
Explicit maintenance of genetic diversity on genospacesRobert E. Keller Wolfgang BanzhafDortmund UniversityComputer Science DepartmentSystems Analysis ChairD{44221 Dortmund-June 1994AbstractWhen evolving genotypes, i.e. structures, with an evolutionary algorithm (EA), e.g.genetic programming (GP), genetic diversity, i.e. structural diversity, of each generation is anecessary condition for the fast detection of a high-�tness individual and for a fast adaptationof the population to a changing environment. Thus, it is an important objective to maintaindiversity during runtime of the EA.Concepts and methods are introduced which propose extensions of EAs towards explicitmaintenance of diversity by means of formally de�ned measures. For arbitrary genospaces,which are sets of genotypes, a diversity measure is proposed that is based on a structuralmeasure which is de�ned by the minimal number of applications of edit operations needed totransform a genotype into another genotype.The proposed measures, concepts and methods are general, i.e they are independent onthe structure type of the actual genotypes. Only the edit operations depend on the actualstructure type.For the structure type of node-labeled trees, we propose edit operations, so that the abovemeasures and methods can be used by GP paradigms operating on such structures.Since the proposed measures are purely structure-based, they are orthogonal to �tnessas a quality measure on genospaces.key words:diversity measure, edit operation, evolutionary algorithm, genetic diversity, genetic program-ming, node-labeled trees, structural measure, structure1 IntroductionIt is a well-known fact that diversity drops during runtime of an EA, especially if it is GA-based,since, due to the use of some �tness-based selection mechanism, clusters of individuals build up,whose members represent only a few di�erent genotypes.Often, the evolving population of individuals converges in local optima. If those substructureswhich could be recombined into a �tter individual do not exist in the actual generation, or ifthey exist in low-�tness individuals which become extinct before recombination, or if mutation,if used at all, is unlikely to create them, then this �tter individual will never be evolved or isunlikely to be evolved before termination of the EA.1



Several concepts, for instance demes [references], have been introduced in order to main-tain diversity. These concepts may be called implicit in that they do not create individualsdependent on the genetic structure of the actual generation. This means they ignore numberand structure of di�erent genotypes and the number of individuals representing a given geno-type. Instead, they operate on evolved genotypes, e.g. allowing migration of evolved genotypesbetween demes.We propose an explicit concept for maintaining diversity by creating individuals dependenton the actual generation's genetic structure. This concept is independent of the structure typeof the genotypes, e.g. binary strings or trees.On the other hand, we pay special attention to the application of this concept to treespaces, i.e. genospaces containing arbitrary node-labeled trees, as they are used in the geneticprogramming paradigm of Koza [JoKo92] and associated paradigms.First, we give an intuitive approach to genetic diversity. This leads to the formal de�nition ofa structural measure on genospaces. By means of this measure, we de�ne a diversity measure ongenospaces. We then propose methods using these measures to maintain diversity on genospaces,focussing on the GP-relevant special case of tree spaces. An extended GP sceme is presentedthat incorporates the proposed methods.2 Genetic DiversityGenotypes are structures, in general built of substructures. A genotype is in a certain struc-ture class, i.e. it is a binary string or a tree or a graph etc. We also call such a structure classgenospace. We use \genotype" and \genospace" as synonyms for \structure" and \structureclass", since we are dealing with these phenomena in the context of evolutionary algorithms.The same genotype can be represented by one or more individuals of a population, i.e. one ormore individuals exhibit the structure given by that genotype. Thus, individuals representingthe same genotype cannot be distinguished by their structure. To tell them apart, one tagsthem with unique symbols like names or numbers. The individuals A;B;C, for instance, canrepresent the same binary string.Let a population of individuals be evolved by some evolutionary algorithm by means of a�tness function. All individuals of this population come from the same genospace. We call anindividual that may get evolved in some generation a potential individual and an individualthat has been evolved and exists in the actual generation an actual