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Abstract As online spatial datasets grow both in number and sophistication, it becomes in-
creasingly difficult for users to decide whether a dataset is suitable for their tasks, especially
when they do not have prior knowledge of the dataset. In this paper, we propose browsing as
an effective and efficient way to explore the content of a spatial dataset. Browsing allows users
to view the size of a result set before evaluating the query at the database, thereby avoiding
zero-hit/mega-hit queries and saving time and resources. Although the underlying technique
supporting browsing is similar to range query aggregation and selectivity estimation, spatial
dataset browsing poses some unique challenges. In this paper, we identify a set of spatial rela-
tions that need to be supported in browsing applications, namely, the contains, contained and
the overlap relations. We prove a lower bound on the storage required to answer queries about
the contains relation accurately at a given resolution. We then present three storage-efficient
approximation algorithms which we believe to be the first to estimate query results about these
spatial relations. We evaluate these algorithms with both synthetic and real world datasets
and show that they provide highly accurate estimates for datasets with various characteristics.
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1. Introduction

Indexing and searching of spatial data have been extensively studied in the last twenty years.
A recent survey [9] shows that more than fifty data structures have been developed to support
efficient access of objects in spatial/multi-dimensional databases. In contrast, tools to support
exploring a whole dataset instead of accessing individual data objects are rather scarce. As
online spatial datasets grow both in number and sophistication, finding suitable datasets for
a task becomes increasingly difficult. For spatial data archives, Flewelling and Egenhofer
[7] identified several ways to evaluate the usefulness of an archive and pointed out that none
of them offers an ideal solution. For spatial databases, the user’s choices are even more
limited, since downloading the complete dataset or part of it is no longer an option. In some
cases, the user must rely on the metadata describing the content of the dataset, which is often
insufficient and unable to capture the data distribution across multiple attributes. In other
cases, the dataset is only accessible through a query interface. Exploring the dataset with trial
queries can be a frustrating experience. Due to the user’s lack of knowledge of the dataset,
trial queries tend to be either overly restrictive or overly broad, resulting in either zero hits
or thousands of hits, both of which convey very little information about the dataset itself.

The Alexandria Digital Library (ADL) [3], at the University of California, Santa Barbara,
currently hosts more than 6 million geo-referenced records. One of the goals of the project
is to make spatial data more accessible to both researchers and inexperienced users, for
example, undergraduate students who take geography classes. One of the problems that arise
in using the dataset is that existing metadata do not provide enough information about the
characteristics of the dataset. As part of the effort to address this problem, the GeoBrowsing
service is being developed to provide summary information of a data collection or a subset
of it at various resolutions. The browsing service allows users to rapidly gain knowledge of
the collection and helps the users to formulate more efficient queries.

Figure 1 shows the client interface1 of the GeoBrowsing service. Through this interface,
users can make queries based on various data attributes such as region, date and subject type,
and the results are shown in the main display area (“Map Browser”), with different colors
indicating the number of objects that satisfy the query constraints.

The GeoBrowsing service has two important features to help users explore a dataset more
efficiently. First of all, the system supports tiles. When a user selects a region of interest,
he or she may choose to further partition the region into tiles by specifying the numbers of
rows and columns. For instance, Fig. 1(b) shows that California is partitioned into (22×24)
tiles. The system interprets each tile, together with the constraints on other attributes, as a
single query. So instead of asking the users to send trial queries one by one, this feature
essentially allows users to send out hundreds or even thousands of trial queries with a single
click, thereby improving the efficiency of exploring a dataset dramatically.

Another important feature of the GeoBrowsing service is that it allows users to formulate
queries on several spatial relations, including contains (the query MBR2 contains the object
MBRs), contained (the query MBR is contained in the object MBRs) and overlap (the

1 The client interface shown in Fig. 1 is a research prototype. We will soon replace it with a new interface
provided by ESRI. The new interface supports overlaying the query results on top a map, which greatly
improves the usability of the service.
2 MBR is a minimal bounding rectangle that is used to approximate the spatial extent of a spatial object.
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Fig. 1 GeoBrowsing client interface

query MBR intersects the object MBRs, but do not form contains or contained relation).
Compared to existing systems [12] which only support the intersect spatial relation (without
distinguishing contains, contained and overlap relations), this feature helps users make
more specific queries and therefore get more useful results. Apart from the above topological
relations which describe the concept of neighborhood and incidence (e.g. overlap, contained),
the GeoBrowsing service also supports the directional relations (e.g. south, northwest) [8].

