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Abstract
Angiopoietins (ANG-1 and ANG-2) and their TIE-2

receptor tyrosine kinase have wide-ranging effects

on tumor malignancy that includes angiogenesis,

inflammation, and vascular extravasation. These

multifaceted pathways present a valuable opportunity

in developing novel inhibition strategies for cancer

treatment. However, the regulatory role of ANG-1 and

ANG-2 in tumor angiogenesis remains controversial.

There is a complex interplay between complementary

yet conflicting roles of both the ANGs in shaping

the outcome of angiogenesis. Embryonic vascular

development suggests that ANG-1 is crucial in engaging

interaction between endothelial and perivascular cells.

However, recruitment of perivascular cells by ANG-1 has

recently been implicated in its antiangiogenic effect on

tumor growth. It is becoming clear that TIE-2 signaling

may function in a paracrine and autocrine manner

directly on tumor cells because the receptor has been

increasingly found in tumor cells. In addition, A5B1 and

AvB5 integrins were recently recognized as functional

receptors for ANG-1 and ANG-2. Therefore, both the

ligands may have wide-ranging functions in cellular

activities that affect overall tumor development.

Collectively, these TIE-2–dependent and TIE-2–

independent activities may account for the conflicting

findings of ANG-1 and ANG-2 in tumor angiogenesis.

These uncertainties have impeded development of a

clear strategy to target this important angiogenic

pathway. A better understanding of the molecular basis

of ANG-1 and ANG-2 activity in the pathophysiologic

regulation of angiogenesis may set the stage for

novel therapy targeting this pathway.

(Mol Cancer Res 2007;5(7):655–65)

Introduction
Angiogenesis as a rate-limiting step in tumor growth was

first mooted more than 3 decades ago (1). Malignant cells trans-

verse such limitations by accumulating mutations that stoke

angiogenic response or by sequestrating circulating growth inhi-

bitors (2). Intratumoral microvascular density is now recognized

as an important and independent prognostic marker for meta-

stasis and overall survival in patients with breast, cervical, colon,

lung, renal, ovarian, and esophageal carcinomas (3-9).

Tumor ecosystem comprises malignant cells, endothelial

cells, perivascular cells, fibroblasts, inflammatory cells, and

their surrounding extracellular matrices. These constituents con-

tinuously partake in the evolution of the milieu by expressing a

myriad of autocrine and paracrine factors that influence the

outcome of the disease. Vascular endothelial growth factor

(VEGF) and the angiopoietins (ANG) are among the most

important growth factors in the ecosystem. Signaling primarily

through their endothelial receptors, these factors are responsible

for proliferation, migration, and survival of activated vascular

endothelial cells. In addition, these signaling pathways are

believed to be responsible for the integrity, maturation, and

maintenance of the vascular network. Furthermore, recent find-

ings also suggest that certain types of cancer cells may also be

directly responsive to these factors (10-14), although their sig-

nificance in disease progression remains largely undefined.

ANG-1 is critically important in the formation of vascular

networks during developmental angiogenesis (15). Gene

transfer of ANG-1 has been shown to promote robust

angiogenesis in ischemic tissues (16-18). Surprisingly, ANG-1

has recently been implicated in the inhibition of pathologic

vascular expansion via its effect on vessel maturation (19-21).

This peculiar idiosyncratic effect of ANG-1 between physio-

logic and pathologic angiogenesis has profound implication in

the development of strategy that targets this pathway for

anticancer therapy. Similarly, the context-dependent activation

of ANG-2 and inactivation of its cognate TIE-2 receptor also

complicate the understanding of this signaling pathway.

Questions aimed at the molecular basis of ANG-1 and

ANG-2 action in the angiogenic cycle may help to unravel the

conundrum. Is ANG-2 an antagonist or agonist of TIE-2

signaling? Is there a transition phase between proangiogenic

and antiangiogenic roles of ANG-1? What are the circum-

stances that determine the transition between these roles? What

role does vessel maturation and vascular stability play in

this reversal of function? Does extraendothelial TIE-2 signal-

ing or TIE-2– independent signaling in endothelial cells

affect the angiogenic outcome? How does the transition

between TIE-2–dependent and TIE-2–independent activity of
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ANG-1 and ANG-2 affect disease outcome? In this review,

we highlight the controversies surrounding this important

pathway and attempt to elucidate this Jekyll and Hyde behavior

of ANG-1 or ANG-2 to gain insights into the complex tumor

ecosystem.

