
CLOCK SYNCHRONIZATION IN

DISTRIBUTED SYSTEMS

MARTIN HORAUER

DISSERTATION

Clock Synchronization in Distributed Systems

Architecture and Evaluation of Ethernet-based Network Interfaces with support for
precision clock synchronization

ausgef̈uhrt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften

unter der Leitung von

UNIV.PROF. DR.TECHN. RICHARD EIER

Institut für Computertechnik, E384

und

UNIV.PROF. DR.TECHN. ULRICH SCHMID

Institut für Technische Informatik
Embedded Computing Systems Group, E182/2

eingereicht an der Technischen Universität Wien
Fakulẗat für Elektrotechnik und Informationstechnik

von

MARTIN HORAUER

Matr.-Nr.: 8725430
Viehtriftgasse 4/2/8

A-1210 Wien

Wien, Februar 2004

Martin Horauer:
Clock Synchronization in Distributed Systems

Analysis and precision enhancement of existing clock synchronization mechanisms in
distributed systems based solely on packet exchange via data links.

Analyse und Verbesserung der Präzision von bestehenden Mechanismen zur Uhrensyn-
chronisation in einem verteilten System um mehr als eine Zehnerpotenz unter alleiniger
Ausnutzung des Austausches von Datenpaketenüber ein bestehendes Datennetzwerk.

Dissertation at theDepartment of Computer Technology, E384
at theUniversity of Technology Vienna, Austria

This thesis evolved in the context of the research project SynUTC that has been supported
by the Austrian Science Foundation (FWF)under grant P10244-̈OMA, the Austrian
National Bank (OeNB)under grant 6454, theAustrian Federal Ministry of Science and
Transport (BMWV)under contract Zl.601.577/2-iV/B/9/96, the START programme Y41-
MAT as well as theEuropracticeinitiative funded by the European Union.

The proposed concepts of this thesis are subject of an international patent submis-
sion (Patent Number: AT005327U1).

http://www.ict.tuwien.ac.at
http://www.tuwien.ac.at
http://www.fwf.ac.at/
http://www.oenb.at/
http://www.oenb.at/
http://www.bmvit.gv.at/
http://www.bmvit.gv.at/
http://www.europractice.com

This thesis is dedicated to my father,
who believed in me,
put his hope in me,

and never let me down.

Kurzfassung

Die Synchronisation der einzelnen Uhren in den Rechner-Knoten ist ein elementares Ser-
vice für ein verteiltes System. Durch Erhöhung der Genauigkeit wird dieses Service
entscheidend verbessert welches dadurch neue Anwendungen ermöglicht. Ein Beispiel
hierfür ist die Ortung von Notrufen, die von mobilen Telefonen aus getätigt werden.
Die Genauigkeit der erreichbaren Ortung steht hier direkt in Relation zur erzielbaren
Genauigkeit der Uhrensynchronisation. Gegenwärtig kann dies nur durch aufwendige
Speziall̈osungen und der Verwendung von präzisen GPS Zeit-Empfängern realisiert wer-
den. Aufgrund der erḧohten Kosten und der Anforderung, dass jeder GPS Empfänger mit
einer Antenne mit freier Sicht auf den Himmel ausgestattet sein muss, wird die Anwend-
barkeit derartiger Systeme jedoch oft stark eingeschränkt.

Der jüngst ver̈offentliche IEEE Standard 1588 für ein hochgenaues Protokoll zur
Uhrensynchronisation für verteilte Messdatenerfassung, Regelung und Steuerung wid-
met sich genau dieser Problematik. Durch Aufrüstung bestehender Datennetzwerke
mit Hardware-Erweiterungen zum abziehen und speichern der lokalen Uhrzeit an den
Netzwerk-Schnittstellen und einem Software Protokoll-Stack gelingt es die ,,durch-
schnittlich” erreichbare Genauigkeit der Uhrensynchronisation in den Bereich unter
eine µs zu bringen. Unabḧangig von dem Standardisierungsprozess widmete sich das
Forschungsprojekt SynUTC dieser Thematik. In diesem Forschungsprojekt wurden einige
Prototypen gebaut und getestet sowie detaillierte theoretische Modelle entwickelt, die es
erlauben die im schlechtesten Fall erreichbare Genauigkeit abzuschranken.

Basierend auf diesen Erkenntnissen und den Ergebnissen einschlägiger Fachliter-
atur wird in dieser Arbeit ein Konzept für die Architektur von Netzwerk Schnittstellen
und Switches erarbeitet, das eine ,,im schlechtesten Fall garantierte Genauigkeit” der
Uhrensynchronisation im Bereich von 100nsermöglicht. Dies wird durch transparentes
Einfügen der lokalen Uhrzeit eines Knotens unmittelbar vor demPhysical Layerin einge-
hende und abgehende Datenpakete zur Uhrensynchronisation erreicht. Die lokale Uhrzeit
eines Knotens wird in Hardware mit Hilfe eines hochauflösenden Addierers verwaltet,
der es erlaubt sowohl den Uhrenstand als auch deren Rate kontinuierlich zu korrigieren.
Die vorgestellte Architektur verbessert existierende Ansätze um mehr als eine Größenord-
nung ohne dabei die ursprüngliche Funktionaliẗat des Netzwerkes zu verändern. Die
Konzepte wurden an Hand eines ersten Prototypen funktional verifiziert und durch experi-
mentelle Evaluation mit realen Messreihen untermauert und quantifiziert. Die vorgestellte
Lösung erg̈anzt GPS basierte Verfahren zur Uhrensynchronisation, besonders dann wenn
gesteigerte Anforderungen an Fehlertoleranz gegeben sind bzw. die Anbringung einer
Antenne problematisch erscheint.

i

Abstract

A system-wide global time base with known precision is of pivotal importance for the
design and operation of distributed systems as well as an enabling technology for applica-
tions like location-based services. The increasing requirements of these driving applica-
tions and the large scale of the underlying systems demand clock synchronization down to
thens-range. To date, for many applications this cannot be established with present soft-
ware synchronization strategies; specialized hardware support and the use of GPS-timing
receivers is mandatory. The applicability of these solutions, however, is limited by the
high cost for the additional, dedicated cabling and the antennas for the GPS receivers,
which require clear-view of sky for proper operation.

Recently the IEEE approved the 1588 standard for a precision clock synchronization
protocol for networked measurement and control systems. By equipping existing com-
puter networks with moderate hardware extensions at the network interfaces and a stan-
dard protocol software stack, an average precision below theµs-range can be achieved.
Independently from the balloting process and based on relevant scientific literature the
research project SynUTC established a clock synchronization framework with sound the-
oretical concepts and well engineered hard- and software.

This thesis proposes an architecture for network interfaces and networked devices that
will render a worst-case precision in the100 ns-range possible. The proposed mechanism,
which is applicable for any packet-oriented data network, inserts time information into
data packets at the interface between the physical layer transceiver and the network con-
troller upon packet transmission and reception, respectively. Local time is supplied by a
high-resolution rate-adjustable adder-based clock, which also contains hardware support
easing interval-based external clock synchronization, like maintaining time and accuracy
intervals and interfaces to GPS receivers. This architecture allows an improvement of
at least an order of magnitude over other existing solutions; it is accomplished by small
modifications of existing commercial-off-the-shelf devices, without impairment of their
original functionality. Part of the principle of operation is verified with a prototype im-
plementation that was also used in conjunction with other devices for an experimental
evaluation. The results of the presented experiments validate the proposed techniques and
reveal actual values for the worst-case precision that might be achieved. The presented
solution provides a synchronization that can otherwise be achieved only with the help of
specialized GPS timing receivers, thus excellently complementing these solutions when
increased fault-tolerance is required or when access to an antenna is not feasible.

ii

Related Publications

This thesis is based on and extends the work and results presented in the following papers
and publications:

M. Horauer,Hardware Support for Clock Synchronization in Distributed Sys-
tems, Supplement of the 2001 International Conference on Dependable Systems and
Networks, G̈oteborg, Sweden, 1-4 July 2001, pp. A-10 - A-13. (Best Student Paper)

M. Horauer, U. Schmid, K. Schossmaier, R. Höller and N. Ker̈o,PSynUTC - Evalu-
ation of a High Precision Time Synchronization Prototype System for Ethernet
LANs, Proceedings of the 34th IEEE Precise Time and Time Interval Systems and
Application Meeting (PTTI’02), Reston, Virginia, USA. December 2002.

M. Horauer and R. Ḧoller, Integration of high accurate Clock Synchronization
into Ethernet-based Distributed Systems, International Conference on Advances
in Infrastructure for e-Business, e-Education, e-Science, and e-Medicine on the In-
ternet, SSGRR 2002, Jan. 21 - 27, L’Aquila, Italy. (Serves as reference for the
US Navy DoD 2003.2 SBIR Solicitation N03-200 ”Automated On-Board and Off-
Board Data Timing and Synchronization”)

M. Horauer, N. Ker̈o and U. Schmid,A network interface for highly accurate
clock synchronization, Proceedings Austrochip 2000, Oct. 2000, Graz Austria,
ISBN 3-9501349-0-5.

R. Höller, G.Gridling, M. Horauer, N.Ker̈o, U.Schmid, and K. Schossmaier,
SynUTC - High Precision Time Synchronization over Ethernet Networks, Pro-
ceedings of the 8th Workshop on Electronics for LHC Experiments, Colmar, France,
9-13 September, 2002.

U.Schmid, M.Horauer and N.Kerö, How to Distribute GPS-Time over COTS-
based LANs, 31st Annual Precise Time and Time Interval (PTTI) Systems and Ap-
plications Meeting, Dana Point - California, December 7-9, 1999.

N. Kerö, U. Schmid, and M. Horauer,Verfahren f ür die Synchronisation von
Computeruhren in Netzwerken, TR 183/1-105, Department of Automation, Vi-
enna University of Technology, March 2000. (International Patent Submission:
Patent No. AT005327U1)

iii

The following publications are related but not covered in this thesis:

K. Schossmaier, U. Schmid, M. Horauer and D. Loy,Specification and Imple-
mentation of the Universal Time Coordinated Synchronization Unit (UTCSU),
Journal of Real-Time Systems, 1997 May, No. 3, Vol. 12, pp. 295–327.

M. Horauer, U. Schmid and K. Schossmaier,NTI: A Network Time Interface
M-Module for High-Accuracy Clock Synchronization , Proceedings of the 6th

International Workshop on Parallel and Distributed Real-Time Systems (WPDRTS),
Orlando Florida USA, March 30 – April 3 1998.

N. Kerö, H. Muhr, G. Gaderer, R. Ḧoller, T. Sauter and M.Horauer,Embedded
SynUTC and IEEE 1588 Clock Synchronization for Industrial Ethernet, Work-
shop on IEEE-1588, Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems, National Institute of Standards and
Technology, Gaithersburg, Maryland USA, 24 September, 2003.

M. Horauer and D. Loy,UTCLIENT - an ASIC Supporting Clock Synchro-
nization in Distributed Real-Time Systems, Proceedings of Austrochip ’97, 1997
April, Linz Austria, pp. 290–296, ISBN 3 85320 826 6, Universitätsverlag Rudolf
Trauner.

M. Horauer and D. Loy,Hardware-unterstützte Uhrensynchronisation in verteil-
ten Systemen,Proceedings Austrochip 98 pp. 67–72, Wiener Neustadt, Austria,
October 1998, ISBN 3-901578-03-X.

M. Horauer and D. Loy,Adder Synthesis, Proceedings of Austrochip ’95, Graz
Austria, pp. 81–87, 1995.

iv

Contents

Kurzfassung i

Abstract ii

Related Publications iii

1 Introduction 1
1.1 Clock Synchronization Strategies. 1
1.2 Application Domain. 3
1.3 Outline . 8

2 State of the Art of Clock Synchronization 10
2.1 System Modelling. 11

2.1.1 Clocks and Processors. 12
2.1.2 Communication Subsystem. 13
2.1.3 Faults. 14

2.2 A taxonomy of clock synchronization algorithms. 15
2.2.1 Structure of clock synchronization algorithms. 15
2.2.2 Clock synchronization building blocks. 16

2.3 Requirement analysis. 26
2.3.1 Clock Properties. 26
2.3.2 Clock Reading Error. 32
2.3.3 Clock Granularity an Clock Rate Adjustment. 34
2.3.4 Coupling to an External Reference Time. 34

2.4 Summary . 35

3 Related Work 37
3.1 MARS - The Maintainable Real-Time System. 38
3.2 The Time-Triggered Protocol. 40
3.3 The Network Time Interface. 43
3.4 IEEE Standard 1588. 45
3.5 Summary . 47

v

4 Network interface architectures supporting tight clock synchronization 48
4.1 System Architecture. 50
4.2 Network interface for End-systems. 54

4.2.1 Clock synchronization support for Network Interface Cards. . . 55
4.2.2 Prototype: MII-NTI . 58

4.3 Clock architecture. 60
4.3.1 Bus Interface and Timestamp Unit. 61
4.3.2 Local Time Unit . 62

4.4 Networked devices. 65
4.4.1 Clock synchronization support for Switches. 65
4.4.2 Switch Add-On. 69

4.5 Summary . 70

5 Delay variations of the Physical Layer 72
5.1 Models of the physical communication link. 72

5.1.1 Cable model . 72
5.1.2 10 Base-T Physical Layer Devices. 74
5.1.3 100 Base-Tx Physical Layer Devices. 75

5.2 Evaluation. 79
5.2.1 Evaluation System Hardware. 80
5.2.2 Evaluation System Software. 80
5.2.3 Evaluation System Setup. 81

5.3 Measurement Results. 83
5.3.1 Direct connection. 83
5.3.2 Networked devices. 95

5.4 Summary .100

6 Conclusion and Future Work 103

Bibliography 105

Appendix 114

Glossary and Abbreviations 116

Curriculum Vitae 118

vi

Chapter 1

Introduction

Leslie Lamport’s definition of a distributed system:”You know you have
one when the crash of a computer you’ve never heard of stops you from getting
any work done.” [72]

A distributed system is a collection of autonomous computers linked by a computer net-
work and supported by software that enables the collection to operate as an integrated
facility. It is very easy to understand why these systems are popular. They allow the
sharing of information and resources over a wide geographic spread and they are usually
better than traditional centralized systems in terms of sharing, cost, growth and autonomy.
In contrast, the above citation from Leslie Lamport states clearly that there are still some
short-comings and weaknesses with existing implementations. The distributed nature of
these systems has to cope with unreliable and insecure communications and independent
failures. These problems become aggravated when the system is operating critical real-
time applications such as aerospace systems, life support systems, nuclear power plants,
drive-by-wire systems and computer-integrated manufacturing systems. Common to all
these applications is the demand for maximum reliability and high performance from com-
puter controllers, since a single controller failure in these applications can lead to disaster.
Next to these an increasing number of distributed applications, such as process-control
applications, transaction processing applications, or communication protocols, rely on au-
tonomous computers that need to cooperate for initiation of actions or recording of events.
Therefore, causal ordering is often required, a means that can be provided with the help
of synchronized clocks so that every computer node has approximately the same view of
time. In addition, when synchronized clocks are at hand the performance of a distributed
system can be improved by reducing communication, see [59] for some practical uses.
Other practical applications and uses will eventually emerge when tight clock synchro-
nization becomes available at affordable costs. Therefore, the aim of this thesis is to ana-
lyze and underpin concepts for the improvement of existing hybrid clock synchronization
mechanisms within a distributed system.

1.1 Clock Synchronization Strategies

Clock synchronization may be achieved either by hardware or by software. A coarse
classification of typical clock synchronization mechanisms is given in Fig.1.1depending
on the required precision and the geographic spread of the distributed system.

1

• The Network Time Protocol (NTP) is a network protocol and a collection of algo-
rithms for synchronizing computer clocks over packet networks and is mainly used
throughout the Internet. Computers synchronize their local time to those on remote
time-servers that are assumed to have the correct time, for details see [68] and [69].
Under some realistic conditions, maximum errors of approximately20 ms were ob-
served, cf. [105].

• For local area networks with soft real-time requirements synchronization in the
range of some fewms is acceptable. Software clock synchronization algorithms
use standard communication networks and send synchronization messages to get
the clocks synchronized. Numerous solutions have been presented, analyzed and
evaluated; see [82] or [100] for an overview and [114] for a comprehensive bibli-
ography.

• When computer nodes are equipped with moderate hardware support, the software
clock synchronization algorithms can yield synchronization tightness in the range of
severalµs. Such a mechanism was implemented in the MARS project, see [53], and
a similar hybrid scheme of software synchronization with hardware assistance for
homogeneous distributed systems — although for a different network architecture
— can be found in [81].

NTP

1 ms

1 s

1 ns

10 m 100 m 1 km

LAN (Software)

LAN (Hardware)

GPS

dedicated clocking
network/hardware

precision,
accuracy

spread of the
distributed system

PLL

Figure 1.1: Clock Synchronization classification

Our research projectSynchronized Universal Time Coordinated(SynUTC) pursued
the problem of how to establish an accurate common notion of time among the
nodes of a distributed system relying on the same hybrid mechanism. The local
clocks of every node are kept within a fewµs of each other by solely exchanging
dedicated network packets. By incorporating an external time source like aGlobal
Positioning System(GPS) receiver the local time at every node is kept within a
few µs of Universal Time Coordinated(UTC), the only official and legal standard

2

time, as well. The recently established IEEE 1588 Standard that proposes a similar
mechanism for tight clock synchronization also fits into this category, see [40].

• When every node can be equipped with a dedicated GPS Receiver clock synchro-
nization in the range down to100 ns is possible, although such a pure coupling of
common-of-the-shelf (COTS) receivers without additional means for clock valida-
tion is inadequate for safety critical applications as these devices exhibit some rare
failures, see [29].

• Dedicated hardware support can yield synchronization accuracy down to severalns.
These solutions require in general a dedicated clocking network along with appro-
priate synchronization hardware which operates similar to the phase-locked-loop
technique. The additional cabling and hardware is only affordable for distributed
nodes that are located within a few meters, as is the case, e.g., in multiprocessor
systems [46].

The topics of this thesis address the problem of how to enhance the hybrid LAN-based
clock synchronization architectures with moderate hardware support in order to enhance
the achievable synchronization accuracy, in particular how to keep the nodes clocks within
a distributed system bounded within somenstowards each other (=precision) and towards
an external reference time (=accuracy), respectively. The presented work is very closely
related to the newly established IEEE 1588 Standard and illustrates some deficiencies of
this standard and how these could be overcome.

1.2 Application Domain

Since clock synchronization is used throughout the spectrum of distributed systems start-
ing from a single VLSI chip, and ranging up to a global network it is conceivable that the
effect of even a slight improvement in the tightness of synchronization may be sweep-
ing. For example, tighter synchronization of the transmitting and receiving endpoints of
communication links can lead to better utilization and hence larger throughput of the com-
munication network; better synchronization may imply shorter processing time for large
databases. In order to state the benefits and usefulness of tighter clock synchronization
in a distributed system more precisely, we present some examples that may benefit from
such an enhanced solution. In particular, we give some examples that could be applied in
such different domains as mobile communications or power systems in order to show the
range of applicability.

Location Services: With the advent of mobile communications a huge marketplace has
been created where stiff competition has caused mobile technology to improve rapidly.
New services are constantly being introduced (e.g., short message service inGlobal System
for Mobile (GSM)) to capture larger market shares.

In recent years it has become apparent that there is a large demand for mobile location
services. The service could provide a range of functions, such as car navigation, fleet man-
agement, location charging (e.g., road pricing) or advertising and anti-theft devices. These
services currently available use their own communication systems and radio frequency al-
location — a pooled resource would be far more efficient and cost effective. In 1997 the
U.S. Federal Communications Commission introduced a mandate to enforce all mobile

3

telephone networks to provide mobile locations for emergency services [13]. This man-
date requires that cellular, personal communication services and specialized mobile radio
service providers deploy a means of automatically locating emergency callers to within
125 m in 67 % of all measurements by October 31, 2001.

Unfortunately, there are a number of challenges to overcome to implement such a ser-
vice. The accuracy of such a service is probably not as great as GPS, the satellite based
location system —differential-GPSis accurate to some few meters. However, the mobile
solution would be inexpensive by comparison. It does not require a direct line of sight
communication and can penetrate buildings. It would, therefore, be aimed at a different
market. The third generation mobile standard,Universal Mobile Telecommunications Sys-
tem(UMTS), has recently been developed by the European Telecommunications Standard
Institute. There is currently much research and development being carried out with the
collaboration of major mobile communications companies. In this way UMTS networks
are designed with location estimation services in mind.

There are several methods that can be used to calculate an unknown mobile position
from measurements based on signals from base stations of known position, see [84],
[115] and [83] for an overview. These proposed location technologies fall into two broad
categories: Network-based solutions and handset-based solutions.

Network-based Location Services:

• The Signal Strength Analysisworks by measuring the signal strength of the
mobile station at at least three base stations. This measurement is then directly
related to the separation distances between the mobile and the base stations.
The conversion from signal strength to distances and fading problems need to
be overcome here in order to provide the required accuracies.

• TheAngle of Arrival(AOA) technique relates the absolute angle of arrival of
the signal of the mobile station at two or three base stations. This technique
relies on antenna arrays which provide the direction finding capability to the
receiver. This method has some impracticalities due to the size, alignment and
array separation problems of the antenna array. Field trials in London, see
[76], revealed some problems due to the achievable accuracy.

• TheTime of Arrival(TOA) Technique is enforced by bouncing a signal back
between the mobile and the base station in either direction. With the knowl-
edge of the propagation time and the measurement of three such data sets to
different base stations one can easily triangulate the mobile position. The re-
quired duplex signal transmission is one major drawback of this approach.

• Time Difference of Arrival(TDOA) measures the relative arrival time of the
signal from the mobile at three base stations. Precise clock synchronization of
the base stations will be required for this method.

Some of these network-based solution can be applied in the reverse direction for handset-
based methods as well, but due to size and reasons of practicality, only a modified scheme
of TDOA is considered.

Handset-based Location Services:

• GPSchip-sets integrated into a mobile allow for direct location estimation in
the range of 5 to 40 m accuracy since the US government removed the Selective

4

Availability mask in May 2000. The latter was used in the past to reduce the
location estimation accuracy. In general, GPS now is the most popular radio
navigation aide and has overtaken virtually all other forms of radio navigation
because of its high accuracy, world wide availability, and low cost. Problems
that need to be overcome with GPS handset-based solutions are the relative
long time to first fix, and the requirement for a clear view of the sky.

• NetworkAssisted GPSuses fixed GPS receivers that are placed at regular inter-
vals to fetch data that can complement the readings of the mobile GPS receiver.
The assistance data makes it possible for the receiver to make timing measure-
ments from the satellites without having to decode the actual messages and
thus reduces greatly the time needed for a GPS receiver at the mobile to calcu-
late the location. This solution reduces the time to first fix, the problem of the
above solution but the requirement for a clear view of the sky is still pertinent,
especially in urban locations.

• Enhanced Observed Time Difference(E-OTD) in GSM andIdle Period Down-
link (IP-DL) in UMTS are TDOA variants for handset-based solutions. Here
the mobile listens to bursts from multiple base stations and measures the time
difference. These measurements are used to triangulate the actual mobile loca-
tion. This requires that the base station positions are known and that the data
sent from different sites is synchronized. The most common way of synchro-
nizing the base stations is via the use of fixed GPS receivers. The calculation
can then either be done in the mobile or at dedicated network nodes. The ac-
curacy based on the achievable time synchronization is expected to be below
125 m, and unlike GPS these methods are not reliant on a clear view of the sky.

Hybrid techniques using more than one of the above techniques have been suggested in
order to improve the location estimate accuracy. Currently TDOA variants are considered
the leading candidates for any future location system. The precise synchronization of the
base stations therefore will be provided with the help of GPS, since there seems to be
no other solution at hand that can provide the required precision. In fact, the clock syn-
chronization approach laid out in this thesis could be a promising alternative candidate to
provide tight synchronization since the network infrastructure between the base stations is
already present. A combination of both systems would very well complement each other
and avoid spurious problems infrequently encountered with some GPS receivers, see [29].

Fault location in Power Grids: Another field of application is power distribution systems.
Tight clock synchronization could be used to provide means for on-line fault detection
and and estimation of the fault location [47]. Reliable provision of electrical power is of
utmost importance for our daily human life. This in turn requires redundant, reliable power
system components that can be easily maintained and exchanged, see [60]. Disregard of
these criteria can have catastrophic consequences, as they were experienced after recent

5

power outages in the US1, in Europe2 and in New-Zealand3. Due to recent deregulations
within the energy sector and poor environmental acceptance an improvement of reliability
with the help of building-up additional power lines or other power system components
is limited. A practical approach to improving the quality of power supply provision is
to reduce the time between fault occurrence and resumption of operation. In case of an
interruption the following steps need to be undertaken:

1. fast and reliable fault detection

2. selective switch-off of defect power system components

3. exact fault location

4. repair of defect power system components and resumption of operation

Fault-detection and selective switch-off are currently ensured with the help of present
distance protection techniques. For fault location on-line and off-line methods are used
where only current off-line methods provide exact location accuracy, especially when un-
derground cables are considered.

On-Line fault location techniques:

• Methods relying on measurement of impedances are currently built-in into ex-
isting distance protection relays and provide a coarse estimation of the fault
location. This information satisfies the needs for a selective switch-off of de-
fect power system components immediately after the occurrence of a fault. The
achievable precision for pin-pointing the fault location is in the range of 3 to
10 %, see [54], or [7], and is therefore insufficient for an exact fault location,
especially when underground power cables are affected.

• Some other methods are based on travelling waves theory. A fault location
technique that uses the propagation delays of the first wave that is emanated
after a surge is affecting the cable is presented in [42]. They measure the
time of arrival of this wave at both ends of the cable and calculate the fault
location using the a priori known cable length. Field tests in Tokio revealed a
location error within 1 % of the cable length. This method requires additional
measurement cabling from both ends fed together in order to relate the time of
arrival of the wave at both ends.

• A refinement of this method is proposed in [80] that uses measurement data at
one terminal alone. The arrival time of the first wave and those of succeeding
reflections are used to estimate the fault location. With the help of simulation
a fault location in the range of 3 to 5 % was estimated.

1A power outage during the months July till August 1996 affected millions of end customers in the south
west of the United States and in northern Mexiko. More recently on Aug. 14th 2003 a power outage affected
the entire north-east region of the United States and Canada including cities like New York City, Detroit,
Ottawa and Toronto.

2A power outage affected the end customers in Great Britain (Aug. 29, 2003) and a second one those in
Italy (Sept. 28, 2003).

3In February 1998 large districts of Auckland experienced a major power outage for several weeks after
four central power cables broke down.

6

Off-Line fault location techniques:

Pulse methods, see [64] for an overview, are still generally used for fault location
in underground cable systems when a fault is permanent. Depending on the kind
of fault (high- or low-resistance, shunt or series fault, etc.) one of the following
methods is usually selected:

• In the decay method, the voltage source has a high impedance in series with
it and the voltage transient in the cable is measured. A high voltage is applied
to the cable, inducing a breakdown at the fault. A transient is generated which
travels back and forth between the fault site and the voltage source. The volt-
age transient is measured using a voltage-coupling device with a frequency
response adequate to resolve both the edges and step portions of the voltage
transient. The propagation of the transient is used to determine the fault loca-
tion.

• In the current impulse method a surge generator applies a high-voltage step to
the cable under test that induces a breakdown in the cable. The transient travels
back and forth between the surge generator and the fault. The current transient
is measured using a current transformer with a frequency response adequate to
resolve only the edges of the current transient; this in turn is related to the fault
distance, see [26].

• Time domain reflectometry takes advantage of the fact that impulses are re-
flected to some extent at cable discontinuities. When the impedance at the
fault location approximates 0 or∞ a distinctive reflection will occur and thus
allow for a good fault location. One flaw of this method is that high-impedance
shunt faults are difficult to localize.

• Arc reflectometry enhances the time domain reflectometry method by tem-
porarily converting a high-resistance fault into a short circuit. This is facili-
tated by applying a high-voltage surge to the cable that ignites an arc at the
fault location. Time domain reflectometry is then used to determine the fault
location.

• After the approximate position of the fault has been found using one of the
above methods, some means of pinpointing the fault must be used. Common
practice has been to apply repeated high-voltage surges to the cable and listen
for the ”thump”. To date, this acoustic method is by far the most successful
technique used to pinpoint the precise location of a fault. However, indiscrim-
inate use of a surge generator can place sound insulation at risk.

The off-line fault location techniques make it possible to pinpoint cable faults to
within a few meters. In order to accomplish this satisfying result the defect cable
needs to be isolated from the power grid and a high voltage generator next to the
measurement equipment must be connected.

In order to implement an on-line method that delivers exact fault location one could use
a tight synchronized distributed system (c.f. [8] or [20]) combined with the proposed
techniques in [80] and [42] in order to detect and timestamp the first wave emanated after
a surge stresses a cable. This in turn would decrease the time required for fault location
and could thus reduce the impacts impaired by harmful calamities.
A similar application domain is on-line monitoring of partial discharges emitted in the

7

cables of power distribution systems. Cavities in the isolation cause small surges that
induce small travelling waves superimposed onto the supply voltage. As with fault-
location one could monitor these effects and deduce potential problems that may arise
due to electrical stress or aging. This information in turn is useful for a maintenance
schedule of the employed cabling. These and several other uses of synchronized clocks in
power distribution systems have been proposed to increase the quality of service, see [28].

Although these are by now only some few practical applications that could benefit from
a very tight clock synchronization, others in computer science and the area of measure-
ment and instrumentation will eventually emerge when this enabling technology becomes
widely available. In particular applications like multimedia, mobile computing or process
control applications, e.g. in papermills, will benefit from this service.

1.3 Outline

This thesis is structured as follows:
Chapter 2 proposes a taxonomy adapted to several clock synchronization algorithms:

deterministic and probabilistic, internal and external. This taxonomy makes it possible to
classify existing clock synchronization algorithms according to their internal structure and
several basic building blocks. The following analysis is used to identify the building blocks
that require support by hardware in order to provide tighter synchronization. Furthermore,
the key parameters are developed out of existing algorithms that will set the physical limits
for the achievable tightness.

Chapter 3 differentiates related work under the prospect of these limiting parameters.
We briefly illustrate the hardware support for clock synchronization as used in the MARS
project and by ourNetwork Time Interface(NTI) M-Module and depict the shortcomings
of these approaches. Next we address clock synchronization as used in the time triggered
architectures TTP and FlexRay. In these systems clock synchronization plays a funda-
mental role for future time-critical avionic and automotive systems. Finally, the new IEEE
Standard 1588 is considered and analyzed under these terms.

Chapter 4 introduces and discusses several hardware architectures to enable tight clock
synchronization in modern popular switched Ethernet networks. In particular, network
interfaces for end-systems and modifications of existing switch architectures are pre-
sented. The proposed approaches are analyzed under the prospects of how to achieve
tight synchronization and how to keep modifications and influences on existing network
hard+software low. Furthermore, this chapter briefly addresses enhancements for an in-
tegrated clock circuit, based on our UTCSU Asic, that is currently developed within the
PSynUTC FIT-IT4 project by the spin-off company Oregano Systems5.

Chapter 5 describes the measurement setup used for an experimental evaluation of
the underlying parameters that limit the achievable clock precision. In particular, we ad-
dress the jitter of the physical layer of switched Ethernet networks under various different
end-to-end configurations. Next, we briefly illustrate the analysis process of the gath-
ered measurement data before we finally present the results obtained from the conducted
experiments.

A short summary concludes this thesis, providing directions for future related research

4http://www.fit-it.at
5http://www.oregano.at

8

http://www.fit-it.at
http://www.oregano.at

issues. In particular, we give a summary of extensions to our approach in order to evolve
an implementation that can lead to an industrial realization.

9

Chapter 2

State of the Art of Clock Synchronization

In centralized systems, mutual exclusion and inter task communication problems are gen-
erally solved using methods such as semaphores and monitors and highly rely on shared
memory. This is not true for distributed systems where even the simplest thing such as
determining whether eventA happened before or after eventB requires careful thought. In
general, distributed systems have the following characteristics [72]:

• Multiple concurrent computation threads,

• interconnections for inter-thread communication and a

• global, shared state the individual computers cooperatively maintain.

To achieve a consistent global state it is necessary to address the issues of independent
node failures and unreliable, insecure and costly communication. To that end, clock syn-
chronization provides internal consistency of the clocks at the distributed nodes that eases
the implementation of the before-mentioned issues. During the past few years, much re-
search has been conducted towards a common view of time in fault-tolerant distributed
systems. There are more than 60 papers listed in a 1993 bibliography [114] on clock syn-
chronization in distributed systems. As a result, the proposed algorithms are relatively
well understood. The increasing demand for ever tighter synchronization and some addi-
tional requirements, e.g., to synchronize with an external time standard, resulted in further
research, see [86] for an overview.

This thesis proposes a mechanism for further enhancements of existing clock synchro-
nization strategies. The presented approach exploits the limiting parameters of existing
implementations. Therefore, a comparative study and an in-depth analysis of published
algorithms seems appropriate.

Software clock synchronization algorithms use standard communication networks and
send synchronization messages to get the clocks synchronized. They are more frequently
used since a loose synchronization in the range of somems is acceptable in most appli-
cations. All software clock synchronization algorithms proposed so far decompose them-
selves indeterministic, probabilisticandstatisticalalgorithms. Deterministic algorithms,
e.g. [78, 16, 24, 25, 27, 56, 63, 85, 87] assume an upper bound on transmission delays and
guarantee a maximum difference between any two simultaneous clock readings. Proba-
bilistic algorithms [2, 75, 18, 15, 78] guarantee a constant maximum deviation between
synchronized clocks. In particular, a clock knows at anytime if it is synchronized or not
with the other, but there is a non-zero probability that a clock will get out of synchro-
nization when too many unmasked communication failures occur. Statistical algorithms

10

[113, 14, 58] assume that the expectation and standard deviation of the delay distributions
are known. Clocks do not know how far apart they are from each others, but a statistical
argument is made that at any time, any two clocks are within some constant maximum
deviation with a certain probability.

Hybrid clock synchronization [53, 34] solutions based on software algorithms with
moderate hardware support achieve reasonably tight synchronization and are still cost-
effective in comparison to pure hardware approaches. The embodied hardware support
usually maintains the local clock, applies the required corrections and provides some facil-
ities to ease the exchange of clock messages. The proposed clock synchronization method
fits into this hybrid category and extends related work by providing a new way of incorpo-
rating clock messages into state-of-the-art network solutions.

Pure hardware-based clock synchronization [99, 106, 12] achieves very tight synchro-
nization through the use of special synchronization hardware at each processor, and uses
a separate network solely for clock signals. Due to cost, size and practicality reasons
the additional network is in most cases only affordable when the system spread is within
the range of a few meters. The primary application domain of this kind of synchroniza-
tion strategy are parallel systems where a set of microprocessors needs to coordinate their
actions. This thesis does not consider these specialized, costly mechanisms, instead it con-
centrates and exploits mechanisms of software based and hybrid clock synchronization.

The remainder of this chapter provides a classification and analysis of published clock
synchronization algorithms. The aim herein is to devise a good understanding of the prin-
ciples involved in order to extract the relevant parameters one needs to tackle to achieve
tight synchronization. Similar surveys, but with a more general focus in mind, can be
found in [93, 82, 100] and [1]. In [82], software and hardware clock synchronization al-
gorithms are classified with regard to the clock correction scheme used. In contrast, the
algorithms surveyed in [100] are listed according to the supported faults and the system
synchrony (knowledge of upper bounds on communication latencies). A very thorough
classification is given in [1] that aims to help the designer in choosing the most appropriate
structure of algorithm and the best building blocks suited to his/her hardware architecture,
failure model, quality of synchronized clocks and message cost induced.

