
Network Stack Architecture for Future Sensors

Rajnish Kumar
�

, Santashil PalChaudhuri
�

, David Johnson
�

, Umakishore Ramachandran
�

�
College of Computing, Georgia Institute of Technology, Atlanta, GA,

�
Department of Computer Science, Rice University, Houston, TX.

Abstract— With wireless ad hoc sensor networks, there
is simultaneously a need and an opportunity to optimize
the protocol stack behavior to match the sensor-based
applications. A general-purpose internet stack is neither
appropriate nor sufficient to meet the needs of such ap-
plications. Motivated by this observation, we pose two
related questions: (a) What is an appropriate layering of
the protocol stack for future sensor networks? (b) How do
we make the network stack tunable to a specific sensor
application? We present the design of a new protocol stack,
and we qualitatively argue that the new stack is more
suitable to meet the demands of sensor network applications
than traditional stacks.

I. INTRODUCTION

Wireless Ad hoc Sensor Network(WASN) [25] has
recently attracted a considerable amount of attention due
to its application potentials. Despite similarity to research
issues in ad hoc networking and distributed systems,
there are several requirements that are fairly unique to
WASN leading to many recent innovations to the different
layers of the traditional protocol stack. These unique
characteristics of sensor networks are as follows:

� Data-centric routing: The data centric routing need
arises from the fact that the specific data sources may
be unknown for some applications. For example,
an application wishes to find out the maximum
temperature in a region, and so the sensor nodes to
be contacted for this purpose is not known a priori.
To handle such needs, low-level naming of the nodes
and interest-based data routing have been proposed
by recent research [11].

� Energy constraint: There are many applications
where WASN will be deployed in remote areas, such
that the nodes are either physically unreachable, or
the cost of recharging them prohibitive. To increase
the WASN application lifetime, there is a need to
optimize energy consumption at all layers of the
network stack in every possible way.

� Data Fusion: Data fusion can either be an
application-specific need [19], or it can be the prop-
erty of the sensed data, such that there exists some
correlation in the sensed data, and the data collected
from different sources can be fused together en route
to the sink. The in-network data fusion has been
a very useful technique for saving communication

cost. Support for this fusion needs to be inbuilt into
the stack for performance reasons.

� Adaptability: Sensor networks have a limited set of
applications with specific set of requirements. So, the
stack can be optimized for these applications, which
is not possible in completely generalized application
scenario.

� Large scale: WASN is expected to consist of thou-
sands of sensor nodes, much larger than typically
realized in ad hoc networks. This makes the tradi-
tional way of stateful routing impractical because of
the size and number of routes.

Traditionally, layering has been used as a design prin-
ciple for networking stacks. This technique organized a
network system into a succession of logically distinct
entities, such that the service provided by one entity is
solely based on the service provided by the lower level
entity. This is important to deal with complex systems,
as the explicit structure allows identification of the re-
lationship between the pieces. This modularization eases
maintenance, updating of the system components, and the
change of the protocol of a layers service is transparent
to the rest of the system. We argue in this paper that the
traditional protocol stacks are not appropriate for WASNs.

End-to-end Vs Hop-to-hop Data Fusion: While TCP/IP
stack is well-suited for end-to-end requirements, it is not
appropriate for hop-to-hop requirements of WASN. This
is because, many sensor applications need data packets to
be considered for data fusion that is typically done at the
application layer. If TCP/IP is naively changed to allow
the data packets to reach the application layer at every
hop, it will lead to performance penalties. Since the data
packet may have to travel large number of hops before
it reaches the sink node, it will incur large end-to-end
latency.

Irrelevance of some TCP/IP stack services: Some
properties of TCP/IP stack include flow control at the
transport layer, node fairness at the MAC layer, and error
control at both the MAC and transport layers. While
some of these services may be required by selected
sensor applications, they are not generic requirements for
all sensor networks applications. Hence putting them in
the stack lead to considerable performance penalty for
applications not needing them.

New service requirements: There are some services
that are considered trivial for TCP/IP stack, but become
important and non-trivial to support for WASN environ-
ment. Two such services are: Node addressing,Location
Awareness, and time synchronization. Attribute-based
naming has been found useful for providing the flexibility
demanded by WASN [29]. This naming mechanism is
different from IP-based addressing, and affects the strat-
egy used for routing. Current TCP/IP stack is suitable
for IP-based addressing, but it needs to be adapted to
support this logical naming. Sensor applications typically
require location awareness to satisfy localized queries.
This awareness also enables routing and MAC proto-
cols to optimize on efficiency and latency. Time syn-
chronization is an important functionality needed by all
layers for cooperation among sensor nodes. The OSI
reference model or the TCP/IP stack either leave the
onus to applications or implicitly assume presence of time
synchronization.

Energy optimization at every layer: Energy is a very
important resource for sensor networks because it deter-
mines the application lifetime. Ideally, the energy usage
can be maximized if the whole stack is integrated and
customized for a specific application. With the traditional
protocol stack, it will be difficult to do any energy
optimization in an integrated fashion, or to adapt the
protocol behavior according to the application needs.

