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Abstract. Stable and balanced outcomes of network bargaining games
have been investigated recently, but the existence of such outcomes re-
quires that the linear program relaxation of a certain maximum matching
problem has integral optimal solution.

We propose an alternative model for network bargaining games in
which each edge acts as a player, who proposes how to split the weight
of the edge among the two incident nodes. Based on the proposals made
by all edges, a selection process will return a set of accepted proposals,
subject to node capacities. An edge receives a commission if its proposal
is accepted. The social welfare can be measured by the weight of the
matching returned.

The node users, as opposed to being rational players as in previous
works, exhibit two characteristics of human nature: greed and spite. We
define these notions formally and show that the distributed protocol by
Kanoria et. al can be modified to be run by the edge players such that
the configuration of proposals will converge to a pure Nash Equilibrium,
without the LP integrality gap assumption. Moreover, after the nodes
have made their greedy and spiteful choices, the remaining ambiguous
choices can be resolved in a way such that there exists a Nash Equilibrium
that will not hurt the social welfare too much.

1 Introduction

Bargaining games have been studied with a long history, early in economics [19]
and sociology, and recently in computer science, there has been a lot of attention
on bargaining games in social exchange networks [16,1,4,15], in which users are
modeled as nodes in an undirected graph G = (V,E), whose edges are weighted.
An edge {i, j} ∈ E with weight wij > 0 means that users i and j can potentially
form a contract with each other and split a profit of wij . A capacity vector
b ∈ Z

V
+ limits the maximum number bi of contracts node i can form with its

neighbors, and the set M of executed contracts form a b-matching in G.
In previous works, the nodes bargain with one another to form an outcome

which consists of the set M of executed contracts and how the profit in each con-
tract is distributed among the two participating nodes. The outside option of a
node is the maximum profit the node can get from another node with whom there
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is no current contract. An outcome is stable if for every contract a node makes,
the profit the node gets from that contract is at least its outside option. Hence,
under a stable outcome, no node has motivation to break its current contract to
form another one. Extending the notion of Nash bargaining solution [19], Cook
and Yamagishi [11] introduced the notion of balanced outcome. An outcome is
balanced if, in addition to stability, for every contract made, after each partic-
ipating node gets its outside option, the surplus is divided equally between the
two nodes involved. For more notions of solutions, the reader can refer to [7].

Although stability is considered to be an essential property, as remarked
in [4,15], a stable outcome exists iff the linear program (LP) relaxation (given in
Section 4) for the b-matching problem on the given graph G has integrality gap
1. Hence, even for very simple graphs like a triangle with unit node capacities
and unit edge weights, there does not exist a stable outcome. Previous works
simply assumed that the LP has integrality gap 1 [15,8] or considered restriction
to bipartite graphs [16,4], for which the LP always has integrality gap 1.

We think the integrality gap condition is a limitation to the applicability
of such framework in practice. We would like to consider an alternative model
for network bargaining games, and investigate different notions of equilibrium,
whose existence does not require the integrality gap condition.

Our Contribution and Results. In this work, we let the edges take over
the role of the “rational” players from the nodes. Each edge e = {i, j} ∈ E
corresponds to an agent, who proposes a way to divide up the potential profit wij

among the two nodes. Formally, each edge {i, j} has the action set Aij := {(x, y) :
x ≥ 0, y ≥ 0, x+y ≤ we}, where a proposal (x, y) means that node i gets amount
x and j gets amount y.1 Based on the configuration m ∈ AE := ×e∈EAe of
proposals made by all the agents, a selection process (which can be randomized)
will choose a b-matching M , which is the set of contracts formed. An agent
e will receive a commission if his proposal is selected; his payoff ue(m) is the
probability that edge e is in the matching M returned.2 Observe that once the
payoff function u is defined, the notion of (pure or mixed) Nash Equilibrium is
also well-defined. We measure the social welfare S(m) by the (expected) weight
w(M) of the matching M returned, which reflects the volume of transaction.

