
Bayesian linear regressionThomas P. MinkaSeptember 29, 1999AbstractThis note derives the posterior, evidence, and predictive density for linear multivariateregression under zero-mean Gaussian noise. Many Bayesian texts, such as Box & Tiao(1973), cover linear regression. This note contributes to the discussion by paying carefulattention to invariance issues, demonstrating model selection based on the evidence, andillustrating the shape of the predictive density. Piecewise regression and basis functionregression are also discussed.1 IntroductionThe data model is that an input vector x of length m multiplies a coe�cient matrix A toproduce an output vector y of length d, with Gaussian noise added:y = Ax+ e (1)e � N (0;V) (2)p(yjx;A;V) � N (Ax;V) (3)This is a conditional model for y only: the distribution of x is not needed and in fact irrelevantto all inferences in this paper. As we shall see, conditional models create subtleties in Bayesianinference. In the special case x = 1 and m = 1, the conditioning disappears and we simply havea Gaussian distribution for y, with arbitrary mean and variance. This case is useful as a checkon the results.The scenario is that we are given a data set of exchangeable pairs D = f(y1;x1); :::; (yN;xN)g.Collect Y = [y1 � � �yN ] and X = [x1 � � �xN ]. The distribution of Y given X under the model isp(YjX;A;V) = Yi p(yijxi;A;V) (4)= 1j2�VjN=2 exp(�12Xi (yi �Axi)TV�1(yi �Axi)) (5)= 1j2�VjN=2 exp(�12tr(V�1(Y �AX)(Y �AX)T)) (6)= 1j2�VjN=2 exp(�12tr(V�1 hAXXTAT � 2YXTAT +YYTi)) (7)1



A conjugate prior for A and V given X is the matrix-Normal-Wishart density:p(A;VjX) = p(AjV;X)p(VjX) (8)= N (A;M;V;K)W�1(V;S0; N0) (9)� NW�1(M;K;S0; N0) (10)N (A;M;V;K) = jKjd=2j2�Vjm=2 exp(�12tr((A�M)TV�1(A�M)K)) (11)W�1(V;S0; n) = 1Znd jVj(d+1)=2 �����V�1S02 �����n=2 exp(�12tr(V�1S0)) (12)where Znd = �d(d�1)=4 dYi=1�((n + 1� i)=2)whereM is d by m, K is m by m, and S0 is d by d. The density of A given V in (11) is knownas the matrix-Normal distribution. The marginal for A without V is a matrix-T distribution:p(AjX) � T (M;S0;K; N0 +m) (13)T (M;V;K; n) = Qdi=1 �((n+ 1 � i)=2)Qdi=1 �((n �m+ 1 � i)=2) jKjd=2j�Vjm=2 ���(A�M)TV�1(A�M)K+ Im����n=2 (14)Let Sxx = XXT +K (15)Syx = YXT +MK (16)Syy = YYT +MKMT (17)Syjx = Syy � SyxS�1xxSTyx (18)Then the likelihood (7) times prior (8) isp(Y;A;VjX) _ jVj(N+N0+d+1)=2 exp(�12tr(V�1 hASxxAT � 2SyxAT + Syy + S0i)) (19)= jVj(N+N0+d+1)=2 exp(�12tr(V�1 h(A� SyxS�1xx )Sxx(A� SyxS�1xx )T + Syjx + S0i)) (20)so the posterior is p(A;VjD) � NW�1(SyxS�1xx ;Sxx;Syjx + S0; N +N0) (21)from which inferences can be made. The prior used in this paper is approximately noninforma-tive, with free parameters � and N0:p(A;VjX) � NW�1(0; �XXT; N0Id; N0) (22)2



As (�;N0)! 0, this prior approaches the noninformative Je�reys prior:p(A;VjX) _ ���XXT���d=2 j2�Vj�m=2 jVj�(d+1)=2 (23)The Je�reys prior is conditional onX in order to be invariant to input rescaling and is conditionalon V in order to be invariant to output rescaling. Other priors, such as that used by MacKay(1992), are not invariant; inferences change when you rescale the input space. Unfortunately, theJe�reys prior is improper so sometimes the limit can be taken and other times (�;N0) must beleft as parameters to be optimized or integrated out. This is the regression technique advocatedby Gull (1988). Note that if XXT is singular then we must choose a di�erent K matrix basedon problem-speci�c knowledge. In the non-regression case, this prior reduces top(AjV)p(V) � NW�1(0; �N;N0Id; N0) (24)2 Known VFrom (20) we see that the posterior for