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The new techniques of genome context analysis —

chromosomal gene clustering, protein fusions, occurrence

profiles and shared regulatory sites — infer functional coupling

between genes. In combination with metabolic reconstructions,

these techniques can dramatically accelerate the pace of gene

discovery.
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Abbreviations
ACP acyl carrier protein

CoA coenzyme A

DMAPP dimethylallyl diphosphate

DOXP deoxyxylulose phosphate

DPCK dephospho-CoA kinase
FAD flavin adenine dinucleotide

FMN flavin mononucleotide

IPP isopentenyl diphosphate

PPAT phosphopantetheine adenylyltransferase

SFA saturated fatty acid

UFA unsaturated fatty acids

Introduction
Comparative analysis of a large and growing number of

diverse sequenced genomes is revolutionizing the pace

of gene discovery. Consider the question: ‘What is the

most likely function of this gene?’. The most effective

approach to answering such a question is based on projec-

tion of experimentally established functions of proteins

from one species to another on the basis of homology, as

revealed by sequence similarity. A set of powerful tools

(such as BLAST and FastA) and public archives (such as

GenBank and Swiss-Prot) are available to support such

projection, as well as a significant body of literature

(including recently published books [1,2��]).

Although the overall success of similarity-based tools has

been remarkable, they fail to determine functions for

many genes, and produce imprecise (and even incorrect)

annotations for many others. These genes with no

assigned function encode 20–60% of the proteins in most

genomes, large or small, creating a well known hypothetical
proteins problem. Ultimately, functional characterization of

most of these hypothetical proteins will require advances

in experimental biology; however, the emerging techni-

ques of comparative genomics can dramatically reduce

the efforts that will be required and have already

increased the productivity of existing experimental tech-

nologies. Combining multiple new techniques in com-

parative genomics is often referred to as genome context
analysis; it is the focus of many recent reviews and original

research papers (some of them are listed in Table 1). A

common theme of these efforts is the integration of

various types of genomic evidence, such as clustering

of genes on the chromosome [3], protein fusion events

[4,5], occurrence profiles or signatures [6] and shared

regulatory sites [7,8] to infer functional coupling for pro-

teins participating in related cellular processes (e.g.

enzymes involved in the same metabolic pathway). Appli-

cation of these techniques for the analysis of all genes in a

specific genome often produces valuable inferences

[9��,10,11], which provide insight into a possible functional

context but usually fall short of suggesting testable func-

tional assignments, unless projected over a detailed recon-

struction of relevant metabolic (or other cellular) pathways.

A metabolic reconstruction [12] is an attempt to develop a

detailed overview of an organism’s metabolism from an

analysis of genomic sequence. This capability is a direct

outgrowth of genomic sequencing and annotation efforts;

a somewhat oversimplified summary of the technology

would be that it supports inference of pathways on the

basis of the presence or absence of relevant genes. Com-

bining inferred pathways into hierarchical blocks pro-

duces metabolic charts specific for a particular organism

and connected to individual genes [13,14��,15–19]. Meta-

bolic reconstructions can reveal new aspects of metabo-

lism in well-studied organisms (from Escherichia coli to

humans), predict the metabolic potential of physiologi-

cally uncharacterized organisms, set the stage for network

modeling [20], and support pathway re-engineering and

the development of new therapies.

Since reconstruction technology is primarily focused on

which components (e.g. metabolic enzymes) are actually

present and which should be present but cannot be

identified, it provides a rather specific and precise notion

of what is actually missing [21]. This sets the stage

for questions of the form, ‘Which gene is most likely

to play this given role?’. This question, which we define

here as the missing genes problem is closely related to the
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hypothetical proteins problem mentioned above — in

both cases, one is attempting to connect functional roles

to genes that have not yet been characterized.

Numerous instances of the hypothetical proteins problem

are revealed with each sequenced genome. By contrast,

just formulating a missing gene problem is dependent on

the quality of pathway inference and a whole-genome

metabolic reconstruction. At the same time, almost all

experimental biologists are aware of one or more missing

genes related to their immediate field of research. This

specific and detailed knowledge, which is dispersed

throughout the research community, is extremely difficult

to integrate and encode for convenient computing.

Therefore, with the current wealth of genomic informa-

tion and sophisticated tools for comparative analysis,

‘bench researchers’ are in a much more favorable position

to reveal numerous missing gene cases and generate

reasonable predictions, let alone experimental verifica-

tion, than their colleagues behind computer screens.

One major goal of this brief overview is to encourage

experimental biologists and biochemists to use compara-

tive genomics to search for missing genes involved with

pathways and functional systems of their research inter-

ests. Since nothing can be more encouraging than a

successful example, we decided to illustrate various

aspects of contemporary techniques of genome context

analysis using a set of representative examples. We lim-

ited our choice of examples to those published in the past

two years, where functional predictions related to miss-

ing metabolic genes (predominantly enzymes) were

made mostly by inferred functional coupling (rather than

by similarity searches) and were immediately followed

by experimental verification. We leave out a formal

discussion and comparison of the various techniques

Table 1

Search for missing genes: major steps and techniques.