The current implementation of the GeoBrowsing service prototype builds an index struc-
ture on top of the actual data. This implementation meets all the feature requirements and
always returns accurate results. However, the performance of the system is not satisfactory
when the number of results or the number of tiles is very high. In this paper, we take an
alternative approach and try to explore the tradeoff between speed and accuracy. We further
simplify the problem by considering only the spatial attribute, and focus our attention on
supporting different spatial relations.

The rest of the paper is organized as follows. In Section 2, we discuss several issues
related to the browsing service, in particular, the spatial relations that need to be supported,
and develop the interior-exterior model for exploring such relations. In Section 3 we show
that even at a moderate resolution, the storage required to give exact answers for the contains
queries are prohibitively high. So instead of trying to produce exact results, we develop three
efficient approximation algorithms. These algorithms are based on the interior-exterior model
and Euler’s Formula, which is presented in Section 4. Section 5 discusses the algorithms in
detail. We evaluate these algorithms with both synthetic and real datasets, and analyze the
results in Section 6. Section 7 concludes the paper and discusses some future work.

2. Spatial database browsing and related issues

From a functional perspective, a browsing system can be considered as a database that can
process a group of queries simultaneously. So when users try to explore a dataset, instead
of sending out individual trial queries, they can simply select the whole dataset, grid it into
tiles, and send out the queries for all the tiles with a single command.

There are certain aspects of a browsing system that have been studied in prior research.
The Human-Computer Interaction Laboratory at University of Maryland at College Park
(HCIL-UMD) has been working on similar systems [12] since 1996 with an emphasis on
user interfaces. The query processing part of a browsing system, which returns the size of a
result set rather than the actual objects, is closely related to the work in the areas of range
query aggregation and range query selectivity estimation. However, spatial database browsing
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raises some unique issues that have not been addressed before. Since spatial objects typically
span a range in space, a spatial database browsing system should be able to handle not only
point objects, but also range objects such as line segments, rectangles and polygons. Among
these object types, rectangular objects are particularly important because different types of
objects can be represented by their Minimal Bounding Rectangles (MBRs). Although range
query aggregation has been extensively studied and a number of data structures such as data
cubes have been proposed [5, 10, 11, 15], to the best of our knowledge, no existing data
structures are designed explicitly for rectangular objects. One might argue that 2-dimensional
rectangles can be regarded as 4-dimensional points, therefore can be handled by existing
data structures. While there is much truth in this statement, it is often undesirable to treat
rectangles as points in practice due to performance reasons. Currently, the most query-
efficient aggregation technique is the prefix-sum data cube [15] which achieves constant
query response time. The disadvantage of the prefix-sum data cube is that the number of
cells in the data cube increases exponentially as the dimensionality increases. For example,
if we partition the earth into (1◦×1◦) regions, only 360×180 = 64, 800 cells are needed;
but if we treat the rectangles as 4-d points, four billion (360×359×180×179)/4 cells are
needed. There are other data cube structures that are more storage-efficient [21] but the
storage efficiency comes at the cost of query efficiency, which makes this type of data
structure not applicable for browsing applications. As mentioned before, a browsing query
typically consists of a 2-dimensional array of tiles, and each tile can be considered as a
COUNT aggregation query by itself. The number of tiles could easily reach hundreds or
even thousands, which demands very efficient algorithms for the browsing service.

Another area of research that is closely related to the browsing applications considered
in this paper is spatial range query selectivity estimation [1, 2, 4, 17]. These algorithms are
designed to handle range objects, and are usually very efficient in both storage space and
query response time. Two of these algorithms, the Cumulative Density algorithm [17] and
Beigel and Tanin’s algorithm [4], are particularly interesting from the browsing perspective
because both algorithms grid the data space into cells, and if a query rectangle aligns
with the grid, the result is exact rather than an estimate. However, all of these algorithms
only distinguish between two types of spatial relations: disjoint and intersect, while spatial
database users are often interested in a much richer set of spatial relations.