The ANG Family
The human ANG family comprises the ligands ANG-1,

ANG-2, and ANG-4. Their cognate TIE-2 receptor (and a closely

related orphan receptor, TIE-1) is mainly expressed in endothelial

cells. They lack mitogenic activity toward endothelial cells

[although conflicting data are emerging that showed otherwise

(22, 23)] but affect distinct aspects of vascular development

(24, 25). Transgenic mice lacking ANG-1 or overexpressing

ANG-2 have defects attributed to disrupted interaction between

endothelial and perivascular cells (15, 25). Mice lacking ANG-2

have defective lymphatic system that can be compensated by

ANG-1 (26). This suggests a wide-ranging effect of ANGs on

both vascular and lymphatic systems. Transgenic mice over-

expressing ANG-1 produced enlarged vessels with highly

regulated junctional complexes that resulted in leakage-resistant

vessels (27). Consistently, hyperpermeable vessels in VEGF-

overexpressing mice were restituted by ANG-1, whereby double

transgenic mice of ANG-1/VEGF resulted in enhanced angio-

genesis with leakage-resistant vessels (28). This suggests a

complementary yet contradicting relationship between these

important growth factors.

ANGs possess distinct structural domains with their receptor-

binding site residing in the fibrinogen-like domain, whereas

the coiled-coil region (Fig. 1) multimerizes the former into

active multimeric ligands of ANG-1 or ANG-2 (29, 30).

Paradoxically, dimeric form of ANG-1 has been found to

inactivate TIE-2 receptor (30), and some isoforms of ANG-1

have been reported to negatively regulate TIE-2 activation (31).

Interestingly, both ligands were recently reported to function

in a TIE-2– independent manner whereby a5h1 and avh5

integrins could act as functional receptors for ANG-1 and

ANG-2 (Fig. 2; ref. 32). Interaction between isoforms of ANGs

and integrin receptors may not be unexpected because

differential binding of VEGF isoforms with family of integrins

has been reported to induce distinct cellular responses (33).

Therefore, activity of ANG-1 and ANG-2 is likely to have

broad ramifications because integrins are expressed in multiple

cell types.

ANG-1
Up-regulation of ANG-1 in high-grade gliomas (34, 35),

non–small cell lung carcinoma (36), plasmacytomas (37), and

ovarian (38), breast (39, 40), and gastric (41) carcinomas are

strongly correlated with tumor malignancy. Furthermore, over-

expression of ANG-1 in HeLa, GS9L, U87, U373, and U343

cell lines has been reported to increase tumor growth (see

Table 1; refs. 13, 42, 43). Moreover, ANG-1–mobilized, bone

marrow–derived endothelial cells have been linked to brain

tumor angiogenesis (44) and myeloproliferative disorders (45).

Surprisingly, overexpression of ANG-1 in MCF-7 breast cancer

cells (19), HT29 colon cancer cells (21, 46), TA3 mammary

cancer cells (47), Lewis lung carcinoma (47), and A431

squamous cell carcinoma (20) has been reported to show

significant antitumor effect. Its inhibitory effect was linked to

recruitment of perivascular cells by ANG-1 that restricts further

expansion of tumor vasculature.

ANG-2
The role of ANG-2 in TIE-2 receptor activation is similarly

controversial (see Table 2). Its peculiar context-dependent

agonistic and antagonistic relationship with TIE-2 (25, 48-50)

has further complicated the understanding of ANG-2 function

in vascular development. Embryonic ANG-2 overexpression

results in a major disruption of the developing vascular system,

suggesting an antagonistic role in angiogenesis (25). Further-

more, it counteracts the angiogenic activity of VEGF and

antagonizes the synergistic effect of VEGF with basic fibroblast

growth factor in angiogenesis (51, 52). In addition, lung and

mammary carcinomas that overexpressed ANG-2 and specific

induction of ANG-2 in gliomas were found to retard tumor

growth and metastasis (42, 47). In contrast, overexpression of

ANG-2 in hepatomas, gliomas, and colorectal and gastric

carcinomas was found to enhance angiogenesis and augment

tumor malignancy (46, 53-56). Furthermore, strong correlation

of ANG-2 with ANG-1 in neuroblastoma (57), gliomas

(14, 35), breast and prostate carcinomas (58), hepatocellular

carcinoma (59), non–small cell lung carcinomas (60, 61),

and gastric adenocarcinoma (62) has been associated with

aggressive tumor growth.