individual. We call agenotype that is represented by a potential individual a potential genotype, dito actualgenotype.The notion behind the term high genetic diversity is that the actual genotypes \cover"the complete genospace, i.e. there are many di�erent actual genotypes and they are \equallydistributed" over the genospace. In this sense, diversity is maximal i�. the set of actual genotypesequals the genospace. Then, however, the evaluation of the �tness function would imply solvingthe underlying problem by enumeration instead of evolution. Mostly, of course, practicallyrelevant genospaces are much too large to consider enumeration.The above notion of \equally distributed" genotypes introduces the idea of structural distancebetween genotypes. Thus, in order to mathematically approach the idea of genetic diversity andits maintenance, we need a structural measure for genotypes.2



3 Structural MeasureFirst we propose a mapping of an arbitrary genospace G onto a subset of INn0 , dependent onn edit operations used on the genotypes in G. A metric on INn0 is introduced as a structuralmeasure on G. We then apply the given results to the case of G being a tree space.The spatial distance of two places A and B is the minimal number of unit-sized steps neededto get fromA toB. Correspondingly, the edit distance of two structures A;B 2 G is commonlyde�ned as the minimal number of applications of given elementary edit operations needed totransform A into B (see [VaHo94] for a discussion of distance measures for structured patternsand [references given by VaHo]).On the space of �xed-length binary strings with bit ipping as edit operation, for instance,the Hamming distance, i.e. the minimal number of bit ippings needed to transform a stringinto another one, is an often used type of edit distance [reference].Using edit operations to transform A into B corresponds to \walking" from A to B withinG. Given a special genotype oG in G as its origin, each other genotype that can be reached,starting at oG, by applications of edit operations can be identi�ed with the edit distance betweenitself and oG.Given G, a set of edit operations EG and an origin oG, we de�ne G's distance spaceDG � IN0 as the space whose points are edit distances between oG and any of G's genotypes.Thus, each genotype is identi�ed with exactly one point in DG, and, for each point q in DG,there is at least one genotype g whose edit distance to oG equals q. Let q be called g's position.Consider, for instance, G = f0; 1g4, the space of binary strings with length four under the editoperation ipping of an arbitrary bit. Let 0000 be the origin. Obviously, DG = f0; 1; 2; 3; 4g �IN0 holds. For instance, 0110 is identi�ed with 2 2 DG, and, for 4 2 DG, there is 1111, whoseedit distance to 0000 equals 4.The motivation behind the de�nition of a distance space DG associated with a genospace Gis to de�ne the structural distance of arbitrary g1; g2 2 G as the distance d of q1; q2 2 DG. dwill be given by a metric on DG.The term \genospace" motivates the question for the dimensionality of a given genospace G.The genospace of binary strings with length n, for instance, is represented by a n-dimensionalhypercube. There is a bijection between the 2n cube corners and the genotypes (see [JoKo92]for a discussion and visualization). This corresponds to the fact that bit ipping can be appliedto n di�erent bits.\Walking" through a genospace motivates the question for the direction of the walk, i.e.towards or away from the origin. In terms of edit operations, this can be modeled by two inversemodes of the same edit operation, for instance, bit ipping from 0 to 1 and vice versa. Themode that corresponds to a walk away from the origin is called positive, the other one is callednegative.For the above example, the ipping from 0 to 1 is the positive mode of the bit-ippingoperation.In order to motivate consideration of the dimensionality of a distance space, take againG = f0; 1g4 as an example. Let exactly one bit ipping be applied to the origin 0000. This maylead to 0001, 0010, 0100, or 1000. Thus, these genotypes are identi�ed with point 1 in DG.In general, when two di�erent genotypes g1; g2 are identi�ed with the same point q 2 DG,we call this a collision of g1; g2 in q. 3



