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Explanation of Bayesian networks
and influence diagrams in Elvira

Carmen Lacave, Manuel Luque and Francisco Javier Dı́ez

Abstract— Bayesian networks and influence diagrams are
probabilistic graphical models widely used for building diagnosis-
and decision-support expert systems. Explanation of both the
model and the reasoning is important for debugging these
models, for alleviating users’ reluctance to accept their advice,
and for using them as tutoring systems. This paper describes
some explanation options for Bayesian networks and influence
diagrams that have been implemented in Elvira and how they
have been used for building medical models and for teaching
probabilistic reasoning to pre- and post-graduate students.

Index Terms— Bayesian networks, influence diagrams, expert
systems, explanation, Elvira.

I. INTRODUCTION

Bayesian networks (BNs) and influence diagrams (IDs) are
two types of probabilistic graphical models widely used for
building expert systems in several application domains. Both
of them consist of acyclic directed graphs and probability
distributions [1], [2], [3]. The main difference among them
is that BNs only contain chance nodes, each representing
a random variable, while IDs also contain decision nodes,
which represent the options available to one or several de-
cision makers, and utility nodes, which represent the decision
makers’ preferences. As a consequence, BNs can only be used
in diagnostic problems, while IDs can be used as decision-
support tools.

In the context of expert systems, either probabilistic or
heuristic, the development of explanation facilities is important
for three main reasons [4], [5]. First, because the construction
of those systems with the help of human experts is a difficult
and time-consuming task, prone to errors and omissions. An
explanation tool can help the experts and the knowledge
engineers taking part in the project to debug the system when
it does not yield the expected results and even before a mal-
function occurs. Second, because human beings are reluctant
to accept the advice offered by a machine if they are not able to
understand how the system arrived at those recommendations;
this reluctancy is especially clear in medicine [6]. And third,
because an expert system used as an intelligent tutor must be
able to communicate the apprentice the knowledge it contains,
the way in which the knowledge has been applied for arriving

Manuscript received July 1, 2006; revised ...
Carmen Lacave is with the Dept. Technology and Information Sys-

tems, University of Castilla-La Mancha, Ciudad Real, 13071 Spain (e-
mail: carmen.lacave@uclm.es). Manuel Luque and Francisco Javier Dı́ez
are with the Dept. Artificial Intelligence, UNED, Madrid, 28040 Spain (e-
mail: mluque@bec.uned.es, fjdiez@dia.uned.es). They are all members of
the Research Center on Intelligent Decision-Support Systems (CISIAD), at
UNED.

at a conclusion, and what would have happened if the user had
introduced different pieces of evidence (what-if reasoning).

These reasons are especially relevant in the case of proba-
bilistic expert systems, because the elicitation of probabilities
is more difficult than the assessment of uncertainty in heuristic
expert systems and because, even though probabilistic rea-
soning is just a formalization of (a part of) common-sense
reasoning, the algorithms for the computation of probabilities
and utilities are very different from the way a human being
would draw conclusions from a probabilistic model.

Unfortunately, the explanation methods proposed so far are
still unsatisfactory, as shown by the fact that most expert sys-
tems and commercial tools available today, either heuristic or
probabilistic, have virtually no explanation capability [4], [7].
Despite the practical interest of this issue, very little research is
currently carried out about explanation in probabilistic graph-
ical models. As an attempt to palliate this shortcoming, in this
paper we describe some methods for explaining both the model
and the reasoning of probabilistic expert systems, which have
been implemented in Elvira, a public software tool developed
as a joint project of several Spanish universities. We also
discuss how such methods respond to the needs that we have
detected when building and debugging medical expert systems
[8], [9], [10] and when teaching probabilistic graphical models
to pre- and postgraduate students of computer science and
medicine [11].

The rest of this paper is structured as follows: After re-
viewing the main features of explanation in expert systems in
Section I-A and describing the Elvira software in Section I-B,
we present the fundamentals of BNs and IDs in Sections II-A
and II-B, respectively. Section III presents the facilities pro-
vided by Elvira for explaining both the model (Sec. III-A) and
the reasoning (Sec. III-B) in BNs. Section IV analyzes how
these facilities have been adapted for IDs in order to explain
both the model (Sec. IV-A) and the results of inference (Sec.
IV-B), to permit the introduction of evidence (Sec. IV-D),
and to perform what-if reasoning with suboptimal policies
(Sec. IV-E). The application of standard techniques, such as
decision trees and sensitivity analysis, to explanation in IDs is
discussed in Sections IV-C and IV-F, respectively. Section V
analyzes related work and possible lines for future research,
and Section VI presents the conclusions.

A. Features of explanation in expert systems

Explanation methods are characterized by several properties,
corresponding to the main concepts on which an explanation
is based [4], [7]: content, communication and adaptation. The



content of an explanation deals with either the model, the
reasoning, or the available evidence. Explanation of the model,
also known as static explanation [12], consists in showing
the information represented by the knowledge base of the
expert system in a way that it can be easily understood by
the user. Explanation of the reasoning, or dynamic explanation,
describes how and why the system has obtained certain results.
Explanation of evidence usually consists in finding the most
probable configuration that justify the evidence [1], which
is also known as abduction. Dynamic explanations can be
generated at the micro or the macro level [13]: micro-level
explanations try to justify why the probability of a certain
variable has varied, why the belief on a certain hypothesis
has changed, or why a rule has fired as a consequence of the
variations in its neighbor variables or rules; on the contrary,
macro-level explanations analyze the main lines of reasoning
(the paths in the Bayesian network, the chains of rules, etc.)
that led from the evidence to a certain conclusion.

The second main aspect of explanation, namely commu-
nication, is related to the way of interacting with the user
and the way of presenting the explanations, either textually or
graphically or by a combination of both.

Finally, adaptation refers to the ability to modify the expla-
nations and the interaction depending on the user’s expertise
and needs. See [4], [7] for a more detailed analysis of these
features and for a detailed review of the most relevant methods
and systems offering some kind for explanation, both for
Bayesian networks [4] and for heuristic expert systems [7].

B. Elvira

Elvira1 is a tool for building and evaluating graphical
probabilistic models [14]. It resulted from a joint research
project of several Spanish universities. It is implemented in
Java, so that it can run on different platforms. It contains a
graphical interface for editing networks, with specific options
for canonical models (e.g., OR, AND, MAX...), exact and
approximate algorithms for discrete and continuous variables,
explanation facilities, learning methods for building networks
from databases, algorithms for fusing networks, etc. Although
some of the algorithms work with both discrete and continuous
variables, the explanation capabilities assume that all the
variables are discrete.

a) Architecture of Elvira: Elvira is structured in four
main modules:
• Data representation, which contains the definition of the

data structures needed for managing BNs and IDs in Java.
• Data acquisition, including the classes necessary for

saving and loading a network both from a file and from
a data base, the parser, etc. It also contains classes for
exporting and importing the networks in several formats.

• Processing. This module implements the algorithms for
processing and evaluating the models. It is organized
in several submodules, one for each task: inference,
learning, fusion, decision trees, sensitivity analysis...

1At http://www.ia.uned.es/˜elvira it is possible to obtain the
source code and several technical documents about Elvira.

