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Abstract In this work, we propose an extension of the algebraic formulation
of the Tau method for the numerical solution of the nonlinear Volterra-
Hammerstein integral equations. This extension is based on the operational
Tau method with arbitrary polynomial basis functions for constructing the
algebraic equivalent representation of the problem. This representation is an
special semi lower triangular system whose solution gives the components of
the vector solution. We will show that the operational Tau matrix representa-
tion for the integration of the nonlinear function can be represented by an
upper triangular Toeplitz matrix. Finally, numerical results are included to
demonstrate the validity and applicability of the method and some compar-
isons are made with existing results. Our numerical experiments show that the
accuracy of the Tau approximate solution is independent of the selection of
the basis functions.
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1 Introduction

Nonlinear Volterra integral equations of the second kind often occur in
Hammerstein form:

u(t) = f (t) +
∫ t

0
k(t, s)G(s, u(s))ds, t ∈ [0, T] (1.1)

where f, k and G are smooth given functions with G(s, u) nonlinear in u, and
u(t) is a solution to be determined. These types of equations arise as a re-
formulation of some initial value problems for ordinary differential equations
where the kernel is of convolution type and the free term is a polynomial
whose coefficients are essentially given by the initial values [1]. Also, multi
dimensional analogous and mixed type of these equations appear as various
reformulation of nonlinear Volterra integro-differential equations and the
dynamic model of a chemical reactor. Detailed description and analysis of
these models may be found in [2–4].

The numerical solvability of the (1.1) and other related equations has
been pursued by several authors. Brunner [1] applied the implicitly linear
collocation method for (1.1) and discussed its connection with the iterated
collocation method. Guoqiang [5] introduced and discussed the asymptotic
error expansion of a collocation type method for Volterra-Hammerstein in-
tegral equations. Elnegar et al. in [6] were concerned with the Chebyshev
spectral solution of (1.1). In [7], the rationalized Haar functions are developed
to approximate solution of (1.1). Yalcinbas [12] has been concerned with the
Taylor polynomials of certain nonlinear Volterra-Fredholm integral equations
with algebraic nonlinearity. Recently, Shahmorad et al. [8–11] have been
concerned with the numerical solution of integro-differential equations and
some linear classes of (1.1) via the Tau method with the arbitrary bases
especially Chebyshev and Legendre bases.

Spectral methods have been studied intensively in the last two decades
because of their good approximation properties. The Tau method, through
which the spectral methods can be described as special case, as shown in
El-Daou and Ortiz [18, 22] and [17], has found extensive application for
numerical solution of many operator equations in recent years. There has
been considerable interest in solving integral equations using Tau methods
(see e.g. [8–11]). Here, we are interested in the numerical Tau approximation
of the nonlinear Volterra-Hammerstein integral equations. Our discussion
based on the operational Tau method which proposed by Ortiz and Samara in
[13–15]. We give a new approach of the operational Tau approximation for the
numerical solution of the nonlinear integral equations. Detailed description,
analysis and applications of the operational Tau method may be found in
[13–15] and references therein.

To clarify the concepts of operational approach of the Tau method, we need
assert some preliminaries and notations in Section 2 and then we introduce
the new Tau algorithm and matrix representation of the method for linear
integral equations as an auxiliary result. In Section 3, using an upper triangular
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Toeplitz matrix we obtain the operational Tau matrix representation for the
Volterra-Hammerstein integral equations as a semi lower triangular nonlinear
system, which can be solved using forward substitution. Finally in Section 4,
some numerical experiments are reported to clarify the method and some
comparisons are made with existing methods in the literature.

2 Preliminaries

For any integrable functions u(t) and v(t) on [0, T], we define the scaler
product < , > by