We have yet to describe the selection process, which will determine the payoff
function to each agent, and hence will affect the corresponding Nash Equilibrium.
We mention earlier that the rational players in our framework will be the edges, as
opposed to the nodes in previous works; in fact, in the selection process we assume
the node users will exhibit two characteristics of human nature: greed and spite.

Greedy Users. For a node i with capacity bi, user i will definitely want an offer
that is strictly better than his (bi + 1)-st best offer. If this happens for both
users forming an edge, then the edge will definitely be selected. We also say the
resulting payoff function is greedy.

1 In case x+ y < wij the remaining amount is lost and not gained by anyone.
2 The actual gain of an agent could be scaled according to the weight we, but this will
not affect the Nash Equilibrium.
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Spiteful Users. Spite is an emotion that describes the situation that once a person
has seen a better offer, he would not settle for anything less, even if the original
better offer is no longer available. If user i with capacity bi sees that an offer is
strictly worse than his bi-th best offer, then the corresponding edge will definitely
be rejected. We also say the resulting payoff function is spiteful.

One can argue that greed is a rational behavior (hence the regime of greedy al-
gorithms), but spite is clearly not always rational. In fact, we shall see in Section 2
that there exist a spiteful payoff function and a configuration of agent proposals
that is a pure Nash Equilibrium, in which all proposals are rejected by the users
out of spite, even though no single agent can change the situation by unilaterally
offering a different proposal. The important question is that: can the agents follow
some protocol that can avoid such badNashEquilibrium? In other words, can they
collaboratively find a Nash Equilibrium that achieves good social welfare?

We answer the above question in the affirmative. We modify the distributed
protocol of Kanoria et. al [15] to be run by edge players and allow general node
capacities b. As before, the protocol is iterative and the configuration of proposals
returned will converge to a fixed point m of some non-expansive function T . In
Section 3, we show that provided the payoff function u is greedy and spiteful, then
any fixed point m of T is in the corresponding set Nu of pure Nash Equilibria.

In Section 4, we analyze the social welfare through the linear program (LP)
relaxation of the maximum b-matching problem. As in [15], we investigate the
close relationship between a fixed point of T and (LP). However, we go beyond
previous analysis and do not need the integrality gap assumption, i.e., (LP) might
not have an integral optimum. We show that when greedy users choose an edge,
then all (LP) optimal solutions must set the value of that edge to 1; on the other
hand, when users reject an edge out of spite, then all (LP) optimal solutions
will set the value of that edge to 0. We do need some technical assumptions
in order for our results to hold: either (1) (LP) has a unique optimum, or (2)
the given graph G has no even cycle such that the sum of the weights of the
odd edges equals that of the even edges; neither assumption implies the other,
but both can be achieved by perturbing slightly the edge weights of the given
graph. Unlike the case for simple 1-matching, we show (in the full version) that
assumption (2) is necessary for general b-matching, which indicates that there is
some fundamental difference between the two cases.

The greedy behavior states that some edges must be selected and the spiteful
behavior requires that some edges must be rejected. However, there is still some
freedom to deal with the remaining ambiguous edges.3 Observe that a fixed point
will remain a Nash Equilibrium (for the edge players) no matter how the am-
biguous edges are handled, so it might make sense at this point to maximize the
total number of extra contracts made from the ambiguous edges. However, op-
timizing the cardinality of a matching can be arbitrarily bad in terms of weight,
but a maximum weight matching is a 2-approximation in terms of cardinality.
Therefore, in Section 5, we consider a greedy and spiteful payoff function u that

3 As a side note, we remark that our results implies that under the unique integral
(LP) optimum assumption, there will be no ambiguous edges left.
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corresponds to selecting a maximum weight matching (approximate or exact)
among the ambiguous edges (subject to remaining node capacities b′); in reality,
we can imagine this corresponds to a centralized clearing process or a collective
effort performed by the users. We show that if a (1+c)-approximation algorithm
for maximum weight matching is used for the ambiguous edges, then the social
welfare is at least 2

3(1+c) fraction of the social optimum, i.e., the price of stability

is 1.5(1+c). Finally, observe that the iterative protocol we mention will converge
to a fixed point, but might never get there exactly; hence, we relax the notions
of greed and spite in Section 5.1 and show that the same guarantee on the price
of stability can be achieved eventually (and quickly).