ANG-3/ANG-4
The other two members of ANG family, ANG-3 and ANG-

4, are not well studied but are believed to be interspecies

FIGURE 1. Structural organization of the ANG
family. There are four ANG-1 isoforms with
varying regulating activity on TIE-2 receptor (31).
ANG-2 (25) and its isoform (125) are believed to
be natural antagonists of the TIE-2 pathway.
ANG-3 and ANG-4 are believed to be species
orthologues in mouse and human, respectively
(63), which regulate TIE-2 in a species-specific
manner (65). The coiled-coil domain is involved in
the multimerization of the ligands and the fibrino-
gen-like domain functions as the receptor-binding
motif. The percentages in each box indicate
identity to ANG-1 domains.
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orthologues between mouse and human, respectively (63). The

function of ANG-3 and ANG-4 in angiogenesis is equally

controversial compared with the more established members of

the family. ANG-3 has been reported to act as antagonist that

interferes with ANG-1 activation of TIE-2 (63) and Akt in

tumor growth (64). However, ANG-3 was recently found to

strongly activate mouse TIE-2 receptor, but not its human

counterpart, whereas ANG-4 displayed no such species

selectivity in TIE-2 activation (65). This may have ramifica-

tions in the previously reported results of human ANG-1 and

ANG-2 in mouse tumor models whereby the interfering effect

of endogenous ANG-3 on TIE-2 binding by the ectopically

expressed ligands may not have been properly accounted for.

Dr. Jekyll and Mr. Hyde in Tumor Angiogenesis
ANG-1 and ANG-2 are known to respond differentially to

hypoxia with the latter often being up-regulated in hypoxic/

ischemic tissues (66-69). ANG-1 is mainly produced by vascular

mural cells, such as smooth muscle cells and pericytes, whereas

endothelial cells are the main producers of ANG-2. Therefore,

autocrine regulation of TIE-2 activity by ANG-2 may render the

receptor less responsive to exogenous stimuli and presents a

unique self-modulatory function to endothelial cells during

angiogenesis (70). Furthermore, TIE-2 activity is autoinhibited

by its COOH terminus (71, 72) and its ligand receptivity toward

ANG-2 is reportedlymodulated throughTIE-1 heterodimerization

(73), suggesting a tight regulatory control at the receptor level.

Intracellular signaling pathway of TIE-2 involves multiple

cytosolic docking partners [for detail, see review (74)],

suggesting that it may be regulated and coordinated in a dose-

and spatiotemporal-dependent manner. This is evident by the

unique agonistic and antagonistic relationship between ANG-1

and ANG-2 on TIE-2 phosphorylation in endothelial cells but

not other cell types (27).