A short section on system modelling defines relevant parameters and properties as
used in most relevant papers on this topic. The following taxonomy tries to figure out the
delimiting parameters for an achievable clock synchronization tightness. The results of
this analysis are used to identify requirements and improvements for hardware support for
tight clock synchronization.

2.1 System Modelling

A comparative study of the impaired parameters of clock synchronization algorithms re-
quires establishing a general system model. According to the analyzed algorithms we
consider a set of distributed nodes interconnected by a communication network that can
have different characteristics (broadcast or point-to-point, fully-connected or not). Ev-
ery node hosts aCentral Processing Unit, some kind ofCommunications Controller, a
storage device in the form of a local memory and a local clock. In order to allow for a syn-
chronization with real-time some nodes should be equipped with GPS (Global Positioning
System) or other reference timing receivers in order to obtain the time signal broadcast by
a standard source of time, as UTC (Universal Time Coordinated) the official time standard.

11

2.1.1 Clocks and Processors

For an arbitrary nodep, clock Cp generally consists of an oscillatorOp and a counting
register that is incremented by the ticks of the oscillator. While clocks are discrete,
having, non-zero granularityG, all algorithms assume that clocks run continuously, i.e.,
Cp is assumed to be a monotonic real-valued function of real-timet.

Clock Precision: The paramount problem of distributed clock synchronization is to main-
tain the maximum clock state deviation between any two clocks at different correct nodes
p andq at all real-times bounded by a value calledprecisionπ

|Cp(t)−Cq(t)| ≤ π ∀t ∈ T.

This problem referred to asinternal clock state synchronizationis usually at the core of
all clock synchronization algorithms.

Accuracy: Synchronizing the clockCp of one arbitrary nodep of a distributed system
with an external time standard, e.g. UTC, is denotedexternal clock state synchronization.
It keeps the maximum deviation between corresponding clock states and real-times on a
single correct clock bounded by a constant calledaccuracyα

|Cp(t)− t| ≤ αp ∀t ∈ T.

Accuracy becomes essential when the spatial diameter of the distributed system is very
large or when the system needs to interact with other systems respectively. In both cases a
common notion of time that is synchronized closely to the official time standard becomes
crucial.

Clock Drift: It is commonly assumed that even correct oscillators exhibit some instabili-
ties due to temperature changes, aging and other reasons. In general, theoscillator drift ρ
is the systematic change in frequency with time of an oscillator. The manufacturer usually
specifies a maximumρ and hence bounds the instantaneous oscillator frequencyf (t) by

(1−ρ)≤ f (t)
f

≤ (1+ρ).

Direct coupling of an oscillator with the clock yields a clock rate ofS f(t) where the

coupling factorS is the constant 1/ f , i.e. Cp(t) = 1
f

t∫
0

f (t)dt. The maximum deviation

between the clock rate and the ideal rate 1 is denoted by theclock drift ρp, formally

|
dCp(t)

dt
−1| ≤ ρp ∀t ∈ T.

Thus a perfect clock hasdC/dt = 1, a fast clockdC/dt > 1 and a slow clock
dC/dt < 1. If two clocks are drifting in opposite direction, at a time4t after they were
synchronized, they may be as much as 2ρ4t apart. Thus, in order to guarantee that no
two clocks ever differ by more than4t, clocks must be synchronized at least every4t/2ρ
seconds.

12

Consonance:The maximum clock rate deviation between two different correct clocks in
the distributed system at simultaneous real times is calledconsonanceγ [95, 96], formally

|
dCp(t)

dt
−

dCq(t)
dt

| ≤ γ ∀t ∈ T.

Maintaining consonance resp. drift of an ensemble of clocks refers to the problem of
externalresp.internal clock rate synchronization[96].

Initial synchronization: A sometimes neglected aspect is the problem of system start-up
and node join and how initial synchronization is accomplished respectively. An assump-
tion made by several algorithms makes it necessary that the nodes clocks are initially
synchronized and that this initial synchronization is bounded by a given constantβ, see
[63] for example.

The clock synchronization algorithm executes on the local processor and takes the
clock readings of the local and remote clocks as inputs. The required computation time
should be small and bounded by some constant value in order to account for clock state and
rate changes during this time span. The computed correction is afterwards applied to cor-
rect the local clock time. Most systems are equipped with a pure oscillator+counter based
clock where synchronization of the local hardware clock is not possible at all. Rather,
logical clocks are introduced. The value of a logical clock at real-time t is determined
by adding an adjustment term to the local hardware clockCp(t). The adjustment term
can be either a discrete value, changed at each re-synchronization [92, 101], or a linear
function of time [92, 15, 91]. The discrete clock adjustment technique may cause a logical
clock to instantaneously leap forward or be set back, and then continue to run at the speed
of its underlying hardware clock. Such behavior cannot be tolerated by most distributed
applications requiring clock synchronization, therefore a linear function of time for clock
adjustment is often mandatory.

2.1.2 Communication Subsystem

In distributed real-time systems, message delays may be more or less predictable depend-
ing on the type of network used and the assumptions made on the network load. Some
algorithms assume that known lower and upper bounds to deliver (i.e. to send, transport
and receive) a message between correct nodes exist. The mechanism to send, transport,
and receive any message over a correct link from a correct nodep to nodeq experiences a
delay4t ′p,q subject to the delay condition

4tp,q− εp,q ≤4t ′p,q ≤4tp,q + εp,q,

where4tp,q represents the deterministic part andεp,q the delivery uncertainty with4tp,q≥
εp,q. When this assumption holds, a deterministic clock synchronization algorithm can
ensure that all correct logical clocks are within a maximum distance from each other.

In practice from the mechanisms involved in present communication subsystems one
main limiting factor for clock precision and accuracy isε. In fact, the work of [62] revealed
that evenn ideal clocks cannot be synchronized with a worst case precision less than

ε(1− 1
n
) (2.1)

in presence of a delivery uncertaintyε. Unfortunately, in a shared channel type network
there are several steps involved in packet transmission/reception that could contribute toε,

13

cf. [53] and [34, 89]. The following general steps illustrate a usual message transfer from
nodep to nodeq:

(1) The CPU at nodep assembles the packet (including a local timestamp) and notifies
the Communication Subsystem.

(2) The Communication Subsystem at nodep in turn acquires the network medium and
sends the resulting bit-stream.

(3) The receiving communications module at nodeq pulls the bit-stream from the
medium and notifies the CPU at nodeq via interrupt of the current packet recep-
tion.

(4) The CPU at nodeq processes the received packet and marks the reception time by
reading its local clock.

Although this scenario is by far idealized, it becomes apparent thatε is affected by several
sources of indeterminism. The medium access uncertainty at (2) strongly depends on
the access policy of the used bus system. The network delay(2→ 3) may vary due to
queuing delays at intermediate gateway nodes. The reception interrupt latency until the
CPU processes the packet(3→ 4) strongly depends on the CPU load.

2.1.3 Faults

For development and analysis of distributed algorithms faults need to be considered since
they may affect every single component (processor, communication links, clocks, etc.)
of the system. A proper fault modelF needs to be specified in order to elaborate on
system operating conditions when faults occur. Following is a list of types of processor,
link and clock failures that have mostly been assumed throughout clock synchronization
algorithms.

Concerning clocks, most of the algorithms assume uncontrolled failures (also called
Byzantine or arbitrary failures). Other ones assume timing failures, a more restricted
failure mode prohibiting conflicting information.

Clock Byzantine failure: A local hardware clock commits a Byzantine failure when
it gives inaccurate, untimely or conflicting information. This includes dual-faced
clocks, which may give different values of time to different processors at the same
real-time.

Clock timing failure: A local hardware clock commits a timing failure if it does not
meet the clock drift condition, i.e., is notρ-bounded.

The failure semantics of processorsassumed in published algorithms cover nearly all the
kinds of failures ever identified. Processors may crash, commit performance failures, or
more generally, commit Byzantine failures.

Processor crash failure:A processor commits a crash failure if it behaves correctly and
then stops executing forever (permanent failure).

Processor performance failure:A processor commits a performance failure if it com-
pletes a step in more than the specified time.

14

Processor Byzantine failure:A processor commits a Byzantine failure if it returns in-
correct or malicious data, see [57].

With regard to the communications subsystem, whatever its type (broadcast or point-to-
point), the failure semantics are more restricted. A link may commit omission or perfor-
mance failures but must never partition the network.

Link omission failure: A link from a nodep to a nodeq commits an omission failure on
a message if the message is inserted intop’s outgoing buffer but the link does not
transport it intoq’s incoming buffer.

Link performance failure: A link commits a performance failure if it transports some
message in more time than specified. Clearly, this applies only to systems with
known upper and lower bounds on transmission delays.

2.2 A taxonomy of clock synchronization algorithms

Having defined several parameters required for system modelling, this section is devoted
to identifing common building blocks of clock synchronization algorithms. The proposed
taxonomy relies on two orthogonal features: the internal structure and the basic build-
ing blocks from which most clock algorithms are built and thus follows and extends the
presentation given in [1]. The internal structure represents the way synchronization mes-
sages are distributed and the role certain nodes play in synchronization. The building
blocks correspond to successive steps executed by every clock synchronization algorithm
and are kept generic in the sense that they apply to several different kinds of algorithms —
deterministic, probabilistic and statistical; internal and external.

2.2.1 Structure of clock synchronization algorithms

The structure of clock synchronization algorithms is discerned by the way how time is
disseminated and how every node participates in the clock synchronization.

Asymmetric (Master-Slave) Structures

Throughout the internet time-servers are deployed and client nodes may synchronize to
the time provided by these servers using theNetwork Time Protocol. A similar master-
slavestructure is employed by other synchronization strategies as described in [27, 15, 2]
and may be classified as anasymmetricscheme. Usually one dedicated node is designed
as master and provides the time to the other nodes designed as slaves. In some imple-
mentations, denoted as master-controlled schemes, the master acts as coordinator of the
clock synchronization algorithm. It requests and collects the slaves clocks, estimates the
required adjustments and sends back the corrected clock values. On the other hand, in
slave-controlled schemes, the master provides only the reference time. Every slave asks
for the reference time and after reception invokes the clock synchronization algorithm and
re-synchronizes the local clock. The advantage of asymmetric schemes is their low cost
in terms of number of messages exchanged. On the other hand, the most common draw-
back is given by the presence of the master, which represents a single point of failure.
In addition, a single master can be swamped by a large numbers of synchronization mes-
sages, thus invalidating in some way communication delay assumptions. To overcome this

15

problem some extra mechanisms such as fault detection followed by the election of a new
master, or duplication of masters are required.

Symmetric Structures

In symmetricschemes every node that participates in an active manner, executes the whole
clock synchronization algorithm. Therefore every node disseminates its local clock value
to all other nodes and, in turn, gathers the clock value from them. The received clock
values in relation to the local clock are then used to compute a correction value. This ad-
justment term is afterwards applied to the local clock. Symmetric algorithms can be split in
two classes, flooding-based and ring-based, depending on the virtual path taken for trans-
mitting a message from one processor to every other one. In flooding-based symmetric
algorithms (see e.g. [108, 16, 101, 63, 79]), each processor sends its messages to all out-
going links. Messages received on incoming links are relayed when a non-fully-connected
network is used. The benefit of flooding-based techniques is their natural support for fault
tolerance, i.e., they do not exhibit a single point of failure. However, they may require
up ton2 messages to disseminate a message to all nodes in the system, withn being the
number of nodes in the system. This large number of messages can be lowered ton if
a broadcast network is used. The virtual ring scheme was designed in order to decrease
the number of exchanged messages experienced in the flooding-based schemes, cf. [74].
In the ring scheme, all the processors in the system are gathered along a virtual ring. The
number of messages is reduced by sending only one message along this cyclic path. As this
message travels on the ring, each processor adds its own data to the message. Compared
with flooding-based schemes, virtual ring schemes need a smaller number of message ex-
changes (onlyn messages per re-synchronization are used), but need extensions in order
to support node failures.

Hierarchical Structures

Some clock synchronization algorithms consider ahierarchical clock synchronization
strategy where the synchronization is spread at different levels. The operation at one
distinct level may again be categorized either as asymmetric or symmetric. In addition,
nodes may participate in the clock synchronization in a different manner. Passive nodes
may synchronize their clocks but may not contribute to the overall synchronization in con-
trast to active nodes that will provide their time for other nodes as well. Primary nodes are
either equipped with a better oscillator or may have access to an external time-source, e.g.,
a GPS receiver in contrast to secondary nodes. In general, not all clock synchronization
algorithms impose a structure. This way they can be employed in both either asymmetric
or symmetric schemes.

2.2.2 Clock synchronization building blocks

Clock synchronization in a distributed system is composed of several fundamental building
blocks:

• Re-Synchronization event detection

• Remote clock estimation technique

• Clock correction block

16

Re-Synchronization event detection block

A clock synchronization algorithm has to detect the instant at which it must re-
synchronize. Due to clock drift, clocks must be re-synchronized frequently to guaran-
tee precisionπ and accuracyα. Usually clock synchronization algorithms are round-
based, each round being devoted to the re-synchronization of all clocks. Thus thisre-
synchronization event detection blockbecomes active periodically. The difficulty arises
when dealing with the time at which rounds must start. One technique assumes initially
approximatelyβ-synchronized clocks, see e.g. [63, 56, 79, 91]. Some external means are
usually required to provide this initial condition. Ensuring this setting a node considers
the start of a new roundk when its local clock reacheskP, whereP is the round duration
in local time, i.e., the time between two successive re-synchronization rounds. Intuitively,
to keep clocks as closely synchronized as possible,β andP must be as small as possi-
ble. However,P cannot be arbitrarily small in order for any algorithm to work correctly,
cf. [63] or [91]. Another technique uses message exchanges to invoke a synchronization
round, see [101, 108] for examples. A node sends a message to all other nodes when its lo-
cal clock reaches a predefined value. It starts a new synchronization round upon reception
of a fixed number of such messages originating from other nodes. The number of expected
messages depends on the maximum number of failures assumed. The message latencies
thus directly influence the achievable precision, since rounds are triggered on message re-
ception. By using broadcast networks, exhibiting a small variance of transmission delays,
precision can be improved [108].

Remote clock estimation technique

When a new clock synchronization round initializes, every node tries to get some knowl-
edge of the value of remote clocks. Due to variable communication delays and clock drifts
only estimates can be acquired. It is essential for any clock synchronization strategy, that
these estimates are closely related to the remote clock values since the clock readings form
the input for the subsequent clock correction block. Theremote clock estimation technique
operates as follows: Each node sends its local clock valueT encapsulated within a message
to every other node. The receiving node uses the message contained therein to estimate
the clock of the sender. This is possible when communication delays are bounded and
clocks are initially synchronized. The receiver feeds the remote clock values and the cor-
responding local times at which messages are received to the clock correction block. Only
clock messages received within an interval of length(1+ ρ)(4tp,q + εp,q + β) following
the most recent re-synchronization event are considered. The value of the remote clock at
nodeq belongs to the interval

[T +(1−ρ)(4tp,q− εp,q−β),T +(1+ρ)(4tp,q + εp,q +β)]

seen at nodep, cf. [63]. When ignoring smaller order terms, the maximum difference of
two remote estimates of different nodes when communication delays are bounded is given
by

2(εp,q +β+ρ4tp,q).

In the case where communication delays are not bounded and clocks are not initially syn-
chronized a set of successive transmissions of timestamped synchronization messages are
at hand. The clock correction block uses message delay statistics (expectation and devia-
tion of transmission delays) for computation of a correction term.

17

A remote clock estimation mechanism that can be used in the absence of an upper
bound on communication delays has been introduced in [15]. Cristian’s master-slave al-
gorithm is based on a remote clock reading technique that allows estimating a remote
clock to lie within a given interval and is used to achieve external clock synchroniza-
tion. In order to obtain a remote clock reading from some nodeq a processp sends a

Cp(t0)

tNode p

Node q T = Cq(t1)

Cq(t1)

Cp(t2)

t

2D

Figure 2.1: Remote Clock Reading

requesting message to nodeq atCp(t0) queryingq’s time. The remote node replies with
a message that encapsulates its clock valueT = Cq(t1). This message, in turn, is received
at nodep at its own local timeCp(t2). With the knowledge of the round trip delay 2D
nodep can estimateq’s clock and bound the error it makes when readingq’s clock. Since
p’s clock can drift from real-time by at mostρ, the round trip delay is not greater than
(Cp(t2)−Cp(t0))(1+ρ) = 2D(1+ρ). The one-way transmission delay for the reply mes-
sage may hence be defined by a constantmax:= 2D(1+ρ)−minwheremin=4tp,q−εp,q

accounts for the minimum transmission delay. These two bounds can now be used to ap-
proximateq’s clock at timeCp(t2) sinceq’s clock value increases bymin(1− ρ) at the
least and bymax(1+ ρ) at the most, respectively. Henceq’s clock valueT estimated at
nodep atCp(t2) lies in the interval:

Cp
q(t2) ∈ [T +min(1−ρ),T +max(1+ρ)]

Since nodep has no means of knowing exactly where the clock of nodeq lies within the
above interval it estimates the value with a functionCp

q(T,D) that for e.g. chooses the
midpoint of this interval. The inherent maximum error made therein is given by

2D(1+ρ)2−2(4tp,q− εp,q)∼ 2D(1+2ρ)−2(4tp,q− εp,q).

If node p wants to achieve a reading error smaller than a certain specified maximum er-
ror, it must discard any reading attempt for which it measures an actual round trip delay
2D > 2U with 2U denoting thetimeout delaynecessary for achieving the required reading
precision.

Clock correction block

The local and remote clock readings serve as input to a suitable clock correction algorithm.
The latter calculates clock correction terms that are applied succinctly to the clocks. Al-
gorithms presented in scientific literature can be categorized into several categories:

18

Clock State Correction: A clock at every node maintains local time and hence allows us
to tell when a particular event occurs or how long a duration takes. Most clock syn-
chronization algorithms in general, and clock correction functions in particular, aim
at keeping clock states together as well as the deviation towards real-time bounded.
Viewed under this aspect most algorithms presented in scientific literature can be
categorized into

• internal

• and internal and external clock synchronization.

Further categorization is due to the implementation of the clock correction algorithm
as

• deterministic,

• probabilistic and

• statistical.

Clock Rate Correction: Clock synchronization can be viewed either in terms of clock
speeds or by considering the instantaneous clock rateυ(t) = dC(t)/dt. The goals
here are to keep the deviation between the clock rate and the ideal rate 1 and the
clock rates between two different nodes at simultaneous real-times bounded.

The remainder of this subsection informally describes the principles of a selected set
of clock synchronization algorithms and lists the precision and accuracy they achieve1.
The aim herein is to give a short introduction and to allow extraction of a set of parameters
that need improvements through appropriate hardware support.

Deterministic clock synchronization:
Most clock correction blocks implemented in round based algorithms use the notion of a
convergence function(CV) introduced in [94]. These algorithms can be generically de-
scribed as follows: At the end of a synchronization round every process reads the clocks of
all processes and then adjusts its clock value for the next round by applying a convergence
function to the clock readings of the current round. A synchronization algorithm that can
be obtained from the above generic algorithm by instantiating some concrete function for
the abstract notion of a convergence function will be termed aconvergence function based
algorithm. Convergence functions use the set of remote clock estimates to compute a new
clock value. For this, special averaging techniques are at hand; in addition, they usually
provide a mechanism for tolerating erroneous clock readings as well. The most prominent
and promising convergence functions are briefly listed below along with a short informal
description.

CV -functions for internal clock synchronization:

• In the interactive convergence algorithm, see [56], each process reads the value
of every process’s clock and sets its own clock to the average of these values —
except when it reads a clock value differing from its own by more than4≈ π + ε,

1The symbols and notation used for several parameters follows the definitions given in Sec.2.1 rather
than those of the literature, to ease comparisons and reasoning.

19

then it replaces that value by its own clock’s value when forming the average. The
achievable worst case precision of this algorithm is given by:

max(
n

n−3m
(2ε+ρ(P+2

(n−m)S
n

)),β+ρP)

with S denoting the final seconds of the intervalP, n being the total number of
processes andm the number of faulty ones.

• The master-slave clock synchronization implemented in TEMPO, the distributed
service that synchronizes the clocks of Berkeley UNIX 4.3 BSD, is described in
[27]. A master time daemon measures the time difference between the clock of the
machine on which it runs as well as those of all other machines. The master com-
putes the network time as the average of the times provided by non-faulty clocks.
A clock is considered faulty if its value is more than a small specified interval away
from the values of the clocks of the majority of the other machines. The master then
sends to all slave time demons —also to those with faulty clocks— the correction
that should be performed on the clock of its machine. Since the correction can be
negative, in order to preserve the monotonicity, TEMPO implements the correction
by slowing down (or speeding up) the clock rates.

When the master time demon synchronizes everyP seconds all non-faulty clocks
are within range:

4(D−2min(Tmin
pq ,Tmin

qp))+2ρP

with Tmin
pq andTmin

qp denoting the minimal possible transmission times from nodesp
to q and fromq to p respectively.

• The fault-tolerant midpoint functionproposed in [63] synchronizes an ensemble
of 3F + 1 nodes where at mostF of these are faulty. The algorithm executes in
a series of rounds; each round is started when a clock reaches a certain prede-
fined value. Meanwhile, for a bounded amount of time, it collects clock messages
from all other nodes. Then every node invokes the fault tolerant midpoint func-
tion that returns the midpoint of the range of clock values received from all other
nodes after thef highest andf lowest values have been discarded:FTM(p,θ) :=
mid(sort(θ)(F),sort(θ)(N− F − 1)). An analysis of the algorithm presented in
[24] shows that the maximum deviation between correct clocks is 4.5Λ + 4ρrmax

considering initial synchrony, with 2Λ accounting for the clock reading error,ρ the
clock drift andrmax the maximum (real-time) duration of a round.

In addition, Fetzer and Cristian derived lower bounds for convergence function based clock
synchronization algorithms [23]. In particular, the lower bound for the maximum devia-
tion is given by

4Λ+4ρP

Given this lower bound they proposed a convergence function termeddifferential fault
tolerant midpoint convergence functionthat guarantees an optimal correction, an optimal
maximum drift rate, and optimal deviation.

• The differential fault-tolerant midpoint function is based, as its name implies, on
the fault-tolerant midpoint function. First, it defines anextended midpoint function

20

by computing the midpoint of the union of the intervals[Y(F),Y(N−F −1)] and
[T− ε,T + ε] for a given timeT and an arrayY of N clock values:

emid:= mid(min{T− ε,Y(F)},max{T + ε,Y(N−F −1})

The differential fault-tolerant midpoint function calculates the new clock value for
a given processp and a clock readingΘ, wherep’s own clock showsΘ(p) at the
end of the round and the functionsort returns a sorted array of the clock values inΘ:

DFTM(p,Θ) :=
if |emid(Θ(p),sort(Θ))−Θ(p)| ≤ 2ρP then

emid(Θ(p),sort(Θ))
else

T +sign(emid(Θ(p),sort(Θ))−Θ(p))2ρP
end if

This convergence function bounds the drift rate of correct clocks byρ, the maxi-
mum correction by 2ρP and the maximum deviation by 4ε+4ρP+2ρβ. Hence this
algorithm is optimal with regard to the lower bounds given for convergence function
based clock synchronization.

• The adaptive exponential averaging fault-tolerant midpoint function [3] was devel-
oped in order to avoid excessive clock corrections that are encountered with the
original fault-tolerant midpoint function. Its operation is based on the principle
that excessive clock correction terms are more likely caused by long message de-
lays than by a transient fault in the node computing the clock correction term. An
adaptive varying weighting factor relates the correction term used during the last re-
synchronization round to the new derived correction term computed with the fault-
tolerant midpoint function.

For not completely connected networks the same authors presented in [4] the multi-
step interactive convergence function that extends the fault-tolerant midpoint func-
tion to hierarchical partitioned networks. Clock synchronization executes within
m steps, each step is devoted to the synchronization of a set of nodes at a higher
hierarchical level.

• The sliding window function proposed in [79] achieves an increased fault tolerance
without the disadvantage of reduced synchronization tightness. At a given round
the algorithm slides a window of fixed widthw≈ π + ε starting at the leftmost ele-
ment over a sorted array of remote clock readings. A window instance is spanned
whenever the left border of the window is aligned with a clock reading. Among all
possible window instances the algorithm selects the instance that contains the maxi-
mum number of clock readings. If two or more instances exist that include the same
number of clock readings then either the first instance is selected or the one with
the minimum variance of included clock readings. The convergence function then
calculates the mean or the median of all clock estimates within the given selected
window instance, respectively. The best achievable precision is given by

(n2 +n− f 2)ε+2Pρ(n− f)(n− f +1)
n2−5 f n+n+4 f 2−2 f

for n nodes with maximumf ≤ n
4 nodes exhibiting Byzantine behavior. For n=2 this

results in approximately∼ 5,75ε+5Pρ

21

CV -functions for internal and external clock synchronization:

• In [25] the integration of fault-tolerant external and internal clock synchronization
is addressed. The proposed algorithm provides both external and internal clock
synchronization for as long as a majority of nodes that provide access to a refer-
ence time stay correct. In particular, the algorithm assumes that from a given set of
≥ 2F + 1 reference time servers at mostF servers suffer arbitrary failures. Every
non-reference time server periodically reads all reference clocks, sorts the read-
ings and stores them in an increasing array. In this set, amongst theF +1 smallest
clock readings, there exists at least one reading that belongs to a correct reference
clock. The same applies to theF +1 greatest clock readings. Hence there is at least
one intersecting clock reading that can be used for synchronization. This algorithm
achieves a maximum external deviation of∆+ε+ρP and a maximum internal devi-
ation ofmin{2(∆+ε+ρP),4ε+9ρP+2ρβ}with ∆ denoting the maximum external
deviation of correct reference clocks.

When the majority of nodes that access the reference time, or when the reference
time itself becomes unavailable, the algorithm switches to a degraded mode where
only internal clock synchronization is performed. In this state the maximum in-
ternal deviation is bounded by 4ε +9ρP+2ρβ and the external deviation becomes
unbounded.

• The orthogonal accuracyconvergence functionOA presented in [87] operates on
intervals where every interval is given by the clock value and a corresponding ac-
curacy interval which implies the maximum deviation of the local clock value to an
external reference time. This set of clock and accuracy information is maintained at
every node that participates in the clock synchronization process and is exchanged
periodically in rounds to all other processes. At the end of a round each node applies
theOA function to the received interval set. Basically, the result ofOA is the inter-
val provided by the Marzullo2 function M applied to the set of accuracy intervals
and extended appropriately to include the reference point. The reference point is
computed independently byOA as thecenterof an interval obtained by applying
M to the associatedprecision intervalsof an according input set. The precision
intervals are related to an ”artificial” internal global time which is given for each
round and progresses as real-time does, see [87, 88].

The comprehensive analysis given in [87], which relies on the interval-based frame-
work established in [91], yields a maximum precision and clock correction of
5ε + 4Pρ and global driftρ + ε/P plus some smaller terms. Thus, with respect
to worst case precisionOA performs equivalent to the fault-tolerant midpoint func-
tion. The very detailed system model used for the analysis of the algorithm proper-
ties revealed that — apart from clock reading error, clock drift, re-synchronization
period and external deviation — the clock reading granularityG, the clock setting
granularityGs and rate adjustment uncertaintyu have an impact on the achievable
precision and accuracy (as much as 12u+ 4G+ Gs). This makes it clear that any

2M is a fault-tolerant intersection function that was introduced in Marzullo’s thesis [65] and termed
Marzullo functionin [55]. M n− f

n (I) is defined as the largest interval whose edges lie in the intersection
of at leastn− f different intervalsI j for a given set of compatible intervalsI = I1, . . . , In with n≥ 1 and

n− f ≥ 1. In other words, the resulting interval ofM n− f
n (I) is determined by sweeping from left or right

to the center over the set of interval endpoints and stopping at then− f endpoint, the latter defining the left
and right endpoint of the resulting interval, respectively.

22

attempt to improve on the worst case precision and accuracy must pay attention to
these parameters as well.

• Theoptimal precisionconvergence functionOP [88] enhances theOA function by
relating the local accuracy interval and clock value to the set of remote information.
The corrected accuracy interval at an arbitrary nodeq is obtained by forming the
intersectionM (Iq)

⋂
Iq
q, whereM (Iq) is the Marzullo function that is applied to

the set of remote interval readings andIq
q denotes the accuracy interval originating

in the node’s own clock. In a similar way, the reference point is set to thecenter
of the intersection given by theprecision intervalfrom the local nodeq and the
Marzullo function applied to the remoteprecision intervals. Algorithm OP yields
optimal worst case performance given by the maximum precision 4ε + 4Pρ, the
maximum clock correction 2Pρ and global rateρ. The worst case accuracy intervals
can be as large as 3Pρ. The same thorough analysis, as applied to algorithmOA ,
revealed that the clock granularityG and the rate adjustment uncertaintyu may have
a considerable impact by as much as 11u+3G+Gs.

• A global time service for world-wide systems, dubbedCesiumspray, is presented in
[108]. The clock synchronization scheme employed is a hierarchical mix of external
and internal synchronization where the GPS satellites form the root of the hierarchy
which spraytheir reference time over a set of nodes provided with GPS receivers,
one per local network. The second level of the hierarchy performs internal synchro-
nization, furthersprayingthe external time inside the local network. The algorithm
of the second level is derived from thea posteriori agreementsynchronization al-
gorithm [107], modified to follow an external clock, and able to use simple group
communication and membership facilities. The algorithm uses periodic broadcasts
to disseminate clock values and ensures that all correct processors choose the same
broadcast and adjustment to synchronize their clocks. Since the broadcast recep-
tion time is practically the same everywhere in the local area network it is possible
to drastically attenuate the traditional limitation imposed by the message delivery
delay variance on the obtained precision.

Probabilistic clock synchronization:
Most clock synchronization algorithms proposed in the literature try to guarantee an upper
bound on the clock skew with certainty, cf. previous discussion. However, a theoretical
limit is given by Equ.2.1.

Clock skews that are significantly smaller than the theoretical limit that can be achieved
if the requirement of determinism is relaxed and a probabilistic guarantee is accepted.

• In [15] the idea of probabilistic clock synchronization was proposed for the presence
of unbounded communication delays. With the help of a modified remote clock
estimation technique —see Sec.2.2.2— this paper analyzes a master-slave clock
synchronization mechanism. For at mostk reading attempts during which the slave
can drift from the master by as much asρk(1+ ρ)W, Cristian derived a maximum
external deviation that is given byU −min+ρk(1+ρ)W with (1+ρ)W specifying
the maximum real time which can elapse between successive reading attempts. For
an aggressive setting whereU is chosen close tot−ε a maximum deviation as small
asρk(1+ ρ)W can be achieved at the expense of many synchronization messages.
U and W are constants chosen in a way to satisfy 2D < 2U < W, where 2D is the
measured round-trip delay.

23

• The probabilistic internal clock synchronization algorithm presented in [17] uses
an improved remote clock reading method compared to [15]. In particular it ex-
ploits broadcast messages whenever possible to reduce the number of messages ex-
changed, it selects from all message pairs between two processes the message pair
that provides approximately the lowest upper bound for the clock reading error and
the processes stagger the sending of messages in time, to reduce network conges-
tion and message concurrency. Four different clock synchronization algorithms are
presented differing in the underlying failure assumptions. All four algorithms yield
a maximum deviation between correct clocks of:

4ε+4ρrmax+2ρβ

with ε, ρ, rmax andβ denoting the clock reading error, the clock drift, the maximum
real-time duration of a round and the maximum initial difference between two nodes.

• The probabilistic clock synchronization algorithm given in [2] relies on a master-
slave variant of thetime transmission protocol(TTP). When a nodep wants to
communicate its clock to a target nodeq, it sends a sequence ofn synchroniza-
tion messages encapsulating its own local time T. The target nodeq records the time
R, according to its local clock, at which it receives each message. After receipt ofn
messages nodeq estimates the time onp’s clock by using the following equations:

Test = Rn−
1
n

n

∑
i=1

Ri +
1
n

n

∑
i=1

Ti +d

with d estimating the expected value of the message delay. The maximum clock
skew between any two clocks in the system that can be obtained by this algorithm
is given byγmax= 2(εmax+(Rsynch+dmax−dmin)ρ) whereεmax denotes the desired
maximum skew at re-synchronization,Rsynchis the specified re-synchronization in-
terval,dmax anddmin are the maximum and minimum message delays andρ is the
relative clock drift. The author stated typical values forγmax of about 2msfor a set-
ting where in comparison deterministic algorithms could only achieve about 50ms
given the theoretical bound from [62].

Statistical clock synchronization:
Statistical clock synchronization algorithms rely on a statistical learning of clock param-
eters, see [21], [44] or [14]. As a consequence, the precision and accuracy reached are
generally very good even if transmission delays have a rather great dispersion, e.g. in the
internet. The main drawback herein is that precision and accuracy cannot be specified in
deterministic terms — instead quantile and confidence intervals are used therefore. These
algorithms assume that all messages from a nodep to nodeq are timestamped and that
the transmission delay is random variable where neither its expectation nor its distribu-
tion are known. The algorithms in [21] and [14] apply a linear regression for a sequence
of timestamped messages in order to compute the relative drift between the nodes. For
computation of the initial offset a remote clock reading method as proposed in [15] can be
employed.

In [113] a statistical method for time synchronization of computer clocks with pre-
cisely frequency-synchronized oscillators is proposed. A similar method is used in [58]
to perform time synchronization using the internet. The most prominent and widely used
synchronization mechanism is thenetwork time protocol(NTP) proposed in [67] and

24

Clock Filter

Clock Filter

Clock Filter

Clock
Selection:

Intersection
and

Clustering
Algorithms

Clock
Combining
Algorithm

Loop Filter

VCO

Network

Figure 2.2: Network Time Protocol

meticulously described in [68]. It uses well-engineered statistical algorithms for data
filtering and clock selection, employs a clock combining algorithm similar to [66] and
consists primarily of a software phase locked loop that keeps the local clock in synchrony
with an external time reference. The overall structure is illustrated in Fig.2.2.

Clock Rate synchronization:
For tight clock synchronization in thens-range oscillators with very low drift (e.g.
OCXO’s) are mandatory. The drawbacks of these devices are high cost, spacious design
and high power consumption. To overcome these problems, a clock rate algorithm aims
to reduce the drift termPρ without requiring an expensive oscillator at every node. Such
an algorithm tries to adjust the clock rates in such a way that the rate differences can be
bounded by a given consonance valueγ, see Sec.2.1. This value determines the amount
a clock pair drifts apart during a re-synchronization periodP, which isPγ instead of the
traditionalPρ. The goal of a rate algorithm hence is to achieve aγ that is much smaller
thanρ.