Milestones Techniques Fundamental concepts

and observations

References

Background and

implementation�
Applicationsy

I. Revealing missing genes

Pathway reconstruction and projection of recognized orthologs across multiple diverse genomes
List of relevant components

(enzymes, transporters)

in a functional context

Knowledge of metabolism Template pathways: main

routes and alternatives

[24]

List of sequenced genes

(groups of orthologs)

connected to relevant

functions

Homology-based searches Sequence similarities:

putative orthologs

[29,54]

List of missing genes within

a set of genomes

Metabolic reconstruction Inferred pathways and

functional systems

[12,14��,25,26]

II. Identification and ranking of candidate genes

Accumulation of genomic evidence of functional coupling and prioritization of candidate genes
List of primary suspect

candidate genes implicated

by genomic evidence

Chromosomal clustering Operons [3,9��,30��,32��,37] [28,62,63�,89�,92�,95��]

Fusion events Proteins with multiple

functional domains

[4,5,41] [69�,91]

Occurrence profiles Design commitments [6,9��,42,43��] [76,96]

Shared regulatory sites Regulons [8,45–47] [64�,87]

Prioritized list of candidates
for further experimental

verification

Long-range similarities and
conserved motifs

Folds, superfamilies, ligand
binding signatures

[51–53,55]

Biochemical and genetic data Gene/protein features

(phenotype, size, charge,

localization, etc.)

[23]

Post-genomic data: microarrays,

proteomics, gene knockouts

Co-expression profiles, physical

interactions, gene essentiality

[56–59]

III. Experimental verification
New functional assignment

for a protein family

Protein overexpression,

purification, assays

Functional activity in vitro

Gene amplification, deletion,

complementation

Functional activity in vivo

�Many references and genomic resources described therein cover multiple techniques and they are relevant for more than one step in this analysis,

nevertheless in this table they are cited only once. yRepresentative examples where one of the four techniques of genome context analysis

provided the key evidence for a specific functional prediction followed by experimental verification.
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Figure 1
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(c)

(b)

(a)

Gene
name

EC
number

Enzymes and proteins directly involved
in bacterial (type II) fatty acid

biosynthesis

6.3.4.14

6.4.1.2

2.3.1.39

2.3.1.41

1.1.1.100

4.2.1.–

1.3.1.9

2.3.1.41

4.2.1.60

5.3.3.–

(Elongation cycle)

2.3.1.41
Form I

2.3.1.39
ACP

6.3.4.14
BCCP
6.4.1.2
α and β

Streptococcus pneumoniae

Pediococcus pentosaceus

Streptococcus pyogenes

Clostridium acetobutylicum

Escherichia coli

Staphylococcus aureus
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and implementations, and we refer the reader to an

excellent series of reviews and original research papers

published on this subject in 2000 and 2002 (see Table 1).

Search for missing genes: the approach
The major steps and techniques used in a typical missing

gene study are briefly described below and listed in

Table I, where they are split in three phases: (I) building

a case, (II) evidence accumulation and analysis, and (III)

experimental verification. In reality, researchers often

have pre-existing knowledge of a particular missing gene

case in a target organism. Nevertheless, going through the

first steps will help to strengthen such a case by checking

for possible inconsistencies in sequencing data, annota-

tions and pathway interpretation.

From a practical perspective, one may distinguish two

categories of missing genes, which (for the lack of better

terms) we will refer to as globally missing (for functions

without any representative sequenced genes from any

organism), and locally missing (for functions previously

connected to one sequenced form of a gene in one group

of species, but expected to exist in an alternative form in

another group of species). Massive genome sequencing

and comparative analysis has revealed an unexpectedly

high frequency of non-orthologous gene displacements

[22], which probably account for the majority of locally

missing gene cases. In some cases, these alternative forms

share the same fold and/or conserved motifs, implying an

extremely divergent evolution, whereas in many other

cases, no sequence/structure similarity is observed, sug-

gesting that the same function could be ‘invented’ inde-

pendently more than once.

Phase I: revealing missing genes

The determination that a specific enzyme is missing is

made by compiling evidence supporting the existence of

a specific pathway within an organism, identifying the

specific genes that encode functions of the pathway, and

then focusing on specific functions that cannot be con-

nected to genes.

