
A Cluster Architecture for Embedded Perception

Binu Mathew, Al Davis, Mike Parker
School of Computing, University of Utah

Salt Late City, UT 84112
{mbinu | ald | map}@cs.utah.edu

ABSTRACT
Recognizing speech, gestures, and visual features are im-
portant interface capabilities for future embedded mobile
systems. Unfortunately the real-time performance require-
ments of complex perception applications can not be met
by current embedded processors and often even exceed the
performance of high performance microprocessors with an
energy budget that is infeasible in the embedded space.
The normal approach is to resort to a custom ASIC in or-
der to meet performance and energy constraints. However
ASICs incur expensive and lengthy design cycles. They
are so specialized that they are unable to support multi-
ple applications or even evolutionary improvements in a sin-
gle application. This paper introduces a VLIW perception
processor which uses a combination of clustered function
units, compiler controlled data-flow and compiler controlled
clock-gating in conjunction with hardware support for mod-
ulo scheduling, address generation units and a scratch-pad
memory system to achieve very high performance for per-
ceptual algorithms at low energy consumption. The archi-
tecture is evaluated using ten benchmark applications taken
from complex speech and visual feature recognition, security,
and signal processing domains. We use DSP and encryption
algorithms to demonstrate that the perception processor is
general enough to be applied to other streaming problems.
Since energy and delay are common design tradeoffs, the
energy-delay product of a CMOS implementation of this ar-
chitecture is compared against ASICs and a general purpose
processors. Using a combination of Spice simulations, real
processor power measurements and architecture simulation
we show that the cluster running at 1 GHz clock frequency
outperforms a 2.4 GHz Pentium 4 by a factor of 1.75. While
delivering this performance it simultaneously achieves 135
times better energy delay product than a low power Intel
XScale embedded processor.

1. INTRODUCTION
Embedded computing requirements have both escalated

and diversified as mobile computing, ubiquitous computing,
and traditional embedded applications continue to converge.
If the dream of ubiquitous computing is to become both
useful and real, the computing embedded in all aspects of
our environment must be accessible via natural human in-
terfaces. Future embedded environments need to at least
support sophisticated applications such as speech recogni-
tion, visual feature recognition, secure wireless networking,
and general media processing in mobile embedded platforms.
The problem is that these applications require significantly

more performance than current embedded processors can
deliver. Most embedded and low-power processors, such as
the Intel XScale, do not have the hardware floating point
units that would be necessary to support a full featured
speech recognizer. Even modern high performance micro-
processors are barely able to keep up with the real time re-
quirements of sophisticated perception applications. Given
Moore’s law performance scaling, the performance issue is
not by itself a critical problem. However two significant
problems remain. First, the energy expended in high per-
formance processors is intractable in the embedded space.
Furthermore, the power requirements of new processors is
increasing. The conclusion is that technology scaling alone
can not solve this problem. Second, perception and secu-
rity interfaces are by nature always operational. This limits
the processor’s availability for other compute tasks such as
understanding what was perceived.

The usual solution to reducing power consumption while
increasing performance is to use an ASIC. Given the com-
plexity and the always on nature of perception tasks, a more
relevant approach would be to use the ASIC as a coproces-
sor in conjunction with a low power host processor. The
initial focus of this work was to investigate ASIC architec-
tures that would meet these constraints. This path led to
the usual realization that ASICs are costly and inflexible.
The inherent level of specialization in an ASIC makes it ex-
tremely difficult for the implementation to support multiple
applications, new methods, or even evolutionary algorithmic
improvements. Given that embedded applications evolve
rapidly and that embedded systems are extremely cost sen-
sitive, these problems provide significant motivation to ex-
plore a more general purpose approach. The use of FPGA
devices is another common approach [12]. The inherent re-
configurability of FPGAs provides a level of specialization
while retaining significant generality. However the reconfig-
uration time is relatively long, and FPGAs suffer both in
performance and power when compared to either ASIC or
CPU logic functions.

Our research addresses the rapid automated generation
of low-power high performance VLIW processors for the
perception domain. The domain optimized processor is in-
tended to be used as a coprocessor for a general purpose
host processor. A high level view of the architecture is
shown in Figure 1. The host processor moves data into or
out of the coprocessor via double buffered input and out-
put SRAMs. Local storage for the cluster is provided by the
scratch SRAM and the microcode program that controls the
operation of the cluster is held in the u-Code SRAM. The

1

Processor
Core

Memory
Controller

DMA
Data

DRAM
 Bus

Resultsu-Code
SRAM

Input
SRAM

Output
SRAM

Execution
Cluster

Scratch
SRAM

Figure 1: Coprocessor Organization

execution cluster can be customized for a particular applica-
tion by the selection of function units. In fact the type and
number of function units, SRAMs, address generators, bit
widths and interconnect topology are specified using a con-
figuration file. The hardware design (Verilog HDL netlist)
and a customized simulator are automatically generated by
a cluster generator. Henceforth we will use the terms per-
ception processor and cluster interchangeably to refer to the
generic architecture behind any domain specific processor
created using the cluster generator tool.

The approach includes a specialized compiler which maps
applications onto the perception processor. Any algorithm
can be compiled into a micro-code representation, albeit
with varying levels of efficiency. The compiler uses hard-
ware support for modulo-scheduled loops [38] in conjunc-
tion with array address generators to deliver high through-
put for flow dependent loops. The microcode provides fine-
grained control over data steering, clock gating, function
unit utilization and it permits single cycle reconfiguration
of address generators. Energy efficiency is primarily the re-
sult of minimized communication and activity. The com-
piler uses fine-grain clock gating to ensure that each func-
tion unit is active only when required. Compiler controlled
data-flow permits software to explicitly address output and
input stage pipeline registers of function units and orches-
trate data transfer between them over software controlled
bypass paths. Data values are transported only if necessary
and the compiler takes care to ensure that value changes are
visible on heavily loaded wires and forwarding paths only if
a unit connected to that path needs the data value. By
explicitly enabling pipeline registers the compiler is able to
control the lifetime of function unit outputs and directly
route data to other function units avoiding unnecessary ac-
cess to a register file. The resulting data-flows or active
datapaths resemble custom computational pipelines found
in ASICS, but have the advantage of flexibility offered by
software control. One could think of this as a means of ex-
ploiting the natural register renaming that occurs when a
multi-stage pipeline shifts and each individual pipeline reg-
ister gets a new value. However the active data-path in the
cluster will utilize multiplexer circuits that provide general-
ity at the cost of power, area and performance. These muxes
and the associated penalties will not be present in a custom
ASIC design.

The resultant architecture is powerful enough to support

complex perception algorithms, such as speech recognition,
at energy consumption levels commensurate with mobile de-
vice requirements. The approach represents a middle ground
between general purpose embedded processors and ASICs.
It possesses a level of generality that cannot be achieved
by a highly specialized ASIC, while delivering performance
and energy efficiency that cannot be matched by general
purpose processor architectures. In support of this claim,
the approach is tested on ten benchmarks that were cho-
sen both for their importance in future embedded systems
as well as for their algorithmic variety. Seven represent key
components of perception systems and the other three were
chosen from encryption and DSP domains to test general-
ity of the approach outside of the perception domain. All
of the benchmarks operate in what can be called stream
mode. Stream mode applications take in a frame of data
and operate on it to produce local state information and
an output frame before moving on to the next input frame.
The size of the local state information is usually small as
is the output frame. This characteristic motivates the use
of input, output, and scratch-pad SRAMs. The stream rate
of perception applications has an intrinsic real time require-
ment since processing needs to keep up with continuously
arriving auditory or visual data. This stream based com-
putation model also applies to a wide range of important
applications such as media encode/decode, security encryp-
tion/decryption, compression and decompression schemes,
etc.

