suggest that for non infinite horizons, small
value of α, that seem to contradict the limits imposed by the theory, can lead to better
results than those predicted by the theory.
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4.5 Opportunistic Spectrum Access with Imperfect Sensing

In this Section, we analyze the impact of sensing errors on the performances of UCB1

algorithm.

4.5.1 UCB1 Performance Analysis

Relying on the general model provided in Section 4.3, we provide in this section the proof
of the convergence of UCB1 algorithms in the case of OSA scenarios with sensing errors.

The following theorem shows that although the CA suffers imperfect sensing, it still
can converge quickly to the most available channel.

Theorem 3 (Logarithmic suboptimal channel selection). Let us consider a receiver with
sensing characteristics {ǫ, δ}, and an “access the channel if sensed available” policy. We
consider the instantaneous normalized throughput as the CA’s reward.

Then for all N ≥ 2, if the receiver runs the UCB1(α > 1) policy on N channels having
Bernoulli occupation pattern distributions θ1, · · · , θN with support in [0, 1], the expected
number of selections E [Tn(t)] for all suboptimal channels n ∈ {2, · · · , N} after t slots is
upper bounded by a logarithmic function such that:

E [Tn(t)] ≤
4α ln(t)

((1− ǫ)∆n)
2 (4.28)

Proof. we provide an intuitive proof (a full proof is provided in Chapter 5 as a particular
case of the Multi-secondary user scenario):

Let us consider Bernoulli occupation pattern distributions Θ = {θ1, · · · , θN} with sup-
port in [0, 1]. As noticed through Equation 4.4, SUs’ sensors can be seen as functions
πs(ǫ, δ, ·) with parameters {ǫ, δ} that map a random realization Sn,t drawn form the dis-
tribution θn, at the slot number t ∈ N, into a binary value Xt ∈ {0, 1} such that:

Xt = πs(ǫ, δ, Sn,t) (4.29)

Let us define the set of reward distributions Θ̃ = {θ̃1, · · · , θ̃N} such that: ∀t ∈ N, the
reward rt = Sn,tXt computed when the channel n is selected follows the distribution θ̃n.
Then the distributions Θ̃ = {θ̃1, · · · , θ̃N} are bounded distributions with support in [0, 1].

Moreover let us define:

∀n ∈ {1, 2, · · · , N}, µ̃n
∆
=E[θ̃n] (4.30)

Under the assumptions of this theorem, we can write for all n ∈ {1, 2, · · · , N}:
{

µ̃n = (1− ǫ)µn

∆̃n = (1− ǫ)∆n
(4.31)

Consequently we can apply the following theorem (Cf. [103] for proof or in Chapter 5
as a particular case of the Multi-secondary user scenario):

For all N ≥ 2, if policy UCB1(α > 1) is run on N channels having arbitrary reward
distributions θ1, · · · , θN with support in [0,1], then:

E [Tn(t)] ≤
4α

∆2
n

ln(t) (4.32)
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Finally, by substituting: µn ⇋ (1− ǫ)µn and ∆n ⇋ (1− ǫ)∆n we obtain the stated result:

E [Tn(t)] ≤
4α ln(t)

((1− ǫ)∆n)2
(4.33)

The consequences of Theorem 3 are twofold: on the one hand as for the case of perfect
sensing UCB1 policies, applied on OSA scenarios with sensing errors, spend exponentially
more time probing the optimal channel than suboptimal channels(10). On the other hand,
we note that the exploration phase, characterized by the time spent on suboptimal channels
increases with a scale 1

(1−ǫ)2
compared to the perfect sensing framework. Thus, as expected

the accuracy of the sensor is crucial in order the maximize SUs’ profit. This last statement
partially motivated our work provided in Chapter 3. As a matter of fact it aims at allowing
higher observation accuracy - better control- in the case of noise uncertainty.

The consistency of UCB1 algorithms, when their learning process is disturbed with
sensing errors, can be generalized to other learning algorithms. As a matter of fact,
the provided proof relies on a key analysis: the detector modifies the observed channels’
respective qualities homogeneously. Their observed quality is scaled by a factor (1 − ǫ).
consequently, the observation process does no modify the order of the channels: the most
available channel is still observed as such. Therefore, we can state that the learning
algorithm still converge to the optimal channel in spite of the errors.

Corollary 1 (Regret and Loss function). Assuming that we verify the assumptions and
conditions of Theorem 3, the regret and the loss function can be upper bounded as follows:











Rπ
t ≤

∑N
n=1

4α ln(t)
((1−ǫ)∆n)

Lπ(t) ≤ ǫt+
∑N

n=1
4α ln(t)

((1−ǫ)∆n)

(4.34)

Proof. First,we can note that:
Lπ(t) = ǫt+Rπ

t (4.35)

The rest of the proof is an immediate application of the result of Equation 4.28 of Theorem
3, to Equation 4.11 and Equation 4.12.

The first result of the corollary shows that the regret, as defined in machine learning,
is still upper bounded by a logarithmic function of the slot number t. However, as for
E[Tn(t)], due to sensing errors, the regret increases by a scaling factor equal to 1/(1− ǫ).
The second result shows that compared to the perfect sensing framework, the SU suffers
unavoidable linear expected loss due to sensing errors.

(10)Note that E [Tn(t)] only depends explicitly on ǫ because of the feedback. This latter avoids considering
failed transmissions as rewards (Equation 4.7)!
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Figure 4.12: Percentage of time the UCB1-based CA selects the optimal channel under
various sensing errors frameworks (over 10 available channels).

4.5.2 Simulation Results

In this section we present and comment simulation curves focusing on the regret and on
the optimal channel selection. The curves compare the behavior of the UCB1 algorithm
under various sensing characteristics.

We consider, in our simulations, one SU willing to exploit a pool of 10 channels.
The parameters of the Bernoulli distributions are [µ1, µ9, . . . , µ10] = [0.9, 0.8, 0.8 : −0.1 :
0.1]. These distribution characterize the temporal occupancy of these channels. To avoid
causing interference to PU’s, we assume that an adequate δ is guaranteed. Since, ǫ and
δ are related to one another through their ROC, the values of ǫ are imposed depending
on the channels’ conditions.(11) In order to evaluate the impact of these parameters on
the CA’s behavior, we chose to simulate the UCB1 algorithm with four different sensors:
ǫ = [0, 0.1, 0.25, 0.4]. Moreover, in order to respect the conditions stated in Theorem 3,
UCB1 was run with the parameter α = 1.2. Every numerical result reported hereafter is
the average of the values obtained over 100 experiments.

Figure 4.13 shows the evolution of the average regret achieved by the UCB1 policy
under various sensing characteristics. As expected (Cf. Corollory 1), we observe that the
regret first increases rather rapidly with the slot number and then more and more slowly.
We remind that the smaller the regret is, the better is the algorithm behaving. This shows
that the UCB policy is able to process the past information in an appropriate way even if
there are sensing errors such that most available resources are favored with time. Actually,
one has the theoretical guarantee that it will converge to (1 − ǫ)µ1, which is the largest

(11)The sensing capabilities of the SU are fixed by the parameter ǫ. Since we only evaluate, in this section,
the regret and the optimal channel selection, we purposely ignore the parameter δ since it does not appear
in the theoretical results. Note however that in real scenarios, ǫ and δ are related to one another.
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Figure 4.13: UCB1 algorithm and Opportunistic Spectrum Access problem with sensing
errors: regret simulation results.

probability of availability of the optimal channel within the herein modeled imperfect
sensing framework. We however note that the sensing errors increase the cumulated regret.
The smallest regret is achieved as expected in the case of perfect sensing (ǫ = Pfa = 0).
Moreover, we can notive that the ratio of the regret in the case of perfect sensing and in
the case of sensing errors characterized by ǫ 6= 0 is approximately equal to 1/(1− ǫ) which
supports the theoretical results.

The optimal channel selection percentage p achieved by the UCB1 algorithm until

the slot number t is illustrated in Figure 4.12, where p = 100.
∑t−1

m=0 1{am=1}
t . As one can

observe the percentage of optimal channel selection increases progressively and tends to
get closer and closer to 100% as the slot number increases.

As for the regret analysis, we observe that the performance of the UCB1 algorithm
decreases when the Pfa increase. Thus, the UCB1 with perfect sensing performs best.
The increasing rate of the other curves is slower depending on their sensing capabilities.
As proven in the theoretical analysis provided hereabove, all UCB1 algorithms converge
to the best channel, however the less accurate is their sensing outcome, the slower becomes
their convergence rate.

4.6 Simulink based Reinforcement Learning Scenario

This scenario is described in our Paper [133] and aims at illustrating a more realistic frame-
work. For that purpose, primary users are modeled through a OFDMA network, while
the secondary user relies on an energy detector and UCB1 algorithms is order to exploit
found communication opportunities. The results of this scenario support the theoretical
results provided in Section 4.5.
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4.6.1 Primary Network: OFDM

In our simulation model an OFDM transmitter is used to represent the bands’ occupancy
by primary users. As a matter of fact, OFDM enables to simulate a large spectrum which
is assimilated to the spectrum band that PUs and SUs can use and share. Consequently,
it is convenient to model independent primary transmitters by adjusting the OFDM sub-
bands occupancy relying on appropriate stochastic distributions {θn}n∈A and add SUs to
fill the spectrum holes left vacant by PUs.

As a matter of fact, the outputs {xm,t}m=Nsub−1
m=0 of the OFDM modulator with Nsub

sub-carriers affected with the weights {cm,t}m=Nsub−1
m=0 can be written as:

xm,t =

Nsub−1
∑

l=0

cm,te
2πj l

Nsub
m

(4.36)

Within our cognitive radio model, the Nsub sub-carriers are divided among the PUs to
design N channels accessible to the SUs. We assume that the value Nsub/N is an integer.
In order to simulate the extinguishing and the turning on of each virtual transmitter, a
part of the model consist in setting to zero subsets of the sub-carriers. Thus, we can write
Equation 4.36 as follows:

xm,t =
N−1
∑

n=0

Sn,t





Nsub/N−1
∑

l=0

e
2πj( n

N
Nsub+l) m

Nsub



 (4.37)

In this section, we consider an OFDM spectrum divided into 16 channels such that
their non-occupancy probabilities verify: [µ1, · · · , µ16] = [0.1, 0.1 : 0.5 : 0.9](12).

4.6.2 Sensing: Energy Detector

In our work, we chose to implement the Neyman-Pearson Energy Detector (NP-ED) as
described in Chapter 3. It has been extensively analyzed [94] for its properties as a semi-
blind low complexity spectrum sensor, since it ignores the characteristics of the received
signals and only relies on the perceived energy of the signal (in a given band). The main
detection process relies on the comparison of the perceived energy, Tt at the slot t, to
a fixed threshold that depends on the desired performances of the detector as well as
the noise power level. The following equations remind us of the expressions of Pfa (also
referred to by the letter ǫ) and Pmd,t:







Pfa = 1− Fχ2
M

(

ξ(αfa)

σ2
n

)

Pmd,t = Fχ2
M

(

ξ(αfa)

σ2
n+σ2

x,t

)

where Fχ2
M
(·) refers to the cumulative distribution function of a χ2-distribution with M

degrees of freedom (i.e., the number of sensed samples in a slot), ξ(αfa) is the chosen
threshold to guaranty a false alarm equal to αfa and σ2

x,t refers to the power lever of
the received signal at the slot t. Finally for the illustration’s sake, we assume a perfect
knowledge of the noise level.

The next subsection, illustrates this study by presenting a display of the considered
Simulink model, a throughput curve as well as a channel selection curve.

(12)Namely [0.1, 0.1, 0.2, 0.25, 0.3, · · · , 0.8, 0.85, 0.9]
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Figure 4.14: Simulink model of the OSA framework. At the top, the OFDM transmitter
simulates the primary network (many independent transmitters). The cognitive agent
refers to the SU’s decision making engine. The dashboard presents the main parameters
regarding the current simulation.
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4.6.3 Simulation results

The simulations were conducted with an exploration parameter α = 1.2. This is considered
as very cautious. As a matter of fact, any α > 0.5 leads to an guarantied theoretical
converges. On practical scenarios, α = 0.5 would lead to the best results with a guarantied
converge to the optimal channels. Consequently, our results underestimate (on purpose)
the rate of convergence of UCB1. Thus, in these simulations, we aim at supporting the
previously introduced theoretical results rather than tuning UCB1 algorithm.

The complete model is summarized in Figure 4.14. In this snapshot, we can observe at
the top chain of the figure the primary network, while the SU is represented by its cognitive
agent (CA, i.e., the decision making engine of the CR). Note that at the reception chain,
the operations referred to as ‘Remove GI’ and ‘FFT’ are not needed. They are used
to validate the OFDM chain. Both signal detection and channel selection policies are
implemented in the block ‘Cognitive Agent’. Several display screens are added to monitor
the behavior and performance of the SU.

Figure 4.15 plots the average throughput of the secondary user. we can see, that it
grows quickly to the optimal expected performances. This implies that the CA converges to
the optimal channel. This is confirmed in Figure 4.16. As a matter of fact, we observe the
evolution of the channel selection process conducted by the SU. In this case, we consider
16 channels and 4000 slots. As expected, during the first iterations, the channel explores.
This appears in the quasi-uniform selection of the channels. Then, as the number of trials
grows, we observe that the proportion of selections of the channel 16, viz. the optimal
channel in this case, grows significantly. This can be understood as an often selection of
that channel during the remaining iterations, which means that the SU is exploiting (while
exploring) this resources. In this specific scenario, we can see that after 4000 iterations, the
CA selected the optimal channel almost 65 % of the time. Moreover the 3 best channels
are selected 80 % of the time. Finally, the UCB1 channel selection policy combined with
the energy detector seems to be efficient in this scenario, which concludes this section.

4.7 Conclusion

In this chapter, we briefly described the general concept of Multi-Armed Bandit and
applied it to Dynamic Configuration Adaptation as well as Opportunistic Spectrum Access
problems. We discussed different possible approaches to deal with sequential decision
making under uncertainty within the MAB framework. Thus, we chose to focus on the
performances of the algorithm UCB1 as it provides a satisfactory compromise between
complexity and mathematical guaranties. Several illustrations were provided to explore
and understand the behavior of the UCB1 algorithm.

Moreover, we introduced a general OSA model that takes into account sensing errors.
Then we proved that the UCB1 conserves its order-optimality; the convergence rate how-
ever slows as the sensing errors’ frequencies grow large. Once again, we illustrated the
theoretical results through several simulations and scenarios. The illustration aimed at
supporting the theoretical results while describing the empirical behavior of the learning
algorithm.

This chapter opens the ways to many possible research paths. As a matter of fact, one
cannot consider OSA in a CR context without taking into account CR networks. Moreover,
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Figure 4.15: Validation of the expected theoretical convergence to the optimal throughput
(i.e., (1− ǫ)(1− µ16) = 0.891 in this case).

Figure 4.16: Channel selection proportions: We observe the evolution of the channel
selection process conducted by the SU. In this case, we consider 16 channels and 4000
slots. In this specific scenario, we can see that after 4000 iterations, the CA selected the
optimal channel almost 65 % of the time. Moreover the 3 best channels are selected 80 %
of the time.
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in the case of fading, for instance, the reward distributions might not comply well with
the chosen algorithm. In order to answer these questions, we investigate in the next
chapters both issues. On the one hand, we show that in a collaborative network, UCB1

behaves well even in heterogeneous networks. On the other hand, we design and introduce
a new algorithm referred to as Multiplicative UCB (i.e., MUCB) to tackle exponential
distributions.
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In this chapter, we address the general case of a coordinated secondary network willing
to exploit communication opportunities left vacant by a licensed primary network. Since
secondary users (SU) usually have no prior knowledge on the environment, they need
to learn the availability of each channel through sensing techniques, which however can
be prone to detection errors. We argue that cooperation among secondary users can
enable efficient learning and coordination mechanisms in order to maximize the spectrum
exploitation by SUs, while minimizing the impact on the primary network. To this goal,
we provide three novel contributions. First, we formulate the spectrum allocation problem
through a general learning model that takes into account the observation limits of the SUs.
Second, we derive fundamental limits on the optimality of the Upper Confidence Bound
algorithm, in case secondary users can share the rewards and have symmetric goals and
communication capabilities. Third, we introduce a general coordination mechanism under
uncertainty based on the Hungarian algorithm and we show, through several simulations,
that it converges to the optimal channels that maximize the overall performance of the
Secondary Network (SN) without prior knowledge on its nature (symmetric or not).
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5.1 Introduction

The detection of opportunities and their exploitation in secondary networks can be chal-
lenging. On the one hand, the secondary users can have different perceptions of a same
opportunity depending on their observation abilities. Thus, a channel available with high
probability -offering substantial communication opportunities- could be discarded by a SU
unable to properly detect PUs’ activity. On the other hand, several SUs can be competing
for the same resources. Consequently, high interference can occur among them degrad-
ing the observed quality of the resources and the realized performance of the secondary
network.

This chapter addresses the spectrum allocation problem in secondary networks, through
the key concepts of learning, collaboration and coordination. In order to implement the
OSA paradigm in an efficient way, the SUs must be able to detect the communications
opportunities left vacant by incumbent users. Since usually no prior knowledge is available
on the occupancy pattern of the channels, learning abilities are needed. Between 2008 and
2011, several machine learning-based techniques have been proposed for spectrum alloca-
tion in secondary networks. Among these, the MAB techniques [100, 101, 102] introduced
discussed in Chapter 4 have gained an increasing interest, due to the possibility to derive
theoretical bounds on the performance of learning algorithms. However, the impact of in-
dividual sensing error on the convergence of the learning algorithm is far to be completely
explored. For this reason, in this chapter we consider a collaborative network environment,
where the secondary users can collaborate and share the information learnt on the occu-
pancy pattern of the channels. Collaboration is a key element in Cognitive Radio (CR)
networks [134, 135]. Here, we investigate if and how the utilization of collaborative tech-
niques can enhance the performance of the learning schemes, in order to enable secondary
users to fully and quickly exploit vacant resources. At the same time, while collaborative
learning is fundamental to mitigate the impact of PU interference, coordination among
SUs is required to guarantee optimal sharing of spectrum resources and to avoid inter-SU
interference. The coordinator entity can be either real or virtual, but it should guarantee
that -in the optimal configuration - a single SU is allocated per-channel.

In this chapter, we introduce and analyze a joint coordination-learning mechanism. We
state that the suggested mechanism enables secondary networks to deal with dynamic and
uncertain environment in spite of sensing errors. We propose three novel contributions in
this chapter. First, we formulate the spectrum allocation problem in secondary networks
as a special instance of the Multi-Armed Bandit (MAB) problem. and we propose to solve
it through the UCB1 algorithm discussed in Chapter 4. Compared to previous applications
of MAB techniques on OSA issues, we address the case of cooperative learning, i.e. SUs
share the rewards in order to speedup the convergence of the learning algorithm to the
optimal solution. Second, while learning PUs’ occupation patterns of each spectrum band,
we consider general coordination algorithm whose purpose is to allocate at every iteration
a unique SU per channel, in order to nullify the interference among SUs. The coordination
algorithm relies on a modified Hungarian algorithm [136], and our modification aims at
providing a fair allocation of the resources. Third, we derive some fundamental results
on the performance of collaborative learning schemes among SUs using Round Robin
based time division access scheme. More specifically, we demonstrate that -in a symmetric
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scenario where all SU have the same perception of the quality of the resources (yet with
sensing errors) (1)- the UCB1 algorithm can efficiently learn accessing optimal solutions
even without prior knowledge on the sensors performances. Both results, in the case of
homogeneous and heterogeneous environments are illustrated through several simulations.