Step 1: establishing functional context

The search for one of these missing genes begins by

computing a ‘functional context’, which usually amounts

to the other enzymes that participate in the same pathway

or variants of the pathway. To support this analysis, one

uses traditional sources of biochemical information [23]

(including books, such as [24]), supplemented by avail-

able public and commercial web-resources and databases

(such as the electronic Biochemical Pathways Chart avail-

able from the ExPaSy server at www.expasy.org, KEGG

[14��], ERGO [25] and PGDB [26]).

Step 2: gene inventory

Once the set of closely related functions has been deter-

mined, one builds a table showing which of these func-

tions is present or absent within a diverse set of model

organisms. The table contains a row for each of the

enzymatic functions, and a column for each organism.

Each cell contains genes believed to be instances of the

functional role in a specific organism, inferred by homol-

ogy analysis (limitations of homology-based functional

annotations have been discussed, for example, see [27]).

The construction of such a table has been described

[15,28], and is illustrated here in Figure 1b. Available

whole-genome annotations, as well as collections of pro-

tein families (such as clusters of orthologous groups

(COGs) at NCBI [29]) are perfect starting points for this

analysis. This table is the raw data for beginning to under-

stand which organisms have variants of the pathway, which

do not, and where the situation remains ambiguous.

Step 3: metabolic reconstruction

Once the gene inventory has been composed, the next step

is to formulate an assessment of exactly what variants of the

(Figure 1 Legend) Missing genes in fatty acid biosynthesis and chromosomal clustering. (a) Pathway diagram. Simplified representation of major

enzymatic steps in fatty acid biosynthesis. Before entering the cycle malonyl-CoA (I) is produced from acetyl-CoA, and malonyl residue is transferred

to ACP to form malonyl-ACP (II). The first step of the SFA cycle is a condensation with another molecule of acetyl-CoA affording b-ketoacyl-ACP (III).
This undergoes consecutive reduction to b-hydroxyacyl-ACP (IV), dehydration to trans-2-enoyl-ACP (V), and another reduction to acyl-ACP (VI) to

enter the next elongation cycle (dotted arrow). Two alternative branching-out pathways of unsaturated fatty acid biosynthesis as known in E. coli (UFA

I), and proposed for S. pneumoniae (UFA II) [63�] are shown by dashed arrows. Both proceed by an isomerization step to produce cys-3-enoyl-ACP

(VII), which enters further elongation as shown by a dotted line. Structural formula of all intermediates in this and other figures are provided in the

Supplementary Material (URL: http://www.integratedgenomics.com/online_material/osterman/index.html; Table S1). Enzymes are indicated by

standard enzyme classification (EC) numbers explained in panel (b). The shading reflects correspondence to specific genes, as in (b,c). (b) Metabolic

reconstruction. A list of major enzymes and protein components of bacterial FAS II. Gene names are as in E. coli, except for fabK and fabM (marked

by an asterisk), recently discovered in S. pneumoniae and related species. Presence or absence of corresponding orthologous genes in a given

genome is marked by ‘þ’ or ‘�’ respectively. Numbers and colors are the same as in panel (c). (A third form of enoyl-ACP reductase gene (fabL,

previously ygaA) recently identified in B. subtilis [94] is not present in any of the selected genomes, and it is not shown in this panel.) (c) Chromosomal

clustering. The alignment of chromosomal regions ‘pinned’ around one of the FAS II genes (fabG) in S. pneumoniae and related species. Clustering of

orthologous FASII-related genes (with corresponding colors to (b)) provided key evidence for the identification of two novel enzymes (missing genes)
involved with SFA and UFA II pathways: fabK (11b) and fabM (13), respectively. Additionally, a putative UFA type II transcription regulator (14) and a

protein of unknown function related to lipid biosynthesis (plsX) are outlined. Other genes that are not conserved in this neighborhood, and do not

directly participate in fatty acid biosynthesis are colored gray. Note that a gene arrangement in P. pentosaceus is very similar to S. pneumoniase, S.

pyogenes and C. acetobutylicum, with a most notable ‘disappearance’ of fabK (11b) in the middle of the cluster compensated by the ‘appearance’ of

fabI (11a) at the end of the cluster. Multiple instances of a predicted regulatory site with a consensus sequence acTTTGAtwaTCAAAgt, are indicated

in S. pneumoniae operon by arrows.
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pathway are present in what organisms, in the process

identifying which genes actually remain missing. There

are numerous factors that complicate this analysis, including

those related to non-committed enzymes (existing in multi-

ple pathways) and enzymes with broad specificities.

Phase II: identification and ranking of candidate genes

Various techniques of genome context analysis are used to

infer functional coupling and produce an initial list of

candidate genes for a sought functional role. We briefly

list the major techniques of missing gene analysis and the

most relevant publications. We refer the reader to a more

detailed (although still very sketchy) description of the

approach and selected examples in the Supplementary

Materials (URL: http://www.integratedgenomics.com/

online_material/osterman/index.html).