In [95, 96] such a clock rate synchronization framework is presented. It relies on the
same interval paradigm underlying theOA algorithm used for internal and external clock
state correction. Amongst other things, the framework defines some generic convergence
functions, that when applied reduce the influence of clock drift onto the overall achievable
precision and accuracy. The major result is the following bound on the consonance:

γ = 6σR+
4ε
R

(2.2)

Herein σ is the maximum oscillator stability, i.e. the maximum difference of the fre-
quency measured at different timest1 andt2: | f (t2)/ f (t1)−1| ≤ σ, see also Sec.2.3.1.
ε is the maximum uncertainty of the transmission delays and the parameterR is the re-
synchronization period of the clock rate algorithm, which should be a multiple of the re-
synchronization periodP. It is important to point out that the worst case consonanceγ of
this rate algorithm does not depend on the oscillator driftρ. To give a numerical example,
let σ = 0.0005µs/s2 for a TCXO,ε = 400 ns andR= 30 s, thenγ = 0.09µs/s+ 0.053µs/s
= 0.143µs/s by virtue of formula (2.2). This is a remarkable result in comparison to the
drift of 1 µs/s for clocks driven by a TCXO without any rate re-synchronization, see [96]
for meticulous details.

25

2.3 Requirement analysis

In order to improve on the achievable precision and accuracy several parameters need to be
addressed according to the previously given survey of clock synchronization algorithms.
These parameters are for the oscillator, its driftρ and stabilityσ, for the clock a state and
rate correction mechanism, the re-synchronization period P, the clock granularityG, the
clock setting granularityGS and the clock rate adjustment uncertaintyu. Of major interest
is the clock reading errorε and the coupling to an external reference time. In the following
subsections we will discuss and illustrate how these parameters are put together for typical
system settings.

2.3.1 Clock Properties

In order to underpin the mechanisms involved, we briefly describe a typical clock design,
provide typical oscillator parameters and sketch ways how clock corrections could be en-
forced.

The clocks in most computers nowadays are usually composed of an oscillator and an
according Real-Time Clock (RTC) chip. The time-of-day is usually tracked in hardware
within the RTC with a simple counter architecture that accumulates its registers holding
the actual time with successive oscillator ticks. A battery backup is at hand to advance the
time when the computer is switched-off, and the time can be set and adjusted via software.
The simplified block diagram in Fig.2.3accounts for this principal clock architecture.

Oscillator
Clock

Clock
Rate/State
Correction

+
-

+

Clock Offset

Figure 2.3: Computer clock control block diagram

Oscillator: In most computer systems the oscillator is an ordinary quartz crystal or crystal
oscillator that drives a counter that can be offset via software and where the feedback block
doesn’t exist at all. Hence the oscillator indicates the progress of time with periodic ticks
of a nominal frequency specified for the mounted device. The output of an oscillator can
be expressed as

U(t) = (U0 + ε(t))sin(2πν0t +φ(t))

whereU0 is the nominal peak output voltage, andν0 is the nominal frequencyof the
oscillator. The time variations of the amplitude are incorporated intoε(t) and the time
variations of the actual frequency,ν(t), are modelled byφ(t). The instantaneous frequency
can be written as

ν(t) = ν0 +
1
2π

dφ(t)
dt

.

26

For precision oscillators, the second term on the right-hand side is quite small, and it is
useful to define the fractional frequency

y(t) =
ν(t)−ν0

ν0
=

1
2πν0

dφ(t)
dt

=
dx(t)

dt
,

where
x(t) = φ(t)/2πν0

is the phase expressed in units of time. The difference between the instantaneous measure
of the frequency from the nominal specified frequency for an oscillator is termedoscil-
lator accuracy. Next to the accuracy, manufacturers specify their oscillators in terms of
long term, short term and environmental frequency stability. More general, the frequency
deviations of precision signal sources (i.e. oscillators) typically fall into two categories:
systematic and random deviations. In non-precision oscillators, systematics typically dom-
inate the frequency instability, whereas for precision oscillators random deviations are of
major concern.

Systematic deviationsare due to environmental effects (changes of the ambient tem-
perature, supply voltage, load changes, pressure, . . .) and can be expressed by

y(t) = y(t,T,U,Z,P, . . .)

For small variations these effects can be separated and linearized resulting in

y(t) = y0 +A(t− t0)+cT(t− t0)+cU(t− t0)+cZ(t− t0)+cP(t− t0)+ . . .

whereA incorporates aging effects andcT ,cU ,cZ,cP, . . . are parameters accounting for
different environmental effects. The following list surveys the effects that are usually
specified in datasheets of COTS oscillators. These parameters are oftentimes specified
following certain tests given in either the ”MIL STD 202F” or the ”IEC 60068” standards.

• Aging3 is the systematic change in frequency with time due to internal changes in
the oscillator and is hence a continuous measure of the oscillator accuracy, formally
A(t) = ∂y(t)/∂t. At a constant temperature, aging has an approximately logarithmic
dependence on time and is usually specified inppm/year. The primary causes of
crystal oscillator aging are stress relief in the mounting structure of the crystal unit,
mass transfer to or from the resonator’s surfaces due to adsorption or desorption of
contamination, changes in the oscillator circuitry and slow changes of the crystal lat-
tice. Generally, manufacturer specified long term stability includes oscillator aging
but excludes environmentally induced effects.

• The static4 frequency vs. temperature characteristics of crystal units are determined
primarily by the angles of cut of the crystal plates with respect to the crystallographic
axes of quartz, see [77]. Other factors that can effect this characteristic include
the overtone, the geometry of the crystal plate, stresses of the electrodes and in the

3In contrast to aging, drift is the systematic change in frequency with time of an oscillator [43], meaning
that drift is due to aging andchanges in the environment and other factors external to the oscillator. Hence
aging is what one denotes in a specification document and what one measures during oscillator evaluation,
drift however is what one observes in an application.

4Static means that the rate of change of temperature is slow enough for the effects of temperature gradi-
ents to be negligible.

27

mounting structure, drive level, impurities and strains in the quartz material, ionizing
radiation, the rate of change of temperature and thermal history [5]. Changing the
temperature surrounding a crystal unit produces thermal gradients, which mainly
cause the dynamic frequency vs. temperature characteristics. In general, the faster
the temperature is changed, the larger is the contribution of the thermal-transient
effect to the dynamic performance.

Almost every oscillator datasheet contains a specification of frequency stability over
an operating temperature range inppmor ppb, where the above mentioned factors
are accumulated. For higher quality oscillators, to reduce these effects, the operating
temperature is held constant above the ambient temperature with the help of an oven
and a suitable control loop.

• Acceleration changes a crystal oscillator’s frequency [109]. The acceleration can
be a steady-state acceleration, vibration, shock, attitude change (2-g tipover), or
acoustic noise. The amount of frequency change depends on the magnitude and
direction of the acceleration

−→
F , and on the acceleration sensitivity of the oscillator−→

Γ . The frequency change can be expressed as

∆ f
f

=
−→
Γ ·−→F .

Typical values of|Γ| are in the range of 10−9/g. . .10−10/g.

• Although quartz is diamagnetic, magnetic fields can change the frequency of an os-
cillator since the crystals mounting structure, electrodes and enclosure are affected.
Time-varying electric fields will induce eddy currents in the metallic parts. Mag-
netic fields can also affect components such as inductors in the oscillator circuitry
[9]. When a crystal oscillator is designed to minimize the effects of magnetic fields,
the sensitivity can be much less than 10−10/Oe.

• Power-supply and load-impedance changes affect the oscillator circuitry and, indi-
rectly, the crystal’s drive level and load reactance. A change in load impedance
changes the amplitude or phase of the signal reflected into the oscillator loop, which
changes the phase (and frequency) of the oscillation [111]. The effects can be mini-
mized through voltage regulation and the use of buffer amplifiers. Frequently found
in datasheets are frequency stability for a 5% or 10% change of supply voltage and
load respectively. The frequency of a ”good” crystal oscillator changes less than
0.5ppbfor a 10% change in load impedance or supply voltage.

• Other influences on the systematic instabilities of an oscillator are due to ambient
pressure, humidity, radiation, electric fields and gas permeation. Furthermore, the
various influences on frequency stability can interact in ways that lead to erroneous
test results if the interfering influence is not recognized during testing. For exam-
ple, building vibrations can interfere with the measurement of short-term stability.
Vibration levels of

−→
F = 10−2g. . .10−3g are commonly present in buildings. There-

fore, if an oscillator’s acceleration sensitivity is
−→
Γ = 1∗10−9/g, then the building

vibrations can contribute to the short-term instabilities at the 0.01. . .0.001ppblevel.

Except for vibration, the short-term instabilities almost always result from noise. To
characterize theserandom deviationsthe IEEE recommends either the measurement of

28

thespectral density of the phase fluctuations Sφ(f) or the phase noiseL(f) ≡ Sφ(f)/2 in
the frequency domain. In the time domain thetwo-sampleor Allan deviation5 σy(τ) is the
measure of short-term instabilities, see [6].

A fundamental average value to characterize stochastic processes is given by the auto-
correlation. For the steady-state this is obtained by

Ryy(τ) =
+∞∫
−∞

y(t)y(t + τ)dt.

Using the relation from Wiener and Khintchine one can obtain the spectral density via
fourier-transformation

Ryy(τ) d r Sy(f)

whereSy(f) is the spectral density of fractional frequency fluctuations in a 1-Hz bandwidth
at fourier frequencyf from the carrierν0. With the relation

Sφ(f) =
ν2

0

f 2Sy(f) [rad2/Hz] ∀ 0 < f < ∞

one can obtainSφ(f), the spectral density of phase fluctuations at frequencyf from the
carrierν0.

In practiceSφ(f) is measured by passingV(t) andVre f(t) through a phase detector and
measuring the detector’s output power spectrum:

Sφ(f) = (
VRMS(f)

VS
)2

whereVRMS(f) is the root-mean-square noise voltage per
√

Hz at Fourier frequencyf ,
andVS is the sensitivity in [V/rad] at the phase quadrature output of the phase detector
which compares the output of the ”device-under-test” oscillator with those of a reference
oscillator. In data-sheetsSφ(f) is usually denoted as phase noise at distinct frequency
offsets given by:

Sφ(f) = 20log(
VRMS(f)

VS
) [dBc/Hz].

Several measurement setups to directly derive these values are presented in [36] and [102].

In the time-domain the Allan deviation is defined by

σy(τ) =

√
1
2
〈(y(t + τ)−y(t))2〉

wherey(t + τ) andy(t) are adjacent measurements of the fractional frequency deviation
each averaged over a sample timeτ. The expectation brackets ”〈〉” imply taking all possi-
ble values of over an infinite time average. For a finite set ofN sequential adjacent samples

5The classical variance diverges for some commonly observed noise, such as random walk, i.e., the
variance increases with increasing number of data points. In contrast, the Allan variance converges for
all noise processes observed in precision oscillators, is easy to compute and faster and more accurate in
estimating noise processes than the fourier transform.

29

of the frequency, each averaged over a sample timeτ, one may estimateσy(τ)

σy(τ)∼=

√√√√ 1
2(N−1)

N−1

∑
k=1

(yk+1(t + τ)−yk(t))2.

In order to quantify the systematic and random influences on the frequency stability of
oscillators, Tab.2.1 gives a comparison on salient oscillator parameters of some typical
COTS oscillators extracted from various datasheets. A similar overview presented in Tab.
2.2and taken from [110] specifies just ranges rather than actual product data.

XO VCXO TCXO MCXO OCXO
Company Quarz-Technik AXTAL Raltron Temex MTI
Type TS-14/5 AXIS10 TX045 QEM77-AH 230-0666
Frequency stability ±20ppm ±15ppm ±1ppm ±20ppb ±10ppb
vs. Temperature -20/+70◦C -20/+70◦C -20/+70◦C -30/+85◦C -30/+70◦C
Frequency stability ±2ppm ±3ppm ±0.2ppm ±1ppb ±0.5ppb
vs. supply voltage change ±10% ±5% ±5%
Frequency stability ±2ppm ±0.2ppm ±1ppb ±0.5ppb
vs. load change ±10% +1 gate
Stability/1 sec. 20ppb 0.1ppb
Stability/ 1 day 1ppb 0.5ppb
Stability/ 1 month 10ppb
Stability/ 1 year ±5ppm ±3ppm ±1ppm 70ppb
Phase Noise
[dBc]@1Hz -95
[dBc]@10Hz -80 -70 -125
[dBc]@100Hz -110 -100 -145
[dBc]@1kHz -135 -130 -150
[dBc]@10kHz -145 -140 -160
[dBc]@100kHz -140 -160
Size [cm3] 1.36 0.82 2.1 19.3 19
Warmup Time 4ms 5min.
Power [W] 0.225 0.25 0.1 0.03 1.4/5

Table 2.1: Salient characteristics of COTS Quartz Oscillators (from datasheets)

Quartz Oscillators Atomic Oscillators
TCXO MCXO OCXO Rubidium RbXO Cesium

Accuracy/year 2ppm 60ppb 10ppb 0.5ppb 0.7ppb 0.02ppb
Aging/year 0.5ppm 20ppb 5ppb 0.2ppb 0.2ppb 0
Frequency stability 0.5ppm 30ppb 1ppb 0.3ppb 0.5ppb 0.02ppb
vs. Temperature -55/+85◦C -55/+85◦C -55/+85◦C -55/+68◦C -55/+85◦C -28/+65◦C
Stability/1 sec. 1ppb 0.3ppb 0.001ppb 0.003ppb 0.005ppb 0.05ppb
Size[cm2] 10 50 20-200 800 1200 6000
Warmup Time 0.1 0.1 4 3 3 20
[min] (to 1ppm) (to 20ppb) (to 10ppb) (to 0.5ppb) (to 0.5ppb) (to 0.02ppb)
Power [W] 0.05 0.04 0.6 20 0.65 30
Price (USD) 100 1000 2000 8000 10000 40000

Table 2.2: Comparison of frequency standards’ salient characteristics (estimates)

From the data in Tab.2.2 it can be seen that an improvement on the clock drift can be
achieved by trading ordinary quartz crystal oscillators (XO’s) with oscillators that are more
stable and accurate, e.g. an ovenized quartz crystal oscillator (OCXO). Unfortunately, this

30

also incurs some drawbacks, namely increased cost, power and space requirements and a
long warmup time.

A different solution to cope with clock drift and clock instabilities is the utilization
of a clock rate synchronization mechanism. The well engineered algorithm presented in
[96] and [95] along with a rigorous analysis revealed that the clock rate stability (i.e. the
maximum rate change per unit of time) takes over the role of maximum hardware drift
rate in traditional clock synchronization approaches. With the values for the TCXO in the
Tab. 2.2 this would mean a trade of the accuracy specified with 2ppmfor the short term
stability 1ppbthat differ by a factor of more than 200. Hence when implementing a clock
rate synchronization algorithm cheaper oscillators may satisfy the requirements for tight
clock synchronization.

Clock: For clock synchronization some means to correct the local clock are required.
Clock correction facilities can be either employed at the oscillator, the counting device or
in software. A clock implemented in software on a host CPU is influenced by the operating
system interaction and the CPU load, hence time should be maintained preferably with a
hardware clock and means for correction should be made available in hardware as well.

Applying clock corrections at the oscillator requires a facility to vary the frequency of
the oscillator itself:

• Some oscillators allow for a frequency adjustment via a potentiometer within a very
narrow frequency range. With the help of a digital potentiometer the adjustments
could be performed via a host CPU as well. Drawbacks of this method are the
limited range for clock correction and the worsening influence of the potentiometer
onto the clock drift and stability.

• More suitable devices, therefore, areMicroprocessor Compensated Crystal Oscil-
lators (MCXO), Digitally Temperature Compensated Crystal Oscillators(DTCXO)
or Voltage Controlled Crystal Oscillators(VCXO). They offer a wider range on fre-
quency adjustments and don’t lack the worsening influence of the potentiometer.
However, making an oscillator tunable over a wide frequency range degrades its sta-
bility because making an oscillator susceptible to intentional tuning also makes it
susceptible to factors that result in unintentional tuning [110].

A different approach replaces the counter forming the actual clock by some hardware
device that allows for clock corrections. Such a device provides greater flexibility and may
support other features required for clock synchronization as well, e.g.:

• The pioneeringClock Synchronization Unit(AMI S65C60) omits or inserts single
clock pulses at its clock register input, see [53]. This clock device requires an os-
cillator running at a multiple of the nominal clock frequency in order to allow for
fine clock adjustments. Clock frequencies of about 100Mhzare required in order to
achieve a smooth rate adjustment of 10−8s/s. Unfortunately, oscillators providing
such high clock frequencies don’t provide clock drifts and stabilities as those in the
range of about 10−25MHz.

• An adder-based clock forms the centerpiece of ourUniversal Time Coordinated
Clock Synchronization Unit(UTCSU) clock chip. Employing an adder gives the
freedom to add a particular amount (clock step) to the clock register at every pulse.
A rate change can be achieved by varying this amount, which goes in effect almost

31

instantly and holds up linearity. Figure2.4illustrates this simple technique for com-
pensating a 10% slowdown of a clock. By extending the time register internally

Real Time

Clock
Time

corrected clock
clock 10% too slow

Figure 2.4: Adder based clock

with an ultra-fractional part it is possible to accumulate and correct time portions
precisely. Apart from this adder-based clock principle our UTCSU Asic hosts a
wealth of other features, see [97]. For implementation details the interested reader
is referred to [61].

2.3.2 Clock Reading Error

Apart from clock drift, stability, granularity and rate adjustment uncertainty the clock
reading error for both the local and remote clock is one of the main limiting factors for tight
clock synchronization. Every nodep in a distributed system that wishes to synchronize its
clock to the clock of a remote nodeq and vice versa, needs to estimate the remote clock
value. Two different ways to estimate remote clocks have been proposed so far:

I. A Clock Synchronization Packetis sent periodically in a one-way fashion from node
p to nodeq. Nodeq in turn estimates the remote clock value on nodep based on
timestamps that are piggy-backed onto this packet. This is possible when commu-
nication delays are bounded and clocks are initially synchronized, cf. Sec.2.2.2.

II. Remote clocks may be estimated with the help of round-trip packets as described
earlier in Sec.2.2.2as well. This clock reading method provides clock values and
error bounds and works in non-synchronous systems as well, however it doubles the
number of messages.

The one-way time transfer usually delivers minimal uncertainty and is hence preferable
for high accuracy clock synchronization. This method requires a mechanism to measure
the constant and the variable transmission delays from nodep to nodeq, which limit the
accuracy for the estimation of a remote clock.

The following list details the steps involved in packet transmission/reception, see
Fig. 2.5. Although these steps are derived from an Ethernet-based network, they apply
to other networks as well (e.g. fieldbus systems). The contribution to the clock reading er-
ror of every step depends on the actual architecture and access policy of the chosen system.
For the remainder we concentrate on Ethernet systems.

(1.) The CPU at nodep assembles a packet and stores it in an associated network buffer.

32

Figure 2.5: Remote Clock Reading Error

(2.) The CPU at nodep signals its associated network controller to take over for trans-
mission.

(3.) The network controller tries to acquire the network medium.

(4.) The network controller at nodep reads the packet data from the buffer, serializes
and encodes the data-stream and pushes the resulting bit-stream onto the medium.

(5.) The network interface at the receiving nodeq pulls the bit-stream from the medium,
de-serializes the data and writes the packet into an according receive buffer structure.

(6.) The network controller at the receiving nodeq notifies its CPU of packet reception
via interrupt.

(7.) The CPU at nodeq processes the packet.

Note that packet assembly and processing involves traversing of several layers of soft-
ware since clock synchronization is usually built on top of some network protocol, e.g.
theInternet Protocol(IP). An actual implementation of clock synchronization in software
draws timestampsTS and TR respectively, when the clock synchronization algorithm is
active — in the above list before the first and after the last item. For some scenarios the
network controller at nodep may find the network medium idle as well as the CPU at node
q may actually process the receipt packet immediately, yielding a minimum end-to-end de-
lay δmin

end−to−end. Other times a rather large end-to-end delayδmax
end−to−end can be involved

due to excessive queueing delays and CPU overload.
With bounded transmission delays the clock difference between the two nodes is given by

Cq(t)−Cp(t) ∈ TR−TS− [δ− ε,δ+ ε]

with ε = δmax
end−to−end−δmin

end−to−end.

Providing a suitable timestamp mechanism which minimizes the transmission delay
variability ε is crucial for tight clock synchronization. Hence timestamps should be trig-
gered as close as practical to the physical layer. When properly implemented, the trans-
mission delay variabilityε can be reduced to the variability due to the physical layer con-
nectionεc and devicesεd and due to synchronizer stagesεs, which are required in asyn-
chronous communications to bit-synchronize the data streams flowing from one physical

33

clock domain to another. Usually, there are two clocking domains involved in serial trans-
mission, a transmit and a receive clock domain, the latter being re-generated from the
received serial datastream. A local clock device could use either one of these two clock
domains (preferable) or an own clocking domain as its source. Thus, when timestamps
should be drawn at a predefined edge of a bit cell within the clock synchronization packet,
the different clocking domains need to be synchronized beforehand. For commonly used
dual-stage flip-flop synchronizersεs = 1/ f with f denoting the frequency of the receiving
clock domain, see [19]. To keep the error due to this sampling small, a sufficiently high
clock frequency for over-sampling is mandatory.

Hence, for a network interface design one should try to minimize the amount of dif-
ferent clock domains and to maximize the clock frequency. The factorsεc andεd however
typically require experimental evaluation, due to the different physical layer devices and
network topologies.

2.3.3 Clock Granularity an Clock Rate Adjustment

As illustrated in Fig.2.3 the local clock of a node is assumed to be built upon a physical
clock (usually driven by a quartz oscillator) of nonzero granularityG (micro-)seconds,
which allows adjustment of rate and state. Therefore, clock ticks take place every (fixed)
G > 0 logical time seconds. In practice, clock states can be adjusted at this logical times
with a finite clock setting granularityGS with GS≤ G. Since in practice neither the oscil-
lator frequency nor the clock resolution can be increased arbitrarily, every clock correction
mechanism is bound to make some small errors due toG andGS. However, most clock
synchronization algorithms, except those developed in the SynUTC project [91, 87, 88],
didn’t consider these effects, since the remote clock reading error dominates by several
magnitudes for COTS network interfaces without hardware timestamping capabilities.

Most clock designs correct local time at the clock rather than the oscillator, by tam-
pering with raw oscillator ticks. These clocks tick at the intrinsic rate most of the time,
whether they are adjusted or not. However, when the accumulated deviation between the
intended and observed local time is about to exceed some boundu, the next tick is modi-
fied. This is enforced, e.g., either by pulse advancing/deletion, pulse suppresion/insertion
or with an adder-based mechanism. This rate adjustment uncertaintyu causes an addi-
tional uncertainty in the relation between logical time and real-time. The amount that a
particular clock design contributes toG,GS andu for different clock models were first
presented in [91] and revised in [87]. For any kind of clock model the uncertainties due to
the granularity and the rate adjustment uncertainty can be reduced by increasing the clock
frequencyfosc. As an example, the UTCSU clock Asic provides a granularityGS= 444as
that is internally extended to 1.73as. In addition, when operating at 25Mhz, it provides a
rate error of 1.73as/40ns= 43.3∗10−12, see [61]. Although these values would satisfy
our needs, it provides timestamp registers for remote clock readings only with a granular-
ity of G = 2−24s≈ 60ns, which is clearly not sufficient for this kind of synchronization
tightness.

2.3.4 Coupling to an External Reference Time

Tight coupling to an external time standard is required for external clock synchronization.
In order to avoid a single point of failure coupling to different time sources that follow
the official time standard UTC is desirable. A mechanism that is provided by most GPS

34

receivers or receivers that follow other time sources as, e.g., LORAN-C or DCF-77, is
the one pulse-per-second(1 pps) mechanism. Many GPS timing receivers provide an
additional 10-MHz GPS output signal, that is derived from the frequency information
received from the space vehicles atomic clocks. As long as GPS is up and running, this 10
MHz signal is very accurate6 and best suited for sourcing a local hardware clock. In times
of GPS outages, performance degrades to numbers inherent to the local GPS receiver
oscillator design. Position, date and timestamps with a resolution of1 s are obtained
through a serial interface while the exact start of each second is marked with either the
rising or the falling edge of the1 ppssignal. In addition, some GPS receiver designs use
a dedicated signal which goes high or low if the receiver clock is locked to the satellite
clock.

Summarizing the standard GPS timing interface that can be found on most COTS
GPS receivers comprises a subset of the following hardware components and should be
supported by any hardware support for clock synchronization:

• A bidirectional RS-232C port used to obtain position and time information and for
configuration.

• A 1 ppsoutput or a Time-Mark output disciplined to GPS time or UTC.

• A 10 MHz reference frequency output disciplined to the satellites atomic clocks.

• A status line indicating the GPS receiver health condition (locked/unlocked).

2.4 Summary

This chapter established a general system model and identified key building blocks of
existing clock synchronization algorithms. Next, relevant algorithms were informally de-
scribed along with a listing of their achievable precision/accuracy. The addressed problem
was to provide an overview of existing algorithms and to extract limiting parameters in
order to identify possibilities for significant improvements, which is the primary aim of
this thesis. The worst case analysis of the achievable synchronization precisionπ of the
presented deterministic algorithms can be formulated by

π = c1ε+c2Pρ+c3G+c4u+c5GS (2.3)

wherec1 . . .c5 are small constants depending on the particular algorithm.
Herein,

1. ε denotes the transmission delay uncertainty dominating the remote clock reading
error (ms-range for Ethernet using SW-based timestamping),

2. Pρ denotes the clock drift during the resynchronization period (determined by the
resynchronization periodP and the oscillator driftρ; µs/s-range for TCXOs),

3. G gives the clock granularity (resolution of clock readings),u≤ G the rate adjust-
ment uncertainty (timing error due to discrete rate adjustment; usuallyu = 1/ fosc)
and

6A frequency stability of 10−11 over a 24 hours average and 5.10−12 over a 7 day average can be achieved.

35

4. GS accounts for the finite clock setting granularity.

Even tighter synchronizations can be achieved at the expense of determinism when
using statistical or probabilistic algorithms.

When the clock driftPρ becomes the limiting factor better oscillators with smaller drift
(OCXO’s, etc.) become mandatory. Unfortunately, these devices have significant cost,
size and power constraints that make them less suitable for commercial implementations.
A clock rate correction can be used in this case to improve on the error due to the clock
drift.

For providing accuracy information towards an external reference time adequate cou-
pling of a suitable hardware clock to a suitable timing receiver is required. The last section
of this chapter contained a requirement analysis in which these parameters, their signifi-
cance and environment were described to some extent.

36

Chapter 3

Related Work

As stated in the introduction clock synchronization techniques may come in use in vari-
ous ways. In pure hardware-based synchronization, dedicated clocking lines and clocking
circuitry are employed to achieve a clock skew granularity down to the order of some
ns. The extra interconnections are expensive and impractical for large systems and for
systems with physically separated components. On the other end of the spectrum, soft-
ware synchronization methods are generally used in loosely coupled systems where the
order of achievable synchronization skew is in the range of somems. Clock values are ex-
changed via message passing and used to synchronize the clocks at every node, hence no
additional wiring and circuitry is required. If software synchronization alone is used, the
latency and computational message overhead as well as message routing delays limit the
achievable tightness of synchronization. System faults only exacerbate the message rout-
ing, traffic volume, and delivery time deviations. Unlike hardware techniques, the costs
associated with software synchronization are related to the overhead of generating and
handling the message traffic. Thus as a scalable general solution for distributed systems,
synchronization based solely on either hardware or software techniques is often inefficient
or impossible.

Alternatives to these conventional synchronization methods have been developed to
enhance the fault resiliency and efficiency of synchronization, see [103]. Hybrid syn-
chronization primitives are derived by combining software and hardware techniques and
exploiting the benefits of each approach. A software model is typically superimposed over
the system functions, with some functions off-loaded to dedicated hardware. This section
briefly presents the clock synchronization concepts underlying different communication
systems. Most bus-systems for safety critical embedded systems are time-triggered, em-
ploying atime division multiple access(TDMA) protocol. Hence, these systems specify
an own, individual communications protocol, where clock synchronization is integrated
and well established. Examples for these are the following bus systems employed and
designed for avionic and automotive systems:

• Multicomputer Architecture for Fault-Tolerance(MAFT), a distributed system de-
signed to provide reliable computation in launch vehicle avionics systems, see
[48, 104].

• SAFEbus was developed by Honeywell ([37, 38]) to serve as the core of the Boe-
ing 777 Airplane Information Management System, which supports several critical
functions, such as cockpit displays and airplane data gateways. The bus has been
standardized as ARINC 659 [41].

37

• Scalable Processor-Independent Design for Electromagnetic Resilience (SPIDER)
is being developed at the NASA Langley Research Center as a research platform
to explore recovery strategies for radiation-induced high-intensity radiated fields
and/or electromagnetic interference (HIRF/EMI) faults, and to serve as a case study
to exercise the recent design assurance guidelines for airborne electronic hardware
(DO-254) [70].

• The Maintainable Real-Time System (MARS), a fault-tolerant distributed system
for process control [49].

• The Time-Triggered Architecture (TTA), developed at the University of Technol-
ogy Vienna, is deployed for safety-critical applications in cars and for flight-critical
functions in aircraft and aircraft engines [50, 51]

• The FlexRay bus system is being developed by a consortium including BMW, Daim-
lerChrysler, Motorola, Philips and others. It is intended for powertrain and chassis
control in cars [71].

Systems that solely propose concepts for clock synchronization superimposed onto
existing, state-of-the-art communication protocols are:

• The NTI-module, an M-module for VME carrier CPU boards, developed in the
course of the SynUTC project at the University of Technology Vienna [34] for
Ethernet-based systems.

• Systems relying on the new IEEE 1588 standard [22].

• Extensions to several fieldbus systems, e.g., TTCAN, an extension of the Controller
Area Network (CAN).

The following sections illustrate the most relevant concepts used for clock synchro-
nization for some of these systems as they are publicly documented in scientific literature.
Note that the concepts used in MAFT and SAFEbus rely on dedicated clocking lines, a
mechanism that is not directly related to the concepts targeted in this thesis. SPIDER
and FlexRay are still under development, hence only preliminary information is avail-
able. MARS, FlexRay and TTA do not use dedicated wires or signaling to communicate
clock readings among the nodes attached to the network; instead they exploit the fact that
communication is time triggered by a global schedule. Closest related to the concepts
presented in this thesis are those used in the NTI-module design and the mechanisms pro-
posed by the IEEE 1588 standard.

The next sections briefly present some of these systems and address how they han-
dle the identified parameters, in particular the clock reading error and the coupling to an
external reference time, as outlined in the previous chapter.

3.1 MARS - The Maintainable Real-Time System

An engineered hybrid clock synchronization approach is built into the distributed fault-
tolerant real-time system MARS [49]. The system architecture strictly separates issues of
synchronization and timeliness, data transformation, and the dependability aspects (e.g.,

38

error detection, error handling and redundancy management). This is enforced by imple-
menting and instantiating all system activities in atime-triggeredfashion. The MARS sys-
tem is built on the concept of clustering, where each cluster consists of several nodes inter-
connected by a synchronous real-time bus run by atime division multiple access(TDMA)
protocol. TDMA guarantees each component to have access to the medium at equidis-
tant points in time, calledTDMA slots. Hence, there is a constant number of messages
every node may send in a time interval. Dedicated TDMA slots are used for exchang-
ing clock synchronization messages. Here every message contains the timestamp of the
sender’s clock and the receiving node attaches the timestamp of the receiver’s clock to the
incoming message. Every node records the time differences to the other nodes periodi-
cally. Based on this information, a correction term for the local clock is calculated with
the Fault-Tolerant Average Algorithm that is applied to the local clock.

The clock synchronization concept of MARS first introduced the following significant
innovations:

• Memory-mapped timestamping is used to reduce the remote clock reading error.

• The Clock Synchronization Unit (CSU), maintains the local clock and provides fa-
cilities for clock correction, cf. [73, 53]

• External clock synchronization is achieved by coupling one node to an external ref-
erence timing receiver.

Figure 3.1 schematically shows the timestamp mechanism for messages in MARS.
The CPU at the sending nodep places a waiting message in a transmit buffer within
its memory and signals the network controller to start with transmission. The network
controller in turn fetches the packet from the memory by direct memory access (DMA)
and streams the serialized data onto the MARS bus along with an associated TDMA slot.
This method exploits the capability of the network controller to package several memory
fragments continuously into one message for timestamping. In particular the last fragment
of each message is a memory-mapped, real-time register of the CSU clock chip that is
accessed at the moment of sending. At the receiving nodeq an interrupt is issued by
the network controller immediately after a message arrives. This interrupt is directed to
the CSU clock chip at the receiver, which generates a timestamp. Afterwards, the CPU
reads this timestamp from the CSU register and copies it to the according receiver message
buffer.

Varying delays due to the network controller internal FIFO structures and arbitration
latencies at the receiving node dominate the contribution to the remote clock reading error.
Note that the arbitration delay can become quite large when the network controller is not
able to arbitrate the memory at the receiver, e.g., if the CPU uses the memory. Further-
more, it must be ensured that the received timestamp is read off the CSU before a second
one is drawn.

The CSU maintains local (G∼ 1µs) and global (G∼ 100µs) time with a counter-based
approach. The clock times are continuously rate and state correctable with the help of
correction terms that can be set in the range from 100ns to 10ms. Clock correction is
enforced by insertion/suppression of clock ticks. Therefore, the CSU must operate from
a multiple of the nominal clock frequency in order to allow for fine adjustments. The
drawback of this technique is not only a higher required bandwidth, but also an unsatis-
factory correction granularity (a small rate change means a long delay until one pulse gets
modified).

39

CSU sytem time

Message
Buffer

Memory

Timestamp

DMA

Network
Controller

Network
Controller

CSU timestamp

Message
Buffer

Memory
DMA

CSU

Interrupt

Sending Node p Receiving Node q

Figure 3.1: Timestamp mechanism in MARS

Furthermore, it contains a sample register for accurate determination of an interrupt
signal that is dedicated to sample the arrival time of an incoming message. A DMA-like
host interface is used to draw and transparently map a timestamp into an outgoing message
after the media access to the network has been granted.

To facilitate external synchronization every MARS cluster contains a node with access
to an external time standard that measures the deviation between the cluster’s time and
those of the standard. An external clock synchronization task broadcasts an appropriate
rate correction that affects the speed of all internal clocks independently of corrections due
to internal clock synchronization. However, the CSU has no interface for direct coupling
of an external timing receiver, hence host CPU interaction is required, a fact that worsens
the achievable accuracy.

In [49] the authors state that the MARS implementation, where the TDMA protocol is
run atop a 10 Mbps shared media Ethernet interface, achieves a synchronization tightness
below 10µs.

3.2 The Time-Triggered Protocol

The Time-Triggered Protocol (TTP) was designed to meet the stringent requirements for
distributed fault-tolerant control systems, see [50]. Currently there exist two available
implementations of TTP:

• The TTP/A protocol is a low-cost member of the TTP protocol family that is in-
tended for non fault-tolerant field-bus applications. It’s primary usage is to connect
a node with sensors and actuators.

• The TTP/C protocol is the full version of the time triggered protocol, that provides
several services required by a real-time bus of a fault-tolerant distributed system.

Every node consists of a host processor performing the application specific task and a
communication controller executing the TTP/C protocol. These two parts are intercon-
nected by thecommunication network interface(CNI) implemented with the help of a

40

dual-ported memory. Additionally, every node contains a bus guardian. The bus guardian
ensures the correct behavior of a node in the time domain by controlling the bus access of
the TTP/C communication controller. Upon a violation of the access pattern it terminates
the controller operation in order to fulfil the fail-silent condition.