We remark that if the topology of the given graph and the edge weights
naturally indicate that certain edges should be selected while some should be
rejected (both from the perspectives of social welfare and selfish behavior), then
our framework of greed and spite can detect these edges. However, we do not
claim that our framework is a silver bullet to all issues; in particular, for the
triangle example given above, all edges will be ambiguous and our framework
simply implies that one node will be left unmatched, but does not specify how
this node is chosen. We leave as future research direction to develop notions of
fairness in such situation.

Related Work. Kleinberg and Tardos [16] recently started the study of network
bargaining games in the computer science community; they showed that a stable
outcome exists iff a balanced outcome exists, and both can be computed in
polynomial time, if they exist. Chakraborty et. al [9,10] explored equilibrium
concepts and experimental results for bipartite graphs. Celis et. al [8] gave a tight
polynomial bound on the rate of convergence for unweighted bipartite graphs
with a unique balanced outcome. Kanoria [14] considered unequal division (UD)
solutions for bargaining games, in which stability is still guaranteed while the
surplus is split with ratio r : 1 − r, where r ∈ (0, 1). They provided an FPTAS
for the UD solutions assuming the existence of such solutions.

Azar et. al [1] considered a local dynamics that converges to a balanced out-
come provided that it exists. Assuming that the LP relaxation for matching has
a unique integral optimum, Kanoria et. al [15] designed a local dynamics that
converges in polynomial time. Our distributed protocol is based on [15], but is
generalized to general node capacities, run by edges and does not require the
integrality condition on (LP).

Bateni et. al [4] also considered general node capacities; moreover, they showed
that the network bargaining problem can be recast as an instance of the well-
studied cooperative game [12]. In particular, a stable outcome is equivalent to a
point in the core of a cooperative game, while a balanced outcome is equivalent
to a point in the core and the prekernel. Azar et. al [2] also studied bargaining
games from the perspective of cooperative games, and proved some monotonicity
property for several widely considered solutions.

In our selection process, we assume that the maximum weight b′-matching
problem is solved on the ambiguous edges. This problem is well-studied and can
be solved exactly in polynomial time [22][Section 33.4]; moreover, the problem
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can be solved by a distributed algorithm [5], and (1 + c)-approximation for any
c > 0 can be achieved in poly-logarithmic time [18,20,17].

2 Notation and Preliminaries

Consider an undirected graph G = (V,E), with vertex set V and edge set E.
Each node i ∈ V corresponds to a user i (vertex player), and each edge e ∈ E
corresponds to an agent e (edge player). Agents arrange contracts to be formed
between users where each agent e = {i, j} gains a commission when users i and
j form a contract. Each edge e = {i, j} ∈ E has weight we = wij > 0, which is
the maximum profit that can be shared between users i and j if a contract is
made between them. Given a node i, denoted by N(i) := {j ∈ V : {i, j} ∈ E}
the set of its neighbors in G, there exists a capacity vector b ∈ Z

V
+ such that each

node i can make at most bi contracts with its neighbors in N(i), where at most
one contract can be made between a pair of users; hence, the set M of edges on
which contracts are made is a b-matching in G.

Agent Proposal. For each e = {i, j} ∈ E, agent e makes a proposal of the
form (mj→i,mi→j) from an action set Ae to users i and j, where Ae := {(x, y) :
x ≥ 0, y ≥ 0, x + y ≤ wij}, such that if users i and j accepts the proposal and
form a contract with each other, user i will receive mj→i and user j will receive
mi→j from this contract.