• Visualization, which mainly defines the Elvira GUI and,
obviously, makes use of the classes included in the
previous modules. This module contains the classes for
generating explanations and for the internationalization
of the whole program, i.e., for displaying the interface in
different languages. Currently, only Spanish and English
are supported, but other languages can be easily added.

The main advantages of this modular design is that each
group involved in the project can focus on a different task and
that the program can be easily extended with new functional-
ities or adapted to different needs.

b) Working with the Elvira GUI: In addition to invoking
Elvira’s classes from the command line and using it as an
API, it is possible to interact with Elvira by means of its GUI,
which has two working modes:
• edit, for graphically editing BNs and IDs. This is possible

by means of several windows which help the user to build
or to modify the model manually, by requesting all the
data associated to the nodes, the arcs and the properties
of the whole BN or ID. Alternatively, BNs can be built
from data bases by applying some of the many learning
algorithms implemented in Elvira; and

• inference, for propagating evidence and explaining the
results. The introduction of evidence can be done by
clicking on the node, as in other software tools, or by
means of an editor of cases [15], which provides a list of
the variables in the model. With respect to the inference
process, the user can choose one of several algorithms,
with many variations, and in the case of a BN, they
can select either evidence propagation or abduction2 and
whether the evidence is propagated automatically (i.e.,
just after the user introduces or removes a finding) or
manually (by demand). Most of the explanation capabil-
ities provided by Elvira (see below) are offered in the
inference mode.

II. MATHEMATICAL FOUNDATIONS

Before giving the definition of Bayesian network (BN)
and influence diagram (ID), we establish some notational
conventions.

Notation: Given that each node in a probabilistic graphical
model represents a variable, in this paper we will use both
terms indifferently. We will use a capital letter V to represent
a variable, and its corresponding lower case letter v for repre-
senting a generic value. Sets of variables will be represented
by bold capital letters V, and a bold lower case letter v will
represent a configuration of values of V. In the context of
directed graphs, Pa(V ) represents the set of parents of node
V , and pa(V ) a configuration of the variables in Pa(V ).

Definitions: A finding f is a piece of information that states
with certainty the value taken on by a chance variable. A

2In the context of BNs, evidence propagation usually refers to computing
the posterior probability of each single variable given the available evidence,
while abduction consists in computing the joint probability of a set of variables
of interest given the evidence, what is also called Maximum A Posteriori
Probability (MAP).



finding may be, for example, the fact that the patient is a male;
other findings might be that he is 54 years old, he has fever,
he does not usually have headaches, etc. The set of findings
is called evidence and corresponds to a certain configuration
e of the observed variables E.

A. Bayesian networks

A BN consists of an acyclic directed graph (ADG), whose
nodes represent a set VC of chance variables, where C
stands for “chance”, and whose links represent —roughly
speaking— probabilistic dependencies among them, together
with a probability distribution over its variables that satisfies
the d-separation property [1]. This property implies that the
joint probability distribution can be factored as the product of
the probability of each node conditioned on its parents.

P (vC) =
∏

V ∈VC

P (v|pa(V )) (1)

As a consequence, the quantitative information of a Bayesian
network can be given by assigning to each chance node C
a probability distribution P (c|pa(C)) for each configuration
of its parents, pa(C). Both the graph and the probabilities
of a BN can be obtained automatically, from data bases, or
manually, from human experts’ knowledge and the literature
for the domain to be modeled. In this case, the elicitation of
probabilities constitutes a very difficult task, usually referred
to as a bottleneck in the development of BNs [16].

Probabilistic reasoning in BNs usually consists in com-
puting the posterior probability of some variables of interest
VI ⊆ VC \E given the available evidence, P (vI |e).

B. Influence Diagrams

1) Definition of an ID: An influence diagram (ID) contains
three kinds of nodes: chance nodes VC , decision nodes VD,
and utility nodes VU —see Fig. 1. Chance nodes represent
events not controlled by the decision maker. Decision nodes
correspond to actions under the direct control of the decision
maker. Utility nodes represent the decision maker’s prefer-
ences. Utility nodes can not be parents of chance or decision
nodes.

In the extended framework proposed by Tatman and
Shachter [17] there are two kinds of utility nodes: ordinary
utility nodes, whose parents are decision and/or chance nodes
(such as U1 and U2 in Fig. 1), and super-value nodes, whose
parents are utility nodes (U0 in Fig. 1 is a super-value node).
We assume that there is a utility node that is either the only
utility node or a descendant of all the other utility nodes, and
therefore has no children; we denote it by U0.3

There are three kinds of arcs in an ID, depending on the
type of node they go into. Arcs into chance nodes represent
probabilistic dependency. Arcs into decision nodes represent
availability of information, i.e., an arc Y → D means that

3An ID that does not fulfill this condition can be transformed by adding
a super-value node U0 of type sum whose parents are the utility nodes that
did not have descendants. The expected utility and the optimal strategy of the
transformed diagram are the same as those of the original one.

the state of Y is known when making decision D. Arcs into
utility nodes represent functional dependence: for ordinary
utility nodes, they represent the domain of the associated
utility function; for a super-value node they indicate that the
associated utility is a function (usually the sum or the product)
of the utility functions of its parents.

Standard IDs require that there is a directed path that
includes all the decision nodes and indicates the order in which
the decisions are made. This in turn induces a partition of VC

such that for an ID having n decisions {D0, . . . , Dn−1}, the
partition contains n+1 subsets {C0,C1, ...,Cn}, where Ci is
the set of chance variables C such that there is a link C → Di

and no link C → Dj with j < i; i.e., Ci represents the set
of chance variables known for Di and unknown for previous
decisions. Cn is the set of variables having no link to any
decision, i.e., the variables whose true value is never known
directly. In our example (Fig. 1), D0 = T , D1 = D, C0 = ∅,
C1 = {Y }, and C2 = {X}.

The variables known to the decision maker when deciding
on Di are called informational predecessors of Di and de-
noted by IPred(Di). Standard IDs assume the no-forgetting
hypothesis, which means that the decision maker remembers
all previous observations and decisions. By assuming such
property we have

IPred(Di) = IPred(Di−1) ∪ {Di−1} ∪Ci (2)
= C0 ∪ {D0} ∪C1 ∪ . . . ∪ {Di−1} ∪Ci . (3)

An arc V → D, where D is a decision and V is either a
decision or a chance node, is said to be non-forgetting is there
is another directed path from V to D. In standard IDs non-
forgetting arcs are irrelevant: they can be added or removed
without changing the semantics of the ID.

The quantitative information that defines an ID is given by
assigning to each chance node C a probability distribution
P (c|pa(C)) for each configuration of its parents (as in the case
of BNs), assigning to each ordinary utility node U a function
ψU (pa(U)) that maps each configuration of its parents onto
a real number, and assigning a utility-combination function
to each super-value node. The domain of each function U
is given by its functional predecessors, FPred(U). For an
ordinary utility node, FPred(U) = Pa(U), and for a super-
value node FPred(U) =

⋃
U ′∈Pa(U)FPred(U ′). In the above

example, FPred(U1) = {X,D}, FPred(U2) = {T}, and
FPred(U0) = {X, D, T}. In order to simplify the notation, we
assume without loss of generality that FPred(U0) = VC∪VD.