The perception processor is evaluated using Spice simula-
tions of a 0.13µ CMOS implementation operating at 1 GHz.
Its effectiveness is compared against the obvious competi-
tion: general purpose processors and ASICs. Comparison
against conventional processors is problematic because en-
ergy efficient embedded processors often do not have the per-
formance and the floating point support required for percep-
tion applications while mainstream processors are optimized
for performance rather than energy consumption. This pa-
per therefore compares the perception processor against both
a Pentium IV and an Intel XScale processor. For a subset
of the benchmarks we also compare against custom ASIC
implementations of the respective algorithms.

Since energy consumption and performance are funda-
mental design trade-offs the main comparison in this paper
is based on the metric known as energy delay product ad-
vocated by Gonzalez and Horowitz [16].

2. CLUSTER ARCHITECTURE
Figure 2 shows the internal organization of the percep-

tion processor. It consists of a set of clock gated function
units, a loop unit, 3 dual ported SRAMs, 6 address genera-
tors (one for each SRAM port), local bypass paths between
neighboring function units as well as a cluster wide inter-
connect. A register file is conspicuously absent for reasons
discussed shortly.

In general, cluster configurations are intended to have
up to 8 function units. This limit is imposed by a target op-
erational frequency of 300 MHz in a 0.25µ CMOS process.
This frequency matches that of our host processor which has
an instruction set similar to a MIPS R4600. At 300 MHz
this host processor performs similarly to the well-known In-
tel StrongArm. Increasing the number of functional units
will reduce the operation frequency primarily due to delays
associated with wider multiplexers. Though all of our de-

2

Function
Units

x 8

Input
SRAM

Scratch
SRAM

Output
SRAM

Loop
Unit

Interconnect

u-Code
Memory

PC

micro
code

Address
Generator

x 2

Address
Generator

x 2

Address
Generator

x 2

Figure 2: Cluster Architecture

Pipeline Reg

Pipeline Reg

CLOCK
Enable

FU
Output

Compiler
Controlled

Bypass
Mux

Compiler
Controlled

Clock
Gate

Mux 4x1

Left
neighbor

Right
neighbor

Interconnect
Reg

Left
neighbor

Mux 4x1

Right
neighbor

Interconnect
Reg

Figure 3: Function Unit Architecture

signs were originally done in a 2.5 volt 0.25µ CMOS process
they were subsequently shrunk to work at 1 GHz in a 0.13µ
process [9, 10]. This makes it possible to directly compare
the perception processor against the Pentium IV which is
fabricated using 0.13µ technology.

Though none of the clusters described here need a regis-
ter file it is possible to incorporate one into a function unit
slot. Clusters can be configured to maximize the perfor-
mance of any particular application or set of applications.
Typically there will be a minimum number of integer ALUs
as well as additional units that are more specialized. Hard-
ware descriptions for the cluster and the interconnect are
automatically generated by a cluster generator tool from a
configuration description.

2.1 Function Units
Function units follow the generic organization shown in

Figure 3. Their operands may be the output of their own
final stage or the output of their left or right neighbor. In
addition an operand may also arrive over the interconnect in
which case the transferred value is first latched in a register.
Several types of function units are used in this study.

Integer ALUs perform common operations like add,
subtract, xor etc. ALUs also have compare instructions
which not only return a value, but also set condition codes

local to the particular ALU. Conditional move operations
may be predicated on the condition codes set by previous
compare instructions to route one of the two ALU inputs to
the output. This makes if-conversion and conditional data
flows possible. All ALU operations have single cycle latency.

FPUs support floating point add, subtract, multiply,
compare and integer to floating point convert operations.
While the FPU is IEEE 754 compatible at its interfaces, for
multiply operations it internally uses a reduced precision
of 13 bits of mantissa since it has been demonstrated that
our target applications work well with this precision [31].
Reduced precision in the multiplier contributes significant
area and energy savings. All FPU operations have 7 cycle
latency.

Multiply units support 32-bit integer multiply opera-
tions with 3 cycle latency.

In order to illustrate the advantages of fine grain pipeline
control and modulo support and to demonstrate our gener-
ality claims, no application specific instructions have been
added to the function units with two exceptions: the reduced
precision of floating point multiplies and byte select/merge
instructions which select an individual byte from a word.
The latter is similar to the pack/unpack instruction in Intel’s
IA-64 architecture or the AL/AH register fields in the IA-
32 architecture. These instructions significantly ease dealing
with RGB images.

2.2 Interconnect
As CMOS technology scales, wire delays get worse. The

cluster interconnect reflects our belief that future architec-
tures will need to explicitly address communication at the
ISA level. The local bypass muxes in each function unit are
intended for fast, frequent communication with the immedi-
ate function unit neighbors. The interconnect supports com-
munication with non-neighbor function units and SRAMs.
Such communications have a latency of one cycle. In a multi-
cluster configuration, inter-cluster communication will incur
even larger delays. Values transferred via the interconnect
to the input registers of a function unit may be held indefi-
nitely which is useful for caching common constants.

In modulo scheduled loops, each resource may be used
only during one modulo period. Reusing a resource later
will render the loop body unschedulable. It is common to
find a lot of data reads early in the loop body and a few
stores toward the end that correspond to computed values
graduating. Conflicts in the interconnect often make mod-
ulo scheduling difficult. We found it useful to partition in-
terconnect muxes by direction so as to reduce scheduling
conflicts. Incoming muxes transfer data between function
units and from SRAM ports to function units while outgo-
ing muxes are dedicated to transferring function unit out-
puts to SRAM write ports. Another common occurrence is
that two operands need to be made available at a function
unit as part of a data-flow but interconnect conflicts make
such a transfer impossible. In such cases it might be pos-
sible to transfer one operand in an earlier cycle and freeze
its destination pipeline register using clock gate control till
both operands arrive and can be consumed. The conflict
can thus be resolved and a feasible schedule attained, but
latency and loop initiation interval increase somewhat as
congestion increases. We use the term resource borrowing
to describe this approach.

3

2.3 The Loop Unit
While the perception processor supports regular branch

instructions, it provides special acceleration for counted loops.
In fact, loops are a resource that can be allocated and man-
aged just like one would allocate memory on a traditional ar-
chitecture. A loop context is a data structure that abstracts
the properties of a loop. Important parameters include the
loop count, the increment amount, whether the loop is a
regular loop or a modulo loop, and the loop initiation inter-
val for modulo loops. The loop unit holds 4 loop contexts
at a time in addition to the micro-program counter.

When a loop context is allocated, its parameters are con-
figured into the loop unit in a single cycle. The real pur-
pose of loop allocation is two fold: a) to periodically admit
new loop bodies into the datapath b) to enable array vari-
able renaming, a powerful replacement for register renam-
ing/rotation. The loop unit maintains a counter for each
loop context and updates it periodically. It also modifies
the program counter and admits new loop bodies into the
pipeline in the case of modulo loops. In the latter case it also
does additional manipulation of the loop counter to drain
the pipeline correctly on loop termination. The application
may have any number of loops, but hardware managed loops
cannot be nested more than 4 deep. On entering a new loop
any previous loop is pushed on a stack, though its counter
value is still available for use by address generators. Loop
contexts may be loaded from memory. This permits modulo
scheduling a loop whose loop count is not known at compile
time and loading appropriate loop parameters from SRAM
depending on the size of input data.

2.4 Address Generators
Most perception algorithms have a high ratio of array

variable accesses to operators. Multiple SRAM ports are es-
sential for high throughput. Since each additional SRAM
port adds significant area and energy overhead, utilizing
them effectively is essential for performance. The 3 dual
ported SRAMs together have a read/write power consump-
tion approximately equal to the total function unit power
consumption. A previous version of the architecture which
used generic integer ALUs for address generation was found
to be unable to maximize SRAM port utilization [32]. To
improve the situation, dedicated address generators are at-
tached to each SRAM port. They handle commonly occur-
ring address sequences like vector and strided access as well
as 2D array accesses including row and column walks. They
can also handle address generation under regular, modulo
and unrolled loops and can handle special situations that
occur when multiple loop bodies are in flight simultaneously.
Each address generator has a designated partner ALU in the
cluster with several address generators possibly sharing the
same partner. In cases where the address generator does not
know how to compute the array index function, it is possible
to directly issue an address computed by its partner ALU.
The partner ALU can also compute address contexts on the
fly and reconfigure an address generator. The combination
of an address generator and its partner ALU can also effec-
tively deal with indirect access streams of the type A[B[i]].
Address generation adds 1 cycle latency to load/store oper-
ations.