The rest of this chapter is organized as follows:
Section 5.2 discusses the works related to this chapter and found in the open liter-

ature. Section 5.3 details the considered OSA framework. To deal with uncertainty, a
collaborative learning mechanism is proposed in Section 5.4. The considered coordination
mechanisms are modeled as instances of Job Assignment problems, and are detailed in
Section 5.5. The theoretical analysis of the joint learning-coordination framework is dis-
cussed in Section 5.6. Section 5.7 describes the collaboration mechanisms implicated in
this OSA context. Finally, Section 5.8 empirically evaluates the introduced coordination
and learning mechanisms, while Section 5.9 concludes the chapter.

5.2 Related Work

Several authors have already proposed to borrow algorithms from the machine learning
community to design strategies for SUs that can successfully exploit available resources.
We focus this brief overview on MAB related models applied to OSA problems.

To the best of our knowledge, the first extensive work that tackles spectrum band
allocation under uncertainty applied to OSA, was presented in [131]. The paper presented
various models where a single or multiple secondary user(s) aim(s) at opportunistically
exploiting available frequency bands. Among other models, a MAB model was suggested
in the case of perfect sensing (i.e., the state of a sensed channel is acquired without errors).
The authors of [131] suggested the use of the algorithm UCB1 and extended its results
to the case of multi-channel selection by a single user. The case of multi-secondary users
was also discussed. However a game theory based approach was suggested to tackle the
problem. Such approaches lead to asymptotic Nash equilibrium, that is known to be
difficult to compute in practice.

Since then, several papers suggested MAB modeling to tackle OSA related problems.
In [36, 67], we compared UCB1 and UCBV algorithm [103, 130] in the context of OSA
problems, while [70, 137] suggested to tackle multi-secondary users OSA problems modeled
within a MAB framework. The algorithm analyzed in [70, 137] was borrowed from [100].
This algorithm is designed for observations drawn from Bernoulli distributions and known
to be asymptotically optimal in the case of one single user. Thus, to adapt to OSA contexts,
they extended the results to multi-users first. Then proved that mild modification of the
algorithm, that take into account the frequencies of the errors (i.e., false alarms and miss
detection), maintain the order optimality of their approach. Finally, they also considered
the case of decentralized secondary networks and proved their convergence asymptotically.

Taking the sensing errors into account is a fundamental step to achieving realistic
OSA models. However considering that the error frequencies are perfectly known can be
limiting in some scenarios [49, 50, 51] (as discusted in Chapter 3). In the papers [68, 133](2),

(1)We refer to this scenario as symmetric or homogeneous scenario in the following
(2)These contributions of these papers are summarized in Sections 4.5 and 4.6.
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we showed that UCB1 does not require prior knowledge on the sensors’ performance to
converge. However, we showed that the loss of performance is twofold. On the one hand,
false alarms (i.e., detection of a signal while the band is free) lead to missing communication
opportunities. On the other hand, they also lead to slower convergence rates to the
optimal channel. Relying on these results, [138] provided complex empirical evaluations to
estimate the benefit of UCB1 combined with various multi-user learning and coordination
mechanisms (such as softmax-UCB approach for instance).

Within a similar context, an interesting contribution can be found in [69]. They ana-
lyzed, in the case of errorless sensing, the performance of UCB1 algorithms in the context
of several secondary users competing to access the primary channel. No explicit commu-
nication or collaboration is considered in this scenario, yet, once again, UCB algorithms
are proven to be efficient to handle this scenario and to have an order optimal behavior.

All hereabove mentioned papers, consider homogeneous environment (or sensing).
Namely, the frequency errors for all users and through all channels are the same. An
exception can be found in [71, 139]. As a matter of fact, they provided a general heteroge-
neous framework. It is worth mentioning that these papers do not consider a specific OSA
framework. They rather consider that the observed expected quality of a resource can be
different. Consequently, the suggested model tackles multi-users in a general MAB frame-
work rather than a specific application. The model, referred to as combinatorial MAB
framework, is solved relying on a modified version of UCB1 algorithms and the Hungarian
algorithm.

The work [139] is the closest to the one provided within this chapter(3). Unfortunately,
since their model presents a general framework, it does not explicitly take into account
the impact of sensing errors, nor does it show how would perform the algorithm in the
case of collaborative homogeneous networks. Moreover, the Hungarian algorithm was only
introduced as a possible optimization tool to solve their mathematical problem, but it was
not considered form a network coordination perspective. The latter problems is addressed
by this chapter.

5.3 Network model

In this section we detail the considered OSA framework. It generalizes the model presented
in Chapter 4.

5.3.1 Primary Network

The spectrum of interest is licensed to a primary network providing N independent but
non-identical channels. We denote by n ∈ D = {1, · · · , N} the nth channel. Every channel
n can appear, when observed, in one of these two possible states {idle, busy}. In the rest of
the chapter, we associate the numerical value 0 to a busy channel and 1 to an idle channel.
The temporal occupancy pattern of every channel n ∈ D is thus supposed to follow an
unknown Bernoulli distribution θn. Moreover, the distributions Θ = {θ1, θ2, · · · , θN} are
assumed to be stationary.

(3)The work presented in this chapter was conducted independently from Papers [71, 139]. Unfortunately,
due to their anteriority, we had to renounce claiming some of our findings, and to adapt our presentation
to highlight our approach and the contributions yet unpublished in the literature.
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As Chapter 4, we tackle hereafter the particular case where PUs are assumed to be
synchronous and the time t = 0, 1, 2 · · · , is divided into slots. We denote by St the
channels’ state at the slot number t: St = {S1,t, · · · , SN,t} ∈ {0, 1}N . For all t ∈ N, the
numerical value Sn,t is assumed to be an independent random realization of the stationary
distributions θn ∈ Θ. Moreover, the realizations {Sn,t}t∈N drawn from a given distribution
θn are assumed to be independent and identically distributed. The expected availability of
a channel is characterized by its probability of being idle. Thus, we define the availability
µn of a channel n, for all t as:

µn
∆
=Eθn [Sn,t] = P (channel n is free) = P (Sn,t = 1)

5.3.2 Secondary Users model

We detail in this subsection the generic characteristics of all considered SUs.
At every slot number t, the SU has to choose a channel to sense. To do so, the SU

relies on the outcome of past trials. We denote by i
(k)
t the gathered information until

the slot t by the kth SU. We assume that all SUs can only sense and access one channel
per slot. Thus selecting a channel by a SU k can be seen as an action a

(k)
t ∈ A where

the set of possible actions A ⊆ D = {1, 2, . . . , N} refers to the set of channels available.
In this chapter, all SUs collaborate through a coordination mechanism as described in
the previous section. This latter, through either a centralized or decentralized approach
allocates at every iteration t a different channel to each SU.

The outcome of the detection phase is denoted by the binary random variable X
(k)
t ∈

{0, 1}, where X
(k)
t = 0 denotes the detection of a signal by the kth SU and X

(k)
t = 1 the

absence of a signal, respectively. In the case of perfect sensing, X(k)
t = S

a
(k)
t ,t

for all SUs,

where a
(k)
t refers to the channel selected at the slot number t. However since we assumed

that sensing errors can occur, the value of X
(k)
t depends on accuracy of the detector

characterized through the measure of two types of errors: on the one hand, detecting
a PU on the channel when it is free usually referred to as false alarm. On the other
hand, assuming the channel free when a PU is occupying it usually referred to as miss

detection. Let us denote by ǫ
(k)
n and δ

(k)
n , respectively the probability of false alarm, and

the probability of miss detection characterizing the observation of a channel n ∈ D by the
kth SU:







ǫ
(k)
n = P

(

X
(k)
t = 0|S

a
(k)
t ,t

= 1
)

δ
(k)
n = P

(

X
(k)
t = 1|S

a
(k)
t ,t

= 0
)

Finally, the outcome of the sensing process can be seen as the output of a random policy
π
(k)
s (ǫ

(k)
n , δ

(k)
n , Sat,t) such that: X(k)

t = π
(k)
s (ǫ

(k)
n , δ

(k)
n , Sat,t). The design of such policies [13]

is however out of the scope of this chapter.
Depending on the sensing outcome X

(k)
t ∈ {0, 1}, the SU k can choose to access the

channel or not. The access policy chosen in this chapter can be described as: “access the

channel if sensed available”, i.e. if X(k)
t = 1.

Notice that we assume the SUs’ detectors to be designed such that for all k ∈ K and
n ∈ D, δ(k)n (respectively ǫ

(k)
n ) is smaller or equal to a given interference level allowed by the
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primary network (respectively, smaller or equal to a given level desired by the SU), although

{ǫ(k)n , δ(k)n } are not necessarily known. Moreover, we assume that if interference occurs, it is
detected and the transmission of the secondary user fails. Regardless of the channel access
policy, when the channel access is granted, the SU receives a numerical acknowledgment.
This feedback informs the SU of the state of the transmission {succeeded, failed}. Finally,
we assume for simplicity reasons that for every transmission attempt, a packet Dt = 1 is
sent.

At the end of every slot t, the SUs use the different information available to compute
a numerical value, usually referred to as reward r

(k)
t in the Machine Learning literature.

This reward informs the SU of its current performance. For cooperation purposes, every
secondary user shares its reward with the other SUs. All shared information as well as the
used communication interface are further discussed in Section 5.7.

5.4 Learning Mechanism

The learning mechanism aims at exploiting all gathered information to evaluate the most
promising resources. Thus, the performance of a learning mechanism highly depends on
the sampling model of the rewards (deterministic, stochastic or adversarial for instance).
In the case of stochastic sampling as defined in Section 5.3, we exploit UCB1 learning
mechanisms. As emphasized in the introduction and in Chapter 4, they have proven to
be efficient while having a very low complexity. Our approach remains however consistent
for a different reward sampling (cf. Paragraph 4.2.2).

The estimation of the performance of a resource n ∈ D considered by UCB1 indexes
relies on the computation of the average reward provided by that resource until the iter-
ation t to which a positive bias is added. We remind the reader of the general form of
UCB1 indexes:

BTn(t) = W Tn(t) +ATn(t) (5.1)

where ATn(t) is an upper confidence bias added to the sample mean W Tn(t) of the resource
n after being selected Tn(t) times at the step t:







ATn(t) =
√

α. ln(t)
Tn(t)

W Tn(t) =
∑t−1

m=0 rm.1{am=n}
Tn(t)

(5.2)

For that purpose, we define B
(k)

T
(k)
n (t)

as the computed index associated to a resource n ob-

served T
(k)
n times by the kth decision maker until the iteration t, and A

(k)

T
(k)
n (t)

its associated

bias.

Let B(t) refer to a K by N matrix such that component of {B(t)}{k,n} = B
(k̃)
Tn

(t),
where k ∈ K, n ∈ D and:

k̃ = (k − 1 + t)⊘K + 1

The form of B(t) is explicitly designed to ensure fairness among Secondary Users. As a
matter of fact, the rows of B(t) switch at every iteration in a Round Robbin way. It is
important as some algorithm, such as the Hungarian algorithm, allocates the resources



5.5 General Resource Allocation Problem 101

considering the first lines first. Thus if there are several optimal solutions they would
always pick the same. The design of B(t) alleviates this problem.

For the rest of this chapter, B(t) is the considered estimated weight matrix for coor-
dination algorithms.

Channel Selection Policy 1 (CC−UCB1(R,α)). The overall algorithm can be described
as follows. Let R be a positive integer, R = 1 if heterogeneous network and R = K if
homogeneous network.
Every R rounds: computation and coordination.

• Step 1: Compute B(t) using UCB1(α) algorithm.

• Step 2: Compute the output of the coordination mechanism a
(k)
t for all users k.

max
{a1t ,··· ,aKt }

K
∑

k=1

{B(t)}{k,akt } (5.3)

Thus, every SU is allocated R channels to access in a Round Robin fashion for the
next R iteration.

At every iteration during R rounds: sense and access the channels:

• Step 3 (for R iterations): Sense the channels and Access them if sensed free.

At the end of R rounds: collaboration-information sharing

• Step 4: Share the sensing-access outcomes of the last R rounds.

As shown by the Channel Selection Policy 1, the second step relies on a coordination
mechanism to perform channel allocation among the SUs. These mechanisms are usually
equivalent to Job Assigment problems. In the following, we introduce two coordination al-
gorithms in order to allow fair resource allocation among SUs: (i) the Hungarian algorithm
based coordination and (ii) the Round Robin based coordination.

5.5 General Resource Allocation Problem

The first contribution of this chapter, is to introduce a general resource allocation frame-
work to discuss OSA scenarios. We show that OSA related problems are simple applica-
tions of this general framework.

5.5.1 Coordination and Job Assignment Problems

We argue in this subsection that the coordination of multi-secondary users can be formu-
lated as a job assignment problem. We first introduce the general notations related to the
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job assignment framework. Then we present this latter as an adequate tool to model OSA
related coordination problems.

Let us consider a set K of K workers or decision makers and a set D of N jobs or
resources. Let us denote by λ the K by N weight (or cost) matrix where {λ}{k,n} = λ

(k)
n

refers to a weight associate to the decision maker k ∈ K assigned to the job or resource
n ∈ D such that:

λ =











λ
(1)
1 · · · λ

(1)
N

λ
(2)
1 · · · λ

(2)
N

· · ·
λ
(K)
1 · · · λ

(K)
N











We assume that every decision maker can be assigned on a unique resource. Moreover,
every resource can be handled by only one decision maker. Let an ∈ K refer to the assigned
decision maker to the resource n ∈ D. The resource allocation problem can be formalized
as follows. Find an optimal set of assignments such that the total weight is maximized (or
equivalently, the total cost minimized):

max
{a1,··· ,aN}

N
∑

n=1

λ(an)
n 1{∃ an} (5.4)

where the logic expression(4) {∃ an} refers to the existence of a decision maker assigned
to the resource n.

In the case of OSA a coordinator generally aims at canceling harmful interference
between the different users. To that purpose, a coordinator usually allocates different re-
sources to different users, or uses advanced signal processing techniques to alleviate inter-
ference effects on the users’ performances (e.g., Time Division Multiple Access, Frequency
Division Multiple Access or Code Division Multiple Access to name a few ):

Definition 11 (Coordinator or Facilitator). Let K refer to a set of decision making agents.
We refer to as Coordinator or Facilitator any real or virtual entity that enables the differ-
ent decision makers to jointly plan their decisions at every iteration.

For the sake of coherence in speech, let us consider a set K of K SUs (viz., the workers
or decision makers) willing to exploit a set D of N primary channels (viz., the resources).

Moreover let {µn}{n∈D} and π
(k)
s denote, respectively, a characteristic measure that quan-

tifies the quality of the primary channels (e.g., their expected availability or Signal to Noise
Ratio for instance) and a sensing policy that characterizes the observation abilities of the

kth SU. Then λ
(k)
n = f

π
(k)
s

(µn) represents the quality of a primary resource observed by

the kth SU, where f (·) represents a (possibly implicit) functional relationship that relates
primary resources’ quality to SUs observations.

Consequently, the stated problem in Equation 5.4 is equivalent, when allocating pri-
mary resources among secondary users, to maximize the secondary network’s observed
performance.

(4)Indicator function: 1{logical_expression}={1 if logical_expression=true ; 0 if logical_expression=false}.



5.5 General Resource Allocation Problem 103

5.5.2 Coordination Mechanisms based on The Hungarian Algorithm

Suggested in 1955 by H. W. Kuhn [136], the Hungarian method is a matching algorithm
that solves the job assignment problem in polynomial time. It mainly takes as an input
the matrix λ (or its opposite, depending on whether it is a maximization or minimization
approach) and provides as an output a binary matrix that contains a unique 1 per row
and per column. This output indicates the resource allocation to the workers.

Many assignment combinations can verify the stated problem in Equation 5.4. The
Hungarian algorithm provides one solution among the set of optimal matching solutions.
This solution mainly depends on the matrix λ. Inverting two columns can lead to a
different optimal solution if such solution exists. It is thus necessary to consider, for
fairness reasons among secondary users, a permutation mechanism that changes the order
of the rows of the weight matrix at every new iteration t. To this goal, we introduce the
following coordination algorithm:

Coordination 1 (Hungarian Algorithm based Coordination). Let t = 0, 1, 2, · · · refers to

a discrete sampling time and let {λ(k)
n (t)}n∈D refers to weights associated to the decision

maker k ∈ K at the iteration t. Let λ(t) refer to a K by N matrix such that {λ(t)}{k,n} =
λ
(k̃)
n (t), k ∈ K, n ∈ D and:

k̃ = (k − 1 + t)⊘K + 1

where a ⊘ b refers to the modulo operator that returns the remainder of the division of a
by b.

Let H(t) refer to the output of the Hungarian algorithm with input λ(t).

Then the kth decision maker is assigned the resource a
(k)
t verifying:

a
(k)
t = n s.t. H(t){k̃,n} = 1; (5.5)

5.5.3 Coordination Mechanisms based on Round Robin Algorithm

We consider in this subsection, a particular case of the introduced job assignment problem:
Symmetric workers.

Definition 12 (Symmetric Behavior). Let K refer to a set of decision making agents.
These agents are said to have a Symmetric Behavior if their optimization criteria, their
communication abilities as well as their decision making policies are the same. In OSA
contexts, a network with Symmetric Behavior transceivers is thus referred to as a Symmet-
ric Network.

This can be formalized as particular weight matrix with the same rows for all k ∈ K,
i.e., let n be a resource, n ∈ D then:

∀k ∈ K {λ}{k,n} = λn

In this context a very simple coordination algorithm can ensure fairness among work-
ers(5):

(5)Although the suggested form is original, the coordination algorithm is a simple Round Robin allocation
scheme. It has been already suggested in [137] in an OSA context with no observation errors and no
collaboration.
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Coordination 2 (Circular Coordination (Round Robin)). Let t = 0, 1, 2, · · · refers to a
discrete sampling time. We define t′ = {0, 1, · · · , ⌊t/K⌋} as a sequel of integers updated
every K iterations. Let {λ(t)} refer to the weight matrix computed at the iteration t, and
let σn(t) be the permutation function used at the iteration t to order the rows of the weight
matrix values. We assume that {λ(t)} and σn(t) are computed every K iterations such
that for all t ∈ [Kt′,K(t′ + 1)− 1], {λ(t)} = λ(Kt′) and σn(t) = σn(Kt′).

Then the kth decision maker selects the channel n verifying:

{

σn(t) = a
(k)
t

a
(k)
t = (k − 1 + t)⊘K + 1

(5.6)

Coordination algorithm 2 needs to know that the network is perfectly symmetric. In
case this knowledge is unavailable or the network is non-symmetric, this coordination
scheme could fail. Moreover, in real scenarios, the weight matrix is usually unknown
and every worker can solely access one row of the matrix: the one related to his own
perception of the environment (usually prone to detection errors). Consequently, OSA
related problems appears as Job Assignment problems under uncertainty. Thus, we suggest
in this chapter to introduce collaboration and coordination based learning mechanisms
among secondary users to alleviate the lack of information so as to converge to optimal
resource allocation.

In order to compute an estimation of the weight matrix, we assume a collaboration
behavior among workers to share information (introduced in Section 5.3 and discussed
in Section 5.7). The shared information enables a learning mechanism to compute the
estimated quality matrix as described in Section 5.4. The performance of Coordination
algorithm 1 is empirically analyzed in Section 5.8, while, in the case of symmetric networks,
the performance of Coordination algorithm 2 is theoretically analyzed in Section 5.6.

5.6 Theoretical Analysis

the main results of this section are both the general multi-user reward model presented in
Subsection 5.6.1 and Theorem 4 in Subsection 5.6.2.