A given V is matrix-Normal:p(AjD;V) � N (SyxS�1xx ;V;Sxx) (25)� N (YXT(XXT)�1(�+ 1)�1;V;XXT(�+ 1)) (26)For the non-regression model the posterior simpli�es to N ( Pi yi(�+1)N ; V(�+1)N ). The mode of the pos-terior di�ers from maximum-likelihood by the factor (�+1)�1, which provides some protectionagainst over�tting.2.1 Model selection via the evidenceMultiplying (7) times (11) and integrating out A gives the evidence for linearity, with V known:p(YjX;V) = jKjd=2jSxxjd=2 j2�VjN=2 exp(�12tr(V�1Syjx)) (27)� N (MX;V; I �XTS�1xxX) (28)= � ��+ 1�md=2 j2�Vj�N=2 exp(�12tr(V�1Syjx)) (29)When � = 0, Syjx attains its smallest value ofSyjx = Y(I �XT(XXT)�1X)YT (30)which has an intuitive geometrical interpretation. The matrix XT(XXT)�1X is the projectionmatrix for the subspace spanned by the columns of X. Therefore I � XT(XXT)�1X extracts3



the component of Y which is orthogonal to the input. However, even though � = 0 providesthe best �t to the data, the probability of the data is zero. This is because the prior is so broadthat any particular dataset must get vanishingly small probability. The only way to increasethe probability assigned to D is to make the prior narrower, which also means shrinking theregression coe�cients toward zero. So even though � is a free parameter, it doesn't contributeto over�tting.By zeroing the gradient with respect to �, we �nd that the evidence is maximized when� = mdtr(V�1YXT(XXT)�1XYT)�md (31)This estimator behaves in a reasonable way: when m increases or when the noise level increases,so does the amount of shrinkage, in order to reduce over�tting. But as N increases, the amountof shrinkage decreases, in order to let the data speak for themselves.The evidence for linearity is useful for selecting among di�erent linear models, viz. modelswith di�erent inputs. The di�erent inputs might be di�erent nonlinear transformations of themeasurements. If we consider the di�erent inputs as separate models with separate priors, thenwe compute (31) and (27) for each model and see which is largest. Figure 1 has an example ofusing this rule to select polynomial order. For order k, the input vector is x = [1 x x2 � � �xk]T.Because of the invariant prior, it doesn't matter if we use monomials vs. Legendre polynomialsor Hermite polynomials (though for MacKay (1992), it did matter). The data is synthetic withN = 50 and known variance V = 10.Another approach is to construct a composite model with all possible inputs and determinewhich coe�cients to set to zero. This method is mathematically identical to the �rst exceptthat all models use the same value of �. Unfortunately, this makes model selection more di�cultbecause typically the best model depends on �.In the non-regression case, the evidence for Gaussianity isp(DjV) = � ��+ 1�md=2 j2�Vj�N=2 exp(�12tr(V�1S) (32)�y = 1N Xi yi (33)S = (Xi yiyTi )� N(� + 1) �y�yT (34)= Y(I� 1(�+ 1)N 11T)YT (35)which incorporates shrinkage of the mean. The evidence is maximized when� = dN �yTV�1�y� d (36)4
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kFigure 1: Example of using the evidence to select model order. A synthetic data set is approx-imated by polynomials of varying order. The likelihood curve always increases with increasingorder while the evidence curve has a clear maximum at k = 3 (the true order in this case).5