Several nodes can be interconnected with two redundant communication channels em-
ploying different bus structures (star, linear bus, etc.). A set of these nodes forms a cluster,
where every node can communicate directly by way of broadcast messages using the time
triggered communication protocol TTP/C. Clusters may be connected via gateway nodes
to allow communication between nodes of different clusters, that is inter-cluster commu-
nication. In addition, access to an external reference time can be realized via time gateway
nodes.

Application
Host

CNI

TTP/C
Controller

Bus Guardian

TTP/C node

Channel A

Channel B

ECU

ECU
ECU

ECUGateway

Gateway

ECU

ECU
ECU

TTP ClusterTTP Cluster

External
Reference Time

Figure 3.2: TTP/C Node (left) and System (right) Architecture

The medium access strategy of TTP is based on a static TDMA scheme. The total
channel capacity is divided into a number of slots that are statically assigned to the nodes.
This a-priori knowledge is used for the efficient implementation of several protocol ser-
vices.

One particular service is a fault-tolerant global time base of known precision at all
nodes. Therefore, TTP provides a fault tolerant internal synchronization of the local clocks
without any overhead in frame length. Due to the static TDMA cycle receivers know a-
priori the point in time each message is transmitted. Assuming the transmission latency is
constant the deviation of the pre-specified send time and the observed receive time indi-
cates the difference between the sender’s and receiver’s clock. Hence, it is not necessary
to exchange explicit synchronization messages or to carry the value of the send time in
the message which would extend the message length. Thus every node contains a local
oscillator that ticks with a frequency determined by its physical parameters. A subsequent
number of these node-local microticks form the so-called macrotick which is used to incre-
ment the global time counter of the node. In order to establish a global timebase with the
specified precision the macroticks of each node must be re-synchronized periodically with
the operational ensemble. The macrotick generation of the local node (=global timebase)
can be influenced by changing the number of microticks per macrotick. This timebase is
maintained by an integrated hardware clock design, embedded in the TTP/C controller,
that follows the principles and mechanisms derived in the MARS project, see [52]. Clock
synchronization is achieved by measuring the difference between the expected arrival time
of a message and its actual arrival time, determined by the signal edge of the start of a new

41

message. Note that the expected arrival time is a function of the receiver clock and the
actual arrival time is in direct relation with the sender clock. The difference of both seen
at the receiver is measured with the granularity of the receiver clock that directly relates to
the achievable clock precision. Afault-tolerant averagealgorithm is employed to correct
the clocks at every node. The achievable precision here is given by

π = (ε+2ρR)((N−2k)/(N−3k))

for N clocks within the system wherek clocks may exhibit Byzantine faults. Again the
major contribution is due to the clock reading error that is determined by the variability
in the edge detection of the start of a new message plus the variability in the message
transmission times. Therefore, the rates of both clocks as well as the transmission speed
of the link dominate this value. For an IP-module prototype implementation running at a
bitrate of 100 kb/s a precision of 2.356µsand a granularity of 3.8µswere measured, see
[52].

External clock synchronization is not part of the TTP/C protocol but can be added
by giving a node access to an external time base. Atime gateway, see Fig.3.2, forces
its view of external time on all its subordinates by periodically sending a broadcast time
message. However, in order to avoid relative time measurement errors due to a malicious
time gateway node the time server may only have a limited authority to correct the clock
rate of a cluster.

The reading errorε is determined by the variability in the edge detection of the start
of a new message plus the variability in the message transmission times. This variability
is determined by the physical shape of the signal on the transmission channel and the
granularity of the local time measurement (the microticks) in the node that records the
edge detection. Minor effects, e.g., the clock rate adjustment uncertainty as identified in
[85] are of no/small concern in TTP systems, since the achievable precision is targeted to
theµs-range. More troublesome becomes the clock drift that is related to the precision with
a factor of 2ρR. Since the re-synchronization periodRdepends on the static TDMA layout,
this factor will degradeπ, when a cluster is composed of many nodes, hence this should
be kept in mind during system design. Furthermore, the support for coupling external
reference timing receivers has several deficiencies:

• The TTP/C controller provides neither a1ppsinput nor a corresponding serial inter-
face for timing receivers.

• Processing of this timing information is usually a task of the application host.

• Coupling of multiple reference timing receivers is not directly supported in
hard+firmware either.

Concerning clock synchronization the FlexRay system is very similar to the TTP sys-
tem, therefore the addressed items in general apply to this system as well. Differences arise
due to the different bus protocol that is a mixture of static TDMA and dynamic concurrent
access mechanisms, see [71].

42

3.3 The Network Time Interface

The Network Time Interface(NTI) was developed in the SynUTC project, see [33, 34,
89]. It was designed to support fault tolerant external clock synchronization in distributed
systems that are based on standard, packet-oriented networks.

In the SynUTC approach, every node has to be equipped with a hardware clock, in
our case theUniversal Time Coordinated Synchronization Unit(UTCSU) [97], a general
purpose CPU responsible for executing the software part of the clock synchronization al-
gorithm, and a Communication Coprocessor, which provides access to the network by
reading/writing data packets from/to (shared) memory independently of CPU operation
(e.g. via DMA). For external synchronization purposes, some nodes need to be provided
with external time sources like GPS satellite receivers. Although such nodes have addi-
tional functionalities, their hardware architecture remains the same.

CPU Memory

Network
Controller

Node A

CPUMemory

Network
Controller

Node B

GPS
Receiver

Network

External
Reference Time

Figure 3.3: SynUTC: System Structure and NTI Architecture

The NTI built as an M-Module contains the clock (UTCSU), dedicated memory for
packet transmission/reception and some glue logic required for transparent timestamping.
The mechanism for the exchange of clock values is a refinement of the principle used in
the MARS project. In particular, it provides timestamp facilities whenever the network
controller grabs a packet for transmission from the memory and when a packet is received
and written to the memory respectively. Here a dedicated address decoding logic was used
to trigger timestamps and to map the transmit timestamp transparently into the outgoing
datastream whenever the network controller reads a predefined address location within the
local memory dedicated for this purpose. On packet reception the receive timestamp is
copied in the receive interrupt service routine from the according UTCSU register to the
dedicated memory location within the packet. For both situations the required fields within
the packet payload are overwritten by this particular mechanism, hence the according
clock synchronization driver software has to account for this circumstance. In contrast
to the approach taken in the MARS project the timestamps are here inserted at the start
of the payload, see Fig.3.4, and the trigger position in time of the timestamps can be
adjusted to allow for an optimization of the implementation. Furthermore, this method
doesn’t need to misuse the receive interrupt request for triggering of receive timestamps,
since the interrupt is usually required for several other purposes as well and would hence
trigger additional timestamps rather frequently.

The NTI profits of the wealth of functionality of the customUniversal Time Coor-
dinated Synchronization Unit(UTCSU), see [97, 61]. Due to its flexible bus interface,

43

Transmit TS

don't care Payload

Source Addr. don't care PayloadTransmit TSDest. Addr.

Dest. Addr.

FCSPreamble

Receive TS PayloadDest. Addr. Transmit TSSource Addr.

Receive TS

Sender UTCSU:

Receiver UTCSU:

Transmit Buffer:

Packet:

Receive Buffer:

Figure 3.4: NTI Timestamping

featuring dynamic bus sizing and little/big-endian byte ordering, the UTCSU can be used
in conjunction with virtually any 8, 16 and 32 bit CPU. Figure 3 gives an overview of the
major functional blocks inside the UTCSU. Fig.3.5shows a block-diagram of the major
functional blocks inside the UTCSU.

The centerpiece of the UTCSU is the local clock implemented as a 91 bit wide adder
within the Local Time Unit. The most significant part utilizes a 56 bit NTP-time format
which maintains a fixed point representation of the current time with a 32 bit integer part
and a 24 bit fractional part. Clock time can be read atomically with a resolution of 2−24≈
60ns. The local clock of the UTCSU can be driven by any oscillator frequencyfosc in the
range of 1. . .25MHz, is fine-grained rate adjustable in steps of about 10ns/s, and supports
state adjustment via continuous amortization.

LTU

ACU

SSU

GPU

APU

NTU

SNU

BTU

BIU

ITU

Timestamp[..]

1pps[..]

Status[..]

APP[..]

APPL

HWSNAP

SYNCRUN

NTPA[..]

Interrupts[..]

DATA[..]

ADDRESS[..]

CONTROL[..]

fosc

Unit Name

ACU Accuracy Unit
APU Application Unit
BIU Bus Interface Unit
BTU Built-In test Unit
GPU GPS Unit
ITU Interrupt Unit
LTU Local Time Unit
NTU Network Time Interface Unit
SNU Snapshot Unit
SSU Synchronization Subnet Unit

Process: Atmel-ES2 0,7 um
Die Size: 100 mm2

Package: MQFP-208
max. operating Frequency: 25 MHz

Figure 3.5: UTCSU block-diagram and technical data

44

To achieve both internal and external clock synchronization, the NTI approach relies
on an interval-based paradigm: Real-timet (usually UTC) is not just represented by a
single time-dependent clock valueC(t) here, but rather by an accuracy intervalA(t) that
must satisfyt ∈ A(t). More specifically, accuracy intervals are provided by combining
an ordinary clockC(t) with a timedependent interval of accuracies[−α−(t),α+(t)] taken
relatively to the clock’s value, leading toA(t) = [C(t)−α−(t),C(t)+ α+(t)]. Since ac-
curacy intervals need to be maintained dynamically, they are quite small on average. For
an in-depth treatment of system modelling and clock synchronization algorithms based on
this paradigm consult [91].

In order to support interval-based clock synchronization, the UTCSU contains two
more adder-based ”clocks” in the Accuracy Units that are also driven by the oscillator
frequencyfosc. They are responsible for holding and automatically deteriorating the 16 bit
accuraciesα−(t) and α+(t) to account for the maximum oscillator drift. Both can be
(re)initialized atomically in conjunction with the clock register in the LTU. In addition,
some extra logic suppresses a wrap-around and zero-masks potentially negative accuracies
during continuous amortization.

Several trigger signals sample the current local time/accuracy into dedicated UTCSU
registers in the Synchronization-Subnet Units, GPS Units and an the Application Unit.
The manyfold implementation of these units facilitates redundant communication archi-
tectures and/or gateway nodes. Two of these trigger signals serve on the NTI as transmit
and receive timestamp triggers respectively. Furthermore, several other trigger signals
allow direct coupling of GPS receivers via a dedicatedone pulse per second(1pps) and
an optionalstatussignal.

A thorough system evaluation presented in [90] and [89] gives a worst case accu-
racy/precision in the 10µs range (average case 1µs). In addition an analysis on the mea-
sured data, in particular the clock reading errorε, revealed several factors that limit tighter
synchronization:

• Arbitration latencies and transmission speed limitations of the involved bus inter-
faces between the CPU, the memory and the network controller.

• Uncertainties caused due to network controller internal peculiarities.

3.4 IEEE Standard 1588

IEEE 1588 is a new standard –approved in 2002– for a precision clock synchronization
protocol for networked measurement and control systems. The specifiedprecision time
protocol(PTP) is applicable to systems communicating by local area networks supporting
multicast messaging within subnets including, but not limited to, Ethernet. Hence, in
a PTP system the nodes participating in clock synchronization can be interconnected in
various different ways, e.g., direct or via repeaters, switches and/or routers. Provisions are
made to minimize delay variations incurred in the message transmission used for clock
synchronization between any sending and receiving timestamp. This is enforced by the
requirement to generate timestamps as close to the physical layer as is practical for a given
clock implementation. Small delay fluctuations introduced by the PTP protocol stack
and by network components (e.g., due to repeaters in an end-to-end communication path)
can be reduced by averaging. When switches or routers are in-between an end-to-end

45

path, these variations may become too large. Therefore, PTP specifies a boundary clock
mechanism that passes-by these elements. In addition, boundary clocks are mandatory
when synchronizing across subnets.

PTP specifies a master-slave structure using a best-master-clock selection mechanism
to dynamically select the master within a subnet. All slaves subsequently synchronize
their clocks to those of the selected master. A master clock selected across several subnets
is termed grand-master. Exchange and selection of clock values involves the following
steps:

1. A node in the master state sends a multicast SYNC packet to all slaves containing an
estimate of the sending time and characterization information of the master clock.

2. The timestamp logic at the master node senses this outbound packet close to the
physical layer and triggers a precise send timestamp from the master nodesReal-
Time-Clock(RTC).

3. The timestamp logic at every slave node senses the inbound SYNC packet and trig-
gers a timestamp from the slavesReal-Time-Clock(RTC).

4. The master sends a follow-up packet associated with the preceding SYNC message
containing the previously precise send timestamp to all slaves.

These steps are also performed in the reverse direction, although less frequently, using
Delay Req and DelayResp messages. Using this information the one-way transfer delay
can be estimated. The slaves succinctly use this information to correct their clock to
those of the master. In [22] a simple PI-controller is used as clock correction mechanism.
Simple experiments based on a Fast Ethernet implementation, in different configurations,
e.g. direct link using a cross-over cable and connection of two nodes via a repeater and a
switch, respectively, were conducted. These experiments, where both a simple oscillator
and an expensive OCXO were used, yielded standard deviations between the master and
the slave clock in the range from 30 to 150 ns depending on the actual configuration
under low network-load conditions. In particular, when repeaters or switches are used
under loaded conditions, the fluctuations will get worse. For routers this is true even
for an unloaded case. To overcome these problems PTP suggests1 the implementation
of boundary clocks to serve as a time transfer mechanism between subnets. Therefore,
the router must be configured to block all IEEE 1588 messages. The boundary clock has a
network connection to each of the subnets. When viewed from a subnet the boundary clock
appears exactly like any other (ordinary) 1588 clock in the system. Within a subnet the
ordinary clocks and the portion of the boundary clock visible from the subnet synchronize
with each other as though they were all ordinary clocks. The boundary clock itself resolves
all of the times of the several subnets by establishing a parent-child hierarchy of clocks. In
a system with a single IEEE 1588 Boundary Clock, the boundary clock will typically be
at the root of this hierarchy and will be the master clock for all of the clocks in each of the
subnets. In addition to the synchronization functionality, an IEEE 1588 Boundary Clock
should provide a retransmission mechanism for 1588 management messages.

If one analyzes IEEE 1588 the following pros and cons can be identified amongst
others:

+ The provision of timestamping as close to the physical layer as practical.

1Currently, the standard doesn’t specify boundary clock support for switches.

46

• PTP has the potential to become a robust, self-configuring protocol that possibly
can support a multitude of different bus systems. (Its applicability for the specified
bus systems —fieldbusses, PC-based bus-systems, etc.— need to be analyzed and
elaborated in more detail.)

• The boundary clock mechanism can minimize delay fluctuations introduced by
routers. This mechanism can possibly be extended to switches as well in order
to achieve a tighter accuracy.

- The time representation and the timestamps with 64 bits are not sufficient to cover
granularity and rate adjustment effects as outlined in [85].

- The master-slave approach outlined in PTP has several shortcomings concerning
fault-tolerance and limits the applicable synchronization algorithms.

- The delay between a SYNC message and a corresponding follow-up packet can
degrade the achievable precision due to freewheeling clocks at either side. To that
end, the error due to the drift should be corrected.

3.5 Summary

This chapter presented the hardware support and principles of clock synchronization that
are involved as specified in different distributed systems. The four described systems use
hardware timestamping to tackle the clock reading error. In the MARS and the SynUTC-
NTI implementations timestamps are transparently inserted into in- and outbound packets
at the memory interface between host and the network controller, whenever the network
controller accesses the packet. IEEE 1588 in contrast samples timestamps as close as
practical to the physical layer, timestamps of outbound packets are sent with a follow-up
packet to the receiver. TTP and FlexRay also timestamp next to the physical layer. But
in contrast to 1588, they do not exchange timestamps for internal synchronization at all,
instead they use deviations from the global TDMA schedule to compute clock differences
to other nodes. This mechanism is especially useful for cost sensitive applications and
when a synchronization accuracy above 1µsis sufficient.

The main focus of hardware support for clock synchronization is the implementation
of the clock itself. In the MARS project the clock synchronization unit (CSU) maintains
the local clock with a counter. Clock corrections are provided via a mechanism for inser-
tion/suppression of clock pulses. An advanced approach was implemented by the SynUTC
UTCSU clock Asic. Here an adder-based clock is used that allows for smooth corrections
by adding/subtracting fractions of a second. In addition, the UTCSU provides support for
external clock synchronization by direct coupling to timing receivers. The external refer-
ence time is tracked with the help of accuracy intervals that specify a maximum deviation
between the local and the reference time.

47

Chapter 4

Network interface architectures supporting tight
clock synchronization

In the previous chapters we derived several parameters that need to be addressed when
hardware support for high accuracy clock synchronization over packet oriented networks
is implemented. The following aspects that need to be considered in order to achieve a
synchronization precision/accuracy in the range of somens:

State adjustments:The clock at each node should be able to perform state adjustments
for ironing out non-systematic, short-term clock deviations that arise after power-
up, node join and during system operation. Every node broadcasts periodically its
current clock state and determines from all incoming clock states a new one with
enhanced quality. To avoid non-monotonic clock correction, continuous amortiza-
tion periods should be used for adjusting the local clock state accordingly. More
specifically, a node performs the following operations:

• Initiation: In a periodic fashion the nodes participating in clock synchroniza-
tion initiate a broadcast of their current clock state.

• Sending: Due to computational overhead and contention in the communica-
tion medium, a node is able to start sending the clock state only after some
delay. Every clock synchronization packet gets timestamped on actual depar-
ture.

• Collection: A node receives clock synchronization packets from all other
nodes in a sequential manner, timestamps their arrival and stores them in a
suitable data structure.

• Updating: Since clock synchronization packets are sent and received at differ-
ent points in time, the collected clock states have to be made compatible with
each other.

• Termination: Some fixed time after initiation chosen appropriately so that all
clock synchronization packets from other correct nodes have been received,
final re-synchronization activities are started.

• Computation: Based on the remote and the local clock states a new correct
clock state is computed by an appropriate convergence function, see Sec.2.2.2
for some examples.

• Amortization: The local clock gets adjusted in a smooth way according to the
correction value.

48

Rate adjustments:Since clock drift influences the achievable precision by at least 2ρR,
whereρ denotes the oscillator drift andR the re-synchronization period, some mech-
anism is required to limit this influence. Employing an oscillator with small drift
could be a possible solution here. Unfortunately, OCXO’s or rubidium oscillators
are very expensive and consume much power and space. An alternative solution
is the implementation of a clock rate algorithm, see [96], that allows to trade the
clock drift by its stability, which provides an improvement of a factor of 102 . . .103,
see Tab.2.2. The operations required for a clock rate algorithm are similar to those
used for a clock state algorithm, hence an implementation is very cheap in terms of
additional communication as well as computation cost.

Clock granularity: Detailed analysis of theorthogonal precisionand theorthogonal
accuracyalgorithm, see [88] and [87], revealed that clock granularityG and rate ad-
justment uncertaintyu influence the achievable worst-case precision/accuracy. Ad-
vanced clock circuitry, like the UTCSU, provide a variable internal granularity and
utilize an ”artificial” rate, generated by discrete rate adjustment techniques. For a
precision/accuracy in thens-range these properties shall be devised properly.

Message timestamping :The lower bounds given in [23] clearly state that the clock
reading error is of utmost importance when deterministic clock synchronization is
implemented. Experiences made with the implementation of our NTI module led
to the conclusion that timestamp facilities required for remote clock reading should
be ideally placed next to the physical layer of a network interface in order to avoid
transmission delay uncertainties introduced due to network controller internal cir-
cuitry, see [89]. Unfortunately, placing the clock circuitry between the network
access layer and an according physical layer degrades the efficiency in application-
level clock reading/programming, hence considerable thought should be spent on
”architecting” this interface.

Coupling of external time sources: Fault tolerant synchronization to external time
sources is required to facilitate external clock synchronization. Potential receiver er-
rors and coupling errors directly relate to the achievable accuracy, see [29]. Hence,
a dedicated mechanism to interface to receivers that provide access to an external
time standard, e.g., GPS receivers, is required. A similar approach as taken by the
UTCSU to timestamp theone-pulse-per-secondsignal seems appropriate here, too,
although the timestamps should be extended to match the required granularity.

In order to mask potential receiver failures or rare faults caused by the time sources
themselves, redundant coupling to different external time sources is mandatory. This
can be done by coupling these receivers to different dedicated nodes within the sys-
tem, thus allowing to mask also potential geographical restrictions due to surround-
ing obstacles.

Bus interfaces: As revealed in [89], bus interfaces can become an often unexpected
bottleneck and may impair significantly the achievable precision/accuracy. Apart
from throughput aspects the interfaces should comply with a standard to restrict an
implementation to specialized technology.

Putting all these requirements together the following sections present our patent pend-
ing architecture [47] that is tailored for Ethernet technology.

49

4.1 System Architecture

When support for clock synchronization is added to an existing network, the added hard-
ware and software should keep modifications to the actual implementations as small as
possible. In particular, to allow for a smooth migration from an un-synchronized to a syn-
chronized network it is mandatory that all functions should operate the same way prior
and afterwards.

A careful analysis of all relevant delays and delay variation that incur in an end-to-end
path should be undertaken since these parameters limit the achievable precision/accuracy.

Fig. 4.1 illustrates a typical office network that forms a part of the lowest hierarchy of
the data network at the University of Technology Vienna.

Backbone 100Base-TX

100B
ase-T

X

100
Ba
se-
TX

1000Base-CX
1000Base-TX

100
Bas
e-T
X

10
0B
as
e-T
X

10
Ba
se
-T

100Base-TX

Router
Switch

10
0B
as
e-
TX

10Base-T

10
0B
as
e-
TX

100Base-TX

10
0B
as
e-
TX

10Base-T

Server A Server B

Workgroup
Server

Workstation IP-Phone

Workstation Workstation Workstation PLC Controller

Hub

Workstation

Workgroup
Switch

Workgroup
Switch

Switch

Network
Printer

Switch

10Base-T

10
Ba
se
-T

Figure 4.1: A typical office network topology

As can be deduced from Fig.4.1 such a network consists of different cabling tech-
nologies (twisted pair, fibre-optic, etc.), end-systems and several devices to interconnect
these end-systems (hubs, switches, routers, etc.). Different cabling types and lengths as
well as different physical interfaces introduce different delays in every segment.

Data Terminal Equipment is any source or sink of data connected to the local area net-
work. Typically, these are the computers that form the end-systems in an end-to-end com-
munications link. Delay and according fluctuations are due to the hard- and software. Tab.
4.1 presents an expected order of magnitude of the expected delay variations extracted
from an experimental evaluation presented in [45] for COTS PC’s running Linux.
Ethernet cable: Within the different Ethernet varieties, different cable types are in use.
For copper media the delay is roughly proportional to the square root of the dielectric

50

Domain Expected Average Delay Variation

SW: Application, Operating System, ≥ µs-range
Protocol Stack , Device Driver
HW: Medium Access Controller, ≥ 10ns-range
Physical Layer Interface ≥ ns-range

Table 4.1: Average delay variations of a DTE (from [45])

parameter∼ c0/
√

εr . Tab. 4.2 gives a short overview of the delay variations that are
encountered by the different Ethernet cable types:

Cable Type Delay Delay Variation

Twisted Pair max. allowed 5.7ns/m
CAT-5 UTP typical 5ns/m < 1ns
1Base-5, 10Base-T, 100Base-T and 1000Base-T

Optical fiber max. allowed 5.05ns/m < 1ns
110Base-F, 100Base-FX, 1000Base-CX and 1000Base-SX

Coaxial cable < 8ns
10Base-2 max. allowed 6.3ns/m
10Base-5 max. allowed 7.5ns/m
10Base-2, 10Base-5 and 10Broad-36

Table 4.2: Fluctuations due to Ethernet cable types (see [39])

Ethernet hubs, also termed multiport repeaters, operate at the Physical Layer of the OSI
Reference model. They are used to connect one or more Ethernet cable segments of any
media type. If an Ethernet segment were allowed to exceed the maximum length or the
maximum number of attached systems to the segment, the signal quality would deteriorate.
Hubs and repeaters are used between a pair of segments to provide signal amplification,
timing and preamble regeneration to restore a good signal level before forwarding the
frames.

According to their implementation, they add certain delay and delay variation (jitter)
to the transmission of packets. Tab.4.3 gives the maximum allowable delays and delay
variations for 100Mb/s baseband networks as specified in [39]. The values are given inbit
times(BT). A bit time is the duration of one bit as transferred to/from the MAC and is the
reciprocal of the bit rate. The bit time for 100Base networks is 10−8s or 10ns. The values

Class I repeater Class II repeater Variability
100Base-FX ≤ 140BT ≤ 46BT 7BT
100Base-TX ≤ 140BT ≤ 46BT 7BT
100Base-T4 ≤ 67BT 8BT
100Base-T2 ≤ 90BT 8BT

Table 4.3: Maximum allowable Repeater delays for 100 Mb/s

given in Tab.4.3 show that every hub can add a worst-case delay variation of 80nsonto
the packet transmission delay.

51

Ethernet switch, also termed multiport bridge, is a LAN interconnection device. Newest
brand switches operate at layers 4 of the OSI model; while the devices that are most often
employed nowadays operate at layer 2 or 3. Switches process all packets received on any
port and forward them to an associated outgoing port. Hence, a switch makes it possible
to filter traffic passing between its ports.

In spite of its capability to switch port connections, there can be significant delay in for-
warding frames to output ports when they are congested. In fact packets are either stored
or dropped when the required buffers become insufficient. Since the principal function of
a switch is to bridge frames between its ports, it tries to do this as quickly as possible, in
terms of throughput by achieving the maximum bandwidth but also in terms of delay. A
switch makes its time-critical filter and forward decision based on the destination address
and/or the frame integrity. In general, two major categories can be distinguished:

• Store-and-forward allows for full error checking, packet filtering and LAN speed
conversions at the cost of higher transit delay, especially for large packets. An entire
packet needs to be received and processed before it is forwarded.

• Cut-through minimizes transit delay by foregoing the possibility of error check-
ing, packet filtering and speed conversion. Packets are forwarded as soon as the
destination address has been received.

• Fragment-free modeis cut-through switching in which runt packets (collision by-
products of less than the minimum legal packet size of 64 bytes) are discarded.

There has been no typical trend to one distinct method, on the contrary, today most
switches provide multiple, selectable modes [98].

The design of the internal switch fabric is critical to the performance of a switch. There
are two mainstream switch fabric architectures that have been widely used in commercial
LAN switch products:

• Shared memoryarchitectures are very common for low cost, small scale switches
and have the advantage of easily accommodating mixed LAN types and speeds
within a single switch. Shared media switches use a high-speed backplane to in-
terconnect switching elements, which may consist of an individual bridge per port
or a multiport switch module. The latter may use shared media or shared memory
as an internal architecture. Shared media architectures are frequently used to build
modular switches that can scale to high port densities.

• Cross-point matrix switches employ an array of switching elements to provide
parallel switched paths between distinct pairs of input and output ports. This de-
sign approach has yielded a fairly attractive price per port in Ethernet switches with
relatively few ports.

Each approach reflects a distinct method used to move frames from input to output
ports and has its own characteristics, limitations, and design issues. A comprehensive
treatment of switches and more details on their architecture can be found in [98].

Fig. 4.2 illustrates the different transit delay principles that are encountered by store-
and-forward and cut-through techniques. Typical values for the transit delay are∼ 40µsfor
cut-through and∼ 10−150µsfor store-and-forward switches respectively for a minimum
sized packet with 64 bytes payload. For cut-through switches this value is independent

52

Store-and-forward switches Cut-through switches

Incoming packet:
Outgoing packet:

t t
latency

transit delay = latency +
packet transmission time

transit delay = latency

Figure 4.2: Transit delay and latency of switches

of the actual packet size whereas for store-and-forward switches this value is in direct
relation to the packet size.

The delay variation added by switches to an end-to-end packet transmission depends
on the actual switch type and implemented switching fabric as well as on the load present.
Typical values can vary from about 100ns up to someµs as presented in various test
results1 of COTS switches. However, we suggest that this range can be extended up to
somemsfor stacked switches where a backplane bus is used to cascade several devices.

Ethernet router: An Ethernet router is an intermediate system which operates at the
network layer of the OSI model. Routers may be used to connect two or more IP networks
(e.g., a LAN with a DSL connection). A router consists of a host processor with at least
two network interfaces supporting the IP protocol. The router receives packets via one
network interface and forwards the received packets to another one. Received packets
have all link layer protocol headers removed, and transmitted packets have a new link
protocol header added prior to transmission. The router uses the information held in the
network layer header (i.e., the IP header) along with routing information held in a routing
table to decide whether to forward a packet or not. Before a packet is forwarded, the
processor checks theMaximum Transfer Unit(MTU) of the specified interface. Packets
larger than the interface’s MTU must be fragmented by the router into two or more smaller
packets. If a packet is received with thedon’t fragmentbit set in the packet header, the
packet is not fragmented, but instead discarded. In this case, an ICMP error message is
returned to the sender (i.e., to the original packet’s IP source address) informing it of the
interface’s MTU size. This forms the basis for Path MTU discovery.

From the given functionality it is evident that the delays and according variations are
at least an order of magnitude greater than for given switching technology. Hence, present
routers render tight clock synchronization without additional hardware support impossible.

It is evident that a mechanism to identify the time it takes for every clock synchroniza-
tion packet to cross an intermediate network element, hub, switch or router is mandatory.
Fig. 4.3 illustrates the layered interfaces for the various different Ethernet technologies.
The answer to the requirement to add timestamp logic as close as practical to the physical
layer is obviously given by themedia independent interface(MII), see [30, 31, 35] where
we first proposed this idea. This interface, present at all Fast-Ethernet controllers, provides
a standard interface to couple media access controllers to physical layer devices. Similar

1The results of several performance tests of COTS switches can be obtained from
http://www.veritest.comandhttp://www.mcclellanconsulting.com.

53

http://www.veritest.com
http://www.mcclellanconsulting.com

MAC - Media Access Control
Reconciliation Reconciliation ReconciliationPLS

PLS PCS PCS
PMA

PMA PMD
PMA
PMDPMA

MAC Control (optional)
LLC - Logical Link Control

Medium Medium Medium Medium
MDI MDI MDI MDI

AUIAUI

MII MII GMII

PHYSICAL

DATA LINK

NETWORK

TRANSPORT

SESSION

PRESENTATION

APPLICATION

OSI Reference
Model Layers

1 Mb/s, 10 Mb/s 10 Mb/s 100 Mb/s 1000 Mb/s

Ethernet
Controller

Physical
Layer
Device

AUI Attachment Unit Interface
MDI ... Medium Dependent Interface
MII Media Independent Interface
GMII .. Gigabit Media Independent Interface

PLS Physical Layer Signaling
PCS ... Physical Coding Sublayer
PMA ... Physical Medium Attachment
PMD ... Physical Medium Dependent

Figure 4.3: Interface structures for different Ethernet technologies

useful interfaces are thegigabit media independent interface(GMII) and the evolving
new extended gigabit media independent interface(XGMII) for Gigabit and 10-Gigabit
Ethernet variants.

Timestamping further upstream from the cable —after the media access controller
(MAC)— would add the delay variations due to the MAC inherent FIFO’s that would
limit the synchronization tightness to theµs-range as pointed out in [89]. Timestamping
between the physical layer and the cable on the other hand would be very complex because
of the required analog interfacing. Furthermore, this is rather impractical since Fast and
Gigabit Ethernet employ different codings.

4.2 Network interface for End-systems

This section discusses a network interface architecture for data terminal equipments sup-
porting tight clock synchronization within a distributed system. The presented topologies
are based on Fast Ethernet and PCI technologies, which were both chosen because of their
dominating and wide spread use in desktop and mobile computers. For both technologies
a wealth of implementations and controllers exist. Hence, the presented architecture tries
to implement the support for clock synchronization next to existing devices by reusing
industry proven technologies rather than to invent new ones. In order to keep the focus on
an industrial product, the following goals need to be taken into account:

Functionality: The clock should be implemented in hardware, facilitate clock correc-
tions, support for packet timestamping, enable coupling of external time sources
and provide support for applications. It should fit into the standard MII in order to
minimize the remote clock reading error. Programming and read-back of the clock
registers should be kept straightforward and simple.

Costs: The component count and the size of the printed circuit board should be kept
small, therefore standard components should be employed in preference to complex

54

and costly high-end devices. Furthermore, the custom clock chip should employ a
small die size and a low pin count.

Transparency: The required support mechanisms should be added so as to allow re-use
of all existing communication protocols, hence it should act transparently to all ex-
isting mechanisms. Programming and read-back of the clock registers should be
accomplished via existing interfaces in order to avoid complex device driver devel-
opments. In particular, programming of the clock via a socket interface would ease
software developments for various different operating systems.

4.2.1 Clock synchronization support for Network Interface Cards

Tab.1 in the appendix lists several devices from different vendors that could be employed
for a network interface for Fast Ethernet, Gigabit Ethernet or 10 Gigabit Ethernet. Most
media access controllers (MAC) support the PCI and MII interface. Some of these devices
have an additional built-in CPU and other interfaces as well.

Common to all the different architectures is the media independent interface connect-
ing a media access controller with a physical layer device. In the transmit path this in-
terface consists of the transmit clock (25MHz output from the physical layer device), a
transmit enable signal and four transmit data lines. For the receive path the same set of
signals exists extended with a carrier sense and a collision detect2 signal. The receive
clock is, as with all asynchronous communication systems, recovered from the incoming
data stream and hence not in synchrony with the transmit clock.

Packet oriented Clock Interface

The idea here is to timestamp and program the clock via dedicatedclock synchronization
packets(CSPs). These packets are distinguished by the use of a special type field value.
The actual information is transported in the payload at fixed offsets. Fig.4.4 illustrates
this architecture.

10/100 Mbps
MAC

P
C

I b
us

MII
Clock ASIC

MII 10/100 Mbps
PHY

Host CPU

Network
Medium

GPS & Application
Interfaces

Shared
Memory

NIC

Figure 4.4: Packet Clock Interface

This architecture could go with almost any Fast Ethernet controller and requires very
few pins at the clock ASIC. A further advantage is that no custom device driver software
is required. Clock synchronization and programming of the clock ASIC could be imple-
mented on top of existing device drivers via a raw socket interface. Hence, software could
be easily ported to various different soft+hardware platforms.

2The carrier sense and the collision detect signals are driven by the physical layer device to indicate
whether either data or a collision were encountered on the communication medium. However, all media ac-
cess controllers used in the experimental evaluation ignore these two signals and derive the same information
by simply monitoring the receive and transmit data lines.

55

Unfortunately, programming and applications usually require a read-back mechanism
of the clock ASIC registers. This, in turn, would require the clock ASIC to bounce back a
packet that was sent from the host CPU in order to present the register values back to the
host.

This mechanism, however, is tricky to implement into the clock ASIC. In half duplex
mode a MAC expects the sent data on the MII transmit data lines to be bounced back
by the physical layer device onto the receive data lines. Therefore, the clock ASIC must
generate a packet in the direction back to the host CPU after the requesting packet has
been sent. This, in turn, requires a mechanism to allocate the channel immediately after
the interframe gap time of the sent packet has elapsed. In full duplex mode the situation is
problematic, too; here a packet could be received in parallel whilst the host CPU requires
a read-back of several clock ASIC registers. Either a FIFO for incoming packets needs
to be implemented and/or packets are dropped in order to insert the read-back packet into
the incoming data stream. Thus, all things considered, a bounce-back mechanism imple-
mented in the clock ASIC requires considerable efforts and may worsen the performance
of the network interface since occasionally packets may be dropped.