5.6.1 Definitions of the Reward and the Expected Cumulated Regret

Since we consider a coordinated network, it reasonable to assume that interference among
SUs is null. Thus, relying on the previously introduced notations and assumptions, the
throughput achieved by a SUk, k ∈ K, at the slot number t can be defined as:

r
(k)
t = S

a
(k)
t ,t

X
(k)
t (5.7)

which is the reward considered in this particular framework, where r
(k)
t equals 1 only

if the channel is free and the SU observes it as free. Consequently, the expected reward
achievable by a given secondary user SUk using a channel a(k)t ∈ D can be easily computed:

E

[

r
(k)
t

]

= P

(

X
(k)
t = 1|S

a
(k)
t ,t

= 1
)

P

(

S
a
(k)
t ,t

= 1
)

(5.8)
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which equals to, in this case:

E

[

r
(k)
t

]

=

(

1− ǫ
(k)

a
(k)
t

)

µ
a
(k)
t

(5.9)

To relate with the job assignment problem described in Section 5.5, the weight matrix

λ is equal, is this context, to the matrix {E
[

r
(k)
t

]

}{k∈K,n∈D}.

We usually evaluate the performance of a user k by its expected cumulated throughput
after t slots defined as:

E

[

W
(k)
t

]

= E

[

t−1
∑

m=0

r(k)m

]

(5.10)

Note that in this case, r(k)t follows a Bernoulli distribution. Several other algorithms are
possible to answer this distribution within MAB problems such as Robbins or Agrawal’s
index policies [100, 101]. They would however fail in more complex scenarios where r

(k)
t

follows an unknown distribution in [0, 1] for instance. As a matter of fact, they need the
knowledge of the exact reward distribution, whereas UCB1 guaranties order optimality for
any bounded reward distribution (even unknown). It briefly justifies the choice of UCB1

in this chapter. For further details, please refer to Chapter 4.
An alternative representation of the expected performance of the learning mechanism

until the slot number t is described through the notion of regret R
(k)
t (or expected regret of

the SUk). The regret is defined as the gap between the maximum achievable performance in
expectation and the expected cumulated throughput achieved by the implemented policy.

R
(k)
t =

t−1
∑

m=0

max
a
(k)
t ∈A(k)

t

E[r
(k)
t ]− E

[

W
(k)
t

]

(5.11)

where A(k)
t denotes the subspace of channels that a given SUk can access at the slot time

t, A(k)
t ⊆ D.

5.6.2 Theoretical Results: Symmetric Network

In Symmetric Networks, the expected quality of a channel n observed by all SUs is the
same: ∀k ∈ K λ

(k)
n = λn. If the symmetry property is known to SU, all collected infor-

mation on the probed channels at the slot number t is relevant to every SU. Thus, it can
be used to improve their overall learning rate. As matter of fact, in this context, the SUs
combine at every iteration all gathered rewards into one common information vector it
such that it = {it−1, {a(k)t , r

(k)
t }k∈K}. Hence, the UCB indexes computed by the SUs at

every slot number t are also the same, i.e., for all users k ∈ K, B(k)

T
(k)
n

(t) = BTn(t). Notice

that in Symmetric Networks the optimal set of channels D∗ is composed of the K channels
with the highest expected reward. Consequently a simple Round Robin based coordina-
tion algorithm, as described in Coordination 2 is optimal (avoids harmful interference and
is fair).
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In the next Theorem, we show that the regret of the kth SU in a Coordinated and Col-
laborative Symmetric Network is upper bounded by a logarithmic function of the number
of iterations t.

Theorem 4 (Upper Bound of the Regret). Let us consider K ≥ 1 Symmetric Secondary
Users and N ≥ K Primary channels. The SUs are assumed to have limited observa-
tion abilities defined by their parameters {ǫn, δn} for every channel n. Assuming that the
Secondary Network follows the Coordination Policy 2 to select and access the primary
channels, relying on UCB1 algorithm with parameter α > 1, then every SU suffers an

expected cumulated regret R
(k)
t , after t slots, upper bounded by a logarithmic function of

the iteration t:

R
(k)
t ≤

∑

n/∈D∗

4α
(

λ̄∗ − λn

)

K∆2
n

ln (t+K − 1) + o (ln(t)) (5.12)

where the following notations were introduced:







λn = (1− ǫn)µn

λ̄∗ =
∑

n∈D∗ λn

K
∆n = minn∈D∗{λn} − λn

Proof. This proof relies on two main results stated and proven in Lemma 2 and Lemme
3 (C.f. Appendix). As a matter of fact, Lemma 2 shows that the regret can be upper
bounded by a function of the expected number of pulls of sub-optimal channels:

R
(k)
t ≤

∑

n/∈D∗

(

λ̄∗ − λn

)

E
[

Tn

(⌊

t
K

⌋

K +K − 1
)]

K
(5.13)

Then Lemma 3 upper bounds E
[

Tn

(⌊

t
K

⌋

K +K − 1
)]

by a logarithmic function of num-
ber of iterations t:

E

[

Tn

(⌊

t

K

⌋

K +K − 1

)]

≤ 4α

∆2
n

ln (t+K − 1) + o (ln(t)) (5.14)

For the case K = 1, ǫn = ǫ and δn = δ, we find the classic result stated in our paper
[68] (cf. Section 4.5):

Rt ≤
∑

n 6=1

4α

((1− ǫ)(maxn∈D{µn} − µn))
ln (t) + o (ln(t)) (5.15)

5.6.3 Non-Symmetric Network, the Heterogeneous case

In the case of Non-Symmetric Networks, we can apply the upper bound provided in Paper
[139]. As a matter of fact, our approach that decomposes, on the one hand the learning
step and on the other hand the coordinating step, is equivalent to the algorithm referred
to as Learning with Linear Regret (LLR) in [139]. More specifically, the authors of [139]
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prove that if the exploration parameter of the UCB1 algorithm, i.e. the α factor, verifies
this condition: α ≥ L where L = N ∧K = K and ∧ refers to the minimum operator, then
the LLR algorithm has an order optimal behavior (i.e., expected cumulated regret upper
bounded by a logarithmic function of the time). In our case, the logarithmic regret scales
linearly with the value: (N ∧K)3NK as reported in [139].

However fairness is not considered in Paper [139]. Our suggested joint coordination-
learning mechanism alleviates these problem. It is easy to verify that the same results
discussed in [139] hold also when when the Coordination algorithm 1 is used for spectrum
selection. Consequently, a joined coordination-learning mechanism in Non-Symmetric en-
vironments is order optimal.

Although this result is fundamental to many resource allocation problems under un-
certainty, two questions remain unanswered in [139]:

• Although the theory, in [139], constrains α to values larger than K (in our case),
does it mean that the algorithm fails for smaller values? Note that the larger α is,
the longer it takes to converge.

• With the result provided for Non-Symmetric Environment, it is obvious that the
same mechanisms would also work for Coordinated, non-collaborative, Symmetric
Environments. Is it possible to provide tighter bounds for the regret and to use
smaller value for the exploration parameter α?

Both questions are tackled in this chapter. On the one hand, the previous subsection
tackled the first question. We see from the results of Theorem 4 that the logarithmic func-
tion scales as 1/K, improving tremendously the scale found in the case of heterogeneous
environments. On the other hand, the simulations discussed in Section 5.8 suggest a piece
of answer to the second question.

5.7 Information Sharing: Discussion

An efficient communication process relies on reliable information exchange. Thus, we
assume in this chapter that the communication interface used by Cognitive Radio (CR)
SUs to share information is a Common Control Channel(6) (CCC). The CCCs are used,
on the one hand, between a transmitter and a receiver (which can be a secondary base
station or another SU), and on the other hand, among all transmitters and receivers for
cooperation purposes. The information transmitted through this vessel is furthermore
assumed to be received without errors.

Thus from a Transmitter-Receiver ’s perspective, CCCs’ purposes are twofold: config-
uration adaptation and acknowledgment messages transmission.

5.7.0.1 Configuration adaptation

To initiate a transmission, both the transmitter and the receiver have to agree on a par-
ticular frequency band and on a communication configuration (e.g., modulation). In this

(6)Whether to use or not CCCs for cognitive radio networks is still a matter of debate in the CR
community. This debate is however out of the scope of this chapter. Notice that the conclusions of this
study would still apply if we assumed any other kind of reliable information exchange interface among
secondary users.
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particular case, configuration refers, solely, to frequency band. Thus we assume that at
every slot t the transmitter informs the receiver of the channel selection outcome before
transmitting.

5.7.0.2 Acknowledgment

At the end of every transmission attempt the receiver has to confirm the reception of
the transmitted parquet. In case of a successful transmission, the transmitter receives an
ACK message from the receiver. Otherwise, in case of PU interference, it receives a NACK
message.

5.7.0.3 Information sharing

As mentioned in Section 5.3.2, at the end of every slot t, and for cooperation purposes, a
communication period is dedicated to share feedback information among SUs.

Thus, from the secondary users’ network perspective, CCCs are used, in general, to
share SUs computed rewards. As a consequence, a given SU can coordinate its behavior
according to other SUs. Moreover, in the case of Symmetric Networks, he can learn faster
by relying on the outcomes of the other SUs’ attempts, gathered on bands it did not
address, at the slot number t.

5.8 Empirical Evaluation: Simulation Results

In this section, we describe and show the simulation results aimed at illustrating the
herein suggested resource selection mechanisms. We first describe the general experimental
protocol and the considered scenarios in Subsection 5.8.1. Subsection 5.8.2 presents and
discusses the simulation results pertaining to the regret analysis. Subsection 5.8.3 show
the results pertaining to the secondary network performance analysis.

5.8.1 Scenario and experimental protocol for the regret analysis

We consider 3 secondary users willing to exploit 10 primary channels with unknown ex-
pected occupancy patterns µ = {µn}{1,··· ,10}. For the sake of generality, we do not provide
explicit numerical values to PUs’ channel occupancy and to the probability of false alarms.
The impact of sensing errors has been analyzed and illustrated in a previous work [68].

We denote by λ
(k)
n the expected reward of a resource n observed by a user k. We,

however consider that the occupation state n observed by a user k at the slot t follows a
Bernoulli distribution with parameter λ(k)

n . Thus, the application to OSA related scenarios

is straightforward as: λ
(k)
n =

(

1− ǫ
(k)
n

)

µn in this context.

For illustration purposes we tackle two scenarios. On the one hand we consider 3
symmetric users. While on the other hand, we consider that the 3 secondary users are
divided into 2 sets: two symmetric users sharing the spectrum with a last secondary user
whose optimal channel do not belong to the set of optimal channels of the other secondary
users, such that:
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Scenario 1 (Symmetric network). We consider a quality matrix λ defined as:

λ =





0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9





Scenario 2 (Non-symmetric network). We consider a quality matrix λ defined as:

λ =





0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.1 0.2 0.3 0.4 0.7 0.9 0.7 0.7 0.6





These scenarios aim at illustrating both Hungarian and Round Robin based coordina-
tion algorithms. We expect the channel selection algorithm, relying on both learning and
coordinations mechanisms to be able to converge to the set of optimal channels in Scenario
1. However, in Scenario 2 only the Hungarian algorithm based coordinator is illustrated
as a Round Robin approach would be inefficient.

During all experiments, the learning parameter α is selected such that α = 1.1 (to
respect the conditions of Theorem 4). Notice that these simulations were conducted so as
their respective results and conclusion could be generalized to more complex scenarios.

Finally, the presented results are averaged over 30 experiments with a final horizon
equal to 1 000 000 slots to obtain reliable results.

5.8.2 Simulation results: Regret Analysis

The averaged regret -over the number of SUs- of four algorithms are illustrated in Figures
5.1(a) and 5.1(b) in the context of Scenario 1: Figure 5.1(a) shows the regrets of the Hun-
garian algorithm, respectively, with or without common information vector (i.e. with or
without collaborative learning), while Figure 5.1(b) correspond to Round Robin based co-
ordination algorithms with common information vector. In this latter case, one algorithm
updates its information vector every 3 iterations (i.e., every K iterations as considered in
Theorem 4), while the second one updates its information vector every slot.

On the one hand, Figure 5.1(b) illustrates Theorem 4. As a matter of fact, we observe
that the regrets of Round Robin based algorithms are similar and have indeed a loga-
rithmic like behavior as a function of the slot number. This behavior is observed for all
four simulated algorithms. Secondly, as expected, the Hungarian based coordinator with
collaborative learning performs as well as Round Robin based coordinators.

On the other hand, Figure 5.1(a) shows the impact of coordination with individual
learning (the shared information is only used for coordination purpose). In this case the
regret grows, as expected, larger by a factor approximatively equal to K. In this case
where the users are symmetric but unaware of that fact, they do not exploit other users’
information to increase their respective learning rate. The collected information from their
neighbors is solely used to compute the quality matrix λ to enable coordination. Thus, we
observe in Figure 5.1(a) that the Hungarian algorithm is still able to handle it however,
as already noticed, with a loss of performance.

In the case of Scenario 2, Round Robin based coordination algorithms are in general
not efficient. Consequently, we do not illustrate them in this context. Figure 5.2 shows
the proportion of time the Hungarian algorithm based coordinator allocates the different
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Figure 5.1: Collaboration, Learning and Coordination in the case of Symmetric Networks:
averaged regret. The simulation results show that both Hungarian algorithm and Round
Robin based coordinators can efficiently learn to allocate the resources among the SUs.
All curves are computed with α = 1.1. Left Figure shows the impact of collaboration on
the learning process in symmetric networks. Right curves compares learning mechanisms
with both Hungarian coordination or Round Robbin coordination. We notice that their
performance is quite similar.

secondary users to their respective optimal sets. We can observe that the curves increase
rather quickly which indicates that the algorithm allocates the SUs to their respective
optimal sets most of the time after a first learning phase. Theoretical analysis as well as
testbed-based experiments are currently under investigation to confirm these results.

5.8.3 Simulation results: Network Performance Analysis

In this subsection, we evaluate the performance of joint collaboration-cooperative learning
scheme from the point of view of secondary network performance. To this aim, we model
a primary network with N=10 channels, and a secondary network composed of K=4
transmitter nodes. The temporal occupation pattern of the N channels is defined by this
vector θ of Bernoulli distributions: {0.1, 0.1, 0,2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. All
the SU have a fixed probability of sensing miss-detection and sensing false-alarm, i.e. a
Symmetric Network scenario is considered. Unless specified otherwise, we set ǫ

(k)
n =0.2,

for all SU k and channel n. At each slot, each SU k decides a channel to sense, and
transmits a packet of 1000 bytes if the channel is found idle. No transmission attempt is
performed in case the channel is sensed occupied by a PU. Both interferences among SUs
and between a SU and a PU are taken into account in the model. If no interference occurs
during the SU transmission, then an ACK message is sent back to the SU transmitter.
Otherwise, the data packet is discarded by the SU receiver node. Thus, at each slot t,
each SU k can experience a local throughput TP k(t) equal to 0 or 1000 bytes, based on
interference and sensing conditions. The average network throughput NTP (t) is defined
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Figure 5.2: Percentage of time the Hungarian algorithm based coordinator allocates the
different secondary users to their respective optimal sets. The exploration parameter α
is chosen equal to 1.1. This value is smaller than the minimum value suggested by the
theory. We observe however that the algorithm remains consistent.

as the average amount of byte successfully transmitted in the secondary network at each
slot t, i.e.: NTP (t)=E[

∑K
k=1 TP

k(t)].
We consider four different configurations of learning, cooperation and coordination schemes
in our analysis:

• C1 (Random, No Learning): no learning is employed by SUs. At each slot, each SU
chooses randomly the channel to sense among the available N channels.

• C2 (Individual Learning, No Coordination): each SU employs the UCB1 algorithm
to learn the temporal channel usage. No coordination and collaboration mechanisms
are used. At each slot t, each SU k chooses randomly based on the local UCB1-index
associated to each channel. More specifically, the probability to select channel n is
computed proportional to 1−B(k)

T
(k)
n (t)

. The probabilities are normalized so that there

value is between 0 and 1, and their sum equals one.

• C3 (Cooperative Learning, No Coordination): as before, each SU employs the UCB1

algorithm to learn the temporal channel usage, and shares the rewards received at
each slot t. However, no collaboration mechanism is used. The channel selection is
performed as the previous case.

• C4 (Cooperative Learning, Cooperation): the complete Channel Selection Policy 1
described in Section 5.4 is evaluated. The Round Robin algorithm is considered for
channel access coordination.

Figure 5.3(a) shows the network throughput as a function of the time slot t, averaged
over 1000 simulation runs. As expected, the S1 scheme experiences the lowest throughput,
since it does not take into account any mechanism to prevent SU and PU interference.
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Figure 5.3: The network throughput over simulation time in a scenario with K=4 is shown
in Figure 5.3(a). The network throughput as a function of the number of SUs (i.e. K) is
shown in Figure 5.3(b).

On the other hand, both S2 and S3 schemes employ learning mechanisms to derive the
PU occupation patterns of each channel, and thus are able to mitigate the interference
caused by incumbent PU transmissions. Moreover, Figure 5.3(a) shows that the S3 scheme
slightly enhances the S2 scheme since the usage of collaborative mechanism with reward
sharing reduces the occurrence of wrong channel selection events due to local sensing
errors. However, both S2 and S3 schemes do not include coordination mechanisms, and
thus suffer of packet losses caused by SU interference i.e. by the fact that multiple SU
transmitters are allocated on the same channel. The S4 scheme nullifies the harmful
interference among SUs through Round Robin coordination, and thus provides the highest
performance. Figure 5.3(b) shows the average network throughput as a function of the
number of SU transmitters in the network. Again, Figure 5.3(b) shows that the joint
cooperative learning and cooperative scheme provides the highest performance over all the
scenarios considered.

5.9 Conclusion

In this chapter, we have addressed the problem of Opportunistic Spectrum Access (OSA)
in coordinated secondary networks. We have formulated the problem as a cooperative
learning task where SUs can share their information about spectrum availability. We have
analyzed the case of symmetric secondary networks, and we have provided some funda-
mental results on the performance of cooperative learning schemes. Moreover, we have
proposed a general coordination mechanism based on the Hungarian algorithm to address
the general case (i.e. both symmetric and asymmetric networks). We are planning to val-
idate our approach on cooperative learning schemes through further theoretical analysis
and Cognitive Radio testbed-based implementations.
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5.10 Appendix

We introduce and prove in this section technical results used to justify the important
results stated in this chapter.

Lemma 2 (Regret, general upper bound). Let us consider K ≥ 1 Symmetric Secondary
Users and N ≥ K Primary channels. The SUs are assumed to have limited observa-
tion abilities defined by their parameters {ǫn, δn} for every channel n. Assuming that the
Secondary Network follows the Coordination Policy 2 to select and access the primary
channels, relying on UCB1 algorithm with parameter α > 1, then every SU suffers, after

t slots, an expected cumulated regret R
(k)
t upper bounded such that:

R
(k)
t ≤

∑

n/∈D∗

(

λ̄∗ − λn

)

E
[

Tn

(⌊

t
K

⌋

+K − 1
)]

K
(5.16)

where E [Tn(t)] refers to the expected number of pulls of a given channel n (by all SUs),
and where the following notations were introduced:

{

λn = (1− ǫn)µn

λ̄∗ =
∑

n∈D∗ λn

K

Proof. We can upper bound the regret of a user k as defined in Equation 5.11 by the regret
that he suffers at the end of the considered round of K plays, i.e.,

R
(k)
t ≤ R

(k)
⌊t/K⌋K+K−1 ≤

⌊t/K⌋
∑

m=0

K−1
∑

p=0

(

λ̄∗ − E

[

r
(k)
Km+p

])

where the sum
∑K−1

p=0

(

λ̄∗ − E

[

r
(k)
Km+p

])

which refers to the cumulated loss during the

round of K plays indexed by the round number m, can also be written as:

K−1
∑

p=0

(

λ̄∗ − E

[

r
(k)
Km+p

])

=
∑

n∈D∗
λn −

K−1
∑

p=0

E

[

r
(k)
Km+p

]

which justifies the second inequality. Notice that this sum is positive if and only if at least
one sub-optimal channel, n /∈ D∗, is selected among the best K channels to be played
during the round m.