For each configuration vD of the decision variables VD we
have a joint distribution over the set of chance variables VC :

P (vC : vD) =
∏

C∈VC

P (c|pa(C)) (4)

which represents the probability of configuration vC when the
decision variables are externally set to the values given by vD

[18].
2) Policies and expected utilities: A stochastic policy for

a decision D is a probability distribution defined over D
and conditioned on the set of its informational predecessors,



PD(d|iPred(D)). If PD is degenerate (consisting of ones and
zeros only) then we say that the policy is deterministic.

A strategy ∆ for an ID is a set of policies, one for each
decision, {PD|D ∈ VD}. A strategy ∆ induces a joint
distribution over VC ∪VD defined by

P∆(vC ,vD)

= P (vC : vD)
∏

D∈VD

PD(d|IPred(D))

=
∏

C∈VC

P (c|pa(C))
∏

D∈VD

PD(d|pa(D)) (5)

Let I be an ID, ∆ a strategy for I and r a configuration
defined over a set of variables R ⊆ VC ∪ VD such that
P∆(r) 6= 0. The conditional probability distribution induced
by strategy ∆ given the configuration r, defined over R′ =
(VC ∪VD) \R, is given by:

P∆(r′|r) =
P∆(r, r′)
P∆(r)

(6)

Using this distribution we can compute the expected utility of
U under strategy ∆ given the configuration r as:

EUU (∆, r) =
∑

r′
P∆(r′|r)ψU (r, r′) (7)

For the terminal utility node U0, EUU0(∆, r) is said to be the
expected utility of strategy ∆ given the configuration r, and
denoted by EU(∆, r).

We define the expected utility of U under strategy ∆ as
EUU (∆) = EUU (∆, ¨), where ¨ is the empty configuration.
We have that

EUU (∆) =
∑
vC

∑
vD

P (vC ,vD)ψU (vC ,vD) (8)

We also define the expected utility of strategy ∆ as
EU(∆) = EUU0(∆).

An optimal strategy is a strategy ∆opt that maximizes the
expected utility:

∆opt = arg max
∆∈∆∗

EU(∆) (9)

where ∆∗ is the set of all strategies for I. Each policy in an
optimal strategy is said to be an optimal policy. The maximum
expected utility (MEU) is

MEU = EU(∆opt) = max
∆∈∆∗

EU(∆) (10)

The evaluation of an ID consists in finding the MEU and
an optimal strategy, composed by an optimal policy for each
decision. It can be proved [18], [3] that

MEU =
∑
c0

max
d0

. . .
∑
cn−1

max
dn−1

∑
cn

P (vC : vD)ψ(vC ,vD)

(11)
For instance, the MEU for the ID in Fig. 1 is

MEU =max
t

∑
y

max
d

∑
x

P (x) · P (y|t, x) · (U1(x, d) + U2(t)︸ ︷︷ ︸
U0(x,d,t)

) (12)

3) Cooper policy networks: A strategy ∆ = {PD|D ∈
VD} can be used to convert the ID into a BN, that we call
Cooper policy network (CPN), as follows: each decision D is
replaced by a chance node with probability potential PD and
parents IPred(D), and each utility node U is converted into
a chance node whose parents are its functional predecessors,
FPred(U)—see Fig. 2. The values of each new chance variable
U are {+u,¬u} and its probability is PCPN(+u|fPred(U)) =
normU (U(fPred(U))), where normU is a linear transforma-
tion that maps the utilities U(fPred(U)) from the interval
[αU , βU ] onto the interval [0, 1] [19]; αU and βU are defined
as:

αU = min
fPred(U)

ψU (fPred(U)) (13)

βU = max
fPred(U)

ψU (fPred(U)) . (14)

The joint distribution of the CPN is:

PCPN(vC ,vD,vU )

= P∆(vC ,vD)
∏

U∈VU

PU (u|pa(U)) (15)

Given two configurations r and r′defined over two set of
variables, R ⊆ VC ∪VD and R′ ⊆ (VC ∪VD), such that
R ∩R′ = ∅ and P (r) 6= 0, and U a utility node, it holds that

P∆(r′) =PCPN(r′) (16)

P∆(r′|r) =PCPN(r′|r) (17)

EUU (∆) = norm−1
U (PCPN(+u)) (18)

EUU (∆, r) = norm−1
U (PCPN(+u|r)) (19)

In Section IV we will use these equations to compute on a
CPN the probabilities and expected utilities to be displayed in
the GUI.

III. EXPLANATION OF BAYESIAN NETWORKS

IN ELVIRA

This section describes the main options available in Elvira
for generating explanations of both the model and the reason-
ing.

A. Explanation of the model

Elvira offers verbal and graphical explanations at the micro
level of given nodes and links (cf. Sec. I-A), and also of the
whole network, by means of windows and menus, as follows.
Currently Elvira treats all variables as if they were ordinal. In
the case of non-ordinal variables, such as sex or race, the order
is that in the list of states defined by the user while editing
the network.



1) Explanation of nodes: In edit mode, nodes are displayed
as contracted [15], i.e., drawn as an oval containing only its
name. However, in inference mode, nodes can also be dis-
played as expanded, i.e., drawn as rounded-corner rectangles
which graphically display the main properties of the nodes
(states and its probabilities). For example, in the BN in Fig. 3
the nodes Virus A, Virus B, Disease 1 and Disease 2 are
expanded and the rest are contracted.

The verbal explanation of a given node, which can be
accessed by right-clicking on it, contains the following in-
formation: name, states, parents and children, prior odds and
posterior odds. This is very useful for analyzing the correctness
of some probabilities, since in some cases human experts know
that a value is certain times more probable than other, instead
of the concrete data. Also the verbal explanation of a node
includes some other properties, such as the purpose and the
importance factor [15] of such node. The purpose of a node is
defined by the role it plays in the model, according to several
categories, such as “symptom” or “disease”. The importance
factor, a value assigned by the human expert on a 0–10 scale,
is the same as the relevance factor used in DIAVAL [8] for
selecting the main diagnoses and equivalent to the importance
factor in MYCIN [20]. Additionally, the importance factor can
work in conjunction with the expansion threshold set by the
user [5]—in Fig. 3 it is set to 7.00 (see the upper left corner
of the figure). The nodes whose importance factor is higher
than the expansion threshold and whose role is one of those
selected by the user are expanded, and the rest are contracted.
In Fig. 3 the only selected role (determined by means of a
specific screen) was disease. It is also possible to manually
expand or contract a particular node.

The facility of selectively expanding nodes has been very
useful when building and debugging real-world models con-
taining a high number of nodes, such as Prostanet, a BN for
diagnosing prostate cancer [5], and Hepar II, a BN for the
diagnosis of liver disorders [21]. For example, when evaluating
Prostanet, which contains 47 nodes, the expert wanted to focus
only on the probabilities of the main diseases, in order to
make a differential diagnosis between prostate cancer and
some other benign diseases related to prostate. We could
do it by automatically expanding the nodes whose purpose
was disease/anomaly and whose importance factor was greater
than 7.