2.2 Predicting new outputsTo predict the y output for a new x input, consider the augmented data set D0 = fy;xg [D.Then S0xx = Sxx + xxT (37)S0yjx = S0yy � S0yx(S0xx)�1(S0yx)T (38)= Syy � Syx(S0xx)�1STyx+yyT � yxT(S0xx)�1xyT � yxT(S0xx)�1STyx � Syx(S0xx)�1xyT (39)= Syjx + (y � Syx(S0xx)�1xc�1)c(y� Syx(S0xx)�1xc�1)T (40)= Syjx + (y � SyxS�1xxx)c(y� SyxS�1xxx)T (41)c = 1� xT(S0xx)�1x = (1 + xTS�1xxx)�1 (42)The invariant prior is now conditional on the augmented X. Sop(yjx;D;V) = p(D0jV)=p(DjV) (43)= j2�VjN=2 jSxxjd=2j2�Vj(N+1)=2 jS0xxjd=2 exp(�12tr(V�1(S0yjx � Syjx)) (44)= 1j2�Vc�1j1=2 exp(� c2(y� SyxS�1xxx)TV�1(y � SyxS�1xxx)) (45)= N (y;SyxS�1xxx;Vc�1) (46)Even though we integrated out A to get this result, the expected value of y given x is identicalto substituting the posterior mode for A. This makes sense because E[yjx;D] = E[AjD]x. Butthe variance of y is not simply V; it depends on the input x. Figure 2 plots the contours of thepredictive density conditional on x. The mean is a straight line with slope SyxS�1xx , while thestandard deviation lines are curved to account for uncertainty in the model. That is, the modelis allowed to wiggle within the constraints provided by the data. Only near the training datacan predictions be considered reliable.In the non-regression case, we have c�1 = N+1N so the predictive density isp(yjD) � N (�y; N + 1N V) (47)which again incorporates wiggle of the unknown mean.For predicting K new samples (Y0;X0), we useD0 = fY0;X0g [D (48)S0xx = Sxx +X0(X0)T (49)S0yjx = S0yy � S0yx(S0xx)�1(S0yx)T (50)6
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3 Unknown VFrom (27) we see that the posterior for V is inverse Wishart:p(VjD) � W�1(Syjx + S0; N) (63)Integrating A and V out of (20), or equivalently dividing out (21), gives the evidence forlinearity:p(YjX) = Z(N+N0)dZN0d jKjd=2jSxxjd=2 jS0jN0=2�Nd=2 ���Syjx + S0���(N+N0)=2 (64)� T (MX;S0; I�XTS�1xxX; N +N0) (65)= Qdi=1 �((N +N0 + 1 � i)=2)Qdi=1 �((N0 + 1 � i)=2) � ��+ 1�md=2 (�N0)�Nd=2 �����SyjxN0 + Id������(N+N0)=2 (66)The optimum (�;N0) can be computed by iterating the �xed-point equationsV̂ = (Syjx +N0Id)=(N +N0) (67)� = mdtr(V̂�1YXT(XXT)�1XYT)�md (68)Nnew0 = N0Pdi=1	((N +N0 + 1 � i)=2)�	((N0 + 1� i)=2)log ����SyjxN0 + Id����+ tr(V̂�1)� d (69)As N0 ! 0, the posterior predictive distribution isp(yjx;D) = p(D0)=p(D) (70)= Z(N+1)d jSxxjd=2 ����Syjx���N=2ZNd jS0xxjd=2 ����S0yjx���(N+1)=2 (71)= �((N + 1)=2)�((N + 1� d)=2) ����Syjxc�1����1=2�(y� SyxS�1xxx)TS�1yjxc(y� SyxS�1xxx) + 1��(N+1)=2 (72)� T (SyxS�1xxx;Syjxc�1; N + 1) (73)In the non-regression case, we had c�1 = N+1N sop(yjD) � T (�y; N + 1N S; N + 1) (74)8



To predict K new samples, integrate V out of (56) times (63) to getp(Y0jX0;D) � T (SyxS�1xxX0;Syjx;C; N +K) (75)which is equivalent to (64) after folding D into the prior. In the non-regression case, this isp(Y0jD) � T (�y1T;S;C; N +K) (76)4 Piecewise regressionPiecewise regression allows di�erent parts of the data to follow di�erent regression laws. Considerthe model p(yijxi;A1;V1;A2;V2) � �N (A1xi;V1) if i < tN (A2xi;V2) if i � t (77)This is known as a changepoint model: the �rst t � 1 observations follow one model, and therest follow another. The changepoint t is unknown and must be estimated. This model and itsgeneralizations are useful for segmenting time-series data such as speech. See Broemeling (1985)for more discussion of this model.In this model, the x values need not be increasing or have any other pattern, though in theexamples they will be increasing. Also, the linear pieces do not necessarily meet.Given a prior p(t) on the changepoint location, the posterior can be readily computed viap(tjD) _ p(t)p(y1::yt�1jx1::xt�1)p(yt::yNjxt::xN) (78)where the last two terms are given by separate applications of (64). The normalizing constantis the evidence for