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Recent investigations of atherosclerosis have focused
on inflammation, providing new insight into mecha-
nisms of disease. Inflammatory cytokines involved in
vascular inflammation stimulate the generation of en-
dothelial adhesion molecules, proteases, and other me-
diators, which may enter the circulation in soluble
form. These primary cytokines also induce production
of the messenger cytokine interleukin-6, which stimu-
lates the liver to increase production of acute-phase
reactants such as C-reactive protein. In addition,
platelets and adipose tissue can generate inflammatory
mediators relevant to atherothrombosis. Despite the
irreplaceable utility of plasma lipid profiles in assess-
ment of atherosclerotic risk, these profiles provide an
incomplete picture. Indeed, many cardiovascular
events occur in individuals with plasma cholesterol
concentrations below the National Cholesterol Educa-
tion Program thresholds of 200 mg/dL for total choles-
terol and 130 mg/dL for low-density lipoprotein (LDL)
cholesterol. The concept of the involvement of inflam-
mation in atherosclerosis has spurred the discovery
and adoption of inflammatory biomarkers for cardio-
vascular risk prediction. C-reactive protein is currently
the best validated inflammatory biomarker; in addi-
tion, soluble CD40 ligand, adiponectin, interleukin 18,
and matrix metalloproteinase 9 may provide addi-
tional information for cardiovascular risk stratification
and prediction. This review retraces the biology of
atherothrombosis and the evidence supporting the role
of inflammatory biomarkers in predicting primary car-
diovascular events in this biologic context.
© 2007 American Association for Clinical Chemistry

In the past several decades, our understanding of the
pathogenesis of atherosclerosis has undergone a revo-
lution (1 ). Previously, physicians thought of athero-
sclerosis as primarily a plumbing problem. The degree
of stenosis on an angiogram and symptoms and signs
of ischemia indicating impaired perfusion of target
tissues provided the main tools to assess atherosclero-
sis. The understanding of the pathophysiology of this
disease has now entered a new era based on under-
standing of the biology and a critical reappraisal of the
pathobiology of atherothrombosis (2 ). The modern
biological perspective has revealed that thrombotic
complications, culminating, for example, in myocar-
dial infarction, do not necessarily result from critical
stenoses. We have also come to appreciate that many
myocardial infarctions occur in individuals without
previous ischemic symptoms or diagnosis. In up to
one-half of individuals, the first manifestation of coro-
nary atherosclerosis is sudden death or myocardial in-
farction unheralded by premonitory symptoms. This
shift in our understanding of the disease underscores
the need for novel strategies of a priori risk stratifica-
tion in seemingly well populations (3, 4 ).

Understanding of the pathophysiology of athero-
sclerosis traditionally rests on the cholesterol hypothe-
sis (5 ). Indeed, besides age, cholesterol and LDL con-
centrations have indubitable value as risk markers for
future cardiovascular events. This epidemiologic rela-
tionship engendered decades of detailed scrutiny of
cholesterol, cholesterol-trafficking lipoproteins, and
the cellular and molecular mechanisms of cholesterol
metabolism regulation (6 ). We have gained an enor-
mous appreciation for the role of modified lipopro-
teins in the pathogenesis of atherosclerosis. The intense
focus on cholesterol in the latter half of the 20th cen-
tury enabled major strides in therapeutics as well as
diagnostics. Unraveling the molecular pathways that
regulate cholesterol metabolism led to the develop-
ment of drug therapies that have proved remarkably
effective in reducing clinical events in broad categories
of individuals.

Despite the important role of cholesterol in ath-
erosclerosis, many individuals who experience myo-
cardial infarction have cholesterol concentrations at or
below the National Cholesterol Education Program
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thresholds of 200 mg/dL for total cholesterol and 130
mg/dL for LDL cholesterol (7 ). Currently, many pa-
tients who present with acute myocardial infarctions
are receiving drug therapy for dyslipidemia, despite
LDL concentrations at currently mandated targets or
below. This convergence of clinical findings high-
lights the necessity of improving our ability to predict
cardiovascular risk. Cholesterol has fulfilled Koch
postulates as a causal factor in atherosclerosis (8 –12 ).
Nonetheless, controversy still exists regarding the mecha-
nisms by which high LDL concentrations actually insti-
gate atherosclerosis and its complications (13). A popular
formulation, supported by abundant laboratory and
clinical data, suggests that LDL modified by oxidation
or by glycation evokes an inflammatory response in the
artery wall, unleashing many of the biological processes
thought to participate in atherosclerosis initiation, pro-
gression, and complication (14). Indeed, inflammation
in cells involved in atherosclerosis is elicited by many
other risk factors associated with atherosclerosis, in-
cluding cigarette smoking, insulin resistance/diabetes,
and hypertension—particularly that mediated by the
renin-angiotensin-aldosterone system (15). Thus, the
inflammatory pathways involved in both innate and
adaptive immune responses appear to transduce many of
the traditional and emerging risk factors for atherosclero-
sis. We review here the concept of inflammation as a
pathogenic principle in atherosclerosis. New biological
understanding can point the way to novel biomarkers to
predict risk of atherosclerotic events beyond the tradi-
tional and well-established risk factors.

INITIATION AND DEVELOPMENT OF ATHEROSCLEROTIC LESIONS

Inflammation participates in atherosclerosis from its
inception onwards (Figs. 1 and 2). Fatty streaks do not
cause symptoms, and may either progress to more
complex lesions or involute. Fatty streaks have focal
increases in the content of lipoproteins within regions
of the intima, where they associate with components
of the extracellular matrix such as proteoglycans, slow-
ing their egress. This retention sequesters lipoproteins
within the intima, isolating them from plasma anti-
oxidants, thus favoring their oxidative modification
(16 –18 ). Oxidatively modified LDL particles comprise
an incompletely defined mixture, because both the
lipid and protein moieties can undergo oxidative mod-
ification. Constituents of such modified lipoprotein
particles can induce a local inflammatory response
(19 ).