Recall the above motivation behind distance spaces. The distance of the points in DGcorresponding to g1; g2 is zero, no matter what actual metric d on DG will be considered, sincethese points are both q. On the other hand, a structural measure on G, de�ned on the basis ofd, should give a non-zero distance for g1; g2, since they are di�erent. Therefore, collisions arebad and their number should be kept minimal.Collisions are due to the fact that G, in general, is high-dimensional, while the DG � IN0 isone-dimensional. For instance, the above sample genospace is four-dimensional, since bit ippingcan be applied to four di�erent bits of a string.A distance space is one-dimensional, since, even if there are several edit operations, thenumbers of the applications of the di�erent edit operations needed to transform the origin intosome genotype g are summed up to one number only, namely the edit distance between theorigin and g.One way to reduce the number of collisions for some given G and DG is to increment thedimensionality of DG. Therefore, we propose to sum up the applications of n di�erent editoperations to n numbers. Let each application contribute +1 or �1 to the corresponding number,according to the mode of the applied edit operation. When identifying each edit operation withexactly one dimension of DG and vice versa, this gives a n-dimensional distance spaceDG � INn0 , n 2 IN.Take again G = f0; 1g4 as an example. Consider the edit operations ipping bit 1, ..,ipping bit 4, fbi in short. A genotype that is reached by a �fb1; b �fb2; c �fb3; d �fb4 is identi�edwith (a; b; c; d) in DG. This gives DG = f(a; b; c; d)ja; b; c; d 2 f0; 1gg � IN40. Since DG isfour-dimensional now, collisions are completely avoided.The described identi�cation of genotypes with points in DG de�nes a mapping � : G! DG.� is surjective, because for each q 2 DG there is a p 2 G with �(p) = q. � can be a projection,as seen in the example with DG � IN0, and it can be even a bijection, as seen in the examplewith DG � IN40.For genotypes i; j 2 G, we propose, as a measure for structural di�erence on G,�(i; j) := d(�(i); �(j))with d being a metric on a n-dimensional DG, like the well-knownd(a; b) = q(a1 � b1)2 + ::+ (an � bn)2. A metric d must satisfy (1) d(i; j) = d(j; i), (2) d(i; j) 6= 0 , i 6= j and (3) the triangleinequality [reference]. Obviously, � always satis�es (1) and (3). However, it satis�es (2) i�. � isinjective, as is easily shown. In this case, (G; �) is a metric space [reference], and the number ofcollisions is zero.If � is not injective, only �(i; j) 6= 0) i 6= j holds. In this case, we call � a weak metric.Recall that we proposed a multidimensional distance space DG in order to reduce the num-ber of collisions. There is another way to do this besides incrementing the number of DG'sdimensions.Since, for practical reasons, G is always �nite, DG � INn0 is �nite, too. Since INn0 is in�nite,it is always possible to reduce the number of collisions, even down to zero. This is done, forinstance, by introducing weight factors which are multiplied with the number of applications of4



some edit operation, dependent on the type of operation and/or on the substructure it operateson. Recall, for instance, the collisions of 1000, 0100, 0010 and 0001 in position 1. From left toright, let the bits of each string be identi�ed by 1,2,3,4. When multiplying the number of bitippings applied to a bit i by i, this gives 1,2,3,4 as positions for the above genotypes. Thus,they do not collide any more.However, a practical relevant genospace is large. When using weight factors, the positionswill get extremely large. When implementing this concept, dependent on the hardware, stringarithmetic may be needed. Fortunately, incrementing the dimension of a distance space DGreduces the size of the weight factors needed to reduce collisions. Unfortunately, only in thecase of DG being merely two-dimensional, e�cient algorithms are known which enable diversitymaintenance in a straightforward way, as will be seen in the next section.We now focus on a genospace G being a tree space whose trees have at most depth D,applying the general results given above to this special case. Let T; F denote the non-emptyfunction set and terminal set as de�ned in [JoKo92]. In order to de�ne an associated distancespace DG, edit operations and an origin oG must be given �rst. In this context, we introducean example.Consider the terminal set T = fa; b; c; dg and the function set F = f�;+; �; =g. Let � denotesign inversion. The symbols used to denote the elements of these sets are used as node labels.We de�ne the label arity of a label l as the arity of that function resp. terminal that is denotedby l.In the context of de�ning edit operations and oG, we introduce a coding function c :fT [ Fg ! IN. c(l) is called the label code of label l. Let c be injective.One can think of many di�erent guidelines for the speci�cation of c. For example, one canexpress the \complexities" of di�erent terminals and functions by having the coding functionassign di�erent numerical values to the corresponding labels.For instance, if the target language requires a terminal to possess a certain data type, e.g.short or array, low values are assigned to terminals with simple integer types, higher values areassigned to terminals with simple fractional