In an effort to address these WASN characteristics,
most research efforts to date in sensor networks have
either completely ignored the traditional network stack
and specialized the transport to suit the specific approach
(e.g. data diffusion [15]), or have made localized modi-
fications using the traditional Open Systems Interconnec-
tion (OSI) reference model [16] as the de facto standard
(e.g. PicoNode [26]). The standard sensor node OS called
TinyOS [12], provides the lowest layer of networking
stack, MAC, giving a messaging service, and all routing
and fusion logic is provided as an application on top
of it. This is done due to the limited resources of the
current sensor nodes. Our proposed stack extends this
to provide services like fusion, routing, filtering, and
synchronization within the stack in more powerful future
sensor nodes. There has also been considerable research
effort directed at the different layers of the OSI model, but
most of them have tended to treat the layers independently
as encouraged by the OSI model. Though there has
been some cross-layer optimization efforts, much more
optimization is possible if the layers are treated together.

We believe that this is an appropriate time to think of
a new design of the protocol stack for future sensors.
We also believe that CPU and memoty will not be
constraining resources in future, but energy will remain
to be. As sensor networks will become pervasive and
powerful in the foreseeable future, it is counter-productive
to design a customized stack for each application. On the

other hand the traditional stack is inappropriate to WASN
as explained above. With this motivation, in the rest of
the paper we list the design goals of a stack for sensor
networks and explain our architecture.

II. WASN STACK DESIGN REQUIREMENTS

This section identifies a set of requirements for the
SensorStack, a new protocol stack suitable for WASN
environment.

In-stack data fusion : SensorStack should provide mecha-
nism to do data fusion in the protocol stack. If fusion logic
is made part of the protocol stack, the data packets do not
need to reach the application layer at the intermediate
hops between source and destination nodes. This will
improve the end to end latency of data packets. Also,
providing the common fusion requirement of sensor ap-
plication as a separate module, application development
can be made more modular. Thus, same fusion code can
be used for multiple applications alleviating the load on
resource constrained sensor nodes.

Logical naming support : SensorStack should understand
logical naming, and it should provide mechanisms to
utilize the logical naming.

For example, if a node wants to send a data packet to
gather temperature from the nodes in region � , the log-
ical name of the destination becomes : ‘‘nodes in region

� ”. This can be supported by flooding the information,
as is done in directed diffusion. Here, every node who
listens to the packet will compare its own location with

� , and accordingly it will decide whether to reply with
its temperature data or ignore the packet. This happens
at application layer, which means the data packet has to
travel to the application layer at every node in the network
even for nodes not lying in the region � .

For now, assume that the protocol stack at a node has
access to the location information of the node. Can we
use this location information to stop packets traveling to
upper layers when it is not required? This can be achieved
if SensorStack can understand the notion of logical nam-
ing, and thus it can filter the data packets at network
layer itself (at non-interesting nodes) and rebroadcast the
packet for attention of neighboring nodes. This idea is
similar to MAC-level filtering done in bridges [24].

Adaptable to a specific application : SensorStack should
allow applications to tune the stack behavior and thus
adapt itself to application-specific needs. Applications
will have access to information about the user require-
ments, the network topology, etc, and these information
can be used for improved decisions at the protocol stack
: which route to take for data transmission, whether to
do error checking or not, what duty cycle should be used
for the low-power radio, etc.

Supporting application-specific adaptation can be taken
in two extremes: first, stack is implemented for a par-

2

ticular application and the application directs the stack
behavior without any intermediate abstractions, and sec-
ond, the stack is implemented for a class of applications
and applications direct the stack behavior via a broker
service. SensorStack adaptation is not suitable for the
first category, because this will need different protocols
to be written for different sensor applications and these
protocol codes to be loaded into network stack at run-
time. Since the class of sensor applications have many
common requirements, it seems plausible to support the
application-specific adaptation via the broker service.

Cross-layering : SensorStack should make the relevant
information from one layer available to other layers such
that the other layers can take more informed decision. The
resource constraints of WASN demands this to achieve
optimization in an integrated way.

III. NEW PROTOCOL STACK DESIGN

Based on the requirements discussed in previous sec-
tion, here we present our proposed SensorStack.

Our proposed stack is based upon following observa-
tions that span across all WASN requirements :

� Bring WASN specific service needs, data fusion and
logical naming, in the stack,

� Remove those services from the stack which are ei-
ther irrelevant for WASN or can be better supported
at application layer, e.g. transport logic, and,

� Add a broker service that allows different services
in the stack to talk to each other and t he application
in a standard way.

Figure 1 presents this new proposed stack. The three
main mandatory services needed to the sensor applica-
tions are medium access control (MAC), logical naming
and data-centric routing (data service), and data fusion.
These three services are in three separate layers. Other
services that can improve the performance and energy
optimizations, e.g. localization service, are put together
as optional service bundle. Information exchange service
(IES) is acting as the broker among different service
modules and the application to improve cross-layer opti-
mizations.