Technique 1: clustering on the chromosome

Genes from the same pathway tend to cluster on prokar-

yotic chromosomes. This can be exploited to infer ‘func-

tional coupling’ between genes [3]. Genome-scanning

tools are used to look for cases in which it appears that

multiple genes orthologous to members of the gene

inventory occur in close proximity. [30��,31�,32��]. Back-

ground and application of this technique for enhance-

ment of genome annotations are discussed in detail in

several recent research papers and overviews [33�,34–37]

(Figure 1).

Technique 2: protein fusion events

This technique involves searches for a pair of genes from

one genome that appear to be fused into a single gene

within another genome, providing further evidence of

potential functional coupling. Since its introduction [4,5],

the protein fusion approach has been implemented and

successfully applied for genome-wide hypothetical pro-

tein analysis, mostly in combination with other techni-

ques [38,39,40�,41] (Figure 2).

Technique 3: occurrence profiles

This approach [6] (often referred to as ‘phylogenetic

profiling’) brings a truly independent type of genomic

evidence. In a simplified form, the underlying assumption

is that two proteins from the same cellular pathway are

expected to either both occur or both not occur in any

specific organism. The high-throughput version of this

technique, implemented by various groups [9��,42,43��],
generates instances of potential functional coupling for a

pair of proteins on the basis of their occurrence profiles.

Some users may find a simplified version of this technique

more efficient for missing gene analysis (Figure 3b). Its

application for the identification of uncharacterized bac-

terial photosynthetic proteins was recently described [44].

Technique 4: shared regulatory sites

This technique focuses on identification of so-called

regulons (ensembles of genes subject to coordinated

expression). Co-regulation of a pair of genes provides

evidence that these genes may be functionally coupled.

Recent publications describe new and improved algo-

rithms to identify shared regulatory sites and putative

regulons [45–47]. Attempts to apply this technique for

gene discovery are at an early stage, and we are aware of

only a limited number of functional predictions for pre-

viously uncharacterized proteins on the basis of shared

regulatory sites. In a recent series of publications, a

significant number of specific functional predictions were

based on analysis of extremely conserved regulatory

signals associated with genes involved in the biosynthesis

of some vitamins [48,49,50��] (Figure 4).

Ranking candidate genes and additional types of evidence

The functional-context-based techniques described

above produce partially overlapping conjectures that can

be further prioritized based on strength and consistency of

evidence. Among other techniques broadly used in gene

discovery and also very helpful for additional candidate

ranking are the methods revealing and analyzing putative

folds [51–53], long-range sequence similarities [54] and

conserved motifs [55]. An integration of the vast amounts of

experimental data generated by post-genomic techniques,

such as expression microarrays, protein–protein interaction

analysis [56,57], and less established whole-genome con-

ditional gene essentiality studies [58,59], provide us with

an additional source of functional links for gene discovery.

Phase III: experimental verification

In most cases, the number of highly ranked gene candi-

dates is very limited and they can be quickly challenged

by traditional experimental techniques of experimental

biology.

Missing genes in metabolic pathways: case
studies
The following examples were selected from recent pub-

lications to illustrate applications of the four major tech-

niques of genome context analysis. All of these examples

contain functional predictions related to the most impor-

tant metabolic pathways in the central machinery of life,

followed by direct experimental verifications. We have

found it impossible to adequately condense all of the

important details of these examples. Therefore we only

briefly introduce them here and provide a more expanded

discussion in the Supplementary Materials at URL: http://

www.integratedgenomics.com/online_material/osterman/

index.html.

Fatty acid biosynthesis in Streptococcus pneumoniae:

chromosomal clustering

Biosynthesis of fatty acids in bacteria (for a simplified

diagram see Figure 1a) is a rich source of anti-infective

drug targets [60,61]. Almost all of the essential compo-

nents of fatty acid synthase complex producing saturated

fatty acids (SFAs) can be projected by sequence similarity
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from E. coli to other bacteria (see Figure 1b). However,

orthologs of the fabI gene, encoding enoyl-ACP-reductase

(a proven target for such drugs as izoniaside and triclosan;

ACP ¼ acyl carrier protein), are not found in Streptococcus
pneumoniae and a group of related species, producing a

case of a locally missing gene. The key evidence for the

identification of a novel bacterial enoyl-ACP reductase

(gene fabK) was provided by gene clustering on the

chromosome (see Figure 1c). The prediction was verified

by enzymatic characterization of the corresponding

recombinant protein in vitro, and by genetic complemen-

tation of a fabI mutant of E. coli [62].

Figure 2

coaA coaB coaC coaD coaEEscherichia coli,
Bacillus subtilis

+ + + + +
Streptococcus pneumoniae,
Enterococcus faecalis

NC

? + +
Helicobacter pylori,
Pseudomonas aeruginosa

+ +
Staphylococcus aureus,
Bacillus anthracis

?
Methanococcus jannashii,
Pyrococcus horikoshii ?