types, still higher values are assigned to terminalswith structured integer types and so on.Since a terminal can be considered as a 0-arity function, the highest value assigned to aterminal is required to be lower than the lowest value assigned to a function. Low values areassigned to unary functions, higher values are assigned to binary functions and so on. Withinan F subset of functions with the same arity, lower values are assigned to computationally cheapfunctions like +, higher values are assigned to expensive functions like *.Note that, if functions with \contradicting" properties, like the unary but in general expen-sive factorial function n!, were included in F , the question for a proper label code had to beanswered.Following these sample guidelines, one can, for instance, de�ne c(a) = 1; c(b) = 2; ::; c(�) =7; c(=) = 8 for the above T and F sets.Since unlabeled nodes will be considered below, the de�nition of the above coding functionis extended by c(\00) = 0, \" being the empty label.We propose the following set EG of edit operations on a tree space G.� node operationappend an unlabeled node to a node N (positive mode)5



Let a node N that has been labeled with a label f (see below for label operation) o�eredges e1; ::; earity(f). Some ei to which a node, i.e. a child of N , has not yet been appendedis called free. When being applied, \append" selects the next free edge, starting with e1.Appending to N is legal only, if N still o�ers a free edge. Especially, appending to a nodelabeled with a terminal label t is illegal, since arity(t) equals zero.delete an unlabeled terminal node N (negative mode)\delete" removes N , thus freeing the edge that connected N to its parent.� label operationincrement the label of a node N (positive mode)Let N be labeled with label l. \increment" relabels N with a label m such that c(m) =c(l) + 1. The application of \increment" is legal only, if there is such a label m.decrement the label of a node N (negative mode)Let N be labeled with label l. \decrement" relabels N with a label m such that c(m) =c(l)� 1. The application of \decrement" is legal only, if there is such a label m and if thelabel arity of m is not lower than the number of non-free edges of N .For instance, let N be labeled with '/', and let it have no free edges. \ decrement", appliedto N , relabels it with '*'. The application of \increment" is illegal, since there is no label witha higher label code than that of '/'.Corresponding to the above edit operations, let that tree with the smallest number of nodesand the smallest sum of label codes over all its nodes be the origin oG of a tree space G. Sincethe coding function is injective, oG computes as that unique tree that has exactly one nodewhich is labeled by that terminal label with the smallest label code of all terminal labels.Thus, for the above sample tree space G, oG equals the tree with its node labeled 'a'.Consider, for instance, the following tree i in the sample tree space.+ 1/ \/ \11 * / 12/ \ / \111 a b c +/- 122112 121/d 1221oG is transformed into i by this sequence of edit operations:(c(+)�c(a))�increment; append(node11); c(�)�increment; append(node111); c(a)�increment;append(node112); c(b) � increment; append(node12); c(=) � increment; append(node121);c(c) � increment; append(node122); c(�) � increment; append(node1221); c(d) � incrementIn general, for a given tree t, exactly one sequence transforming oG into t is derived from adepth-�rst traversal of t (start at root node; recursively visit node, left subtree, right subtree).We call such a sequence transformation sequence. Interpreting a transformation sequence,knowing that it is derived from a depth-�rst traversal and knowing the label arity of each label,6



gives exactly t. Thus, there is a bijection between a tree space and the set of transformationsequences derived from all trees of this space.For each tree space, DG is two-dimensional, since two edit operations have been proposed.Since a node must be appended before its label can be incremented, the execution of the labeloperation \depends" on the execution of the node operation. This motivates the identi�cationof the node operation resp. label operation with the x-dimension resp. y-dimension of DG.When transforming oG into a tree t, the number x of positive node operations (\append") inthe corresponding transformation sequence equals the number of t's nodes minus one, since oG'snode already is a node of t. The number y of positive label operations (\increment") equals thesum of label codes over the nodes of t minus the label code of oG's label (cf. above transformationsequence, �rst \increment").According to the above de�nition of a genotype's position in distance space, (x; y) is t'sposition in tree space. For instance, the position of the above tree i is (7; 35).Consider tree j in the sample tree space.