Endothelial cells (ECs) normally resist leukocyte
adhesion. Proinflammatory stimuli, including a diet
high in saturated fat, hypercholesterolemia, obesity,
hyperglycemia, insulin resistance, hypertension, and
smoking, trigger the endothelial expression of adhe-
sion molecules such as P-selectin and vascular cell ad-

hesion molecule-1 (VCAM-1),1 which mediate the at-
tachment of circulating monocytes and lymphocytes
(20 –22 ). Interestingly, atherosclerotic lesions often
form at bifurcations of arteries, regions characterized
by disturbed blood flow, which reduces the activity of
endothelial atheroprotective molecules such as nitric
oxide and favors regional VCAM-1 expression (23 ).

Chemoattractant factors, which include monocyte
chemoattractant protein-1 produced by vascular wall
cells in response to modified lipoproteins, direct the

1 Nonstandard abbreviations: VCAM-1, vascular cell adhesion molecule-1;
MMP-9, matrix metalloproteinase 9; IL, interleukin; IFN, interferon; SMC,
smooth muscle cell; PAI-1, plasminogen activator inhibitor 1; MRP, myeloid-
related protein; CRP, C-reactive protein; C, cholesterol; hs, high-sensitivity;
PPAR, peroxisome proliferator-activated receptor.

Fig. 1. Initiation of atherosclerosis.

The diagram shows a cross-section through a muscular
artery depicting a classic trilaminar structure. The intima of
normal arteries is composed of a single layer of endothelial
cells overlying a subendothelial matrix that contains occa-
sional resident smooth muscle cells. The underlying tunica
media, separated from the intima by the internal elastic
lamina, contains multiple layers of vascular smooth muscle
cells. The adventitia, the outermost layer of the blood
vessel, separated from the media by the external elastic
lamina, is not depicted in this diagram. Circulating leuko-
cytes adhere poorly to the normal endothelium under
normal conditions. When the endothelium becomes in-
flamed, however, it expresses adhesion molecules that bind
cognate ligands on leukocytes. Selectins mediate a loose
rolling interaction of leukocytes with the inflammatorily
activated endothelial cells. Integrins mediate firm attach-
ment. Chemokines expressed within atheroma provide a
chemotactic stimulus to the adherent leukocytes, directing
their diapedesis and migration into the intima, where they
take residence and divide. These steps are depicted in a
left-to-right chronological sequence. Reprinted with per-
mission from (91 ).
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migration and diapedesis of adherent monocytes
(24, 25 ). Monocytic cells directly interacting with hu-
man ECs increase monocyte matrix metalloproteinase
9 (MMP-9) production several fold, allowing for the
subsequent infiltration of leukocytes through the en-
dothelial layer and its associated basement membrane
(26 ). Within the intima, monocytes mature into mac-
rophages under the influence of macrophage colony-
stimulating factor, which is overexpressed in the inflamed
intima (27, 28). Macrophage colony-stimulating factor
stimulation also increases macrophage expression of
scavenger receptors, members of the pattern-recognition
receptor superfamily, which engulf modified lipopro-
teins through receptor-mediated endocytosis. Accu-
mulation of cholesteryl esters in the cytoplasm converts
macrophages into foam cells, i.e., lipid-laden macro-
phages characteristic of early-stage atherosclerosis. In par-
allel, macrophages proliferate and amplify the inflam-
matory response through the secretion of numerous
growth factors and cytokines, including tumor necrosis
factor � and interleukin (IL)-1�. Recent evidence sup-
ports selective recruitment of a proinflammatory sub-
set of monocytes to nascent atheroma in mice (29, 30).
These observations point to a previously unappreciated
layer of complexity in the inflammatory aspects of early
atherogenesis.

T cells, representing the adaptive arm of the im-
mune response, also play a critical role in atherogene-
sis, entering lesions in response to the chemokine-
inducible protein-10, monokine induced by interferon
(IFN)-�, and IFN-inducible T cell �-chemoattractant
(31 ). The CD4� subtype, which recognizes antigens
presented as fragments bound to major histocom-
patibility complex class II molecules, predominates
in the lesion. Interestingly, human lesions contain
CD4� T cells reactive to the disease-related antigens
associated with oxidized LDL (32 ). The atherosclerotic
lesion contains cytokines that promote a T-helper 1
response, inducing activated T cells to differentiate into
T-helper 1 effector cells (33 ). These cells amplify the
local inflammatory activity by producing proinflam-
matory cytokines such as IFN-� and CD40 ligand
(CD40L, CD154), which contribute importantly to
plaque progression.

Adiponectin, a product of adipose tissue, has insulin-
sensitizing, antiatherogenic, and antiinflammatory prop-
erties (34). An important autocrine/paracrine factor in
adipose tissue, it modulates the differentiation of preadi-
pocytes and favors the formation of mature adipocytes.
Curiously, adiponectin concentrations are lower in obese
than lean individuals. This adipokine also functions as
an endocrine factor, influencing whole-body metabolism
via effects on target organs. Adiponectin exerts multiple
biologic effects pivotal to cardiovascular biology, includ-
ing increasing insulin sensitivity, reducing visceral adi-
pose mass, reducing plasma triglycerides, and increasing
high-density lipoprotein (HDL) cholesterol (35). Adi-
ponectin alters the concentrations and activity of enzymes
responsible for the catabolism of triglyceride-rich li-
poproteins and HDL, such as lipoprotein lipase and he-
patic lipase. It thus influences atherosclerosis by affecting
the balance of atherogenic and antiatherogenic lipopro-
teins in plasma (36). Adiponectin also directly affects the
function of endothelial cells, reducing VCAM-1 expres-
sion, and macrophages, decreasing the expression of scav-
enger receptors and the production of tumor necrosis fac-
tor � (34, 37).

PROGRESSION TO COMPLEX ATHEROSCLEROTIC LESIONS

Macrophages and T cells infiltrate atherosclerotic le-
sions and localize particularly in the shoulder region,
where the atheroma grows. Whereas foam cell accu-
mulation characterizes fatty streaks, deposition of fi-
brous tissue defines the more advanced atherosclerotic
lesion. Smooth muscle cells (SMCs) synthesize the
bulk of the extracellular matrix that characterizes this
phase of plaque evolution (38 ). In response to platelet-
derived growth factor released by activated macro-
phages and endothelial cells, and silent plaque disrup-
tions that lead to clinically unapparent mural thrombi,
SMCs migrate from the tunica media into the intima

Fig. 2. Progression of atherosclerosis.