Thus we can further upper bound the regret as follows:

R
(k)
t ≤

⌊t/K⌋
∑

m=0

∑

n/∈D∗

(

λ̄∗ − λn

)

P

(

n ∈ A(k)
Km

)

where A(k)
Km refers to the K channels with the highest indexes evaluated at the round

number m evaluated by the kth SU. An inversion of the two sum leads to the following
expression inequality:

R
(k)
t ≤

∑

n/∈D∗

(

λ̄∗ − λn

)

⌊t/K⌋
∑

m=0

P

(

n ∈ A(k)
Km

)

(5.17)
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Finally, we notice that the three following equalities are verified:






















∑⌊t/K⌋
m=0 P

(

n ∈ A(k)
Km

)

= E

[

∑⌊t/K⌋
m=0 1{

n∈A(k)
Km

}

]

∑⌊t/K⌋
m=0 1{

n∈A(k)
m

} = T
(k)
n (⌊t/K⌋K +K − 1)

T
(k)
n (⌊t/K⌋K +K − 1) = Tn (⌊t/K⌋K +K − 1)/K

where the second equality can be read as: the number of time a channel n is selected by
a user k, until the slot number ⌊t/K⌋K + K − 1, is equal to the number of rounds the

event
{

n ∈ A(k)
Km

}

is verified. The third equality on the other hand, reminds us that in

the context of symmetric users, all SUs share the same information vector and obtain the
same index values. Consequently, if a channel n is selected at a given round, it is played
exactly once by every SU. In other words, the channel is selected K times during a round
of K plays.

Thus substituting and combining the three previous equalities with Equation 5.17 leads
to the stated result and ends this proof.

Lemma 3. Let us consider K ≥ 1 Symmetric Secondary Users and N ≥ K Primary
channels. The SUs are assumed to have limited observation abilities defined by their pa-
rameters {ǫn, δn} for every channel n. Assuming that the Secondary Network follows the
Coordination Policy 2 to select and access the primary channels, relying on UCB1 algo-
rithm with parameter α > 1, then every suboptimal channel n, after t slots, has an expected
number of pulls upper bounded by a logarithmic function of the number of iterations that:

E

[

Tn

(⌊

t

K

⌋

K +K − 1

)]

≤ 4α

∆2
n

ln (t+K − 1) + o (ln(t)) (5.18)

Proof. We start by a first coarse upper bound verified for all un ∈ N: since every channel
is to be sensed at least K times, we can write:

E
[

Tn

(⌊

t
K

⌋

K +K − 1
)]

≤ K + un

+K
∑⌊ t

K ⌋
m=un+1 P (n ∈ AKm;Tn(Km) > un + 1)

(5.19)

Since we have the following event inclusion:

{n ∈ AmK} ⊆
{

BTn(m) ≥ min
n∈D∗

{BTn(m)}
}

We can write:

E
[

Tn

(⌊

t
K

⌋

K +K − 1
)]

≤ K + un

+K
∑⌊ t

K ⌋
m=un+K P (BTn(m) ≥ minn∈D∗ {BTn(m)})

(5.20)

In this last inequality, the joint event {Tn(Km) > un + 1} is left implicit to ease
the notations. This will be the case in the next assertion. Moreover notice that: ∀n ∈
D∗, K ≤ Tn(Km) ≤ m. Since for all τ ∈ R

+ we have the following event inclusion:

{BTn(Km) ≥ minn∈D∗ {BTn(Km)}}
⊆ {BTn(Km) ≥ τ} ∪ {minn∈D∗{BTn(Km)} < τ} (5.21)
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We can write:

E
[

Tn

(⌊

t
K

⌋

K +K − 1
)]

≤ K + un

+K
∑⌊ t

K ⌋
m=un+K P (BTn(Km) ≥ τ)

+K
∑⌊ t

K ⌋
m=un+K P (minn∈D∗ {BTn(Km)} < τ)

(5.22)

For the rest of the proof we assume that:
{

un = un(t) =
4α ln(⌊ t

K ⌋K+K−1)
∆2

n

τ = minn∈D∗ {λn}
(5.23)

then we prove that:






∑⌊ t
K ⌋

m=un+K P (BTn(Km) ≥ τ) = o (ln (t))
∑⌊ t

K ⌋
m=un+K P (minn∈D∗ {BTn(Km)} < τ) = o (ln (t))

(5.24)

First, we start by the following term: P (BTn(Km) ≥ τ). Notice that if the event (in-
cluding its implicit event) {BTn(Km) ≥ τ ;Tn(Km) > un + 1} is verified then there exists
an integer s : un+1 ≤ s ≤ m such that the real value verifies Bs(Km) ≥ τ . Consequently,
we can write:

P (BTn(Km) ≥ τ ;Tn > un + 1) ≤
m
∑

s=un+1

P (Bs(Km) ≥ τ) (5.25)

Considering an index value computed as detailed in Equations 5.1 and 5.2, we can write:

P (Bs(Km) ≥ τ) = P
(

W̄s(Km) ≥ τ −As(Km)
)

= P
(

W̄s(Km)− λn ≥ τ − λn −As(Km)
)

(5.26)

Since s > un + 1, then:

τ − λn −As(Km) ≥ ∆n −
√

α ln(Km)

un
≥ ∆n

2

Consequently, we can write:

P (Bs(Km) ≥ τ) ≤ P

(

Ws(Km)− λn ≥
∆n

2

)

(5.27)

≤ e−2(
∆2
n
4

)s (5.28)

≤ e−2α ln(mK+K−1) ≤ 1

(mK)2α
(5.29)

where the second inequality is a concentration inequality known as Hoeffding’s inequality
[140]. The third inequality is once again due to the inequality s > un+1. Finally assuming
that α > 1,

⌊ t
K ⌋
∑

m=un+K

P (BTn(Km) ≥ τ) ≤
⌊ t

K ⌋
∑

m=un+K

m
∑

s=un+1

1

(mK)2α
(5.30)

≤
∞
∑

m=un+K

1

(m)2α−1(K)2α
(5.31)

= Cn,α = o (ln(t)) (5.32)



116 Collaboration and Coordination in Secondary Networks for Opportunistic Spectrum Access

where Ck,α exist for α > 1, is finite and is defined as the limit of Reimann’s serie:
∑∞

m=(un+K)
1

(m)2α−1(K)2α

We deal know with the following term: P (minn∈D∗ {BTn(Km)} < τ) (including the
implicit event). In order to avoid confusing optimal channels and sub-optimal channels,
for the rest of this proof, we denote by n∗ a channel that belongs to the optimal set
D∗. As for the previous proof, and since for any {Tn∗}minn∗∈D∗ , K ≤ Tn∗ ≤ m, if the
event {minn∗∈D∗

{

BTn∗ (Km)
}

< τ ;K ≤ Tn∗ ≤ m} is verified then there exists a channel
n∗ ∈ D∗ and an integer sn∗ : K ≤ sn∗ ≤ m such that the real value verifies Bsn∗ (Km) ≤ τ .
To ease notations we introduce Pn∗ the considered event:

Pn∗ = P

(

min
n∈D∗

{

BTn∗ (Km)
}

< τ ;Tn∗ > K

)

Consequently we can write:

Pn∗ ≤
∑

n∗∈D∗

m
∑

sn=K+1

P
(

Bsn∗ (Km) < τ
)

(5.33)

Notice that for any n∗ ∈ D∗:
min

n∗∈D∗
{λn∗} − λn∗ ≤ 0

Consequently, as for the previous proof, relying on Hoeffding’s inequality, we can write:

Pn∗ ≤
∑

n∗∈D∗

m
∑

sn∗=K+1

P
(

W̄sn∗ (m)− λn∗ < −An∗
)

(5.34)

≤
m
∑

sn∗=K+1

Ke−2A2
n∗sn∗ (5.35)

≤
m
∑

sn∗=K+1

Ke−2α ln(Km) (5.36)

≤ 1

(Km)2α−1
(5.37)

Finally, we can write:

⌊ t
K ⌋
∑

m=un+1

Pn∗ ≤
⌊ t

K ⌋
∑

m=un+1

1

(Km)2α−1
(5.38)

≤
∞
∑

m=un+1

1

(Km)2α−1
(5.39)

= Cn∗,α = o (ln(t)) (5.40)

where Cn∗,α exist for α > 1, is finite and is defined as the limit of Reimann’s serie:
∑∞

m=un+1
1

(Km)2α−1 .
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Finally, since:
⌊

t
K

⌋

K +K − 1 ≤ t+K − 1, combining Inequalities 5.20, 5.32 and 5.40,
we can finally write:

E
[

Tn

(⌊

t
K

⌋

K +K − 1
)]

≤ 4α
∆2

n
ln (t+K − 1) + o (ln(t)) (5.41)

Which ends the proof.
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This chapter contrasts with Chapters 4 and 5 as it ventures the analysis of MAB
environments with unbounded reward distributions. More specifically, we explore the
case of exponentially distributed rewards in the sequel. Such distributions occur in many
scenarios involving channel fading or network services to name a few. Thus, to answer
this challenging matter we designed a new UCB algorithm. However rather than an
additive form, we designed a multiplicative form that seems to provide a simple yet efficient
behavior. We called this new algorithm Multiplicative UCB (MUCB). We prove that
the suggested algorithm is order optimal in the case of Exponential distributions and we
conjecture that it remains order optimal for a larger class of distributions known as Gamma
distributions.

Although, this chapter shares many similarities with Chapters 4 and 5, we made the
choice to allow redundancy. As matter of fact, many notions related to MAB were intro-
duced in the context of specific OSA scenarios. Thus, to avoid ambiguity in the speech and
to ensure that this chapter is self-content, necessary redundancies with previous chapters
might occur in the description of the mathematical model and notations. Note that the
notations regarding the MUCB index slightly differ from those used in Chapters 4 and 5.
It aims at emphasizing the fact that we are dealing with two different approaches. The
notations remain however coherent with previous chapters.
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6.1 Introduction

Quickly evaluating the quality of a resource is a challenging matter in OSA related contexts.
Since usually no prior knowledge is available on the quality of the channels, learning
abilities are needed. We discussed several solutions in Chapter 4 and 5 where resources
are modeled by the availability or the throughput of a pool of channels. The general
approach relies on MAB models where the rewards are assumed to be drawn from bounded
distributions. The UCB1 analyzed in this thesis proved to be efficient while maintaining
a low computational complexity.

Channel selection in fading environment remains however a challenging issue. As a
matter of fact, it involves reward drawn from unbounded distributions such as exponential
distributions. Unfortunately, optimal learning algorithms to tackle this matter prove to
be complex to implement [100, 101](1).

The general problem that motivates this work can be summarized as follows. We
consider in this chapter the case of one SU willing to exploit a set of primary channels.
Due to fading conditions, the sensed Signal-to-Noise Ratio (SNR) in every channel is
assumed to follow an exponential distribution.

The main contributions of this chapter are twofold. On the one hand, we model channel
selection in fading environments as a MAB problem in Section 6.2. On the other hand,
we design and analyze a simple, deterministic, multiplicative index-based policy we refer
to as Multiplicative Upper Confidence Bound (MUCB) index. This form is inspired from
the additive form usually suggested in the Machine Learning community. Yet the form
of MUCB policies and the large set of possible applications it could target, provide a
contribution to machine learning that goes beyond CR’s scope.

In a nutshell, the decision making strategy computes an index associated to every
available arm, and then selects the arm with the highest index. Every index associated
to an arm is equal to the product of the sample mean of the reward collected by this arm
and a scaling factor. The scaling factor is chosen so as to provide an optimistic estimation
of the considered arm’s performance. The general expression of the MUCB algorithm is
introduced in Section 6.3.

As for Chapter 4, it is important to clarify the MAB vocabulary used in this chapter.
First of all, an ‘arm’ and a ‘lever’ refer to the same element that a gambler pulls to play a
bandit-machine. Then, the ambiguity in Multi-armed bandit terminology is the following:
should we consider several machines, with one arm per machine? Or should we consider
one machine with several arms. Both concepts are equivalent in machine learning. For the
sake of simplicity, we usually consider one arm per machine. In such case, an arm and its
machine refer to the same reward source. Consequently, we can use one term or the other
to designate the reward source. For the sake of clarity we shall solely use the term arm in
the sequel.

Section 6.4 detail our main theoretical results showing that the MUCB policy leads to
a logarithmic loss over time under some non-restrictive conditions.

(1)Very recently (December 2011), new algorithms that tackle various heavy tailed or light tailed distri-
butions were found on the Open Literature. They are inspired from the UCB1 algorithm. Since, these
algorithms are not able to deal with exponentially distributed rewards with a prior knowledge on their
parameters (that we seek to learn), we ignore them on purpose in this Chapter.
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Section 6.5 discusses some simulation results. Finally, Section 6.6 concludes.

6.2 Multi-Armed Bandits

N -Channel selection in fading environments can be modeled as a N -armed bandit. In the
sequel, the decision maker -referred to as gambler- represents the SU; while the N -armed
bandit refers to the probed resources.

Such a problem is defined by the N -tuple (θ1, θ2, ..., θN ) ∈ ΘN , Θ being the set of all
positive reward distributions. When pulled at a time t ∈ N, each lever n ∈ J1, NK (where
J1, NK = {1, ..., N}) provides a reward rt drawn from a distribution θn associated to that
specific lever. As already discussed in previous chapters, we assume that the different
payoffs drawn from an arm are independent and identically distributed (i.i.d.) and that
the independence of the rewards holds between the arms. However the different arms’
reward distributions (θ1, θ2, ..., θN ) are not supposed to be the same.

In OSA problems, the reward usually quantifies the instantaneous performance of the
probed channel. Namely, the availability of the channel or its throughput. In this case,
we consider the measured SNR as the reward. As a matter of fact, this quantity is closely
related to the capacity of the channel. In Rayleigh fading channels, the SNR follows
an exponential distribution. Consequently the probability density function, fn(·), of a
distribution n ∈ J1, NK is equal for x real positive:

fn(x) = λne
−λnx

Let at ∈ J1, NK denote the arm selected at a time t, and let it be the history vector

available to the gambler at instant t, i.e.

it = [a0, r0, a1, r1, . . . , at−1, rt−1].

We assume that the SU uses a policy π to select a arm at at the instant t, such that

at = π(it). We shall also write ∀n ∈ J1, NK, µn
∆
= 1

λn

∆
=E[θn]. Moreover we assume that

µn > 0 for all n.
We briefly remind the reader of the expressions of the cumulated regret as well as the

expected cumulated regret considered in this work.
The (cumulated) regret of a policy π at time t (after t pulls) is defined as follows:

Rt = tµ∗ −
t−1
∑

m=0

rm ,

where µ∗ = max
n∈J1,NK

{µn} refers to the expected reward of the optimal arm.

E [Rt] =
∑

n 6=n∗
∆nE [Tn,t] , (6.1)

where ∆n = µ∗ − µn is the expected loss of playing arm n, and Tn,t refers to the number
of times the arm n has been played from instant 0 to instant t− 1.

The general idea behind the regret can be summarized as follows: if the gambler knew
a priori which arm was the best one, he would only pull that one, and hence maximize
his expected collected rewards. However, since he lacks that essential information he will
suffer unavoidable loss due to exploration of suboptimal pulls.
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6.3 Multiplicative upper confidence bound algorithms

This section presents our main contribution: the introduction of a new multiplicative
index. Let Bn,t(Tn,t) denote the index of arm n at time t after being pulled Tn,t. We refer
to as Multiplicative Upper Confidence Bound algorithms (MUCB) the family of indexes
that can be written in the form

Bn,t (Tn,t) = Wn,t(Tn,t)Mn,t (Tn,t) ,

where Wn,t(Tn,t) is the sample mean of arm n at step t after Tn,t pulls, i.e.,

Wn,t(Tn,t) =
1

Tn,t

t−1
∑

i=0

1{ai=n}ri ,

and Mn,t(·) is an upper confidence scaling factor chosen to insure that the index Bn,t(Tn,t)
is an increasing function of the number of rounds t. This last property insures that the
index of an arm that has not been pulled for a long time will increase, thus eventually
leading to the sampling of this arm. We introduce a particular parametric class of MUCB
indexes, which we call MUCB(α), given as follows:

∀α ≥ 0, Mn,t (Tn,t) =
1

max
{

0; (1−
√

α ln(t)
Tn,t

)
} (6.2)

We adopt the convention that 1
0 = +∞.

This form offers a compact mathematical formula. However practically speaking, an
arm n is played when Tn,t ≤ α ln(t). Otherwise the arm with largest finite index is played.
As a matter of fact, given a history it, one can compute the values of Tn,t and Mn,t and
derive an index-based policy π as follows:

at = π(it) ∈ argmax
n∈J1,NK

{Bn,t (Tn,t)} . (6.3)

The intuition behind this multiplicative index is comparable to the one underlying
the additive bounds introduced in the literature. An arm n with a high expected reward
µn (estimated by Wn,t(Tn,t)) will be more likely to have a high index, and thus will
be pulled more often than another arm n′ having a lower µn′ . The multiplicative term
accounts for the uncertainty in µn’s estimation via Wn,t(Tn,t), which quickly allows to
identify sub-optimal arms(2). On the other hand, the ln(t) term insures that an arm that
not been pulled for a long time will see its index increase slowly, despite the sub-optimal
Wn,t(Tn,t), and will eventually be pulled, thus insuring statistical consistency in the limit.

Nevertheless, the ln(t)
Tn,t

term drives the process towards pulling suboptimal arms less and
less often as t grows, and the α parameter allows to control this aspect. Note also that,
with the convention that the initial value of Mn,t (Tn,t) is +∞, and with small enough
values of α, every arm will be played exactly once in the N first pulls, since Mn,t (Tn,t)
becomes finite as soon as arm n has been pulled once (with α small enough(3)).

(2)All UCB approaches are related to the principle of optimism in the face of uncertainty introduced for
instance in the work of [141].

(3)For larger values of α, the number of times an arm has to be pulled before its index becomes finite is
the same for each arm (it does not depend on Wn,t(Tn,t)).
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arm 3 (reward = 3)

Figure 6.1: A deterministic 3-armed bandit MUCB(0.2) scenario

To illustrate how this multiplicative index behaves, from a mathematical perspective,
we plotted a simple scenario with three arms. All three arms are deterministic. The first
one always provides a unit reward, the second one has a reward of two and the third
provides a reward of three. Suppose α = 0.2. Initially, all arms have an index of +∞.
At the first time step, arm 1 is pulled and its index becomes finite. Similarly for arms 2
and 3 at steps 2 and 3. Figure 6.1 presents the evolution of each arm’s index as the game
unfolds for 30 time steps. Note that pulling an arm decreases its index; while the indexes
of arms that are not being pulled steadily increase.

In the end, the ln(t)
Tn,t

-based evolution of the indexes draws the optimal arm (arm 3)
to be pulled much more often than the other ones. However, it also leads to pulling
the suboptimal arms once in a while, but with a decreasing frequency — hence a low
probability, in a stochastic environment — to insure statistical consistency. Finally, it
seems all indexes asymptotically tend to the µ∗ value, and the frequency of suboptimal
pulls tends to zero. The next section focuses on formalizing and proving the properties
intuitively underlined by Figure 6.1.

6.4 Analysis of MUCB(α) policies

This section analyses the theoretical properties of MUCB(α) algorithms. More specif-
ically, it shows that the MUCB policy is order optimal when dealing with exponential
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distributions. Thus, it focuses on determining how fast is the optimal arm identified and
what are the probabilities of anomalies, that is sub-optimal pulls.