the existence of a changepoint:p(Djchangepoint) = NXt=1 p(t)p(y1::yt�1jx1::xt�1)p(yt::yNjxt::xN) (79)Fitting a line is meaningless if there are less than two data points, so a reasonable p(t) is uniformfrom 3 to N � 1.Figure 3 shows two examples: one where there is a changepoint and one where there is not. Inthe �rst example, the odds of a changepoint ((79) divided by (64)) are overwhelming, while inthe second example the odds are 300:1 against a changepoint. The optimal (�;N0) was used ineach evaluation of (64).Seber & Wild (1989) describe a variety of ways to enforce continuity of the piecewise linearfunction. For example, we could use a coupled prior on A1 and A2 that requires the lines (or9
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Figure 3: Example of changepoint analysis. On the left, the changepoint at t = 9 is correctlyfound. On the right, there is no changepoint.planes) to meet at a given point (or edge). But the simplest and most general way to get acontinuous piecewise regression is the method of basis functions, described in section 5.A model more exible than the changepoint model is the switching regression model, where theregression law can switch back and forth throughout the data. For a recent paper see Chen &Liu (1996).
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5 Basis function regressionBasis function regression is the special case where the inputs xi are functions of a commonquantity z: xi = fi(z) (80)All formulas remain the same, but now the predictive density p(yjx;D) can be viewed as afunction of z. This technique was already used in �gure 1, where fi(z) = zi�1. Other choicesinclude fi(z) = jz � tij, which yields a piecewise linear regression with changepoints ti, fi(z) =exp(� 12h(z � ti)2), which superimposes smooth bumps, and fi(z) = tanh(hi(x � ti)), whichsuperimposes smooth ramps. Figure 4 shows examples of these three bases.
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functions were sinusoids with exible frequency and phase parameters. Multi-layer perceptrons(MLPs) can also be viewed as basis function regressors with exible basis functions. The basisfunctions are the hidden unit responses; typically tanh functions. MLPs are usually trained vialeast-squares, without marginalizing over A, which can lead to over�tting. Training the hiddenunits via the evidence formula instead of least-squares should help avoid this. Indeed, some ofthe modi�ed training rules proposed in the literature have this avor.References[1] George E. P. Box and George C. Tiao. Bayesian Inference in Statistical Analysis.Addison-Wesley, 1973.[2] G. Larry Bretthorst. Bayesian Spectrum Analysis and Parameter Estimation.Springer-Verlag, 1988. http://bayes.wustl.edu/glb/book.pdf.[3] Lyle Broemeling. Bayesian analysis of linear models. Marcel Dekker, 1985.[4] R. Chen and J. S. Liu. Predictive updating methods with application to Bayesianclassi�cation. Journal of the Royal Statistical Society B, 58:397{415, 1996.http://playfair.stanford.edu/reports/jliu/pre-up.ps.Z.[5] S. F. Gull. Bayesian inductive inference and maximum entropy. In G. J. Erickson andC. R. Smith, editors, Maximum Entropy and Bayesian Methods, pages 53{74. KluwerAcademic Publishers, 1988. http://bayes.wustl.edu/sfg/gull.html.[6] D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415{447, 1992.[7] T. Poggio and F. Girosi. Networks for approximation and learning. Proc. of IEEE,78:1481{1497, 1990.[8] G. A. F. Seber and C. J. Wild. Nonlinear Regression. John Wiley & Sons, 1989.
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