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ABSTRACT

This work focuses on a general framework for image representation and image matching that may be appropriate for
medical image archives. The proposed methodology is comprised of a continuous and probabilistic image representation
scheme using Gaussian mixture modeling (GMM) along with information-theoretic image matching measures (KL).
The GMM-KL framework is used for matching and categorizing x-ray images by body regions and orientation. A 4-
dimensional feature space is used to represent the x-ray image input, including intensity, texture (contrast) and spatial
information (x,y). Unsupervised clustering via the GMM is used to extract coherent regions in feature space, and
corresponding coherent segments (“blobs”) in the image content. The blobs are used in the matching process. A
dominant characteristic of the radiological images is their poor contrast and large intensity variations. This presents a
challenge to matching between the images and is handled via a post-processing stage that provides an invariant blob-
signature per image input. In a leave-one-out procedure, each image out of 851 is used once as a test-image, and is
categorized by the remaining (labeled) images. The GMM-KL classifier was tested using 851 radiological images with
error-rate of 1%. The classification results compare favorably with reported global representation schemes, such as
histograms.
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1. INTRODUCTION

Medical image databases are a key component in future diagnosis and preventive medicine. There is an increasing trend
towards the digitization of medical imagery and the formation of adequate archives. With the growing size of medical
image libraries, there is a need for efficient tools that can analyze medical images content and represent it in a way that
can be efficiently searched and compared. The objective of this research is to explore a statistical framework for visual
information management in medical archives. The framework provides a novel representation for modeling image
content, as well as novel distance measures for image comparisons and categorization. The focus of this work is
matching and categorizing x-ray images by body regions and orientation. The proposed methodology is general and can
be extended to additional modalities and labeled categories.

Content-based indexing and retrieval is expected to have a great impact on medical image databases. Image selection is
currently based on alphanumerical information only. However, information contained in medical images differs
considerably from that residing in alphanumerical format. Recent published works in medical content-based retrieval
propose solutions, which are limited to images with specific organ, modality or diagnostic study, and are usually not
directly transferable to other medical applications. A few examples are: lung CT scans [7], mammogram [8,9], brain
CT [10], and spine radiographs [11].

This work presents the initial phase of a large-scope research, in which a statistical framework, called GMM-KL, is
used as a probabilistic framework to represent and match medical images in large archives. The task of categorizing
image content within a large archive is a new challenge in the community (as opposed to focusing on exact
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segmentation within a particular modality). To the best of our knowledge, this is the first time a statistical framework is
applied in the context of categorizing medical imagery. Additional unique challenges treated in the work include:
exploring the feature-space appropriate to represent x-ray images; transitioning from global-based representations (such
as histograms) to localized, region-based representations (via GMM) and illumination-invariant signatures for image
matching.

2. DATA CHARACTERISTICS

The database used in this research is a subset of eight classes from the IRMA x-ray library [3]. The images were
classified by medical experts according to the imaging modality, the examined region, the image orientation with
respect to the body and the biological system under evaluation. This classification is used as the “ground-truth” for this
research.

Classification of x-ray images (radiographs) is a non-trivial task, due to the complex nature of the information in the
image. In a single chest image, there are lungs, heart, ribs cage, diaphragm, clavicle, shoulder blade, spine and blood
vessels, any of which may be the region of interest for the radiologist. X-ray images of the same class share a strong
visual similarity (Figure 1). However, there is a great variation within a class, caused by different doses of x-ray,
varying orientation, alignment and pathology. In many images there are cloths, jewels, artificial-implants and medical
instruments. In addition to content variation, the quality of the x-ray images may vary considerably. The images are
characterized with contrast variation and non-uniform intensity background, weak signal-to-noise ratio, digitized x-ray
projections noise, and high frequency noise.
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Figure 1: Sample x-ray images from the knee class.