Saccharomyces cerevisiae,
Arabidopsis thaliana + + +

+ +

NC

+ +

NC

+ +

NC

Homo sapiens,
Drosophila melanogaster + + +

N C

Mycoplasma genitalum,
Chlamidia trachomatis – – – – +

2.7.1.33

de novo
biosynthesis

6.3.2.5 4.1.1.36 2.7.7.3

Vitamin B5
transport

2.7.1.24

ATP

CoAVIII IX X XI XII

ADP ADPCys, CTP CMP, PPi ATP ATPAMP, PPiCO2

Phosphopanto-
thenate-cysteine

synthetase

Pantothenate
kinase

Phosphopanto-
thenoylcysteine
decarboxylase

PPAT DPCK

(a)

(b)

Current Opinion in Chemical Biology

Missing genes in CoA biosynthesis and protein fusion events. (a) Pathway diagram. Five-step universal CoA biosynthetic pathway and enzymes

involved therein (based on [66]). Pantothenate (VIII) produced de novo or salvaged from the medium is phosphorylated to produce

40-phosphopantothenate (IX), which undergoes condensation with Cys affording 40-phosphopantothenoylcysteine (X), and decarboxylation to

40-phosphopantetheine (XI). Adenylyltransferase reaction yields dephosphocoenzyme A (XII), which gets further phosphorylated to the final form of

CoA cofactor. (b) Domain arrangement. Orthologs of E. coli CoA biosynthetic enzymes in representative bacteria, archaea and eukarya are shown by

boxes marked ‘þ’. Missing genes (expected but unidentified) are indicated by uncolored boxes marked with ‘?’, whereas those absent due to

pathway truncations (as in Mycoplasma and Chlamydia spp.) are indicated by ‘�’. The eukaryotic form of pantothenate kinase belongs to a distinct

structural class (marked by distinct color). In S. aureus (as well as in B. anthracis) a distant homolog (darker color) of the eukaryotic pantothenate

kinase replaces a typical bacterial enzyme. Enzymes for the second and the third steps form a fusion protein in archaea and most bacteria (domain

arrangement is indicated by positions of N- and C-termini), except for Streptococci and Enterococci, where a pair of monofunctional genes form a
tight operon coaB–coaC. Eukaryotes also contain two monofunctional proteins, and one of them (corresponding to coaB) is significantly more

divergent (darker color). Eukaryotic PPAT shows no sequence similarity with its bacterial counterpart (coaD gene) beyond an NTP-binding motif (as

indicated by a light green stripe) and predicted common Rossman fold. In humans, this enzyme forms a fusion protein with a C-terminal domain

clearly homologous to bacterial dephosphoCoA-kinase. This fusion event provided the major clue for functional prediction. Archaeal PPAT (closely

related to the eukarytotic form) was independently identified by the research group at Virginia Polytech (R White, personal communication). The last

enzymatic step in CoA biosynthesis appears to be a missing gene in all archaea.
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Figure 3
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Isopentenyl-diphosphate delta-isomerase 5.3.3.2 (idi) (+) − − − + + + +
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Missing genes in isoprenoid biosynthesis and occurrence profiling. (a) Pathway diagram. Simplified representation of major enzymatic steps in the

two alternative pathways of isoprenoid biosynthesis. In the DOXP-pathway, formation of 1-deoxy-D-xylulose 5-phosphate (XIII) is followed by

NADPH-dependent reduction to 2C-methyl-D-erythritol 4-phosphate (XIV). The next intermediate, 4-diphosphocytidyl-2C-methyl-D-erythritol (XV), is

produced by cytidyl-transferase reaction followed by phosphorylation to 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate (XVI), and CMP

elimination/cyclization producing 2C-Methyl-D-erythritol 2,4-cyclodiphosphate (XVII). The final intermediate, 1-hydroxy-2-methyl-2(E)-butenyl

4-diphosphate (XVII) is converted to a mixture of the major isoprenoid building blocks IPP and DMAPP by the action of a single enzyme. In the

alternative mevalonate pathway, the first intermediate, acetoacetyl-CoA (XIX), is converted to hydroxymethylglutaryl-CoA (XX), and then to

mevalonate (XXI). The latter undergoes two consecutive phosphorylation steps to phosphomevalonate (XXII) and diphosphomevalonate (XXIII),
followed by decarboxylation to IPP, which is further isomerized to DMAPP. IPP isomerase (EC 5.3.3.2), the only common enzyme in these two

pathways, is optional for the DOXP pathway but indispensable for the mevalonate pathway. Merger of the two pathways in this diagram is not a pure

abstraction, as both occur in some bacteria such as Listeria monocytogenes and Mycobacterium marinum (as well as in different compartments of