Alternatively, read-back of registers could be performed by inserting the appropriate
register values into received clock synchronization packets. Two possible mechanisms
could be implemented to get a timely response. Either the physical layer device is put
into loopback mode (this would temporarily disconnect the node), or a remote host is pro-
grammed to perform the reply. Use of the latter should be preferred although a mechanism
will be required for the case when a host becomes temporarily unavailable. For example,
after a suitable timeout, a different remote host should be selected to function as clock
read-back partner. Here a way to identify and drop late replies is required. To conserve
local time when loss of link is sensed the physical layer should be placed into loopback
mode. Now all packets are bounced back by the physical layer device rather than by a
remote host. Programming and read-back should still be possible as in the undisturbed
scenario.

Packet oriented Clock Interface with split Clock Synchronization Algorithm

The main disadvantage of the packet oriented clock interface is the requirement to read-
back clock ASIC registers by the host CPU. This can be improved by implementing the
clock synchronization algorithm within one clock ASIC. Most clock synchronization algo-
rithms are round based and require a periodic exchange of clock synchronization packets.
Thus a part of the clock synchronization algorithm must be run on the host CPU (the only
one that can generate packet send requests via the protocol stack) but the actual clock cor-
rection and most other mechanisms could be run on a small CPU next to the clock ASIC,
see Fig.4.5.

10/100 Mbps
MAC

P
C

I b
us

MII Clock ASIC
+

CPU + Memory

MII 10/100 Mbps
PHY

Host CPU

Network
Medium

GPS & Application
Interfaces

Shared
Memory

NIC

Figure 4.5: Packet Clock Interface with split Clock Synchronization Algorithm

56

Using this architecture only applications remain that could require access to clock reg-
ister values of the clock ASIC by the host CPU. This mechanism could be implemented
in a similar fashion as illustrated in the previous subsection. Splitting any clock synchro-
nization algorithm accordingly for this particular architecture should be possible without
too many problems.

Dedicated Clock Interface

Both solutions mentioned above suffer from the need to exchange information between
the clock ASIC and the host CPU. This can be improved by means of a dedicated interface
between the clock and the host CPU. Fig.4.6 illustrates this solution, with the additional
data path. Unfortunately only very few devices listed in the Tab.1 in the appendix sup-

CPU
+

10/100 Mbps
MAC

P
C

I b
us

MII

Clock ASIC
MII 10/100 Mbps

PHY
Host CPU

Network
Medium

GPS & Application
Interfaces

Shared
Memory

NIC

dedicated
bus Interface

Figure 4.6: Dedicated Clock Interface

port an additional interface, in particular microprocessors with an integrated Fast Ethernet
controller like the IBM PowerPC 405GP, the Motorola MPC8265 or the NEC uPD98502.
These devices are usually more expensive than dedicated Fast Ethernet MACs but, of
course, offer further benefits. They could run the entire clock synchronization algorithm
and the network stack that is usually executing on the host CPU. Since popular network
stacks like TCP/IP are very computing intensive, such a solution would drastically im-
prove the overall system performance too.

On the other hand, this architecture requires a more costly software since existing
device drivers can only be reused up to some extent.

Integrated Clock Interface

The IEEE standard 802.3 restricts the delay of the MII lines between the MAC and the
PHY to 7.5ns on the same printed circuit board, see [39] Annex 22A. In the previous
architectures this timing budget must be fulfilled by the clock ASIC and a corresponding
printed circuit board layout; this is a challenging engineering task. In order to overcome
this technical problem a device that exhibits a pin-to-pin delay well below this margin or
an integration of the clock ASIC with a MAC is advantageous. Fig.4.7 illustrates this
architecture.

The advantages of this architecture are full standard compatibility, direct access of
clock registers from the host CPU and higher integration that results in lower production
costs for a higher production volume. The main disadvantage of this approach is the
requirement of a fully-fledged driver development for every operating system.

57

P
C

I b
us

10/100 Mbps
MAC

+
Clock

MII 10/100 Mbps
PHY

Host CPU

Network
Medium

GPS & Application
Interfaces

Shared
Memory

NIC

Figure 4.7: Integrated Clock Interface

Contribution to the worst-case transmission delay uncertainty

In all the architectures illustrated above, timestamping of CSP’s could be implemented
in the same way at the MII, reducing the worst-case transmission delay uncertaintyε. In
particular, when the local clock is in synchrony with the MII transmit clock, then a sender
simply addsεS

d,trans+ GS
ts, the jitter of the physical layer device in the transmit direction

plus the error due to the finite granularity of the timestamp, ontoε. The contribution
at the receiver, however, is made up ofεR

d,recv+ εs+ GR
ts, the jitter of the physical layer

device in the receive direction, the additional uncertaintyεs caused due to a synchronizer
stage required to synchronize the received data to the clock domain of the local clock
and the timestamp granularity at the receiver. Assuming everywhere the same clock and
timestamp logic, i.e.Gts = GS

ts = GR
ts, both network interfaces add

εnic = εS
d,trans+ εR

d,recv+ εs+2Gts (4.1)

onto the transmission delay uncertaintyε. Hereinεs = 1/ fs with fs the sampling frequency
used to synchronize the data to the local clock at the receiver. For timestamp’s using an
NTP-time or similar format covering the bit positions [+m:-n], the error due to the finite
granularity is given byGts = 2−n. Assuming that the transmission delay uncertainty of the
physical layer devices is approximately the same for both the transmit and receive direc-
tion, i.e. εd,trans≈ εd,recv, and that the transmission delay uncertainties of the employed
physical layer devices at both endpoints can be bounded by a constantεR

d ≈ εS
d ≤ εdmax,

we get
εnic ≤ 2εdmax+ εs+2Gts (4.2)

4.2.2 Prototype: MII-NTI

In order to prove these concepts a prototype network interface card, termed MII-NTI (Me-
dia Independent Interface - Network Time Interface), was developed, see [32]. This proto-
type printed circuit board, see Fig.4.8, allows the implementation of the packet oriented
clock interface and of the dedicated clock interface, respectively.

A separate PCI-to-PCI bridge is required to comply with the PCI standard. A PCI
target device provides the dedicated interface to our custom UTCSU clock ASIC. The
functionality of both architectures can be implemented within the FPGA that is placed
in-between the MAC and the PHY and the PCI target chip and the UTCSU clock ASIC,
respectively.

The basic functionality of timestamping at the MII is illustrated in Fig.4.9. Clock
synchronization packets are recognized by their unique type field (TF). Thus when the
timestamp logic at the sender detects this value, when the type field at its fixed offset

58

P
C

I b
us

Host CPU

Shared
Memory

PCI-to-PCI
Bridge
I21152

local PCI bus

PCI Target
PLX9050

10/100 Mbps
MAC

AMD79C972

Timestamping
FPGA

FLEX10K70

10/100 Mbps
PHY

LXT970A
Network Medium

UTCSU
ASIC

GPS & Application
Interfaces

MII MII

MII-NTI

Figure 4.8: MII-NTI prototype architecture

after the preamble is read, it samples a timestamp from the local clock (a) and inserts this
value aligned into the packet payload (b), actually overwriting existing data. Since the
timestamp value modifies the packet payload, a re-calculation of the frame check sequence
(FCS) is required (c) – using the Autodin-II polynomial for Ethernet frames. The newly
generated frame check sequence succinctly replaces the old one (d) that was generated
and inserted by the MAC.

At the receiver the frame check sequence first needs to be re-calculated starting at the
destination address up to the end of the user payload (e). Similar to transmit timestamping
the timestamp logic at the receiving node scans the type field value, and on detection of
a valid CSP value samples a timestamp from its local clock (f). This timestamp value is
then written into the payload of the received frame succinctly after the transmit timestamp
(g). —Note that hereby it is required to bit-synchronize the receive data stream to the local
clock domain.— Because of the a-new modification of the payload, a re-calculation of the
frame check sequence needs to be performed (h) once more. This new value then over-
writes the received frame check sequence if no transmit error was detected (i). Otherwise
a wrong frame check sequence is inserted to allow for proper detection of the transmission
error at the receiver MAC as well.

Preamble SFD Dest. Addr. Src.. Addr. TF

Transmit TS

User Data

FCS

Dest. Addr. Src.. Addr. TF Transmit TS User Data FCS

Preamble SFD Dest. Addr. Src.. Addr. TF Transmit TS User Data FCS

Receive TS FCS

=

Transmit Timestamping:

Receive Timestamping:

Receive CRC check:

a b

c

d

e

f g
h

i

Preamble SFD Dest. Addr. Src.. Addr. TF User Data FCSTransmit TS
Packet:

Sender Clock:

Receive TS

Receiver Clock:

Figure 4.9: MII Timestamping

59

Programming and read-back of several clock registers in the packet oriented clock in-
terface architecture can be accomplished in the same way. Several bits within the payload
field of the clock synchronization packet are interpreted as addresses while others serve as
data containers. This mechanism is applicable to the programming of the local clock as
well as to the programming of a remote clock, see also Sec.4.3.1.

4.3 Clock architecture

For tight clock synchronization in the range of 1µsand below, a dedicated clock circuit is
mandatory to maintain and control the progress of the local clock and to support remote
clock readings by exact timestamping. Very advanced clock circuits, in this sense, are
the pioneering CSU and our UTCSU ASIC, see [97] and Sec.3. Especially the under-
lying concepts of the UTCSU ASIC are well suited for this kind of problem. Since the
UTCSU was targeted for a precision in theµs-range, it requires some modifications when
a precision in thens-range is targeted.

Furthermore, an industrial implementation mandates a small chip with reduced die
size and minimal pin count. Size reduction is partly accomplished by different functional
implementations, as is explained throughout the next subsections, and by migration to a
smaller process technology. The benefit of a smaller process technology also facilitates
an increase in the operating frequency, a concern that can have a big influence on the
overall clock synchronization, see Sec.5. The pin count can be drastically reduced by
abandoning the multiplexed NTP interface –a 64 bit wide interface used to export the time
in a multiplexed fashion– and simplifying the rather complex bus interface.

APU

TSU

GPS
Interface

Application
Interface

GPU

UARTData, Address,
Control

Serial
Interface

ACU

LTU

uC

RAM

GMII/MII
Interface

GMII/MII
Interface

EBU

OCDS
Debug

Interface

Figure 4.10: Clock ASIC IP-core modules

Fig. 4.10shows a coarse block diagram of an IP-core solution that resembles several
units found in the UTCSU. This solution is built with a set of the following units:

60

Local Time Unit (LTU): An adder-based clock is used to represent the local clock. For
initialization purposes the clock is arbitrarily state-adjustable and allows smooth
clock corrections by continuous amortization. To that end, features to switch be-
tween pure/amortized clock rates are at hand to commence the amortization phase
at a programmable point in time.

Accuracy Unit (ACU): This optional unit maintains accuracy intervals to capture an ex-
ternal reference time. Therefore, these intervals are both adjustable and deteriorate
with the progress of time to account for local clock drifts.

Application Unit (APU): In order to support applications requiring access to a precise
synchronized distributed clock, polarity programmable input lines allow timestamp-
ing of events. A FIFO buffer prevents fast, repetitive events from overwriting the
timestamps when event processing is not fast enough.

Timestamp Unit (TSU): Inbound and outbound clock synchronization packets supplied
via the MII are recognized by their unique type-field. A timestamp is sampled and
on-the-fly inserted into the packet payload at predefined offsets. The frame check
sequence of every packet is validated and updated accordingly. A similar technique
can be used to set or read the registers with the help of dedicated packets.

GPS Unit (GPU): For access to an external reference timing receiver, this unit times-
tamps events on a dedicated1ppsinput. The respective status information belonging
to the1ppssignal and typically provided via a serial interface is connected to the
UART module.

Micro-Controller (uC): A micro-controller controls the UART module and executes the
major part of the clock synchronization algorithm.

External Bus Unit (EBU): A simple non-multiplexed bus interface allows the accessing
of every clock register whenever programming via a dedicated interface is imple-
mented.

On-Chip Debug Support (OCDS): A bootstrap and debug facility supports program de-
velopment.

The following sections propose some mechanisms that should be considered when
these modules are actually implemented. An engineered solution is presently developed
by the spin-off company Oregano Systems with funding from the AustrianFIT-IT pro-
gramme.

4.3.1 Bus Interface and Timestamp Unit

Layout and functionality of the clock ASIC registers is designed to support all the pre-
viously outlined architectures with different kinds of algorithms. Programming via dedi-
cated network packets provides the benefits that no modification of existing device drivers
is required and that the local clock of a node can be directly programmed and controlled
by a remote host:

• Clock Programming Packet (CPP): The local host CPU programs the register set
of the clock ASIC with this particular network packet identified by a special type

61

http:/www.fit-it.at

field. The payload holds the actual data for every register in advance, either at a
pre-defined offset or with an accompanying address.

• Clock Read-Back Packet (CRP): The local host CPU reads the register set of the
clock ASIC by sending a clock read-back packet to be bounced back by a remote
host. The local clock ASIC recognizes this bounce back packet by its unique type
field and inserts the register values into the remaining payload either at predefined
offsets or with an address tag in advance. A timeout mechanism at the local host
CPU is required to account for situations when a link error occurs. The local host
shall switch to a degraded mode when the entire link goes down or select an alter-
native redundant host when the remote host becomes unavailable.

• Clock Broadcast Packet (CBP): This packet, generated by an elected master node,
can be used to set the clock state of remote clocks for initial clock synchronization
and/or node join. This packet is identified by a special type field at the start of
the packet payload. The register values are found either at a fixed offset within
the packet payload or in advance with an address tag. With the knowledge of the
network topology, the delays and delay variations one can effectively initialize the
distributed clocks; otherwise, this is a difficult task.

• Remote Clock Programming Packet (RCPP): This packet is the same as a CPP but
the originator is a remote host rather than the local host. In this way it is possible to
correct and control the clock of a remote node. This mechanism becomes especially
useful when a node has no processing unit, it’s capacity is restricted or when it is
simply too expensive to implement a dedicated clock synchronization at this node.
To that end a remote node needs to initialize and set all required clock registers via
a dedicated programming packet.

• Remote Clock Read-Back Packet (RCRP): The local host responds to a remote re-
quest for read-back of the clock ASIC registers. The local host replies with a packet
employing a special type field at the start of the packet payload. When the packet
is sent, the clock ASIC inserts the requested clock register values transparently into
the outgoing packet payload.

For all proposed mechanisms to set or read remote clock registers, a way to identify
and authorize the required packets is necessary in order to avoid erroneous behavior caused
by ”false” packets.

When an implementation is chosen as outlined in Fig.4.6, 4.7 and4.8, then direct
access via an additional bus interface from a host processor is required.

• Parallel bus interface: This solution provides access to the clock ASIC registers
when either a dedicated clock interface or an integrated clock interface architecture
is used. All registers can be conveniently programmed/read-back via this interface.

4.3.2 Local Time Unit

The centrepiece of the clock ASIC is formed by the Local Time Unit (LTU) that main-
tains the local clock supporting continuous amortization. Here phases where the clock
is corrected (amortization phase) and phases where it is fly-wheeling (pure phase) inter-
change perpetually. An adder-based approach is used to carry out fine-granule corrections

62

equidistantly distributed during the amortization phase by adding a programmable small
amount to the clock ticks.

The n-bit wide adder maintains the local clock in an extension of the popular NTP
format. The meaning of every bit is derived as a power of two — e.g., bit position+31
wraps every 68 years while bit position−32 accumulates 2−32s

.= 233ps. Full NTP time
consumes 64 bits, where the upper 32 bits are interpreted as standard seconds relative
to UTC and the lower 32 bits give the fractional part. For a clock precision down to
thens range additional ultrafractional bits are required. The amount of additional bits is
determined as a trade off between limiting factors due to the chip technology in use and the
technical parameters for tight synchronization. As stated in Sec.2.3, the clock precision
depends on the parameters:

The remote clock reading errorε: This parameter, employing architectures as illus-
trated in Sec.4.2, consists of the transmission jitter of the physical layer (cable
+ physical layer devices) and the sampling error of the local and remote clock if the
local clocks are driven by oscillators not belonging to either the physical transmit or
to the receive clock domain:ε = ∑εc + ∑εd + ∑εs. To minimize the effect due to
synchronizer stages between different clocking domains we mandate:

• The clock at every node should be driven in synchrony with the transmit clock.

• A high sampling frequency in synchrony with the transmit clock is used to
synchronize incoming CSP’s and to draw and transparently insert a receive
timestamp into the packet (e.g. 100MHzaddεs = 10ns).

The re-synchronization periodP and the clock drift ρ: The re-synchronization period
P on one hand should be chosen in a way to reduce traffic, on the other hand fre-
quent re-synchronizations keep the clocks tighter synchronized. The clock driftρ
is due to the oscillator characteristics; hence an oscillator should be chosen with
characteristics that will not impair the achievable precision in a significant way. Un-
fortunately most ovenized oscillators with small drift, good stability and reasonable
small phase noise characteristics are typically designed for frequencies in the range
of 1−20MHz. Furthermore, MII and GMII require a 25MHz and a 125MHz clock
source, respectively. The ”rather low” clock frequency of 20MHz however contra-
dicts the above demand for a high sampling frequency, hence a way to increase the
operating clock frequency without affecting stability issues is required. One possi-
ble solution is the use of either aphase locked loop(PLL) or a delay locked loop
(DLL) for frequency multiplication3.

3Note, however, that this has usually worse effects on the oscillator’s frequency stability. The phase noise
contribution of a PLL depends on the jitter of the oscillator (e.g. a VCO), the jitter of the PLL input source,
and the bandwidth of the loop, see [112]. To minimize the effects due to the PLL internals, a VCXO should
be used in preference to a VCO as used in MCXO’s. This approach is typically taken in COTS frequency
translators (FCXO’s).

For a DLL the phase noise is primarily due to the noise from the input source and those coupled into the
circuit by the delay lines. This effect can be minimized when the amount of delay lines is kept to a minimum,
see [11]. Furthermore a DLL may exhibit false locking to multiples of the clock period. In order to avoid
this problem, the DLL shall be reset to a minimum delay prior to start-up. Thus, when the DLL attempts to
lock, it will increase the delay of the delay line until precisely one period of delay exists in the line, avoiding
the false locking.

Other effects, e.g. phase slips, are of no concern for DLL’s or PLL’s when they have locked as long as the
reference oscillator is accurate.

63

The clock reading granularity G and the rate adjustment uncertaintyu: These pa-
rameters are directly proportional to 1/ foscand become significant whenε becomes
very small. Thus these parameters mandate a high clock frequency next to a high
sampling frequency of timestamps.

Resolution of the adder: The intrinsic rateRf of the proposed clock is given byRf =
Gs f/Gt where the full state granularity is given byGs f = 2−n and the time granular-
ity by Gt = 1/ fosc. Suggesting a 64 bit wide adder spanning the bit range [+31,-32]
corresponding to the NTP format, and a clock frequency offosc= 100MHz would
yield an intrinsic rate ofRf = 2−32s/10ns= 23,3∗10−3, which would intolerably
impair the rate of every oscillator. Hence, keeping the 100MHzone must extend the
resolution of the adder up to a suitable fractional bit position. Extending the adder
by additionaln-bits spanning the range [+31,-n] one gets an intrinsic rate error of
2−n fosc. The intrinsic rate error should be an order of magnitude below the given
oscillator drift that influences the precision by 4Pρ.

The clock setting granularity Gs directly impairs on the achievable worst-case precision
and is given by the lowest bit position of the clock that can be set. When the pro-
posed add-based clock can be programmed down to its lowest bit position the clock
setting granularity is determined byGs = 2−n, hence, this effect is negligible for
most designs.

NTPSET [+31,-64] NTPGET [+31,-64]

1 0

1 0

N
TP

TI
M

E
 [+

31
,-6

4]

STEPAMORT [-1,-64] STEPPUREACT [-1,-64]

STEPPURE [-1,-64]

AMORTSTART [+11,-04]

NTPBUS [+31,-64]

64 64

96 96 16

EBU, TSUEBU, TSU

StartamortNTPSet

EBU, TSU

EBU, TSU EBU, TSU

AMORTSTOP [+11,-04]

16

EBU, TSU

Stopamort

Amort
Interval

Figure 4.11: Local Time Unit Block-Diagram

Summarizing, an actual implementation should try to optimize both the maximum
frequency as well as a suitable resolution. From a practical point of view it makes sense to
chose the adder resolution as a multiple of one byte. Fig.4.11illustrates a block-diagram
of the local time unit, where the adder width is chosen over a range of [+31,-64].

The amortization phase is derived from the local clock controlled with two pro-
grammable registers. In particular, the point in time when the amortization phase starts
is invoked either periodically or once with the help of registerAMORTSTART and a suitable
digital comparator. Whenever a certain set of bits programmed into registerAMORTSTART

64

is present on theNTPBUS a suitable pulse that invokes the amortization phase is gener-
ated. Next to the invocation of the amortization phase, this pulse additionally loads the
new value for the following pure phase. The clock value is corrected during amortiza-
tion phases with the value programmed to registerSTEPAMORT and during pure phases via
STEPPUREACT. The amortization phase ends when the clock value present on theNTPBUS

equals the end-value programmed to the registerAMORTSTOP.
This mechanism is a fundamental enhancement with respect to the UTCSU, where

the duration of the amortization phase was controlled in physical clock ticks rather than
logical time as outlined. The disadvantage of using the physical time is the difficulty to
determine from any timestamp whether amortization is still in place or not. The lack of this
mechanism makes it difficult, for example, to perform correct round-trip measurements.

4.4 Networked devices

Several intermediate networked devices in an end-to-end communications path impair the
packet transmission variability as stated in Sec.4.1. Depending on their type (hub, switch,
etc.) and their particular realization (store-and-forward, cut-through, etc.), they add up
a certain amount onto the worst case remote clock reading errorε. When these values
are intolerable for a certain clock precision, additional measures are required to determine
and reduce these values. The following sections illustrate and analyze an architecture that
enhances existing switches with hardware support to make tight clock synchronization
possible. The underlying ideas can be applied to other devices in a similar fashion.

4.4.1 Clock synchronization support for Switches

A typical block-diagram of a modern, popular switch4 employing a shared memory archi-
tecture is shown in Fig.4.12.

10/100 Mbps
PHYs

1000 Mbps
PHYs

10/100 Mbps
MACs

Packet Classifier
Engine

Queuing
EnginePacket Data Path

10/100/1000 Mbps
MACs

PCI Interface

Packet
Storage

CAM
(Address Table)

Media Switch Engine

Twisted Pair and/or Fiber Optical Interfaces

CPU
Subsystem

Figure 4.12: A typical modern switch architecture

4This architecture is a typical application of the Intel Media Switch IXE2424, a 10/100+Gigabit L2/3/4
device, that is used to build cascading high port count Layer 2/3/4 switches or routers.

65

The main functionality is implemented as a switch fabric that hosts several medium
access controllers; one for every interface. A packet classifier engine records the MAC
addresses and stores these within acontent addressable memory(CAM). In addition, it
implements a priority control mechanism that provides aquality-of-servicemeasure for
distinct packet types. The bridging of the packets between the corresponding ports is
performed with the help of a queueing engine that is under the control of the packet clas-
sifier engine. In case that the required output ports are congested, the packets are buffered
in a suitable packet storage. The handling of several modes of operation is usually pro-
grammable with the help of a dedicated host CPU. Therefore a standard off-the-shelf PCI
interface is integrated into the switch fabric. Just as with all end-systems, the MII or GMII
are used to connect every media access controller (MAC) with a physical layer (PHY) unit
that provides the interfaces to the switch ports. For example, the IXE2424 switch fabric
provides 24 interfaces to Fast Ethernet and 4 interfaces to Gigabit PHY’s. One or all of
the Gigabit ports can be used to cascade the switch to build a stack of switches.

Since the media independent interface is present within a switch, this interface could be
adapted to capture the contribution to the transmission delay uncertainty of every switch.
This basic principle, which could be added/integrated to existing hub/switch architectures
and behaves transparent to all existing network traffic, is illustrated in Fig.4.13.

Figure 4.13: Determining the packet delay caused by switches/hubs

It is a similar mechanism as used for timestamping clock synchronization packets; ded-
icated timestamp logic is placed in the MII path of every hub/switch interface. Whenever
a clock synchronization packet is recognized at the receiving MII data lines on any partic-
ular interface, aswitch timestampis sampled into the packet payload following the fields
of transmit and receive timestamps that are inserted at both end-systems. This requires
bit-synchronization of the signals from the receive clock domain to that of the local clock
domain, respectively. Next to this switch timestamp insertion the frame check sequence
of the received, unmodified packet needs to be checked to allow for transmission error
detection. When a correct CRC is present, a new CRC calculated off the now modified
data needs to be inserted, overwriting the received checksum. In case of a transmission
error detection, an incorrect checksum is forwarded to the subsequent MAC unit, to allow
for adequate handling of the packet within the switch.

66

When the packet is forwarded onto a port, a second switch timestamp is sampled off
the same clock. The difference to the first timestamp is calculated and added to a further
payload field that accumulates all delays that are caused by several switches, hubs and
the like in between an end-to-end communications path. Finally, the checksum of the
again modified packet needs to be adjusted accordingly. Once more, bit-synchronization
is required to transfer the data from the local clock domain to the transmit clock domain5.

The principle of accumulating all delays due to intermediate systems allows for a
fine granular measurement of the variable packet delays with two single timestamp fields
within the payload of a dedicated clock synchronization packet. Fig.4.14 illustrates a
switch architecture with the required hardware support for clock synchronization; clocks
with timestamp-logic added in the path between the physical layer devices and the switch
fabric.

ABC + TS
Logic

ABC + TS
Logic

Switch
Fabric MemoryClock + TS

Logic
Physical
Layer IFNetwork

Media

Figure 4.14: Switch architecture with HW-support for clock synchronization

For a product development, this mechanism should be integrated into the switch fabric
device, next to the MAC units. Note that a single counter approach for the clock could
suffice here when the error due to the oscillator drift is negligible. The latter depends
on the clock drift of the oscillator and the transit delay through the switch. When this
error becomes significant either a better oscillator or the incorporation of a clock rate
mechanism (e.g., an adder-based clock) is required. To provide a clock for timestamping
at every switch port different architectures are conceivable as illustrated in Fig.4.15.

TS Logic

Physical
Layer
Device

Physical
Layer
Device

Physical
Layer
Device

Po
rt

s

Sw
itc

h
Fa

br
ic

Centralized Clock and
Timestamp Logic Block

Physical
Layer
Device

Physical
Layer
Device

Physical
Layer
Device

Po
rt

s

Sw
itc

h
Fa

br
ic

Distributed Clocks and
Timestamp Logic Blocks

TS Logic

TS Logic

TS Logic

Physical
Layer

Device

Physical
Layer

Device

Physical
Layer

Device

Po
rt

s

Sw
itc

h
Fa

br
ic

Centralized Clock and Distributed
Timestamp Logic Blocks

TS Logic

TS Logic

TS Logic

Figure 4.15: Clock Architectures for switches

5In contrast to the NIC’s the local clock used for timestamping at a switch requires an own clocking
domain. Since there is a multitude of clocking domains for the receive and transmit paths it doesn’t make
sense to have the clock domain synchronous to one single such domain.

67

Centralized clock and timestamp logic

The clock and the timestamp logic for all ports could be implemented with one large ASIC.
An adder based clock approach could be used to synchronize the clocks of the switch and
to provide a rate correction mechanism which would allow the trading of expensive but
precise oven controlled oscillators with ordinary crystal oscillators. The drawbacks of
this approach are the poor scalability and the requirement for multiple clocking domains
within one chip.

Distributed clock and timestamp logic

By splitting and integrating the logic into several devices one can effectively improve the
above mentioned centralized clock and timestamp logic. This approach scales efficiently
to the different port counts of switches and eases the handling of the required, multiple
clocking domains. Unfortunately, this architecture requires provisions to keep the dis-
tributed clocks in lock step — a single bit flip could cause gross errors and would go
undetected without additional measures. The lock mechanism of a PLL output or a sig-
nature mechanism calculated from the actual clock values and exported via some suitable
interface could be used. In the latter case, every device could output its signature onto a
Wired-AND bus and read-back the value from the bus in parallel. When a mismatch is
detected between the output signature and the signature present on the bus, a re-start of
all clocks within the switch could be initiated. Wrong intermediate timestamps should be
invalidated in this case.

A synchronous start feature is required for start/re-start of the distributed clocks. The
lock output of several PLL circuits used within every clock chip could be used to trigger
this mechanism, when all PLL’s are locked to the reference clock.

When a rate correction is required, it should be implemented with a microcontroller
and a dedicated clock next to the oscillator. The distributed clocks should then operate off
the rate synchronized clock.

Centralized clock and distributed timestamp logic

Combining the advantages of both previously sketched architectures, one could distribute
the timestamp logic to several devices and implement the clock in one dedicated chip.
This solution exhibits good scalability and allows the implementation of a rate algorithm
as well. The only drawback here is the wide interface to export the clock values to all
timestamp logic devices.

Contribution to the worst-case transmission delay uncertainty

When calculating the transmission delay uncertainty for any of the modified switch ar-
chitectures one needs to accumulate the jitter due to the physical layer devices, the syn-
chronizer delays, and the influence of the clock drift. The latter is required because of the
large transit delayδsw through a switch which can reach thems-range. For e.g. given a
worst case switch transit delay of 200ms, a drift of ρsw = 10−7s/s adds an error of up to
20ns. Hence either an oscillator with a drift belowρsw = 10−8s/s, or a suitable clock rate
correction mechanism is mandatory.

Given the architecture illustrated in Fig.4.14and the assumptions

1. the timestamps at every port are drawn from an identical clock source and

68

2. identical physical layer devices are used withεd,trans≈ εd,recv≤ εd,

then the maximum transmission delay uncertainty contributed by one single switch is

εsw = 2εd +2εs+2Gts+δswρsw. (4.3)

For n switches cascaded via usual switch ports the transmission delay uncertainty due to
the switches accumulates to

εsw,n =
n

∑
k=1

(2εd,k +2εs,k +2Gts,k +δsw,kρsw,k). (4.4)

If the switches are all equipped with the same clock and timestamp logic and oscillators
and we assume that the jitter due to any physical layer device can be bounded by a constant
εdmax, formally εd,k ≤ εdmax ∀1≤ k≤ n, Equ.4.4can be rewritten as

εsw,n ≤ n(2(εdmax+Gts+ εs)+δswmaxρsw). (4.5)

Hereinδswmaxis the worst-case transit delay through one switch, i.e.δsw,k≤ δswmax ∀1≤
k ≤ n. From here, it follows that we need a hop count as illustrated in Fig.4.13, since
we cannot know otherwise how many switches a clock synchronization packet may have
crossed.

When switches are cascaded using some kind of backplane bus (e.g., like the stackable
Cisco 3750 series), then equation4.3applies for all, however, some means to synchronize
the clocks in every switching unit is needed. With the help of some additional signal
lines next to the interface used to cascade these devices it should be possible to keep the
clocks synchronized and to let them operate in lock-step. Therefore, one should use the
distributed clock and timestamp logic architecture preferably since this approach scales
and requires only a few signal lines to keep the distributed clock and timestamp logic
devices synchronized.

4.4.2 Switch Add-On

To evaluate the above illustrated mechanism, some kind of prototype implementation is
required. Since switches are built using the leading edge of technology, a fully fledged
prototype implementation is a challenging task. Therefore, in the following sections we
present an add-on for standard, off-the-shelf switches that alleviates a proof-of-concept
demonstration: One can build some kind of repeater with timestamp logic in front of
every switch, see Fig.4.16. This device has a physical layer on every up/downlink port,
where one side is connected to the switch and the other one to the network. The mode of
operation (half-duplex, full-duplex, 10 Base-T, 100 Base-Tx) is sensed at the network side
by using the auto-sensing capabilities integrated into every physical layer device. Next,
one must force the physical layer device towards the switch side into the same operation
mode.

The physical clock signalRXCLK is re-generated with a reference oscillator from the
packets received on the network side. The received data signals are fed –synchronous to
RXCLK– to a clock and timestamp logic which behaves transparent to all packets except
for clock synchronization packets. The latter are timestamped and then forwarded to the
switch. To allow for timestamping, theRXD data lines need to be bit-synchronized to the
clock domain of the clock chip. Furthermore, before the data is sent to the switch once
more a bit-synchronization to the transmit clock domain is required.

69

Physical
Layer
Device

U
p/

D
ow

n-
Li

nk
s

U
p/

D
ow

n-
Li

nk
s

Physical
Layer
DeviceTimestamp

Logic

RXCLK

TXCLK

RXD

TXD

RXCLK

TXCLK

RXD

TXD

Figure 4.16: Switch Add-On

The same applies in the reverse direction from the switch to the network side whenever
a frame is sent by the switch. In this direction, however, the timestamp logic calculates the
difference to the timestamp field encapsulated within the packet and adds this difference
to a second field within the packet payload. This value accumulates the delays due to all
intermediate devices in an end-to-end communications path.

Additional logic –not shown in Fig.4.16– is required to map the carrier sense and
collision detect signals, to handle the auto-sensing capabilities of the physical layer and
to provide configuration of all physical layer devices via the bit-serial media independent
management data interface that should be controlled via a dedicated, small microcon-
troller.

Employing this switch add-on architecture, equation4.3must be re-written to

εsw = 4(εd + εs+Gts)+δswρsw. (4.6)

Similarly equation4.4needs to be modified to

εsw,n =
n

∑
k=1

(4εd,k +4εs,k +4Gts,k +δsw,kρsw,k). (4.7)

4.5 Summary

The presented hardware architecture for tight clock synchronization at DTE devices is
centered on a dedicated hardware that provides an adder-based clock, provisions for exact
timestamping, and facilities to couple reference timing receivers. This clock is best inte-
grated into the media independent interface between COTS media access controllers and
physical layer devices. The same clock technology could be re-used for intermediate net-
worked devices (hubs, switches, . . .); however, a simple counter clock with the according
timestamp logic could suffice here, given that the error due to the oscillator drift is typically
negligible. Several different possible realizations are sketched and analyzed under the as-
pect of minimizing the remote clock reading error under given implementation specific
constraints. For any implementation withn switches in an end-to-end communications
path using one of the proposed architectures at every node the worst-case transmission
delay uncertainty is computed from

ε = εnic +
n

∑
k=1

εsw,k +
n−1

∑
k=1

εc,k (4.8)

70

whereεc,k accounts for the individual transmission delay uncertainties caused by the em-
ployed cable segments. Assuming near identical physical layer devices at every node with
approximately the same jitter for both the transmit and receive directionεd,trans≈ εd,recv,
and the use of identical clock + timestamp logic and oscillators built into every switch we
can derive from Equ.4.2and Equ.4.5

ε ≤ 2(n+1)(εdmax+Gts)+
2n+1

fs
+nδswmaxρsw+

n+1

∑
k=1

εc,k. (4.9)

When standard UTP cables are used and the transmission lines are properly terminated
at every node, the jitter due to the cable segments will be negligibly small. Hence, the
transmission delay uncertainty is approximately given by

ε ∼ 2(n+1)(εdmax+Gts)+
2n+1

fs
+nδswmaxρsw. (4.10)

71

Chapter 5

Delay variations of the Physical Layer

The architectural concepts of the previous section were proposed to improve the achievable
precision for clock synchronization in a distributed system given by Equ.2.3. In order
to judge the improvement an estimate of the underlying parameters is required. In an
implementationρ,G andu are determined by the oscillator characteristics and the clock
design. More important, the clock reading errorε for the presented architectures is made
up by two factors:

1. The errors due to synchronizer stages between the different clocking domains of the
media independent interface and the clock chip.