The recent finding of extraendothelial TIE-2 receptor

expression further complicates the understanding of ANG/

TIE-2 system (see Table 3). It remains to be seen if

nonendothelial TIE-2 receptors are functional or functionally

similar to the endothelial-specific TIE-2 receptors. Neverthe-

less, TIE-2 receptors in trophoblasts have been found to

mediate cellular migration and proliferation by interacting with

ANG-1 and ANG-2, showing their direct effect on non-

endothelial cells (75). Similar expression of VEGF receptors in

various tumor cells has also been noted, but their implication

in tumor angiogenesis remains largely undefined (12). Besides

that, TIE-2– independent signaling of ANG-1 and ANG-2 is

also increasingly recognized to have important functional roles

in cellular behavior. The a5h1 and avh5 integrins have recently

been implicated in the differential cell spreading and migration

activity of endothelial cells in response to ANG-1 and ANG-2

(32). Moreover, ANG-1 has been found to confer significant

survival benefit to myocytes and affect neuronal patterning via

h1 integrin signaling (76, 77). Therefore, integrin-expressing

tumor cells may respond to ANG-1 and ANG-2 independent of

FIGURE 2. Structural organization of ANG-binding receptors. ANG-1 is known to form trimers and multimers to homodimerize and induce tyrosine
phosphorylation of the TIE-2 receptor for intracellular signaling (29, 30). The other ANGs form dimers to bind to TIE-2 receptor (65). ANG-2 acts as
antagonistic ligand for TIE-2 in low concentration but is able to activate TIE-2 in high concentration (49). TIE-2/TIE-1 heterodimerization is known to inhibit
ANG-2 activation of the receptor (73). ANG-3 and ANG-4 are able to activate TIE-2 receptor in a species-specific manner (65). The integrin a5h1 and avh5
receptors may transduce ANG-1 and ANG-2 signals independent of TIE-2 (32, 76, 77), but they may also work synergistically with TIE-2 receptor (131).
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the vascular effects of these ligands. Although its implications

in tumor development await further clarifications, such

relationship between VEGF and integrins has been documented

in endothelial cells and, notably, in tumor cells and tumor

angiogenesis (78, 79).

In conclusion, the dynamic differential induction of ANG-1

and ANG-2 expression coupled with their paracrine/autocrine

receptor-binding activity and the possibility of TIE-1 (73) and

TIE-2 (80) cross-modulating their ligand-binding activity

indicate a unique self-regulatory mechanism in endothelial

responsiveness. Their expression and regulation are expected

to have broad implications in the resulting angiogenesis or lack

of it (Fig. 3). Such complex interrelationships between TIE-1/

TIE-2 and TIE-2/integrin signaling in endothelial and non-

endothelial cells may explain the seemingly contradicting out-

comes in the ectopic expression of ANG-1 and ANG-2 in

various tumor models (Tables 1 and 2).

Identity Crisis of ANG-1 and ANG-2: Angiogenic
or Antiangiogenic?

Some slow growing and poorly angiogenic tumors with low

VEGF expression have been shown to exhibit high microvas-

cular permeability, suggesting that threshold levels of VEGF-

induced vessel permeability are considerably lower than those

needed for inducing angiogenesis (81, 82). Furthermore,

microenvironmental concentration rather than the overall dose

of VEGF has been found to be important in determining normal

and pathologic angiogenic outcome (83). Such parallel

observation is yet to be drawn on the diverse roles of ANG-1

in endothelial survival, sprouting, vessel maturation, and

vascular permeability. This complex interplay between related,

yet at times, conflicting roles of ANG-1 may be crucial in

determining the outcome of angiogenesis. Central to this

conflict is the dichotomy of functions and processes required

for vascular sprouting and vessel maturation.

TABLE 1. Effect of Stable Ectopic Expression of ANG-1 in Tumor Models

Tumor type ANG-1 ANG-2 VEGF TIE-2 Angiogenesis Outcomes Reference

Astrocytomas " ND = — " Inducible expression in U87-MG cell line (135)
Increase glomeruloid bodies
Increase proliferating tumor cells and MVD

Breast cancer " ND ND ND # Stable expression in MCF-7 cell line (19)
Retard tumor growth in spite of the presence of FGF-2

Cervical cancer " ND = ND " Stable expression in HeLa cell line (13)
Increase MVD
Decrease tumor cell apoptosis
Tumor cell proliferation unaffected
Increase vessel plasticity with fewer pericytes

Colorectal cancer " + ND ND # Stable expression in HT29 cell line (46)
Decrease MVD
Reduced tumor cell proliferation

Colorectal cancer " ND ND ND # Stable transfected KM12L4 cell line (136)
Decrease MVD
Decrease tumor cell proliferation and metastasis
Decrease ascites formation

Glioblastoma " = = = " Inducible expression in GS9L cell line (42)
Highly branched vessels
Mature vessels covered with pericytes
Increase number of vessels <500 Am2
Increase MVD

Glioblastoma " ND " ND " Stable expression in U87, U373, and U343 cell lines (43)
Increase MVD only when VEGF is elevated

Hepatic colon cancer " ND ND ND # Stable expression in HT29 cell line (21)
Higher pericyte coverage in tumor vessels
Decrease MVD
Decrease proliferating tumor cells
Decrease vascular leakage