In a similar way to DIAVAL [8], Elvira allows the user
to navigate across the explanation windows associated to the
nodes and links of the network in order to analyze at a micro
level all the information related to each of them. This facility
is not necessary for networks containing “only” a few dozens
nodes, because the graph can be seen on a screen, but may be
useful for bigger networks with intricate graphs.

2) Explanation of links: One of the more useful features
of Elvira is the automatic coloring of links [5], which offers
qualitative insight about the conditional probability tables.
This coloring is based on the sign of influence [22] and the
magnitude of influence [5], which are defined as follows:

Definition 1: Let A and C be two ordinal variables such

that the former is one of the parents of the latter, Pa(C) =

{A}∪B. The magnitude of the influence (MI) for link A → C

is

MI(A,C) = max
c,a,b

|P (C ≥ c|a,b)− P (C ≥ c|a0,b)| (20)

where a0 is the normal value of A.
The normal value of a variable is the state that represents

the absence of anomaly. For instance, if X represents a disease
having a domain {present, absent} or {severe, moderate,
mild, absent}, the normal value is “absent”. If the domain is
{increased, normal, decreased}, the normal value is “normal”.
Therefore, the MI(A,C) measures to what extent a certain
cause A is able to shift C from its normality state to a state
of anomaly.

Definition 2: If A and C are ordinal variables and Pa(C) =

{A} ∪ B, we say that A positively influences variable C iff

MI(A,C) 6= 0 and

∀c, ∀a, ∀a′,∀b, a > a′ =⇒
P (C ≥ c|a,b) ≥ P (C ≥ c|a′,b) (21)

We also say that the link is positive.
The intuition motivating these definitions is that an influence

is positive when higher values of A make high values of C
more probable, as shown in the following example.

Example 3: If A and C are binary, the ordering +a > ¬a

and +c > ¬c implies that P (C ≥ +c|a,b) = P (+c|a,b)

and P (C ≥ ¬c|a,b) = P (+c|a,b) + P (¬c|a,b) = 1.

Therefore P (C ≥ ¬c|a,b) = P (C ≥ ¬c|a′,b) in all cases.

Consequently, A positively influences C iff P (+c|+a,b) ≥
P (+c|¬a,b) for all b’s and the inequality holds strictly for

at least one b.
The reason for using P (C ≥ c|a,b) instead of P (c|a,b)

in the above definitions becomes clear by observing the
example in Table I, in which a1 clearly leads to higher values
of C than a0; it is a case of positive influence according
with Definition 2, but it would have not been so if we had
used “P (c|a,b) ≥ P (c|a′,b)” in the definition, because
P (c0|a1) < P (c0|a0) and P (c1|a1) < P (c1|a0).

TABLE I

A PROBABILITY TABLE SHOWING A POSITIVE INFLUENCE OF A ON C

(SEE DEF. 2, EQ. 21).

The definitions of negative influence and negative link are
analogous. When MI(A,C) = 0 we say that the influence
of link A → C is null. From a point of view of knowledge
representation, a BN should not contain null links. When the
influence is neither positive nor negative nor null, then it is



said to be undefined. A link A → C may be undefined for
several reasons. One of them is the case in which A has more
than two values and the cumulative probability of C increases
when A changes from a0 to a1 but decreases when changing
from a1 to a2. For instance, the probability of prostate cancer
increases until a man is in his 50’s and decreases afterwards.
A link can also be undefined if A increases the probability of
high values of C for some configurations of B and decreases
it for other configurations. For instance, a certain drug might
be beneficial for a type of patients and harmful for others.

Positive links are colored in red, negative in blue, undefined
in purple, and null in black.4 In Fig. 3 we can see that most
links are red, because in general the presence of the cause
increases the probability of the effect; the only exception
in that example is the link Vaccination−→Disease2, for
obvious reasons. We can also see in that figure that the
thickness of links varies with the magnitude of influence, i.e.,
with the strength of the association.

The coloring and the width of links is one of the most
powerful tools provided by Elvira in order to help both
experts and knowledge engineers to detect wrong influences,
which frequently occurs when probabilities are subjectively
estimated, and even when the probabilities are obtained from
databases, either because of several biases or because of values
missing non-randomly. In fact, without Elvira’s graphical
explanation of the links it would have been much more difficult
to detected some wrong probabilities estimated by the experts
when building Prostanet [5] and Hepar II [21]. Elvira also
allowed us to see at a glance that many of the influences in the
database version of Hepar II (i.e., the model in which all the
probabilities were drawn from a database) were negative [21],
[23], which seriously questioned the validity of that database
as a source of information for building BNs.5

Additionally, Elvira can offer verbal explanations for a
selected link, which we do not describe here because of the
lack of space. The interested reader is referred to [15].

3) Explanation of the network: Elvira can generate a verbal
explanation of the whole network based mainly on the purpose
of each node. It consists of a text containing a description of
the disease/anomaly nodes, based on their parents and chil-
dren. For example, a fragment of the verbal explanation of the
network in Fig. 3 is: The network “Two Diseases” represents
the following information: The disease / anomaly Virus A has
neither causes nor risk factors represented in the network. It
may cause the following DISEASES / ANOMALIES: Disease
1, SYMPTOMS: Symptom, SIGNS: Sign. This tool has been
very useful when building the causal graph of Prostanet [5],
because the natural-language texts provided by Elvira, which
is similar to the way in which the network would be described

4The coding of influences and probabilities in Elvira is inspired in physics,
where high temperatures are associated with the red color and low tempera-
tures with blue.

5Because of our experience in the field of medical applications, we suspect
that the quality of some of the databases used for building BNs with learning
algorithms may suffer from similar biases. In that case, a cross-validation of
the model (against another portion of the database) does not at all mean that
the resulting BN represents the real-world correlations and influences.

by a human being, helped the experts to understand the causal
model represented by the graph of the BN.

B. Explanation of reasoning: evidence cases

1) Explanation of an evidence case: In Elvira an evidence
case is defined as a set of findings plus the corresponding
posterior probabilities:

Definition 4: Given a Bayesian network, defined over a set

of variables VC , and evidence e, an evidence case (EC) is

a pair (e,P∗), where e is the configuration of the observed

variables E that represents the set of findings, and P∗ is

the set of posterior probabilities of the unobserved nodes:

P∗ ={P (V |e), V ∈ VC \E}.
The individual probabilities P (v|e) can be observed by in-

specting the posterior probability of each value in the expanded
nodes, as shown in Fig. 3. Additionally, it is possible to have an
overall view of the changes in the probabilities all the variables
by selecting automatic explanation in the explanation options
menu, which performs a coloring of nodes depending on the
changes of their posterior probabilities, in accordance with the
following definitions.

Definition 5: Evidence e influences variable V more than

θ (with θ ≥ 0) iff

∃v, |P (V ≥ v|e)− P (V ≥ v)| > θ, (22)

When the influence exists, it is said to be positive iff

∀v, P (V ≥ v|e) ≥ P (V ≥ v) (23)

and it is negative iff

∀v, P (V ≥ v|e) ≤ P (V ≥ v) (24)
If e does not influence V , we can say that the influence is

null. A non-null influence that is neither positive nor negative
is undefined. In the case of a binary variable V , the influence
is positive if P (+v|e) > P (+v), negative if P (+v|e) <
P (+v) and null if P (+v|e) = P (+v).