3. FEATURE SPACE SELECTION

In the current work a 4-dimensional feature space is used to represent the x-ray image input, including intensity, spatial
information and texture. An initial transition is made from pixels to the selected 4-D feature space. Each pixel is
represented with a feature vector and the image as a whole is represented by a collection of feature vectors. In the
following, we briefly review the texture feature used.

3.1 Texture feature extraction

The texture descriptor used in this work is based on the windowed second moment matrix, as defined in [2]. The
gradient of the image intensity, VI, is computed using the first difference approximation along each dimension. Scale is
defined to be the width of the Gaussian window within which the gradient vectors of the image are pooled. The second
moment matrix for the vectors within this window, computed about each pixel in the image, can be approximated using:

M (x,y) =G, (x,y)*(VI)VI)" (1)



where Go(x,y) is a separable binomial approximation to a Gaussian smoothing kernel with variance o>. At each pixel
location, My(x,y) is a 2x2 symmetric positive semidefinite matrix. Rather than work with the raw entries in M, it is
more common to deal with its eigenstructure. Consider a fixed scale and pixel location. Let &; and X, (A>X,) denote the
eigenvalues of Mo at that location, and let ¢ denote the argument of the principal eigenvector of Mo. When 4, is large
compared to A, the local neighborhood possesses a dominant orientation, as specified by @. When the eigenvalues are
comparable, there is no preferred orientation, and when both eigenvalues are negligible, the local neighborhood is
approximately constant.

We may think of ¢ as controlling the size of the integration window around each pixel within which the outer product of
the gradient vectors is averaged. Note that 6=0(x,y); the scale varies across the image. In order to select the scale at
which Mo is computed, i.e. to determine the function o(x,y), we make use of a local image property known as polarity.
The polarity is a measure of the extent to which the gradient vectors in a certain neighborhood point in the same
direction. The polarity at a given pixel is computed with respect to the dominant orientation ¢ in the neighborhood of
that pixel. For each pixel, we select the scale as the first value of ¢ for which the difference between successive values
of polarity P(cy)-P(cy ) is less than 2%. Once a scale ¢ is selected for each pixel, that pixel is assigned three texture
descriptors. The first two, which are taken from M,, are the anisotropy, defined as A=1- X,/A;, and the normalized
contrast, defined as C=(A 1+?\,2)1/2 . The third is the polarity, P, which is defined as:

p_|E.—E |

2
E +E @

where the definition of E, and E_are:

E, = Y G,(x,y)IVI i,

(x,)eQ

E = Y G,(xyIVI-AL

(x,y)€Q

In this work, we use the contrast as the texture feature. In [2], a pixel is referred to as uniform (non texture) if its mean
contrast across scale is less than 0.1, where the contrast ranges from O to 1. Due to the varying quality of the x-ray
images and the range of possible textures in the images, a constant threshold cannot be used to differentiate between the
real texture and the noise. We wish to determine the threshold adaptively per image. For this task, a histogram of the
texture contrast is used. This histogram is typically a mixture of two distributions; the lower-mean distribution is
generated by the background (non texture), while the higher mean distribution is generated by textured objects. The
optimal threshold for each image is taken as the minimum point between the two distributions, defined as the minimum
point between two local maxima points, according to highest maxima to minima ratio.

4. IMAGE REPRESENTATION & MATCHING

The proposed methodology is comprised of a continuous and probabilistic image representation scheme along with
information-theoretic image matching measures. Unsupervised clustering via Gaussian mixture modeling (GMM) is
used to extract coherent regions in feature space, and corresponding coherent segments (“blobs”) in the image content.
The parameters of the GMM are determined via the maximum likelihood principle and the Expectation-Maximization
(EM) algorithm. Following the image modeling stage, the image-matching problem is treated as a distribution-matching
problem, and the information theoretic Kullback-Leibler (KL) distance is used as a distance measure between image
GMMs. The combined GMM-KL framework has recently been proposed [1] as an extension to the content-based
retrieval system of Blobworld [2].