+- 1// 11// \111a / 112/ \1121b c 1122Its position is 5; 26. According to the above de�nition of the measure � the structural distanceof the trees i; j equals approx. 9:22.Recall the above argumentation that the genospace of binary strings with length n is n-dimensional. The same argumentation gives the dimension of a tree space as a function of themaximal tree depth D. As will be shown in the next section, a practically relevant tree spacemay have several million dimensions.Recall the four-dimensional genospace of binary strings with length 4 under bit ipping.There, several genotypes collided in the one-dimensional distance space. Naturally, these colli-sions may also happen in the case of a tree space G and DG � IN20.Consider, for instance, the trees =ab and =ba in the above sample tree space, which have thesame positions. Another example for a collision is given by �d and +ab.Recall the above discussion about reducing collisions. Its results apply for computationallytractable tree spaces, since these spaces are �nite. For instance, let the node depth of a node Nin tree t be de�ned as the length of the shortest path between N and t's root node. The value ofan introduced weight factor that is multiplied with the number of applications of \increment",applied to a node N , may depend on the node depth of N .Note that label codes correspond to weight factors. Thus, proper modi�cation of the codingfunction c reduces collisions. For the above sample tree space, rede�ne c(�) = 50; c(+) = 60,and �d and +ab do not collide any more (cf. above).7



4 Diversity measureFor an arbitrary genospace G, by means of the above genospace-distance-space mapping �, wepropose a measure for genetic diversity of the actual generation g. We then apply this measureto the special case of G being a tree space.Recall that the basic notion of genetic diversity was that of \many actual genotypes beingequally distributed over the complete genospace". During evolution, due to the use of some�tness-related selection method, more and more individuals may represent fewer and fewergenotypes. This results in \gaps" in genospace, i.e. areas of \relative emptiness". Followingthese notions, diversity obviously gets the lower the larger these areas become.This implies, for instance, that certain structural properties are not found any more in theset of the actual genotypes. Imagine, as an example, that many actual genotypes of the abovesample tree space have positions with low coordinate values. Knowing the underlying codingfunction gives the statement that there are only few actual individuals which represent genotypeswith many nodes and expensive functions.In a two-dimensional distance space DG � IR20+, the largest of the a.m. areas of \relativeemptiness" may be approximated by the following rectangle R: let R be axis-parallel to thex-y-axes of IR20+; let opposite corners of R be given as positions of actual genotypes; let therebe no actual genotype whose position is in R; let R be the largest of all such rectangles by area.In algorithmic geometry, considering the positions of all actual genotypes as a given pointset in IR20+, the described rectangle is known as the largest-area reactangle (LER). Thereare several algorithms known to compute the LER of a given point set in IR2. Especially, thereis a very e�cient algorithm that only takes O(n log2 n) time and O(n) memory [reference].Without loss of generality, assume that this algorithm returns the bottom-left coordinates andthe top-right coordinates of the LER.Let area(r) denote the area of a rectangle in DG. DG itself can be approximated by aminimum-area rectangle 2DG ; DG � 2DG � IR20+. Let LERg denote the LER in DG given bythe positions of all genotypes represented by individuals in generation g. We propose�(g) = 1� area(LERg)area(2DG)as a diversity measure on a genospace G. The value of �(g) is the genetic diversity ofgeneration g.The fewer collisions a given genospace-distance-space mapping � : G ! DG produces thebetter �(g) approximates the following interpretation. According to the above notion, in thecase of high genetic diversity, there are many di�erent genotypes which are well distributed overG. In this case, LERg is small, and �(g) is close to 1. In the case of low genetic diversity, thereare few di�erent genotypes. Consequently, LERg is large, and �(g) is close to 0.In order to use the diversity measure on a tree space G, one must compute area(2DG). Thiscan be done dependent on the terminal and function sets T; F , the origin oG, the coding functionc and the maximal tree depth D.Take, for instance, the sample tree space given in the previous section. Let D equal 20, whatis a practically relevant depth. Since = is the function with largest arity and largest label codeand d is the terminal with largest label code, the maximal tree tmax, which we de�ne as atree being most distant to oG according to the structural measure �, is a tree with depth D thatconsists of '/'-labeled internal nodes only, and d-labeled terminal nodes only.8