This definition, as well as those for the coloring of links
in Sec. III-B.2, is based on Wellman’s work on qualitative
probabilistic networks, QPN [22]. However, the fact that our
networks contain numerical probabilities and that propagation
of evidence is done by quantitative algorithms, allows us to
determine the sign of probability changes in many cases in
which Wellman’s algorithms would lead to “unknown” signs.

The quantitative aspect of influence is measured by the
following magnitude:

Definition 6: If evidence e influences variable V , we define

the magnitude of the impact of evidence e over V , as

MIe(V ) = max
v
|P (V ≥ v|e)− P (V ≥ v)| (25)

If V is a binary variable then MIe(V ) = |P (+v|e) −
P (+v)| = |P (¬v|e)− P (¬v)|.

In Elvira, nodes are colored in red if they receive positive
influence from e, in blue if the influence is negative, and in



purple if it is undefined. If the influence is null, they remain
colored in yellow, the default color. The saturation of the color
depends on the magnitude of the impact of evidence. The
threshold θ (cf. Eq. 22) can be set from the GUI.

The coloring of nodes is especially useful to analyze the
propagation of evidence along different chains of reasoning
[24]. For instance, in Fig. 4 we can see how the finding X-
ray=positive propagates up to variable Vaccination and why
it causes a decrease of P (vaccination). The coloring of nodes
and links offers an intuitive idea of how the probabilities
have changed due to evidence propagation. The fact that link
Anomaly→X-ray is positive explains why a positive finding
for X-ray leads to an increase in the probability of Anomaly,
which is colored in red—see the rules for the combination
of signs in [22]. The same explanation applies to the pos-
itive link Disease 2→Anomaly. On the contrary, the link
Vaccination→Disease 2 (depicted in blue) is negative, and
this explains why an increase in the probability of Disease 2
makes us suspect that the patient was not vaccinated, which
is reflected in the blue coloring of node Vaccination.

Additionally, Elvira is able to classify the findings depend-
ing on the kind and magnitude of influence that they exert on
a certain variable V , selected by the user, according to the
following definitions:

Definition 7: Given evidence e, the magnitude of influ-
ence exerted by a finding f over variable V is

MIf (V ) = max
v
|P (V ≥ v|e)− P (V ≥ v|e \ {f})| (26)

In this context, we say a finding f positively influences variable

V iff MIf (V ) 6= 0 and

∀v, P (V ≥ v|e) > P (V ≥ v|e \ {f}) (27)

The definitions of negative and null influence are similar.
When a non-null influence is neither positive nor negative,
then it is said to be undefined. Please note that Definitions 5
and 6 refer to the impact of a set of evidence as a whole, while
Definition 7 focuses on the impact of an individual finding (in
the context of other findings).

The classification of findings allows the user to understand
why the probability of a node receiving different kinds of
influence has increased or decreased. For example, given
the network in Fig. 3, if the user introduces the evidence
{Vaccination=yes, Anomaly=present}, the probability of
Disease 2 increases, as shown by the red coloring of this
node. The classification of findings helps the user to under-
stand that the positive influence of Vaccination=yes, whose
magnitude is 0.493, prevails over the negative influence of
Anomaly=present, whose magnitude is only 0.145, as it is
shown in Fig. 5.

These explanation options can be accessed by opening a
window which contains the following information about the
current evidence case:

1) The name of the case and its associated findings.
2) The probability of evidence e. This may be useful, for

instance in medicine, because diagnosing a rare disease

can be explained by a low value of P (e). It can also be
used to detect conflicts between findings [25].

3) A panel for the analysis of sensitivity to the evidence.6

This panel shows the states of a certain variable V
selected by the user, their prior probabilities, their pos-
terior probabilities and the logarithmic ratio of both
probabilities for each state v:

S(v|e) = lg
(

P (v|e)
P (v)

)
(28)

We have chosen this function because its meaning can be
easily explained to users: positive values mean that the
probability of v has increased, and vice versa, and the
absolute value of S measures the impact of the evidence
on v.

4) Two buttons, How and Why, whose names are inspired
in MYCIN’s explanation facilities [31]. The How button
highlights the chains of reasoning by hiding the links
and nodes that are in no active path from the evidence
nodes E to variable V , and colors the nodes in active
paths, as explained in the previous section. The decision
of whether a path is active, inactive, or blocked is based
on the d-separation criteria [1]. In turn, the Why button
opens a window having four list of findings, depending
on whether the influence exerted by each one on V
is positive, negative, null, or undefined, according with
Equation 7, as we have described earlier and illustrated
by Fig. 5.

Then, the coloring of the nodes in the paths from the
findings to a given variable V helps the user to analyze how
evidence flows through the network, increasing or decreasing
the probability of some variables in the way up to V , with
different degrees of intensity. The classification of findings
also helps the users to detect the findings that have more
impact than others and also the possible conflicts among
findings. The study of different evidence cases (see below)
allows the user to analyze the impact of each finding by itself
and its impact in the context of a whole set of evidence.

2) Handling several evidence cases: One of the specific
features of Elvira, which differentiates it from the tools de-
veloped previously, is its ability to manage several evidence
cases simultaneously [15]. By default, Elvira creates a prior
case, which corresponds to the absence of evidence, and whose
associated probabilities are the prior probabilities of each node
in the network: (∅, {P (V )|V ∈ VC}). It also generates a new
case automatically when the user introduces the first finding.
Later, the user can create new cases to accommodate new
sets of findings; the new case inherits all the findings of the
previous one.

Most of the operations are performed on the current case,
which can be selected by the user among the list of available

6There are two kinds of sensitivity analysis in BNs. Sensitivity to the
evidence, which we are discussing now, refers to how the set of findings
has affected the posterior probabilities [24], [26]. In contrast, the analysis of
sensitivity to the parameters studies how different variations of the conditional
probabilities that define the network would affect the prior and posterior
probabilities [27], [28], [29], [30]. In Section IV-F we will discuss the analysis
of sensitivity to the parameters in IDs.



cases. A different bar is displayed for each evidence case
and each state in the expanded nodes, although the numerical
probability is displayed only for the current case. In Fig. 3
four evidence cases are considered—this is why each expanded
node has four colored bars associated to each state. The first
one is colored in green and it represents the prior probabilities
of each node, i.e, the absence of evidence. Nodes whose value
is known with certainty, because the current evidence case
contains one finding associated to it, are colored in gray. In
Fig. 3 the there is only one gray node, Symptom, representing
the only finding of the current case. Also the tool bar shows
a label with the same color as the current case and its name.
For example, in Fig. 3 the current case corresponds to the one
colored in red and identified as “Presence of Symptom”. If
every node were expanded the user could identify the findings
associated to the rest of cases because the corresponding
colored bars were set to the maximum possible length.