2. The delay variation of the underlying physical layer, in particular due to the jitter
caused by the physical layer devices and the cable.

The influence of the synchronizer stages can be reduced when a higher frequency for the
clock chip is chosen. Unfortunately, a higher clock frequency usually means reduced
oscillator characteristics (drift, stability, etc.). At any rate, these parameters can be chosen
at design time.

The remaining chapter presents an experimental evaluation of the delay variations due
to the physical layer in different end-to-end communication paths for Ethernet variants
based on structured copper cabling (10 Base-T, 100 Base-Tx and 1000 Base-Tx). To that
end, a model of the cable and the physical layer devices is given before the measurement
setup for the different experiments is described. Finally, the measurement results are pre-
sented and analyzed.

5.1 Models of the physical communication link

Every end-to-end communications path based on twisted pair Ethernet technologies can
be de-composed into several segments (e.g., end-system to switch, switch to router, etc.).
Equipped with the hardware support outlined in the previous chapter, the delay variations
of the communications path in one way as illustrated in Fig.5.1 adds up to the remote
clock reading error, see Equ.4.8.

5.1.1 Cable model

For 10 Base-T, 100 Base-Tx and 1000 Base-Tx, a balanced twisted-pair transmission line
is employed. Like any electromagnetic transmission line, its characteristic impedance

72

max. 100m, typ. CAT-5

MII MII cable MII MII

Sender Receiver

TSU PHY TSUPHY

Figure 5.1: Model of the physical communication link (MII-to-MII)

Z0 can be calculated from manufacturers data and measured on an instrument such as
the Agilent 4395A network analyzer. Twisted-pair lines for LAN applications are typi-
cally fashioned from #22 AWG or #24 AWG stranded copper wire and categorized for a
maximum bandwidth. Category 5 (CAT-5) cables specified for a maximum bandwidth of
BWmax< 100MHz have tightly twisted pairs for low crosstalk and are often used for 10
Base-T or 100 Base-Tx networks. Category 6 and 7 cables feature a higher bandwidth
(350 and 600 MHz) and are in use for Gigabit Ethernet and the like.

The cable from transmission-line theory can be modelled by breaking the line into
small parts so that the circuit element dimensions will be much smaller than a wavelength
(∆z→ 0). Doing this, one can describe the transmission-line by a series resistanceR
[Ω/m], series inductanceL [H/m], shunt conductanceG [S/m] and shunt capacitanceC
[F/m] per unit length. A small section of the transmission-line with lengthdzthus has the
equivalent circuit as illustrated in Fig.5.2. Analysis of this circuit using Kirchhoff’s laws

 dz

I(z) I(z+dz)

V(z)

L dz R dz

C dz G dz V(z+dz)

Figure 5.2: Equivalent circuit for a small part of a transmission line

for time-harmonic signals gives the wave equations

∂V(z)
∂z

− γ2V(z) = 0
∂I(z)

∂z
− γ2I(z) = 0

whereγ is the complex propagation constant given by

γ = α+ jβ =
√

(R′+ jωL′)(G′+ jωC′). (5.1)

R′ =
∂R
∂z

, L′ =
∂L
∂z

, C′ =
∂C
∂z

, G′ =
∂G
∂z

are the longitudinal derivatives of resistance, inductance, capacitance, and admittance
along the line. The solutions to the wave equations are superpositions of forward and
reverse waves,

V(z) = V+
0 e−γz+V−

0 eγz, I(z) = I+
0 e−γz+ I−0 eγz.

73

The characteristic impedance, defined as the ratio of voltage to current (for positive trav-
elling waves), gives

Z0 =
V+

0

I+
0

=−
V−

0

I−0
=

√
R′+ jωL′

G′+ jωC′ .

Furthermore, the phase velocity and wavelength are given by

υp =
ω
β

= f λ λ =
2π
β

. (5.2)

Combining Equ. 5.1 with Equ. 5.2 one can see that the phase velocity and thus the
propagation delay depends on the longitudinal derivatives and the frequency of the time
harmonic input signal. As long as the derivatives and the frequency stay constant, the
cable adds no delay variation onto the transmission.

In the context of a digital communications link, jitter is the offset between the expected
position of a signal transition and the actual position of the transition. Two types of jitter
are characterized:deterministic jitterandrandom jitter. Deterministic jitter is generally
bounded in amplitude, non-Gaussian and expressed in units of time, peak to peak. Ex-
amples of deterministic jitter are: Intersymbol Interference (e.g., from channel dispersion
or filtering), reflections, duty-cycle distortion (e.g. from asymmetric rise/fall times) and
uncorrelated jitter (e.g. from crosstalk by other signals). Random jitter is assumed to be
Gaussian in nature and accumulates from thermal noise sources, e.g., small changes of the
derivatives due to environmental influences.

For Ethernet systems using twisted pair cabling, the main sources of propagation delay
jitter of the cabling are due the output driver at the sender and the input circuitry at the
receiver (see also Sec.5.1.3).

5.1.2 10 Base-T Physical Layer Devices

Fig. 5.3 shows a block diagram that resembles a typical 10Base-T physical layer device.
The transmit path consists of a parallel to serial conversion logic followed by a Manchester
encoder, a filter and a differential driver. Manchester code is a self-clocking code with a
minimum of one and a maximum of two level transitions per bit. A Zero is encoded as
a Low-to-High transition, a One is encoded as a High-to-Low transition. The encoded
bitstream or link pulses, which are used for auto-negotiation, are feed via a pulse shaping
filter to a differential output driver. Link pulses are transmitted every16msin the absence
of transmitted data and are used to check the integrity of the connection with the remote
end. If valid link pulses are not received, the link detector disables the 10Base-T twisted
pair transmitter, receiver and collision detection functions.

In the reverse direction, a differential input buffer feeds the received signals to

• a link pulse detection logic that performs the auto-negotiation functionality,

• to a collision detect logic that reports the presence of a collision in half-duplex mode
when data are received and transmitted simultaneously,

• to a smart squelch that employs a combination of amplitude and timing measure-
ments to determine the validity of data on the twisted pair inputs,

74

Pulse Shaper
Filter

Smart Squelch

Clock Recovery

Collision Detection

Link Pulse Detector

Manchester
Encoder

Link Pulse
Generation

TX +/-

RX +/-

XTAL /
OSC

Manchester
Decoder

Parallel to Serial

Serial to Parallel

RXCLK

RXDV, RXD[3..0]

TXEN, TXD[3..0]

TXCLK

MII
Interface

MDI
Interface

PLS Sublayer PMA Sublayer

Figure 5.3: A typical 10Mb/s physical layer interface block diagram

• to a clock recovery module that regenerates the MII receive clock out of the received
datastream with the help of the local oscillator,

• and finally to a Manchester decoder that uses the recovered clock signal to decode
the bitstream.

The recovered bitstream is succinctly serial to parallel converted and output to the MII
interface.

Intel LXT970A
Transmit Latency typ. 300−500ns
Receive Latency max. 7.3µs

LSI-Logic L80225
Transmit Latency max. 600ns
Transmit Output Jitter ±5.5ns
Receive Latency max. 3.6µs
Receive Input Jitter ±13.5ns

National Semiconductor DP83847A
Transmit Latency max. 680ns
Receive Latency max. 1.73µs

Table 5.1: Propagation delays and jitter of commercial PHYs

Tab. 5.1 summarizes the relevant delays and delay variations that are relevant for the
clock reading error as presented in datasheets of some COTS 10/100Mbps Fast-Ethernet
physical layer devices for 10 Base-T MII operation.

5.1.3 100 Base-Tx Physical Layer Devices

Because of the higher signalling rate in Fast/Gigabit and 10Gigabit Ethernet signal disper-
sion, signal attenuation and electromagnetic emission are a major concern in the physical
medium. Furthermore, delay skew between different pairs in parallel transmissions, that

75

is allowed to be in the range of up to 50ns, and other effects need to be considered as well.
Hence these systems require different line codings as well as a far more complex physical
layer interface.

Fig. 5.4 illustrates the physical layer block diagram for 100 Base-Tx and 100 Base-Fx
as well as for one channel of 100 Base-T4.

4B
 /

5B
 E

nc
od

er

5B
 P

ar
al

le
l t

o
S

er
ia

l

S
cr

am
bl

er

N
R

Z
to

 M
LT

-3
E

nc
od

er

D
P

LL

M
LT

-3
 to

 N
R

Z
D

ec
od

er

C
lo

ck
R

ec
ov

er
y

D
es

cr
am

bl
er

S
er

ia
l t

o
P

ar
al

le
l

4B
 /

5B
 D

ec
od

er

TX
D

[3
..0

],
TX

EN
TX

C
LK

R
XC

LK
R

XD
[3

..0
],

R
XD

V

TX
 +

/-
R

X
 +

/-

5

 5

25
 M

H
z

D
SP

AD
C

D
A

C
 a

nd
Li

ne
 D

riv
er

D
ig

ita
l A

da
pt

iv
e

E
qu

al
iz

at
io

n

B
as

el
in

e
W

an
de

r
C

or
re

ct
io

n

A
ut

om
at

ic
 G

ai
n

C
on

tro
l

Figure 5.4: A typical 100Mb/s physical layer interface block diagram

In the transmit block a 4B/5B Encoder converts 4-bit nibble data, generated by the
MAC and provided via the MII, into 5-bitnon return to zero(NRZ) code groups for
transmission. This conversion is required for control data to be combined with packet data
code groups. Certain control code groups replace the preamble and others are appended
to the end of a frame; in addition, so called idle code groups are continuously injected into
the transmit data stream after a packet until the next transmit packet is detected. Next, the
code groups are serialized and fed into a scrambler. Here a closed loop linear feedback
shift register with an 11-bit polynomial is used. Scrambling of the data is required in order
to randomly distribute the total energy launched onto the cable over a wide frequency
spectrum. After the data stream has been serialized and scrambled, the data is NRZI
encoded in order to comply with the standard for 100Base-Tx. Next, a binary to MLT-3
conversion is accomplished that outputs two binary data streams with alternately phased
logic one events. These two binary streams are then fed to a digital analog converter and
a differential output driver. MLT-3 has three signal levels +1, 0 and -1. A logical 1 is
represented as a transition from one level to the next, while a logical 0 is represented by
no transition. All transitions must follow the repeated pattern: 0, +1, 0, -1.

76

The receive path consists of a differential input buffer and a fastflash type
analog/digital-converter(ADC) at the side close to the medium. A differential inter-
face off the twisted pair (electrically decoupled with the help of external magnetics
module) provides the input to this ADC. A digital signal processing unit provides baseline
wander correction, automatic gain control and adaptive equalization:

• Thebaseline wander(BLW) correction circuit deals with the change in the average
DC content, over time, of an AC coupled digital transmission over a given trans-
mission medium. Baseline wander results from the interaction between the low
frequency components of a transmitted bit stream and the frequency response of
the AC coupling components within the transmission system. If the low frequency
content of the digital bit stream goes below the low frequency pole of the AC cou-
pling transformers then the droop characteristics of the transformers will dominate,
resulting in potentially serious BLW, see Fig.5.5.

Figure 5.5: Baseline wander

• An automatic gain control corrects signal attenuation and an adaptive equalization
filter provides an estimate for the transmission channel. This is required since in
high-speed twisted pair signalling, the frequency content of the transmitted signal
can vary greatly during normal operation based primarily on the randomness of the
scrambled data stream. This variation in signal attenuation caused by frequency
variations must be compensated for to ensure the integrity of the transmission, see
Fig. 5.6for a typical signal attenuation/dispersion scenario over CAT-5 twisted pair
cabling.

• In order to ensure quality transmission when employing MLT-3 encoding, the com-
pensation must be able to adapt to various cable lengths and cable types depend-
ing on the installed environment. The selection of long cable lengths for a given
implementation requires significant compensation which will over-compensate for
shorter, less attenuating lengths. Conversely, the selection of short or intermediate
cable lengths requiring less compensation will cause serious under-compensation
for longer length cables. Therefore, the compensation or equalization must be adap-
tive to ensure proper conditioning of the received signal independent of the cable
length. Many designs1 use an adaptive equalization scheme that determines the ap-
proximate cable length by monitoring signal attenuation at certain frequencies. This

1The information provided herein is excerpted from various data-sheets of different vendors, e.g. AMD,
Intel, SmSC, LSI-Logic, National Semiconductor and 3COM.

77

3.0 Functional Descr ipti on (Continued)

 26 www.national.com

3.10.4 Line Quality Mon itor

It is possible to determine the amount of Equalization being
used by accessing certain test registers with the DSP
engine. This provides a crude indication of connected cable
length. This function allows for a quick and simple
verification of the line quality in that any significant
deviation from an expected register value (based on a
known cable length) would indicate that the signal quality
has deviated from the expected nominal case.

3.10.5 MLT-3 to NRZI Decoder

The DP83815 decodes the MLT-3 information from the
Digital Adaptive Equalizer block to binary NRZI data.

Figur e 3-10 EIA/TIA At tenuation v s. Frequ ency for 0, 50,
100, 130 & 150 meters of CAT V cable

Figure 3-11 MLT-3 Signa l Measured at AII after 0 meters
of CAT V cable

2ns/div

Figure 3-12 MLT-3 Signa l Measur ed at AI I after 50
meters of CA T V cable

Figure 3-13 MLT-3 Signal Measu red at A II after 100
meters of CA T V cable

2ns/div

2ns/div

3.0 Functional Descr ipti on (Continued)

 26 www.national.com

3.10.4 Line Quality Mon itor

It is possible to determine the amount of Equalization being
used by accessing certain test registers with the DSP
engine. This provides a crude indication of connected cable
length. This function allows for a quick and simple
verification of the line quality in that any significant
deviation from an expected register value (based on a
known cable length) would indicate that the signal quality
has deviated from the expected nominal case.

3.10.5 MLT-3 to NRZI Decoder

The DP83815 decodes the MLT-3 information from the
Digital Adaptive Equalizer block to binary NRZI data.

Figur e 3-10 EIA/TIA At tenuation v s. Frequ ency for 0, 50,
100, 130 & 150 meters of CAT V cable

Figure 3-11 MLT-3 Signa l Measured at AII after 0 meters
of CAT V cable

2ns/div

Figure 3-12 MLT-3 Signa l Measur ed at AI I after 50
meters of CA T V cable

Figure 3-13 MLT-3 Signal Measu red at A II after 100
meters of CA T V cable

2ns/div

2ns/div

Figure 5.6: MLT-3 dispersion and attenuation on CAT-5 after 0m (left) and 50m (right)
measured at the active input interface

attenuation value is compared to the internal receive input reference voltage. The
result indicates the amount of equalization to use. Next, the Digital Equalizer re-
movesInter Symbol Interference(ISI) from the receive data stream by adapting a
filter to the inverse frequency response of the channel. In combination with a gain
stage it is possible to open the receiveeye patternsufficiently for reliable data re-
covery. Some implemented adaptive equalizers select 1 ofN filters in an attempt to
match the cable characteristics, while others are truly adaptive. Usually, the cable
length is estimated based on comparisons of incoming signal strength against some
known cable characteristics. The equalizer tunes itself automatically to the cable
length to compensate for the amplitude and phase distortion incurred by the cable.
The curves given in Fig.5.7 illustrate attenuation at certain frequencies for given
cable lengths. This is derived from the worst case frequency vs. attenuation figures
as specified in the EIA/TIA Bulletin TSB-36. These curves indicate the significant
variations in signal attenuation that must be compensated for by the receive adaptive
equalization circuit.

Clock Recovery Module 2-25

the selection of short or intermediate cable lengths requiring less
compensation causes serious under-compensation for longer length
cables. Therefore, the compensation or equalization must be
adaptive to ensure proper conditioning of the received signal,
independent of the cable length.

Figure 2.10 EIA/TIA Attenuation vs. Frequency for 0, 50, 100, 130
and 150 Meters of CAT-5 Cable

• Automatic Attenuation Control (AAC). This allows the DSP block to
fit the resultant output signal to match the limit characteristic of its
internal decision block to ensure error free sampling.

2.7 Clock Recovery Module

The Clock Recovery Module (CRM) uses the output information from the
DSP Block to generate a phase corrected 125 MHz clock for the
100BASE-T receiver.

The CRM is implemented using an advanced digital Phase-Locked Loop
(PLL) architecture that replaces sensitive analog circuitry. Using digital
PLL circuitry allows the L80600 to be manufactured and specified to
tighter tolerances.

35

30

25

20

15

10

5

0
0 20 40 60 80 100 120

Frequency (MHz)

A
tte

nu
at

io
n

(d
B

)

150m

130m

100m

50m

0m

Figure 5.7: EIA/TIA Attenuation vs. Frequency of CAT-5 Cable

78

Following the adaptive equalization filter are several decoding stages, the clock recov-
ery circuit, a descrambler and a serial-to-parallel converter.

In 100 Base-T4 systems, data is transmitted in parallel over four differential UTP-3
pairs, hence an additional code group align block is present for these systems. Since the
number of twists between the pairs in a cable vary, a delay skew of up to 50ns is allowed.
The code group align block re-aligns the signals receipt on the different pairs and provides
them aligned to the serial-to-parallel converter. The latter provides 5 symbols in parallel
to the 4B/5B decoder that feeds the nibble wide MII receive data lines synchronously with
every rising edge of the receive clock re-generated by the clock recovery circuit.

In 100 Base-T2 systems data is simultaneously transmitted in a full-duplex fashion
over two wire UTP-3 pairs in both signalling directions. This dual duplex transmission
requires two transmitters and two receivers at each end of a link, and separation of simul-
taneously transmitted and received signals on each wire pair. To allow for proper operation
additional adaptive digital filters are required for echo and NEXT cancellation, equaliza-
tion and interference suppression, see [10]. These techniques are similar in 1000 Base-T
networks.

Fiber optic media are far superior concerning signal attenuation when compared with
copper cables. Therefore, the rather complex operations required for signal regeneration,
in particular adaptive equalization and baseline wander correction are not required for 100
Base-Fx.

Tab. 5.2 summarizes the relevant delays and delay variations that are relevant for the
clock reading error as presented in datasheets of some COTS 10/100Mbps Fast-Ethernet
physical layer devices for 100 Base-Tx MII operation.

Intel LXT970A
Transmit Latency 40−60ns
Receive Latency typ. 20ns

LSI-Logic L80225
Transmit Latency 60−140ns
Transmit Output Jitter ±0.7ns
Receive Latency max. 240ns
Receive Input Jitter ±3ns
National Semiconductor DP83847A
Transmit Latency max. 60ns
Transmit Output Jitter max. 1.4ns
Receive Latency max. 21ns

Table 5.2: Propagation delays and jitter of commercial PHYs

5.2 Evaluation

By experimental evaluation we want to quantify the clock reading error with typical COTS
components and the minimal delay variation added due to intermediate switches and re-
peaters. This is of utmost importance, since side-effects that may impair the system per-
formance can remain unnoticed because of the complexity of the involved mechanisms.

79

As a result we expect to gain some insights about the jitter added by the complex physical
layer devices in order to further improve on the achievable clock reading error. First, the
evaluation system consisting of hard- and software is illustrated and described. Next, we
characterize the measurement setup and identify key parameters that need to be addressed
before we present the measurement results with a proper discussion.

5.2.1 Evaluation System Hardware

Fig. 5.8 illustrates the measurement hardware setup used for the presented experiments.
The basic setup remains the same for differentunit under testconfigurations and devices.

MACPHY

CPU

Memory

MAC PHY

CPU

Memory

Cross-Connect
Cable / Switch /

Repeater

Node p Node q

Stanford Research Systems
Frequency Counter SR620

Measurement PC

RS232

Trigger

Evaluation System

Figure 5.8: Measurement System

Two nodesp andq are equipped with a network interface card that hosts a medium
access controller (MAC) coupled via a media-independent interface (MII) to a physical
layer device (PHY). The physical layer devices at both nodes and the respective network
connection form the unit under test (highlighted in Fig.5.8). Additional network interface
cards (not illustrated) at both nodes provide access to an NTP time server to synchronize
their PC clocks for coordinated action. A Stanford Research Systems SR620 Frequency
Counter2 with a RMS resolution of 25psand an ovenized timebase are used in conjunction
with a measurement PC to record latency variations in packet transmission. Every single
measurement is triggered by the rising edge of the transmit enable signal and stopped by
the rising edge of the receive data valid signal at either MII. Both signals are synchronous
to their according data lines; hence this measurement yields the same result as when trig-
gered and stopped after detection of a unique type field as used for hardware timestamping
of clock synchronization packets without the synchronizer stages. Setup and measurement
recording are controlled from a remote host via a standard serial interface (RS232). The
measurement PC also serves as data repository for the accumulated data.

5.2.2 Evaluation System Software

The software used for the system evaluation consists of

1. a traffic generator for CSP generation

2. a program to control and read-out the frequency counter from a remote host

2http://www.srsys.com/

80

http://www.srsys.com/

3. a program to preprocess the data for graphical presentation

4. and a statistics software package

First, a simple program based on the link-layer library LibNet3 was developed for low-
level traffic generation. This program allows setting the sizes and values of all fields of
an Ethernet frame. Additionally, one can program a time interval elapsing between sub-
sequent packets and the amount of packets that are generated. One should note, however,
that when executing the traffic generator under a Multitasking Operating System (e.g.,
Linux, Unix, etc.) the actual time intervals between subsequent packets will vary. This
can be alleviated, when

• the system isn’t loaded and the traffic generator program isre-nicedto the highest
priority, or when

• a Real-Time Operating System is used (e.g., VxWorks, OSE, RTLinux, etc.).

Throughout the experiments the traffic generation software was executed under the Linux
operating system with higher than user priority running atop standard PCs (the nodes of
the evaluation system).

The custom developed remote control software was executed from the measurement
PC, running under Linux as well. Using the serial interface, this program allows to con-
figure and control every function of the frequency counter and permits a readout of the
measurement data. The latter is stored in ASCII files for convenient post processing and
analysis. Although the frequency counter could perform up to 106 time interval mea-
surements between any two channels and process some statistics (mean, minimum and
maximum), it was decided to use single time interval measurements instead. The advan-
tage is that every single data value is available for further post-processing and analysis. In
fact, this proved essential for the 10 Base-T and 1000 Base-Tx measurements where the
distribution of the data is not Normal.

For every configuration more than 100.000 packets were recorded to provide mean-
ingful output values. To provide a graphic histogram of the distribution the data was
pre-processed with a simple, custom developed program that accepts as input the number
of histogram-bars the final output shall contain. The resulting values can be plotted using
the public domain software Gnuplot4.

Standard statistical tests like averages, standard deviation and minima/maxima are
computed using the public domain statistic program Statist5. Furthermore, for charac-
terization of long tails and rare events 95% minima/maxima are provided as well.

5.2.3 Evaluation System Setup

Cables, network interface cards of different manufacturers and repeaters and switches of
different brands were subject of the investigation. Therefore, every single experiment was
executed in the following sequence:

1. Assembly and setup of the units under test

2. Start-up of the nodes and the measurement equipment

3http://www.packetfactory.net
4http://www.gnuplot.info/
5http://www.usf.uni-osnabrueck.de/∼breiter/tools/statist/index.en.html

81

http://www.packetfactory.net
http://www.gnuplot.info/
http://www.usf.uni-osnabrueck.de/~breiter/tools/statist/index.en.html

3. Remote initialization of the frequency counter and start of the measurements

4. Forcing of the media speeds and operating modes

5. Invocation of the traffic generator program

6. Data recording

For Fast-Ethernet devices media speed (10Base-T and 100Base-Tx) and mode (half- and
full-duplex) can be forced using the Linux system programmii-tool that is part of the
net-tools6 package. The latter is usually present in every Linux distribution since it pro-
vides other essential networking programs likeifconfig, arp, route, etc.

For Gigabit devices, however, no such handy tool exists; instead, one must rely on a
kernel module to provide this configuration mechanism via suitable parameters. First, one
needs to off-load the module and subsequently re-load it using either theinsmod or the
modprobe system commands. The actual syntax is usually provided by the module docu-
mentation or must be grabbed from the module source itself. —A bug was encountered in
one version of a Linux kernel module for the Gigabit Ethernet cards employed, preventing
proper mode and media speed switching. A bug-fix was was made and sent to Donald
Becker7, the maintainer of the Linux device driver.— In order to verify the media settings
one should check the mode and media speed LED’s connected to the proper physical layer
device and measure the timing and activity on the MII for a packet with known length.

Prior to our experiments we explored some key parameters and their influence on the
transmission delays. The following Tab.5.3lists them along with a rule-of-thumb charac-
terization of their actual effect on the clock reading error.

Parameter Effect
Network load relevant
Loss of link (EMC, disconnection, etc.) relevant
Length of network segment relevant
Physical Layer Device relevant
CPU and interrupt load irrelevant
CSP size/frequency irrelevant
Packet loss irrelevant
Collisions/Late collisions irrelevant

Table 5.3: Parameters potentially affecting the clock readings error

Gluing all the hardware and the software together following the above steps, different
configurations of the physical layer connection in different modes were evaluated:

• Cross-connect cables with different length

• Different COTS physical layer devices

– forced to media speeds: 10Base-T, 100Base-Tx and 1000Base-Tx

– configured to the operating modes: Full-Duplex, Half-Duplex

6http://freshmeat.net/
7http://www.scyld.com

82

http://freshmeat.net/
http://www.scyld.com

• Loss-of-link

• With Unloaded/loaded switches/repeaters in the end-to-end communications path
using different media speeds and operating modes

5.3 Measurement Results

The measurement results are presented based on the items listed before. First, the delay
variations of up to 100.000 clock synchronization packets employing different physical
layer devices and cable lengths are summed up. The results will give realistic values for
the clock reading error from which one can conclude whether the particular media speed
and mode configuration will admit a synchronization precision in thens-range.

Next, to justify the additional hardware support for switches, we present some test re-
sults with switches and some repeaters, respectively. The experiments conducted for both
unloaded and loaded conditions are backed-up by other switch evaluations with advanced
measurement equipment found in respective literature.

5.3.1 Direct connection

Tab.5.4lists the physical layer devices and cross-connect cables that were evaluated. One
custom-developed prototype, as illustrated in Fig.4.8and several COTS network interface
card were employed. The latter were patched so that measurement of the MII control and
data lines could be conveniently done. For either physical layer interface two cards were

Network Interface Card Physical Layer Device
MII-NTI prototype Intel LXT970A
3Com3C905Tx National SemiconductorDP83840A
Allied TelesynAT2700Tx Intel LXT970A
D-Link DFE530Tx LSI Logic L80225
D-Link DGE500T (Gigabit) National SemiconductorDP83861
Vendor Cable
YFC Boneagle 3m CAT-5 100MHz 26 AWGx4P
Draka Comteq 99m UC300 S26 4P Category-5e

Table 5.4: Physical layer devices and cables, subjects of the evaluation

available (except for the D-Link DFE-530Tx card) to explore send and receive operation
with the same devices within one single experiment as well. All experiments were con-
ducted with a 3m and a 99m cross-connected CAT-5 cable to investigate the influence of
the cable length. Note that twisted pair Ethernet specifies a maximum segment length of
100m. To that end the experiments with the 99m cable could cover proper operation close
to the specified boundaries too.

The results of the experiments are categorized into 10 Base-T, 100 Base-Tx and 1000
Base-Tx operating modes. Figures of the distributions found are given for some typical
configurations only and are omitted for other configurations, when leading to the same
principal results. Benchmark data (minima/maxima, mean, etc.) are given for all mea-
surements in tabular form to allow convenient comparison and analysis.

83

http://developer.intel.com/
http://www.3com.com
http://www.national.com/
http://www.alliedtelesyn.com/
http://developer.intel.com/
http://www.dlink.com/
http://www.lsilogic.com/
http://www.dlink.com/
http://www.national.com/
http://www.drakamc.de/
http://www.drakamc.de/

10 Base-T results:Tab. 5.5 summarizes the measured delays of 100.000 clock synchro-
nization packets for various Fast-Ethernet network interfaces and two cable lengths in 10
Base-T mode. For every experiment the source, the cross-connect cable and the desti-
nation NIC are listed followed by extracted intervals and the samples contained therein.
For the given configurations the results are distributed over several intervals spaced about
100ns from each other, see Fig.5.9 for a representative sample plot of one experiment
sequence and an extracted histogram.

Full Duplex Half Duplex
Src: 3C905Tx — 3m CAT-5 — Dst: 3C905Tx

[2.1110µs,2.1150µs] 10713 samples [2.1111µs,2.1151µs] 10903 samples
[2.2106µs,2.2136µs] 22986 samples [2.2107µs,2.2137µs] 23381 samples
[2.3102µs,2.3122µs] 24925 samples [2.3103µs,2.3123µs] 24750 samples
[2.4103µs,2.4118µs] 25251 samples [2.4104µs,2.4119µs] 25013 samples
[2.5094µs,2.5119µs] 14508 samples [2.5095µs,2.5125µs] 14285 samples
[2.6100µs,2.6115µs] 1617 samples [2.6100µs,2.6115µs] 1668 samples

Src: 3C905Tx — 99m CAT-5 — Dst: 3C905Tx
[2.6213µs,2.6253µs] 10666 samples [2.6215µs,2.6250µs] 10565 samples
[2.7211µs,2.7241µs] 23252 samples [2.7212µs,2.7243µs] 23223 samples
[2.8209µs,2.8229µs] 24774 samples [2.8210µs,2.8230µs] 24977 samples
[2.9206µs,2.9221µs] 25225 samples [2.9208µs,2.9223µs] 25208 samples
[3.0199µs,3.0224µs] 14380 samples [3.0200µs,3.0220µs] 14336 samples
[3.1207µs,3.1227µs] 1703 samples [3.1208µs,3.1228µs] 1690 samples

Src: 3C905Tx — 3m CAT-5 — Dst: DFE530Tx
[3.1089µs,3.1105µs] 14824 samples [3.1090µs,3.1106µs] 15194 samples
[3.2089µs,3.2105µs] 25112 samples [3.2091µs,3.2107µs] 25047 samples
[3.3089µs,3.3105µs] 25043 samples [3.3087µs,3.3103µs] 25090 samples
[3.4089µs,3.4105µs] 25228 samples [3.4092µs,3.4104µs] 24836 samples
[3.5089µs,3.5106µs] 9793 samples [3.5092µs,3.5108µs] 9833 samples

Src: 3C905Tx — 99m CAT-5 — Dst: DFE530Tx
[3.6113µs,3.6138µs] 14362 samples [3.6114µs,3.6130µs] 14339 samples
[3.7113µs,3.7129µs] 24845 samples [3.7114µs,3.7131µs] 24628 samples
[3.8113µs,3.8125µs] 25123 samples [3.8115µs,3.8135µs] 25165 samples
[3.9113µs,3.9129µs] 25017 samples [3.9115µs,3.9127µs] 25114 samples
[4.0113µs,4.0129µs] 10653 samples [4.0115µs,4.0131µs] 10754 samples

Src: 3C905Tx — 3m CAT-5 — Dst: MII-NTI
[7.5558µs,7.5588µs] 25039 samples [7.5558µs,7.5589µs] 25038 samples
[7.6565µs,7.6592µs] 25082 samples [7.6565µs,7.6593µs] 25039 samples
[7.7572µs,7.7596µs] 24778 samples [7.7573µs,7.7597µs] 24803 samples
[7.8576µs,7.8600µs] 25101 samples [7.8577µs,7.8601µs] 25120 samples

Src: 3C905Tx — 99m CAT-5 — Dst: MII-NTI
[8.0152µs,8.0185µs] 25079 samples [8.0153µs,8.0186µs] 25192 samples
[8.1150µs,8.1180µs] 24745 samples [8.1154µs,8.1184µs] 24877 samples

continued on next page

84

continued from previous page
Full Duplex Half Duplex

[8.2151µs,8.2178µs] 25256 samples [8.2152µs,8.2179µs] 24998 samples
[8.3149µs,8.3176µs] 24920 samples [8.3153µs,8.3177µs] 24933 samples

Src: DFE530Tx — 3m CAT-5 — Dst: 3C905Tx
[1.7877µs,1.7917µs] 4437 samples [1.7872µs,1.7912µs] 4498 samples
[1.8870µs,1.8920µs] 16833 samples [1.8870µs,1.8911µs] 16731 samples
[1.9869µs,1.9904µs] 24927 samples [1.9864µs,1.9899µs] 25171 samples
[2.0867µs,2.0897µs] 24961 samples [2.0863µs,2.0888µs] 24884 samples
[2.1860µs,2.1890µs] 20614 samples [2.1857µs,2.1887µs] 20425 samples
[2.2868µs,2.2894µs] 8228 samples [2.2860µs,2.2890µs] 8291 samples

Src: DFE530Tx — 99m CAT-5 — Dst: 3C905Tx
[2.2965µs,2.3005µs] 3039 samples [2.2962µs,2.2997µs] 2834 samples
[2.3958µs,2.4003µs] 15549 samples [2.3960µs,2.4000µs] 15553 samples
[2.4957µs,2.4992µs] 25256 samples [2.4958µs,2.4988µs] 25112 samples
[2.5955µs,2.5980µs] 24939 samples [2.5956µs,2.5981µs] 25126 samples
[2.6948µs,2.6978µs] 21607 samples [2.6948µs,2.6973µs] 22129 samples
[2.7947µs,2.7982µs] 9610 samples [2.7951µs,2.7976µs] 9246 samples

Src: DFE530Tx — 3m CAT-5 — Dst: MII-NTI
[7.4330µs,7.4345µs] 24863 samples [7.4330µs,7.4345µs] 24997 samples
[7.5335µs,7.5350µs] 24934 samples [7.5335µs,7.5350µs] 25020 samples
[7.6339µs,7.6355µs] 24850 samples [7.6337µs,7.6352µs] 24949 samples
[7.7341µs,7.7356µs] 25353 samples [7.7339µs,7.7357µs] 25034 samples

Src: DFE530Tx — 99m CAT-5 — Dst: MII-NTI
[7.9403µs,7.9415µs] 25007 samples [7.9401µs,7.9416µs] 24947 samples
[8.0402µs,8.0417µs] 24584 samples [8.0398µs,8.0419µs] 24971 samples
[8.1405µs,8.1420µs] 25227 samples [8.1404µs,8.1419µs] 24952 samples
[8.2404µs,8.2422µs] 25182 samples [8.2401µs,8.2423µs] 25130 samples

Src: MII-NTI — 3m CAT-5 — Dst: 3C905Tx
[1.9123µs,1.9168µs] 4311 samples [1.9122µs,1.9172µs] 4314 samples
[2.0121µs,2.0166µs] 16544 samples [2.0121µs,2.0166µs] 16658 samples
[2.1115µs,2.1160µs] 24808 samples [2.1114µs,2.1154µs] 25308 samples
[2.2113µs,2.2143µs] 25243 samples [2.2112µs,2.2147µs] 25007 samples
[2.3112µs,2.3137µs] 20765 samples [2.3111µs,2.3136µs] 20431 samples
[2.4115µs,2.4140µs] 8329 samples [2.4114µs,2.4139µs] 8282 samples

Src: MII-NTI — 99m CAT-5 — Dst: 3C905Tx
[2.4133µs,2.4173µs] 2377 samples [2.4132µs,2.4172µs] 2350 samples
[2.5125µs,2.5181µs] 14803 samples [2.5130µs,2.5175µs] 14825 samples
[2.6128µs,2.6168µs] 24925 samples [2.6127µs,2.6167µs] 25097 samples
[2.7125µs,2.7155µs] 25029 samples [2.7124µs,2.7154µs] 24928 samples
[2.8123µs,2.8143µs] 22600 samples [2.8121µs,2.8141µs] 22472 samples
[2.9120µs,2.9145µs] 10266 samples [2.9119µs,2.9144µs] 10328 samples

Src: MII-NTI — 3m CAT-5 — Dst: AT2700Tx
[7.5515µs,7.5539µs] 24738 samples [7.5515µs,7.5539µs] 25139 samples

continued on next page

85

continued from previous page
Full Duplex Half Duplex

[7.6516µs,7.6543µs] 25134 samples [7.6518µs,7.6543µs] 25004 samples
[7.7520µs,7.7544µs] 25297 samples [7.7519µs,7.7547µs] 25063 samples
[7.8521µs,7.8548µs] 24831 samples [7.8520µs,7.8547µs] 24794 samples

Src: MII-NTI — 99m CAT-5 — Dst: AT2700Tx
[8.0583µs,8.0608µs] 25179 samples [8.0586µs,8.0610µs] 25058 samples
[8.1581µs,8.1611µs] 24974 samples [8.1586µs,8.1613µs] 25065 samples
[8.2585µs,8.2615µs] 24962 samples [8.2588µs,8.2616µs] 24987 samples
[8.3585µs,8.3616µs] 24885 samples [8.3588µs,8.3615µs] 24890 samples

Src: MII-NTI — 3m CAT-5 — Dst: DFE530Tx
[3.0045µs,3.0061µs] 15230 samples [3.0043µs,3.0063µs] 14900 samples
[3.1042µs,3.1062µs] 25063 samples [3.1040µs,3.1060µs] 24904 samples
[3.2043µs,3.2063µs] 24804 samples [3.2042µs,3.2066µs] 25292 samples
[3.3044µs,3.3064µs] 24965 samples [3.3043µs,3.3063µs] 24956 samples
[3.4045µs,3.4065µs] 9938 samples [3.4045µs,3.4065µs] 9948 samples

Src: MII-NTI — 99m CAT-5 — Dst: DFE530Tx
[3.6104µs,3.6124µs] 14260 samples [3.6109µs,3.6121µs] 14246 samples
[3.7105µs,3.7125µs] 25009 samples [3.7109µs,3.7121µs] 25199 samples
[3.8102µs,3.8122µs] 24978 samples [3.8108µs,3.8120µs] 25103 samples
[3.9103µs,3.9123µs] 25064 samples [3.9108µs,3.9120µs] 24992 samples
[4.0103µs,4.0124µs] 10689 samples [4.0108µs,4.0124µs] 10460 samples

Table 5.5: 10 Base-T delay measurements with Fast-Ethernet cards

86

2.4

2.6

2.8

3.0

 2 4 6 8

[µ
s]

[104 Experiments]

 1

 2

 3

2.4 2.5 2.6 2.7 2.8 2.9 3.0

[1
03 E

xp
er

im
en

ts
]

[µs]

Figure 5.9: 10 Base-T Full Duplex Delay Measurements (top) and histogram (bottom)
Sender: MII-NTI – 3m CAT-5 – Receiver: 3C905Tx

From the results we can deduce the following items for Fast-Ethernet cards in 10 Base-T
mode:

• The measured delays are spread over four to six narrow intervals (1-4 ns wide) that
are spaced 100 ns apart from each other. The number of intervals depend on the
physical layer receiver.