One of the spatial relation models, the 9-intersection model [6], defines the spatial re-
lationship between two region objects without holes based on the 9 intersections of their
interiors, exteriors and boundaries. Formally, let p and q be two region objects, and p.i, q.i,
p.b, q.b, p.e and q.e be their interiors, boundaries and exteriors, then the spatial relationship
between p and q can be defined by the following 3×3 matrix:




p.i ∩ q.i p.i ∩ q.b p.i ∩ q.e
p.b ∩ q.i p.b ∩ q.b p.b ∩ q.e
p.e ∩ q.i p.e ∩ q.b p.e ∩ q.e


 (1)

Figure 2 shows the results of the nine intersections when object p contains object q. In
this figure, the symbols φ and φ̄ imply that the intersection of two regions is empty and
non-empty respectively.

Although mathematically the 9-intersection model can distinguish 29 spatial relations, not
all of them are physically possible. For example, no matter how two objects are positioned,
their exteriors always intersect, so p.e ∩ q.e is always φ̄. For two region objects without
holes, it is proved in [6] that only eight spatial relations exist. These eight spatial relations
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Fig. 2 Results of the 9 intersections when p contains q

and their corresponding intersection matrices are shown at the bottom of Fig. 3, and we will
call this set of relations the Level 3 Spatial Relations.

Note that the disjoint and intersect spatial relations supported by range query selectivity
estimation techniques can be defined by using only the intersection of the interiors of two
objects, as shown at the top of Fig. 3. We call this set of spatial relations the Level 1
Spatial Relations. Existing techniques [1, 2, 4, 17] can handle queries about Level 1 spatial
relations very efficiently using auxiliary data structures such as histograms. However, to
answer queries about more specific spatial relations such as contains, the actual data objects
must be accessed. Our experience with the GeoBrowser prototype shows that this approach
is not efficient for browsing spatial datasets.

In this paper, we try to bridge the gap between Level 3 and Level 1 Spatial Relations
by introducing a new spatial relation model, called the interior-exterior intersection model,3

which is derived from the 9-intersection model by removing the intersections involving the
object boundaries. Under this model, the spatial relation between two objects can be defined
by the following (2×2) matrix:

[
p.i ∩ q.i p.i ∩ q.e
p.e ∩ q.i p.e ∩ q.e

]
(2)

For region objects without holes, the interior-exterior intersection model can distinguish
five spatial relations, which we call the Level 2 Spatial Relations (shown in Fig. 3). The
rationale behind the interior-exterior intersection model is that for spatial database browsing,
the boundary relations such as meet and covers are not important. Users of a browsing
service are likely to be interested in learning the dataset content at a high level, so omitting
certain details does not decrease the value of the service. More importantly, the interior-
exterior model enables efficient implementations that do not rely on accessing the actual
data objects, as shown later in Section 5.

3 The term 4-intersection model is already used by Egenhofer and Herring [6]. The 4-intersection model
defines spatial relations based on the intersections of object interiors and boundaries.
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Fig. 3 Spatial relations at different levels

In the rest of the paper, all spatial relations such as overlap, contains and contained refer to
the Level 2 spatial relations unless specified otherwise. The only exception is intersect, which
is a Level 1 spatial relation and should not cause any confusion. Also note that all spatial
relations discussed in the rest of the paper are with respect to a query (which corresponds
to object p in Fig. 3). For example, the number of objects that satisfy the contains spatial
relation are the number of objects that are contained in the query MBR.