A monitor of cases permits the user to control which cases
are stored and displayed, to remove cases from memory, and
to modify some properties of the cases, such as the name and
color that Elvira assigns by default, which helps the user to
easily identify each evidence case. For example, in Fig. 3 the
current case has been renamed as “Presence of symptom”.
An editor of cases makes it possible to navigate through the
different evidence cases stored in the memory, to edit each of
them, and to propagate new evidence.

The analysis of the propagation of evidence through chains
of reasoning, combined with the possibility of handling several
evidence cases simultaneously, has been very useful for our
students to have an intuitive understanding of the d-separation
properties, a notion that was quite complicated for them
before we used Elvira in our tuition. Using some example
networks, we illustrate, for instance, the difference between
active and inactive paths by showing how the introduction
of a certain finding changes the color of some nodes, while
others remain in yellow. This change or lack of change in the
probabilities can also be seen (when the nodes are expanded)
by observing the probability bars. Similarly, the fact that two
sets of variables, X and Y are d-separated by Z can be
illustrated by first introducing a finding for each variable in
Z and then creating a new case that, in addition, contains
evidence for some of the variables in X. It can be clearly
seen that the nodes in Y remain in yellow, which means that
P (y|z) = P (y|z,x).

IV. EXPLANATION OF INFLUENCE DIAGRAMS

IN ELVIRA

A. Explanation of the model

The explanation of IDs in Elvira is based, to a great extent,
on the methods developed for explanation of BNs. One of the
methods that have proven to be more useful is the automatic
colorings of links. The definitions in Section III-A.2 for the
sign of influence and magnitude of influence, inspired on [22],
have been adapted to utility nodes as follows:

Definition 8: Let U be an ordinary utility node having αU

6= βU (see Equations 13 and 14) and Pa(U) = {A}∪B. The

magnitude of the influence (MI) for the link A → U is

MI(A,U) = normU (max
a,b

|ψU (a,b)− ψU (a0,b)|) (29)

We say that A positively influences variable U iff

MI(A,U) 6= 0 and

∀a,∀a′, ∀b, a > a′ =⇒ ψU (a,b) ≥ ψU (a′,b) (30)

We also say that the link is positive.
The definitions of negative influence and negative link are

analogous. When MI(A, U) = 0 the influence of link A → U
is said to be null; in that case, link A → U should be removed.
When the influence is neither positive nor negative nor null,
then it is said to be undefined.

For instance, in Fig. 1 the link X → Y is colored in red
because it represents a positive influence: the presence of the
disease increases the probability of a positive result of the test.
The link X → U1 is colored in blue because it represents a
negative influence: the disease decreases the expected quality
of life. The link D → U1 is colored in purple because its
influence is undefined: the treatment is beneficial for patients
suffering from X but detrimental for healthy patients.

As in the case of BNs, the coloring of links in Elvira has
been very useful for debugging IDs, by detecting probability
and utility tables whose numerical values do not agree with
the qualitative influences assessed by the expert.

B. Displaying the results of inference

In Section II-B.3 we have seen that, given a strategy ∆, an
ID can be converted into a Cooper policy network (CPN),
which is a true Bayesian network. Consequently, all the
explanation capabilities for BNs are also available for IDs by
exploiting such transformation.

The information displayed for nodes depends on the kind
of node—see Fig. 6. Chance and decision nodes display bars
and numbers corresponding to the probabilities of their states,
P∆(v), a marginal probability of P∆(vC ,vD), defined by
Equation 5. P∆(v) is the probability that a chance variable
V takes a certain value v, or the probability that the decision
maker chooses option v for decision V [32]. P∆(v) can be
computed on the Cooper policy network (CPN) by means
of Equation 16. Each utility node U displays the expected
utility EUU (∆), defined by Equation 8, which is computed
by propagating on the CPN and transforming back with the
use of Equation 18. The guide bar (black line) indicates the
range of the utilities.

Links pointing into a decision node D are drawn with the
color and thickness indicated in Section III-A.2, by examining
the policy PD (returned by the evaluation of the ID) as if it
were the conditional probability table of a chance node. Non-
forgetting links added during the evaluation of the diagram
[33], [34], such as link T → D in Fig. 6, are drawn as
discontinuous arrows.

Elvira, as most software tools for IDs, can show the
utility table associated to each decision. For instance, in
Table II each column corresponds to a configuration (t, y)



of the informational predecessors of decision D and each
cell contains the expected utility of option d given t and y
provided that every future decision will be made optimally
EU(d|iPred(d)) = EU(d|t, y). In that table the order of the
variables in IPred(D) is chosen to make it compatible with the
partial order induced by the ID, i.e., the order in which the
observations and decisions are known by the decision maker
during the decision process.

TABLE II

EXPECTED UTILITIES FOR DECISION D IN THE ID IN FIGURE 1.

The highest utility in each column is highlighted in red. We have contracted
the columns that represent impossible scenarios, i.e., configurations such that
P (iPred(D))=0.

This table is used by the evaluation algorithm to compute the
optimal policy; in this example, dopt = arg maxd EU(d|t, y),
as shown in Table III. A toggle allows the user to view either
the expected utilities for a decision (Table II) or the optimal
policy (Table III).

TABLE III

OPTIMAL POLICY FOR DECISION D IN THE ID IN FIGURE 1.

C. Explanation of reasoning: decision trees

Initially, IDs were proposed as an alternative representa-
tion for decision trees (DTs) [2]. Not surprisingly, the first
algorithm for evaluating IDs was to expand the equivalent
DTs. Nowadays we have much more efficient algorithms
for IDs, such as arc reversal [17], [33], [34] and variable
elimination [3], [35], but the operations that they perform are
only understood by experts in probabilistic graphical models.
On the contrary DTs are easily understood by many users,
because human beings tend to analyze decision problems by
figuring out the possible scenarios, and each branch of a DT
just represents a possible scenario, having a certain probability
and a certain utility. An additional reason for using DTs when
building medical decision-support systems is that most of the
physicians learned about them as pregraduate students, and
even many of them have done decision analysis with some
software packages for DTs.

For this reason, even though Elvira uses the most efficient
algorithms for evaluating IDs (otherwise it would be impos-
sible to solve large models), it also offers the possibility of
converting an ID into an equivalent DT and expanding and

contracting its branches to the desired level of detail. Clearly,
in the case of models containing dozens of nodes only a
fraction of the branches can be expanded.

This idea, even though not original, has proven to be
very useful in many situations. For instance, given the
ID in Fig. 1, if the user wonders how Elvira obtained
the utilities and the policy for D, it is possible to ex-
pand the DT shown in Fig. 7. In particular, the value
EU(D=yes|T=yes, Y =positive) = 81.05 in Table II, which
also appears in the branch {T=yes, Y =positive, D=yes} in
the DT, can be explained as the weighted average of the
utility for the presence of the disease (U = 78.00, with
probability 0.70) and the utility for the absence of the disease
(U = 88.00, with probability 0.30). In turn, the utility for the
disease, U = 78.00 can be explained as the utility associated
to the quality of life, U1(x, d) = 80.00 minus the cost of test,
U2 = 2.00. In the same way, the DT can explain the value
EU(D=no|T=yes, Y =positive) = 49.32 in Table II.