Squamous cells carcinoma " + = "phos # Stable expression in A431 cell line (20)
No change to MVD and VEGF
Increase smooth muscle cell coverage of vessels

Lung carcinoma " + = ND — Stable expression in Lewis lung carcinoma cell line (47)
No effect on tumor and endothelial cell apoptosis
No effect on MVD or vessel maturation

Mammary carcinoma " ND = ND — Stable expression in TA3 mammary carcinoma cell line (47)
No effect on tumor and endothelial cell apoptosis
No effect on MVD or vessel maturation

Cervical cancer # ND = ND # Stable expression of antisense ANG-1 in HeLa cell line (137)
Decrease MVD
Increase tumor cell apoptosis

Gastric carcinoma # ND ND ND # Stable expression of antisense ANG-1 in SGC7901 cell line (138)
Decrease MVD

NOTE: " or # indicates increased or decreased expression levels compared with control tumors; = indicates unchanged expression levels; — indicates no effect on the
outcome; + indicates the factor was detectable but levels not quantified against control tumors.
Abbreviations: MVD, microvascular density; ND, not determined; phos, phosphorylated; FGF, fibroblast growth factor.
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Vessel sprouts have been shown to loosen vascular integrity

and intercellular contact among neighboring endothelial and

smooth muscle cells in response to ANG-1 (84). This plastic state

enables the endothelium to actively respond to angiogenic

factors, such as VEGF, whereas mature vessels that are covered

by smooth muscle cells are less responsive to stimulation of

VEGF (83, 85). A similar observation has been reported between

VEGF and ANG-2 whereby, in the presence of VEGF, ANG-2

promotes vascular sprouts whereas, in its absence, vascular

regression accelerates (55, 86). Hence, this window period may

enable fine tuning of the neovasculature to adapt to its

microenvironment through a regulated process of pruning and

remodeling because these plastic vessels are likely to be more

susceptible to apoptosis (87, 88). Therefore, the major function of

ANG-1 may lie with its antiapoptotic effect on endothelial cells

during this plastic phase. It may possibly only have an indirect

role in vessel maturation. In fact, conditions favoring vascular

maturation and survival in different tissues have distinct

consequences on functional outcome. For example, the disparity

in the function of ANG-1 is evident in the conflicting conclusions

proposed by Du et al. (89) and Zhao et al. (90) on the

pathophysiology of pulmonary hypertension. Unregulated re-

cruitment of perivascular cells to the vascular pulmonary

networks by ANG-1 or excessive antiapoptosis signal from

ANG-1 on terminal arterioles in the pulmonary vascular bed was

separately attributed as the etiology of the disease.

The potent prosurvival effect of ANG-1 alone or in synergy

with VEGF has been found to protect endothelial cells from

apoptosis (91-96). ANG-1–mediated phosphatidylinositol

3-kinase–dependent activation of Akt and attachment to

extracellular matrix are central to the survival of endothelial

cells. This antiapoptotic effect is mediated through up-regulation

of survivin (97) and suppression of caspase-3, caspase-7, and

caspase-9 activity as well as inhibition of second mitochondrial-

derived activator of caspase (Smac) release (98, 99). The

protective role is evident in radiation, mannitol, and low-density

lipoprotein-treated endothelial cells whereby apoptosis was

ameliorated by addition of ANG-1 (92, 100, 101). In fact,

vascular defects of disrupted endothelial and myocardial layers

observed in the ANG-1�/� and TIE-2�/� mutant mice may be

due to impaired survival of endothelium rather than deficiency

in vessel maturation as previously thought (102, 103). Indeed,

persistent perivascular cell recruitment in vessels composed of

TIE-2–deficient endothelial cells that subsequently apoptosed

strongly supports this contention (103, 104). Furthermore,

overexpression of ANG-1 in the skin and lung failed to show

evidence of enhanced recruitment of perivascular cells to the

vessels (23, 27, 105). Dilated and pericyte-scarce vessels in

TABLE 2. Effect of Stable Ectopic Expression of ANG-2 in Tumor Models

Tumor Type ANG-1 ANG-2 VEGF TIE-2 Angiogenesis Outcomes Reference

Colorectal ND " ND ND " Stable expression in HT29 cell line (46)
Increase MVD
Enhance tumor cell proliferation