Macrophages augment the expression of scavenger recep-
tors in response to inflammatory mediators, transforming
them into lipid-laden foam cells following the endocytosis
of modified lipoprotein particles. Macrophage-derived
foam cells drive lesion progression by secreting proinflam-
matory cytokines. T lymphocytes join macrophages in the
intima and direct adaptive immune responses. These leu-
kocytes, as well as endothelial cells, secrete additional
cytokines and growth factors that promote the migration
and proliferation of SMCs. In response to inflammatory
stimulation, vascular SMCs express specialized enzymes
that can degrade elastin and collagen, allowing their pen-
etration into the expanding lesion. Reprinted with permis-
sion from (91 ).
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via degradation of the extracellular matrix mediated
by MMP-9 and other proteinases (39 ). In the intima,
SMCs proliferate under the influence of various growth
factors and secrete extracellular matrix proteins, in-
cluding interstitial collagen, especially in response to
transforming growth factor-� and platelet-derived
growth factor. This process causes the lesion to evolve
from a lipid-rich plaque to a fibrotic and, ultimately, a
calcified plaque that may create a stenosis.

Human atheromata express IL-18 and increased
concentrations of its receptor subunits, IL-18R�/�
(40 ). IL-18 occurs predominantly as the mature 18-kD
form and colocalizes with mononuclear phagocytes
while ECs, SMCs, and macrophages all express IL-
18R�/�. Importantly, IL-18 signaling evokes essential
effectors involved in atherogenesis, e.g., adhesion mol-
ecules (VCAM-1), chemokines (IL-8), cytokines (IL-
6), and matrix metalloproteinases (MMP-1/-9/-13).
In addition, IL-18, particularly in combination with
IL-12, is a proximal inducer and regulator of the ex-
pression of IFN-�, a major proinflammatory cytokine,
during atherogenesis. Interestingly, IL-18 induces
IFN-� expression not only in T cells (41 ), but also in
macrophages and, surprisingly, even in SMCs, thus ac-
tivating in a paracrine mode several proinflammatory
pathways operating during atherogenesis (40 ).

Neovascularization arising from the artery’s vasa
vasorum contributes to lesion progression in many
ways (42 ). It provides another portal for leukocyte
entry into established atherosclerotic lesions (43 ).
In addition, these fragile neovessels can favor focal
intraplaque hemorrhage that provides a mechanism
for the discontinuous increments seen in plaque
growth. Local hemorrhage within the plaque in turn
generates thrombin, which activates ECs, monocytes/
macrophages, SMCs, and platelets (44 ). These cells
respond to thrombin by producing a broad array of
inflammatory mediators, including CD40L, RANTES
(regulated on activation, normal T cell expressed and
secreted), and macrophage migration inhibitory fac-
tor. These molecules further promote lesion formation
and favor the thrombotic complications of atheroscle-
rosis (45 ). Platelets also play a central role in the biol-
ogy of atherosclerosis by producing inflammatory me-
diators such as CD40L, myeloid-related protein-8/14,
and platelet-derived growth factor, as well as directing
leukocyte incorporation into plaques through platelet-
mediated leukocyte adhesion. These results reveal the
synergism between inflammation and thrombosis in
the pathobiology of atherothrombosis (44 ).

CD40L plays an important role in this phase of
atherogenesis. All the main cell types involved in ath-
erosclerosis, including ECs, macrophages, T cells, SMCs,
and platelets, express this proinflammatory cytokine as
well as its receptor, CD40 (46). CD40 ligation triggers

the expression of adhesion molecules and the secretion
of numerous cytokines and MMPs involved in extracellu-
lar matrix degradation (47–49). Importantly, CD40L has
a prothrombotic effect, inducing EC (50), macrophage
(47), and SMC (51) expression of tissue factor, which
initiates the coagulation cascade when exposed to factor
VII. Accordingly, inhibition of CD40 signaling reduces
experimental atherosclerosis development (52) as well as
the evolution of established atherosclerosis (53).

PLAQUE RUPTURE AND PATHOGENESIS OF ACUTE CORONARY

SYNDROMES

Plaque rupture and the ensuing thrombosis commonly
cause the most dreaded acute complications of athero-
sclerosis (Fig. 3). In many cases, the culprit lesion of
acute coronary artery thrombosis does not produce a
critical arterial narrowing, rendering its a priori iden-
tification using standard angiographic methods uncer-
tain (54 ). Indeed, it now appears that inflammatory
activation, rather than the degree of stenosis, renders
the plaque rupture prone and precipitates thrombosis
and resulting tissue ischemia (55 ). Advanced complex
atheromata exhibit a paucity of SMCs at sites of rup-

Fig. 3. Thrombotic complication of atherosclerosis.

Ultimately, inflammatory mediators can inhibit collagen
synthesis and evoke the expression of collagenases by
macrophage foam cells within the intima. This imbalance
diminishes the collagen content of the fibrous cap, render-
ing it weak and rupture-prone. In parallel, crosstalk be-
tween T lymphocytes and other cell types present within
lesions heightens the expression of the potent procoagu-
lant tissue factor. Thus, when the fibrous cap ruptures, as
illustrated in this diagram, tissue factor induced by inflam-
matory signaling triggers the thrombus that causes most
acute complications of atherosclerosis. Clinically, this may
translate into an acute coronary syndrome. Reprinted with
permission from (91 ).
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ture and abundant macrophages, key histological char-
acteristics of plaques that have ruptured and caused
fatal coronary thrombosis. Inflammation can interfere
with the integrity of the interstitial collagen of the fi-
brous cap by stimulating the destruction of existing
collagen fibers and by blocking the creation of new col-
lagen (56 ). IFN-�, secreted by activated T cells, inhibits
collagen production by SMCs. T lymphocytes can also
contribute to the control of collagenolysis. CD40L as
well as IL-1 produced by T cells induce macrophages to
release interstitial collagenases, including MMP-1, -8,
and -13 (57 ). The shoulder region of plaques as well as
areas of foam cell accumulation contain MMP-9, a
member of the gelatinase class of the metalloproteinase
family (58 ). Interestingly, retroviral overexpression of
an active form of MMP-9 in macrophages induces
morphologic appearances interpreted as plaque dis-
ruption (59 ). Human plaque analysis has revealed that
MMP-9 is catalytically active and may thus contribute
to the dysregulation of extracellular matrix that leads to
plaque rupture during the complication of athero-
thrombosis (58 ). Further evidence suggests that local
overexpression of MMP-9 promotes intravascular
thrombus formation through increased tissue factor
expression and tissue factor–mediated activation of the
coagulation cascade (60). These data support an impor-
tant role for MMP-9 in several stages of atherosclerosis.