The optimal decision for scenario {T=yes, Y =positive}
is D=yes, because 81.05 > 49.32. For this reason, branch
{T=yes, Y =positive, D=yes} in the DT is highlighted with
a red square, in accordance the highlighting of value 81.05 in
Table II.

Therefore, the main difference of Elvira with respect to
other software tools is that, in addition to showing the (global)
expected utility of each branch, it can also show the individual
utilities that compose it, i.e., the utilities associated to the
utility nodes other than U0.

D. Introduction of evidence

Elvira’s ability to manage several evidence cases simulta-
neously in BNs is also available for IDs. The evidence is
introduced in the ID by using its corresponding Cooper policy
network. Given evidence e, Elvira displays for each chance
and decision node V the probability P∆(v|e) (cf. Eqs. 6
and 17), and for each utility node U the expected utility
EUU (∆, e) (cf. Eqs. 7 and 19), as shown in Fig. 8.

1) Clarifying the concept of evidence in influence diagrams:
In order to avoid confusions, we must mention that the mean-
ing of evidence in Elvira is very different from its meaning
in some methods oriented to the computation of the value
of information in IDs, such as [36], [37], [38]. For those
methods, the introduction of evidence e leads to a different
decision problem in which the values of the variables in E
would be known with certainty before making any decision.
For instance, introducing evidence {+x} in the ID in Fig. 1
would mean that X were known when making decisions T
and D. Therefore, the expected utility of the new decision
problem, which we call “Ezawa’s scenario” [38], would be

max
t

∑
y

max
d

P (y|+x : t, d) · (U1(+x, d) + U2(t)︸ ︷︷ ︸
U0(+x,d,t)

)

where P (y|+x : t, d) = P (+x, y : t, d)/P (+x : t, d) =
P (+x, y : t)/P (+x) = P (y|+x : t). In spite of the apparent
similarity of this expression with Equation 12, the optimal
strategy changes significantly from “test, and treat only if the
result is positive” to “always treat, without testing”, because



if we knew with certainty that the disease X is present. the
result of the test would be irrelevant. The MEU for the new
decision problem would be U0(+x, +d,¬t) = U1(+x, +d).

In contrast, the introduction of evidence in Elvira does not
lead to a new decision scenario nor to a different strategy, since
the strategy is determined before introducing the “evidence”.
Put another way, when introducing evidence in Elvira we adopt
the point of view of an external observer of a system including
the decision maker as one of its components. The probabilities
and expected utilities given by Equations 5 and 7 are those
corresponding to the subpopulation indicated by e when the
decision maker applies strategy ∆. For instance, given the
evidence {+x}, the probability P∆(+t|+x) shown by Elvira is
the probability that a patient suffering from X receives the test,
which is 1 (it was 0 in Ezawa’s scenario), and P∆(+d|+x)
is the probability that he receives the treatment; contrary to
Ezawa’s scenario, this probability may differ from 1 because
of false negatives. The expected utility for a patient suffering
from X is

EU(∆, {+x}) =

=
∑

t,y,d

P∆(t, y, d|+x) · (U1(+x, d) + U2(t))

where P∆(t, y, d|+x) = P∆(t) · P (y|t,+x) · P∆(d|t, y). For
the optimal strategy,

EU(∆opt, {+x}) =[P (+y|+x) · U1(+x, +d)
+ P (¬y|+x) · U1(+x,¬d)] + U2(+t)

A second difference is that the evidence introduced in Elvira
may include “findings” for decision variables. For instance,
e = {+d} would represent the subpopulation of patients who
have received therapy, and P∆(+x|+d) is the probability that
a patient receiving therapy has disease X .

And the third difference is that Elvira admits the possibility
of analyzing non-optimal strategies, as we will see below.

We must stress that the two approaches are not rivals.
They correspond to different points of view when considering
evidence in IDs and can complement each other in order to
perform a better decision analysis and to explain the reasoning.
We have implemented first the options that, in our opinion, can
be more useful, but in the future we will implement as well
Ezawa’s method and the possibility of computing the expected
value of perfect information (EVPI).

2) Example: Fig. 8 shows two evidence cases. In this exam-
ple, ∆ is the optimal strategy obtained when evaluating the ID,
because no policy was imposed by the user. The first evidence
case in Fig. 8 is the prior case, which was also displayed
in Fig. 6. Its probabilities and expected utilities are those of
the general population. The second evidence case is given by
e = {+y}; i.e., it displays the probabilities and utilities of the
subpopulation of patients in which the test has given a positive
result. Node Y is colored in gray to highlight the fact that there
is evidence about it. The probability P∆(+x|+y), represented
by a red bar, is 0.70; the green bar close to it represents the
probability of +x for the prior case, i.e., P∆(+x), which
equals P (+x) because the decision maker’s actions do not
affect X . The red bar is longer than the green one because

P∆(+x|+y) > P∆(+x), as it was expected from the fact that
link X → Y is positive. The global utility for the second
evidence case, EU(∆, {+y}), represented by a red bar in
node U0, is smaller than EU(∆,∅), the expected utility for
the general population, represented by a green bar, because
the presence of the symptom worsens the prognosis. The red
bar for Treatment=yes, which represents P∆(+d|+y), is 1.00
because the optimal strategy determines that all symptomatic
patients must be treated. Similarly, P∆(+t|+y) = 1.00 be-
cause a positive result of the test implies that the test has
been done.

3) Debugging influence diagrams by introducing evidence:
The possibility of introducing evidence in Elvira has been
useful for building IDs in medicine [10]: before having this
explanation facility, when we were interested in computing
the posterior probability of a certain diagnosis given a set
of findings, we needed to manually convert the ID into
a BN by removing decision and utility nodes. Each time
the ID was modified, even slightly, we had to repeat this
conversion, which was tedious and time consuming. (When
building medical expert systems, the time of interaction with
the experts is a precious resource that must not be waisted.)
This was the reason for implementing a facility that allowed
us to compute the probabilities directly on the ID, which is
much more convenient.

E. What-if reasoning: analysis of non-optimal strategies

In Elvira it is possible to have a strategy in which some
of the policies are imposed by the user and the others are
computed by maximization. The way of imposing a policy
consists in setting a probability distribution PD for the corre-
sponding decision D by means of Elvira’s GUI; the process is
identical to editing the conditional probability table of a chance
node. In fact, such a decision will be treated by the inference
algorithms as if it were a chance node, and the maximization
will be performed only for the rest of the decisions.

This way, in addition to computing the optimal strategy
(when the user has imposed no policy), as any other software
tool for IDs, Elvira also permits to analyze how the expected
utilities and the rest of the policies would vary if the decision
maker chose a non-optimal policy for some of the decisions
(what-if reasoning).

The reason for implementing this explanation facility is that
when we were building a certain medical influence diagram
[10] our expert wondered why the model recommended not to
perform a certain test. We wished to compute the a posteriori
probability of the disease given a positive result in the test,
P∆(+x|+y), but we could not introduce this “evidence”,
because it was incompatible with the optimal policy (not to
test): P∆(+y) = 0. After we implemented the possibility of
imposing non-optimal policies (in this case, performing the
test) we could see that the posterior probability of the disease
remained below the treatment threshold even after a positive
result in the test, and given that the result of the test would
be irrelevant, it was not worthy to do it.