Gastric ND " + ND " Stable expression in MKN-7 cell line (56)
Highly vascularized and metastatic tumor
Decrease vessel maturation

Glioma ND " ND ND " Stable expression in U87MG cell line (139)
Highly invasive with up-regulated MMP-2
Increase angiogenesis

Glioma ND " ND ND # Stable expression in U87 cell line (140)
Increase tumor necrosis
Decrease vascularization

Glioblastoma = " = " # Inducible stable expression in GS9L cell line (42)
Aberrant vascular cords with aggregated

endothelial cells with narrow lumens
Less mature vessels with few pericytes
Discontinuous basement membrane
Decrease MVD
Tumor apoptosis unaffected

Hepatomas = " ND ND " Stable expression in HuH-7 cell line (53)
Hemorrhagic tumors with hypervascular phenotypes

Hepatomas ND " ND ND " Stable expression in Morris hepatoma cell line (141)
Increase tumor perfusion and vascularization
Up-regulate Flk-1 expression

Lung carcinoma ND " = ND # Stable expression in Lewis lung carcinoma cell line (47)
Increase tumor and endothelial cell apoptosis
Decrease metastatic property
Decrease vessel maturity

Mammary carcinoma ND " = ND # Stable expression in TA3 mammary carcinoma cell line (47)
Increase tumor and endothelial cell apoptosis
Decrease metastatic activity
Decrease vessel maturity

Squamous cell carcinoma + " = = — Stable expression in A431 cell line (20)
No effect on MVD or vessel maturation

NOTE: " or # indicates increased or decreased expression levels compared with control tumors; + indicates the factor was detectable but levels not quantified against control
tumors; = indicates unchanged expression levels; — indicates no effect on the outcome.
Abbreviation: MMP, matrix metalloproteinase.
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venous malformation that are associated with excessive acti-

vation of TIE-2 receptor (106) do not support a vessel maturation

role for ANG-1. Furthermore, inhibition of TIE-2 function in

retinal vasculature failed to affect pericyte recruitment (107).

In addition, ANG-1 restored hierarchical structure of vascular

network and rescued retinal edema and hemorrhage in the

complete absence of smooth muscle cells (108).

The previous observations that ANG-1 restricted tumor

growth by promoting vessel integrity via pericyte recruitment

(19-21) is difficult to reconcile with the current contradicting

findings. It is unclear how vessel maturity may have played a

significant role in retarding the tumor angiogenesis. In fact,

maturation of vessels and normalization of microcirculation by

smooth muscle cell coverage have been linked to a more

aggressive tumor growth, possibly due to better nutrient

exchange in the previously dysfunction vasculature (42). The

reported tumor-inhibiting effect of ANG-1 may be related to its

anti-inflammation action (109, 110) because inflammation was

recognized as a key trigger for pathologic angiogenesis

mediated by VEGF (111).

It is noteworthy that neovascularized tumors exhibit

temporal angiogenic phenotype because not all parts of the

tumor vessels are concurrently participating in angiogenesis.

For example, TIE-2 expression was reported to be restricted

to stromal vessels rather than intratumoral vessels in human

mammary carcinomas (112). Furthermore, hypoxia-inducing

factor-1 modulates the expression of ANG-1 and ANG-2 in a

cell type–specific manner, whereby ANG-2 expression was

induced in endothelial cells but suppressed in smooth muscle

cells, whereas ANG-1 levels were unaffected in both cell types

(113). Moreover, only a subset of endothelial cells is responsive

to hypoxia induction of ANG-2 (114). Therefore, failure of

signal transduction from TIE-2 receptors in different popula-

tions of endothelial cells may account for the observed

discrepancies in the action of ANG-1 and ANG-2 (48, 115).

The present evidence suggests that ANG-1 predominantly

functions as a survival factor leading to angiogenic sprouting

rather than a vessel maturation agent that restricts tumor

expansion. Theremay be amore complex controllingmechanism

for vessel maturity whereby ANG-1 may act only indirectly,

perhaps, in cooperation with other major mediators, such as

platelet-derived growth factor (87), ephrin (116), transforming

growth factor-h, and sphingosine-1-phosphate (117).