< u(t), v(t) >w =
∫ T

0
u(t)v(t)w(t)dt,

‖u‖2
w = < u(t), u(t) >w,

where w(t) is a positive weight function. Let φt = {φk(t)}∞k=0 be a given set of
arbitrary polynomial basis which are orthogonal with respect to the weight
function w(t) on [0, T] and L2

w[0, T] is the space of all functions f : [0, T] → R,
with ‖ f‖2

w < ∞.
Consider the operator equation Iu = f, where f (t), u(t) ∈ L2

w[0, T], and
I is a linear integral operator. From the classical theory of well known
Banach fixed point theorem, it follows that the equation has a unique so-
lution. Existence and uniqueness results for solution of (1.1) may be found
in [5, 6, 23]. We are seeking the exact polynomial solution to a perturbed
projection of this operator equation onto a finite dimensional space. Orthog-
onal series expansion of the exact solution u(t), using defined bases can be
considered as:

u(t) =
∞∑

i=0

aiφi(t),

where ai’s are constant coefficients.
Let � denote the infinite matrix of the Tau method generated by the linear

operator I with respect to the orthogonal polynomial basis φt, and consider the
linear Volterra integral equation of the second kind:

(Iu)(t) = u(t) −
∫ t

0
k(t, s)u(s)ds = f (t), t ∈ [0, T] (2.1)

where k is a bivariate given continuous function and u(t) is a solution to be
determined.

We define un(t) as an approximation function of the exact solution u(t)
as follows:

un(t) =
n∑

i=0

aiφi(t) = a φt = a�Xt,
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where � is a non-singular lower triangular coefficient matrix given by φt = �Xt

with a standard basis vector Xt = [1, t, t2, ...]T and a = [a0, a1, . . . , an, 0, 0, . . . ].
For obtaining the matrix vector multiplication representation for the

integral term, we assume that

k(t, s) =
∞∑

i=0

∞∑
j=0

ki, jφi(t)φ j(s),

such that by rearranging it we can write

k(t, s) =
∞∑

i=0

∞∑
j=0

k̃i, jtis j.

So, the integral term of (2.1) can be written as

∫ t

0
k(t, s)u(s)ds =

∞∑
i=0

∞∑
j=0

k̃i, jtia �

∫ t

0
s jXsds =

∞∑
i=0

∞∑
j=0

k̃i, jtia � X
′(i, j)
t ,

where X
′(i, j)
t =

[
t j+1+l

i+1+l

]∞
l=0

(i, j = 0, 1, 2, ...), and using simple computations

we derive

∫ t

0
k(t, s)u(s)ds = a �

∞∑
i=0

∞∑
j=0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k̃i, jti+1+ j

i + 1
0 0 0 . . .

0
k̃i, jti+1+ j

i + 2
0 0 . . .

0 0
k̃i, jti+1+ j

i + 3
0 . . .

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Xt. (2.2)

Let K = [
Ki, j

]∞
i, j=0 be an infinite matrix such that all its elements are zero

except the elements (K)l,l+r+1 = ∑r
i=0

k̃i,r−i

r+i+l+1 , (l, r = 0, 1, 2, ...), the formula
(2.2) can be written in compact form:

∫ t

0
k(t, s)u(s)ds = a � K Xt.

Similarly, for the free term f (t) of the (2.1) we set:

f (t) =
∞∑

i=0

fiφi(t) = f φt,

where f = [ f0, f1, ...].
Thus, the matrix vector multiplication representation for the (2.1) is

as follows:

aφt − a � K Xt = aφt − a � K �−1 φt = f φt.
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Let us introduce the matrices K� = � K �−1 and � = I − K�, where I
represents the identity matrix. With these notations, this equation can be
symbolically expressed as

a�φt = f φt. (2.3)

Due to orthogonality of {φi(t)}∞i=0, projection of (2.3) on the basis
functions yields

<

∞∑
i=0

a �iφi(t), φ j(t) >w=<

∞∑
i=0

fiφi(t), φ j(t) >w, j = 0, 1, 2, . . .

where �i is the ith column of �. So, orthogonality assumption of {φi(t)}∞i=0
leads to the following approximate system of equations

a � j = f j, j = 0, 1, 2, . . . , n

Using a finite truncated series of the above equations including the first
(n + 1) terms and solving the resulting system of equations, we can obtain the
vector solution a and so the approximate solution un(t) will be determined.

3 Outline of the method for nonlinear integral equations

As a consequence of the previous section, in this section we derive formulas for
numerical solvability of nonlinear integral equation (1.1) based on arbitrary
polynomial basis functions of the operational Tau method.

3.1 Nonlinear function approximation

Let the nonlinear analytic function G(t, u(t)) defined on [0, T] × R, be approx-
imated as:

G(t, u(t)) �
n∑

i=0

γi(t)ui(t).