Selection Procedure and Payoff Function u. Given a configuration m ∈
AE := ×e∈EAe of all agent’s proposals, some selection procedure is run on m to
return a b-matching M , where an edge e = {i, j} ∈ M means that a contract is
made between i and j. The procedure can be (1) deterministic or randomized,
(2) centralized or (more preferably) distributed.

If i and j are matched in M , i.e., e = {i, j} ∈ M , agent e will receive a
commission, which can either be fixed or a certain percentage of we; since an
agent either gains the commission or not, we can assume that its payoff is 1
when a contract is made and 0 otherwise. Hence, the selection procedure defines
a payoff function u = {ue : AE → [0, 1]|e ∈ E}, such that for each e ∈ E, ue(m)
is the probability that the edge e is in the b-matching M returned when the
procedure is run on m ∈ AE . We shall consider different selection procedures,
which will lead to different payoff functions u. However, the selection procedure
should satisfy several natural properties, which we relate to the human nature
of the users as follows.

We use max(b) to denote the b-th maximum value among a finite set of num-
bers (by convention it is 0 if there are less than b numbers). Given m ∈ AE , we

define m̂i = max
(bi)
j∈N(i) mj→i and mi = max

(bi+1)
j∈N(i) mj→i.

Greedy Users. If both users i and j see that they cannot get anything better
from someone else, then they will definitely make a contract with each other.
Formally, we say that the payoff function u is greedy (or the users are greedy),
if for each e = {i, j} ∈ E and m ∈ AE , if mj→i > mi and mi→j > mj , then
ue(m) = 1.
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Spiteful Users. It is human nature that once a person has seen the best, they
will not settle for anything less. We try to capture this behavior formally. We
say that the payoff function u is spiteful (or the users are spiteful) if for each
e = {i, j} ∈ E and m ∈ AE , if mj→i < m̂i, then ue(m) = 0, i.e., if user i cannot
get the bi-th best offer from j, then no contract will be formed between i and j.

Game Theory and Social Welfare. We have described a game between the
agents, in which agent e has the action set Ae, and has payoff function u (deter-
mined by the selection procedure). In this paper, we consider pure strategies and
pure Nash Equilibria. A configuration m ∈ AE of actions is a Nash equilibrium
if no single player can increase its payoff by unilaterally changing its action.

Given a payoff function u, we denote by Nu ⊂ AE the set of Nash Equilibria.
Given a configuration m ∈ AE of proposals and a payoff function u, we measure
social welfare by Su(m) :=

∑

e∈E we ·ue(m), which is the expected weight of the
b-matching returned. When there is no ambiguity, the subscript u is dropped.
The optimal social welfare S∗ := maxm∈AE S(m) is the maximum weight b-
matching; to achieve the social optimum, given a maximum weight b-matching
M , every agent e ∈ M proposes (we

2 , we

2 ), while other agents proposes (0, 0). The
weight of the b-matching can be an indicator of the volume of transactions or
how active the market is. The Price of Anarchy (PoA) is defined as S∗

minm∈N S(m)

and the Price of Stability (PoS) is defined as S∗
maxm∈N S(m) .

Proposition 1 (Infinite Price of Anarchy). There exists an instance of the
game such that when the users are spiteful, there exists a Nash Equilibrium
m ∈ AE under which no contracts are made.

We defer the proof of Proposistion 1 to the full version.

3 A Distributed Protocol for Agents

We describe a distributed protocol for the agents to update their actions in each
iteration. The protocol is based on the one by Kanoria et. al [15], which is run by
nodes and designed for (1-)matchings. The protocol can easily be generalized to
be run by edges and for general b-matchings. In each iteration, two agents only
need to communicate if their corresponding edges share a node. Given a real
number r ∈ R, we denote (r)+ := max{r, 0}. Moreover, as described in [15,3] a
damping factor κ ∈ (0, 1) is used in the update; we can think of κ = 1

2 .
Although later on we will also consider the LP relaxation of b-matching, unlike

previous works [21,6,15], we do not require the assumption that the LP relaxation
has a unique integral optimum.