The number of tmax's nodes equals arityD+1 � 1 = 2097151, the label sum equals arityD �c(=) + arityD � c(d) = 4194304. According to the previous section, these numbers, decre-mented by one, give the position of tmax in DG. In this sample case, it is easy to see thatthere is no tree whose position has a higher x- or y-coordinate. Therefore, 2DG is given by((0; 0)(2097150; 4194303)), what allows computation of area(2DG).In the case of more complex T; F and c it might prove hard to compute area(2DG) exactly.For a crude approximation, assume all internal nodes to have maximal arity and to carry thatinternal-node label with maximal label code, assume all terminal nodes to carry that terminal-node label with maximal label code, and use the above formula.5 Diversity restoringBy means of measures and concepts given in previous sections, we propose a method for restoringgenetic diversity of a generation g in the context of a genospace whose distance space is two-dimensional.Whenever, during runtime of an EA, f generations have been evolved, a diversity checkertests by means of diversity measure �, if diversity of the actual generation has dropped undera given diversity threshold dt 2]0; 1]. In this case, diversity restoring is invoked.A set of all those individuals of the actual generation which represent the same genotype iscalled the genetic cluster of this genotype. Let �(g) denote the set of all genetic clusters ofgeneration g.If, for instance, in generation g, each of the individuals i1; i2; i3 represents the genotype i,then fi1; i2; i3g is the genetic cluster of i, and fi1; i2; i3g is in �(g).Diversity restoring must obey some conditions:1. It must not delete all individuals of a genetic cluster, as the underlying genotype representsknowledge gained during evolution.2. When the EA is a GA, - like GP, for instance - the population size must not be changed.3. As the ratios of the sizes of genetic clusters represent knowledge gained during evolution,these ratios must not be altered signi�cantly.Because of 1. and because �(g) does not depend on the size of genetic clusters, diversityrestoring can change diversity only by creating z individuals which represent new genotypes.These new genotypes are called diversi�ers.Thus, when running within a GA, diversity restoring must replace z individuals by diversi�ersin order to comply with 2. Those individuals which may be replaced are called reduncancies.In order to have diversity restoring comply with 1., all but one individual of each genetic clusterare de�ned to be redundancies. In order to have diversity restoring comply with 3., the numberof those redundancies that are actually going to be replaced by diversi�ers is de�ned as�(g) = XC2�(g)brjCjc9



r 2 ]0; 1[ denotes a given redundancy factor. bsc denotes the highest integer number lessthan or equal to s.Since diversity of generation g depends on area(LERg) only (area(2DG) is constant fora given genospace), the objective of diversity restoring is to try to reduce area(LERg), thusincrementing diversity. This can be done as follows.for i:=1 to rho(g)begin1. compute LER_g2. create diversifier t whose position approximates LER_g's center3. delete one redundancyendThe algorithm for step 1 is given in [reference]. We propose a basic idea for the implemen-tation of step 2.Let a rectangle R be given as ((x1; y1); (x2; y2)), with the �rst tuple element being the left-bottom point and the second one being the top-right point.The idea behind step 2 is to �ll LERg \best possible", i.e. such that that LER that �tsinto LERg after �lling has minimal area. Let LERg be given by the positions ((xj ; yj); (xi; yi))of two genotypes j; i. Then, LERg's center computes as (*) center(LERg) := (xc;yc) :=(xj + xi�xj2 ; yj + yi�yj2 ). Filling LERg with a point in the center obviously satis�es the aboveminimal-area condition. Thus, a diversi�er must be created whose genotype has center(LERg)as position.Adding such nodes to j whose number and label codes add up to xi�xj2 and yi�yj2 , correspondsto \walking" from j's position to LERg's center (cf. above (*)). Thus, the diversi�er in questioncan be created by adding such nodes to a copy of j.In general, the center is not in IN20, so that no diversi�er can be created which has exactlythe center as its position. In this case, m nodes n1; ::; nm must be added to j's copy such thatjn�xc j+ jPmi nij is minimal (error minimizing). Then, the position of the diversi�er ist closestpossible to the center.As an example for the application of the above method, assume LERg is given by (5; 26); (7; 35),which are the positions of the sample trees j; i pictured in the previous section. Thus, LERg'scenter equals 6; 30:5. (xi�xj2 ; yi�yj2 ) = (1; 4:5) proposes to add one node with label code �ve toj in order to create a diversi�er whose position is close to LERg's center. Adding one nodelabeled � (c(�) = 5) gives, for instance, tree k+-//// \+- // / \a b cwhose position is (6; 31). 10