To support data-centric routing, SensorStack addresses
nodes with their logical names, i.e. a set of attributes and
values. If we consider IP-address as yet another attribute,
then address-centric routing becomes just a special case
of data-centric routing. Based upon this observation, Sen-
sorStack treats IP-address as a logical name, and it allows
application-specific ways of logial name interpretation for
data routing decisions.

Below, we describe the SensorStack services in detail.

Medium Access Control Layer: This layer provides
the traditional TCP/IP’s MAC layer service, i.e. medium
access for hop-to-hop data transfer and the channel error
control, and the power control of the radio antenna. The

sensor network MAC should be very energy efficient and
scalable.

Since probability of channel error is higher with wire-
less compared to wired medium, error control is an im-
portant service to be provided by the MAC layer whereby
application might specify the degree of reliability it needs
from the MAC. The MAC layer also controls its own duty
cycle, and the wake-up and sleep schedule of the radio. It
can use the IES service to optimize the energy efficiency
of medium access and to control the duty cycle, e.g. IES
can provide the location information of neighbors, or
application data communication schedule. Also through
IES, the communication requirements of the application
are published, which is utilized by the MAC for better
energy-efficiency and lower latency.

Data Service Layer: This layer provides two main
services, namely, dissemination of (potentially fused) data
to one or more neighbors, and reception of data packets
for fusion or delivery to the application. To support these
two services, this layer needs to implement the following
functionalities:

1) Packet Scatter/Gather: If the message size is greater
than the MAC layer packet size, then a message
may need to be fragmented at the source, and
reassembled at both intermediate fusion points as
well as ultimate destination points.

2) Logical naming and filtering: This functionality re-
solves the logical naming of data packet addresses.
This is called only for the incoming data packets.
Data service layer uses the information available
from IES to resolve the logical name, i.e. it matches
IES provided values for the packet attributes with
those available in the packet itself, and it forwards
the packet, for fusion consideration, to data service
layer in case of a match. In case of a mismatch,
the data packet is passed, for data forwarding
consideration, to next hop selection functionality.

3) Next Hop Selection: This function takes the data
routing decisions. Based upon the destination’s log-
ical name, it finds out the next hop’s logical name
and updates the data packet header.

Data Fusion Layer: This layer needs to support both
types of fusion mechanisms: first, where the data packets
are required to be fused at every hop, second, where the
data packets are to be considered for fusion only at the
(application-specified) selected nodes or the destination
before the data is delivered to the application. The first
kind of fusion mechanism is meant for hop-to-hop data
transfer, and is useful for application scenarios where
every node is sensing some useful data that needs the
in-network fusion [20]. The second kind is useful for
supporting more traditional way of doing fusion at the
end-points, as sometimes required when only some nodes
are contributing towards the information that is being

3

Application

Data Fusion Layer

Data Service Layer

Medium Access Layer

Information
Exchange

Service

Helper
Service
Layer

Radio

Application Logic\

In-stack fusion

Next-hop selection,

Logical naming, Packet
scatter/gather

Medium Access, Error
Control, Radio Control

Attribute-
Value publish/

subscribe

Locali-
zation,

Synchro-
nization
Service

Connection

(A) Stack Lay-out (B) Functionalities

Fig. 1. Proposed stack for sensor networks. Left diagram shows the top-level modules and their relative boundaries. Right diagram lists out the
functionalities provided by the modules in left diagram.

sought [19].
SensorStack provides hooks and mechanisms for safe

execution of application-supplied fusion function in the
kernel. It uses fusion channel abstraction, similar to that
in DFuse [19], to capture the fusion semantics. A fusion
channel can be thought as a black-box that takes a set of
input streams, applies the fusion function, and generates
an output stream. The application creates a fusion channel
by making following call :
createFusionChannel(handler, exceptionHandler,

argInput1, ... argInputK, argOutput)
In above call, application specifies the handler fusion

function, a exception handler function, and a set of
arguements. Each arguement is a tuple of data type and
data source. Last arguement, argOutput, is meant for the
output data item. Data fusion layer maintains a set of data
queues, one queue for every data type. Thus, there will
be ����� buffer queues for a fusion channel with � input
data streams. Data service layer enques data packets to
these queues based upon data type field. When data item
for each of the input queue is available, fusion function
handler is invoked. Exception handler is called when the
input data items are not available within a prespecfied
timeframe. The output data item of the fusion function is
wrapped with information from argOutput, and enqueued
in the output buffer queue.

Allowing fusion functions to run in kernel-space needs
sand-boxing and special limitations on the programming
for the safety reasons [1]. SensorStack uses segmentation
and sandboxing based techniques for the safety reasons. It
also maintains strict bound on the input and output buffer
queues, and the number of handler calls pending at a time
for any fusion channel.