An array access pattern is abstracted by a data struc-
ture known as an address context. Currently, each address
generator can hold 4 contexts. Since the current cluster has

6 address generators a total of 24 array variables may be
accelerated at one time and any number of variables may be
accessed in non-accelerated mode. Each address generator
deals with a variety of access patterns merely by computing
the quantity:
B = Mux(B loop, constant, alu output)
address = (((A loop − mp) << x)|(B << y)) + base.
Shift constants, base address, mux select, etc. are encoded
in the address context. Mp is an instruction tag inserted by
the compiler into the opcode. A loop and B loop can select
any of the loop counters maintained by the loop unit. The
loop unit has a counter which always contains zero, to be
used as a default in cases where only one dimensional access
is required.

Every load/store operation specifies a source/destination
pipeline register and an address context. The targeted ad-
dress generator will examine the address context, retrieve
any loop counters the array reference depends on, compute
the address and transfer the value to the correct pipeline
register over the interconnect. When multiple loop bodies
are in flight, the Mp tag inserted in the load/store opcode
may be cross checked with internal counters and initiation
interval information to automatically correct the address.
This last step performs the equivalent of register renaming
on array variables.

In a conventional VLIW processor, data is loaded from
memory to the register file and register rotation is used to
perform renaming. In a previous version of the architecture
we found that using a 32 entry register file limited the length
of vectors and thereby the ILP we could obtain. Also, regis-
ter rotation as in the case if the IA-64 provides only a single
rotating window into which all variables must be loaded.
Ideally multiple rotating windows are required. The prob-
lem is solved by rotating the array variable itself. For ex-
ample, the IA-64 may load two array references A[i][j] and
B[i][k] into a block of consecutive registers say r96 − r112
and rotate the register set so that when the next loop body
is admitted, r96−r112 points to new physical registers while
the previous loop body can continue execution with the old
binding. In contrast, with array variable renaming our
hardware changes the address corresponding to A[i][j] and
B[i][k]. In effect all of the local SRAM may be used as rotat-
ing registers with an independent rotating window for each
variable. Array variable rotation not only overcomes ILP
limits caused by the limited size of the register file, it obvi-
ates the need for a register file. Register files with a large
number of ports have been shown to be a major consumer
of energy [21]. We believe that array variable rotation is a
novel feature of this architecture.

2.5 Compiler Controlled Clock Gating
A distinguishing feature of the architecture is that a com-

piler can manage pipeline activity on a cycle by cycle basis.
Micro-instructions contain an opcode field for each function
unit in the cluster. The fetch logic enables the pipeline shift
and clock signals of a function unit only if the corresponding
field is not a NOP. It can also generate a NOP when the op-
code field is used for another purpose. The net result is that
a function unit pipeline makes progress only during cycles
when operations are issued to it and stalls by default. The
scheme provides fine grain software control over clock gat-
ing while not requiring additional bits in the instruction to
enable or disable a function unit. When the result of an N-

4

SRAM

Address
Gen A

Address
Gen B

Sum
Regs

Floating
Point
Mult

Floating
Point
Adder

Inner
Product

A[row][i]

B[i][col]

Figure 4: Inner Product Accelerator

cycle operation is required, but the function unit is not used
after that operation, dummy instructions are inserted by the
compiler into following instruction slots to flush out the re-
quired value. To avoid excessive power-line noise a compiler
may keep a function unit active even when it has nothing
to compute. The regular nature of modulo scheduled loops
make them good candidates for analytical modeling and re-
duction of power-line noise [50].

Fine grain compiler directed pipeline control has two
main purposes. Firstly, the compiler has explicit control
over the life times of values held in a pipeline unlike a tradi-
tional architecture where values enter and exit the pipeline
under hardware control and only quantities held in archi-
tected registers may be explicitly managed. Pipeline regis-
ters and the associated bypass paths may be managed as
if they were a small register file and data-flows found in
custom hardware can be easily mimicked. Secondly, it lets
the compiler control the amount of activity within a clus-
ter. Software control of dynamic energy consumption makes
energy vs ILP tradeoffs possible. The resulting activity pat-
tern is similar to the ideal condition where each function
unit has its own clock domain and runs with just the right
frequency.

3. PROGRAMMING EXAMPLE
This section illustrates the operation of the perception

processor using a simple kernel which is mapped into micro-
code. The algorithm to multiply two 16 × 16 floating point
matrices is shown in Figure 5. Assuming that the matrices
are stored in row major order, the inner product compu-
tation will access array A along the row while B will be
accessed along the column causing a base stride pattern.

Figure 4 outlines a simple custom hardware accelerator
for this algorithm. Address generator A fetches the rows of
matrix A. Address generator B generates the base stride
pattern for the columns of matrix B. Corresponding rows
and columns are fetched and applied to the floating point
multiplier. The output of the multiplier is accumulated in a
scratch register by the floating point adder. When an inner
product sum is ready it is written to a result SRAM which
is not shown in the figure.

In theory, this simple pipeline could compute one inner
product every 16 cycles. However, the final accumulation
of the inner product value creates a pipeline problem. The
floating point add takes 7 cycles and since the output is ac-
cumulated, a new multiply value can only be handled every
7 cycles. Hence inner products take 16×7 cycles. Interleav-
ing the computation of 7 or more inner products relieves this
bottleneck. The cost is: a) address generator B needs to be
able to generate multiple interleaved base-stride patterns b)
address generator A needs to hold each row element long
enough for all the interleaved inner products and, c) Several

def inner_product(A, B, row, col):

sum = 0.0

for i in range(0,16):

sum = sum + A[row][i] * B[i][col]

return sum

def matrix_multiply(A, B, C):

C is the result matrix

for i in range(0, 16):

for j in range(0, 16):

C[i][j] = inner_product(A, B, i, j)

Figure 5: Matrix Multiply Algorithm

scratch registers are required to hold the intermediate sums.
Compilers for high performance architectures attempt to

approximate the dataflow in the custom accelerator. In vec-
tor processors, vector chaining creates a similar data flow
and reduction operators help alleviate some of the perfor-
mance penalty caused by the floating point accumulate op-
eration. By selecting independent adds and multiplies which
are ready for issue from its instruction window an out of or-
der processor will work somewhat like a vector processor
that can be time sliced across several interleaved vectors. In
addition, a combination of software pipelining and branch
prediction ensures that the pipeline has as few wasted cy-
cles as possible. Address generation will be handled by
generic ALUs which send computed addresses to available
load/store ports. Some form of register renaming will be
required to enable software pipelining to work well in non-
trivial kernels.

i_loop = LoopContext(start_count=0, end_count=15,

increment=1, II=7)

A_ri = AddressContext(port=inq.a_port,

loop0=row_loop, rowsize=16,

loop1=i_loop, base=0)

B_ic = AddressContext(port=inq.b_port,

loop0=i_loop, rowsize=16,

loop1=Constant, base=256)

for i in LOOP(i_loop):

t0 = LOAD(fpu0.a_reg, A_ri)

for k in range(0,7): # Will be unrolled 7x

AT(t0 + k)

t1 = LOAD(fpu0.b_reg, B_ic, loop1_constant=k)

AT(t1)

t2 = fpu0.mult(fpu0.a_reg, fpu0.b_reg)

AT(t2)

t3 = TRANSFER(fpu1.b_reg, fpu0)

AT(t3)

fpu1.add(fpu1, fpu1.b_reg)

Figure 6: Assembly code for interleaved inner prod-

uct

Figure 6 shows cleaned up assembly code for the inter-
leaved inner product for the cluster architecture. For brevity
the outer loops which invoke the interleaved inner product
are not shown. This code is capable of sustaining the same
throughput (7 inner products every 16× 7 cycles) as the re-
fined custom hardware accelerator. Performance and energy

5

efficiency are achieved by a combination of techniques.
The inner product loop i loop is marked for hardware

modulo loop acceleration and its parameters are configured
into a free context in the loop unit. Two address contexts
A ri and B ci are allocated and the address generators at-
tached to the input SRAM ports are reconfigured. Both
contexts are tied to the loop i loop. B ci is set to generate
a column walk indexed by i loop, with the starting offset
specified in a constant field in the load opcode. A ri is
set to access the matrix row by row in conjunction with an
outer loop. The address contexts effectively implement ar-
ray variable renaming functions, a fact which is not evident
in the code.