Acute coronary syndromes most often result from
a physical disruption of the fibrous cap, either frank
cap fracture or superficial endothelial erosion, allowing
the blood to make contact with the thrombogenic ma-
terial in the lipid core or the subendothelial region of
the intima (55 ). This contact initiates the formation of
a thrombus, which can lead to a sudden and dramatic
obstruction of blood flow through the affected artery. If
the thrombus is nonocclusive or transient, it may either
be clinically silent or cause symptoms characteristic of
an acute coronary syndrome. Importantly, with rela-
tion to the propensity of a given plaque disruption to
lead to a sustained and occlusive thrombus, the fluid
phase of blood, most notably circulating plasminogen
activator inhibitor 1 (PAI-1) and fibrinogen concen-
trations, may determine the fate of a given plaque dis-
ruption (1, 61, 62 ). Indeed, impaired fibrinolysis can
result from an imbalance between clot-dissolving en-
zymes and their endogenous inhibitors, primarily
PAI-1 (63 ). PAI-1 belongs to the serine protease inhib-
itor superfamily (serpins) and originates from several
sites, including the endothelium, liver, and adipose tis-
sue (64 ). Experimental work using transgenic mice
that overexpress a stable form of human PAI-1 demon-
strates an association of chronically increased concen-
trations of PAI-1 with age-dependent coronary arterial
thrombosis (65 ).

The foregoing discussion illustrates the principle
of inflammatory mediator involvement in atheroscle-
rosis with examples drawn from the authors’ own ex-
periments. The multiplicity of mediators implicated in
atherogenesis and the plenitude of potential biomark-
ers of disease by far exceed the scope of this review.
Interested readers can consult other authoritative com-
pilations (66 –72 ).

In summary, inflammation participates pivotally
in all stages of atherosclerosis, from lesion initiation to
progression and destabilization. In addition, inflam-
mation regulates both the “solid-state” thrombotic po-
tential in the plaque itself and the prothrombotic and
antifibrinolytic capacity of blood in the fluid phase (1 ).
The ominous presence of inflammation in atheroscle-
rosis has prompted the evaluation of certain key in-
flammatory factors in cardiovascular risk prediction.

TECHNICAL CONSIDERATIONS OF BIOMARKERS

Given this new understanding of the central function
of inflammation in atherogenesis, could inflammatory
biomarkers, independent of cholesterol and regulators
of blood pressure, further report on the different as-
pects of the pathogenic mechanisms that underlie this
disease? To provide a framework for this discussion,
with Paul M. Ridker we have proposed a proinflamma-
tory pathway at work during atherogenesis (Fig. 4).

Biomarkers of inflammation include adhesion
molecules such as VCAM-1; cytokines such as tumor
necrosis factor, IL-1, and IL-18; proteases such as
MMP-9; the messenger cytokine IL-6; platelet prod-
ucts including CD40L and myeloid-related protein
(MRP) 8/14; adipokines such as adiponectin; and fi-
nally, acute phase reactants such as C-reactive protein
(CRP), PAI-1, and fibrinogen.

With regard to clinical utility, one must ask a num-
ber of questions regarding putative biomarkers of car-
diovascular risk. Does the marker add information to
that available from existing and well-established risk
factors? Is the marker a suitable analyte? Is the marker
stable with respect to diet and time of day, as well as
from day to day? Ideally, a proposed biomarker should
not only provide independent information on cardio-
vascular risk, but also be easy to measure using inex-
pensive and standardized commercial assays with low
variability that do not require specialized plasma col-
lection or assay techniques.

In this regard CRP has proved most robust, as it
is an excellent analyte with a standardized assay, has
negligible diurnal variation, does not depend on food
intake, and has a long half-life, in addition to a remark-
able dynamic range. It is easily measured, and stan-
dardized high-sensitivity immunoassays (detecting
CRP concentrations �10 mg/L) provide similar results
in fresh, stored, or frozen plasma, reflecting the stabil-
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ity of the protein, which has led CRP to emerge as a
robust (73 ) (albeit controversial (74 –76 )) clinical
marker. Other acute-phase reactants, such as PAI-1
and fibrinogen, clearly participate in the pathogenic
pathway of atherothrombosis. They appear less useful

than CRP, however, because of their muted dynamic
range. PAI-1 circulates with a half-life of 6 min and
displays a circadian variation. In addition, to measure
PAI-1 accurately one must draw blood meticulously
and process samples rapidly, precautions that are not

Fig. 4. Inflammation links classic risk factors to altered cellular behavior within the arterial wall and secretion of
inflammatory markers in the circulation.

Primary proinflammatory risk factors elicit the expression of primary proinflammatory cytokines that can be released directly into
the blood. Cytokines orchestrate the production of adhesion molecules, matrix metalloproteinases, and reactive oxygen species
that may also be released from lesions. In parallel, these primary cytokines induce the expression of the messenger cytokine
IL-6, particularly in smooth muscle cells. IL-6 then travels to the liver, where it elicits the acute-phase response, resulting in the
release of C-reactive protein, fibrinogen, and plasminogen activator inhibitor-1. All these inflammatory markers and mediators,
released at different stages in the pathobiology of atherothrombosis, can enter the circulation, where they can be easily
measured in a peripheral vein. AGE, advanced glycation end products; Ang II, angiotensin II; OxLDL, oxidized low-density
lipoprotein; RANTES, regulated on activation, normal T cell expressed and secreted; ROS, reactive oxygen species; SAA, serum
amyloid A. Reprinted with permission from (162 ).
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practical in the clinic. Fibrinogen has a diurnal varia-
tion, and its reproducible measurement and standard-
ization has proved challenging. Adiponectin has mini-
mal diurnal variation, making it more suitable for
clinical analysis. Other mediators such as IL-1 may
have great biological basis for potential use as biomar-
kers but have short half-lives that confound their ben-
efit in routine risk prediction. IL-6 is not readily mea-
sured in clinical settings, partly due to its short half-life
in plasma.