Information Exchange Service: This service acts as
a information database. It serves two main purposes:
allowing cross-layer optimization by making one service’s
information available to another service, and making
application requirements available to the different layers.
Potentially, a service could directly invoke another service
to get the information it wants, but that will lead to two
issues: a service will need to know which service to

call for to get the information, and very often kernel-
level services will need to make user-space calls to
get application-specific information. By having a generic
information exchange service, SensorStack can make the
information available transparently, and it can control the
information access/update rights in a centralized manner.

This service can be provided as a publish/subscribe
API. Different protocol layers and the application layer
can publish/subscribe the relevant information. For ex-
ample, network monitoring service may be running at the
application layer and it can publish the health information
to IES. This health information can be subscribed by
different protocols in the stack. It can be used to do
the next hop selection Similarly, location information
can be used to support geography-aware routing. It can
also be used by MAC layer to do energy optimization,
like adjusting the transmission power or to adjust the
directional antenna.

Apart from location, other information that we believe
will be useful if provided by the IES are:

� Time: Time synchronization is getting more essential
for WASN as it is getting useful to support energy-
efficient MAC protocols, or to support time-sensitive
application functionalities.

� Data communication schedule: This information can
be used to schedule the radio wake-up and sleep,
or to do energy-efficient medium access control.
Application can directly publish this information if it
knows its communication need, or a sub-service can
be implemented that generates the communication
schedule by looking at the traffic.

� Data packet size: The data service layer and the
MAC layer can use this information to decrease the
packet fragmentation.

� Latency: The MAC layer can provide the latency
between itself and a neighboring node, and this
information can be useful to do congestion control
by the data service layer.

Application and Helper Service Layer : Application
layer is responsible to support data capturing, data pre-
sentation at the sink, instantiating fusion channel at ap-

4

propriate nodes, and providing other services that can be
used to adapt the SensorStack for the application-specific
demand. The other services can be executed either in user
space, or it can be run in kernel-space (in sandboxed
manner similar to fusion handler) in helper service layer.
We think that localization and synchronization are two
important services that need to be part of SensorStack,
and we have placed them in the helper service layer.
The localization and synchronization service publishes
location and time information to the IES.

IV. IMPLEMENTATION

A. IES:

- namespace - same namespace
- how can a subscriber specify the fidelity of informa-

tion it wants ? - by adding corresponding attributes in the
IES

- size of IES - limit the number of entries a particular
service can insert

- where is IES located - kernel heap
- how to restrict the publisher - no restriction, only the

number of entries one can enter
- a service writer needs to be aware of the namespace

convention (including name of attribute, how to interpret
the supplied value, and which subscriber it should trust)

- true, but the limitations are similar to that of pre-
defining the interfaces !

- advantages: central approach to safety - controlling
who can write (including application)

- application can publish, and the kernel-level services
need not make upcalls

- expiration period of a published attribute-value
- mechanism : in beginning, every service populates the

IES with the attributes it CAN publish. after that, when
ever any service needs IES information, it will

B. Fusion Layer

- function invoked as soon as the data items are
available in the buffer queues

- rate of fusion needs to be controlled inside the fusion
code

- Source of every input item is also specified
- the logical name representatioin of the encoded source

name (in packet) may be different from the one using
which fusion channel was specified ???

- argOutput
- No timestamping
- fusion channel migration
- restrictions on the fusion function implementation:
- bounded execution time ?
- restriction on the system calls it can make -
createFusionChannel(handler, exceptionHandler, in-

putArg1, inputArg2,...inputArgK, outputArg) where, in-
putArg = �����������	��
����������������������������������! #"

C. Application Layer:

- needs to create the fusion channels
- needs to support the IES interface - publishableAt-

trList(), and getVal(attr)
- need to provide data-type/protocol mapping if any

new data type is being handled

D. Data structures:

- fusion data queue
- IES table
- Fusion function list
- data type - protocol mapping

V. APPLICATION SPECIFIC STACK ADAPTATION

In this section, we explore the design space for the
adaptation and optimization of our protocol stack for two
particular application scenarios.

A. Application Scenario

Consider the case of monitoring a large area for tem-
perature sensitive events, like intrusion of a mobile object
(e.g. tank), or an event of fire. The WASN consists of
scattered sensors and cameras. The sensors are needed
to sense the temperature information, while the cameras
are used to take the images in case of a fire or intrusion
detected in the area. The user, sitting at the sink node,
monitors the temperature statistics of the area that is
presented at regular interval. The user, as a sanity check
could request the WASN to report an image-scan, a
composite of several images from different regions, that
is generated by fusing together the image data from the
different cameras, en route to the destination from the
source nodes, by applying some predefined correlation
function over the scanned images.