6.4.1 Consistency and order optimality of MUCB indexes

This subsection’s aim is twofold. First we briefly recall the general notions of consistency
and order optimality which are used by the algorithms in the literature to characterize
the asymptotic behavior of a policy. Then, we provide a general result concerning the
expected cumulated regret for MUCB policies.

Definition 13 (β-consistency). Consider the set ΘN of N -armed bandit problems. A
policy π is said to be β-consistent, 0 < β ≤ 1, with respect to ΘN , if and only if:

∀(θ1, . . . , θN ) ∈ ΘN , lim
t→∞

E[Rt]

tβ
= 0 (6.4)

Definition 14 (Order optimality). A policy is referred to as order optimal if:

∃C > 0 : lim
t→∞

E[Rt]

ln(t)
≤ C

The constant C introduced in the previous definition depends on the arm’s distributions
parameters (e.g., expected mean, variances, etc.). Some policies may even be order optimal
over time:

Definition 15 (Order optimality over time). A policy is said to be order optimal over
time if:

∃C > 0 : ∀t ∈ J2,∞J,E[Rt] ≤ C ln(t)

In the sequel, we introduce the main result of this chapter: we prove the order opti-
mality over time of MUCB policies.

From the expression of Equation 6.1 one can remark that its is sufficient to upper
bound the expected number of times E[Tn,t] one plays a suboptimal arm n after t rounds,
to obtain an upper bound on the expected cumulated regret. This leads to the following
theorem.

Theorem 5 (Order optimality of MUCB(α) policies). Let ρn = µn/µ
∗, n ∈ J1, NK\{n∗}.

For all N ≥ 2, if policy MUCB(α > 4) is run on N arms having rewards drawn from
exponential distributions θ1, ..., θN then:

E [Rt] ≤
∑

n:∆n>0

4µ∗α
1− ρn

ln(t) + o (ln(t)) (6.5)
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Note that Theorem 5 upper bounds the regret of MUCB for α > 4. As illustrated in
Section 6.5, there might exist smaller values for α such that this upper bound still holds.
Further investigations on this matter are needed to improve the provided upper bound.

Proving Theorem 5 relies on three lemmas that we analyze and prove in the next
subsection. The lemma 1 provides a general bound for the regret regardless of the policy
considered. The expression is function of two probabilities related to learning anomalies.
These anomalies depend on the learning algorithm. They are introduced and analyzed.
Then lemma 2 and 3 upper bound them.

6.4.2 Learning Anomalies and Consistency of MUCB policies

Let us introduce the set S = N×R; then, one can write Sn,t = (Tn,t, Bn,t) ∈ S the decision
state of arm n at time t. We associate the product order to the set S: for a pair of states
S = (T,B) ∈ S and S′ = (T ′, B′) ∈ S, we write S ≥ S′ if and only if T ≥ T ′ and B ≥ B′.

In order to analyze the behavior of these indexes within different problems, we focus on
two types of anomalies where the indexes associated to the suboptimal arms are ‘too large’
or the index associated to the optimal arm is ‘too small’. In a nutshell, anomalies describe
situations where the current indexes of the arms differ from their asymptotic values and
lead to suboptimal arm pulls. We will show that the behavior of an index in terms of
regret highly depends on the decreasing rate of these anomalies’ probabilities.

Definition 16 (Anomaly of type 1). We assume that there exists at least one suboptimal
arm, i.e., J1, NK \ {n∗} 6= ∅. We call anomaly of type 1, denoted by {φ1(un)}πn,t, for a
suboptimal arm n ∈ J1, NK \ {n∗}, and with parameter un ∈ N, the following event:

{φ1 (un)}πn,t = {Sn,t ≥ (un, µ
∗)} .

This anomaly can be explained as follows. Assume that arm n has been already played
at least un times (Tn,t ≥ un) at round t. Then {φ1(un)}πn,t describes the situation where
the computed index Bn,t(Tn,t) is larger than the desired asymptotic value of the optimal
arm’s index, µ∗. We will show that for a policy π, there is a specific lower bound on the
integer un associated to each arm n that guaranties a seldom occurrence of the type 1
anomaly and, thus, will ensure a sound behavior of the policy in terms of regret. In this
case, un can be interpreted as an upper bound on the minimum number of times that a
arm n should be played using a policy π to ensure that the event {φ1(un)}πn,t is rare.

Definition 17 (Anomaly of type 2). We refer to as anomaly of type 2, denoted by {φ2}πt ,
associated to the optimal arm n∗, the following event:

{φ2}πt = {Sn∗,t < (∞, µ∗) ∩ Tn∗,t ≥ 1} .

Unlike the anomaly of type 1, we are concerned in this case with the underestimation
of the optimal arm’s index for all Tn∗,t ≥ 1. We show, in the rest of this subsection, that
the occurrence of this event can be made as rare as wished by an appropriate choice of the
policy’s parameters values.

First we introduce the following lemma that provides a general bound of the regret as
a function of the anomalies.
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Lemma 1 (Expected cumulated regret. Proof in 6.7.2). Given a policy π and a MAB
problem, let u = [u1, . . . , uN ] represent a set of integers, then the expected cumulated regret
is upper bounded by:

E[Rt] ≤
∑

n 6=n∗
∆nun +

∑

n 6=n∗
∆nPt(un)

with,

Pt(un) =

t
∑

m=un+1

(

P ({φ2}πm) + P
(

{φ1(un)}πn,m
))

In the sequel, we consider the following values for the set u, for all suboptimal arms n,

un(t) =

⌈

4α

(1− ρn)
2 ln(t)

⌉

where for n 6= n∗, ρn = µn/µ
∗.

We show in the two following lemmas that for the defined set u the anomalies are
upper bounded by exponentially decreasing functions of the number of iterations.

Lemma 2 (Upper bound of Anomaly 1. Proof in 6.7.3). For all N ≥ 2, if policy
MUCB(α) is run on N arms having rewards drawn from exponential distributions θ2, ..., θN
then ∀n ∈ J1, NK \ {n∗}:

P
(

{φ1(un)}πn,t
)

≤ t−α/2+1 (6.6)

Lemma 3 (Upper bound of Anomaly 2. Proof in 6.7.4). For all N ≥ 2, if policy
MUCB(α) is run on N arms having rewards drawn from exponential distributions θ1, ..., θN
then:

P ({φ2}πt ) ≤ t−α/2+1 (6.7)

We end this section proving Theorem 5.

Proof of Theorem 5. For α > 4, relying on Lemmas 1, 2 and 3 we can write:

E[Rt] ≤
∑

n 6=n∗
∆n

⌈

4α

(1− ρn)
2 ln(t)

⌉

+ o(ln(t))

where Lemma 1, is simplified using the following equality for α > 4
∑

n 6=n∗
∆nPt(un) = o(ln(t))

As a matter of fact, for α > 4:
t
∑

u=unk

u−α/2+1 ≤
t
∑

u=un

1

u1+δ
= o(ln(t))

for any δ such that α = 4+2δ. Finally, since ∆n = µ∗(1− ρn) and un(t) =
4α

(1−ρn)
2 ln(t)+

o(ln(t)), we find the stated result in Theorem 5.
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6.5 Simulation Results

This section presents and discusses simulation results that aim at illustrating and validat-
ing the stated upper bound provided in Theorem 5. We detail first the simulation protocol,
then we discuss the simulation results.

For illustration purpose we consider a SU willing to evaluate the quality of N = 10
channels. The SU relies on the measure of the channels’ SNR to evaluate the best channel.
We assume that the SU suffers Rayleigh fading. Consequently, for every channel, the
measured SNR follows an exponential distribution. The presented simulation consider the
following parameters µ = {µ1, · · · , µ10} for the channels, where µ1 ≤ · · · ≤ µ10 without
loss of generality: and µ = {0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1}.

The simulations compare three MUCB policies for α equal to respectively, {1; 2; 4.01}.
Theses algorithms are referred to as MUCB(1), MUCB(2) and MUCB(4) respectively.
Notice that MUCB(4) is chosen so as to respect the condition imposed in Theorem 5,
i.e., α > 4. MUCB(1) and MUCB(2) on the contrary are considered as possibly risky by
Theorem 5 as already discussed in Section 6.4. The simulations consider a time horizon
of 106 iterations.

Figure 6.3 plots the cumulated averaged regret of MUCB policies. In order to obtain
relevant results, the curves were averaged over 100 experiments. All curves show a similar
behavior: first an exploration phase were the regret grows quickly. Then the curves tend
to confirm that the regret of MUCB policies grow as a logarithmic function of the number
of iterations. As matter of fact, we notice that after the first exploration phase, on a
logarithmic scale, the regret grows as a linear function. Moreover, since MUCB(1) and
MUCB(2) seem to respect this trend, these curves suggest that the imposed condition in
Theorem 5, α > 4, might be improvable.

Figure 6.2 further illustrates the behavior of MUCB policies. A typical channel selec-
tion figure is plotted. Thus we can see for different exploration coefficients α the selected
channels. As predicted by Theorem 5, suboptimal channels are selected regularly on a
logarithmic scale depending on their quality.

6.6 Conclusion

A new low complexity algorithm for MAB problems is suggested and analyzed in this
chapter: MUCB. The analysis of its regret proves that the algorithm is order optimality
over time. In order to quantify it performance compared to optimal algorithms, further
empirical evaluations are needed and are currently under investigation.

Moreover, combined with coordination mechanisms similar to those suggested in Chap-
ter 5, MUCB algorithms could solve various problems: such as finding the shortest path
in a network or selecting optimal sensors in a wireless networks. Thus, this contributions
open the way to many new applications that go beyond the scope of this thesis.



6.6 Conclusion 129

10
1

10
2

10
3

10
4

10
5

10
6

0

1

2

3

4

5

6

7

8

9

10

Iterations

C
h

a
n

n
e

ls

Channel Selection by MUCB Policies

 

 

MUCB(1)

MUCB(2)

MUCB(4)

Figure 6.2: Channel selection process over time: a typical run. The dots between the
values [n;n+ 1] (Y − axis) represents the time instants t ∈ N where channel n is selected
by MUCB policies. This curve illustrates a typical run of MUCB policies. Thus we can
see for different exploration coefficients α the selected channels. As predicted by Theorem
5, suboptimal channels are selected regularly on a logarithmic scale depending on their
quality.
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Figure 6.3: Average Regret Over 100 experiments: Illustration of Theorem 5. These curves
confirm that the regret of MUCB policies grow as a logarithmic function of the number of
iterations. Moreover, since MUCB(1) and MUCB(2) seem to respect this trend, these
curves suggest that the imposed condition in Theorem 5, α > 4, might be improvable.
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6.7 Appendix

6.7.1 Large Deviations Inequalities

We introduce hereafter the Cramer condition for a random variable. Then, the Cramer-
Chernoff Theorem allows to compute bounds on the probability that the sample mean of
a random variable satisfying the Cramer condition deviates from its expected value.

Assumption 1 (Cramer condition). Let X be a real random variable. X satisfies the
Cramer condition if and only if:

∃γ > 0 : ∀η ∈ (0, γ),E
[

eηX
]

<∞ .

Lemma 4 (Cramer-Chernoff Lemma for the sample mean). Let X1, . . . , Xm (m ∈ N) be
a sequence of i.i.d. real random variables satisfying the Cramer condition with expected
value E[X]. We denote by Wm the sample mean Xm = 1

m

∑m
i=1Xi. Then, there exist two

functions l1(·) and l2(·) such that:

∀β1 > E[X],P(Xm ≥ β1) ≤ e−l1(β1)m ,

∀β2 < E[X],P(Xm ≤ β2) ≤ e−l2(β2)m .

Functions l1(·) and l2(·) do not depend on the sample size m and satisfy the following
properties:

• l1(β1) is a continuous non-negative, strictly increasing, non-constant function for all
β1 > E(X) and l1(E(X)) = 0.

• l2(β2) is a continuous non-negative, strictly-decreasing, non-constant function for all
β2 < E(X) and l2(E(X)) = 0.

This result was initially proposed and proved in [142]. The bounds provided by this
lemma are called Large Deviations Inequalities (LDIs) in this chapter.

In the case of exponential distributions this theorem can be applied and LDI functions
have the following expressions:

l1(β) = l2(β) =
β

E[X]
− 1− ln

(

β

E[X]

)

This function as well as the following well known inequality are very useful to prove the
results of this chapter.

β

E[X]
− 1− ln

(

β

E[X]

)

≥
3
(

1− β
E[X]

)2

2
(

1 + 2 β
E[X]

)
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6.7.2 Proof of Lemma 1

First, according to Equation 6.1, recall that

E[Rπ
t ] =

∑

n 6=n∗
∆nE [Tn,t]

Since ∆n∗ = 0 for the optimal arm n∗, we shall only consider suboptimal arms n ∈
J1, NK \ {n∗} in the remainder of the proof. Tn,t is the number of times one pulled arm n

before time t, so Tn,t =
t−1
∑

m=0
1am=n. Then,

E[Tn,t] =
t−1
∑

m=0

E [1am=n]

After playing an arm un times, bounding the first un terms by 1 yields:

E[Tn,t] ≤ un +
t−1
∑

m=un+1

P ({am = n} ∩ {Tn,m > un}) (6.8)

Then we can notice that the following events are equivalent:

{am = n} =
{

Bn,m > max
n′ 6=n

Bn′,m

}

Moreover we can notice that:
{

Bn,m > max
n′ 6=n

Bn′,m

}

⊂ {Bn,m > Bn∗,m}

Which can be further included in the following union of events:

{Bn,m > Bn∗,m} ⊂ {Bn,m > µ∗} ∪ {µ∗ > Bn∗,m}

Consequently we can write:

{am = n} ∩ {Tn,m > un} ⊂ {Φ1(un)}πn,m ∪ {Φ2}πm (6.9)

Finally, we apply the probability operator:

E[Tn,t] ≤ un +
t−1
∑

m=un+1

P({Φ1(un)}πn,m) + P({Φ2}πm) . (6.10)

The combination of Equation 6.1 - given at the beginning of this proof - and Equation
6.10 concludes this proof.
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6.7.3 Proof of Lemma 2

From the definition of {φ1(un)}πn,t we can write that :

P
(

{φ1(un)}πn,t
)

=
∑

Sn,t∈S
P (Sn,t ≥ (un, µ

∗)) ,

=
t−1
∑

u=un

P (Tn,t = u)P (Bn,t(Tn,t) ≥ µ∗|Tn,t = u) ,

≤
t−1
∑

u=un

P (Bn,t(u) ≥ µ∗) .

In the case of MUCB policies, we have:

∀u ≤ t, P (Bn,t(u) ≥ µ∗) = P

(

Wn,t(u) ≥
µ∗

Mn,t(u)
.

)

Consequently, we can upper bound the probability of occurrence of type 1 anomalies by:

P
(

{φ1(un)}πn,t
)

≤
t−1
∑

u=un

P

(

Wn,t(u) ≥
µ∗

Mn,t(u)

)

.

Let us define βn,t(Tn,t) =
µ∗

Mn,t(Tn,t)
.

Since we are dealing with exponential distributions, the rewards provided by the arm
n satisfy the Cramer condition. As a matter of fact, since u ≥ un ≥ α ln(t)

(1−ρn)
2 then:

βn,t(u)λn = ρ−1
n

(

1−
√

α
ln(t)

u

)

≥ 1

So, according to the large deviation inequality for Wn,t(Tn,t) given by Lemma 4 (with
Tn,t ≥ un and un large enough), there exists a continuous, non-decreasing, non-negative
function l1,k such that:

P
(

Wn,t(Tn,t) ≥ βn,t(Tn,t)|Tn,t = u
)

≤ e−l1,n(βn,t(u))u.

Finally:

P
(

{φ1(un)}πn,t
)

≤
t−1
∑

u=un

e−l1,n(βn,t(u))u. (6.11)

The end of this proof aims at proving that for u ≥ un:

l1,n(βn,t(u)) ≥ α
ln(t)

2u

Note that since we are dealing with exponential distributions we can write (C.f. Subsection
6.7.1):

l1,n(βn,t(u)) ≥
3 (1− βn,t(u)λn)

2

2 (1 + 2βn,t(u)λn)
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Moreover since u ≥ un ≥ α ln(t)

(1−ρn)
2 then:

0 ≤ 1−
√

α
ln(t)

u
≤ 1

Thus,

βn,t(u)λn = ρ−1
n

(

1−
√

α
ln(t)

u

)

≤ ρ−1
n

Consequently it is sufficient to prove that:

3 (1− βn,t(u)λn)
2

2
(

1 + 2ρ−1
n

) ≥ α
ln(t)

2u

Let us define h(t) as a function of time: h(t) =

√

α ln(t)
u ∈ [0, 1]. We analyze the sign of

the function:

g(t) =
(

ρ−1
n h(t)−

(

ρ−1
n − 1

))2 −
(

1 + 2ρ−1
n

)

3
h(t)2 (6.12)

Consequently we need to prove that for u ≥ un, g(·) has positive values.
Factorizing last equation leads to the following to terms:















(

ρ−1
n −

√

(1+2ρ−1
n )

3

)

h(t)−
(

ρ−1
n − 1

)

(

ρ−1
n +

√

(1+2ρ−1
n )

3

)

h(t)−
(

ρ−1
n − 1

)

(6.13)

Since per definition:
{

h(t) ∈ [0, 1]
ρ−1
n ≥ 1

(6.14)

Then,


ρ−1
n −

√

(

1 + 2ρ−1
n

)

3



h(t)−
(

ρ−1
n − 1

)

≤ 0

Consequently, g(·) is positive only if the second term of Equation 6.13 is negative, i.e.,

√

α
ln(t)

u
≤

(

ρ−1
n − 1

)

(

ρ−1
n +

√

(1+2ρ−1
n )

3

)

Since u ≥ un, the last inequation is verified.
We conclude this proof by upper bounding Equation 6.11 for u ≥ un:

P
(

{φ1(un)}πn,t
)

≤
t−1
∑

u=un

e−α ln(u)/2 ≤
t−1
∑

u=un

1

uα/2
≤ 1

tα/2−1
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6.7.4 Proof of Lemma 3

This proof follows the same steps as the the proof in Subsection 6.7.3. From the definition

of {φ1(u)}πn,t we can write that :

P ({φ2}πt ) ≤
t−1
∑

u=1

P (Bn∗,t(u) ≤ µ∗) .

In the case of MUCB policies, we have:

∀u ≤ t, P (Bn∗,t(u) ≤ µ∗) = P

(

Wn∗,t(u) ≤
µ∗

Mn∗,t(u)
.

)

Consequently, we can upper bound the probability of occurrence of type 2 anomalies by:

P ({φ2}πt ) ≤
t−1
∑

u=1

P

(

Wn∗,t(u)

µ∗ ≤ max

{

0; (1−
√

α ln(t)

Tn,t
)

})

Since µ∗max
{

0; (1−
√

α ln(t)
Tn,t

)
}

≤ µ∗ Cramer’s condition is verified. Moreover since the

arm is played when the maximal of the previous term is equal to 0, we can consider that
u ≥ α ln(t) and that:

µ∗max

{

0; (1−
√

α ln(t)

Tn,t
)

}

= µ∗
(

1−
√

α ln(t)

Tn,t

)

Consequently, we can upper-bound the occurrence of Anomaly 2:

P ({φ2}πt ) ≤
t−1
∑

u=α ln(t)

e−l2(βn∗,t(u))u (6.15)

Where, l2(βn∗,t(u)) verifies the LDI as defined in Appendix 6.7.1. Thus, after mild simpli-
fications we can write,

l2(βn∗,t(u)) ≥
3α ln(t)

u

2

(

1 + 2(1−
√

α ln(t)
u )

) ≥ α ln(t)

2u

Consequently, including this last inequality into Equation 6.15 ends the proof.