plant cells). (b) Metabolic reconstruction and occurrence profiles. List of relevant enzymes and occurrence of corresponding genes within a set of

representative bacterial genomes from the ‘in-group’ (DOXP pathway-dependent) and ‘out-group’ (mevalonate pathway-dependent). Presence or

absence of putative orthologs is indicated by ‘þ’ and ‘�’. No orthologs of ispD are found in the completely sequenced genome of B. melitensis
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S. pneumoniae (and many other species) also lack orthologs

of fabA and fabB genes, which are involved with unsatu-

rated fatty acid biosynthesis (UFA I) in E. coli. The same

extended chromosomal cluster enabled the prediction

and verification of a novel pathway (UFA II) in S. pneu-
moniae [63�], including a novel trans-2,cis-3-decenoyl-

ACP isomerase (fabM gene, number 13 in Figure 1c)).

Multiple instances of putative regulatory site (acTTT-

GAtwaTCAAAgt), and a predicted transcription regulator

(HTH protein) are located within this cluster (Figure 1c),

strengthening the functional prediction and suggesting a

regulatory mechanism for UFA II. (This consensus, pre-

sent in upstream regions of relevant genes, was indepen-

dently derived from the analysis of six streptococcal and

enterococcal genomes (M. Gelfand, Integrated Geno-

mics, Moscow, Russia, unpublished data); however, the

functional relevance of this observation was unclear until

the identification of fabM, which led to elucidation of

UFAII pathway and regulons.)

The identity of another missing gene related to fatty acid

metabolism, encoding acyl coenzyme A dehydrogenase

(gene fadE), was recently established [64�]. A previously

uncharacterized E. coli gene, yafH, was implicated by the

analysis of shared regulatory sites [65] and microarray

expression data, and verified by direct genetic experi-

ments [64�].

Human coenzyme A biosynthesis: protein fusions

Biosynthesis of coenzyme A (CoA) from pantothenate

(vitamin B5) by a universal five-step pathway, is schema-

tically illustrated in Figure 2a (for a recent review see

[66]). Bacterial genes encoding all of the enzymes in this

pathway (coaA through coaE, see Figure 2b) were identi-

fied and characterized in E. coli. Until recently, only one

of the human enzymes in this pathway (pantothenate

kinase, structurally unrelated to the bacterial enzyme

[67]) was connected to a particular gene. Similarity-based

projection from bacterial genes allowed identification of

human genes encoding all of the remaining enzymes,

except phosphopantetheine adenylyltransferase (PPAT).

This enzyme represented a typical case of a locally

missing gene, and the key evidence for its elucidation

was provided by a protein fusion (Figure 2b). On the basis

of early biochemical data [68], a cDNA encoding a multi-

domain human protein with a C-terminal domain homo-

logous to bacterial dephospho-CoA kinase (DPCK) was

identified, and both predicted activities (DPCK and

PPAT) were verified by enzymatic characterization of

the purified recombinant protein [69�]. Two more

research groups simultaneously reported identification

and verification of the same human PPAT/DPCK gene

[70,71], illustrating the impact of comparative genomics

on modern gene discovery.

The current picture of the CoA biosynthetic pathway

reveals a pronounced conservation of its enzymatic com-

ponents across taxons (Figure 2b). At the same time,

significant variations are observed at the level of indivi-

dual enzymes, including non-orthologous gene displace-

ments, domain fusions and what are likely to be lateral

gene transfer events.

Nonmevalonate (deoxyxylulose phosphate) isoprenoid

biosynthesis: occurrence profiles

Major terpenoid building blocks, isopentenyl diphosphate

(IPP) and dimethylallyl diphosphate (DMAPP), are pro-

duced by two different biosynthetic routes: in some spe-

cies by the so-called mevalonate pathway, and in others by

the non-mevalonate or deoxyxylulose phosphate (DOXP)

pathway (Figure 3a). Historically, the mevalonate pathway

and its enzymes have been thoroughly studied in eukar-

yotes. Some bacteria also use the mevalonate pathway, and

all of the corresponding genes were identified on the basis

of homology with eukaryotic counterparts [72,73]. Recon-

struction of the mevalonate pathway in archaea, including

conjectures for some locally missing genes, was recently

described [74�]. The alternative DOXP pathway, charac-

teristic of most bacteria, was not recognized until very

recently (for a review see [75]), and some aspects of it

remained obscure until last year.

The DOXP pathway provides a striking example of

using occurrence profiles for missing gene analysis. In

the original study, two uncharacterized E. coli genes

(gcpE and lytB, now renamed to ispG and ispH) were

implicated by their co-occurrence with DOXP genes

known at that time (Figure 3b), and experimental evi-

dence was provided for one of them (lytB) [76]. Later

genetic experiments unambiguously confirmed gcpE and

lytB participation in the last steps of the DOXP pathway,

and experimental studies published within the past year

have clarified corresponding reactions and enzymatic

functions [77�,78,79�].