On entering i loop the previous loop is pushed on a stack,
though its counter value is still available for use by the ad-
dress contexts, particularly A ri. The new loop updates its
counter every 7 cycles and admits new loop bodies into the
pipeline. This is not a branch in a traditional sense and
there is no branch penalty.

Communication is explicit and happens via load/store
instructions or via inter-function unit data transfers both
of which explicitly address pipeline registers. In the ex-
ample A[r][i] and B[i][c] are allocated to pipeline registers
fpu0.a reg and fpu0.b reg respectively. In fact, it is more
appropriate to say that B[i][c + k] where k refers to the
kth interleaved inner product resides in fpu0.b reg at time
t0 + k. No scratch registers are required for the sum. The
intermediate sums are merely circulated through the long
latency fpu adder. This notion of allocating variables both
in time and space is central to programming the perception
processor.

The return value of each opcode mnemonic is the relative
time at which its result is available. The AT pseudo op is
a compile time directive that controls the relative time step
in which following instructions are executed. Dataflow is ar-
ranged by referring to the producer of a value and the time
step it is produced in. Such a reference will be translated by
the compiler into commands for the forwarding logic. More
complex programs are written as several independent exe-
cution streams. The streams are then made to rendezvous
at a particular time by adjusting the starting time of each
stream. The example shows that compile time pseudo ops
can perform arithmetic on relative times to ensure correct
data flow without the programmer needing to be aware of
the latencies of the actual hardware implementation.

The loop body for i loop will consist of 7 inner loop bod-
ies created by loop unrolling. Each inner loop body before
unrolling takes 18 cycles to execute. Since i loop has been
specified to have an initiation interval of 7 cycles, a total
of 3 i loop bodies corresponding to 21 of the original loop
bodies will be in flight within the cluster at a time. It is the
modulo aware nature of the address generators that permits
each of these loop bodies to refer to array variables in a
generic manner like A[r][i] and get the reference that is ap-
propriate for the value of r and i which were current at the
time that loop body was started. Without special purpose
address generation such high levels of ILP will not be possi-
ble. A previous version of the architecture without modulo
address generators had limited ILP because generic function
units and registers were used for address generation [32].

For this example, interleaving 7 inner products at a time
results in 2 left over columns. They are handled by a sim-
ilar loop to the one shown in Figure 6 except that it will

have more idle slots. The adder needs to be active all the
time, but the multiplier needs to work only 2 out of every
7 cycles. Since the multiplier pipeline will not shift 5 out of
seven cycles, the dynamic energy consumption resembles an
ideal circuit where the adder runs at full frequency and the
multiplier runs at 2/7 of the frequency thereby consuming
less energy.

The overall effect is that the dataflow and throughput of
the perception processor matches the custom hardware but
in a more programmable manner.

4. EVALUATION
The benefit of this approach is tested on ten benchmarks

that were chosen both for their importance in future embed-
ded systems as well as for their algorithmic variety. In order
to compare our approach to the the competition, four dif-
ferent implementations of each benchmark are considered:

1. Software running on a 400 MHz Intel XScale (Stron-
gARM) processor. The XScale represents a highly en-
ergy efficient embedded processor.

2. Software running on a 2.4 GHz Intel Pentium 4 pro-
cessor. We note that the Pentium 4 is not optimized
for energy efficiency but more efficient processors can
not currently support real-time perception tasks such
as speech recognition.

3. A micro-code implementation running on the percep-
tion processor.

4. Half the benchmarks are compared a custom ASIC im-
plementation.

4.1 Benchmarks
The first two algorithms called GAU and HMM are dom-

inant components of several speech recognizers. The next
five algorithms named Rowley, Fleshtone, Erode, Dilate and
Viola are components of visual feature recognition systems.
The last three algorithms are FFT, FIR and Rijndael and
these represent the DSP and encryption domains. The DSP
algorithms were added to test the generality of our approach.
Rowley, GAU, FFT and Fleshtone are floating point inten-
sive. The remaining benchmarks are integer only compu-
tations. Some components of GAU, Rowley and Fleshtone
may be vectorized while the rest of the algorithms cannot.
HMM is intensive in data dependent branches which may
be if-converted. The others with the exception of Fleshtone
are loop oriented.

Several source level optimizations have been made to the
software versions that run on the Pentium and XScale to
boost their performance as much as possible [31]. The only
exception is that no SIMD optimizations were made in order
to keep the comparison fair. The perception processor could
use SIMD floating point units, just like SSE on the Pentium.
But widening datapaths contributes to a disproportionate
increase in energy consumption and also makes isolating the
impact of architectural options like compiler controlled data-
flow impossible.

GAU and HMM represent Gaussian probability den-
sity evaluation and hidden Markov model evaluation respec-
tively. GAU occupies 57.5% and HMM consumes 41.5% of
the execution time of Sphinx 3.2, a leading research speech
recognition system from CMU. Both Gaussian distributions

6

and Hidden Markov models are components of most mature
speech recognizers [26, 49, 43]. GAU computes how closely
a 10ms frame of speech matches a known Gaussian probabil-
ity distribution. One input packet corresponds to evaluat-
ing a single acoustic model state over 10 frames of a speech
signal. A real time recognizer needs to process 600,000 in-
vocations of the GAU algorithm every second. The HMM
algorithm performs a Viterbi search over a hidden Markov
model corresponding to one model state. One input packet
to the HMM implementation consists of 32 five-state Hid-
den Markov Models. While the GAU algorithm is entirely
floating point, the HMM algorithm is dominated by integer
compare and select operations. Its average rate of invocation
varies significantly with context.

Rowley represents a neural network based visual fea-
ture detector [40]. In the face recognizer a multi-layer neural
network is swept over 30x30 rectangular regions of an im-
age. Each individual neuron is evaluated by the function
tanh(Σn

i=1Weighti × Image[Connectioni]). Neurons have
multiple sizes for their fan-in (n) and each layer depends on
the preceding layer’s output. The software implementations
of the neuron evaluations have been hand unrolled and spe-
cial versions were created for each input size. Also tanh()
has been implemented via table lookup which boosted the
Pentium’s performance almost by a factor of 2.5. A 30x30
image as well as the outputs of all the neurons are main-
tained within the cluster. Depending on the sizes of the
neurons an input packet consisting of the weights and con-
nections of 7 to 64 neurons is streamed through the clus-
ter. All computations involve single precision floating point
numbers.

Fleshtone represents a skin toning algorithm typically
used as a preprocessing step to find skin colored regions of
an image so that a more sophisticated object detector like
the Rowley detector may be applied to it. The algorithm
we have implemented converts RGB pixels to another color
space and checks if the projected pixel falls in between two
parabolic curves [42]. This algorithm represents a case that
is difficult to vectorize since there are far more floating point
operators per pixel than the number of FPUs present in
the cluster. This necessitates multiple passes and saving of
intermediate results. It also contains multiple if statements
in the body. Each input packet consists of a single raster
line of a 320x200 24-bit color image. The output is a 320
entry bitmap with bits set where flesh color is found.