In Algorithm 1, auxiliary variables α(t) ∈ R
2|E|
+ are maintained. Intuitively,

the parameter αi\j is meant to represent the bi-th best offer user i can receive
if user j is removed. Suppose W := maxe∈E we and we define a function T :
[0,W ]2|E| → [0,W ]2|E| as follows.

Given α ∈ [0,W ]2|E|, for each {i, j} ∈ E, define the following quantities.

Sij(α) = wij − αi\j − αj\i (1)
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Input: G = (V,E,w)
Initialization: For each e = {i, j} ∈ E, agent e picks arbitrary

(m
(0)
j→i,m

(0)
i→j) ∈ Ae.

for agent e = {i, j} ∈ E do

α
(1)

i\j := max
(bi)

k∈N(i)\jm
(0)
k→i ; α

(1)

j\i := max
(bj)

k∈N(j)\im
(0)
k→j

end
for t = 1, 2, 3, . . . do

for agent e = {i, j} ∈ E do

Sij := wij − α
(t)
i\j − α

(t)
j\i

m
(t)
j→i := (wij − α

(t)

j\i)+ − 1
2
(Sij)+ ; m

(t)
i→j := (wij − α

(t)

i\j)+ − 1
2
(Sij)+

end
for agent e = {i, j} ∈ E do

α
(t+1)

i\j = (1− κ) · α(t)

i\j + κ ·max
(bi)

k∈N(i)\jm
(t)
k→i ;

α
(t+1)

j\i = (1− κ) · α(t)

j\i + κ ·max
(bj)

k∈N(j)\im
(t)
k→j

end

end

Algorithm 1. A Distributed Protocol for Agents. For each time t, agent e = {i, j}
computes its action (m

(t)
j→i,m

(t)
i→j) ∈ Ae; the first value is sent to other edges incident

on i and the second to edges incident on j.

mj→i(α) = (wij − αj\i)+ − 1

2
(Sij(α))+ (2)

Then, we define T (α) ∈ [0,W ]2|E| by (T (α))i\j := max
(bi)
k∈N(i)\j mk→i(α). It

follows that Algorithm 1 defines the sequence {α(t)}t≥1 by α(t+1) := (1−κ)α(t)+
κT (α(t)).

Given a vector space D, a function T : D → D is non-expansive under norm
|| · || if for all x, y ∈ D, ||T (x)−T (y)|| ≤ ||x−y||; a point α ∈ D is a fixed point of
T if T (α) = α. As in [15], it can be proved that the function T is non-expansive,
and using a result by Ishikawa [13] (we defer the details to the full version), the
next theorem follows.

Theorem 1 (Convergence to a Fixed Point). The distributed protocol shown
in Figure 1 maintains the sequence {α(t)} which converges to a fixed point of the
function T under the �∞ norm.

Properties of a Fixed Point. Given a fixed point α of the function T , the
quantities S ∈ R

|E| and m ∈ AE are defined according to Equations (1) and (2).
We also say that (m,α, S), (m,α) or m is a fixed point (of T ). Similar to [15], we
give several important properties of a fixed point, whose details are given in the
full version. Theorems 1 and 2 imply that as long as the payoff function is greedy
and spiteful, the game defined between the agents (edge players) always has a
pure Nash Equilibrium. We defer the proof of Theorem 2 to the full version.