BIOMARKERS VS MEDIATORS OF DISEASE

The distinction between biomarkers vs mediators of
disease has proven quite confusing. As discussed in ex-
amples above, a particular analyte may participate
clearly in a pathogenic pathway but not serve as an
effective biomarker.

Soluble VCAM-1, for example, does not predict
the risk of future myocardial infarction in apparently
healthy men (77 ). However, research has repeatedly
and unequivocally demonstrated the essential role of
VCAM-1 in experimental atherosclerotic lesion initia-
tion and progression (20, 21, 78 – 81 ).

On the other hand, a useful biomarker may not
mediate pathogenic processes associated with disease.
In the case of CRP, the bulk of current evidence sup-
ports its utility as a biomarker of risk, not only in ap-
parently healthy populations but also in risk stratifica-
tion of individuals with established disease. Yet, the
role of CRP as a mediator rests on a less secure founda-
tion; notably, many in vitro studies with CRP have used
extraordinarily high concentrations of the molecule,
causing concern about endotoxin contamination or
preservatives in CRP preparations that might have spu-
rious effects on cells. Experimental results suggest that
CRP displays a direct proinflammatory effect on endo-
thelial cells (82 ) and mediates LDL uptake by macro-
phages (83 ). In vivo data, both in animals and humans,
suggest that CRP may promote processes involved in
the pathogenesis of atherothrombosis, including dys-
regulation of fibrinolysis by increasing the expression
and activity of PAI-1 (84 ). Recent studies have also
shown that CRP originates not only in the liver, but
also from other tissues, including SMCs from normal
coronary arteries (85 ) and diseased coronary artery by-
pass grafts (86 ) as well as coronary artery endothelial
cells (87 ), which may provide an explanation for po-
tential local actions of CRP.

RATIONALE FOR NOVEL BIOMARKERS OF CARDIOVASCULAR

RISK PREDICTION

The only blood biomarkers currently recommended
for use in cardiovascular risk prediction by the Adult
Treatment Panel are LDL cholesterol (LDL-C), HDL
cholesterol (HDL-C), and triglycerides (88 ). However,

plasma total cholesterol concentrations alone poorly
discriminate risk for coronary heart disease, as more
than half of all vascular events occur in individuals with
below-average total cholesterol concentrations (7, 89 ).
As our understanding of the biology of atherothrom-
bosis has improved (55, 90, 2 ), evaluation has com-
menced of a series of candidate biomarkers reflecting
inflammation, oxidative stress, and thrombosis as po-
tential clinical tools for improving risk prediction
(91, 4, 92 ).

Although global risk assessment offers improved
prediction of cardiovascular events (93 ), emerging
data suggest that measurement of inflammatory mark-
ers may enhance risk evaluation. Current evidence sug-
gests a pathway of inflammation in atherosclerosis
that culminates in altered concentrations of various
markers in peripheral blood (3 ). This review focuses
specifically on established and emerging inflammatory
biomarkers involved in the prediction of a primary car-
diovascular event. In particular, beyond CRP, sCD40L,
adiponectin, IL-18, and MMP-9 warrant special em-
phasis as inflammatory biomarkers at least as research
tools, if not currently appropriate for routine clinical
use. We will not discuss here markers involved in
primary prediction and risk stratification that are
not measurable in blood/plasma/serum by ELISA (e.g.,
emerging molecular imaging modalities, interven-
tional techniques), or markers involved in risk stratifi-
cation at the time of an acute coronary syndrome for
the secondary prevention of cardiovascular disease.
Markers of oxidative stress, LDL oxidation, and heart
failure are treated elsewhere.

ROLE OF ESTABLISHED AND EMERGING INFLAMMATORY

BIOMARKERS IN CARDIOVASCULAR RISK ASSESSMENT

C-REACTIVE PROTEIN

Data from multiple large-scale prospective studies
demonstrate that CRP strongly and independently pre-
dicts adverse cardiovascular events, including myocar-
dial infarction, ischemic stroke, and sudden cardiac
death (89, 94 –98 ). Indeed, with increasing levels of ad-
verse cardiovascular events, baseline concentrations of
CRP follow a parallel and graded rise. The addition of
CRP to traditional cholesterol screening enhances car-
diovascular risk prediction independently of LDL-C,
suggesting that increased CRP concentrations in par-
ticular may identify asymptomatic individuals with av-
erage cholesterol concentrations at high risk for future
cardiovascular events (89 ). Concentrations of CRP add
important prognostic information on cardiovascular
risk not only at all concentrations of LDL-C but also at
all levels of the Framingham risk score (89, 97 ).

In addition, components of the metabolic syn-
drome (i.e., central obesity, increased plasma triglyc-
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eride concentrations, low plasma concentrations of
HDL-C, hypertension, and increased concentrations of
blood glucose) correlate with increased plasma CRP
concentrations (89 ), and CRP measurement contrib-
utes to risk prediction in individuals with the metabolic
syndrome (99 ).

These results have led to the development of the
Reynolds risk score in an effort to ameliorate the assess-
ment of global cardiovascular risk in women (100 ).
This algorithm adds CRP to the Framingham risk
score and improves global cardiovascular risk predic-
tion by correctly reclassifying up to 50% of women
deemed at intermediate risk into higher- or lower-
risk categories.

Based on these data and to improve cardiovascular
risk stratification in primary prevention populations,
an expert panel assembled by the Centers for Disease
Control and Prevention and the American Heart Asso-
ciation termed CRP an independent marker of cardio-
vascular risk (101 ). The panel recommends the use of
CRP as part of global risk prediction in asymptomatic
individuals, particularly those deemed at intermediate
risk for cardiovascular disease by traditional risk fac-
tors. The recommended cutoff points in clinical practice
are CRP concentrations �1 mg/L for low-risk and �3
mg/L for high-risk individuals.