Angiogenic Cycle Mediated through TIE-2
Pathway

Induction and up-regulation of TIE-2 and ANG-2 expression

in endothelial cells are regulated by hypoxia and proinflamma-

tory cytokines, such as tumor necrosis factor-a and interleukin-

1h (68, 118-122). Conversely, such stimuli down-regulate the

expression of ANG-1 (66, 67), suggesting a delicate inverse

relationship between ANG-1 and ANG-2 in the regulation of

TIE-2 signaling. Therefore, spatiotemporal changes of these

unique relationships among ANG-1, ANG-2, and TIE-2 may be

one of the most crucial aspects in determining the outcome of

vascular angiogenesis. The initial quiescent endothelium goes

through cyclical phases of (a) basal quiescent, (b) plastic, (c)

angiogenic, and (d) stable maturing stage (Fig. 4) to complete

the angiogenic cycle for neovascularization. The transitions are

likely to be influenced by tissue milieu, whereby phase changes

may occur depending on the presence of specific growth factors

and inhibitors.

In the basal quiescent phase, constitutive expression of

ANG-1 from perivascular cells couples with minimal expres-

sion of ANG-2 and uniform expression of TIE-2 in the

endothelial cells would be expected. Together with basal levels

TABLE 3. Physiology and Pathology of Extraendothelial Expression of TIE-2 Receptor

Findings and Outcomes Reference

Cancer cell types
Inflammatory breast cancer cell line Increase hematogenous metastases and correlated with poor prognosis (39)
HeLa cervical cell line Enhance survival of cervical tumor cells (13)
Neoplastic glial cells Associated with disease progression and matrix adhesion (142)
Liver oval cells Involve in preneoplastic to neoplastic conversion of hepatocytes (143)
Thyroid tumor cells Involve in cellular proliferation (123)
Non– small cell lung carcinoma cells Unknown function (60)
Cancerous prostate cells Unknown function (124)
Glioma cell lines Unknown function (14)
Gastric carcinoma cells Unknown function (62)

Normal cell types
Fetal trophoblasts Involve in the proliferation, migration, and nitric oxide release (75)
Ganglion cells Promote neurite outgrowth when stimulated by ANG-1 (144)
Monocytes and mesenchymal cells Promote paracrine angiogenic effect and tumor homing (145)
Nerve cells Phosphorylated by ANG-1 to prevent apoptosis of neuronal culture

through phosphatidylinositol 3-kinase/Akt
(146)

Smooth muscle cells To synchronize intercellular communication between endothelial and smooth muscle cells (59)
Synovial cells Correlate with cellular proliferation and possibly their pathologenesis (147)
Synoviocytes and stromal fibroblasts Unknown function (148)
Synovial lining cells and macrophages Unknown function (149)
Choroidal neovascular membranes Unknown function (150)
Neuronal and Schwann cells Unknown function (151)
Glandular endometrial epithelial cells Unknown function (152)
Thyroid and granulose follicular cells Unknown function (153)
Granuloma-associated mesenchymal cells Unknown function (154)
Mesenchymal cells and osteoblasts Unknown function (155)
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of platelet-derived growth factor and ephrin, this maintains the

endothelium in a stable differentiated state by reciprocal

interactions between endothelial and perivascular cells. On

stimulation, the ratio of ANG-1 to ANG-2 may shift in favor of

the latter to promote transient vessel plasticity by dissociation

of endothelial cells with perivascular cells. This loosens the

tight association between neighboring endothelial cells as well

as extracellular matrix during the initial plastic phase.

Furthermore, induction of TIE-2 expression during this period

may significantly favor increased binding of ANG-2 or

increased numbers of unbound, therefore presumably, unphos-

phorylated TIE-2 receptor, thereby reverting vessels to a more

plastic state that are more responsive to angiogenic stimuli.

Up-regulation of ANG-1, ANG-2, and TIE-2 in the active

angiogenic phase would promote vessel differentiation by

migrating/sprouting and antiapoptotic effect of TIE-2 signaling.