Erode and Dilate represent two operators from math-
ematical morphology that help in image segmentation. Erode
sweeps a 3x3 pixel filter over the bitmap produced by Flesh-
tone and cuts away weakly connected regions, i.e. it blacks
out pixels if all pixels within the filter are not set. Dilate
does the opposite, it sweeps a 5x5 pixel filter over a bitmap
and fills in pixels if any of the pixels are set. Fleshtone,
Erode and Dilate are used for image segmentation in a vi-
sual feature recognition system [30]. Erode works on 3 raster
lines and dilate on 5 raster lines of a 320x200 image.

Viola is a reimplementation of the Viola and Jones’
method of object detection based on a well known machine
learning algorithm known as AdaBoost [46]. The algorithm
relies on computing features or wavelets which are the weighted
sum or difference of rectangular regions within a 30x30 win-
dow into an image. We maintain the coordinate and weight
information for 100 features within the cluster and each in-
put packet contains a 30x30 pixel image. The output con-

tains the evaluation of all 100 features over the 30x30 image.
FFT implements a 128 point complex to complex Fourier

transform on floating point data. The Fourier coefficients
are maintained within the cluster. Input and output pack-
ets are 128 complex numbers where each complex number
consists of 2 single precision floating point numbers. FFT
represents a common algorithm for which many DSP pro-
cessors implement ISA extensions. FFT also represents a
case that causes bad interconnect conflicts on our architec-
ture. Good performance depends on the resource borrowing
technique described in Section 2.2. The software version on
the Pentium is based on FFTW, a highly tuned FFT im-
plementation which used dynamic programming techniques
to adapt itself to the processor architecture [15]. Our clus-
ter implementation on the other hand uses a simple radix
2 algorithm and no ISA extensions. Since FFTW cannot
be used on the XScale, we use the simple radix 2 algorithm
instead.

FIR is a 32 tap finite impulse response filter, a common
primitive in DSP applications. Impulse response coefficients
are maintained inside the cluster. Input packets of various
sizes may be applied to the filter which successively evaluates
each input and outputs one integer corresponding to every
input word.

Rijndael is the AES encryption standard. Our imple-
mentation uses 128 bit keys and works on 16 byte blocks [11].
To simulate network level encryption of IP packets, the in-
put packet is 576 bytes, the rfc894 recommended MTU for
Ethernet. The key as well as the encryption S-boxes are
maintained within the cluster.

4.2 Metrics
The tradeoff between energy consumption and perfor-

mance is a common modern design choice. Increasing per-
formance almost always involves increasing the energy re-
quirements. As a result, it is misleading to compare solely
on the basis of either energy or performance. This dilemma
is even more meaningful for the real-time embedded percep-
tion applications that are the driving force for this work.
The ability to process faster than real-time simply means
that power is being wasted. Therefore a common tactic in
such cases is to either reduce clock frequency, supply voltage,
or both. The fine grain scheduling capability of the percep-
tion processor also allows scheduling of work rate which is
a more intuitive mechanism and achieves results similar to
clock frequency scaling.

An attractive and intuitive metric is to compare designs
based on the energy expended to perform work at some
rate [8]. Gonzalez and Horowitz showed that a more rel-
evant comparison of architectural merit should be based on
the rate of work per energy or an energy delay product [16].
Both architecture and semiconductor process influence the
energy delay product. Since the feature size of the process,
λ, has such a large impact it is necessary to normalize any
design comparison to the same process. Under ideal scaling
conditions, Meng [18] argues that the energy delay product
will scale as λ4. Since the threshold voltage rarely scales
ideally, a more reasonable energy delay scaling model lies
between λ2 and λ3 [16].

For the comparisons reported here, we have chosen a λ3

basis, where performance and energy are each scaled by λ2

and λ respectively. The perception processor and the Pen-
tium 4 are both implemented in 0.13µ CMOS technology

7

and their results need not be normalized. The XScale and
the custom ASICs are implemented using 0.18µ and 0.25µ
technologies respectively, and their results are normalized
using this method to a 0.13µ technology. It could be argued
that as λ drops below 100 nanometers the rapid rise in leak-
age power is not adequately addressed. These leaky new pro-
cesses are not well suited to the stringent energy constraints
of embedded devices and the choice of a λ3 is appropriate
given the embedded perception focus of this work.

4.3 Experimental Method
This evaluation is based on generating hardware for two

different perception processor configurations which we will
henceforth refer to as the integer and floating point clusters.
The integer cluster consists of 4 ALUs, 2 multiply units,
and the remaining two slots are unused. The floating point
cluster contains 4 ALUs and 4 FPUs. All of the integer
benchmarks except FIR and VIOLA would run equally well
on the floating point cluster. FIR and VIOLA both require
integer multiply operations. The hardware for each cluster
configuration (the entire organization shown in Figure 2)
is generated. The input and scratch SRAMs are sized at
8KB and the output SRAM is 2KB. The design is simulated
at the transistor level using Spice while running the micro-
code for the benchmarks. The Spice simulation provides
a supply current waveform with one sample per 100 pico
seconds. We use this information along with the supply
voltage to compute instantaneous power consumption and
then do numerical integration of power over time to compute
energy consumption.

The dual-ported SRAMs are macro-cells generated by
the CAD suite and simulating the entire SRAM array using
Spice is not feasible. For the SRAMs we therefore log each
read, write and idle cycle and compute the energy consump-
tion based on the read, write and idle current reported by
the SRAM generator. Each benchmark is run for several
thousand cycles until the energy estimate converges. The
host processor is not simulated.

The function units are described in Verilog and Synop-
sys MCL hardware description languages. The overall clus-
ter organization and interconnection between function units
is automatically generated by the compiler. The whole de-
sign is then synthesized to the gate level and a clock tree is
generated. The net list is then annotated with worst case
RC wire loads assuming all routing happened on the lowest
metal layer. The energy measurements are therefore pes-
simistic and represent a worst case bound for each design.
Exact measurements are extremely sensitive to wire routing
decisions and as a result we calculate our wire capacitance
based on the worst-case wiring layer. The micro-code corre-
sponding to the benchmark is loaded into program memory
and the Spice model is simulated in NanoSim, a commer-
cial VLSI tool with Spice-like accuracy. The circuits were
originally designed for a 0.25µ CMOS process and simulated
using transistor models and CMOS process parameters mea-
sured for a test chip built in the same technology. Subse-
quently, we shrunk the same circuit to a 0.13µ technology
[9, 10] and found that the λ3 scaling model for energy-delay
product was an excellent match to map simulation results
from the 0.25µ to the 0.13µ technology. As a result, we
provide only the 0.13µ results here.

The software version of each benchmark is compiled with
the GNU GCC compiler and run on a 2.4 GHz Intel Pen-

tium 4 processor. This system has been modified at the
board level to permit measuring average current consumed
by the processor module using a digital oscilloscope and non-
intrusive current probe. We ensure that the input data al-
ways hits in the L1 Cache so that the L2 Cache and memory
system effects are isolated as much as possible and the mea-
surement thus represents core power. For the XScale sys-
tem a similar approach is used except that we use software
control to turn off unnecessary activity and measure the dif-
ference between the quiescent state and the computation.
This method could slightly inflate the processor power, but
measuring the core power alone is not technically feasible
on this system due to packaging constraints. The choice of
both systems were based on the technical feasibility of PCB
modifications to permit measuring energy consumption.