4.1 Grouping pixels into regions

Once the feature space is selected, grouping the pixels is the next required stage. The pixels are grouped into
homogeneous regions by grouping the feature vectors in the selected feature space. The feature space is searched for
dominant clusters and the image samples in the feature space are then represented via the modeled clusters. The
underlying assumption is that the image intensities and their spatial distribution in the image plane are generated by a



mixture of Gaussians. Each homogeneous region in the image plane is thus represented by a Gaussian distribution, and
the set of regions in the image is represented by a Gaussian mixture model. Learning a Gaussian mixture model is in
essence an unsupervised clustering task.

The Expectation Maximization (EM) algorithm [1] is used to determine the maximum likelihood parameters of a
mixture of k Gaussians in the feature space. The distribution of a random variable X e R is a mixture of k Gaussians if
its density function is:
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where ¢ ; is the prior probability for Gaussian k, and £z, , 2, are the mean vector and covariance matrix of Gaussian «,

respectively.

Given a set of feature vectors x;,...,x,, the maximum likelihood estimation of @ is:

.......

0,, =argmax f(x,__x,10) @)
2]

The EM algorithm is an iterative method to obtain &,, . The first step in applying the EM algorithm to the problem at

hand is to initialize the mixture model parameters. The K-means algorithm [2] is utilized to extract the data-driven
initialization. The updating process is repeated until the log-likelihood is increased by less than a predefined threshold.
In this work we use a threshold value of 1%.

The number of mixture components (or number of means), , is of great importance in the accurate representation of a
given image. Ideally, k is to represent the value that best suits the natural number of groups present in the image. Note
that each of these feature groups may include several spatially disjoint regions in the image. It is often accepted that the
Minimum Description Length (MDL) principle [4, 5] may serve to select among values of k. In our experiments, the
MDL criterion indicates a monotonic improvement of less than 0.5% above 7 or 8 blobs. We therefore select k=8 for all
images.

4.2 Image segmentation

An immediate transition is possible between the image representation using a Gaussian mixture model, and probabilistic
image segmentation. A direct correspondence can be made between the mixture representation and the image plane.
Each pixel of the original image is now affiliated with the most probable Gaussian cluster. The labeling of each pixel is

done in the following manner. Suppose that the parameter set that was trained for the image is @ = {aj, /1]_,2_}"__1
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Then the labeling of the pixel related to the feature vector x is chosen as follows:

Label(x) = argmax f,(xla;, u,Z ) (6)
J

4.3 Image similarity and matching

The localized Gaussian mixture provides for a compact representation of the image in the feature space. This
representation is used for images similarity comparisons, using the Kullback Leibler (KL) distance [6]. The KL distance
(or relative entropy) is a measure of the distance between two distributions based on information theory. It is consistent
with the probabilistic modeling technique and can be efficiently evaluated through Monte Carlo procedures.

Once we associate a Gaussian mixture model with an image, the image can be viewed as a set of independently
identically distributed (IID) samples from the Gaussian mixture distribution. Hence, a reasonable distance measure
between two images is a distance measure between the two Gaussian mixture distributions obtained from the images.
Denote the Gaussian mixture models computed from the two images by f; and f>. Given the two distributions: f; and f>,
the non-symmetric version KL distance is:

_ fi(x0)
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where E is the expected value function. Since the KL distance between two Gaussian mixture distributions cannot be
analytically computed, we can instead apply the image data to approximate it. One possible approximation is to use
synthetic samples, denote by X;...X,, produced from the Gaussian mixture distribution, f;. This enables us to compute
the KL distance without referring to the images from which the models were built:

DU f) =Y log 115
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such that x;;...Xini 1S the feature set extracted from image i, (i=1,2), and n; is the size of this set.