• The number of measured samples are randomly distributed over these intervals and
over time.

• The distributions of the values within the intervals are mostly Normal.

• The delays and delay variations are nearly the same for full-duplex and half-duplex
mode.

• The employed CAT-5 cables add a delay proportional to the cable length. The delay
variations due to the cables are negligible.

• The delays between the different configurations that are due to the physical layer
devices vary by severalµs.

The results clearly show that even given the best results of the delay variation obtained
by NIC’s equipped with the LXT970A physical layer device (∼ 300ns) one cannot reduce

87

the remote clock reading error down to the ns-range. Hence, a precision of the clock
synchronization clearly below theµs-range is not plausible with the given Fast-Ethernet
cards for 10 Base-T mode. The reason for the delays being distributed across multiple
intervals seem to stem from the fact that in 10 Base-T mode the receiver clock needs
to be re-synchronized at the preamble of every received frame. In the given mode this
synchronization is performed with a multiple (4x) of the oscillator frequency (2.5 MHz)
supplied to the physical layer devices that directly relates to the 100 ns spacing of the
measured intervals.

Next to Fast-Ethernet cards we surveyed also one type of a Gigabit-Ethernet card in
10 Base-T mode. These modern devices offer enhanced signal processing capabilities that
may influence the expected results. Tab.5.6 summarizes the results and Fig.5.10gives
the histograms for full-duplex mode.

 1

 2

 3

 4

 5

1.7 1.8 1.9 2.0

[1
03 E

xp
er

im
en

ts
]

[µs]

 100

 200

 300

2.255 2.260 2.265 2.270

[E
xp

er
im

en
ts

]

[µs]

Figure 5.10: 10 Base-T Full Duplex histograms for Sender: DGE500T – 3m CAT-5 –
Receiver: DGE500T (top) and Sender: DGE500T – 99m CAT-5 – Receiver: DGE500T
(bottom)

Here most results are massed in one single interval (width∼ 15ns) and several outliers
are found farther apart. In contrast to the results obtained using Fast-Ethernet cards the
results within the main interval provide near Uniform distribution. Again the results for
full-duplex and half-duplex look alike. This, however, is not the case when the delay varia-

88

Full Duplex Half Duplex
Src: DGE500T — 3m CAT-5 — Dst: DGE500T

[1.6503µs,1.6518µs] 13 samples [1.6507µs,1.6518µs] 97 samples
[1.6618µs,1.6643µs] 5096 samples [1.6620µs,1.6642µs] 3991 samples
[1.7502µs,1.7636µs] 94889 samples [1.7505µs,1.7638µs] 95912 samples
[1.9619µs,1.9625µs] 15 samples

Src: DGE500T — 99m CAT-5 — Dst: DGE500T
[2.1539µs,2.1556µs] 12 samples

[2.2517µs,2.2663µs] 10000 samples [2.2513µs,2.2658µs] 99988 samples

Table 5.6: 10 Base-T delay measurements with Gigabit-Ethernet cards

tion employing 3m CAT-5 cable are related to 99m CAT-5 cable. In the latter configuration
almost all measurements are within one single interval.

Concluding, 10 Base-T mode of Gigabit-Ethernet devices seem more promising when
compared to the Fast-Ethernet results, especially when one could employ some statistic
filtering mechanisms to cut-off the outliers. In this case the delay variation is in the range
of 15ns which promises a clock precision in the 100ns-range.

100 Base-Tx results:100 Base-Tx Ethernet technology is most widely used in enterprize-
wide office networks. In combination with switches these devices are usually operated in
full-duplex mode. In fewer cases half-duplex mode using repeaters is still used to connect
several computers within proximity, although more and more small desktop switches
replace the repeaters here as well. Hence an investigation of 100 Base-Tx networks is of
higher interest. Tab.5.7summarizes the results of the 100 Base-Tx delay measurements.
As can be seen in the representative sample histogram in Fig.5.11the distribution of the
results is Normal, therefore in Tab.5.7we provide typical statistical parameters. Next to
minimum, maximum we extracted/calculated the median and the mean values, 25% and
75% quantiles, the standard deviation with its variation coefficient and the standard error
of the mean to provide detailed characterization.

100 Base-Tx 3m 99m
Full-Duplex Half-Duplex Full-Duplex Half-Duplex

Src: 3C905Tx — CAT-5 — Dst: 3C905Tx
Minimum 269.79 ns 269.97 ns 772.2 ns 764.24 ns
Median 270.87 ns 270.88 ns 773.2 ns 765.31 ns
Maximum 271.72 ns 271.67 ns 774.28 ns 766.27 ns
Mean 270.85 ns 270.86 ns 773.21 ns 765.30 ns
Std. error of mean 0.78 ps 0.73 ps 0.88 ps 0.86 ps
25% quantile 270.68 ns 270.7 ns 773.01 ns 765.12 ns
75% quantile 271.03 ns 271.03 ns 773.4 ns 765.5 ns
Std. deviation 248 ps 232 ps 279 ps 271 ps
Variation coeff. 0.09% 0.09% 0.04% 0.04%

Src: 3C905Tx — CAT-5 — Dst: DFE530Tx8

continued on next page

89

continued from previous page
100 Base-Tx 3m 99m

Full-Duplex Half-Duplex Full-Duplex Half-Duplex

Minimum 302.4 ns 294.42 ns 784.62 ns 760.4 ns
Median 303.5 ns 295.49 ns 785.51 ns 761.52 ns
Maximum 304.86 ns 296.62 ns 786.44 ns 762.49 ns
Mean 303.5 ns 295.49 ns 785.52 ns 761.51 ns
Std. error of mean 0.92 ps 0.90 ps 0.75 ps 0.76 ps
25% quantile 303.3 ns 295.29 ns 785.35 ns 761.35 ns
75% quantile 303.7 ns 295.69 ns 785.67 ns 761.67 ns
Std. deviation 290 ps 286 ps 235 ps 238 ps
Variation coeff. 0.1% 0.1% 0.03% 0.03%

Src: 3C905Tx — CAT-5 — Dst: MII-NTI
Minimum 311.78 ns 311.72 ns 825.18 ns 817.27 ns
Median 312.76 ns 312.75 ns 826.42 ns 818.43 ns
Maximum 313.71 ns 313.74 ns 827.91 ns 820.05 ns
Mean 312.76 ns 312.75 ns 826.47 ns 818.5 ns
Std. error of mean 0.77 ps 0.76 ps 1.15 ps 1.25 ps
25% quantile 312.6 ns 312.58 ns 826.21 ns 818.21 ns
75% quantile 312.93 ns 312.91 ns 826.69 ns 818.75 ns
Std. deviation 244 ps 240 ps 363 ps 397 ps
Variation coeff. 0.08% 0.08% 0.04% 0.05%

Src: DFE530Tx — CAT-5 — Dst: 3C905Tx
Minimum 329.18 ns 313.18 ns 809.79 ns 799.69 ns
Median 330.43 ns 314.37 ns 810.95 ns 800.87 ns
Maximum 331.57 ns 315.47 ns 812.15 ns 802.09 ns
Mean 330.44 ns 314.37 ns 810.95 ns 800.87 ns
Std. error of mean 0.98 ps 0.90 ps 0.98 ps 0.97 ps
25% quantile 330.22 ns 314.17 ns 810.73 ns 800.65 ns
75% quantile 330.65 ns 314.56 ns 811.17 ns 801.09 ns
Std. deviation 310 ps 285 ps 310 ps 308 ps
Variation coeff. 0.09% 0.09% 0.04% 0.04%

Src: DFE530Tx — CAT-5 — Dst: MII-NTI
Minimum 356.36 ns 388.37 ns 883.96 ns 867.97 ns
Median 357.28 ns 389.35 ns 884.99 ns 869.01 ns
Maximum 358.23 ns 390.27 ns 886.07 ns 869.95 ns
Mean 357.28 ns 389.34 ns 884.99 ns 869.01 ns
Std. error of mean 0.74 ps 0.73 ps 0.76 ps 0.74 ps
25% quantile 357.12 ns 389.19 ns 884.83 ns 868.85 ns
75% quantile 357.44 ns 389.5 ns 885.15 ns 869.17 ns
Std. deviation 233 ps 230 ps 240 ps 235 ps
Variation coeff. 0.07% 0.06% 0.03% 0.03%

Src: MII-NTI — CAT-5 — Dst: 3C905Tx
Minimum 343.58 ns 343.69 ns 857.31 ns 857.46 ns

continued on next page

90

continued from previous page
100 Base-Tx 3m 99m

Full-Duplex Half-Duplex Full-Duplex Half-Duplex
Median 344.78 ns 344.86 ns 858.23 ns 858.55 ns
Maximum 346.44 ns 346.51 ns 859.73 ns 859.77 ns
Mean 344.78 ns 344.87 ns 858.31 ns 858.55 ns
Std. error of mean 1.00 ps 1.01 ps 1.02 ps 1.00 ps
25% quantile 344.56 ns 344.64 ns 858.3 ns 858.33 ns
75% quantile 345 ns 345.09 ns 858.75 ns 858.77 ns
Std. deviation 318 ps 321 ps 322 ps 317 ps
Variation coeff. 0.09% 0.09% 0.04% 0.04%

Src: MII-NTI — CAT-5 — Dst: AT2700Tx
Minimum 390.56 ns 382.46 ns 878.33 ns 902.31 ns
Median 391.65 ns 383.63 ns 879.5 ns 903.55 ns
Maximum 392.9 ns 384.8 ns 880.63 ns 904.78 ns
Mean 391.65 ns 383.63 ns 879.5 ns 903.55 ns
Std. error of mean 0.87 ps 0.91 ps 878.08 ns 0.91 ps
25% quantile 391.46 ns 383.43 ns 879.31 ns 903.35 ns
75% quantile 391.84 ns 383.82 ns 879.69 ns 903.75 ns
Std. deviation 275 ps 286 ps 278 ps 288 ps
Variation coeff. 0.07% 0.07% 0.03% 0.03%

Src: MII-NTI — CAT-5 — Dst: DFE530Tx9

Minimum 371.19 ns 371.26 ns 767.89 ns 767.73 ns
Median 372.49 ns 372.42 ns 768.83 ns 768.79 ns
Maximum 373.82 ns 373.95 ns 769.86 ns 769.64 ns
Mean 372.49 ns 372.43 ns 768.83 ns 768.78 ns
Std. error of mean 1.05 ps 1.05 ps 0.76 ps 0.75 ps
25% quantile 372.26 ns 372.19 ns 768.66 ns 768.62 ns
75% quantile 372.72 ns 372.65 ns 768.99 ns 768.95 ns
Std. deviation 332 ps 333 ps 239 ps 236 ps
Variation coeff. 0.09% 0.09% 0.03% 0.03%

1000 Base-Tx 3m 99m
Src: DGE500T — CAT-5 — Dst: DGE500T

Minimum 618.16 ns 618.19 ns 1.1158µs 1.1156µs
Median 618.88 ns 618.89 ns 1.1165µs 1.1164µs
Maximum 620.23 ns 620.14 ns 1.1179µs 1.1178µs
Mean 618.89 ns 618.89 ns 1.1165µs 1.1164µs
Std. error of mean 0.55 ps 0.55 ps 0.56 ps 0.56 ps
25% quantile 618.77 ns 618.78 ns 1.1164µs 1.1163µs
75% quantile 618.99 ns 619 ns 1.1167µs 1.1165µs
Std. deviation 174 ps 174 ps 177 ps 176 ps
Variation coeff. 0.03% 0.03% 0.02% 0.02%

Table 5.7: 100 Base-Tx delay measurements with Fast- and Gigabit-Ethernet cards

91

From the given results one can deduce the following findings:

• The worst case delay variation is next to or below 3ns for all given configurations
regardless of

– the cable length

– the operating mode (full-duplex/half-duplex)

– wether the device employed is designed for Fast-Ethernet or Gigabit-Ethernet.

• The standard deviation is below 350ps, hence the average delay variation is clearly
below a 100MHz synchronizer error introduced due to different clocking domains
of the receive and the transmit channel at the MII.

Hence, we can confirm by experiment that by employing the architecture proposed in
Sec. 4.2 it is possible to improve existing clock synchronization techniques via existing
wired communication systems by the order of several magnitudes down to thens-range.

As a side-effect of these measurements we discovered that the DFE530Tx network
interface card produced packet-loss by as much as 1.5% when operated over a 99m
connection as receiver. Although this will have no influence on the clock reading error
(these packets are simply dropped), it reduces throughput and clearly violates the Ethernet
specification [39].

1000 Base-Tx results:Gigabit-Ethernet mainly employed in enterprize backbones will
gain substantial significance with emerging multimedia techniques. Therefore, we con-
ducted some experiments to analyze the delay variations caused by Gigabit physical layer
devices. Tab.5.8 summarizes our findings illustrated along with a representative sample
plot in Fig. 5.12.

Full Duplex Half Duplex
Src: DGE500T — 3m CAT-5 — Dst: DGE500T

[0.8751µs,0.8836µs] 100000 samples [0.8745µs,0.8836µs] 100000 samples
Src: DGE500T — 99m CAT-5 — Dst: DGE500T

[1.3686µs,1.3772µs] 100000 samples [1.3602µs,1.3692µs] 100000 samples

Table 5.8: 1000 Base-Tx delay measurements with Gigabit-Ethernet cards

The following findings can be deduced from these results:

• The distribution of the transmission delays for a 1000 Base-Tx point-to-point con-
nection is Uniform with minimum and maximum laying∼ 8nsapart.

• Again, the measured delay variation is independent from the employed cable length
and operating mode.

From the presented results a precision in the50ns-rangeseem’s feasible. Hence, these
Gigabit devices provide reduced performance concerning the transmission delay variation
and the derived remote clock reading error, especially because of the Uniform distribution.

92

 200

 400

 600

 800

 1000

878 879 880 881

[E
xp

er
im

en
ts

]

[ns]

 200

 400

 600

 800

 1000

 1200

 1400

1.1155 1.1160 1.1165 1.1170 1.1175 1.1180

[E
xp

er
im

en
ts

]

[µs]

Figure 5.11: 100 Base-Tx Full Duplex histograms for Sender: MII-NTI – 99m CAT-5 –
Receiver: AT2700Tx (top) and Sender: DGE500T – 99m CAT-5 – Receiver: DGE500T
(bottom)

 100

 200

 300

1.368 1.370 1.372 1.374 1.376 1.378

[E
xp

er
im

en
ts

]

[µs]

Figure 5.12: 1000 Base-Tx Full Duplex histogram Sender: DGE500T – 99m CAT-5 –
Receiver: DGE500T

93

Linkloss Experiments: Up to now, all measurements were conducted under undisturbed
office conditions. Since several application fields of distributed clock synchronization are
in rough industrial environments we investigated the effect of loss and recovery of a link
and how it could affect the results of the delay variations.

Electromagnetic noise can lead to a change of the voltages levels present at the cables
during data transmission and that, in turn, can lead to bit flips and errors. However, it
is the purpose of the 32-bit frame check sequence appended to every Ethernet frame to
discover such situations. In case of an error detection frames are discarded (except for
promiscuous mode) and an error is signaled to the driver software. This principal behavior
doesn’t deteriorate the achievable clock reading error as long as the characteristics of the
physical layer devices and the cable stay unchanged. To that end we performed some
simple experiments to discover the actual behavior.

First, we reused the setup of the previous experiments as illustrated in Fig.5.8 and
produced loss and recovery of the link by restarting auto-negotiation or by setting the
media mode and speed anew several times while recording the delay variations before
and after the link setting. The experiments for all 10 Base-T modes and configurations
show the same results as without manipulation of the link status, hence no vial influence
could be detected. In contrast, we encountered deviating results for 100 Base-Tx and 1000
Base-Tx settings. Fig.5.13shows the results of one typical configuration where the delay
variation for 50.000 CSP’s was recorded and loss of link and subsequent media negotiation
were performed repetitively after the transmission of every 500th packet.

390

400

410

420

430

440

10 20 30 40 50

[n
s]

[103 Experiments]

Figure 5.13: 100Base-Tx Full-Duplex Loss of Link Experiment; Sender: MII-NTI – 3m
CAT-5 – Receiver: 3C905Tx

From the results we derive that for 100 Base-Tx the Normal distributions given by
the direct connection experiments could be re-produced although the entire distributions
are offset before and after the link change from each other by several ns. Results for all
Fast-Ethernet cards show six distributions spaced about 8ns from each other meaning that
the minimum and maximum measured delays were more than 40ns apart, see Fig.5.13
for an example. This result would render tight clock synchronizations in the ns-range
impossible using 100 Base-Tx based networks, hence the clock synchronization software
must detect loss of link or restart of auto-negotiation and initiate subsequently a round-trip
delay measurement to assess the actual delay. This effect is better when the Gigabit
adapters are used; here only two Normal distributions are encountered in 100 Base-Tx

94

mode and two Uniform distributions in 1000 Base-Tx mode either spaced by 8ns, see Fig.
5.14.

In order to understand this relocation of the distribution an inspection of the physical
layer devices as done in Sec.5.1.3 is appropriate. A digital PLL is used in the Fast-
Ethernet PHY’s and an analog PLL in the Gigabit-Ethernet PHY’s to multiply the external
25MHz by a factor of at least 5 resulting in 125MHz, since every MII data nibble is seri-
alized into 5 bit code groups. From the 8ns period of this 125MHz clock we suggest that
the above effect is due to sampling and locking of the PLL’s onto the received datastream.

In order to asses whether this effect can be triggered by the recovery of the link alone
or also by external interference we conducted some further experiments. We used an EMC
source to induce small voltage surges onto an unwinded twisted pair cable. Although these
experiments produced controlled packet loss, we were not able to reproduce the effect
following a loss of link.

650

652

654

656

658

660

662

10 20 30 40 50

[n
s]

[103 Experiments]

866

870

874

878

882

886

10 20 30 40 50

[n
s]

[103 Experiments]

Figure 5.14: 100Base-Tx (top) and 1000 Base-Tx (bottom) Loss of Link Experiments with
the DGE-500T adapters

5.3.2 Networked devices

The principle aim of the presented experiments was to assess the delay variation of clock
synchronization packets due to the physical layer where two nodes are connected by a

95

single cable. This is motivated by our architecture that is able to identify the variable
delay of networked devices with our switch add-on, see Sec.4.4, hence every end-to-
end communications path is made up of a set of directly connected nodes. However, to
substantiate the need for the additional logic for networked devices we collected some data
on the delay variations of some COTS repeaters and switches. Tab.5.9 lists the devices
that were inspected under various different operating conditions.

Device Short description
Repeaters
3Com Hub 3C16704 4 ports: 10 Base-T
3Com Hub 3C16750B 8 ports: 10 Base-T and 100 Base-Tx (dualspeed)
Surecom 508T 8 ports: 10 Base-T and 1 port: AUI
Switches
Cisco Catalyst 1900 24 ports: 10 Base-T and 2 ports: 100 Base-Tx (managable)

Modes: Store & Forward, Fragment-Free Cut-Through
Surecom EP824-DX 24 ports: 10 Base-T and 100 Base-Tx (managable)

Modes: Store & Forward

Table 5.9: Repeater and Switches, subjects of the evaluation

Repeater Experiments: A repeater, aka. as hub, synchronizes incoming data frames,
amplifies and re-transmit them on all other ports. For this functionality the Ethernet speci-
fication grants maximum delays and delay variations, see Tab.4.3. To that end, a repeater
could add up to 80nsin 100 Base-Tx mode onto the transmission variation. We conducted
several unloaded experiments with a setup as illustrated in Fig.5.8to get some real values
for best-case conditions. In 10 Base-T mode the results shows three Uniform distributions
for the 3Com 3C16704 and the Surecom 508T devices, see Tab.5.10for a listing of the
acquired intervals.

Src: AT2700Tx — 2m CAT-5 — Hub — 2m CAT-5 — Dst: MII-NTI
3Com 3c16704 Surecom 508T

[8.6200µs,8.6755µs] 13227 samples [9.1449µs,9.1757µs] 7491 samples
[8.7210µs,9.0245µs] 74993 samples [9.2456µs,9.5477µs] 75043 samples
[9.0760µs,9.1250µs] 11780 samples [9.5764µs,9.6484µs] 17466 samples

Table 5.10: 10 Base-T delay measurements with Hubs

The difference between the maximum and the minimum transmission delays in the
range of 500ns for unloaded configurations and the Uniform distribution clearly forestall
clock synchronization precisions below theµs-range.

The results for the dualspeed hub 3C16750B show five Uniform distributions in 10
Base-T mode and one Uniform distribution in 100 Base-Tx mode. The given repeater
can operate either link with dissimilar speeds; experiments using this configuration show
Trapezoid distributions. From Tab.5.11 one can see that the differences between the
maximum and minimum transmission delays exceeds 700ns for 10 Base-T and 40ns for
100 Base-Tx forestalling clock precisions in the range of below 160nsas well.

The transmission delay variation added by the presented repeaters are within the IEEE
specification [39], but the given values render clock precision in the ns-range impossible.
Since repeaters are frequently replaced by switches we didn’t propose specific architec-
tural concepts to enhance them with support for tight clock synchronization; however, the

96

Src: AT2700Tx — 2m CAT-5 — Hub — 2m CAT-5 — Dst: MII-NTI
both links 10 Base-T [8.3206µs,8.3777µs] 13317 samples

[8.4200µs,8.4779µs] 13022 samples
[8.5195µs,8.5781µs] 13150 samples
[8.6204µs,8.7255µs] 24928 samples
[8.7728µs,8.8257µs] 11769 samples
[8.8723µs,8.9259µs] 11830 samples
[8.9725µs,9.0261µs] 11984 samples

both links 100 Base-Tx [738.8ns,782.3ns] 100000 samples
10 Base-T and 100 Base-Tx[15.4853µs,16.0712µs] 100000 samples

Table 5.11: Delay measurements with Hub 3Com 3c16750B

concepts proposed for switches in Sec.4.4could be re-used for repeaters in a similar way.

Switches: As presented in Sec.4.1 switches are at the core of every modern enterprize
network. Therefore, we proposed some concepts to enhance COTS switches with support
for tight clock synchronization, see Sec.4.4. To substantiate this proposal we conducted
some experiments using two different switches listed in Tab.5.9. In particular, we inves-
tigated the influence of cut-through and store & forward techniques on the transmission
delay variation of 50000 CSP’s under unloaded and lightly loaded conditions in full-duplex
mode. Again, the same setup as illustrated in Fig.5.8 was used, although for the loaded
scenario one additional PC was used for traffic generation directed to the receiving node
of CSP transmissions.
Cut-Through Mode: Using a serial console interface, the Cisco switch was first pro-
grammed to cut-through operating mode. For the 10 Base-T experiments both nodes en-
compassing CSP traffic and the load generator were connected to one port group. The
distribution of the results for the unloaded configuration shows a triangular shape with
about 99.7% of the results and a somewhat longer tail where the remaining values are
uniformly distributed. For the loaded experiments we used our traffic generation program
to generate some load directed to the receiving port of CSP transmissions. The pattern
of the load consisted of packets similar in size and repetition frequency to the CSP’s.
Again, about 98.7% of the packets were cumulated within a distribution showing triangu-
lar shape. However, when compared to the unloaded configuration the tail of the remaining
uniformly distributed values is several orders of magnitude longer. In detail, the delay of
the slowest packet doubles, see Tab.5.12.

For the 100 Base-Tx experiments we connected the links encompassing CSP’s to the
only two 100 Base-Tx ports and used one 10 Base-T port for load generation in the same
way as for the 10 Base-T experiments. The distribution of the results shows the same
triangular shape and a similar tail. Fig.5.15opposes the conducted results for the unloaded
and loaded configurations respectively, and Fig.5.16 illustrates the distribution for the
unloaded 100 Base-Tx configuration.
Store & Forward Mode: The majority of switches is built with store & forward tech-
niques that enable packet filtering, prioritizing etc. To assess and quantify the impact
of these techniques onto the CSP transmission variation we conducted some experiments
with a Cisco Catalyst 1900 switch configured to store & forward mode and a Surecom
EP824-DX switch. The experimental setup for the Cisco Catalyst 1900 switch was the
same as for cut-through mode; for the Surecom device all three ports –those encompass-

97

unloaded 10 Base-T 100 Base-Tx
distribution [54.28µs,55.02µs] 49839 samples [7.08µs,7.17µs] 49155 samples
tail [55.02µs,55.41µs] 161 samples [7.17µs,7.31µs] 845 samples

loaded 10 Base-T 100 Base-Tx
distribution [54.27µs,55.39µs] 49353 samples [7.08µs,7.31µs] 49893 samples
tail [55.39µs,121.58µs] 647 samples [7.31µs,17.39µs] 107 samples

Table 5.12: Fragment free cut-through results for the Cisco Catalyst 1900

7.1

7.2

7.3

 1 2 3 4 5

[µ
s]

[104 Experiments]

 7

 9

11

13

15

17

 1 2 3 4 5

[µ
s]

[104 Experiments]

Figure 5.15: Results for 100 Base-Tx unloaded (top) and loaded (bottom) cut-through
experiments

98

 100

 200

 300

7.1 7.2 7.3

[E
xp

er
im

en
ts

]

[µs]

Figure 5.16: Result distribution for 100 Base-Tx unloaded cut-through experiments

ing CSP traffic and the load generator– were connected to one 100 Base-Tx port group. In
either configuration we recorded the delay variation of 20000 CSP’s.

The results for the Cisco switch show the same form of a triangular shaped distribution
with a tail for unloaded, loaded, 10 Base-T and 100 Base-Tx configurations, see Tab.5.13.
The results for the Surecom switch show a Uniform distribution for the unloaded config-
uration. For the experiments in which the destination port of CSP’s was loaded, we got a
similar Uniform distribution for 99.1% of all transmission delays. The remaining values
were equally distributed along a wide interval accounting for packets that were delayed
when the receiving port was congested. Fig.5.17illustrates the results for the Surecom
switch in 100 Base-Tx mode.

Cisco Catalyst 1900
10 Base-T unloaded loaded
distribution [54.17µs,54.87µs] 19828 samples [54.14µs,55.17µs] 19676 samples
tail [54.87µs,55.25µs] 172 samples [55.17µs,156.53µs] 324 samples
100 Base-Tx unloaded loaded
distribution [7.13µs,7.22µs] 19643 samples [7.13µs,7.36µs] 19960 samples
tail [7.22µs,7.36µs] 357 samples [7.36µs,16.37µs] 40 samples

Surecom EP824-DX
100 Base-Tx unloaded loaded
distribution [6.79µs,7.31µs] 20000 samples [6.82µs,7.29µs] 19821 samples
tail [7.29µs,49.22µs] 179 samples

Table 5.13: Store & Forward results

99

6.8

7.0

7.2

7.4

 5 10 15 20

[µ
s]

[103 Experiments]

 5

15

25

35

45

 5 10 15 20

[µ
s]

[103 Experiments]

Figure 5.17: Results for 100 Base-Tx unloaded (top) and loaded (bottom) store & forward
experiments

The results show that in unloaded conditions switches add several 100ns onto the delay
variation of packet transmission. With a light load however the added delay variation
changes to 10µs and more. This, in turn, directly relates to the remote clock reading
errorε that impairs the achievable clock precision with at least a factor of 4. This clearly
substantiates the quite apparent need for a switch architecture as proposed in Sec.4.4.

5.4 Summary

This section investigated the influence of COTS Ethernet devices on the delay variation
of clock synchronization packets between the sending and receiving timestamps at the
media independent interface which resembles the remote clock reading errorε. Following
an inspection and modeling of the physical layer devices and the cabling, we presented
results of a set of extensive experiments with several COTS devices. These results lead to
the following implications:

• Fast Ethernet PHY’s in 10 Base-T mode give delays equally distributed over 4-6
intervals spaced about 100ns apart from each other. The delay variation due to these
devices exceeds 300ns, thus rendering clock precision below 1µsimpossible.

• The Gigabit Ethernet PHY’s in 10 Base-T mode produce Uniform distributions with
most values accumulated within one interval of 15nswidth. Few values, however,

100

are apart by some 100ns. When these outliers can be filtered by the clock synchro-
nization algorithm, a clock precision in the range of 100nsseems possible.

• In 100 Base-Tx mode all results show a Normal distribution with a difference be-
tween the maximum and minimum of about 2ns. Following a loss of link or a restart
of auto-negotiation the entire distributions are separated by a multiple of 8ns. For
Fast Ethernet we encountered six such separated intervals whereas for Gigabit Ether-
net only two intervals were discovered. However, under normal operating conditions
we didn’t encounter this phenomenon. To that end, we reason that if we employ 100
Base-Tx devices we can keep the remote clock reading error in the ns-range if the
loss of link or restart of auto-negotiation is signaled to the clock synchronization
software.

• In 1000 Base-Tx mode the results have Uniform distribution with maximum and
minimum delay laying∼ 8ns apart. Following a loss of link or a restart of auto-
negotiation we encountered the same dislocation phenomenon as for the 100 Base-
Tx mode; here the entire distribution is dislocated by 8ns. Although the distribution
is less promising than for 100 Base-Tx modes one can still bound the clock reading
error by about 8nsas long as loss of link and restart of auto-negotiation is detected
and handled by the clock synchronization software.

Furthermore, several experiments using COTS repeaters and switches were conducted to
uncover some values these devices would add onto the transmission delay variation of
clock synchronization packets. In unloaded configurations these values are more than
40nsand 100nsfor the investigated repeaters and switches respectively. Experiments with
a realistic light load show that these values increase by an order of several magnitudes.

Summarizing the results of the presented experiments clearly substantiate the need
for the proposed hardware support for network interface cards and networked devices
proposed in Chap.4. Furthermore, from the results one can reason that if the proposed
architectures are implemented, distributed clock synchronization in the 100ns-range is
feasible.

Example

Finally, we present a numerical example with decently realistic numbers to underpin the
presented results. For this example we use the formula for the worst-case precision given
by Equ.2.3with the constantsc1 = 4, c2 = 4, c3 = 3, c4 = 11 andc5 = 1 (the result of the
worst-case precision analysis for the Orthogonal Precision algorithm). We assume a set of
nodes interconnected with one switch (n=1) and

• a worst-case jitter of one physical layer deviceεdmax= 3ns,

• a timestamp granularityGts = 2−32,

• a worst-case transit delay through one switchδswmax= 1ms,

• an oscillator driftρsw = 10−7s/s (the same at every switch),

• a re-synchronization period ofP = 30s,

• a clock setting granularity ofGs = 2−64,

101

• a rate adjustment uncertainty and clock granularity ofu = G = 1/ fs = 10ns.

Using Equ.4.10 and 2.3 Tab. 5.14 presents the achievable worst-case precision for
different clock/sampling frequencies (the same at every node) and oscillator drifts (at the
NICs).

fosc= fs ρnic 4ε 4Pρnic 3G 11u π
100 MHz 10 ppb 43 ns 1.2µs 30 ns 110 ns 1.383µs

1 ppb 120 ns 303 ns
0.1 ppb 12 ns 195 ns

200 MHz 10 ppb 28 ns 1.2µs 15 ns 55 ns 1.298µs
1 ppb 120 ns 218 ns

0.1 ppb 12 ns 110 ns
500 MHz 10 ppb 19 ns 1.2µs 6 ns 22 ns 1.247µs

1 ppb 120 ns 167 ns
0.1 ppb 12 ns 59 ns

1 GHz 10 ppb 16 ns 1.2µs 3 ns 11 ns 1.23µs
11 ppb 120 ns 150 ns
0.1 ppb 12 ns 42 ns

Table 5.14: Worst-case precision analysis for a typical network

The presented results clearly show that the oscillator parameters at the NICs dominate
the achievable worst-case precision. Hence, either an excellent OCXO or a TCXO + rate
clock synchronization algorithm must be employed to minimize the effect of the clock drift
to an order of 10−9s/s. Next to the clock drift one should optimize the clock and sampling
frequency at every node to reduce the effects of the clock reading error, the granularity
and the rate adjustment uncertainty.

In practice, however, the average-case precision will be much lower. In fact, a precision
in the severalns-range is plausible even for lower sampling frequencies and oscillators
with moderate drift.