Embedded processors like the StrongARM do not have
floating point instructions that are required for some of the
benchmarks. Software emulated floating point will bloat the
energy delay product of the StrongARM and make a mean-
ingful comparison impossible. We therefore compare against
an ideal StrongARM which has FPUs which have the same
latency and energy consumption as an integer ALU. This is
done by replacing each floating point operator in the code
with a corresponding integer operator. The computed re-
sults are meaningless, but the performance and energy con-
sumption represent a lower bound for any real implemen-
tation with FPUs. This puts the cluster results in a more
pessimistic position than in reality.

5. RESULTS
The design goal of the perception processor was to achieve

high performance for perceptual algorithms at low power.
For stream computations, a very important consideration is
if a system has sufficient throughput to be able to process the
data rate in real-time. Since dynamic energy consumption
is directly proportional to operating frequency, one method
for achieving this goal is to exploit high levels of instruction
level parallelism for stylized applications without a paying
a high price in terms of hardware complexity. This in turn
permits adjusting the frequency and operating voltage to be
just enough to meet real time requirements. More specifi-
cally, since dynamic power consumption is proportional to
CV 2f , if high throughput can be achieved without a corre-
sponding increase in C, then V and f may be scaled down
to achieve significant energy savings.

Figure 7 shows the IPC of the perception processor com-
pared against the IPC measured using native performance
counters on an SGI R14K processor. The benchmarks were
compiled for the R14K using the highly optimizing SGI
MIPSpro compiler suite. The perception processor achieved
a mean improvement in IPC of 3.3 times (geometric mean)
over the sophisticated super-scalar out of order processor.
A large fraction of this improvement may be directly at-
tributed to the memory system which can transfer data at
a high rate into and out of the function units. This leads
to high function unit utilization and high IPC. The results
clearly demonstrate that the design goal of high throughput
through ILP has been achieved.

This claim is further bolstered by Figure 8 which shows
the throughput of the perception processor, the Pentium 4
and the XScale processors. Throughput is defined as the
number of input packets processed per second and the re-
sults shown in Figure 8 are normalized to the throughput

8

FFT

Flto
neGau

Row
ley

Dila
te

Ero
de

HM
M

Viol
a

FIR Rijn
0

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0

IP
C

1.
7

1.
6 2.

3

2.
4

2.
4

2.
5

1.
6 2.

4

2.
2

2.
3

6.
4

5.
3

9.
3

8.
0 8.
4

8.
4

5.
3

8.
9

5.
6

5.
6

R14K Cluster

Figure 7: IPC

FFT

Flto
ne Gau

Row
ley

Dila
te

Ero
de

HM
M

Viol
a

FIR Rijn
0

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

T
hr

ou
gh

pu
t

0.
1

1.
1

0.
2

0.
2

0.
2

0.
2

0.
2

0.
2

0.
2

0.
20.

6

6.
4

2.
6

1.
6 2.

0

1.
8

1.
4

1.
3 1.
6

1.
6

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

2.
9

1.
7

0.
0

2.
1

32
.4

XScale Cluster Pentium 4 ASIC

Figure 8: Throughput normalized to Pentium 4

throughput

of the Pentium 4. The perception processor operating at
1GHz outperforms the 2.4 GHz Pentium 4 by a factor of
1.75 (Geometric Mean). The perception processor’s mean
throughput is 41.6% of that of the ASIC implementations
(Gau, Rowley, FIR, Rijn). Bear in mind that this is severely
skewed by the fact that the ASIC implementations, particu-
larly Rijn expends vastly more hardware resources than the
perception processor. For the set Gau, Rowley and FIR, the
perception processor in fact achieves on average 85.5% of
the throughput of the ASIC implementation. These results
clearly demonstrate the benefit of our architectural solution
to the problems posed by perceptual algorithms.

Improving both energy and performance simultaneously
is often quite difficult. Figure 9 shows that while delivering
high throughput, the perception processor consumed 15.9
times (Geometric Mean) less energy than the XScale em-
bedded processor. In terms of energy delay product, Figure
10 shows that the perception processor outperforms the XS-
cale processor by a factor of 135 (Geometric Mean) and the
Pentium 4 by more than 3 orders of magnitude. Note that
these two graphs use a log scale. When compared to the
ASIC implementations the perception processor is worse by
a factor of 7.4. Its energy delay product is just a factor of
two larger than the ASIC considering the Gau, Rowley and
FIR implementations alone. This again shows that the per-
ception processor is able to retain a large amount of gener-
ality while paying a relatively small penalty in energy delay

FFT

Flto
ne Gau

Row
ley

Dila
te

Ero
de

HM
M

Viol
a

FIR Rijn
1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

E
ne

rg
y

(m
J/

In
pu

t)

2.
6e

-0
2

2.
2e

-0
2

4.
8e

-0
2

6.
6e

-0
3

2.
3e

-0
2

1.
5e

-0
2

4.
9e

-0
3

4.
9e

-0
3

3.
6e

-0
2

6.
4e

-0
2

2.
5e

-0
3

2.
6e

-0
3

2.
4e

-0
3

5.
3e

-0
4

1.
1e

-0
3

6.
8e

-0
4

2.
8e

-0
4

4.
2e

-0
4

1.
3e

-0
3

3.
5e

-0
31.

1e
-0

1

1.
1e

+
00

4.
1e

-0
1

5.
7e

-0
2

2.
2e

-0
1

1.
3e

-0
1

3.
9e

-0
2

5.
3e

-0
2

2.
8e

-0
1

6.
3e

-0
1

3.
0e

-0
3

6.
1e

-0
4

1.
8e

-0
4

1.
9e

-0
4

XScale Cluster Pentium 4 ASIC

Figure 9: Process Normalized Energy Consumption

FFT

Flto
ne Gau

Row
ley

Dila
te

Ero
de

HM
M

Viol
a

FIR Rijn
1e-05
1e-04
1e-03
1e-02
1e-01
1e+00
1e+01
1e+02
1e+03
1e+04
1e+05

E
ne

rg
y

D
el

ay
 P

ro
du

ct
 (

J*
1e

-9
 s

)

7.
4e

-0
1

5.
5e

-0
1

2.
5e

+
00

4.
7e

-0
2

5.
8e

-0
1

2.
4e

-0
1

2.
6e

-0
2

2.
6e

-0
2

1.
4e

+
00

4.
4e

+
00

9.
8e

-0
3

1.
1e

-0
2

8.
5e

-0
3

4.
3e

-0
4

2.
9e

-0
3

1.
1e

-0
3

1.
6e

-0
4

3.
9e

-0
4

5.
4e

-0
3

3.
1e

-0
2

2.
7e

-0
1 3.
0e

+
01

3.
7e

+
00

7.
2e

-0
2

1.
2e

+
00

3.
7e

-0
1

3.
3e

-0
2

6.
3e

-0
2

1.
8e

+
00

8.
8e

+
00

9.
6e

-0
3

4.
5e

-0
4

5.
6e

-0
4

8.
2e

-0
5

XScale Cluster Pentium 4 ASIC

Figure 10: Process Normalized Energy Delay Prod-

uct

product.
All together these radical improvements suggest that in

cases where high performance, low design time and low en-
ergy consumption need to be addressed simultaneously, the
perception processor could be an attractive alternative.

Figure 11 shows the synergistic effect of applying clock
gating to a cluster that supports compiler controlled datap-
aths. Compiler controlled datapaths provide energy reduc-
tion by providing decreasing datapath activity, and avoiding
register files accesses. To implement it, the load enable sig-
nal of each pipeline register should be controlled by software.
Once the design is adapted for explicit pipeline register en-
abling, it is a trivial extension to to clock gate pipeline reg-

FFT

Flto
ne Gau

Row
ley

Dila
te

Ero
de

HM
M

Viol
a

FIR Rijn
0

0.25

0.5

0.75

1.0

1.25

1.5

1.75

2.0

P
ow

er
 W

at
ts

0.
64

0.
59 0.

66

0.
65

0.
40

0.
41 0.

48

0.
46

0.
33 0.
39

1.
41

1.
39 1.