Apart from the the topological relations discussed till now, another important class of
spatial relations are the cardinal direction relations [20]. As the name suggests, these relations
describe the spatial orientation of a given object with respect to a reference object (e.g. East,
South-west). Direction relations are used in a variety of applications such as cognitive
modeling [14], image similarity retrieval [18], and navigation [16] etc. In [20] Papadias
et al. discuss the projectional direction model where the reference object is represented by a
single point or 2 points (e.g. MBR) and the plane is partitioned using projection lines parallel
to the co-ordinate axes. When one point is used for the representation of the reference
object, the plane is divided into 9 partitions (Fig. 4). The symbol * in Fig. 4 denotes the
representative point of the reference object, and X and Y refer to the x and y co-ordinates
of the reference point. The numbers correspond to the possible positions or directions of the
representative point of a given object with respect to the reference object and are described
in Fig. 4(b). Since we are primarily interested in browsing rectangular data objects (objects
with extent), only 4 of these directions (north east, north west, south west, south east) are
relevant. The remaining directions are primarily required for point and line objects. Further
these 4 directions can be interpreted as simple intersection queries with query rectangles
corresponding to the respective regions. For example, a rectangular object is said to be in
the north east direction of the reference point if it has an intersect interaction (Contains,
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Fig. 6 Direction relations for
rectangular reference objects

Contained or Overlap) with the rectangular region corresponding to the north east direction
shown in the Fig. 4(a).

Figure 5 shows some scenarios where the data object has a north east relation with respect
to the point reference object. The rectangular object with filled pattern corresponds to the
data object and the shaded region without any pattern corresponds to the north east region
of the reference point. It should be noted that the object in Fig. 5(b) also has a south east
relation with respect to the reference point. Similarly, the object in Fig. 5(c) has all possible
directional relationships with the reference point.

When two points are used to represent a reference object (e.g. MBR), there are 9 possible
directional relations for a rectangular data object (see Figs. 6(a) and (b)). Here also, the
directional queries (Fig. 6(b)) are transformed to the intersection queries over the respective
rectangular regions, as shown in the Fig. 6(a). Henceforth, a solution for browsing topological
relations as well should suffice for browsing direction relations.
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3. Exact algorithms for spatial relations

For spatial database browsing, we are particularly interested in techniques that can return
exact aggregation results at a given resolution. The rationale is that details are not important
in exploring a dataset. At a certain resolution, users will have enough information to decide
whether the dataset is useful or not. If the dataset is found out to be useful, users can then
proceed to send queries to the database and access the actual data.

Formally, let S be a set of d-dimensional objects and Rd be a hyper-rectangle that encloses
all the objects in S. A grid of Rd partitions each dimension Di of Rd into ni equi-width
segments, so Rd is partitioned into (

∏
ni = N) equi-sized cells. We use a unit cell c to

represent the resolution of the grid. If the MBR of query Q completely aligns with the grid,
we say the query is at resolution c; and if an algorithm can return exact aggregation results for
all queries about spatial relation r at resolution c, we say this algorithm is an exact algorithm
for spatial relation r.

Note that for point data, an exact algorithm for the contains spatial relation can be easily
developed by using a histogram with each histogram bucket corresponding to a grid cell.
However, the same approach does not apply to rectangular objects which may span several
cells. For example, in the Minskew algorithm [2], if an object spans several histogram
buckets, it is counted once in each bucket. So for a query covering several histogram buckets,
the result may not be accurate because one object could be counted multiple times. In this
section, we first introduce two existing techniques that address this problem.

3.1. Algorithms for the intersect spatial relation

The Cumulative Density (CD) algorithm is one of the techniques proposed in [17] to approx-
imate range query selectivity in spatial databases. Assuming all objects are represented by
their MBRs, the CD algorithm can be adapted for browsing applications as follows: given
a grid of R2 at resolution c, construct four histograms Hll , Hlr , Hul and Hur . The size of
each histogram is N with each bucket corresponding to a grid cell. A bucket of Hll keeps the
number of lower-left vertices that fall into the bucket. Similarly, Hlr , Hul and Hur keep the
counts of lower-right, upper-left and upper-right vertices of the objects. To improve query
efficiency, all the histograms are cumulative, in the sense that a bucket H (i, j) stores the
number of vertices in the region (0, 0, i, j). So for a query (xa, ya, xb, yb), the number of
intersecting objects can be calculated as follows:

Nintersect = Hll (xb, yb) − Hlr (xa − 1, yb) − Hul (xb, ya − 1) + Hur (xa − 1, ya − 1) (3)

Figure 7(a) shows an example of three objects and a query at (xa, xb, ya, yb). Figure 7(b)
shows the four histograms constructed by the CD algorithm. The number of objects that
intersect the query is Hll (xb, yb) − Hlr (xa − 1, yb) − Hul (xb, ya − 1) + Hur (xa − 1, ya −
1) = 3 − 0 − 1 + 0 = 2.