The magnitude of risk reduction associated with
statins (3-hydroxy-3-methylglutaryl coenzyme A re-
ductase inhibitors) exceeds that predicted on the basis
of LDL-C lowering alone. The Cholesterol and Recur-
rent Events (CARE) trial first demonstrated that statin
therapy lowers plasma concentrations of CRP in addi-
tion to LDL-C (102 ). Evidence shows this effect holds
across the class, with statin therapy reducing CRP con-
centrations approximately 20% to 30%.

Future investigations will determine whether
plasma CRP measurement can identify individuals
who, while apparently at low risk, may still benefit from
lipid-lowering therapy. Retrospective evidence sup-
ports this hypothesis. The Air Force/Texas Coronary
Atherosclerosis Prevention Study included men and
women without coronary heart disease who had aver-
age total and LDL-C plasma concentrations and below-
average HDL-C plasma concentrations. Compared
with results of the placebo arm, the statin arm demon-
strated marked event reduction in the patients with
above median plasma total cholesterol:HDL-C ratio
and/or plasma CRP, and even in those individuals with
below median total cholesterol:HDL-C ratio but above
median CRP. In contrast, statin therapy had little effect
on the rate of events in individuals with low ratio and
low CRP values. These results suggested that statin
therapy may prevent coronary events among persons
with relatively low lipid concentrations but slightly in-
creased CRP concentrations (103 ).

A prespecified analysis of the Pravastatin or
Atorvastatin Evaluation and Infection Therapy-
Thrombolysis in Myocardial Infarction 22 (PROVE-
IT TIMI 22) trial revealed similar associations be-
tween CRP reduction and risk of recurrent coronary
events among patients with acute coronary syn-
dromes (104 ). When divided into categories based
on final CRP and LDL-C concentrations achieved,
patients with low CRP concentrations after statin
therapy had better clinical outcomes than those with
high CRP concentrations, regardless of resulting LDL-C
concentrations.

Moreover, each trial found only a small correla-
tion in individual participants between CRP reduction
and LDL-C reduction achieved with statin use (corre-
lation coefficient, 0.1– 0.2).

The Reversal of Atherosclerosis with Aggressive
Lipid Lowering (REVERSAL) trial demonstrated that
lowering CRP concentrations in patients with coronary
disease with intensive statin therapy results in reduced
atherosclerotic lesion progression (105 ).

Together these results suggest that measurement
of CRP in addition to LDL-C concentrations may in-
form the primary and secondary prevention of car-
diovascular disease. In this regard the critical question
has emerged whether CRP can indicate which patients
will benefit from statin therapy despite having “aver-
age” LDL-C values. Definitive prospective evidence for
a broader application in cardiovascular event reduc-
tion remains undetermined. A large-scale, randomized
clinical trial, JUPITER (Justification for the Use of
Statins in Primary Prevention: an Intervention Trial
Evaluating Rosuvastatin), will evaluate the effects of
statin therapy in individuals who have both plasma
LDL-C concentrations below those currently used to
target therapy and plasma CRP concentrations that in-
dicate heightened risk of a cardiovascular event (106 ).
This investigation will clarify whether monitoring CRP
is beneficial for primary prevention.

FIBRINOGEN

Several large-scale epidemiologic studies demonstrate
that baseline fibrinogen concentrations predict future
risk of myocardial infarction and stroke (107–109 ).
When compared head-to-head with CRP, fibrinogen
seems a less potent predictor of cardiovascular events
(110 ). Illustrating the importance of detection meth-
odology, when fibrinogen is measured with a reliable
and high-quality immunoassay, there is a significant
association between higher concentrations of fibrino-
gen and CRP, alone and in combination, and incident
cardiovascular disease in apparently healthy women
over a 10-year follow-up period (111 ).
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PLASMINOGEN ACTIVATOR INHIBITOR 1

PAI-1 circulates with a half-life of 6 min. A number of
essential cardiovascular risk factors, including genetic
predisposition (112, 113 ), insulin resistance (114 ),
and neurohormonal factors (115 ), directly influence
PAI-1 production. Accordingly, PAI-1 may furnish a
composite indication of inflammation, metabolic con-
trol, and neurohormonal activation, all of which may
contribute either independently or synergistically to
cardiovascular disease. Increased concentrations of
PAI-1 predict the occurrence of a first acute myocardial
infarction in middle-aged men and women with a high
prevalence of coronary heart disease (116 ).

Interestingly, certain agents known to reduce
vascular risk modify PAI-1 concentrations. Most im-
portantly, numerous studies indicate that angiotensin-
converting enzyme inhibitors decrease PAI-1 concen-
trations across different ethnic groups in both primary
(117 ) and secondary (118 ) prevention.

In addition to practical considerations limiting its
use, the independence of the predictive value of
PAI-1 from traditional risk factors remains question-
able. Currently, no evidence shows that knowledge of
baseline PAI-1 concentrations adds prognostic infor-
mation to Framingham risk scoring.

SOLUBLE CD40 LIGAND

Preanalytical sampling conditions critically influence
sCD40L concentration, and only plasma samples are
appropriate for sCD40L measurements (119, 120 ).

Interestingly, the metabolic syndrome as defined
by the National Cholesterol Education Program asso-
ciates independently with increased sCD40L concen-
trations in multivariate analysis (121 ).

Results from the Dallas Heart Study suggest that
sCD40L does not identify subclinical atherosclerosis in
the general population (122 ). In patients with stable
coronary artery disease documented by angiography,
however, an association is evident between atheroma
burden, stenosis, and abnormally increased circulating
concentrations of sCD40L (123 ). In addition, patients
with evidence of a lipid pool on high-resolution mag-
netic resonance imaging of carotid stenoses have in-
creased sCD40L concentrations (124 ).