102

Chapter 6

Conclusion and Future Work

An accurate clock synchronization service is a fundamental pre-requisite for a distributed
real time system. The two parameters clock precisionπ and clock accuracyα are of
primary interest to characterize the performance of this service. Herein clock precision
denotes the deviation of the clock states between any two nodes within the system, and
clock accuracy specifies the clock state deviation between any node within the system and
an external reference time. To that end many algorithms have been presented in scientific
literature to optimize these parameters. Following the taxonomy presented in Chap.2 the
achievable worst case precision mainly depends on the remote clock reading error. When
ε can be reduced below theµs-range, the clock driftρ, the re-synchronization periodP, the
clock granularityG and the rate adjustment uncertaintyu need to be considered as well.

Recent popular systems that rely on such a clock synchronization service with a pre-
cision in theµs-range are the time-triggered protocol TTP and FlexRay that are employed
in future airborne and automotive systems. For networked measurement and control sys-
tems the new IEEE-1588 standard proposes a master-slave based protocol termed preci-
sion time protocol (PTP). Following a short analysis of these system we propose a new
network interface architecture and support for networked devices tailored for twisted-pair
based Ethernet systems. The main contributions of this architecture are

• transparent media-independent interface based timestamping,

• on-the-fly measurement of packet transmission delays through switches and

• the need for a high resolution, high frequency clock to minimize the synchronization
error due to the different clocking domains of receive and transmit path.

The presented architecture improves the achievable worst-case precision of existing
software-based approaches (e.g. NTP) by several orders of magnitude and will out-
perform the new IEEE-1588 standard as well, which disregards several aspects revealed
in scientific literature. Our proposal is validated by an experimental evaluation of the re-
mote clock reading error achievable with COTS Ethernet devices. The results revealed the
following facts:

• 10 Base-T based networks produce delay variations equally distributed over several
intervals spaced by∼ 100ns.

• 100 Base-Tx based networks show a Normal distribution withε ∼ 2ns.

• 1000 Base-Tx networks show a Uniform distribution withε ∼ 8ns.

103

• The contribution of repeaters and switches ontoε exceeds several ten and hundred
ns in an unloaded configuration. These values degrade to theµs-range when a load
is present.

From the given results a worst-case clock precision in the 100ns-range seems feasible,
when the proposed architecture is employed. To that end an integration of the proposed
architecture with COTS components is required. This non-trivial engineering task is cur-
rently the main focus of the FIT-IT funded PSynUTC project. Following an industrial
implementation and proper system evaluation several applications can be built that benefit
from such an accurate clock synchronization service.

Next to an industrial implementation a detailed inspection on the susceptibility to elec-
tromagnetic emissions is required to judge whether the dislocation of the delay results
following the loss and recovery of the link could occur in a rough environment as well.

104

Bibliography

[1] ANCEAUME, E., AND PUAUT, I. Performance Evaluation of Clock Synchroniza-
tion Algorithms. Tech. Rep. PI 1103, Institute de Rechereche en Informatique et
Systemes Aleatoires, July 1997.

[2] ARVIND , K. Probabilistic clock synchronization in distributed systems.IEEE
Transactions on Parallel and Distributed Systems 5, 5 (May 1994), 474–487.

[3] AZEVEDO, M., AND BLOUGH, D. Fault-Tolerant Clock Synchronization for
Distributed Systems with High Message Delay Variation. InIEEE Workshop on
Fault-Tolerant Parallel and Distributed Systems(College Station, Texas, June 13-
14 1994).

[4] AZEVEDO, M., AND BLOUGH, D. Multistep Interactive Convergence: An Effi-
cient Approach to the Fault-Tolerant Clock Synchronization of Large Multicom-
puters. IEEE Transactions on Parallel and Distributed Systems 9, 12 (December
1998), 1195–1212.

[5] BALLATO , A., AND V IG, J. Static and dynamic frequency-temperature behavior of
singly and doubly rotated, oven-controlled quartz resonators. InProceedings32nd

Symp. on Frequency Control(1978), vol. 1, pp. 180–188.

[6] BARNES, J., CHI , A., CUTLER, L., HEALEY, D., LEESON, D., MCGUNIGAL , T.,
MULLEN , J., SMITH , W., SYNDOR, R., VESSOT, R., AND WINKLER , G. Charc-
terization of frequency stability.IEEE Transactions on Instrument Measurement
IM-20, 2 (May 1971), 105–120.

[7] BERGER, J. Fehlerortung in Mittelspannungsnetzen mit Abzweigleitungen. Disser-
tation, University of Stuttgart, 1995. (in German).

[8] BO, Z., WELLER, G., JIANG , F., AND YANG, Q. Application of GPS based
fault location scheme for distribution system. InProceedings on Power System
Technology(1998), vol. 1, pp. 53–57.

[9] BRENDEL, R. Infuence of magnetic field on quartz crystal oscillators. InProc.
43rd Ann. Symp. Frequency Control(1989), pp. 268–274.

[10] CHERUBINI, G., ÖLCER, S., UNGERBOECK, G., CREIGH, J., AND RAO, S.
100BASE-T2: A New Standard for 100 Mb/s Ethernet Transmission over Voice-
Grade Cables.IEEE Communications Magazine(November 1997), 115–122.

105

[11] CHIEN, G. Low-Noise Local Oscillator Design Techniques using a DLL-based Fre-
quency Multiplier for Wireless Applications. PhD thesis, University of California at
Berkeley, 2000.

[12] CHOI, B., PARK , K., AND K IM , M. An Improved Hardware Implementation of the
Fault-Tolerant Clock Synchronization Algorithm for Large Multiprocessor System.
IEEE Transaction on Computers 39(1990), 404–407.

[13] COMMISSION, F. C. FCC requires wireless carriers to forward all 911 calls, De-
cember 1997.

[14] COUVET, D., FLORIN, G., AND NATKIN , S. A statistical clock synchronization
algorithm for anisotropic networks. In10th Symposium on Reliable Distributed
Systems(1991), pp. 42–51.

[15] CRISTIAN, F. Probabilistic Clock Synchronization.Distributed Computing 3, 3
(1989), 146–158.

[16] CRISTIAN, F., AGHILI , H., AND STRONG, R. Clock synchronization in the pres-
ence of omission and performance failures, and processor joins.In Proc. of 16th
International Symposium on Fault-Tolerant Computing Systems(July 1986).

[17] CRISTIAN, F., AND FETZER, C. Fault-tolerant internal clock synchronization. In
Proceedings of the Thirteenth Symposium on Reliable Distributed Systems(Dana
Point, Ca., Oct 1994), pp. 22–31.

[18] CRISTIAN, F., AND FETZER, C. Probabilistic internal clock synchronization. In
13th Symposium on Reliable Distributed Systems(1994), pp. 22–31.

[19] DALLY , W., AND J.W.POULTON. Digital Systems Engineering. Cambridge Uni-
versity Press, 1998.

[20] DEWE, M., SANKAR , S., AND ARILLAGA , J. The application of satellite time
references to HVDC fault location.IEEE Transactions on Power Delivery 8(1993),
1295–1302.

[21] DUDA , A., HARRUS, G., HADDAD , Y., AND BERNARD, G. Estimating global
time in distributed systems. InConference on Distributed Computing Systems
(Berlin, 1987).

[22] EIDSON, J., FISCHER, M., AND WHITE, J. IEEE-1588 Standard for a Precision
Clock Synchronization Protocol for Networked Measurement and Control Systems.
In Proceedings of the34th Precise Time and Time Interval (PTTI) Systems and
Applications Meeting(Reston, Virginia, USA, Dec 2002).

[23] FETZER, C., AND CRISTIAN, F. Lower Bounds for Function Based Clock Syn-
chronization. InProceedings 14th ACM Symposium on Principles of Distributed
Computing(Ottawa, CA, August 1995).

[24] FETZER, C., AND CRISTIAN, F. An Optimal Internal Clock Synchronization Al-
gorithm. In Proceedings 10th Annual IEEE Conference on Computer Assurance
(Gaithersburg, MD, June 1995).

106

[25] FETZER, C., AND CRISTIAN, F. Integrating External and Internal Clock Synchro-
nization.J. Real-Time Systems 12, 2 (March 1997), 123–172.

[26] GAI , P. Cable Fault Location by Impulse Current Method. InProceedings of IEE
(Apr 1975), vol. 122, pp. 403–408.

[27] GUSELLA, R., AND ZATTI , S. The accuracy of the clock synchronization achieved
by TEMPO in berkeley UNIX 4.3BSD.IEEE Transactions on Software Engineer-
ing 15, 7 (July 1989), 847–853.

[28] HAAG , H.-J. Quantensprung in der Messtechnik zur Bewertung der Netzqualität.
In Elektrotechnik und Informationstechnik e&i(Wien, 2000), pp. 645–652.

[29] HÖCHTL, D., AND SCHMID , U. Long-Term Evaluation of GPS Timing Receiver
Failures. InProceedings of the 29th IEEE Precise Time and Time Interval Systems
and Application Meeting (PTTI’97)(Long Beach, California, Dec 1997), pp. 165–
180.

[30] HORAUER, M. Hardware support for clock synchronization in distributed systems.
In Supplement of the 2001 International Conference on Dependable Systems and
Networks(Göteborg, Sweden, July 2001), pp. A10–A13.

[31] HORAUER, M., AND HÖLLER, R. Integration of high accurate clock synchro-
nization into ethernet-based distributed systems. InInternational Conference on
Advances in Infrastructure for e-Business, e-Education, e-Science, and e-Medicine
on the Internet, SSGRR 2002(L’Aquila, Italy, January 2002).

[32] HORAUER, M., KERÖ, N., AND SCHMID , U. A network interface for highly
accurate clock synchronization. InProceedings AUSTROCHIP’00(Graz, Austria,
Oct 2000).

[33] HORAUER, M., LOY, D., AND SCHMID , U. NTI Functional and Architectural
Specification. Tech. Rep. 183/1-69, TUAuto, December 1996.

[34] HORAUER, M., SCHMID , U., AND SCHOSSMAIER, K. NTI: A Network Time
Interface M-Module for High-Accuracy Clock Synchronization. InProceedings
6th International Workshop on Parallel and Distributed Real-Time Systems (WP-
DRTS’98)(Orlando, Florida, March 30 – April 3 1998), pp. 1067–1076.

[35] HORAUER, M., SCHMID , U., SCHOSSMAIER, K., HÖLLER, R., AND KERÖ, N.
Psynutc - evaluation of a high precision time synchronization prototype system for
ethernet lans. InProceedings of the 34th IEEE Precise Time and Time Interval
Systems and Application Meeting (PTTI’02)(Reston, Virginia, USA, December
2002).

[36] HOWE, D., ALLAN , D., AND BARNES, J. Properties of signal sources and mea-
surement methods. InProceedings of the 35th Annual Frequency Control Sympo-
sium(1981).

[37] HOYME, K., AND DRISCOLL, K. Safebus. InProceedings of the 11th AIAA/IEEE
Digital Avionics Systems Conference(Seattle, Washington, USA, October 1992),
pp. 68–73.

107

[38] HOYME, K., AND DRISCOLL, K. Safebus.IEEE Aerospace and Electronic Sys-
tems Magazine 8, 3 (March 1993), 34–39.

[39] IEEE. Carrier sense multiple access with collision detection (csma/cd) access
method and physical layer specifications - ieee std 802.3, 2000 edition. Tech. rep.,
IEEE Computer Society, 2000.

[40] IEEE. 1588 IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems. Tech. rep., IEEE Instrumentation
and Measurement Society, 2002.

[41] INC., A. R. Arinc specification 659: Backplane data bus. Tech. rep., Airlines
Electronic Engineering Committee, December 1993.

[42] INOUE, N., TSUNEKAGE, T., AND SAKAI , S. On-line fault location system for
66kV underground cables with fast O/E and fast A/D technique.IEEE Transactions
on Power Delivery 9, 1 (January 1994), 579–584.

[43] INTEMATIONAL RADIO CONSULTATIVE COMMITTEE (CCIR) - STANDARD

FREQUENCIES AND TIME SIGNALS (STUDY GROUP 7). Recommendation No.
686, Glossary, ccir 17th plenary assembly ed. Geneva, Switzerland, 1990.

[44] JEZEQUEL, M. Building a global time on parallel machines. Tech. Rep. Rapport
de recherche - 513, INRIA, February 1990.

[45] KAMPICHLER, W. Measurement of Voice Readiness in Local Area Communication
Systems. PhD thesis, University of Technology Vienna, Department of Computer
Technology, 2002.

[46] KANG, G., AND RAMANATHAN , P. Clock Synchronization of a Large Multipro-
cessor System in the Presence of Malicious Faults.IEEE Transactions on Comput-
ers 36, 1 (January 1987), 2–12.

[47] KERÖ, N., SCHMID , U., AND HORAUER, M. Verfahren f̈ur die Synchronisation
von Computeruhren in Netzwerken. Tech. Rep. 183/1-105, Department of Automa-
tion, TU Vienna, March 2000. Patent: AT005327U1.

[48] K IECKHAFER, R., WALTER, C., FINN , A., AND THAMBIDURAI , P. The MAFT
Architecture for Distributed Fault Tolerance.IEEE Transactions on Computers 37,
4 (1988), 398–405.

[49] KOPETZ, H., DAMM , A., KOZA, C., MULAZZANI , M., SCHWABL , W., SENFT,
C., AND ZAINLINGER , R. Distributed fault-tolerant real-time systems: The mars
approach.IEEE Micro 9, 1 (February 1989), 25–50.

[50] KOPETZ, H., AND GRÜNSTEIDL, G. TTP - A Protocol for Fault-Tolerant Real-
Time Systems. InThe Twenty-Third International Symposium on Fault-Tolerant
Computing FTCS-23(Aug. 1993), pp. 524–533.

[51] KOPETZ, H., AND GRÜNSTEIDL, G. TTP - a protocol for fault-tolerant real-time
systems.IEEE Computer 27, 1 (January 1994), 14–23.

108

[52] KOPETZ, H., HEXEL, R., KRÜGER, A., M ILLINGER , D., AND SCHEDL, A. A
Synchronization Strategy for a TTP/C Controller. InIn Application of Multiplexing
Technology, SAE International(Feb. 1996), pp. 19–27.

[53] KOPETZ, H., AND OCHSENREITER, W. Clock Synchronization in Distributed
Real-Time Systems.IEEE Transactions on Computers C-06, 8 (1987), 833–839.

[54] KUNKEL , J. Fehlerortung im Hochspannungsnetz. Dissertation, University of
Stuttgart, 1990. (in German).

[55] LAMPORT, L. Synchronizing Time Servers. Technical Report 18, Digital System
Research Center, 1980.

[56] LAMPORT, L., AND MELLIAR -SMITH , P. Synchronizing clocks in the presence of
faults. Journal of the ACM 32(July 1985), 52–78.

[57] LAMPORT, L., SHOSTAK, R., AND PEASE, M. The byzantine generals problem.
ACM Transactions on Programming Languages and Systems 4(July 1982), 382–
401.

[58] LEVINE, J. Time synchronization using the Internet.IEEE Transactions on Ultra-
sonics, Ferroelectrics and Frequency Control 45(March 1998), 450–460.

[59] L ISKOV, B. Practical uses of syhchronized clocks in distributed systems.Dis-
tributed Computing 1(1993), 211–211.

[60] L IU , C., JUNG, J., HEYDT, G., VITTAL , V., AND PHADKE , A. The Strategic
Power Infrastructure Defense (SPID) System.IEEE Control Systems Magazine
(Aug 2000), 25–52.

[61] LOY, D. GPS-Linked High Accuracy NTP Time Processor for Distributed Fault-
Tolerant Real-Time Systems. Dissertation, Vienna University of Technology, Fac-
ulty of Electrical Engineering, Apr 1996.

[62] LUNDELIUS-WELCH, J.,AND LYNCH, N. An Upper and Lower Bound for Clock
Synchronization.Information and Control 62(1984), 190–209.

[63] LUNDELIUS-WELCH, J., AND LYNCH, N. A New Fault-Tolerant Algorithm for
Clock Synchronization.Information and Computation 77, 1 (1986), 1–96.

[64] MALONEY, C. Locating Cable Faults.IEEE Transactions on Industry Applications
IA-9, 4 (July/August 1973), 380–394.

[65] MARZULLO , K. Maintaining the Time in a Distributed System: An Example of a
Loosely-Coupled Distributed Service. PhD dissertation, Stanford University, De-
partment of Electrical Engineering, Feb 1984.

[66] MARZULLO , K., AND OWICKI , S. Maintaining the Time in a Distributed System.
ACM Operating System Review 19, 3 (1983), 44–54.

[67] M ILLS , D. Internet time synchronization: The network time protocol.IEEE Trans-
actions on Communications 39, 10 (October 1991), 1482–1493.

109

[68] M ILLS , D. RFC-1305: Network Time Protocol (version 3): Specification, imple-
mentation and analysis, Mar 1992.

[69] M ILLS , D. Improved Algorithms for Synchronizing Computer Network Clocks.
IEEE Transactions on Networks(Jun 1995), 645–254.

[70] M INER, P., MALEKPOUR, M., AND TORRES, W. A conceptual design for a Re-
liable Optical Bus (ROBUS).Proceedings of the21st Digitial Avionics Systems
Conference 2(2002), 986–996.

[71] MORES, R., HAY, G., BELSCHNER, R., BERWANGER, J., EBNER, C., FLUHRER,
S., FUCHS, E., HEDENETZ, B., KUFFNER, W., KRÜGER, A., LOHRMANN, P.,
M ILLINGER , D., PELLER, M., RUH, J., SCHEDL, A., AND SPRACHMANN, M.
FlexRay - The Communication System for Advanced Automotive Control Systems.
Society of Automotive Engineers (SAE) 2001 World Congress(March 2001).

[72] MULLENDER, S. Distributed Systems. ACM Press and Addison-Wesley, New
York, 1994.

[73] OCHSENREITER, W. Fehlertolerante Uhrensynchronisation in verteilten Realzeit-
systemen. Dissertation, Vienna University of Technology, Faculty of Technical and
Natural Sciences, 1997. (in German).

[74] OLSON, A., AND SHIN , K. Fault-tolerant clock synchronization in large multi-
computer systems.IEEE Transactions on Parallel and Distributed Systems,(1994),
912–923.

[75] OLSON, A., AND SHIN , K. Probabilistic Clock Synchronization in Large Dis-
tributed Systems.IEEE Transactions on Computers,(1994), 1106–1112.

[76] OWEN, R., AND LOPES, L. Experimental analysis of the use of angle of arrival
at an adaptive antenna array for location estimation. InIEEE Internatnonal Sym-
posium on Personal, Indoor and Mobile Radio Communications – PIMRC(1998),
pp. 607–611.

[77] PARZEN, B. Design of Crystal and Other Harmonic Oscillators. J. Wiley & Sons,
1983.

[78] PFUEGL, M., AND BLOUGH, D. Evaluation of a new algorithm for fault-tolerant
clock synchronization. InInternational Symposium on Fault Tolerant Systems
(1991), pp. 38–43.

[79] PFUEGL, M., AND BLOUGH, D. A new and improved algorithm for fault tolerant
clock synchronization.Journal of Parallel and Distributed Computing(1995), 1–
14.

[80] PUNZ, G. Distanzschutz nach dem Wanderwellenprinzip für gelöschte Netze.
Dissertation, Vienna University of Technology, Faculty of Electrical Engineering,
1995. (in German).

[81] RAMANATHAN , P., KANDLUR , D., AND SHIN , K. Hardware-Assisted Software
Clock synchronization for Homogeneous Distributed Systems.IEEE Transactions
on Computers 39, 4 (April 1990), 514–524.

110

[82] RAMANATHAN , P., SHIN , K., AND BUTLER, R. Fault-Tolerant Clock Synchro-
nization in Distributed Systems.IEEE Computer 23, 10 (Oct. 1990), 33–92.

[83] RAPPAPORT, T., REED, J.,AND WOERNER, B. Position Location Using Wireless
Communications on Highways of the Future.IEEE Communications Magazine
(Oct. 1996), 33–41.

[84] REED, J., KRIZMAN , J., WOERNER, B., AND RAPPAPORT, T. An Overview of the
Challenges and Progress in Meeting the E911 Requirement for Location Service.
IEEE Communications Magazine(April 1998), 34–37.

[85] SCHMID , U. Interval-based Clock Synchronization. InSeminar-Report of
Dagstuhl-Seminar on Time Services(Schloß Dagstuhl, Germany, Mar. 1996), p. 7.

[86] SCHMID , U., Ed. Special Issue on the Challenge of Global Time in Large-Scale
Distributed Real-Time Systems(1997), J. Real-Time Systems 12(1–3).

[87] SCHMID , U. Orthogonal Accuracy Clock Synchronization.Chicago Journal of
Theoretical Computer Science(2000), 3–77.

[88] SCHMID , U. Interval-based Clock Synchronization with Optimal Precision.Infor-
mation and Computation 186, 1 (2003), 36–77.

[89] SCHMID , U., KLASEK, J., MANDL , T., NACHTNEBEL, H., CADEK , G., AND

KERÖ, N. A Network Time Interface M-Module for Distributing GPS-time over
LANs. Journal of Real-Time Systems 18, 1 (Jan. 2000), 24–57.

[90] SCHMID , U., AND NACHTNEBEL, H. Experimental Evaluation of High-Accuracy
Time Distribution in a COTS-based Ethernet LAN. InProceedings 24th IFAC/IFIP
Workshop on Real-Time Programming (WRTP’99)(Schloß Dagstuhl, Germany,
May/June 1999), pp. 59–68.

[91] SCHMID , U., AND SCHOSSMAIER, K. Interval-based Clock Synchronization.
Journal of Real-Time Systems 12, 2 (Mar. 1997), 173–228.

[92] SCHMUCK, F., AND CHRISTIAN, F. Continuous Amortization need not affect the
Precision of a Clock Synchronization Algorithm. InProceedings of the 9th Annual
ACM Symposium on Principles on Mistributed Computing (PODC)(Quebec City,
Canada, August 1990), pp. 133–144.

[93] SCHNEIDER, F. A Paradigm for Reliable Clock Synchronization. InProceedings
Advanced Seminar of Local Area Networks(Bandol, France, Apr 1986), pp. 85–
104.

[94] SCHNEIDER, F. Understanding Protocols for Byzantine Clock Synchronization.
Technical Report 87-859, Cornell University, Department of Computer Science,
Aug. 1987.

[95] SCHOSSMAIER, K. An Interval-based Framework for Clock Rate Synchronization
Algorithms. In Proceedings 16th ACM Symposium on Principles of Distributed
Computing(St. Barbara, USA, Aug. 1997), pp. 169–178.

111

[96] SCHOSSMAIER, K. Interval-based Clock State and Rate Synchronization. Disserta-
tion, Vienna University of Technology, Faculty of Technical and Natural Sciences,
1998.

[97] SCHOSSMAIER, K., SCHMID , U., HORAUER, M., AND LOY, D. Specifica-
tion and Implementation of the Universal Time Coordinated Synchronization Unit
(UTCSU). Journal of Real-Time Systems 12, 3 (May 1997), 295–327.

[98] SEIFERT, R. The Switch Book: The Complete Guide to LAN Switching Technology.
John Wiley & Sons, Inc., 2000.

[99] SHIN , K., AND RAMANATHAN , P. Clock synchronization of a large multiprocessor
system in the presence of malicious faults.IEEE Transactions on Computers C-36
(1987), 2–12.

[100] SIMONS, B., LUNDELIUS-WELCH, J., AND LYNCH, N. An Overview of Clock
Synchronization. InFault-Tolerant Distributed Computing(1990), B. Simons and
A. Spector, Eds., Springer Verlag, pp. 84–96. (Lecture Notes on Computer Science
448).

[101] SRIKANTH , T., AND TOUEG, S. Optimal Clock Synchronization.Journal of the
ACM 34, 3 (Jul. 1987), 626–645.

[102] STEIN, S. Frequency and time - their measurement and characterization. InPreci-
sion Frequency Control(1985), pp. 191–416.

[103] SURI, N., HUGUE, M., AND WALTER, C. Synchronization issues in real-time
systems.Proceedings of the IEEE 82, 1 (January 1994), 41–54.

[104] THAMBIDURAI , P., FINN , A., K IECKHAFER, R., AND WALTER, C. Clock Syn-
chronization in MAFT. InNineteenth International Symposium on Fault-Tolerant
Computing - FTCS-19(1989), pp. 142–149.

[105] TROXEL, G. Time Surveying: Clock Synchronization over Packet Networks. PhD
thesis, Department of Electrical Engineering and Computer Science, Massachusetts
Institut of Technology, May 1994.

[106] VASANTHAVADA , N., AND MARINOS, P. Synchronization of Fault-Tolerant
Clocks in the Presence of Malicious Failures.IEEE Transactions on Computers
37 (1988), 440–448.

[107] VERÍSSIMO, P., AND RODRIGUES, L. A posteriori Agreement for Fault-Tolerant
Clock Synchronization on Broadcast Networks. InProceedings22nd International
Symosium on Fault-Tolerant Computing(Boston, Massachusetts, Jul. 1992).

[108] VERÍSSIMO, P., RODRIGUES, L., AND CASIMIRO, A. CesiumSpray: a Precise
and Accurate Global Clock Service for Large-scale Systems.Journal of Real-Time
Systems 12, 3 (1997), 243–294.

[109] V IG, J. Acceleration, vibration and shock effects - ieee standards project p1193. In
Proc. 1992 IEEE Frequency Control Symposium(1992).

112

[110] V IG, J. Quartz crystal resonators and oscillators for frequency control and timing
applications - a tutorial. U.S. Army Communications-Electronics Command, Attn:
AMSEL-RD-C2-PT, Fort Monmouth, NJ 07703, USA, September 1999.

[111] WALLS , F. Environmental sensitivities of quartz crystal oscillators. InProc. 22nd

Ann. Precise Time and Time Interval (PTTI) Applications and Planning Meeting
(1990), pp. 465–477.

[112] WEIGANDT, T. Low-Phase-Noise, Low-Timing-Jitter Design Techniques for Delay
Cell Based VCOs and Frequency Synthesizers. PhD thesis, University of California
at Berkeley, 1998.

[113] YAMASHITA , T., AND ONO, S. A statistical method for time synchronization of
computer clocks with precisely frequency-synchronized oscillators. InProceedings.
18th International Conference on Distributed Computing Systems(1998), pp. 32–
39.

[114] YANG, Z., AND MARSLAND, T. Annotated Bibliography on Global States and
Times in Distributed Systems.ACM SIGOPS Operating Systems Review(Jun.
1993), 55–72.

[115] ZAGAMI , J., PARL , S., BUSSGANG, J., AND MELILLO , K. Providing Universal
Location Services Using a Wireless E911 Location Network.IEEE Communica-
tions Magazine(April 1998), 66–71.

113

Appendix

The following table gives an incomplete list of available standard devices for different
Ethernet technologies.

Fast Ethernet devices
Vendor Device Type add. Interfaces
AMD Am79C972 MAC PCI, MII, GPSI, Eeprom IF

Am79C975 MAC + PHY PCI, Eeprom IF, 10Base-T, 100Base-Tx/Fx
Am79C976 MAC PCI, MII, Eeprom+Memory IF
Am79C978 MAC + PHY PCI, MII, Eeprom IF, 10Base-T

Hitachi SH7615 DSP + MAC + . . . DSP, 32-Bit Bus IF, MII, several GPIOs
Intel 21143 MAC PCI, MII, Eeprom IF
IBM PowerPC CPU + MAC + . . . CPU, PCI, MII, Memory IF, serial ports,

405GP 32-Bit Bus IF, several GPIOs
Motorola MPC8265 CPU + MAC + . . . CPU, PCI, MII, several GPIOs, UTOPIA,

serial ports
National DP83815 MAC + PHY PCI, MII, 10Base-T, 100Base-Tx,
Semi. Eeprom IF
NEC uPD98502 CPU + MAC + . . . CPU, PCI, MII, USB, UTOPIA,

serial ports, Memory IF
NetSilicon Net+ARM CPU + MAC + . . . CPU, MII, serial ports,

several GPIOs
Realtek RTL8130 MAC PCI, MII, Eeprom IF

RTL8139 MAC PCI, MII, Eeprom IF
SmSC LAN91C100 MAC 32-Bit Bus IF, MII, Eeprom+Memory IF

LAN91C111 MAC + PHY 32-Bit Bus IF, MII, Eeprom IF,
10Base-T, 100Base-Tx

AMD Am79C901 PHY MII, GPSI, 10Base-T
Am79C874 PHY GPSI, 10Base-T, 100Base-Tx/Fx
Am79C875 PHY MII, 10Base-T, 100Base-Tx/Fx

Davicom DM9101 PHY MII, 10Base-T, 100Base-Tx
DM9131 PHY MII, 10Base-T, 100Base-Tx/Fx
DM9161 PHY MII, 10Base-T, 100Base-Tx
DM9162 PHY MII, 10Base-T, 100Base-Tx/Fx

continued on next page

114

continued from previous page
Vendor Device Type add. Interfaces

Intel LXT970A PHY MII, 10Base-T, 100Base-Tx/Fx
LXT971A PHY MII, 10Base-T, 100Base-Tx/Fx
LXT972A PHY MII, 10Base-T, 100Base-Tx

LSI Logic L80223 PHY MII, 10Base-T, 100Base-Tx/Fx
L80225 PHY MII, 10Base-T, 100Base-Tx
L80227 PHY MII, 10Base-T, 100Base-Tx

National Semi. DP83843 PHY MII, 10Base-T, 100Base-Tx/Fx
DO83846A PHY MII, 10Base-T, 100Base-Tx

Realtek RTL8201 PHY MII, 10Base-T, 100Base-Tx
SmSC LAN83C180 PHY MII, 10Base-T, 100Base-Tx

LAN83C183 PHY MII, 10Base-T, 100Base-Tx/Fx, 100Base-T4
Gigabit Ethernet devices

Davicom DM9701 PHY GMII, 10/100/1000Base-T
LSI Logic L80600 PHY GMII, 10/100/1000Base-T
Intel LXT1000 PHY GMII, 10/100/1000Base-T
National Semi. DP83820 MAC PCI, GMII, Eeprom IF

DP83861 PHY GMII, 10/100/1000Base-T

Table 1: Fast Ethernet and Gigabit devices

Next to the Gigabit Ethernet solutions some 10 Gigabit devices with an XGMII inter-
face are already available. For more detailed information contact the WEB Sites from for
e.g. LSI Logichttp://www.lsilogic.com. A new evolving network processor architecture is
the C-5 processor from Motorola, that supports Gigabit and 10 Gigabit interfaces as well.
Detailed information is readily available fromhttp://www.sps-mot.com.

115

http://www.lsilogic.com
http://www.sps-mot.com

Glossary and Abbreviations

The following glossary contains only symbols used throughout the text, whereas infre-
quently used symbols are explained directly in the context of the description. The same
procedure applies for the list of abbreviations.

Symbol Meaning
α accuracy
δsw transit delay through a switch
ε transmission delay uncertainty
εd transmission delay uncertainty due to a physical layer device
εc transmission delay uncertainty due to a transmission cable segment
εs transmission delay uncertainty due a synchronizer stage
εsw transmission delay uncertainty due to a switch
εnic transmission delay uncertainty due to the network interfaces (data source+sink)
fs sampling frequency
G clock granularity
Gs clock setting granularity
P max. synchronization period
π precision
ρ drift
σ oscillator stability
u rate adjustment uncertainty

10 Base-T IEEE 802.3 Physical Layer specification for a 10 Mb/s CSMA/CD local area
network over two pairs of twisted-pair telephone wire.

100 Base-Tx IEEE 802.3 Physical Layer specification for a 100 Mb/s CSMA/CD local
area network over two pairs of Category 5 unshielded twisted-pair (UTP) or shielded
twisted-pair (STP) wire.

1000 Base-TxIEEE 802.3 Physical Layer specification for a 1000 Mb/s CSMA/CD LAN
using four pairs of Category 5 balanced copper cabling.

100 Base-T4IEEE 802.3 Physical Layer specification for a 100 Mb/s CSMA/CD local
area network over four pairs of Category 3, 4, and 5 unshielded twisted-pair (UTP)
wire.

116

100 Base-T2IEEE 802.3 specification for a 100 Mb/s CSMA/CD local area network over
two pairs of Category 3 or better balanced cabling. (simultaneous bi-directional
transmission)

CSU Clock Synchronization Unit (a clock Asic)

GPS Global Positioning System

NTI Network Time Interface (M-module adapter board)

UTCSU Universal Time Coordinated Synchronization Unit (a clock Asic)

UTC Universal Time Coordinated (official reference time standard)

117

CURRICULUM V ITAE

Dipl.-Ing. Martin Horauer,
born on March 19th 1969 in Horn, Austria.

PERSONAL DATA :

Address Viehtriftgasse 4/2/8, A-1210 Wien
Citizenship Austrian
Family Status married to Dipl.-Ing. Karin Hammer; one daughter, Paula Horauer

EDUCATION :

1975–1979 Primary school Weitersfeld

1979–1987 Secondary school Vienna – Strebersdorf

1987–1994 Studies of Electrical Engineering, Vienna University of Technology
(Industrial Electronics and Control Systems)

PROFESSIONAL ACTIVITIES :

until 1994 several summer jobs atSiemens AG (German–French interpreter)
and atHorauer Electrical Engineering (electrical engineer)

1995–1997 member of the research project SynUTC — ”Synchronized UTC for
Distributed Real-Time Systems” a FWF-funded joint project of the De-
partment of Automation and Computer Technology, Vienna University
of Technology

1997–2002 University Assistant at the department of Computer Technology, Vienna
University of Technology

1999–2002 Part-time teaching at the University of Applied Sciences Technikum-
Wien

since 2002 Coordinator and principal lecturer in the Department of Embedded Sys-
tems, University of Applied Sciences Technikum-Wien

since 2003 member of the research project STEACS — ”Systematic Test of Em-
bedded Automotive Communication Systems” — a FIT-IT-funded joint
project of the Vienna University of Technology Department of Embed-
ded Computing Systems, Decomsys GmbH and the University of Ap-
plied Sciences Technikum-Wien Department of Embedded Systems

Vienna, February 2004

	Kurzfassung
	Abstract
	Related Publications
	Introduction
	Clock Synchronization Strategies
	Application Domain
	Outline

	State of the Art of Clock Synchronization
	System Modelling
	Clocks and Processors
	Communication Subsystem
	Faults

	A taxonomy of clock synchronization algorithms
	Structure of clock synchronization algorithms
	Clock synchronization building blocks

	Requirement analysis
	Clock Properties
	Clock Reading Error
	Clock Granularity an Clock Rate Adjustment
	Coupling to an External Reference Time

	Summary

	Related Work
	MARS - The Maintainable Real-Time System
	The Time-Triggered Protocol
	The Network Time Interface
	IEEE Standard 1588
	Summary

	Network interface architectures supporting tight clock synchronization
	System Architecture
	Network interface for End-systems
	Clock synchronization support for Network Interface Cards
	Prototype: MII-NTI

	Clock architecture
	Bus Interface and Timestamp Unit
	Local Time Unit

	Networked devices
	Clock synchronization support for Switches
	Switch Add-On

	Summary

	Delay variations of the Physical Layer
	Models of the physical communication link
	Cable model
	10 Base-T Physical Layer Devices
	100 Base-Tx Physical Layer Devices

	Evaluation
	Evaluation System Hardware
	Evaluation System Software
	Evaluation System Setup

	Measurement Results
	Direct connection
	Networked devices

	Summary

	Conclusion and Future Work
	Bibliography
	Appendix
	Glossary and Abbreviations
	Curriculum Vitae