Chapter 7

Overview, General Conclusions and

Future Work

Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 Multi-Armed Bandits . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3 Multiplicative upper confidence bound algorithms . . . . . . 123

6.4 Analysis of MUCB(α) policies . . . . . . . . . . . . . . . . . . . 124

6.4.1 Consistency and order optimality of MUCB indexes . . . . . . . 125

6.4.2 Learning Anomalies and Consistency of MUCB policies . . . . . 126

6.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.7.1 Large Deviations Inequalities . . . . . . . . . . . . . . . . . . . . 131

6.7.2 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.7.3 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.7.4 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 135

137



138 Overview, General Conclusions and Future Work

7.1 Conclusion and Overview

In this report we tackled several fundamental decision making and learning problems
related to CR, in general, and to OSA in particular. These problems appeared naturally
with the advent of CR.

Thus, after a first general introduction in Chapter 1, we positioned the general class
of problems we are dealing with in Chapter 2. Moreover, this latter relates our approach,
based on partial monitoring under uncertainty, to the CR literature. Assuming minimum
information on CR equipment’s environments, we ventured the analysis of sequential de-
cision making techniques to enable the design of efficient and reliable cognitive agents.

Two main topics were tackled: signal detection under uncertainty and resource ex-
ploitation under uncertainty:

• On the one hand, introduced in Chapter 3, we revisit the performance of energy
detection under noise uncertainty. Relying on the seminal work of Alexander Son-
nenschein and Philip M. Fishman in 1992 [49], we proved new results on the limits
of detection under noise level uncertainty. More specifically, we showed that under
a log-normal distributed noise uncertainty, close-formed expression of the ED’s per-
formances can be written. Such performances appear to depend on the length of
the sampling window as well as the noise uncertainty parameter introduced in the
chapter.

• On the other hand, in Chapters 4, 5 and 6, we venture the analysis of OSA related
models. We modeled OSA scenarios as Multi-Armed Bandit problems. Through
these chapters we complexified the scenarios taking into account OSA specificities:
detection errors, sensing uncertainties, coordination and collaboration among play-
ers and fading channels. To solve the previously mentioned problems, we focus on
the UCB1 proving its efficiency at every step. In the case of fading channels, we
introduced a different form of algorithms to handle exponentially distributed obser-
vations.

Note that, the results of Chapter 6 offer a new contribution to the MAB literature and
open the way to a large set of machine learning applications.

7.2 Perspectives and Future Work

The presented work in this dissertation answers many questions asked in Chapter 1, Section
1.4. The provided answers open the way to many new studies and potential applications.

• Chapter 3 shows that it possible to quantify, avoiding worst case analyzes, the uncer-
tainty on the noise level. The results assume that the uncertainty level in known. We
can see from the equations that if the window size is large enough, the distribution
of log-energy ratio depends only on the uncertainty parameter. This open the way
to estimating, perhaps even alleviating, energy detection limits for CR applications.

• The relationship between the uncertainty model suggested by Tandra et al. in [50]
and our uncertainty model is not quite clear yet. It is currently under investigation.
The aim is to provide a unified uncertainty framework on energy detection limits
under noise level uncertainty.
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• Explaining the benefit of coordination and collaboration in Secondary Networks,
Chapter 5 open the way the real applications. The protocol involved are yet to
be clearly investigated. Hopefully, this work sill help designing real and efficient
secondary networks in the next few years.

• Combining MUCB algorithms introduced in Chapter 6 and coordination and collab-
oration mechanisms discussed in Chapter 5, it becomes possible to tackle complex
sensor networks or network applications. For instance, we can think of problems in-
volving: shortest paths, quality chains and sensing networks in fading environments
to name a few.

These topics are currently under investigation at Supélec in the team SCEE.
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Appendix A

Three years of Ph.D. research,

teachings and talks

This Ph.D. took place in Supélec on the Campus of Rennes. Within the team SCEE,
we dealt with signal detection under uncertainty and decision making for CR. During the
period between October 2008 and December 2011, my time was split between my Ph.D.
research, computer science teachings at the University of Rennes1 and the Medical School
of Rennes1, and finally undergraduates’ project supervision. In a nutshell:

• My teaching activities occupied 224 hours during 3 years. The count does not include
the preparation time.

• I followed 99 hours of various courses (scientific and management related courses).

• I supervised 9 undergraduate projects related to signal processing, game theory and
machine learning.

• I published 2 journal papers and co-authored 15 conference papers (10 papers as first
author, 5 as second author). Among these papers, 3 were ‘invited’. I participated to
most of the related conventions where I presented my work. Finally, I participated
to 2 technical reports within the project NEWCOM++.

• I held 4 main Seminar Talks: At the university of Liège (Belgium) invited by Damien
ERNST. At INRIA-Lille Nord (France) with the team of Rémi MUNOS. At the UPC
(Barcelona, Spain) within the department of Signal Processing and Communication
with Miguel LOPEZ-BENITEZ and Jordi PEREZ-ROMERO. Finally at Supélec (to
greet Prof. MITOLA visiting the campus of Rennes).

• I wrote a chapter in the book on SDR and CR entitled ‘De la Radio Logicielle à
la Radio Intelligente’ supervised by J. PALICOT. Moreover I supervised its English
translation: ‘from Software to Cognitive Radio’.

During my Ph.D., I had the pleasure to spend some time with many different research
teams in various European universities:

• Several weeks at the University of Liège in Belgium, in the Machine Learning De-
partment (with Damien ERNST).
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• Almost three months at the Universitat Politècnicia de Catalunya (UPC), in the de-
partment of Signal Processing and Communication (with Miguel LOPEZ-BENITEZ
and Jordi PEREZ-ROMERO). This exchange was organized within the European
project NEWCOM++.

• I discussed network related issues at the Chair Alcatel in Supélec, held by Mérouane
DEBBAH, (on the Campus of Gif) were I spent several weeks near Paris.

Finally, we worked on various research and implementation topics that are not pre-
sented in this report. The work involved the design of algorithms and their implemen-
tations on the USRP platforms [25, 26], interfacing HDCRAM with Simulink and USRP
cards [27], blind energy detection relying on Expectation-Maximization algorithms [28],
as well as the exploration of hot-spot migration techniques on FPGA platforms in the
context of Green CR [29].
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Figure C.1: Evolution des débits des principaux standards de communication sans-fil (Fig-
ure trouvé en ligne : http://3g4g.blogspot.fr/2008_04_01_archive.html ). Des courbes
similaires peuvent être trouvées dans le papier [2].

C.1 Vingt années de communication sans-fil

C.1.1 Les limites de la couche physique et la loi de Cooper

1991-2011 : vingt années d’innovation dans le domaine des communications numériques.
Vingt années durant lesquelles les débits proposés par les technologies cellulaires et WLAN
ne cessèrent de croitre soutenus par une augmentation régulière de la capacité de calcul des
processeurs (vérifiant les extrapolations de Gordon E. Moore en 1965). En effet, avec des
outils de calcul plus rapides et performants, la communauté radio fut capable de concevoir
et implanter des moyens de traitement du signal plus complexes au niveau de la couche
physique.

Ainsi illustré par la figure C.1 les débits atteints par les technologies sans-fil, dus
notamment aux innovations au niveau de la couche physique, sont en effet substantiels.
Cela ne représente néanmoins qu’une petite fraction de l’augmentation de la capacité
cumulée effective de communication ! En effet, Martin Cooper déclara récemment que la
capacité de communication sans-fil avait doublé tous les 30 mois depuis 104 ans [4]. Cette
progression régulière et exponentielle repose sur de diverses améliorations technologiques.
Nous pouvons compter parmi celles-ci trois citées par Martin Cooper pour soutenir son
discours :
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• L’amélioration de la gestion du spectre (e.g., codage et modulation), ainsi que la
gestion de l’accès à cette ressource, permit l’augmentation de la capacité cumulée
effective de 25 fois.

• La gestion de bandes de fréquences plus large permit aussi la multiplication de la
capacité cumulée effective d’un facteur 25 fois.

• enfin, la réduction de la taille des cellules (ou rayon) de transmission, permettant
d’améliorer la réutilisation des fréquences, mena à une amélioration d’un facteur
1600.

Ainsi nous observons que toutes contributions confondues associées à la couche physique
ne permirent d’obtenir ‘qu’une amélioration d’un facteur 625’. Alors que la réduction de
la taille des cellules permit, au dépend d’un coût important en infrastructure, d’apporter
un gain substantiel à la capacité cumulée effective de communication. Ce gain augmente
aujourd’hui rapidement grâce à l’implantation massive de terminaux Wi-Fi dans tous les
bâtiments et dans les espaces urbains en général. Notons que la prise en compte des réseaux
Wi-Fi -ou leurs contributions le cas échéant- dans le calcul effectué par Martin Cooper
n’est pas explicite. Ces conclusions restent donc sujettes à des précisions supplémentaires.

De plus, la recherche dans le domaine de la couche physique semble aujourd’hui
s’essouffler. Ainsi, en considérant une simple communication entre deux utilisateurs, aucun
codage ni aucune forme de modulation ne permettra d’apporter un réel gain. En effet, les
moyens de communication actuels permettent déjà d’atteindre des débits proches de ceux
annoncés par Shannon. La question se pose alors : est-il encore intéressant de poursuivre
les recherches sur la couche physique ? La réponse est bien entendu oui : les nouvelles
opportunités de communication ne viendront probablement pas en ne se focalisant que sur
la capacité de Shannon mais plutôt sur la capacité équivalente du réseau. Dans ce contexte
apparaissent alors de nouvelles pistes prometteuses qui ont pour objectif d’augmenter les
opportunités de communications des utilisateurs. Pour cela chaque utilisateur aura pour
mission de répondre à ses besoins tout en évitant de ‘polluer’ son environnement. C’est
dans cet esprit qu’apparaissent des techniques telles que le ‘beam-forming’ ou encore les
‘smart-antennas’.

Enfin, optimiser les performances d’un utilisateur, en prenant en compte le fonction-
nement du réseau, peut bien entendu se faire à travers les différentes couches du système :
de la couche physique à la couche applicative. Néanmoins, augmenter les degrés de liberté
d’un équipement afin d’optimiser son comportement présuppose d’une part une grande
flexibilité, du point de vue de l’électronique et du traitement du signal, et d’autre part une
grande autonomie dans la prise de décision. En d’autres termes, le système ainsi conçu
observe son environnement, prend une décision appropriée vis-à-vis des changements de
l’environnement et/ou les objectifs de l’utilisateur, et enfin, reconfigurer en temps réel
l’architecture de l’équipement afin de s’adapter. Par conséquent, une approche promet-
teuse, dont l’objectif est de soutenir la loi de Cooper, consiste à combiner flexibilité élec-
tronique et intelligence computationnelle aussi bien dans les futurs équipements radio que
dans les réseaux. Ces besoins, anticipés depuis une vingtaine d’années ont donné lieu à
deux domaines très actifs : la radio logicielle (Software Radio) et à la radio intelligente
(Cognitive Radio).
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C.2 Vers la radio intelligente

C.2.1 La radio logicielle

Les nombreux progrès réalisés dans les domaines de l’électronique ont permis de concevoir
des plateformes à la fois plus rapides et plus flexibles offrant, de nouvelles perspectives en
termes de nouveaux moyens de communications pour des applications non militaires(1).
En effet, en 1991, Joseph Mitola III présentait déjà la possibilité de concevoir, au moins
en théorie, des systèmes de communication reposant sur une exécution de logiciels. Cela
représente donc un changement de paradigme important, remplaçant ainsi l’exécution
matérielle habituelle par des traitements logiciels autant que possible. Mitola nomma ce
paradigme ‘Software Defined Radio’, en d’autres termes radio logicielle.

A titre illustratif, les systèmes radio conçus aujourd’hui nécessitent une chaine électron-
ique dédiée pour tout standard inclus dans l’équipement. Utiliser un standard plutôt qu’un
autre revient à éteindre la première chaine pour activer la seconde. Avec l’augmentation
du nombre de standards intégrés (GSM, EDGE, UMTS, Wi-Fi, Bluetooth, etc.) dans un
même équipement, la conception de tels systèmes devient particulièrement complexe. Le
besoin pour une plus grande flexibilité dans l’équipement s’impose petit à petit en tant que
nécessité. Il deviendrait alors possible, au moins en théorie, de reconfigurer l’équipement à
la volée en n’implantant que les chaines utiles à chaque instant, et par extension, unique-
ment les opérateurs de traitement du signal nécessaires à chaque instant (en fonction des
conditions de transmission). Dans la pratique, le problème est encore un sujet de recherche
en cours de résolution.

Proposer une définition de la radio logicielle qui soit sans ambigüité et accepté de
tous semble aujourd’hui compliqué. Plusieurs définitions ont été proposées et restent
aujourd’hui encore sujets à de nombreuses discussions au sein de la communauté radio.
Pour des raisons de clarté, nous décrivons brièvement quelques notions liées à la radio
logicielle tel que définies par le SDR Forum [7] (d’autres définitions alternatives existent
[8]). Les définitions exactes traduites par l’auteur ici peuvent être retrouvées dans le
chapitre 1.

Ainsi, le SDR Forum définit la radio logicielle en tant qu’équipement radio dans lequel,
au moins quelques fonctions de la couche physique sont traitées de manière logicielle. Par
conséquent, au moins du point de vue du SDR Forum, les radios dites logicielles ne sont
définies que par la manière dont sont implantés les blocs de traitement au niveau de
la couche physique. La radio logicielle apparaît donc comme une simple évolution des
systèmes paramétrables déjà existants. Or, avec cette nouvelle couche logicielle, il devient
possible de contrôler un large jeu de paramètres afin que l’équipement puisse s’adapter à
son environnement (largeur de bande, modulation, codage, niveau de puissance, ainsi de
suite). Cela n’est néanmoins possible que si des critères relatifs aux objectifs à atteindre
sont définis. Ces critères prennent en comptes les besoins de l’utilisateur, les degrés de
libertés de la plateforme radio ainsi que les lois de régulations en vigueur. Introduire les
moyens d’optimiser, de manière autonome, un équipement et/ou un réseau radio est la
base de la radio intelligente, terme suggéré aussi par Joseph Mitola III [9, 10].

(1)Ces recherches avaient commencé dans les années 70 pour des applications militaires aux Etats-Unis
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C.2.2 Radio intelligente

Mitola définit la radio intelligence dans son manuscrit de thèse [10] de la manière suivante :
The term cognitive radio identifies the point at which wireless PDA and the related

networks are sufficiently computationally intelligent about radio resources and related com-
puter to computer communication to:

1. Detect user communication needs as a function of use context, and

2. Provide radio resources and wireless services most appropriate to these needs.

En d’autres termes, le concept de la radio intelligente présuppose que les équipements
radios ainsi que les réseaux auxquels ils sont reliés ont une connaissance suffisante de leurs
propres ressources et les moyens de communication inter-machines afin de :

• détecter les besoins des utilisateurs en fonction du contexte et,

• fournir les ressources radio et les services sans fil les plus appropriés pour répondre
à ces besoins.

Ainsi, ce concept vise à répondre de manière autonome aux besoins des utilisateurs,
i.e. maximiser leurs ‘gains’, en termes de qualité de service, de débit ou d’efficacité én-
ergétique par exemple, sans corrompre le bon fonctionnement du réseau. Par conséquent,
l’intelligence nécessaire doit être distribuée aussi bien au niveau des équipements que dans
le réseau. Afin de répondre à ces exigences, J. Mitola et J.Q. Maguire introduisirent
la notion de ‘cycle cognitif’. Le cycle est décrit dans la figure C.2 [9, 10]. Il suppose
l’aptitude à collecter de l’information sur son environnement (perception/observation), à
digérer ces informations (apprentissage et prise de décision) et à agir de la manière la
plus appropriée en considérant les diverses contraintes imposées à l’équipement ainsi que
les informations disponibles. La reconfiguration de l’équipement n’est pas détaillée, néan-
moins il est généralement admis que la technologie radio logicielle est nécessaire au moins
partiellement pour atteindre les objectif de la radio intelligente [8].

Illustré par la figure C.2, un cycle cognitif complet (2) fait appel à chaque itération à
cinq étapes : Observer, Orienter, Planifier, décider et Agir.

L’observation s’intéresse aussi bien aux métriques internes à l’équipement qu’aux métriques
externes. Elle vise à s’informer sur certaines métriques nécessaires au raisonnement de
l’équipement. On peut citer, par exemple, l’état du canal de transmission, le niveau
d’interférence, ou encore le niveau de la batterie. Ces informations sont ensuite envoyé
au centre décisionnel qui poursuit en orientant la stratégie de l’équipement, en planifiant
les différentes tâches à réaliser en décidant de la démarche à suivre afin d’atteindre les
objectifs fixés. Enfin, l’équipement prend en considération les décisions prises en se recon-
figurant. Cette dernière étape agit sur l’équipement (paramètres internes liées aux chaines
de transmissions par exemple) ainsi que sur l’environnement externe. Un dernière étape
est nécessaire afin de compléter le cycle cognitif : l’apprentissage. Cette étape prend en
considération les résultats des décisions passées afin d’améliorer le comportement futur de
l’équipement.

(2)On l’appelle cycle cognitif complet afin de le différencier d’autres cycle proposées dans la littérature
et qui apparaissent comme des formes simplifier de celui-ci.



156 Vingt années de communications sans-fil: vers la radio intelligente

Figure C.2: Cycle cognitif présenter par J.Mitola III [10].

Depuis les travaux de J.Mitola, il y a une dizaine d’années, une véritable communauté
de recherche sur les questions liées à la radio logicielle et la radio intelligente s’est créée.
Les travaux de cette thèse s’inscrivent dans cette dynamique en focalisant sur les aspects
décisions et apprentissage.

C.3 Travaux de Thèse

Les objectifs de la thèse ont été définis en deux temps. Dans un premier temps, trois
objectifs ont été fixés :

1. Exploration des outils d’apprentissage et de prise de décisions exploités dans le cadre
de la radio intelligente.

2. Identification, dans la littérature Machine Learning, des techniques de faibles com-
plexités capables d’opérer sans information a priori sur leurs environnements.

3. Adapter les algorithmes ainsi identifiés au contexte de la radio intelligente. No-
tamment comprendre l’impact des erreurs d’observation sur les performances des
algorithmes d’apprentissage.

Répondre à ces problématiques permit de relever de nouvelles interrogations :

1. Quantifier l’incertitude liée au détecteur d’énergie. Est-ce Possible ? Si oui, sous
quelles hypothèses ? Cette question est cruciale afin de dimensionner correctement
l’algorithme d’apprentissage. En effet ce dernier reposera ces décisions sur les obser-
vations du détecteur de signaux.
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2. Intégrer les notions de coordination et de collaboration parmi plusieurs moteurs
de prise de décisions. Notamment lorsqu’on analyse un réseau de communication
secondaire.

3. Adapter, ou développer des algorithmes d’apprentissage, afin de répondre à des con-
textes d’exploitation de ressources spectrales lorsque l’observation de ces dernières
est sujette à du fading.