6 GA scheme with diversity restoringThe following scheme shows a standard GA and thus a standard GP with included diversityrestoring.1. creation of initial generation2. �tness evaluation! 7.3. genetic operations4. f generations evolved?no: ! 3.5. diversity checking- diversity restoring necessary?no: ! 2.6. diversity restoring! 2.7. termination criterion satis�ed?no: ! 3.8. endSince the structure of an individual's genotype is a quality measure orthogonal to the individ-ual's �tness, the �tness of a diversi�er, which is an individual created on the basis of structure,may be low in comparison to that of an individual evolved on the basis of �tness. This isespecially likely in the �nal phase of evolution, when diversity often lacks most. Therefore, adiversi�er must be given a proper arti�cial �tness for exactly one generation, so that it canmate and reproduce, and thus may further enhance diversity.For instance, if �tness-proportional selection is used, we propose that a diversi�er is giventhe average �tness of the actual generation, i�. its �tness is below average �tness. In case its�tness is greater or equal average �tness, it will mate and reproduce, anyway.7 Random seeding vs diversity restoringAs the creation of diversi�ers is computationally more expensive as the creation of random indi-viduals, it may be asked if diversity restoring can be reduced to random creation of \diversi�ers".We strongly expect that this is not the case, since random creation does not pay attentionto the structural di�erences of the actual genotypes. It would, for instance, waste some of the\diversi�ers", which are limited in number when running a GA, like GP, by placing them closeto evolved genotypes instead of placing them, for example, \(almost) precisely in the middle ofa large gap", as diversity restoring does. Even when running an EA with theoretically unlimitedpopulation size, the practical limits lead to the same conclusion.The veri�cation of the a.m. expectation is the main objective of further theoretical andempirical research.8 Conclusions and prospectsConcepts and methods have been introduced which propose extensions of evolutionary algo-rithms towards explicit control of genetic diversity by means of structural and diversity mea-11



sures on arbitrary genospaces. Formal de�nitions of such measures have been given, which areindependent of the genospaces. The dependency on genospaces is limited to the de�nition ofedit operations.The proposed methods can be readily implemented as a diversi�cation module. We are inthe process of specifying such a module with a exible interface for subsequent implementationin order to empirically verify the proposed measures, concepts and methods.The analysis and application of concepts and measures like the introduced ones is a widepromising area in the �eld of evolutionary algorithms (genometry is proposed as a summarizingterm), which has to be explored theoretically and empirically. This area is of practical relevance,because it allows the design of evolutionary paradigms which use an individual's structure as aquality measure orthogonal to the individual's �tness, thus potentially allowing a population thebreak-out of local optima.The creation of diversi�ers as an explicit way of restoring diversity, as it has been proposedin this paper, is only one use of this measure. Selection methods, for another instance, can bede�ned to be �tness- and structure-based. For instance, an individual's quality can be computedas a function of the individual's structure and �tness.One could, as one more example, think of recombination of parents with certain structuralproperties in order to have evolution explore those subspaces of the genospace whose genotypesare recombinable by the parents.Areas of further research are, for instance,� connections between number of edit operations, weight factors and genospace/distancespace dimensionality� exploration of alternative edit operations and measures on tree space� connections between problem domain and structural and diversity measures� e�cient algorithms for locating of \gaps" in distance spaces with more than two dimensionsSince binary strings are simple structures in comparison with trees, genospaces of binarystrings are of special interest in the context of genometry [WoBa93].
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