The application level support for realizing the above
scenario is well-studied by recently proposed frameworks:
TAG [20] can be used to provide the temperature statistics
in an energy-efficient way, and DFuse [19] can be used
to present the correlated image scans to the user in the
WASN environment. The main point to take away here
is that the fusion and transport level needs for the two
types of data, namely, temperature readings and images,
are completely different, and so neither TAG nor DFuse
is suitable for supporting the complete scenario by itself.
The sensed data needs to be aggregated at every node
from the source to the sink, while the scan image data
needs to be correlated only at selected nodes. Next, we
briefly discuss the two frameworks, TAG and DFuse, to
understand their network level needs.

TAG is a generic fusion service for sensor networks.
There are two essential attributes of this service. First,
it provides a simple, declarative interface for data col-
lection and fusion. Second, it intelligently distributes and

5

executes fusion queries in the sensor network in a time
and power-efficient manner. The two basic types of query
that are supported in this framework are periodic that
specify the interval a sensor should generate and aggre-
gate data to send to sink, and event-driven that registers
interest in a specific event a sensor should monitor and
send notification when it happens. To support the above
described application scenario, the periodic query scheme
can be used to collect the temperature statistics at regular
intervals, and the event-driven query can be applied to
detect the intrusion or the fire.

Sink (Display)

Cameras

Filter

Collage

Sensors

Fig. 2. An application task graph for generating image-scan.

DFuse is a framework for supporting hierarchical data
fusion in WASN environment. It takes the application task
graph and the fusion codes as the input, and deploys
the task graph over the network such that the overall
transmission cost is minimized. For the above application
scenario, a possible task graph can be as shown in
Figure 2. While the data sources and the data sink in
the task graph are application specified, the fusion nodes
are selected by the DFuse framework.

B. Application and Data Fusion Layer

Application layer now is a thinner layer compared
to the case of TAG/DFuse running on top of TinyOS
or IP-Stack. DFuse’s placement algorithm, responsible
for fusion point placement, still runs at the application
layer. Also, data capturing at the source nodes and data
presentation at the sink node is done at the application
layer.

Fusion logic of TAG and DFuse, earlier supported in
application layer, will run in the data fusion layer of
the SensorStack. The application layer is responsible for
creating the fusion channels at the network nodes, thus
providing the fusion code, the destination nodes names,
and input data types and their sources. TAG packets and
DFuse packets are differentiated by the data type attribute.

C. Data Service Layer

The data routing and naming needs for TAG and DFuse
are quite different as explained in the application scenario.

Supporting both the hop-by-hop and end-to-end routing
needs of TAG and DFuse is difficult in a traditional stack.
On the other hand, the data service layer of the new stack
can use logical naming to support hop-by-hop routing,
while the physical naming with logic for location-aware
next-hop selection can support end-to-end routing.

TAG uses a simple routing scheme based upon the tree
structure rooted at the sink. For the purpose of tree-based
routing like TAG, the IES will need to provide the parent
information for a given node. Thus, next hop for every
TAG packet coming from the source nodes is the parent.
Thus the hop-by-hop routing for TAG can be achieved
by logically naming the destination as the current node’s
“parent”.

DFuse data routing can be served by any location-
aware routing algorithm, such as SPEED [9], or
GPSR [17]. The main advantage of using the new stack
lies in the fact that these algorithms can improve the
quality of their next hop selection by utilizing the IES
information. Using cross-layer information to optimize
the data routing decision has been proposed by re-
cent research projects [9], [10]. SPEED [9] uses MAC
layer delay estimation for doing the next hop selection.
GEAR [10] uses location-information to optimize the
data flooding in directed diffusion. Diffusion algorithms
propose to use application-specific filters to optimize the
distribution of interests [15]. These cross-layer optimiza-
tions come at the cost of trading off the modularity of the
traditional stack. The proposed stack allows supporting
these optimizations without losing the modularity by
providing standard publish/subscribe interface for infor-
mation exchange.

The new stack allows applications as well to adapt
the routing behavior to suit their own purposes. As an
example, consider tuning directed diffusion routing algo-
rithm such that nodes in a particular region are considered
important and that their power needs to be conserved
compared to nodes in other regions. Directed diffusion
uses latency as one of the factors to reinforce a preferred
neighbor. In the new approach, the directed diffusion can
use application-guided ranking of neighboring nodes to
reinforce them. The IES, having access to the location and
application’s topology information, can help the diffusion
algorithm do the neighbor ranking.

D. Medium Access Control Layer

In shared medium networks, one of the fundamental
tasks of a MAC layer is to avoid collisions between two
interfering nodes. It allocates the channel to the nodes
efficiently, so that each node can communicate with a
bounded waiting time and with as little overhead as
possible. The important attributes for traditional MAC are
fairness, latency, throughput and bandwidth utilization.
In contrast, the important attributes of a MAC protocol
for WASN are energy efficiency and scalability towards

6

size and topology change. The major sources of energy
wastage as elaborated in [30] are:

� Collision: Collision results in corruption of a packet
and subsequent retransmission leading to increased
energy consumption as well as latency.