This relation shows that the use of the Tau method requires that ui(t) must
be written as the product of a matrix and a vector. The following result is
concerned with approximation of the nonlinear function:

Lemma 1 Let v(t) = ∑∞
i=0 viφi(t) = v�Xt be a polynomial with

v = [v0, v1, v2, ...], � = [ϕi, j]∞i, j=0, Xt = [1, t, t2, ...]T ,

then for any natural number p ∈ N, we have

v p(t) = v�Bp−1Xt,
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where B is an infinite upper triangular Toeplitz matrix having the following
structure

B =

⎡
⎢⎢⎢⎣

v�0 v�1 v�2 . . .

0 v�0 v�1 . . .

0 0 v�0 . . .
...

...
...

. . .

⎤
⎥⎥⎥⎦ ,

with �i = [ϕi, j]∞j=0.

Proof The validity of the Lemma for p = 1 is obvious. Let v2(t) = (v�Xt) ×
(v�Xt). Simple manipulation we conclude

v2(t) = v�(Xt × (v�Xt)).

Now, we will show that

Xt × (v�Xt) = BXt.

We may set

Xt × (v�Xt) = Xt ×
( ∞∑

s=0

∞∑
r=0

vrϕr,sts

)
=

[ ∞∑
s=0

∞∑
r=0

vrϕr,sts+i

]∞

i=0

,

and

BXt =
⎡
⎣ ∞∑

j=0

Bijt j

⎤
⎦

∞

i=0

=
⎡
⎣ ∞∑

j=0

( ∞∑
r=0

vrϕr, j−i

)
t j

⎤
⎦

∞

i=o

.

Concerning Bij = 0, for i > j, it follows that

BXt =
⎡
⎣ ∞∑

j=i

( ∞∑
r=0

vrϕr, j−i

)
t j

⎤
⎦

∞

i=0

,

and by rearranging the indices we get

BXt =
⎡
⎣ ∞∑

j=0

∞∑
r=0

vrϕr, jt j+i

⎤
⎦

∞

i=0

,

which states the Lemma holds for p = 2. Now, we proceed by induction. So,
we assume the validity of the Lemma for k and transit to k + 1 as follows:

vk+1(t) = vk(t)v(t) = (v�Bk−1Xt) × (v�Xt) = v�Bk−1(Xt × (v�Xt))

= v�Bk−1(BXt) = v�BkXt.

�	
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3.2 Operational Tau matrix representation for the integration term

In this section we present the operational Tau representation of the integration
term for a class of Volterra-Hammerstein integral equations. Actually, we
will show that the effect of integrating k(t, s)up(s) will be represented as the
product of a matrix and vector. We give the following theorem which its proof
is based mainly on Lemma 1.

Theorem 1 Suppose that the analytic functions u(s) and k(t, s) can be
expressed as:

u(s) =
∞∑

i=0

aiφi(s) = a�Xs, k(t, s) =
∞∑

i=0

∞∑
j=0

ki, jφi(t)φ j(s) =
∞∑

i=0

∞∑
j=0

k̃i, jtis j,

where a = [a0, a1, ...], � is a non-singular lower triangular matrix and Xs =
[1, s, s2, ...]T, then we have

∫ t

0
k(t, s)up(s)ds = a�Bp−1MXt,

where

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 k̃0,0 k̃0,1 + 1

2
k̃1,0 k̃0,2 + 1

2
k̃1,1 + 1

3
k̃2,0 . . .

0 0
1

2
k̃0,0

1

2
k̃0,1 + 1

3
k̃1,0 . . .

0 0 0
1

3
k̃0,0 . . .

...
...

...
... . . .

0 0 . . . 0
1

n
k̃0,0

0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and B has been given in Lemma 1.

Proof Using Lemma 1, we have:

up(s) = a�Bp−1Xs,

also

k(t, s)up(s) = a�Bp−1 [
k(t, s), sk(t, s), ...

]T
.

Noting that for any m ≥ 0, we can write:

k(t, s)sm =
∞∑

i=0

∞∑
j=0

k̃i, jtism+ j,
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so, the desired integration term can be written as:

∫ t

0
k(t, s)up(s)ds = a�Bp−1

[∫ t

0
k(t, s)smds

]∞

m=0

= a�Bp−1

⎡
⎣ ∞∑

i=0

∞∑
j=0

k̃i, jti tm+ j+1

m + j + 1

⎤
⎦

∞

m=0

.