Ce rapport de thèse a pour objectif d’apporter des éléments de réponses à toutes ces
questions qui combinent des problèmes mathématiques nouveaux appliqués à des problé-
matiques de télécommunications. Ce résumé en Français n’apporte qu’une introduction
rapide aux notions fondamentales impliquées dans ces travaux. Nous invitons le lecteur
intéressé à lire la Section 1.4 en anglais, au début de ce manuscrit, pour de plus amples
détails. Le reste de ce résumé, à travers les Sections D et E, introduit d’une part les
notions importantes relatives à la détection d’énergie dans des contextes d’incertitude, et
d’autre part, les notions fondamentales liées à l’accès opportuniste au spectre combinée à
la théorie des bandits manchots (Multi-Armed Bandit Paradigm).
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D.1 Introduction

En général, les modèles d’apprentissage supposent que les mesures traitées sont exactes.
Ces hypothèses ne correspondent souvent pas à la réalité. En effet, dans le cas de l’accès au
spectre, l’issue de la phase d’observation (i.e., de détection) est souvent entachée d’erreurs.
Ainsi le détecteur peut observer un canal libre alors que celui-ci est occupé et vice-versa.
Connaître les limites des systèmes d’observation est donc une étape cruciale afin de di-
mensionner de manière pertinente les algorithmes d’apprentissage adjacents. Nous nous
proposons donc dans le contexte de la radio intelligente (Cognitive Radio en anglais, CR)
d’évaluer les limites d’un des algorithmes les plus populaires du domaine : le détecteur
d’énergie. En effet, le détecteur d’énergie est un élément crucial en CR puisque ce dernier
a une très faible complexité et permet, sans connaître la structure des signaux analysés,
de détecter les bandes libres dans le spectre, ce qui représente l’un des scénarios CR les
plus courants.Les contributions de ce chapitre sont les suivantes :

• Approximation d’une distribution χ2 par une loi Log-Normal. Le résultat
montre que l’approximation par une loi Log-Normal mène à des erreurs d’approximations
plus faible que dans le cas d’une approximation d’une distribution χ2 par une loi nor-
male.

• En général, le niveau du bruit est connu via une estimation. Cette estimation semble
être bien approximée en pratique par des lois Log-Normal modélisant l’incertitude
du bruit [49]. Le détecteur se ramène donc à la comparaison de l’énergie du paquet
analysé à l’estimation courante du niveau du bruit. En pratique cela se caractérise
par l’analyse du ratio entre l’énergie du paquet courant et l’estimation du bruit.
Malheureusement la statistique ainsi définie ne connaît pas de loi simple et explicite.
Nous proposons alors d’exploiter l’approximation de la loi χ2 par une loi
Log-Normal afin d’approcher le problème initial par un problème plus
simple.

• Les études proposées dans la littérature ne permettent pas d’évaluer les performances
d’un détecteur d’énergie dans le cas où une incertitude existe sur la valeur du niveau
du bruit. En effet elles considèrent que le bruit est connu de manière certaine dans
un certain intervalle d’incertitude. Cela mène alors à des études du pire cas, i.e.,
évaluer les performances du détecteur en fixant une borne supérieure de la probabilité
de fausse alarme. Cela mène naturellement à définir une borne inférieure de la
probabilité de détection. Les études ainsi menées [49, 50] aboutissent à la définition
d’une valeur limite de rapport signal à bruit en deçà duquel les résultats du détecteur
ne sont plus pertinents. Ce résultat est souvent interprété comme la définition d’une
limite en deçà de laquelle il est impossible de détecter la présence ou l’absence d’un
signal.

Nous offrons ainsi une alternative aux études ‘pire cas’ généralement proposées dans
la litérature [50]. Nos résultats donnent une forme explicite de l’incertitude
du bruit sur la dégradation des capacités de détection du détecteur d’énergie.

Seuls les résultats principaux sont présentés dans ce résumé. Pour plus de détails, les
lecteurs sont invités à lire les chapitres correspondant en Anglais.

Ces travaux ont été publiés dans une revue et une conférence.
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D.2 Détection d’Energie

D.2.1 Modèle, Hypothèses et Notations

Soit yt = [yt,0, yt,1, · · · , yt,M−1], un vecteur de M échantillons indépendants et identique-
ment distribués (i.i.d.) obtenu pendant la durée du paquet temporel t ∈ N. L’issue du
processus de détection peut être modélisé par le test d’hypothèse binaire suivant: (1)

yt =

{

nt, H0

xt + nt, H1

où les hypothèses H0 et H1 désignent respectivement les cas d’absence ou présence de signal
dans le paquet analysé. D’une part, xt = [xt,0, xt,1, · · · , xt,M−1] désigne le signal où chaque
échantillons xt,k est une réalisation i.i.d. d’une distribution normale N (0, σ2

x,t). D’autre
part, nt = [nt,0, nt,1, · · · , nt,M−1] désigne les échantillons i.i.d. extraits d’un bruit additif
GaussienN (0, σ2

n,t). De plus, xt et nt sont supposés indépendants. Ainsi, nous considérons
les vecteurs d’échantillons reçus en fonction de l’hypothèse ∀yt,i i ∈ {0, · · · ,M − 1} :

{

H0 : yt,i ∼ N (0, σ2
n,t)

H1 : yt,i ∼ N (0, σ2
x,t + σ2

n,t)

Le paragraphe suivant rappelle les critères habituellement utilisés afin d’évaluer la
qualité d’un détecteur.

D.2.2 Evaluation d’un détecteur

La qualité d’un détecteur est habituellement évaluée via le calcul de la probabilité de fausse
alarme Pfa,t et de la probabilité de détection Pd,t. Soit dt la décision prise relative à la
présence ou l’absence du signal au test t :

{

Pfa,t = P (dt = 1|H0)
Pd,t = P (dt = 1|H1)

En règle générale, les détecteurs sont paramétrés afin de satisfaire une contrainte rel-
ative à la probabilité de fausse alarme, Pfa,t ≤ α pour un certain α ∈ [0, 1]. Le détecteur
le puissant est celui qui maximise Pd,t sous la contrainte Pfa,t = α.

D.2.3 Détecteur d’Energie: modèle de Neyman-Pearson

Le détecteur d’énergie dit de Neyman-Person (ED-NP) suppose la connaissance du niveau
du bruit à chaque instant σ2

n,t.Par conséquent, pour des raison de clarté et sans perte de
généralité, nous considérons que le niveau du bruit est constant : σ2

n,t = σ2
n. Il est alors

connu que sous ces conditions, l’ED-NP est le détecteur le plus puissant.
Prendre une décision revient à comparer l’énergie Tt du paquet de M échantillons à un

seuil :

Tt =
M−1
∑

i=0

|yt,i|2

Tt ≶H0
H1

ξt(α)

(1)Dans ce chapitre, nous associons la valeur numérique 1 à l’existence d’un signal à détecter, 0 sinon.
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où ξt(α) représente le seuil choisi afin de garantir Pfa,t ≤ α.
Nous rappelons les expressions de Pfa,t et Pd,t (où Tt ∼ χ2

M suit une distribution ‘Chi-
deux’ avec M degrés de liberté, ainsi que son approximation usuelle lorsque M devient
suffisamment grand, où la statistique Tt est approximée par une distribution normale) :







Pfa,t = 1− Fχ2
M

(

ξt(α)
σ2
n

)

Pd,t = 1− Fχ2
M

(

ξt(α)
σ2
n+σ2

x,t

)

Fχ2
M
(·) désigne la fonction de répartition de la distribution χ2 avec M degrés de liberté.

Lorsque le nombre d’échantillons considérés est suffisamment grand (M ≥ 200), il est
souvent admis qu’une approximation normale est satisfaisante [94, 49]. Notons, néanmoins,
qu’en général cette approximation est inutile puisque la forme exacte de la distributions
χ2
M est connue.















Pfa,t ≈ Q

(

√

M
2

(

ξt(α)/M
σ2
n
− 1
)

)

Pd,t ≈ Q

(

√

M
2

(

ξt(α)/M
σ2
n+σ2

x,t
− 1
)

)

où Q(·) désigne le complémentaire de la fonction de répartition d’une variable aléatoire
gaussienne (connue aussi sous le nom de fonction de Marcum)[98]:

Q(x) =
1√
2π

∫ ∞

x
e−

y2

2 dy

Lorsque la puissance du bruit σ2
n est connue, le détecteur ED-NP est satisfaisant.

Lorsque cette information n’est pas disponible, les performances du détecteur se dégradent
rapidement. Nous proposons de quantifier de manière explicite la dégradation des perfor-
mances du détecteur.

D.2.4 Détection d’énergie avec un niveau de bruit incertain

Les auteurs du papier [49] proposent l’analyse de l’impact d’une information incertaine
relative au niveau du bruit sur les performances du détecteur d’énergie. Pour cela, Ils
définissent deux modèles. Le premier considère que la puissance du bruit est uniquement
connue dans un certain intervalle. Dans ce contexte ils montrent, à travers une étude
du pire cas, qu’il existe une limite du rapport signal à bruit en-deçà duquel il est im-
possible de détecter un signal. La difficulté en pratique d’aboutir à un intervalle certain
(avec probabilité 1) a mené les auteurs à considérer un modèle plus réaliste mais plus
complexe à résoudre. Il repose sur des mesures empiriques. Ces dernières montrent que
dans de nombreux scénario, l’estimation de la puissance du bruit semble suivre une loi
Log-Normale. Cela ramène l’étude de leur détecteur à un ratio entre une variable de loi
χ2 et une variable de loi Log-Normale. Un tel ratio n’a malheureusement pas de forme
explicite simple. Ils ramenèrent donc le second problème au premier modèle à travers un
intervalle de confiance.

Afin de répondre au second modèle, nous proposons dans cette thèse une approximation
de la loi χ2 par une loi Log-Normale. Cette approximation est évaluée puis exploitée afin
de résoudre le problème resté non-résolu dans le papier [49].
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Figure D.1: Approximation de la fonction erreur (Résultats et figures issues du papier
[143]. Les deux figures de droite et de gauche présentent les fonctions ∆1(·), ∆2(·), ∆̃1(·) et
∆̃2(·) (C.f. paragraphe 3.3.2). La figure de gauche montre ces fonctions pour un paramètre
M = 1000, alors que la fonction de droite les montre pour un paramètre M = 25000. Nous
observons que les aproximations théoriques introduites dans la propriété 1, paragraphe
3.3.2- et les équations en haut de la figure ci-dessus- convergent bien vers les vraies valeurs
lorsques M grandit.

D.3 Approximation Log-Normal d’une distributions χ2

Dans ce résumé nous ne présenterons pas les détails de l’étude. Afin de présenter la
contribution liée à cette section, nous allons néanmoins brièvement la décrire à travers la
simulation des résultats. Pour les détails de l’étude, nous invitons le lecteur à se référer
au Chapitre 3.

La figure D.1 montre les fonctions erreurs ∆1(·) et ∆2(·) qui représentent la différence
entre la fonction de densité de probabilité de la loi χ2 et celles des lois Log-Normale
et loi normale respectivement, ainsi que leurs approximations respectives, ∆̃1(·) et ∆̃2(·),
introduites via l’équation 3.11 au paragraphe 3.3.2. La figure de gauche montre les résultats
pour une valeur du paramètre M = 1000 tandis que la figure de droite considère la
valeur M = 25000. L’objectif de ces deux figures s’articule en deux temps : d’une part,



164 Limites de la détection d’énergie dues à une connaissance incertaine du niveau du bruit

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Degrees of Freedom (M)

M
ax

im
um

 A
bs

ol
ut

e 
E

rr
or

Evolution of the maximum absolute error between
 χ2 distributions and LogNormal/Normal distributions

 

 

max(∆
1
(x))

max(∆
2
(x))

Approximated max(∆
1
(x))

Approximated max(∆
2
(x))

max(∆
2
(x))

max(∆
1
(x))

Figure D.2: Erreur Maximale en valeur absolue (Maximum Absolute Error). Sur cette
figure, quatre courbes sont affichées: deux en pointillé et deux en trait plein. Les courbes
en pointillé illustrent le taux de décroissance de l’amplitude maximale des fonctions ∆1(·)
et ∆2(·). Tandis que, les deux autres courbes, affichent les valeurs théoriques approximées
à l’aide des fonctions ∆̃1(·) et ∆̃2(·). Nous pouvons remarquer que les resultats théoriques
développés à travers les équations 3.13 et 3.14 décrive bien la réalité dans les deux cas.

elles cherchent à illustrer les erreurs dues à l’approximation de la distribution χ2 par une
distribution normale ou une distribution Log-Normale. Cet aspect est mis en valeur par
les courbes ∆1(·) et ∆2(·) sur les figures (rouge et bleu en pointillé). D’autre part, nous
cherchons à évaluer la précision de l’approximation d’ordre fini de ces deux fonctions ∆̃1(·)
et ∆̃2(·) en fonction du paramètre M .

Nous observons tout d’abord que les fonctions ∆1(·) and ∆2(·), présentent une courbe
similaire. Néanmoins, une approximation gaussienne de la distribution χ2 semble mener
à des erreurs d’amplitude plus larges qu’une approximation par une loi Log-Normale.
Cela suggère qu’une approximation Log-Normal devrait être en général préférée (si une
approximation est nécessaire).

Deuxièmement, nous observons que l’approche théorique à travers les fonctions ∆̃1(·)
et ∆̃2(·) offre des approximations précises des fonctions d’erreur, surtout lorsqu’il s’agit
d’évaluer le maximum global de la fonction. La figure D.2, insiste sur cette dernière
remarque.
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D.4 Détecteur d’Energie et le Modèle Log-Normal de l’Incertitude

D.4.1 Approximation de la Statistique d’Energie et Incertitude sur le

Niveau du Bruit

Soit σ̂2
n la puissance estimée du bruit. En supposant que σ̂2

n suit un loi Log-Normale non
biaisée [49], telle que l’espérance et la variance de cette distribution vérifient respective-
ment, E

[

σ̂2
n

]

= σ2
n et V

[

σ̂2
n

]

= u.σ4
n, avec u le paramètre d’incertitude, introduit aussi par

la définition (non conventionnelle) en décibel u = 10UdB/10 − 1, alors :

σ̂2
n ∼ LogN (µu,Vu) , s.t. :

{

Vu = log (1 + u)

µu = 2 log (σn)− Vu
2

(D.1)

tel que µu et Vu désignent respectivement l’espérance et la variance de la distribution
d’incertitude du bruit.

Ainsi supposons que la statistique de puissance Tt/M peut être approximée par une
loi Log-Normale telle que E [Tt/M ] = σ2

T et V [Tt/M ] = 2σ4
T /M alors :

Tt
M
∼ LogN (µT ,VT ) , s.t. :

{

VT = log
(

1 + 2
M

)

µT = 2 log (σT )− VT
2

(D.2)

avec σ2
T le niveau de puissance moyen des échantillons obtenus en fonction de la présence

ou l’absence de signal au slot t :
{

H0 : σ2
T = σ2

n

H1 : σ2
T = σ2

n + σ2
x,t

(D.3)

Finalement nous introduisons la variable aléatoire suivante Wt telle que :

Wt = log

( Tt
Mσ̂2

n

)

(D.4)

Nous présentons dans la prochaine sous-section les performances du détecteur d’énergie
à l’aide de la variable aléatoire Wt.

D.4.2 Performances et limites du détecteur d’énergie

En supposant les hypothèses précédentes valables, nous présentons dans la suite de ce
chapitre les résultats principaux de notre étude. Afin d’anticiper les résultats des prochains
paragraphes, nous introduisons les notations suivante, rapport signal-à-bruit (Signal-to-
Noise Ratio ou SNR) γt = σ2

x,t/σ
2
n et :











E [Wt|H0] =
1
2 (Vu − VT ) =

1
2 log

(

1+u
1+2/M

)

E [Wt|H1] = log (1 + γt) + E [Wt|H0]
V [Wt] = Vu + VT = log

(

(1 + 2
M )(1 + u)

)

(D.5)

Lemma 4 (Distribution de Wt). Soit Wt la variable aléatoire introduite dans l’équation
D.4. Nous supposons que les hypothèses introduites précédemment sont valables, alors :

Wt − E [Wt|H0]
√

V [Wt]
∼







H0 : N (0, 1)

H1 : N
(

log(1+γt)√
V[Wt]

, 1

)

(D.6)
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Nous présentons à présent les performances du détecteur analysé dans ce chapitre.

Theorem 6 (Les performances du détecteur). Soit ξt(α) une variable réelle telle que :
Wt ≶

H0
H1

log (ξt(α)), alors les probabilités de fausse alarme et de bonne détection ont les
formes suivantes :































Pfa,t = Q





log

(

ξt(α)
√

1+2/M
1+u

)

√
log((1+2/M)(1+u))





Pd,t = Q





log

(

ξt(α)
1+γt

√

1+2/M
1+u

)

√
log((1+2/M)(1+u))





(D.7)

Le théorème 6 apporte deux contributions importantes : d’une part, il donne une
expression explicite des probabilités Pfa,t et Pd,t. Et d’autre part, il permet facilement de
calculer la valeur du seuil en fonction de la probabilité de fausse alarme.

log (ξt(α)) = Q−1 (Pfa)
√

V [Wt] + E [Wt|H0]

Contrairement au premier modèle proposé par Alexander Sonnenschein et Philip M.
Fishman [49], où le modèle d’incertitude suppose connu un intervalle dans lequel la valeur
nominale du bruit se trouve, le modèle log-normal permet de calculera priori le seuil à
utiliser en fonction des performances désirées. En effet dans le cas du premier modèle
du papier [49], repris depuis par [50], le choix des paramètres ne garantit qu’une borne
supérieure sur la fausse alarme. Cela mène naturellement à une borne inférieure en terme
de pouvoir de détection qui explique la notion de SNR-wall.

Le résultat suivant fournit une expression générale du SNR-wall en fonction des per-
formances désirées du détecteur et des incertitudes {2/M ;u}.

Theorem 7 (SNR-wall). Soit Wt la variable aléatoire définie par l’équation D.4 et
soit ∆ = Q−1 (Pfa) − Q−1 (Pd), alors le SNR-wall du détecteur d’énergie soumis à une
incertitude Log-Normale vérifie :

γwall,t = e∆
√

V[Wt] − 1 (D.8)

En considérant une incertitude modélisée à l’aide d’une distribution Log-Normale, la
valeur du SNR-wall dépend des performances désirées en terme de probabilité de fausse
alarme et la probabilité de détection. Ainsi, ce résultat peut être interprété en tant que
SNR minimum nécessaire afin de garantir les performances désirées. Ce résultat change
donc des résultats précédents [50] qui présentent une limite de SNR en deçà de laquelle les
détections ne peuvent plus être considérées comme pertinentes. L’impact de l’incertitude
du bruit sur les performances du détecteur d’énergie, décrit dans les équations du théorème
6, sont illustrées sur la figure D.3 (figure de gauche).

La figure de gauche représente sept courbes de probabilité de détection pour une fausse
alarme de 0.1. La première courbe intitulée “NP-Energy Detector” représente la courbe
d’un détecteur d’énergie sans incertitude. La deuxième courbe intitulée “Energy Detector
U = 0 dB”, qui se superpose à la première courbe, illustre les résultats du détecteur mod-
élisé avec une approximation Log-Normale des distributions χ2 mais avec une incertitude
U = 0. Les cinq autres courbes, montrent l’impact de l’incertitude sur les performances



D.4 Détecteur d’Energie et le Modèle Log-Normal de l’Incertitude 167

−15 −10 −5 0 5 10 15
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR dB

P
ro

b
a

b
il
it
y
 o

f 
D

e
te

c
ti
o

n

Probability of Detection, 50 samples:
Pfa=0.1, U=0:0.5:2.5dB

 

 

NP−Energy−Detector
Energy−Detector, U=0dB
Energy−Detector, U=0.5dB
Energy−Detector, U=1dB
Energy−Detector, U=1.5dB
Energy−Detector, U=2dB
Energy−Detector, U=2.5dB

0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

Uncertainty dB

S
N

R
 d

B

Signal−to−Noise Ratio Wall
 for Pd=0.9 and Pfa=0.1

 

 

SNR
wall

 for 50 samples.