44 Normalized blobs

As discussed earlier, dominant characteristics of the radiological images are their poor contrast and large intensity
variations. This presents a challenge in matching between the images (or Gaussian mixtures), as similar images may
share only a limited space in the feature space. For example, dark and bright images of similar visual content may
result in a no-match decision due to the large intensity variations. A post-processing stage is suggested to overcome
such difficulties. In the post-processing, blob representation per image is normalized to the range of [0-1] such that the
blob that represents the least dense organ (the background in most of the cases) is assigned an intensity value of 0, and
the blob that represents the densest organ is assigned an intensity value of 1. The rest of the blobs’ normalized-values
are distributed between 0 and 1, in correspondence to the original blob-intensity value. After the normalization of each
image representation, all the Gaussian mixtures are distributed in the same range. Furthermore, the corresponding blobs
between any two similar images, which represent the same organ, are likely to have closer intensity values and result in
alower KL distance between the two blob representations.

5. EXPERIMENTS AND RESULTS

A set of 851 images was selected from eight different classes, where each class contains 50-200 images (Table 1).
Figures 4 and 5 (top) show sample images from the eight classes. The described algorithms used 8-bit gray level
uncompressed images in reduced resolution of typically 300x500 pixels (images in the database have up to 2000x3000
pixels). In the following experiments, we start by showing results related to the texture feature, we then proceed to
image representation and matching results.



5.1 The texture descriptor

Figure 2 left, demonstrates that there is no clear border in the intensity image between the organ and background. Using
the texture contrast feature (section 3.1), a distinct border between the organs and the background or between bones and
soft tissues can be seen, as shown in Figure 2 right.

Figure 2- Left: Original x-ray image. Right: Corresponding texture contrast image, ranging from 0 (dark) no texture, to 1 (bright)
strong texture.

Image segmentation results, with and without texture, are shown in Figure 3 (equations 5 and 6). The segmentation
results provide a visualization tool for better understanding the image model. Uniformly colored regions (with arbitrary
gray-levels) represent homogeneous regions in the feature space. The associated pixels are all linked (unsupervised) to
the corresponding Gaussian characteristics. When the texture is included in the feature space (Figure 3b), a distinction is
found between the soft-tissue, segment 1, and the background, segment 2. Excluding the texture from the feature space
(Figure 3c) results in merging of the regions into segment 5. In a similar way, the bone, segment 3, and the background,
segment 4 (figure-3b) were merged into segment 6 (figure-3c).

(a) (b (e
Figure 3- (a) Original x-ray image. (b) Segmentation results for a model learned using intensity, position and texture features. (c)
Segmentation results for a model learned using intensity and position features only.



5.2 Image representation

Image representation using GMM modeling can be seen in Figures 4 and 5. In this visualization, each localized
Gaussian mixture is shown as a set of ellipsoids. Each ellipsoid represents the support, mean intensity and spatial
layout, of a particular Gaussian in the image plane. The blob representation demonstrates that even in the simplified
blob-visualization one can identify the image type, since generally, the regions correspond to objects or parts of objects.
For example, in the ‘Chest’ image, the two lungs are represented by the two dark ellipsoids, while in ‘Chest side view’
image, a single dark ellipsoid represents a side view of the lungs, and in the ‘Hand’ image the thumb-blob is separated
from the fingers-blobs.
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Figure 4-

Top: Example images. From left to
right: hand, chest, skull, and knee
classes.

Bottom: Corresponding GMM (blobs)
representation.

Figure 5-

Top: Example images. From left to
right: chest side view, patella, knee

ey side view, and Neck classes.

~

Bottom: Corresponding GMM
(blobs) representation.

In order to evaluate the GMM blob representation for the x-ray images, we use an intra-inter class statistical evaluation
methodology. The intra-class set consists of image pairs from the same class. The inter-class set corresponds to pairing
of images from different classes. A histogram of the intra-class and inter-class distances is given in Figure 6. The x-axis
is the KL distance and the y-axis is the frequency of occurrence of the respective distance in each of the two distance
sets. The two distinct peaks in the graph demonstrate the separation between the sets. An overlap exists; this
demonstrates the complexity of the task. As expected, the intra-class distances have low values, while the inter-class set
is more widely spread over larger distance values. We next wish to investigate if the separation between the sets is
sufficient for the image classification task.