Results from the Women’s Health Study suggest
that high plasma concentrations of sCD40L associate
with increased vascular risk in apparently healthy women
(125). Indeed, mean concentrations of sCD40L at base-
line were significantly higher among participants who
subsequently developed myocardial infarction, stroke, or
cardiovascular death compared with age- and smoking-
matched women who remained free of cardiovascular
disease during a 4-year follow-up. In particular, women
with concentrations above the 95th percentile of the con-
trol distribution had a significantly increased relative risk

of 2.8 of developing future cardiovascular events after ad-
justment for usual cardiovascular risk factors (125). In
asymptomatic patients with low-grade carotid stenosis,
increased sCD40L concentrations predict the risk of an
adverse cardiovascular event (126). In patients with end-
stage renal disease on hemodialysis, increased concentra-
tions of sCD40L strongly and independently predict (rel-
ative risk 6.8) nonfatal and fatal atherothrombotic events
(127).

Importantly, sCD40L elevation identifies a sub-
group of patients at high risk for an adverse cardiovas-
cular event who would likely benefit from antiplatelet
treatment through glycoprotein IIb/IIIa receptor inhi-
bition with abciximab (128 ). In addition, in patients
with acute coronary syndromes, atorvastatin abrogates
the risk of recurrent cardiovascular events associated
with high sCD40L by 48% while only modestly de-
creasing sCD40L concentrations (129 ).

MYELOID-RELATED PROTEIN 8/14

Platelets and macrophages release most MRP-14,
which heterodimerizes with MRP-8. Its expression in-
creases before ST-elevation myocardial infarction, and
increasing plasma concentrations of MRP-8/14 among
healthy individuals predict the risk of future cardio-
vascular events (130 ). Patients with the highest con-
centrations have a 3.8-fold increase in risk of experi-
encing a vascular event, independent of yet additive to
standard cardiovascular risk factors and CRP.

ADIPONECTIN

Adiponectin has insulin-sensitizing effects, and secre-
tion of adiponectin diminishes as adipose tissue mass
increases. As such, obese adult patients with type 2 di-
abetes mellitus, essential hypertension, dyslipidemia, and
cardiovascular disease have reduced adiponectin
concentrations compared to a healthy lean popula-
tion (35 ).

Experimental and clinical evidence suggest that
adiponectin contributes to the relationship between
obesity, insulin resistance, and cardiovascular disease.
Adiponectin concentrations inversely correlate with
the presence of components of the metabolic syn-
drome (131 ). Importantly, men have substantially
lower concentrations of adiponectin than premeno-
pausal women. Low concentrations of adiponectin as-
sociate with insulin resistance, visceral adiposity, and
related metabolic syndrome, and also with positive pa-
rental histories of coronary heart disease, hyperten-
sion, and type 2 diabetes mellitus, underscoring the
value of adiponectin in cardiovascular and type 2 dia-
betes mellitus risk assessments in young adults (132 ).
In obese premenopausal women (body mass index
�30 kg/m2) without diabetes, hypertension, or hyper-
lipidemia, losing at least 10% of body weight through
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a low-energy Mediterranean-style diet and increased
physical activity decreased body mass index while sig-
nificantly increasing adiponectin concentrations
(133 ). These observations suggest that adiponectin
concentrations change dynamically and respond in-
versely to changes in metabolic status. In a 5-year pro-
spective study, low baseline serum adiponectin con-
centrations significantly and independently predicted
incident hypertension (defined as a sitting blood pres-
sure �140/90 mmHg) in a nondiabetic patient cohort
(134 ).

In one study, adiponectin concentrations in healthy
middle-aged subjects independently and negatively asso-
ciated with carotid artery intima-media thickness (135).
Another study demonstrated that low plasma adiponec-
tin concentrations correlated with increased carotid ar-
tery intima-media thickness—this time in male patients
with type 2 diabetes mellitus—independently of conven-
tional cardiovascular risk factors, insulin resistance, and
plasma CRP concentrations (136). Men and women with
angiographically confirmed stable coronary artery disease
have lower adiponectin serum concentrations compared
with age- and sex-matched controls (137). A subsequent
study confirmed these results across ethnic groups, with
subjects suffering from coronary artery disease having
lower concentrations of adiponectin than those free of
disease (138). Finally, plasma adiponectin concentrations
associate inversely with the extent and complexity (de-
fined as stenosis with irregular, rough borders; ulcer-
ations; and long atherosclerotic lesions with severe nar-
rowing) of coronary lesions determined by angiography
in men with coronary artery disease (139). These results
suggest that low adiponectin concentrations contribute to
a less fibrous and more rupture-prone coronary plaque
character.

In a nested case-control study involving partici-
pants of the Health Professionals Follow-up Study
(18 225 men ages 40 –75 and free of diagnosed cardio-
vascular disease at the time of blood draw), researchers
prospectively assessed baseline plasma adiponectin
concentrations for associated risk of myocardial infarc-
tion during 6 years of follow-up. After adjustment for
matched variables, participants in the highest com-
pared with the lowest quintile of adiponectin concen-
trations had a significantly decreased risk of myocar-
dial infarction (relative risk � 0.39; P for trend �.001)
(140 ). In an 18-year follow-up of apparently healthy
middle-aged men, measuring adiponectin concentra-
tions in patients with low HDL values identifies indi-
viduals at very high risk for type 2 diabetes and adverse
cardiovascular events (141 ). A low concentration of
adiponectin is also a significant risk factor for the de-
velopment of adverse cardiovascular events in patients
with type 2 diabetes (142 ) as well as those with end-
stage renal disease (143 ).

Recent results have cast some doubt on the consis-
tency of the inverse association between adiponectin
concentrations and cardiovascular risk. In a 20-year
prospective analysis, baseline adiponectin did not asso-
ciate with fatal cardiovascular events (144 ). A recent
prospective study of 4046 men ages 60 –79 followed up
for a mean of 6 years suggests that in this patient cate-
gory, high adiponectin concentrations associate with
increased all-cause and cardiovascular mortality re-
gardless of the presence or absence of underlying car-
diovascular disease (145 ). These results suggest the
need for additional studies to determine the utility of
adiponectin in cardiovascular risk stratification.