Theorem 2 (Fixed Point is NE). Suppose the payoff function u is greedy
and spiteful. Then, any fixed point m ∈ AE of T is a Nash Equilibrium in Nu.
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4 Analyzing Social Welfare via LP Relaxation

Theorem 2 states that a fixed point (m,α) of the function T is a Nash Equi-
librium in Nu, as long as the underlying payoff function is greedy and spiteful.
Our goal is to show that there exists some greedy and spiteful u such that the
fixed point m also achieves good social welfare Su(m) =

∑

e∈E we · ue(m).
As observed by Kanoria et. al [15], the network bargain game is closely related

to the linear program (LP) relaxation of the b-matching problem, which has the
form SLP := maxx∈Lw(x), where w(x) :=

∑

{i,j}∈E xijwij and L := {x ∈
[0, 1]E : ∀i ∈ V,

∑

j:{i,j}∈E xij ≤ bi} is the set of feasible fractional solutions.

Given x ∈ L, we say a node i is saturated under x if
∑

j:{i,j}∈E xij = bi, and
otherwise unsaturated.

They showed that when the LP relaxation has a unique integral maximum, a
fixed point (m,α, S) corresponds naturally to the unique maximum (1-)matching.
However, their analysis cannot cover the case when the optimal solution is frac-
tional or when the maximum matching is not unique.

In this section, we fully exploit the relationship between a fixed point and the
LP relaxation, from which we show that good social welfare can be achieved.
Note that we do not require the unique integral optimum assumption. On the
other hand, we assume that either (1) the LP has a unique optimum or (2) the
following technical assumption.

No Cycle with Equal Alternating Weight. We say that a cycle has equal al-
ternating weight if it is even, and the sum of the odd edges equals that of the even
edges. We assume that the given weighted graphG has no such cycle. The weights
of any given graph can be perturbed slightly such that this condition holds. Ob-
serve that the optimum of (LP) might not be unique even with this assumption.
For the 1-matching case, the conclusions listed in Theorem 3 have been derived by
Kanoria et. al [15] without the “no cycle with equal alternating weight” assump-
tion. However, for general b-matching, this assumption in Theorem 3 is necessary
for cases (b) and (c). The reason is shown in the full version.

Theorem 3 (Fixed Point and LP). Suppose (LP) has a unique optimum or
the graph G has no cycle with equal alternating weight, and (m,α, S) is a fixed
point of T . Then, for any edge {i, j} ∈ E, the following holds.

(a) Suppose (LP) has a unique integral optimum corresponding to the maximum
b-matching M∗. Then, Sij ≥ 0 implies that {i, j} ∈ M∗.

(b) Suppose Sij > 0. Then, any optimal solution x to (LP) must satisfy xij = 1.
(c) Suppose Sij < 0. Then, any optimal solution x to (LP) must satisfy xij = 0.

Although the three statements in Theorem 3 look quite different, they can be imp-
lied by the three similar-looking corresponding statements in the following lemma.

Lemma 1 (Fixed Point and LP). Suppose (m,α, S) is a fixed point of T ,
and x is a feasible solution to (LP). Then, for each {i, j} ∈ E, the following
properties hold.
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(a) If Sij ≥ 0 and xij = 0, then there is x̂ ∈ L such that x̂ �= x and w(x̂) ≥ w(x).
(b) If Sij > 0 and xij < 1, then there is x̂ ∈ L such that x̂ �= x and w(x̂) ≥ w(x).
(c) If Sij < 0 and xij > 0, then there is x̂ ∈ L such that x̂ �= x and w(x̂) ≥ w(x).

Moreover, strict inequality holds for (b) and (c), if in addition the graph G has
no cycle with equal alternating weight.

4.1 Finding Alternative Feasible Solution via Alternating Traversal

Lemma 1 shows the existence of alternative feasible solutions under various con-
ditions. We use the unifying framework of the alternating traversal to show its
existence.