On the other hand, we can show

∞∑
i=0

∞∑
j=0

k̃i, j
tm+ j+1+i

m + j + 1
=

[
1

m + j + 1

]∞

j=0

k̃(m)Xt,

such that k̃(m) is a matrix having the following entries

k̃i, j(m) =
{

k̃i, j−i−1−m, j > m + i,
0, j ≤ m + i.

Therefore, we can write

∫ t

0
k(t, s)up(s)ds = a�Bp−1

[[
1

m + i + 1

]∞

i=0

k̃(m)Xt

]∞

m=0

,

= a�Bp−1

[[
1

m + i + 1

]∞

i=0

k̃(m)

]∞

m=0

Xt,

= a�Bp−1MXt.

�	

3.3 Numerical Tau approximation of the Volterra-Hammerstein equations

Here we apply the previous results for constructing the Tau approximate
solution of the Volterra-Hammerstein integral equation (1.1). Two typical
applied nonlinearities (e.g. algebraic and exponential nonlinearity) arise nat-
urally in the modeling of nth order isothermal, irreversible reaction in a
planner geometry or in steady two-dimensional heat transfer in a fin placed
in a vacuum environment and in the study of magneto hydrodynamics and
biological models [19–21].

Without loss of generality and owing to the large variety of kernels and
nonlinearities that occur in practice, we can assume that in (1.1), the nonlinear
analytic function may be expanded as

G(s, u(s)) �
n∑

p=0

γp(s)up(s).
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Now, we consider the Tau approximation of the (1.1), as follows:

u(t) = f (t) +
n∑

p=0

∫ t

0
k(t, s)γp(s)up(s)ds, t ∈ [0, T]

in which it can be written as

u(t) = f (t) +
∫ t

0
k(t, s)γ0(s)ds +

n∑
p=1

∫ t

0
k(t, s)γp(s)up(s)ds, t ∈ [0, T]. (3.1)

Let us set k(p)(t, s) = k(t, s)γp(s), where γp(s), (p = 0, ..., n) are continuous
functions. Using the given notations in Theorem 1, (3.1) can be transformed to
the following matrix form:

a�Xt = f � Xt + M0 Xt +
n∑

p=1

a � Bp−1 Mp Xt, (3.2)

where for p = 0, ..., n

Mp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 k(p)0,0 k(p)0,1 + 1

2
k(p)1,0 k(p)0,2 + 1

2
k(p)1,1 + 1

3
k(p)2,0 . . .

0 0
1

2
k(p)0,0

1

2
k(p)0,1 + 1

3
k(p)1,0 . . .

0 0 0
1

3
k(p)0,0 . . .

...
...

...
... . . .

0 0 . . . 0
1

n
k(p)0,0

0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Equation (3.2) can be written as:

a�Xt = f�Xt + M0 �−1�Xt +
n∑

p=1

a�Bp−1Mp�
−1�Xt,

and so

aφt = f φt + M0 �−1φt + a�

n∑
p=1

Bp−1Mp�
−1φt.

As we pointed out in the previous section, the orthogonality of {φ j(t)}∞j=0,
enables us to project the above equation on the {φi(t)}n

i=0, so we have

a = f + M0 �−1 + a�

n∑
p=1

Bp−1Mp�
−1. (3.3)

According to structure of the matrices �, Mp and upper triangular Toeplitz
matrix B with the same diagonal entries, an special upper triangular system
of (n + 1) × (n + 1) nonlinear equations is obtained whose solution gives the
unknown components of the vector a = [a0, a1, ..., an]. In what follows, we give
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more details regarding the structure of the above mentioned nonlinear system
and the analysis of obtaining the solution procedure.