47

1.
47

0.
89

0.
88 1.

00

1.
00

0.
79 0.

91

Clock gated
Not clock gated

Figure 11: Impact of Clock Gating

9

isters using the same signal. It is seen in the graph that on
average this saves 55.1% power when compared to the im-
plementation without clock gating. These results are aliased
by two factors a) SRAM power adds a large constant factor
to both the cases and, b) our CAD tools are unable to clock
gate multi-cycle datapaths like the FPUs. Further reduction
is possible by clock gating multi-cycle datapaths.

6. RELATED WORK
Scheduling techniques for power-efficient embedded pro-

cessors have achieved reasonably low power operation but
they have not achieved the energy delay efficiency of the
work described here [20]. Reconfigurability using FPGA
devices and hybrid approaches have been explored [7, 12].
These approaches offer generality but not at a performance
level that can support perception applications. Of particular
relevance are compiler directed approaches which are similar
to that described here. The primary difference is that this
approach targets custom silicon rather than FPGA devices
[33]. Customizing function units in a VLIW architecture
has been studied and the Tensilica Xtensa is a commercial
instance of this approach [17].

Memory power is a concern in embedded systems [35].
Given the high level of utilization, register file power is a
particular concern [25] and numerous methods to improve
on baseline register file have been investigated [21, 3, 45].
The method described here saves register file power quite
simply by not needing one. The use of memory hierarchies
to save power has been explored by Panda [36] and the use
of scratch-pad memories has been shown to be effective [4].
This work employs similar strategies.

Clock power is often the largest energy culprit in a mod-
ern microprocessor [19]. Krashinsky describes the benefits of
clock gating [24]. There are two disadvantages of clock gat-
ing: the enable signal must arrive sufficiently ahead of the
clock signal, and the use of additional gates in the signal
path will increase clock skew. Both effects reduce the max-
imum achievable clock frequency. For low-power designs,
this is seldom a serious issue.

Increasing performance via VLIW techniques is a com-
mon theme in modern embedded systems [5, 2] including
mapping and instruction scheduling techniques [29, 48]. Ef-
forts have demonstrated the benefit of VLIW architectures
for either customization or power management [41]. Op-
timization techniques for VLIW architectures using clus-
ters can also be found in [23]. However, these efforts do
not address low-level communication issues. CALiBeR re-
duces memory pressure in VLIW systems but cannot di-
rectly schedule activities to reduce register file communi-
cation at the cluster level [1]. Tiwari et al have explored
scheduling algorithms for less flexible architectures which
split an application between a general purpose processor and
an ASIC [44]. Lee shows instruction scheduling benefits for
DSP processors [28]. Eckstein and Krall focus on minimizing
the cost of local variable access to reduce power consump-
tion in DSP processors [13]. Application specific clusters
are investigated in [27, 14]. These complementary scheduler
approaches minimize inter- rather than intra-cluster com-
munication and therefore are not able to optimize register
utilization as described in this work. In some sense, the
fine grain horizontal microcode approach taken here can be
viewed as a fine-grained extension of the VLIW concept.
However the addition of more sophisticated address gener-

ators, multiple address contexts per address generator, the
removal of the register file, and the fine-grained steering of
data are aspects of this work that are not evident in these
other efforts.

The other parallelism approach that is becoming increas-
ingly popular is short vector or SIMD data parallelism [34,
6]. These techniques have been shown to improve perfor-
mance by up to an order of magnitude on DSP style algo-
rithms and even on some small speech processing codes [22].
The cluster approach is capable of capitalizing on this form
of data parallelism as well. From an energy delay perspec-
tive however, SIMD operation does not have an advantage
and we have therefore not pursued this option.

The RAW machine has demonstrated the advantages of
low level scheduling of data movement and processing in
function units spread over a 2 dimensional space [47]. Imag-
ine [39] has demonstrated the significant performance gain
that can be attained when appropriate storage resources sur-
round execution units. Given the poor wire scaling proper-
ties, it is somewhat inevitable that function unit clusters will
need to be considered [37] in order to manage communica-
tion delays in high performance wide-issue super-scalar pro-
cessors. These approaches however are all focused on provid-
ing increased performance. The approach here is somewhat
similar but is tuned to optimize energy while providing just
enough performance to meet the real time guarantees of so-
phisticated perception applications.

7. CONCLUSIONS
The perception processor uses a combination of VLIW

execution clusters, compiler directed data-flow and clock
gating, hardware support for modulo scheduling and spe-
cial purpose address generators to achieve high performance
at low power for perception algorithms. It outperforms the
throughput of a Pentium IV by 1.75 times with an energy de-
lay product that is 135 times better than an XScale embed-
ded processor. This approach has a number of advantages:
a) its energy-delay efficiency is close to what can be achieved
by a custom ASIC; b) the design cycle is extremely short
when compared to an ASIC; c) it retains a large amount
of generality compared to an ASIC; d) it is well suited for
rapid automated generation of domain specific processors.
We have shown that fine-grained management of communi-
cation and storage resources can improve performance and
reduce energy consumption whereas simultaneously improv-
ing on both these axes using a traditional microprocessor
approach has been problematic. Of similar importance is
that sophisticated real-time perception applications can be
adequately supported on this architecture within an energy
budget that is commensurate with the embedded space.

8. REFERENCES
[1] Akturan, C., and Jacome, M. F. FDRA: A

software-pipelining algorithm for embedded VLIW
processors. In ISSS (2000), pp. 34–40.

[2] Akturan, C., and Jacome, M. F. Caliber: A
software pipelining algorithm for clustered embedded
VLIW processors. In ICCAD (2001), pp. 112–118.

[3] Alvandpour, A., Krishnamurthy, R.,

Soumyanath, K., and Borkar, S. A low-leakage
dynamic multi-ported register file in 0.13mm cmos. In
Proceedings of the 2001 international symposium on

10

Low power electronics and design (2001), ACM Press,
pp. 68–71.

[4] Banakar, R., Steinke, S., Lee, B.,

Balakrishnan, M., and Marwedel, P. Scratchpad
memory : A design alternative for cache on-chip
memory in embedded systems, 2002.

[5] Bona, A., Sami, M., Sciuto, D., Silvano, C.,

Zaccaria, V., and Zafalon, R. Energy estimation
and optimization of embedded vliw processors based
onq instruction clustering.

[6] Brash, D. The ARM Archtecture Version 6
(ARMv6). ARM Holdings plc Whitepaper, January
2002.

[7] Callahan, T., and Wawrzynek, J. Adapting
software pipelining for reconfigurable computing. In
Proceedings of the International Conference on
Compilers, Architecture, and Synthesis for Embedded
Systems (CASES) (San Jose, CA, 2000), ACM.

[8] Campbell, M. Evaluating asic, dsp, and risc
architectures for embedded applications. In
Proceedings of the ACM SIGPLAN Workshop on
Languages, Compilers, and Tools for Embedded
Systems (1998), Springer-Verlag, pp. 261–265.

[9] Cao, Y., Sato, T., Sylvester, D., Orshansky,

M., and Hu, C. New paradigm of predictive mosfet
and interconnect modeling for early circuit design. In
Proceedings of the IEEE Custom Integrated Circuits
Conference (CICC) (June 2000), pp. 201–204.

[10] Cao, Y., Sato, T., Sylvester, D., Orshansky,

M., and Hu, C. Predictive technology model.
http://www-device.eecs.berkeley.edu/p̃tm, 2002.

[11] Daemen, J., and Rijmen, V. The block cipher
rijndael. Smart Card Research and Applications,
LNCS 1820 (2000), 288–296.

[12] DeHon, A. DPGA-coupled microprocessors:
Commodity ICs for the early 21st century. In IEEE
Workshop on FPGAs for Custom Computing
Machines (Los Alamitos, CA, 1994), D. A. Buell and
K. L. Pocek, Eds., IEEE Computer Society Press,
pp. 31–39.