(Figure 3 Legend Continued) (as well as in Desulfitobacterium halfniense and Mezorizobium loti), suggesting another case of a locally missing gene

(marked by ‘?’). 1Co-occurrence scores for each protein were computed as the total number of genomes in the ‘in-group’ (maximum of 28) containing

a homolog of a given protein minus the number of genomes in the ‘out-group’ (maximum of 10) containing such a homolog (using a FastA P-score

cut-off 10�5), normalized by a highest possible score (of 28). 2Both enzymes participating at the first step of each pathway are not ‘committed’ to

isoprenoid production, and their occurrence profiles deviate significantly. 3Close homologs of 4-diphosphocytidyl-2C-methyl-D-erythritol kinase occur

in several genomes of ‘out-group’, such as S. aureus. 4Genes coding for the last two steps of DOXP pathway, ispG(gcpE) and ispH(lytB), were

originally implicated with this pathway on the basis of occurrence profiling [76]. 5Orthologs of IPP isomerase are present in both groups of genomes.

This activity is optional for the DOXP pathway but is absolutely required in the mevalonate pathway. 6Mevalonate kinase and phosphomevalonate

kinase in Streptococci (and in archaea) are closely related by sequence and are often located next to each other on the chromosome, causing

annotation errors in many archives.
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Missing genes in riboflavin biosynthesis and conserved regulatory sites. (a) Pathway diagram. Simplified diagram of riboflavin (vitamin B2)

biosynthesis and conversion to FMN and FAD cofactors [80]. One of the committed precursors L-3,4-dihydroxy-2-butanone 4-phosphate (XXIV) is

produced in one step from ribulose-5-phosphate. Converison of GTP to 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 50-phosphate (XXV),
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To evaluate the impact of the significant increase in the

number and diversity of sequenced genomes we have

reproduced this analysis using only bacterial genomes (as

illustrated in Figure 2b). In addition to the components of

the DOXP pathway, this analysis revealed a limited

number of genes with high occurrence scores. A signifi-

cant fraction of these genes is related to thiamin and NAD

biosynthesis, possibly revealing some common metabolic

design commitments.

Riboflavin biosynthesis: shared regulatory sites

Riboflavin (vitamin B2) is an ultimate precursor in the

biosynthesis of two redox cofactors: flavin mononucleo-

tide (FMN) and flavin adenine dinucleotide (FAD).

Many aspects of riboflavin/FMN/FAD biosynthesis (for

a simplified diagram see Figure 4a) are largely conserved

across all taxons (for a recent review see [80]). The most

significant variations occur in archaea, where some homo-

logous and non-homologous forms of previously known

enzymes have already been characterized [81�,82,83], but

several enzymatic steps are still associated with missing

genes (see Figure 4b).

For a long time, regulatory elements and mechanisms in

riboflavin biosynthesis remained completely obscure. A

novel regulatory mechanism mediated directly by FMN

[84] was proposed on the basis of early experimental work

in Bacillus subtilis, and comparative cross-genome analysis

of upstream regions adjacent to operons and individual

genes of riboflavin biosynthesis. Direct experimental

verification of this mechanism, which involves alternative

secondary structure formation by a conserved regulatory

element (termed RFN) was recently published [85,86]. A

search for additional occurrences of RFN-like sequences

enabled the prediction and experimental verification of a

missing riboflavin transporter (ypaA) in B. subtilis [87]. An

extended comparative analysis of riboflavin biosynthetic

genes in a broad range of bacterial genomes implicated

more proteins as alternative riboflavin transporters in

other species (see Figure 4c) [50��].

Miscellaneous examples: additional techniques

We have illustrated the application of the major techni-

ques of genome context analysis by the analysis of four

representative examples. In the Supplementary Materials

(URL: http://www.integratedgenomics.com/online_

material/osterman/index.html) we provide more details

related to these and additional examples, including var-

ious biosynthetic enzymes in archaea, which are espe-

cially rich with missing genes [88]. Interesting examples

of missing gene analysis are related to NAD biosynthesis

[89�], tRNA-modification [90], thymidine biosynthesis

[33�,91,92�] and propionyl-CoA metabolism [93]. The

latter example provides an illustration of using gene

clustering on prokaryotic chromosome as a key evidence

for elucidation of a missing methylmalonyl-CoA racemase

gene in humans. As the authors of this study, we also

believe that this approach will soon gain much more

popularity.