There are increasing numbers of tumor cells reported to express

TIE-2 receptor (13, 14, 39, 60, 123, 124). However, the

significance of TIE-2–expressing tumor cells during this period

is largely unknown, but these extraendothelial TIE-2 receptors

may serve to sequestrate the availability of ANG-1 from the

vulnerable endothelial cells. Furthermore, it is unclear if the

ANG-1–binding integrins on the endothelial and tumor cells

may synergize or counteract ANG-1 action through TIE-2

receptor. Nevertheless, the lack of ANG-1 activity in this

vulnerable state may render the endothelium more susceptible

to apoptosis. The loss of this antiapoptotic signal may sig-

nificantly affect the outcome of tumor angiogenesis. These may

be the missing pieces that determine the transition between

proangiogenic and antiangiogenic roles of ANG-1 reported in

the literature. In the final stage, the cycle reenters quiescent

phase after the expression of growth factors returns to basal

levels. This tenuous equilibrium between vascular supply and

tumor demand may favor a stabilization and maturation of the

nascent vasculature. However, this equilibrium is likely to be

transient because tumor vasculature is hyperpermeable and

lacking in pericyte coverage. This cyclical pathway may explain

the governing dynamism in angiogenesis and provide a rational

interventional window to strategically target each phase of

vascular development in the evolving tumor ecosystem.

Conclusions
The varied role of TIE-2 signaling pathway in endothelial

survival, vessel growth, and vascular maturation may be

intrinsic to different types of tumors. However, emerging

evidence suggests that additional signaling of ANG-1 and

ANG-2 through integrin receptors may be important in their

diverse contribution toward tumor growth. The existence of

various ligands (ANG-1, ANG-2, and ANG-4), their isoforms

FIGURE 3. TIE-2–dependent and TIE-2– independent signaling of ANGs in endothelial and nonendothelial cells. Majority of the ANG-1 is secreted by
tumor cells and pericytes, whereas ANG-2 is mainly produced by endothelial cells. The matrix-bound ANG-1 (132) and Weibel-Palade body-stored ANG-2
(133) are likely to act as a readily releasable reservoir in tumor and endothelial cells, respectively. Differential ANG-1 gradient attracts endothelial cell
migration toward tumor, whereas ANG-2 maintains a ‘‘pericyte-free’’ endothelium. The internalization of TIE-2 following receptor activation releases the ANG-
1 and ANG-2 back into the active pool of ligands (134). Soluble TIE-2 (127) may act as a decoy for ligand binding to regulate the membrane-bound TIE-2,
whereas heterodimerization between TIE-1 and TIE-2 may modulate their ligand receptivity (73, 80). Integrin receptors may act as primary and secondary
binding partner of the ligands (32, 76, 77).
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[four ANG-1 isoforms (31) and two ANG-2 isoforms (125)],

and soluble forms of TIE-1 and TIE-2 receptors (126, 127) and

TIE-2/TIE-1 heterodimerization in modulating receptivity (73)

and differential induction of both receptors and ligands (119,

128, 129) compounded the difficulty of precise definition of the

role of the ANGs during angiogenesis.

The concept of molecular balance between ANG-1/ANG-2

as a trigger between active angiogenesis and vascular regression

is an oversimplification of the inherently complicated process.

Together with autocrine or paracrine interactions with its

ligands in various cell types, TIE-2 signaling pathway may not

be totally restricted to endothelial cells during angiogenesis and

the pathway may have wide-ranging functions in other cellular

activities. The aberrant vascularization resulted from imbalance

between ANG-1 and ANG-2 together with VEGF may explain

one aspect of the controversies of TIE-2 signaling in tumor

angiogenesis [for detail, see review (130)]. Increasingly, TIE-2–

expressing tumor cells and ANG-1–binding integrins may be

the emerging puzzles that help in the understanding of the

multiple roles of ANG-1 and ANG-2, be it endothelial TIE-2

dependent or independent, in the tumor ecosystem.

It is plausible that an antiangiogenesis approach targeting

TIE-2 pathway may be applicable to both endothelial cells as

well as tumor cells. If we could control Dr. Jekyll and Mr. Hyde

in the ANGs, a similar strategy targeting the overall tumor

ecosystem by controlling the survival pathway of angiogenesis

may prove to be more effective in containing malignancy and

restricting tumor progression.
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