� Idle listening & overhearing: Listening for either
possible packets or packets destined for other nodes
leads to wastage of energy. Idle listening consumes
significant energy comparable to actually receiving
a packet.

� Control packets overhead: Increased control over-
head leads to increased energy usage in direct pro-
portion.

Though the proposed MAC protocols [27], [28], [30]
for WASN have identified and addressed many of the
WASN environment requirements, they have not taken
advantage of the nature of WASN applications. With the
availability of the IES in the proposed stack, following
properties of WASN applications can be exploited for the
MAC protocol design:

� Communication requirements may be periodic and
known beforehand such as collecting temperature
statistics at regular intervals. This information can
be used to schedule the medium access by the nodes
and thus minimize collisions, as well as aid the radio
interfaces sleep/wake-up decisions thus decreasing
the idle listening and overhearing. Also, if every
node knows what data packet it should receive
periodically, then a NACK based medium access can
decrease the control packets overhead.

� A contention based medium access will also be
necessary to support event-driven applications like
intrusion or fire detection. With information from the
IES, the forwarding node can be woken up in time
to process event-driven data. Real-time constraints
can be communicated from the application to adapt
the MAC to meet it’s requirements.

� Often the sensed data packet may have fixed size.
This simple information will help minimize doing
packet fragmentation and assembly at MAC layer,
thus improving the throughput [18].

An application-adaptable energy-aware MAC protocol
can be build upon the previous sensor MAC protocols,
that exploits the known application requirement via the
IES. The MAC protocol should have two modes to
support the two different communication requirements
of sensor applications, namely periodic and event-driven.
The need to support these two kinds of modes was
recently proposed in the IEEE standard for low-power
sensors [14]. The relative proportion of the two modes in
a superframe structure is dynamically determined by the
applications depending on their current needs.

Periodic Contention Free Period: Medium access in
this mode is based upon Spatial Time Division Multiple
Access (STDMA) [21]. The application’s deterministic

traffic distribution during the periodic communication can
be used to compute an efficient slot allocation policy
similar to [3], [8]. The length of the slot is enough to
send a complete data packet of fixed size, allowing TAG
like applications to send periodic sensor readings. The
forwarding node expects data from a node periodically,
so there is no need to waste energy to send an explicit
ACK, and it sends a NACK when it does not receive
the expected data. Using the known traffic pattern, each
sensor will be in active mode only when communicating,
and in sleep mode for the rest of the time, leading to
a whole lot of energy savings because of this low duty-
cycle.

Event-Driven Contention Access Period: During
this mode, a sensor will be in sleep-mode except when
necessary to communicate. For sending event-driven data
like the image scan of a specific location, this mode
of communication is used to send the data to the next
fusion node. The mode is based on IEEE 802.11 protocol
[13] with carrier sense and RTS-CTS. Techniques such
as overhearing of neighbor’s NAV vector citepamas to
save energy, and sacrificing per-node fairness for lesser
collision [30] is Sometimes fragmentation is unavoidable
but fragments of data is not much useful for sensor nodes
sensors receive all the data and then do the processing.
So, the whole Application Data Unit(ADU) is sent to-
gether and assimilated at the receiving node [4], thereby
decreasing the number of collisions and control packet
overhead and hence energy requirements.

Apart from using the deterministic traffic of WASN
applications for efficient medium access, the MAC uses
other IES supplied information like the sensed data size(s)
to determine the slot duration and back-off time. Using
location information, the MAC controls the transmission
power to the lowest level necessary to reach the next hop,
as well as gleans information about the direction of the
next hop for use in directional antenna. Various real-time
guarantees sought by the application is communicated
via IES to configure the MAC to meet those constraints,
thereby adapting it to serve the application in the most
efficient manner.

E. Adaptive Network Services:

Clock synchronization and localization are very im-
portant services in the sensor network systems. In our
SensorStack we provide interfaces such that the accuracy
of the service provided depends on the need of the appli-
cation and the current resource constraints in the sensor
nodes. The applications and rest of the stack interact
with the IES to provide the service requirements, and
the service protocols provide those set of requirements.

For clock synchronization, we have proposed an adap-
tive method for clock synchronization [22] that is based
on the Reference Broadcast Synchronization [5]. During
the start of each superframe, each node which is a for-
warding node sends out a reference beacon using which

7

all the nodes in hearing range synchronize with each
other. We provide a probabilistic bound on the accuracy
of the clock synchronization, allowing for a trade off
between accuracy and resource requirement. Expressions
are derived to convert these service specifications (max-
imum clock synchronization error and confidence proba-
bility) to actual protocol parameters (number of messages
and synchronization interval).

VI. DISCUSSION

Here we touch upon some of the specific aspects of the
proposed stack which have not been explained earlier.

Sensor applications have varying degrees of security
concerns. Traditionally, the data integrity is supported
at the physical layer in wireless networks, and data
authentication is supported at higher layers. WASN ap-
plications will need the authentication support below the
data fusion layer, because unauthenticated data packets
must be discarded. Data service layer can support the
data authentication service. IES can help support this
requirement without any change in the layering of the
proposed stack. It can make the application security keys
available to the data service layer.