Remark 1 Clearly, for G(s, u(s)) = up(s), the method described above remain
applicable and system (3.3) can be represented as a simple form

a = f + a�Bp−1M�−1. (3.4)

3.4 The construction of Tau approximation system with complexity analysis

In this subsection, we show how to compute the matrices B, Bp−1 and M,
which are required in the construction of nonlinear system (3.4) and then we
discuss the analysis of obtaining its solution. In other words, our objectives
are to explain the principles underlying the basic direct technique, to illustrate
this on the nonlinear system of (3.4) that arise in the Tau numerical solution
of Volterra-Hammerstein integral equations with algebraic nonlinearity. The
solution of nonlinear system of equations is an important component of many
spectral algorithms.

We describe the matrix structure produced by the Tau method owing to
their tensor-product nature. In order to describe the key ideas without having
to complex notations involving products of matrices and vectors, we will
assume the nonlinearity in (1.1) be as an algebraic form (see e.g Remark 1),
so the structure of the nonlinear system (3.4) will be discussed. Obviously, the
following analysis can be easily extended to the computation of matrices Mp

and the system (3.3).
Multiplying both sides of (3.4) by �, we get

a� = f� + a�Bp−1M.

Let us introduce ã = a� and f̃ = f� with ã = [̃a0, ã1, . . . , ãn] and f̃ =
[ f̃0, f̃1, . . . , f̃n], then the above equation take the form

ã = f̃ + ãBp−1M. (3.5)

We will show that (3.5) is a semi lower triangular nonlinear system, which
can be solved using forward substitution algorithm.

Following the structure of matrix B in Lemma 1, we may write

B = a ⊗

⎡
⎢⎢⎢⎣

�0 �1 �2 . . .

0 �0 �1 . . .

0 0 �0 . . .
...

...
...

. . .

⎤
⎥⎥⎥⎦ = (a�) ⊗

⎡
⎢⎢⎢⎣

e1 e2 e3 . . .

0 e1 e2 . . .

0 0 e1 . . .
...

...
...

. . .

⎤
⎥⎥⎥⎦ ,

where �i = [
ϕi, j

]∞
j=0 , ei and � are unit and lower triangular matrices, respec-

tively and ⊗ denotes the kronecker product.
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We take ã = a�, therefore the matrix B can be represented as an upper
triangular Toeplitz form

B =

⎡
⎢⎢⎢⎢⎢⎣

ã0 ã1 ã2 · · · ãn

0 ã0 ã1 · · · ãn−1

0 0 ã0 · · · ãn−2
...

...
...

. . .
...

0 0 . . . 0 ã0

⎤
⎥⎥⎥⎥⎥⎦

.

In order to investigate the properties of the product matrix Bp−1, we note
that the product of upper triangular Toeplitz matrices is an upper triangular
Toeplitz matrix whose principal diagonal entries are the product of the main
diagonal entries of the individual matrices and the other minor diagonal entries
are as a multiplication of the corresponding and preceding diagonal entries.
This property enables us to compute the system solution directly from the
preceding relations. Indeed, these are the properties that affect the direct
solution of the system.

Through simple calculations the upper triangular Toeplitz matrix Bp−1 is
as follows:

Bp−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

(̃a0)
p−1 c0(̃a0)

p−2̃a1 c1(̃a0)
p−3(̃a1)

2 + c2(̃a0)
p−2̃a2 · · ·

0 (̃a0)
p−1 c0(̃a0)

p−2̃a1 · · ·
0 0 (̃a0)

p−1 · · ·
...

...
...

...

0 . . . 0 (̃a0)
p−1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where c0, c1, c2, ... are constants.

Lemma 2 Consider the Volterra-Hammerstien integral equation (1.1) with al-
gebraic nonlinearity and assume that the functions G(s, u(s)), k(t, s) and f (t)
are continuous on [0,T]. Then the nonlinear spectral Tau system (3.5) defines a
unique Tau solution un(t).

Proof Firstly, we show that the entries of vector ãBp−1M can be written as

ãBp−1M = [
0, g1(̃a0), g2(̃a0, ã1), g3(̃a0, ã1, ã2), . . . , gn(̃a0, . . . , ãn−1)

]T
, (3.6)

where gi(̃a0, . . . , ãi−1) is a nonlinear function of elements ã0, ã1, ..., ãi−1. Actu-
ally, we obtain the jth entry of the vector ãBp−1M as a function of elements
ã0, ã1, ..., ã j−1. Due to structure of the matrix M, it is clear the first entry of
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vector ãBp−1M, for j = 0 is zero and the other entries for j = 1, ..., n, are
as follows:

(̃aBp−1M) j = ãBp−1
[
Mi, j

]n
i=0

= ã
[ i︷ ︸︸ ︷

0, . . . , 0, Bp−1
i,i (̃a0), Bp−1

i,i+1(̃a0, ã1), . . . , Bp−1
i,n (̃a0, ..., ãn−i)

]n

i=0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M0, j

M1, j
...