F. Sensitivity analysis and decision thresholds

Recently Elvira has been endowed with some well-known
sensitivity analysis tools, such as one-way sensitivity analysis,
tornado diagrams, and spider diagrams [39], which can be
combined with the above-mentioned methods for the explana-
tion of reasoning. One-way sensitivity analysis can be used for
finding treatment thresholds in different scenarios [40] and, in
consequence, to explain the optimal policies. For instance, in
Fig. 9, which shows the results of one-way sensitivity analysis
on the prevalence of X for the ID given in Fig. 1. This graph is
obtained by evaluating several instances of the ID, each having
a different value of P (+x). We can see that the treatment
threshold is approximately 0.17, i.e., when P (+x) < 0.17 the
best option is not to treat the patient, and when P (+x) > 0.17
it is better to treat.

By introducing evidence about Y in the ID we can see that
P (+x|+y) = 0.83; this means that the prevalence of X in the
subpopulation {+y} is 0.83, which is above the 0.17 threshold.
In contrast, P (+x|¬y) = 0.015 < 0.17. This explains why the
optimal policy for D is to treat only after a positive result of
the test. In the construction of more complex IDs this kind
of analysis has been useful for understanding why some tests
are necessary or not, and why sometimes the result of a test
is irrelevant, as discussed in the previous section.

V. RELATED WORK AND FUTURE RESEARCH

In spite of the importance of explanation in artificial intel-
ligence, for the reasons mentioned in Section I, most software
tools for building expert systems —either probabilistic or
heuristic— offer no facilities for this task. There are several
prototype systems developed to demonstrate new explanation
options, but most of them never became publicly available—
see [4], [7] for a review. Among the few available environ-
ments for probabilistic graphical models endowed with some
explanation facilities, we can mention the following:
• BayesiaLab7, Netica8, and especially SamIam9, are able

to perform an analysis of sensitivity to the parameters of
the model in BNs (see Footnote 6). TreeAge10 can convert
an ID into a decision tree (in fact, the main representation
framework in TreeAge are decision trees, not IDs) and
to perform several types of analysis of sensitivity to the
parameters.

• GeNIE11, Hugin12, and MSBNx13 permit to compute the
value of information.

• Recent versions of BayesiaLab are able to simultaneously
display probability bars for several evidence cases simul-
taneously, and to represent the sign and magnitude of
influences by the color and thickness of links, as in Elvira.

7http://www.bayesia.com.
8http://www.norsys.com/netica.html.
9http://reasoning.cs.ucla.edu/samiam/. Its acronym stands

for “Sensitivity Analysis, Modeling, Inference and More”.
10http://www.treeage.com/.
11http://genie.sis.pitt.edu/.
12http://www.hugin.com.
13http://research.microsoft.com/adapt/MSBNx/.

• The latest version of Hugin can perform an analysis of
sensitivity to evidence in BNs and IDs.

Clearly, Elvira offers more explanation facilities than any of
these tools, but there are still many options that can be added.
In particular, we will further explore the generation of verbal
explanations and the possibility of adapting them to different
user needs. However, the goal of offering a natural language
dialog between human users and Elvira is still impossible
given the current state of the art.

We are currently in the process of implementing probabilis-
tic analysis of sensitivity to the parameters in Elvira. Other
kinds of sensitivity analysis for both BNs and IDs will be
added in the future. It would also be possible to integrate
sensitivity analysis in IDs with the expansion of decision trees.

As mentioned above, we also intend to implement new
facilities for introducing evidence in Ezawa’s style [38] and for
computing the value of information—see Sec. IV-D.1. On the
other hand, we are studying how to obtain a set of rules that
summarize a strategy; for instance, “if the patient presents with
symptom S and the blood test is positive, then apply treatment
T ; otherwise, do not treat”; see the work by Fernández del
Pozo et al. [41] on this subject. The work on explanation in
factored Markov decision processes by Elizalde et al. [42],
which focuses on the variable that receives the higher impact
from an action performed by the decision maker, may be
applied to ordinary IDs as well.

Other techniques indirectly related with explanation are the
facility of dealing with submodels, the possibility of simpli-
fying the model [5] in order to improve both the efficiency
of the algorithms and the generation of explanations, the
application of different techniques for the visualization of
Bayesian networks [43], and the development of a graphical
user interface that facilitates the construction of BNs and IDs
by non-expert users.

In any case, the new explanation options for Elvira will be
selected as a response to the most relevant needs detected in
our research on building medical application and in our task
of teaching probabilistic graphical models to computer science
students and to health professionals.

Finally, we intend to use Elvira for developing mod-
els in other domains, such as financial risk analysis, cost-
effectiveness studies, and collaborative e-learning, which will
certainly pose new challenges for the explanation of the
models and the reasoning.

VI. CONCLUSION

In this paper we have described the main explanation
facilities for Bayesian networks and influence diagrams im-
plemented in Elvira, a public software package, and how
they have helped us in building medical applications [23] and
when teaching probabilistic graphical models to pre- and post-
graduate students [11]. In our experience, the most useful
explanation options for BNs among those offered by Elvira
are, in this order, the simultaneous display of several evidence
cases, the possibility of coding the sign and magnitude of
influences by the color and thickness of links, and the ex-
planation of evidence cases by highlighting the active chains



of reasoning, which includes the coloring of nodes in those
chains. With respect to IDs, the most useful options are the
possibility of introducing evidence, the conversion of IDs
into decision trees, the possibility of analyzing non-optimal
policies imposed by the user, and the analysis of sensitivity
to the parameters. Further research is still necessary to make
probabilistic reasoning more understandable to human users.
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Fig. 1. ID with two decisions (rectangles), two chance nodes (ovals) and three utility nodes (hexagons). Please note that there is a directed path T –Y –D–
U1–U0 including all the decisions and the global utility node U0.
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Fig. 2. Cooper policy network (CPN) for the ID in Figure 1. Please note the addition of the non-forgetting link T → D and that the parents of node U0

are no longer U1 and U2 but FPred(U0) = {X, D, T}, which were chance or decision nodes in the ID.



Fig. 3. Elvira main window in inference mode.

Fig. 4. Chains of reasoning for the graphical explanation of a case whose evidence is defined by the finding X-ray=positive. The selection of a variable of
interest (Vaccination in this example) makes Elvira hide the nodes and links that do not make part of any active path from the evidence to the variable of
interest.



Fig. 5. This figure illustrates the impact that each finding, Vaccination=yes and Anomaly=present, has separately over the selected node Disease 2 in
the network of Fig. 3.

Fig. 6. ID resulting from the evaluation of the ID in Figure 1. It shows the probability P∆(v) of each chance and decision node and the expected utilities.



Fig. 7. Decision tree for the ID in Figure 1, where some branches have been expanded to obtain more level of the detail.

Fig. 8. ID resulting from the evaluation of the ID in Figure 1. It shows two evidence cases: the prior case (no evidence) and the case in which e = {+y}.



Fig. 9. Elvira’s one-way sensitivity analysis on the prevalence of the disease, which is represented in the the x-axis. The y-axis represents the expected
utility. The treatment threshold is 0.17.