Though current WASN applications do not need the full
functionality associated with the transport layer, future
applications using sensor networks may need it. We
expect that the transport layer functionalities can be sup-
ported by middleware running over the proposed stack,
and the middleware can host the future sophisticated
sensing applications.

WASN may need to co-exist with other types of
networks. For example, users may want to access the
sensed information via the Internet. The interface nodes
will have to support both the proposed network stack and
the stack corresponding to other networks.

VII. RELATED WORK

OSI reference model provides the basic framework
for development of standards for interconnecting two or
more systems. TCP/IP stack has similar motivation and
structure as the OSI model. Each layer in OSI provides
a set of services to the subsystems in the layer above.
In providing these services, a layer implements a set of
functionalities using the services made available by the
layer(s) below.

The layered model of the TCP/IP stack and the OSI
reference model encapsulate the issues appropriate to the
related tasks within each layer. In a standardized way,
this layering allows transparent access to all lower-level
functions, and makes it possible to upgrade any given
layer without the redesign of other layers. The strength of
layered approach lies in its modularity. Every layer now
can be supported by different vendors, or implemented for
different hardware platforms, and yet the overall stack can
be realized by simply combining the appropriate protocols

for every layer. This modularity leads to simplicity by
hiding the complexities of the lower layers.

While the TCP/IP stack has been in common use on
general purpose machines, they have also been adapted
for more specialized networks or application needs.
Specifically, research projects have looked at the scope
of cross-layer optimizations in TCP or UDP stack for
wireless networks. For example, there have been propos-
als [23], [9], [31] for sharing the physical and MAC layer
knowledge of wireless medium with the higher layers
for efficient allocation of network resources or for con-
gestion detection. Similarly, research for providing QoS-
based services has sought for cross-layer collaboration in
network stack [2]. But, these cross-layering efforts have
only increased the complexity of the protocol stack, with
the layers being much more dependent upon one other,
and less modular than the original stack.

Application-specific network protocol design has been
explored by some projects. Plexus [7] allows applications
to achieve high perform ace with customized protocols,
where the application-specific protocols are installed dy-
namically into the operating system kernel. But, Plexus
needs the protocols to be written in Modula-2, a type safe
language, and it runs only in the context of the SPIN
extensible operating system [1]. Exokernel [6] presents
an architecture to permit the application-specific cus-
tomization of operating system abstractions, including the
network resources. While Exokernel provides a suitable
architecture for supporting application-specific protocol
stack, it is unclear what set of network abstractions
will be suitable and/or sufficient for the evolving WASN
environment and WASN applications.

Berkeley motes use TinyOS [12] operating system.
TinyOS uses active message based networking and pro-
vides only the minimal networking support to the ap-
plications because of the extreme hardware constraints
of the motes. This limits the types of applications that
can be efficiently supported. The network stack used
by PicoNodes at Berkeley [26] identifies the need for
many WASN specific situations (such as keeping the
transport layer off the stack), but it still does not support
application-specific adaptation and other WASN design
goals.

VIII. CONCLUSION

This paper highlights the need for rethinking the tradi-
tional TCP/IP stack for the WASN environment. It shows
that hop-to-hop requirements, with other distinguishing
characteristics of WASN, demands a new stack layering.
We present the design of a new protocol stack that is
suitable for sensor applications. By making the protocol
layers adaptable to the application needs dynamically, the
new stack will allow exploiting the application specific
requirements. By taking a specific application scenario,
we qualitatively show how the new stack design can
support the scenario better than the traditional stacks.

8

REFERENCES

[1] B. N. Bershad, C. Chambers, S. J. Eggers, C. Maeda, D. Mc-
Namee, P. Pardyak, S. Savage, and E. G. Sirer. SPIN - an
extensible microkernel for application-specific operating system
services. In ACM SIGOPS European Workshop, pages 68–71,
1994.

[2] A. Campbell, G. Coulson, F. Garcia, D. Hutchison, and
H. Leopold. Integrated quality of service for multimedia com-
munications. In INFOCOM (2), pages 732–739, 1993.

[3] A.-M. Chou and V. Li. Slot allocation strategies for TDMA
protocols in multihop packet radio networks. In Proceedings of
INFOCOM 1992, pages 710–716, 1992.

[4] D. D. Clark and D. L. Tennenhouse. Architectural considerations
for a new generation of protocols. In Proceedings of the ACM
symposium on Communications architectures & protocols, pages
200–208. ACM Press, 1990.

[5] J. Elson, L. Girod, and D. Estrin. Fine-Grained Network Time
Synchronization using Reference Broadcasts. In Proceedings of
the 5th Symposium on Operating Systems Design and Implemen-
tation, Boston, Massachusetts, December 2002.

[6] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exokernel:
An operating system architecture for application-level resource
management. In Symposium on Operating Systems Principles,
pages 251–266, 1995.