Mj−1, j

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ã

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑ j−1
l=0 Bp−1

0,l (̃a0, ..., ãl)Ml, j∑ j−2
l=0 Bp−1

1,1+l (̃a0, ..., ãl)M1+l, j
...∑ j− j

l=0 Bp−1
j−1,l+ j−1(̃a0, ..., ãl)Ml+ j−1, j

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

ã0, ã1, ..., ã j−1, ã j, ..., ãn

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g′
0, j(̃a0, ..., ã j−1)

g′
1, j(̃a0, ..., ã j−2)

...

g′
j−1, j(̃a0)

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
j−1∑
s=0

ãsg′
s, j(̃a0, ..., ã j−1−s) = g j(̃a0, ..., ã j−1),

where for the simplicity we have set Bp−1 = [Bp−1
i, j ]n

i, j=0 and

g′
i, j(̃a0, ..., ã j−1−i) =

j−1−i∑
l=0

Bi,l+i(̃a0, ..., ãl)Ml+i, j, i = 0, 1, ..., n.

Substituting (3.6) in (3.5) yields
⎡
⎢⎢⎢⎣

ã0

ã1
...

ãn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

f̃0

f̃1
...

f̃n

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0
g1(̃a0)

...

gn(̃a0, . . . , ãn−1)

⎤
⎥⎥⎥⎦ .
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Finally, we end up with an special system of algebraic equation for the
unknown ãi, (i = 0, 1, ..., n) corresponding to the (1.1) which can be solved
uniquely using the forward substitution process. �	

From Lemma 2, the matrix (3.5) can be transformed to

ã = [
f̃0, f̃1 + g1(̃a0), f̃2 + g2(̃a0, ã1), . . . , f̃n + gn(̃a0, . . . , ãn−1)

]T
,

or equivalently

ã0 = f̃0,

ã1 = f̃1 + g1(̃a0),

ã2 = f̃2 + g2(̃a0, ã1),
...

ãn = f̃n + gn(̃a0, . . . , ãn−1).

Therefore the desired approximation to the solution un(t) of (1.1) can be
obtained from a = ã�−1.

The following algorithm summarizes the proposed Tau method:

Algorithm 1 The construction of Tau approximation system
Step 1. Choose n, form the arbitrary orthogonal bases: φi(t), i = 0, 1, ..., n

and compute the nonsingular coefficient matrix � as {φi(t)}n
i=0 =

�[1, t, t2, ...]T .

Step 2. Compute f̃ = f� by using orthogonality condition of {φi(t)}n
i=0 as

f (t) �
n∑

i=0

fiφi(t),

where fi = 1
‖φi(t)‖2

w

∫ T
0 f (t)φi(t)w(t)dt i = 0, 1, ..., n and w(t) is a posi-

tive weight function.
Step 3. Compute the matrices B, Bk and M for k = 1, ..., p − 1 from Lemma

1 and Theorem 1.
Step 4. Take ã = [̃a0, ã1, ..., ãn] and obtain the entries of the vector solution ã

from the nonlinear system of equation: ã = ãBp−1M + f̃ as follows:

ã0 = f̃0,

ã1 = f̃1 + ãp
0 k̃0,0,

ã2 = f̃2 + ãp
0

(
k̃0,1 + 1

2 k̃1,0

)
+ 1

2 ck−1,0̃a2
1̃ap−2

0 k̃0,0,

...

Step 5. Using forward substitution, compute ã0, ã1, ..., ãn from Step 4, and set
a = ã�−1, then un(t) = a[1, t, ..., tn]T .
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Remark 2 For the computational complexity, we note that the cost for storage
requirement and computing the matrices M and Bp−1 is O(n2) and O(p n2)

flops, respectively. Therefore, the nonlinear system ã = ãBp−1M + f̃, can be
obtained efficiently in O(n2 + n2 + n2 + p n2) = O

(
(p + 3)n2

)
flops and can

be solved by using step 4, in O( n2

2 ) flops.