Alternating Traversal. Given a fixed point (m,α, S) of T and a feasible so-
lution x ∈ L, we define a structure called alternating traversal as follows.
(1) An alternating traversal Q (with respect to (m,α, S) and x) is a path or cir-
cuit (not necessarily simple and might contain repeated edges), which alternates
between two disjoint edge sets Q+ and Q− (hence Q can be viewed as a multiset
which is the disjoint union of Q+ and Q−) such that Q+ ⊂ S+ and Q− ⊂ S−,
where S+ := {e ∈ E : Se ≥ 0} and S− := {e ∈ E : Se ≤ 0}.

The alternating traversal is called feasible if in addition Q+ ⊂ E+ and Q− ⊂
E−, where E+ := {e ∈ S+ : xe < 1} and E− := {e ∈ S− : xe > 0}.

An edge e is called critical if e is in exactly one of E+ and E−, and is called
strict if Se �= 0. Given an edge e ∈ E, we denote by rQ(e) the number of times e
appears in Q, and by sgnQ(e) to be +1 if e ∈ Q+, −1 if e ∈ Q− and 0 otherwise.
Given a multiset U of edges, we denote by w(U) :=

∑

e∈U rU (e)we the sum of
the weights of the edges in U in accordance with each edge’s multiplicity.
(2) The following additional properties must be satisfied if the traversal Q is a
path. If one end of the path has edge {i, j} ∈ Q+ and end node i, then i is unsat-
urated under x, i.e.,

∑

e:i∈e xe < bi; if the end has edge {i, j} ∈ Q− and end node
i, then αi\j = 0. Observe that there is a special case where the path starts and
ends at the same node i; we still consider this as the path case as long as the end
node conditions are satisfied for both end edges (which could be the same).

Lemma 2 (Alternative Feasible Solution.). Suppose Q is a feasible alter-
nating traversal with respect to some feasible x ∈ L. Then, there exists feasible
x̂ �= x such that w(x̂)−w(x) has the same sign ({−1, 0,+1}) as w(Q+)−w(Q−).

Proof. Suppose Q is a feasible alternating traversal. Then, for some λ > 0, we
can define an alternative feasible solution x̂ �= x by x̂e := xe+λ · sgnQ(e) ·rQ(e).
Moreover, w(x̂)− w(x) = λ(w(Q+)− w(Q−)). 	


Lemma 3 (Alternating Traversal Weight). Suppose Q is an alternating
traversal. Then, the following holds.

(a) We have w(Q+) ≥ w(Q−), where strict inequality holds if Q contains a
strict edge.



274 T.-H. Hubert Chan, F. Chen, and L. Ning

(b) If Q is a simple cycle with no strict edges, then w(Q+) = w(Q−), i.e, Q is
a cycle with equal alternating weight; in particular, with the “no cycle with
alternating weight” assumption, any alternating traversal that is an even
cycle must contain a strict edge.

Lemma 4 (Growing Feasible Alternating Traversal). Suppose a fixed point
(m,α, S) and a feasible x ∈ L are given as above.

1. Suppose {i, j} ∈ E+ and node j is saturated (we stop if j is unsaturated).
Then, there exists some node k ∈ N(j) \ i such that {j, k} ∈ E−.

2. Suppose {j, k} ∈ E− and αk\j > 0 (we stop if αk\j = 0). Then, there exists
some node l ∈ N(k) \ j such that {k, l} ∈ E+.

The proofs of Lemmas 3 and 4 are deferred to the full version.

Lemma 5 (Unifying Structural Lemma). Suppose edge e ∈ E is critical
(with respect to some fixed point (m,α) and feasible x ∈ L). Then, there exists
a feasible alternating traversal Q; if in addition e is strict and there is no cycle
with equal alternating weight, then Q contains a strict edge.

Proof. To find a feasible alternating traversal Q, we apply a growing procedure
(described in the full version) that starts from the critical edge e = {i, j}. More-
over, ifQ is a simple even cycle, then byLemma 3(b),Q contains a strict edge under
the “no cycle with equal alternatingweight” assumption; otherwise,Q contains the
edge e, in which case e being strict implies thatQ contains a strict edge. 	