[7] M. E. Fiuczynski and B. N. Bershad. An extensible protocol ar-
chitecture for application-specific networking. In USENIX Annual
Technical Conference, pages 55–64, 1996.

[8] J. Gronkvist. Traffic controlled spatial reuse TDMA in multi-hop
radio networks. In Proceedings of 9th IEEE International Sym-
posium on Personal, Indoor and Mobile Radio Communications,
pages 1203–1207, 1998.

[9] T. He, J. A. Stankovic, C. Lu, and T. Abdelzaher. SPEED: A
Stateless Protocol for Real-Time Communication. In Proceedings
of ICDCS 2003.

[10] J. Heidemann, F. Silva, and D. Estrin. Matching Data Dissemi-
nation Algorithms to Application Requirements. In SenSys 2003,
Nov 2003.

[11] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Es-
trin, and D. Ganesan. Building efficient wireless sensor networks
with low-level naming. In Proceedings of the eighteenth ACM
symposium on Operating systems principles, pages 146–159. ACM
Press, 2001.

[12] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J.
Pister. System architecture directions for networked sensors. In
Architectural Support for Programming Languages and Operating
Systems, pages 93–104, 2000.

[13] IEEE Computer Society LAN MAN Standards Committee. Wire-
less LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications, IEEE Std 802.11-1997. The Institute of
Electrical and Electronics Engineers, New York, New York, 1997.

[14] IEEE Computer Society LAN MAN Standards Committee. Wire-
less Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for Low-Rate Wireless Personal Area Networks (LR-
WPANs), IEEE Std 802.15.4. The Institute of Electrical and
Electronics Engineers, New York, New York, 2003.

[15] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffu-
sion: A scalable and robust communication paradigm for sensor
networks. In Proceedings, Sixth Annual Int. Conf. on Mobile Com-
puting and Networking (MobiCOM ’00), pages 56–67, Boston,
Massachussetts, USA, 2000.

[16] International Standard Organization. OSI - Basic Reference
Model. ISO 7498, 1984.

[17] B. Karp and H. T. Kung. GPSR: greedy perimeter stateless routing
for wireless networks. In Mobile Computing and Networking,
pages 243–254, 2000.

[18] C. A. Kent and J. C. Mogul. Fragmentation considered harmful.
WRL Technical Report 87/3, 1987.

[19] R. Kumar, M. Wolenetz, B. Agarwalla, J. S. Sin, P. W. Hutto,
A. Paul, and K. Ramachandran. DFuse: Framework for Distributed
Data Fusion. In SenSys 2003, Nov 2003.

[20] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag:
a tiny aggregation service for ad-hoc sensor networks. In Operat-

ing System Design and Implementation(OSDI), Boston,MA, Dec
2002.

[21] R. Nelson and L. Kleinrock. Spatial-TDMA: A collision-free mul-
tihop channel access control. IEEE Transactions on Computers,
33:934–944, 1985.

[22] S. PalChaudhuri, A. Saha, and D. B. Johnson. Adaptive clock syn-
chronization in sensor networks. In Proceeding of the Information
Processing in Sensor Networks(IPSN), Berkeley, CA, April 2004.

[23] K. Pentikousis. Tcp in wired-cum-wireless environments. IEEE
Communications Surveys & Tutorials, vol. 3, no. 4, Fourth Quarter
2000.

[24] R. Perlman. Interconnections: Bridges, Routers, Switches, and
Internetworking Protocols, 2/E. Addison Wesley Professional,
2000.

[25] G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors.
Communications of the ACM, 43(5):51–58, 2000.

[26] J. M. Rabaey and R. W. Brodersen. PicoRadio: Communica-
tion/Computation PicoNodes for Sensor Networks. DARPA Final
Report, Dec 2002.

[27] S. Singh and C. Raghavendra. PAMAS: Power Aware Multi-
Access Protocol with Signalling for Ad Hoc Networks. SIG-
COMM Computer Communication Review, 28(3), July 1998.

[28] T. van Dam and K. Langendoen. An adaptive energy-efficient mac
protocol for wireless sensor networks. In Proceedings of the first
international conference on Embedded networked sensor systems,
pages 171–180. ACM Press, 2003.

[29] J. K. W. R. Heinzelman and H. Balakrishnan. Adaptive protocols
for information dissemination in wireless sensor networks. In Pro-
ceedings of the fifth annual ACM/IEEE international conference
on Mobile computing and networking, pages 174–185, Seattle, WA
USA, 1999.

[30] W. Ye, J. Heidemann, and D. Estrin. An Energy-Efficient MAC
protocol for Wireless Sensor Networks. In Proceedings of INFO-
COM 2002, New York, New York, June 2002.

[31] W. Yuen, H. Lee, and T. Andersen. A simple and effective
cross layer networking system for mobile ad hoc networks. In
Proceedings of PIMRC, 2002.

9