SNR
wall

 for infinite number of samples.

∆SNR
1

∆SNR
1

∆SNR
1
+∆SNR

2

∆SNR
2

Figure D.3: Probabilité de détection (gauche) et SNR-wall (droite). La figure de gauche
montre l’impact de l’incertitude du bruit tel que défini dans ce chapitre sur les performances
du détecteur d’énergie. Les courbes de droites montrent que les pertes de performances
peuvent être prédites grâce à la nouvelle formule du SNR-wall. Remarquons que l’impact
de l’incertitude, dans le sens introduit par [49] et utilisé par [50] n’apparait pas sur ces
courbes. En effet il est en général impossible suivant leur modèle d’imposer une fausse
alarme prédéfinie. Par conséquent la comparaison serait biaisée.
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du détecteur d’énergie. La courbe de droite montre que le gap qui existe entre les per-
formances du détecteur sans incertitude et celui avec incertitude peut être prédit en fonc-
tion du SNR. Ces courbes confirment les théorèmes introduits précédemment et valident
l’analyse théorique de ce chapitre. Une analyse plus détaillée est fournie dans la version
anglaise de ce manuscrit, au Chapitre 3.

D.5 Conclusion

Cette étude répond simultanément à deux challenges. D’une part nous avons évalué
l’approximation de lois χ2 par une distribution Log-Normal appropriée. Nous avons ainsi
montré que celle-ci offre une meilleure approximation que l’approximation Gaussienne.
Ensuite cette approximation a été exploitée afin de quantifier la dégradation du pouvoir
détection du détecteur d’énergie lorsque sa connaissance du niveau du bruit devient incer-
taine.
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E.1 Introduction

E.1.1 Accès Opportuniste au Spectre

L’accès Opportuniste au Spectre (en anglais : Opportunistic Spectrum Access-OSA) est
un concept prometteur, suggéré par la communauté radio, pour mieux exploiter les oppor-
tunités spectrales aujourd’hui disponibles. En effet, durant le premier siècle d’existence de
la radio d’origine humaine, l’allocation statique des bandes de fréquence aux applications
et services sans fil (au nombre sans cesse croissant), a mené à une pénurie de la ressource
spectrale. Néanmoins, de nombreuses mesures effectuées aux Etats-Unis, d’abord, cor-
roborées ensuite par des études similaires dans le reste du monde, montrent une sous
utilisation chronique du spectre [11]. Ces mesures montrent par la même occasion des
opportunités de communication substantielles à exploiter. La radio-intelligente (Cognitive

169
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Radio -CR) s’est très vite positionnée comme une candidate crédible pour y répondre via
l’OSA notamment.

Le concept général de l’accès opportuniste au spectre définit deux classes d’utilisateurs :
les utilisateurs primaires (UP) et les utilisateurs secondaires (US). Les UPs ont accès aux
ressources spectrales dédiées à leurs services. Ils sont donc prioritaires sur ces bandes de
fréquence pour lesquelles ils payent un droit d’exploitation. Les USs, par opposition aux
UPs, représentent un groupe d’utilisateurs désireux d’exploiter les opportunités de com-
munication laissées vacantes, à un certain moment dans une certaine zone géographique,
par les UPs.

Il est généralement admis que les USs n’ont pas (ou peu) d’information a priori sur
l’occupation des bandes primaires. De plus, les interférences occasionnées par les USs
doivent rester sous un certain seuil toléré par les UPs. Afin de répondre à ces exigences,
le concept de la radio intelligente (Cognitive Radio en anglais) a été suggéré [11, 9] à con-
dition que les équipements secondaires soient dotés de capacités cognitives élémentaires,
à savoir : observation de l’environnement à travers des capteurs dédiés, analyse des infor-
mations collectées, et enfin adaptation du comportement de l’équipement aux fluctuations
de l’environnement et aux attentes de l’utilisateur, tout en respectant les contraintes du
régulateur.

Il reste néanmoins de nombreux défis à surmonter afin d’exploiter de manière efficace
les opportunités présentes dans le spectre(1). Cela implique d’une part, la conception de
détecteurs précis et fiables, et d’autre part, l’analyse de mécanismes d’apprentissage et de
prise de décision performants. Proposer de tels algorithmes est depuis l’avènement de la
radio intelligente au centre de nombreuses recherches [13, 63].

E.1.2 Le Paradigme des Bandits Manchots

Le paradigme des bandits manchots (Multi-Armed Bandit en anglais) a été récemment
le centre d’une attention particulière de la part de la communauté radio. Cette thèse se
positionne, ainsi, parmi les premiers travaux qui associent ce paradigme à celui de la radio
intelligente.

Brièvement, ce paradigme modélise l’agent de prise de décision par un joueur dans
un casino. Ce dernier cherche à maximiser les gains cumulés obtenus en tirant le bras
de différentes machines à sous (Bandits manchots, Multi-Armed Bandit, en anglais). Ces
dernières représentent les ressources à exploiter par l’agent intelligent. Si ce joueur avait
une information complète sur les gains moyens de chaque machine à sous, une stratégie
optimale serait de jouer en permanence la machine avec le gain moyen le plus élevé.
Néanmoins, dans la mesure où le joueur ne dispose d’aucune information sur ce qu’il
pourrait gagner en jouant telle ou telle machine, il n’a d’autre choix que de tester les
différentes machines afin d’estimer leur gain moyen. La recherche d’un équilibre entre le
temps passé à tester les différentes machines afin d’estimer leurs performances respectives,
et le temps consacré à la machine qui semble être optimale est ce qui est habituellement
appelé dilemme Exploitation-Exploration. Si nous imaginons que ces machines à sous
représentent des bandes spectrales auxquelles l’utilisateur secondaire cherche à accéder, ce
problème de décision et d’apprentissage en radio intelligente s’apparente à un problème
des bandits manchots.

(1)Ainsi, on cherche à persuader les régulateurs de changer les règles établies depuis 100 ans.
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Ainsi, plusieurs algorithmes ont été empruntés au domaine de l’apprentissage machine
[101, 102, 103] et suggérés pour répondre à la problématique de l’accès opportuniste au
spectre [36, 67, 137, 131](2). Ces algorithmes, néanmoins supposent une observation sans
erreur de l’état des bandes de fréquence. Dans ce contexte, l’utilisateur secondaire peut
effectivement maximiser ses gains cumulés sans interférer avec les utilisateurs primaires.
Nous avions présenté ces travaux dans les papiers [36, 67].

L’objectif de ce chapitre est d’introduire un modèle unifié plus réaliste. Ainsi, nous
considérons un modèle des machines à sous dans lequel des erreurs d’observations sont pos-
sibles. Le modèle considéré est détaillé dans la section E.2 aini que dans nos publications
[68, 133, 145]. La section E.3 introduit l’algorithme UCB1 et montre ses performances
dans le cas de l’accès opportuniste au spectre. Ces résultats sont illustrés à l’aide de sim-
ulations. Notons que les chapitres 5 6 de la version anglaises décrivent les travaux que
nous avons effectués pour étendre cette étude à des contextes toujours plus complexes
et plus réalistes. Enfin la section E.4 conclut chapitre. Pour l’étude détaillée ainsi que
les nombreuses extensions réalisées autour de ces travaux, nous invitons les lecteurs à se
référer à la version anglaise de ce manuscrit.

E.2 Modélisation de la problématique

E.2.1 Le réseau primaire

Dans le cadre de l’Accès Opportuniste au Spectre [11, 63], nous considérons le cas d’un
utilisateur dit “secondaire” qui cherche à exploiter par une bande de fréquence dédiée à
un réseau prioritaire dit “réseau primaire”. La bande de fréquence d’intérêt est supposée
divisée en K sous-bandes indépendantes mais non- identiques.

Soit k l’indice du kème canal le plus disponible en probabilité. A chaque fois qu’un
canal est sondé, il est observé dans l’un des deux états suivants : {libre, occupé}. Dans le
reste du chapitre, nous associons la valeur numérique 0 à un canal occupé, et 1 autrement.
L’occupation temporelle d’une sous-bande k est supposée suivre une distribution de Bernoulli
inconnue θk. De plus les distributions Θ = {θ1, θ2, · · · , θK} sont supposées stationnaires.

Nous sommes dans le cas particulier d’un réseau primaire synchrone où le temps t =
0, 1, 2, · · · , est supposé divisé en paquets de taille fixée. Notons St l’état des canaux à
l’itération t : St = {S1,t, · · · , SK,t} ∈ {0, 1}K . Pour tout t ∈ N, la valeur numérique Sk,t est
supposée être la réalisation aléatoire de la distribution θk. De plus, les réalisations {Sk,t}t∈N
tirées de la distribution θk sont supposées indépendantes et identiquement distribuées. La
disponibilité moyenne d’un canal est caractérisée par sa probabilité d’être libre. Ainsi,
nous définissons la disponibilité µk du canal k telle que pour tout t : µk = P (Sk,t = 1),
avec µ1 > µ2 ≥ · · · ≥ µk ≥ · · · ≥ µK sans perte de généralité. Le but de l’apprentissage,
tel que nous l’entendons dans notre problème, est de permette à l’agent l’identification
la plus rapidement possible du canal avec la disponibilité moyenne maximale, µ∗. Cela
afin de pouvoir l’exploiter. L’algorithme choisi pour l’apprentissage devrait ainsi permettre
d’apprendre tout en fournissant un service à l’utilisateur. Un service qui devrait s’améliorer
au fur et à mesure que la phase d’apprentissage progresse.

(2)Le papier [131], en 2008, qui semble antérieur à nos travaux [36, 67] n’a été cependant publié que sur
le site arxiv. La publication officielle, après un commité de relecture, est apparue quant à elle en février
2011 [144] et présente de nombreuses modifications et corrections.
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E.2.2 L’utilisateur secondaire

Nous décrivons dans ce paragraphe le moteur de prise de décision ainsi que les caractéris-
tiques du détecteur de signaux associés à l’utilisateur secondaire.

Nous dénommons “Agent Intelligent” (AI) le moteur de prise de décision de l’équipement
de radio intelligente. L’AI peut être vu comme le centre névralgique de l’équipement. A
chaque paquet t, il doit choisir un canal à observer. Pour cela, les décisions de l’AI re-
posent sur les informations passées collectées au fur et à mesure de ses interactions avec
l’environnement. Soit it le vecteur “information” disponible à l’instant t. Nous supposons
que l’AI ne peut observer qu’un canal à la fois à chaque itération t. Ainsi, le choix d’un
canal à observer peut être associé à une action at ∈ A où l’ensemble A = {1, 2, · · · ,K}
fait référence à l’ensemble de canaux considéré par l’utilisateur secondaire. Par conséquent
l’AI peut être considéré en tant que fonction de décision π qui associe pour tout t, une
action at à l’information it : at = π(it)

Soit Xt ∈ {0, 1} la réalisation aléatoire calculée à l’issue de l’étape d’observation à
l’instant t du canal sélectionné at. Dans le cas d’une détection parfaite (sans erreur
d’observation), nous aurions : Xt = Sat,t. Dans le contexte considéré, cependant, la
valeur de Xt est fonction des caractéristiques opérationnelles du récepteur (COR). Les
COR définissent la précision et la fiabilité d’un détecteur via la mesure de deux types
d’erreurs : d’une part la détection d’un utilisateur primaire sur la bande sondée alors
que la bande est en réalité libre. Cette erreur est communément appelée “fausse alarme”.
D’autre part, la “détection manquée” revient à considérer une bande libre alors qu’elle est
occupée par des utilisateurs primaires à l’instant t. Notons ǫ et δ, respectivement, les
probabilités de fausse alarme et de détection manquée caractérisant l’équipement de radio
intelligente considéré lors de cette étude :

{

ǫ = Pfa = P (Xt = 0|Sat,t = 1)
δ = Pmd = P (Xt = 1|Sat,t = 0)

Finalement, le résultat de l’étape d’observation peut être associé à la sortie d’une
fonction aléatoire πs(ǫ, δ, Sat,t) telle que : Xt = πs(ǫ, δ, Sat,t) . Cependant, nous ne nous
intéressons pas aux formes possibles de fonctions de détection et renvoyons le lecteur
intéressé à la référence [13].

E.2.3 Stratégie d’accès au canal

En fonction du résultat de l’étape d’observation Xt ∈ {0, 1}, l’AI peut choisir d’accéder
ou non au canal sélectionné. Soit πa(Xt) ∈ {0, 1} la décision d’accès au canal, telle que,
d’une part, 0 désigne un refus d’accès et, d’autre part, 1 désigne une autorisation d’accès
au canal. Pour des raisons de simplicité, la stratégie choisie dans cette étude se résume
à la règle : “accéder le canal s’il est observé libre”. En d’autres termes : πa(Xt) = Xt.
Cette hypothèse est largement partagée dans la littérature pour des considérations de com-
plexité de réalisation d’une part, et d’efficacité au niveau du réseau d’autre part. Nous
supposons dans ces travaux que le détecteur est modélisé de manière à assurer un niveau
d’interférence, avec l’utilisateur primaire, inférieur à un certain seuil fixé par les réglemen-
tations. Néanmoins, nous ne supposons pas nécessairement connus les paramètres {ǫ, δ}(3).

(3)En effet, d’après l’étude réalisée dans le chapitre précédent, les limites rencontrés par les détecteurs
actuels ne permettent malheureusement pas de toujours connaître les paramètres {ǫ, δ}L̇’algorithme
d’apprentissage doit donc pouvoir s’en affranchir.
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Figure E.1: Représentation de l’interaction d’un agent intelligent avec son environnement
RF.

De plus nous supposons qu’il existe un mécanisme permettant à l’utilisateur secondaire
d’être informé en cas d’interférence avec l’utilisateur primaire. Dans ce cas, la transmission
de l’utilisateur secondaire est assimilée à un échec. Enfin, nous supposons qu’un paquet de
taille Dt est envoyé à chaque tentative de transmission (i.e., accès au canal). Ainsi, à la fin
de chaque paquet t, l’AI calcule une valeur numérique rt, habituellement appelée gain dans
la communauté de l’apprentissage machine, qui quantifie les performances instantanées du
moteur de prise de décision de l’utilisateur secondaire.

L’interaction de l’utilisateur secondaire avec son environnement est résumée et illustrée
dans la figure E.1.

E.3 Algorithmes et performances

E.3.1 Algorithme de selection du canal

Nous analysons dans ce chapitre l’impact des erreurs(4) d’observation sur les performances
de l’algorithme UCB1. Ce dernier avait été précédemment suggéré pour sa simplicité et
la garantie de ses propriétés mathématiques de convergence [102][103][67]. Brièvement,
cet algorithme repose sur l’affectation d’un indice de qualité à chaque canal en fonction
des précédentes observations et tentatives de transmissions. La forme de l’index considéré
dans ce papier est la suivante :

Bk,t,Tk(t) = Xk,Tk(t) +Ak,t,Tk(t)

Dans cette expression, d’une part Xk,Tk(t) =
∑t−1

m=0 rm.1{am=k}
Tk(t)

représente la moyenne em-
pirique des gains obtenus à partir du canal k, après Tk(t) tentatives au bout de t itéra-
tions, d’autre part, Ak,t,Tk(t) représente un biais ajouté afin d’assurer la convergence de
l’algorithme vers le canal optimal. Dans le cadre de cette étude, le biais considéré est le
suivant :

Ak,t,Tk(t) =

√

α. ln(t)

Tk(t)

(4)Le cas sans erreur n’est pas présenté dans ce résumé. Néanmoins les performances dans le cas sans
erreur peuvent se déduire aisément du cas avec erreurs de détection.
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où α est un paramètre (réel positif) d’apprentissage. Finalement, l’algorithme π, de sélec-
tion des canaux, choisit à chaque itération t le canal avec la plus grande valeur associée à
l’indice Bk,t,Tk(t), tel que :

at = π(it) = argmax
k

(Bk,t,Tk(t))

Une version détaillée de l’implémentation de cet algorithme avait déjà été proposée dans
notre précédente étude [67] ainsi que dans le chapitre 4 de la version anglaise de ce
manuscrit.

E.3.2 Performances

En vue du modèle introduit précédemment, nous considérons un gain de la forme suivante
:

rt
∆
=DtSat,tπa(Xt)

Néanmoins pour des raisons de simplicité, nous considérons qu’à chaque tentative de trans-
mission, l’utilisateur secondaire transmet Dt = 1 bit. Par conséquent, en tenant compte de
la forme de la stratégie d’accès, et des simplifications introduites, le gain rt peut s’exprimer
de la manière suivante :

rt = Sat,tXt

On montre que l’espérance du temps E [Tk(t)] passé par l’algorithme à sélectionner un
canal sous optimal (i.e., k ∈ {2, · · · ,K}) est borné par une fonction logarithmique du
nombre d’itérations (slot en anglais) tel que pour α > 1 et ∆k = µ1 − µk :

E [Tk(t)] ≤
4α ln(t)

((1− ǫ)∆k)
2 (E.1)

La preuve de ce résultat est une extension des travaux réalisés dans les papiers de la
communauté Machine Learning [102, 103]. Les techniques utilisées pour mener la preuve
sont aussi similaires. Pour des raisons d’espace, nous ne prouverons pas ce résultat dans
ce papier. Il est néanmoins possible d’y accéder dans notre papier [68] ainsi que le chapitre
4.

Ce résultat montre que malgré les erreurs d’observation, il est toujours possible de
converger rapidement vers le canal optimal, néanmoins, sans surprise, nous observons une
dégradation de la vitesse de convergence qui est directement liée aux performances du
détecteur.

Ce résultat a été, de plus, confirmé en simulation, tel que illustré par la figure E.2.
Cette figure suppose la disponibilité de dix canaux avec des probabilités de disponibilités
µk, k ∈ {1, 2, · · · ,K} respectivement égaux à [0.9, 0.8, 0.8, 0.7, 0.6, 0.5,
0.4, 0.3, 0.2, 0.1]. Ces résultats sont moyennés sur 100 réalisations de l’expérience. On
voit notamment que l’algorithme a une première phase d’exploration pendant laquelle
aucun canal n’est favorisé. Ensuite, nous observons que la courbe croît rapidement, met-
tant en avant la capacité de l’algorithme à déterminer le canal optimal quelque soient
les erreurs d’observations. Néanmoins, plus le détecteur est précis, meilleure est la phase
d’exploitation de l’algorithme. Ceci est illustré par le temps de convergence de l’AI.
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Figure E.2: Pourcentage du temps passé à sélectionner le canal optimal à l’aide de
l’algorithme UCB1 en fonction des erreurs d’observations.

E.4 Conclusion

Nous avons introduit, dans ce papier, un modèle d’accès opportuniste au spectre sous
la forme d’un problème de machines à sous. Ce dernier a été complété par un modèle
des canaux prenant en compte les erreurs d’observation. En d’autres termes, des erreurs
d’observation de l’état des canaux peuvent avoir lieu aléatoirement à chaque mesure. En-
suite, les performances de l’algorithme UCB1 ont été analysées avant d’être validées par
des simulations. Ainsi, ce papier montre que malgré les erreurs d’observations qui peu-
vent avoir lieu lors de la phase de détection des utilisateurs primaires, l’algorithme UCB1

reste capable d’apprendre et de converger vers le canal optimal. Ainsi, en fonction de la
précision de la détection, la convergence de l’algorithme peut être plus ou moins rapide.

Bien que ces résultats soient encourageants, de nombreux questionnements persistent
quant à leur généralisation. En effet dans le cas de réseaux d’utilisateurs secondaires, il
est impératif de s’assurer que ces derniers n’interfèrent pas entre eux afin de ne pas ruiner
la phase d’apprentissage. Ces points sont notamment discutés dans les chapitres 5 et 6
que nous ne détaillons pas dans cette version résumée.
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