5.3 Image classification

The final set of experiments consist of classification experiments, to evaluate image matching via the GMM-KL
framework. A leave-one-out procedure is used. Each image, out of 851, is used once as a test-image, and is categorized
by the remaining (labeled) images. Table 1 presents the categorization results per image category. Results are an



average of several K nearest-neighbor voting cycles (varying K). A 2% error rate is achieved with the initial blobs
model. Using the normalized blob models the error rate is less than 1%.
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Figure 6: Inter-intra graph
Table Image Number of Number of misclassified images 1: (a)
Classes Images in a (c)
class (b)
(@) Initial blobs Normalized blobs

Hand 120 2 2
Chest 168 0 0
Chest side view 208 6 0
Skull 121 2 2
Knee 77 4 2
Patella 48 1 0
Knee side view 53 5 3
Neck 56 3 0
Total: 851 18 (2.11%) 8 (0.94%)

Image classes; (b) Number of images per class; (c¢) Number of misclassified images per class.

6. CONCLUSIONS

The GMM-KL framework was shown to provide a high precision of 99.06% in classifying x-ray images. Results
presented compare favorably with global and local based representations schemes as reported in the literature [3].
Several research questions are still open with respect to the GMM representation, which is a localized representation.
An important issue is the ability to match similar images with variations in the alignment or zoom. We are currently
investigating invariant image descriptors, such as blobs with relative layout features, as a solution to this challenge.
Another open question is how to retrieve images from a sub-class; for example, retrieving the images in which there is
only a single healthy lung, from the chest-class. Future work entails expanding the image dataset with additional

classes, and performing large-scope validation and comparative studies.

ACKNOWLEDGEMENT
The image data used in this study is courtesy of the Image Retrieval in Medical Application (IRMA) group, Aachen,
Germany, http://irma-project.org.



Nk

10.

11.

REFERENCES

H. Greenspan, J. Goldberger, L. Ridel, A Continuous probabilistic framework for image matching, Journal of
Computer Vision and Image Understanding, Vol. 84, No. 3, pp.384-406, 2001.

C. Carson, S. Belongie, H. Greenspan, J. Malik, Recognition of images in large databases using color and texture,
IEEE Transactions on Pattern Analysis and Machine Intelligence IEEE-PAMI, 24(8): 1026-1038, 2002.

T. Lehmann, B. Wein, D. Keysers, M. Kohnen, H. Schubert, A mono-hierarchical multi-axial classification code
for medical images in content-based retrieval, Proceedings Ist IEEE International Symposium on Biomedical
Imaging, pp. 313-316, 2002.

J. Rissanen, Modeling by shortest data description, Automatica 14, 465471, 1978.

J. Rissanen, Stochastic complexity in statistical inquiry, World scientific, 1989.

S. Kullback, Learning Textures, Dover, 1968.

A.C. Kak, C. Pavlopoulou, Computer Vision Techniques for Content-Based Image Retrieval from Large Medical
Databases, Tth Workshop on Machine Vision Applications, IAPR, Tokyo, Japan, 2000.

A. Maria-Luiza, O.R. Zaiane, A. Coman, Application of Data Mining Techniques for Medical Image Classification,
in Proc. of Second Intl. Workshop on Multimedia Data Mining (MDM/KDD"2001) in conjunction with Seventh
ACM SIGKDD, pp. 94-101, San Francisco, CA, 2001.

P. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, Z. Protopapas, Fast and effective retrieval of medical tumor
shapes, IEEE Transactions on Knowledge and Data Engineering, 10(6): 889-904, 1998.

Y. Liu, F. Dellaert, Classification Driven Medical Image Retrieval, Proc. of the Image Understanding Workshop,
1998.

L.R. Long, S. Antania, D.J. Leeb, D.M. Krainakc, G.R. Thomaa, Biomedical information from a national collection
of spine x-rays — Film to content-based retrieval, Proceedings SPIE 2003.