Remark 3 Clearly, the given analysis can be easily extended to the computa-
tion of matrices Mp and construction of the nonlinear system of equation (3.3),
related to the Volterra-Hammerstien integral equation (1.1) with any types of
nonlinearities which we refrain from going into details.

4 Numerical experiments and some comments

In this section, four test problems were solved using proposed operational Tau
algorithm based on the standard, Chebyshev and Legendre basis functions.
All calculations were supported by the Mathematica�. The “Maximal Error”
in Tables 1, 2, 3 refers to the maximal difference between approximation and
exact solution at the equally spaced, Gauss-Lobatto-Chebyshev and Gauss-
Lobatto-Legendre nodal points for the standard, Chebyshev and Legendre
bases, respectively. In all cases any non-polynomial term was replaced by a
suitable truncated series expansion. The error behaviors of the given method
with three different basis functions with respect to other recent numerical
methods have been shown in Figs. 1, 2, 3.

Example 1 (From Elnagar and Kazemi [6]) Consider the following Volterra-
Hammerstein integral equation:

u(x) = f (x) +
∫ x

0
k(x, t)u2(t)dt, x ∈ [0, 1],

where

f (x) = −1

4
x5 − 2

3
x4 − 5

6
x3 − x2 + 1, k(x, t) = xt + 1,

with the exact solution: u(x) = x + 1. For computational details and numerical
implementation of the proposed Tau algorithm, we take p = 2 and n = 5, so
the following simple matrices in the case of Chebyshev basis functions will be
obtained:

� =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0

−1 0 2 0 0 0
0 − 3 0 4 0 0
1 0 − 8 0 8 0
0 5 0 − 20 0 16

⎤
⎥⎥⎥⎥⎥⎥⎦

, M =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 1
2 0 0

0 0 1
2 0 1

3 0
0 0 0 1

3 0 1
4

0 0 0 0 1
4 0

0 0 0 0 0 1
5

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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Table 1 Numerical results of Example 2 using operational Tau method with different bases

Maximal error
n Standard base Chebyshev base Legendre base Method in [7]

4 6.60 × 10−3 4.46 × 10−3 2.52 × 10−3 −
8 9.45 × 10−7 6.66 × 10−7 3.97 × 10−7 −
12 8.41 × 10−11 2.07 × 10−11 1.28 × 10−11 −
16 8.91 × 10−16 6.50 × 10−16 7.10 × 10−16 2.00 × 10−4

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

ã0 ã1 ã2 ã3 ã4 ã5

0 ã0 ã1 ã2 ã3 ã4

0 0 ã0 ã1 ã2 ã3

0 0 0 ã0 ã1 ã2

0 0 0 0 ã0 ã1

0 0 0 0 0 ã0

⎤
⎥⎥⎥⎥⎥⎥⎦

, f̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
0

−1
− 5

6

− 2
3

− 1
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

and using the given algorithm, we obtain the nonlinear system of equations

ã0 = 1,

ã1 = ã2
0,

ã2 = −1 + ã0̃a1,

ã3 = −5
6 + ã2

0
2 + ã2

1
3 + 2

3 ã0̃a2,

ã4 = −2
3 + 2

3 ã0̃a1 + 1
2 ã1̃a2 + 1

2 ã0̃a3,

ã5 = −1
4 + ã2

1
4 + 1

2 ã0̃a2 + ã2
2

5 + 2
5 ã1̃a3 + 2

5 ã0̃a4,

with the exact solution: ã0 = 1, ã1 = 1, ã2 = ã3 = ã4 = ã5 = 0. Thus ã =
[1, 1, 0, 0, 0, 0] and un(x) = ãXx = 1 + x, which is the exact solution of the
equation. Actually, following [13, 24], Tau approximation for equations with
polynomial solution is exact, while degree of Tau approximation is at least
equal to the degree of the polynomial solution. Numerical results of the Cheby-
shev spectral method proposed by Elnegar et al. in [6] and rationalized Haar
functions proposed by Razzaghi et al. in [7] show that the given operational
Tau method for equations with polynomial solution is very powerful and give
the exact solution in comparison with numerical schemes [6] and [7]. (Under
the conditions that the mentioned nonlinear system of equations which arise
from the Tau method can be exactly solved.)