Proof of Lemma 1: It suffices to check the given edge {i, j} is critical in each of
the three cases. Then, Lemma 4 promises the existence of a feasible alternating
traversal, which contains a strict edge where appropriate. Then, Lemmas 3 and
2 guarantee the existence of feasible x̂ �= x such that w(x̂) ≥ w(x), where strict
inequality holds where appropriate. 	


5 Achieving Social Welfare with Greedy and Spiteful Users

We saw in Proposition 1 that a Nash Equilibrium m can result in zero social
welfare if users are spiteful. In this section, we investigate under what conditions
can a fixed point (m,α, S) of T achieve good social welfare, even if the underlying
payoff function u is greedy and spiteful. Given m ∈ AE , recall that for each node
i, m̂i is the bi-th best offer to i andmi is the (bi+1)-st best offer to i. Observe that
each edge e = {i, j} ∈ E falls into exactly one of the following three categories.

1. Greedy Edges: mj→i > mi and mi→j > mj. Edge e will be selected and
ue(m) = 1.

2. Spiteful Edges: mj→i < m̂i or mi→j < m̂j . Edge e will be rejected and
ue(m) = 0.

3. Ambiguous Edges: these are the remaining edges that are neither greedy
nor spiteful.

Given a fixed point (m,α, S), by propositions shown in the full version, the
category of an edge e ∈ E can be determined by the sign of Se: greedy (+1),
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ambiguous (0). Observe that after the greedy edges are selected and the spiteful
edges are rejected, even if ambiguous edges are chosen arbitrarily (deterministic
or randomized) to form a b-matching, the resulting payoff function is still greedy
and spiteful. Since no agent (edge player) has motivation to unilaterally change
his action for fixed point m, and any contract made for an ambiguous edge
will be within the best bi offers for a node i (i.e., if {i, j} ∈ E is ambiguous,
then mj→i = m̂i and mi→j = m̂j), we can optimize the following, subject to
remaining node capacity constraints b′ (after greedy edges are selected).

– Find a maximum cardinality b′-matching among the ambiguous edges, hence
optimizing the number of contracts made.

– Find a maximum weight b′-matching among the ambiguous edges, hence
optimizing the social welfare.

Choosing Maximum Weight Matching among Ambiguous Edges. Ob-
serve that a maximum cardinality matching can be arbitrarily bad in terms
of weight, but a maximum weight matching must be maximal and so is a 2-
approximation for maximum cardinality. Hence, we argue that it makes sense to
find a maximum weight b′-matching among the ambiguous edges. This step can
be performed centrally or as a collective decision by the users. We give the main
result in the following theorem and leave the details in the full version.

Theorem 4 (Price of Stability). Suppose the given graph has no cycle with
equal alternating weight or (LP) has a unique optimum. Then, there exists
a greedy and spiteful payoff function u such that any fixed point m of T is
a Nash Equilibrium in Nu; moreover, the social welfare Su(m) ≥ 2

3SLP ≥
2
3 maxm′∈AE Su(m

′), showing that the Price of Stability is at most 1.5

5.1 Rate of Convergence: ε-Greedy and ε-Spiteful Users

Although the iterative protocol described in Figure 1 will converge to some fixed
point (m,α, S), it is possible that a fixed point will never be exactly reached.
However, results in Section 4 and 5 can be extended if we relax the notions of
greedy and spiteful users, and relax also the technical assumption on no cycle
with equal alternating weight. The details are given in the full version and we
state the convergence result.

Theorem 5 (Rate of Convergence). Suppose ε > 0, and the given graph
has maximum edge weight W and has no cycle with ε-equal alternating weight.
Then, there exists an ε-greedy and ε-spiteful payoff function u such that the
following holds. For any sequence {(m(t), α(t))} produced by the iterative protocol

in Figure 1, and for all t ≥ Θ(W
2|V |4
ε2 ), the social welfare Su(m

(t)) ≥ 2
3SLP .
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