The adiponectin gene promoter region has peroxi-
some proliferator response elements, suggesting that per-
oxisome proliferator-activated receptor (PPAR) ligands
increase adiponectin. Indeed, bezafibrate (PPAR-�
ligand)-treated subjects had increased serum adi-
ponectin, compared with the placebo group (146 ).
Higher adiponectin concentrations strongly associated
with reduced risk of new diabetes, suggesting that fi-
brates enhance adiponectin partly through adipose
tissue PPAR-� activation and that measurement of
adiponectin would be a useful tool for evaluating sub-
jects at high risk for diabetes (146 ). In nondiabetic
subjects with low HDL-C concentrations, rosiglita-
zone—a thiazolidinedione (PPAR-� ligand)—signifi-
cantly increases adiponectin concentrations without
significantly affecting HDL-C concentrations (147 ).
Another thiazolidinedione—pioglitazone—in combi-
nation with simvastatin also significantly increases adi-
ponectin concentrations in a nondiabetic population
at cardiovascular risk (148 ).

INTERLEUKIN-18

Human preadipocytes of all differentiation stages
spontaneously secrete IL-18, supporting the concept
that adipocytes participate in innate immunity and that
IL-18 mediates a fraction of the complications of obe-
sity such as cardiovascular disease and type 2 diabetes
(149 ). Importantly, IL-18 release from adipocytes of
obese patients exceeds by some 3-fold that from adipo-
cytes of nonobese donors (149 ). Increased concentra-
tions of IL-18 associate with a significantly increased
risk of developing type 2 diabetes in middle-aged men
and women after adjustment for classic risk factors
such as age, body mass index, systolic blood pressure,
and physical activity (150 ). In addition, IL-18 may pre-
dict development of the metabolic syndrome, with
concentrations rising in parallel to increasing numbers
of metabolic risk factors (151 ).

IL-18 is not currently considered a useful screen-
ing tool for the presence of subclinical atherosclerosis
in the general population, on the basis of results from 2
large independent imaging studies (152, 153 ). How-
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ever, in the AtheroGene study, IL-18 serum concentra-
tion independently predicted cardiovascular death in
patients with documented coronary artery disease
(154 ). In this patient population, those within the
highest quartile of IL-18 had a 3.3-fold increase in haz-
ard risk compared to those in the first quartile (154 ). In
addition, data from the Prospective Epidemiological
Study of Myocardial Infarction (PRIME) demonstrate
an independent association between baseline plasma
IL-18 concentration in healthy middle-aged men and
future coronary events (155 ). This association remains
after adjustment for classic cardiovascular risk factors.
These studies suggest that IL-18 measurement may add
prognostic information to lipid and inflammatory
markers in patients with or without clinically estab-
lished atherosclerotic disease.

MATRIX METALLOPROTEINASE 9

Aortic stiffness—an independent determinant of car-
diovascular risk—relates positively to circulating MMP-9
concentrations, suggesting a role for this elastin-
degrading enzyme in the development of systolic hyper-
tension (156).

Patients with stable coronary artery disease have
higher circulating concentrations of MMP-9 than
healthy controls (123 ). In addition, individuals with
angiographically documented stable coronary artery
disease have increased MMP-9 serum concentrations
compared to controls, and MMP-9 correlates posi-
tively with LDL-C concentrations and negatively with
HDL-C concentrations (157 ).

Plasma MMP-9 concentrations during acute coro-
nary syndromes are increased 2- to 3-fold compared to
normal (158, 159). Within a week, the initial MMP-9
elevation reverses back toward the control range, sup-
porting an active role for MMP-9 in the pathogenesis of
plaque rupture (158).

In a prospective study of patients followed for a
mean of 4.4 years, increased baseline concentrations of
MMP-9 in subjects with �50% carotid stenosis associ-
ated with a 2-fold increased risk of ipsilateral stroke or
cardiovascular death after multifactorial adjustment
(160 ). The absolute risk of an adverse cardiovascular
event during the study period was 34% and 17% in
those with MMP-9 above and below the median, re-
spectively. In a prospective study of patients with doc-
umented coronary artery disease, those who experi-
enced a fatal cardiovascular event during the 4.1-year
follow-up period had significantly higher baseline
plasma MMP-9 concentrations than those who did not
(161 ). Whether this association provides independent
prognostic information compared with other inflam-
matory markers needs additional assessment.

Conclusion

Contemplation of the clinical use of biomarkers in the
context of atherosclerotic cardiovascular disease re-
quires considerable care. Evaluation of the utility of a
biomarker requires a clear understanding of the ques-
tion being asked. Is the task to risk-stratify apparently
well or diseased populations? Should the biomarker be
measured serially as a target of therapy? Should the
biomarker be used as a guide for therapy in addition to
the traditional accepted risk factors? Each of these 3
questions requires different types of clinical validation.
Many such studies are currently under way.

The revolution in the understanding of the patho-
physiology of atherosclerosis has focused attention on
inflammation and provided new insight into mecha-
nism of disease. The clinical application of the concept
that inflammation participates in atherosclerosis has
stimulated the adoption of biomarkers of inflamma-
tion in risk prediction and other applications, as noted
above. The example of inflammation in atherosclerosis
illustrates rapid translation of basic science under-
standing to the clinic. Further studies, both in progress
and on the horizon, will help evaluate the role of novel
and emerging biomarkers in the clinical management
of atherosclerosis and targeting of therapies.

Although the circulating concentrations of several
inflammatory mediators correlate with increased car-
diovascular risk, few are ready for clinical practice. CRP
attracts particular attention and has stood the test of
time, although not all experts agree on its utility. As a
downstream biomarker, CRP provides functional inte-
gration of overall upstream cytokine activation. Adi-
ponectin, soluble CD40 ligand, IL-18 and MMP-9 are
additional biomarkers that have emerged in the search
for predictors of a primary adverse cardiovascular
event based on clinical data supported by broad exper-
imental evidence. In addition, CRP, sCD40L, and adi-
ponectin may serve as targets for pharmacologic ther-
apy. With the exception of CRP, however, none of the
established and emerging novel biomarkers for cardio-
vascular risk have demonstrated additive value to the
Framingham risk score, and few have available com-
mercial assays that achieve adequate levels of standard-
ization and accuracy for clinical use.
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