Table 2 Numerical results of Example 3 using operational Tau method with different bases

Maximal error
n Standard base Chebyshev base Legendre base Method in [12]
4 9.94 × 10−3 9.94 × 10−3 9.94 × 10−3 2.42 × 10−3

6 2.26 × 10−4 2.24 × 10−4 2.24 × 10−4 2.30 × 10−4

8 3.05 × 10−6 1.22 × 10−6 3.19 × 10−6 1.00 × 10−5

12 1.72 × 10−10 1.00 × 10−10 2.23 × 10−10 −
16 7.41 × 10−15 2.11 × 10−15 5.01 × 10−15 −
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Table 3 Numerical results of Example 4 using operational Tau method with different bases

Maximal error
n Standard base Chebyshev base Legendre base Method in [16]
4 9.00 × 10−3 8.10 × 10−3 7.20 × 10−3 8.14 × 10−3

6 4.50 × 10−4 1.90 × 10−4 1.10 × 10−4 1.90 × 10−4

8 5.20 × 10−6 2.70 × 10−6 2.20 × 10−6 4.00 × 10−5

10 5.48 × 10−8 3.08 × 10−8 2.48 × 10−8 −
12 3.59 × 10−10 2.40 × 10−10 1.14 × 10−10 −

Fig. 1 The Tau
approximation errors of
degree 5 for Example 2. using
three different classic bases
w.r. to the method in [7]

Fig. 2 The Tau
approximation errors of
degree 6 for Example 3 using
three different classic bases
w.r. to the method in [12]
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Fig. 3 The Tau
approximation errors of
degree 6 for Example 4 using
three different classic bases
w.r. to the method in [16]

Example 2 (From Razzaghi and Ordokhani [7])

u(x) = 1 + sin2(x) −
∫ x

0
3 sin(x − t)u2(t)dt, x ∈ [0, 1],

with the exact solution: u(x) = cos(x). As we expected, Tau approximation has
produced highly numerical results with respect to rationalized Haar functions
approximation of the problem proposed in [7]. Table 1 represents the error
estimates of the method for different basis functions together with the issued
maximum error of rationalized Haar functions [7]. The maximum errors
listed, show that high accuracy are obtained for n = 16 in comparison to the
numerical results in [7].

Example 3 (From Yalcinbas [12])

u(x) = ex − 1

3
e3x + 1

3
+

∫ x

0
u3(t)dt, x ∈ [0, 1],

with the exact solution: u(x) = ex.

Example 4 (From Hadizadeh and Azizi [12])

u(x) = −x3(−1 + esin x) + sin x +
∫ x

0
x3 cos teu(t)dt, x ∈ [0, 1],

with the exact solution : u(x) = sin x.

Examples 3 and 4 were solved in [12] and [16] by a method based on
Taylor series expansion approach. The reported results of the proposed Tau
method and the method of [12] and [16] for n = 4, 6, 8 show that both methods
have produced nearly equivalent approximate solutions for small values of
n. However, additional numerical experiments indicate that we can achieve
good numerical results for n ≥ 8. Also, due to some restrictions and more com-
plexity of the Taylor series approximation, in contrast the low computational
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complexity of the Tau approximation and its accurate solutions, the compara-
tive effect of our proposed Tau method will become obvious.

It is observed that from our numerical experiments and Tables 1–3, the
accuracy of the given Tau method is independent of the selection of basis
functions.

5 Conclusion

In this research, a variation of operational Tau method has been used for
the approximate solution of the nonlinear Volterra-Hammerstein integral
equations. With the availability of this methodology, it will now be possible
to investigate the approximate solution of other types of applied nonlinear in-
tegral equations. Comparing the given algorithm and other numerical methods
[6, 7, 12, 16], we may conclude the low computational complexity and storage
requirement with high accuracy of the proposed procedure. The difficulty
which we will be faced with is the approximation of the kernels and input
functions with appropriate polynomials, which is not very significant due to
regular conditions.

Acknowledgements The authors wish to express their sincere thanks to the referees for their
careful analysis of the manuscript and their valuable suggestions which led to a considerably
improved version of the paper.
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