[13] Eckstein, E., and Krall, A. Minimizing cost of
local variables access for DSP-processors. In
LCTES’99 Workshop on Languages, Compilers and
Tools for Embedded Systems (Atlanta, 1999), Y. A.
Liu and R. Wilhelm, Eds., vol. 34(7), pp. 20–27.

[14] Faraboschi, P., Brown, G., Fisher, J. A.,

Desoli, G., and Homewood, F. Lx: a technology
platform for customizable VLIW embedded
processing. In The 27th Annual International
Symposium on Computer architecture 2000 (New
York, NY, USA, 2000), ACM Press, pp. 203–213.

[15] Frigo, M., and Johnson, S. G. FFTW: An adaptive
software architecture for the FFT. In Proc. IEEE Intl.
Conf. on Acoustics, Speech, and Signal Processing
(Seattle, WA, May 1998), vol. 3, pp. 1381–1384.

[16] Gonzalez, R., and Horowitz, M. Energy
dissipation in general purpose microprocessors. IEEE
Journal of Solid-State Circuits 31, 9 (September
1996), 1277–1284.

[17] Gonzalez, R. E. Xtensa: a configurable and
extensible processor. IEEE Micro 20, 2 (March 2000),
60–70.

[18] Gordon, B. M., and Meng, T. H.-Y. A low power
subband video decoder architecture. In International
Conference on Acoustics, Speech, and Signal
Processing (1994), pp. 409–412.

[19] Gowan, M. K., Biro, L. L., and Jackson, D. B.

Power considerations in the design of the alpha 21264
microprocessor. In Design Automation Conference
(1998), pp. 726–731.

[20] Hoogerbrugge, J., and Augusteijn, L. Instruction
scheduling for TriMedia. Journal of Instruction-Level
Parallelism, 1(1) (Feb. 1999).

[21] Jain, M. K., Wehmeyer, L., Steinke, S.,

Marwedel, P., and Balakrishnan, M. Evaluating
register file size in asip design. In Proceedings of the
ninth international symposium on Hardware/software
codesign (2001), ACM Press, pp. 109–114.

[22] Joshi, S. M. Some fast speech processing algorithms
using altivec technology.

[23] Karl, W. Some design aspects for VLIW
architectures exploiting fine - grained parallelism. In
Parallel Architectures and Languages Europe (1993),
pp. 582–599.

[24] Krashinsky, R. Microprocessor energy
characterization and optimization through fast,
accurate, and flexible simulation. Master’s thesis,
Massachusetts Institute of Technology, May 2001.

[25] Kwon, J.-H., Lim, J., and Chae, S.-I. A three-port
nrerl register file for ultra-low-energy applications. In
Proceedings of the 2000 international symposium on
Low power electronics and design (2000), ACM Press,
pp. 161–166.

[26] Lai, C., Lu, S.-L., and Zhao, Q. Performance
analysis of speech recognition software. In Proceedings
of the Fifth Workshop on Computer Architecture
Evaluation using Commercial Workloads (Feb. 2002).

[27] Lapinskii, V., Jacome, M., and de Veciana, G.

Application-specific clustered vliw datapaths: Early
exploration 32 on a parameterized design space, 2002.

[28] Lee, C., Lee, J. K., Hwang, T., and Tsai, S.-C.

Compiler optimization on instruction scheduling for
low power. In ISSS (2000), pp. 55–61.

[29] Leupers, R. Instruction scheduling for clustered
VLIW DSPs. In IEEE PACT (2000), pp. 291–300.

[30] Mathew, B., Davis, A., and Evans, R. A
Characterization of Visual Feature Recognition. In
Proceedings of the IEEE 6th Annual Workshop on
Workload Characterization (WWC-6) (October 2003).

[31] Mathew, B., Davis, A., and Fang, Z. A Low-Power
Accelerator for the SPHINX 3 Speech Recognition
System. In Proceedings of the International
Conference on Compilers, Architecture and Synthesis
for Embedded Systems (CASES ’03) (October 2003).

[32] Mathew, B., Davis, A., and Ibrahim, A.

Perception Coprocessors for Embedded Systems. In
Proceedings of the Workshop on Embedded Systems for
Real-Time Multimedia (ESTIMedia) (October 2003).

[33] Memik, S. O., Bozorgzadeh, E., Kastner, R.,

and Sarrafzade, M. A super-scheduler for
embedded reconfigurable systems. In ICCAD (2001),
pp. 391–.

11

[34] Nguyen, H., and John, L. K. Exploiting SIMD
parallelism in DSP and multimedia algorithms using
the altivec technology. In International Conference on
Supercomputing (1999), pp. 11–20.

[35] Palem, K., Rabbah, R., Pinar, V., and Kiran, K.

Design space optimization of embedded memory
systems via data remapping, 2002.

[36] Panda, P. R., Dutt, N. D., and Nicolau, A.

On-chip vs. off-chip memory: the data partitioning
problem in embedded processor-based systems. ACM
Transactions on Design Automation of Electronic
Systems (TODAES) 5, 3 (2000), 682–704.

[37] Postiff, M. Function unit clustering in wide-issue
superscalar processors.

[38] Rau, B. R. Iterative modulo scheduling: an algorithm
for software pipelining loops. In Proceedings of the
27th annual international symposium on
Microarchitecture (1994), ACM Press, pp. 63–74.

[39] Rixner, S., Dally, W. J., Kapasi, U. J.,

Khailany, B., Lopez-Lagunas, A., Mattson,

P. R., and Owens, J. D. A bandwidth-efficient
architecture for media processing. In International
Symposium on Microarchitecture (1998), pp. 3–13.

[40] Rowley, H. A., Baluja, S., and Kanade, T.

Neural network-based face detection. IEEE
Transactions on Pattern Analysis and Machine
Intelligence 20, 1 (1998), 23–38.

[41] Smith, M. D., Lam, M., and Horowitz, M. A.

Boosting beyond static scheduling in a superscalar
processor. In Proceedings of the 17th Annual
Symposium on Computer Architecture (1990),
pp. 344–354.

[42] Soriano, M., Martinkauppi, B., Huovinen, S.,

and Laaksonen, M. Using the skin locus to cope
with changing illumination conditions in color-based
face tracking. In Proceedings of the IEEE Nordic
Signal Processing Symposium (2000), pp. 383–386.

[43] Srivastava, S. Fast gaussian evaluations in large
vocabulary continuous speech recognition. M.S.
Thesis, Department of Electrical and Computer
Engineering, Mississippi State University, Oct. 2002.

[44] Tiwari, V., Malik, S., Wolfe, A., and Lee, M.

Instruction level power analysis and optimization of
software, 1996.

[45] Tseng, J. Energy-efficient register file design, 1999.

[46] Viola, P., and Jones, M. Rapid object detection
using a boosted cascade of simple features. In IEEE
Computer Society Conference on Computer Vision
and Pattern Recognition (Dec. 2001).

[47] Waingold, E., Taylor, M., Srikrishna, D.,

Sarkar, V., Lee, W., Lee, V., Kim, J., Frank,

M., Finch, P., Barua, R., Babb, J., Amarasinghe,

S., and Agarwal, A. Baring it all to software: Raw
machines. IEEE Computer 30, 9 (1997), 86–93.

[48] Weiss, M., and Fettweis, G. Dynamic codewidth
reduction for vliw instruction set architectures in
digital signal processors, 1996.

[49] Young, S. Large vocabulary continuous speech
recognition: A review. In Proceedings of the IEEE
Workshop on Automatic Speech Recognition and
Understanding (Dec. 1995), pp. 3–28.

[50] Yun, H.-S., and Kim, J. Power-aware modulo
scheduling for high-performance vliw. In ACM
SIGPLAN 2001, Workshop on languages, compilers
and tools for embedded systems (2001).

12