Conclusions: missing genes and central
machinery
It is possible to systematically search for missing genes

that encode metabolic enzymes, using a variety of emer-

ging techniques. The use of these techniques to guide

experimental efforts is improving the productivity of the

experimental analysis, and we believe that this trend will

accelerate. We have sketched, in the briefest terms, some

of the more useful techniques. The reader who takes the

time required to read the cited references and analyze

these early success stories will almost inevitably begin to

understand the enthusiasm that is growing. The under-

lying bioinformatic algorithms are believed to increase in

power as the square of the number of complete genomes

available. If this tendency turns out to be accurate, the

hundreds of genomes that will become available in the

next two years will dramatically enhance techniques that

are already impressive.

Among all of the contemporary techniques of genome

context analysis, gene clustering on the chromosome

(Figure 4 Legend Continued) followed by deamination to 5-amino-6-ribosylamino-2,4(1H,3H)-pyrimidinedione 50-phosphate (XXVI), reduction to

5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione 50-phosphate (XXVII) and dephosphorylation, yields another precursor 5-amino-6-ribitylamino-

2,4(1H,3H)-pyrimidinedione (XXVIII). Condensation of these two precursors yields 6,7-dimethyl-8-ribityl-lumazine (XXIX). Two molecules of XXIX
produce one molecule of riboflavin, while regenerating one molecule of XXVIII. Riboflavin is converted to flavin cofactors FMN and FAD by

consecutive phosphorylation and adenylyltransferase reactions. Universal enzymatic steps and those characteristic of bacteria are shown by solid

arrows. In methanogenic archaea, conversion of GTP to XXV was hypothesized to proceed in two steps (dotted arrows) via 2,5-diamino-6-

ribosylamino-4(3H)-pyrimidinone 5-triphosphate intermediate (XXX) [81�]. Deamination and reduction reactions were shown to occur in opposite

order in archaea and yeast (dashed arrows), via 2,5-diamino-6-ribitylamino-4(3H)-pyrimidinone 5-phosphate (XXXI) intermediate. (b) Metabolic

reconstruction. Enzymatic components of the pathway and corresponding genes are shown for the representative bacterial, archaeal and eukaryotic

genomes. Identical bacterial gene names (underlined) associated with distinct enzymatic steps reflect fusion of corresponding functional domains.

Absence of corresponding orthologs is marked by ‘�’; missing genes (such as globally missing pyrimidine phosphatase) are indicated by ‘?’.

(c) Chromosomal arrangement and RFN regulatory sites. The alignment of chromosomal regions ‘pinned’ around two non-homologous forms of
riboflavin synthase (7a, 7b) in selected bacteria and archaea. Orthologous genes conserved within displayed chromosomal neighborhoods are

outlined by matching colors and labeled by the same numbers as in (b). A conserved uncharacterized gene, a proposed candidate for a missing

archaeal pyrimidine deaminase is marked by pattern and ‘?’. Instances of the conserved regulatory element (RFN) with two predicted types of

regulation, at the level of transcription and translation, are marked by red and yellow stars, respectively. In many cases, RFN elements are adjacent

to bacterial rib-operons, and also to isolated genes in distal chromosomal loci, such as proven (8, ypaA) and inferred (impX, pnuX) flavin

transporters. 1Previously ribG; 2previously ribB; 3ribF in E. coli.
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provides the single most critical contribution to missing

gene discovery. Notwithstanding emerging evidence of

chromosomal gene clustering in simple eukaryotes, this

technique is almost exclusively applicable for the com-

parative analysis of prokaryotic genomes. The same is

largely true for the analysis of shared regulatory sites, and

to some extent for occurrence profiling, which is critically

dependent on the number and diversity of complete

genomes with well-defined genes.

At the same time, large-scale sequencing and comparative

analysis of multiple and diverse prokaryotic genomes

provide growing evidence that for an overwhelming

majority (>90% by our estimates) of eukaryotic metabolic

enzymes (or more generally, any protein components

involved in the central machinery of life) it is possible to

find functional counterparts (homologous or analogous) in

one or another subset of prokaryotes. We use the term

central machinery, a very useful and intuitively clear albeit

quite loosely defined concept, to represent a set of �4000

enzymatic and other functional roles involved in all major

biochemical and informational pathways. Any particular

organism contains a limited sub-set of this central

machinery: from �300 to 3000 distinct functions, depend-

ing on the genome complexity and organism life-style. Of

those functions, approximately 10% remain as globally
missing genes. Another trend revealed by comparative

genome analysis is a growing number of locally missing
genes. Indeed, as we study more and more diverse gen-

omes, it becomes clear that there must be far more cases

of non-orthologous gene displacements than most

researchers would have estimated. With the rapid avail-

ability of hundreds (and soon thousands) of genomes,

supplemented by functional data arriving from numerous

sources, we predict that the majority of these missing

genes will be characterized in the next 5–10 years, and

that this monumental effort will be accomplished largely

by groups of experimentalists that make effective use of

the guidance provided by genome comparative analysis.
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