For any query at resolution c, the CD algorithm returns the exact number of objects that
intersect the query. The storage requirement is 2d N for a grid of Rd , and it takes 2d lookups
to answer a query so the query response time is constant.

Another exact algorithm for the intersect spatial relation was proposed by Beigel and
Tanin in [4]. We refer to this algorithm as the Beigel-Tanin’s (BT) algorithm. For a grid
of R2, the BT algorithm constructs a histogram H with each bucket corresponding to an
interior vertex, edge or face of the grid. A vertex or an edge is interior if it is not on the
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Fig. 7 The cumulative density (CD) algorithm

boundary of the grid, and a face is interior if it is not the exterior face (the “space” outside
the grid). As shown in Fig. 8(a), a (2×2) grid has one interior vertex, four interior edges and
four interior faces.

The value held in a bucket of the histogram H is determined as follows: if the bucket
corresponds to an interior vertex or face, it stores the count of the objects that intersect
the vertex or face; if a bucket corresponds to an edge, it stores the negative value of the
intersecting object count. Figure 8(b) shows an example of three objects, and Fig. 8(c) shows
the corresponding histogram H. With the histogram H, the number of objects that intersect
a query Q can be calculated as

Nintersect =
∑

H (bi ) (4)

where bi is a bucket whose corresponding vertex, edge or face intersects the interior of Q,
and H (bi ) is the value stored in bi . As the example shown in Figs. 8(b) and (c), the number
of objects that intersect the query at (xa, xb, ya, yb) is the sum of all the shaded buckets
in Fig. 8(c), which is 1 + (−1) + 1 + 0 + 1 + (−1) + 1 + (−1) + 0 + (−1) + 1 + (−1) +
1 + 0 + 1 = 2.

As with histograms in the CD algorithm, histogram H can be cumulative, so the time to
answer a rectangular-shaped query is constant. For a grid of Rd , the storage requirement of
H is

∏
0≤i≤d (2ni − 1) = O(N ).

3.2. Algorithms for Level 2 spatial relations

Both the CD and BT algorithms are efficient algorithms which return exact results for
the intersect spatial relation at a given resolution, but neither of them can handle Level 2

Springer



66 Distrib Parallel Databases (2006) 20:57–88

Fig. 8 Beigel-Tanin’s (BT) algorithm

spatial relations such as contains. Figure 9(a) shows two different scenarios. For a query at
(xa, xb, ya, yb), the contains result should be 1 in the first case and 0 in the second case. Note
that both the CD and BT algorithms construct identical histograms for these two scenarios
(shown in Figs. 9(b) and (c) where we omit the cumulative step), which means that based on
the information kept in these histograms, one can not tell the exact number of objects that
are contained in the query rectangle.

To find out how much information is required to identify the Level 2 spatial relations, let
us first analyze the 1-dimensional case. For a dataset S of 1-dimensional range objects and a
grid of R1, we first make a simplification and assume that no objects align with the grid. The
reason for this simplification is that an object that starts from i and ends before j (which can
be denoted as (i, j)) is different from an object that starts after i and ends before j (which can
be denoted as (i, j)). Figure 10 (a) shows such an example. Note that object 1, 3) contains
the range 1, 2 while object (1, 3) overlaps the range 1, 2.

With this simplification, all objects in S can be represented by (i, j) and 0 ≤ i < j ≤ n, so
we can construct a 2-dimensional histogram H with each bucket hi j containing the number
of objects (i, j), as illustrated in Figs. 10(b) and (c). Since i < j, the effective size of the
histogram is |H| = n(n + 1)/2 = O(N2).

Histogram H has two important properties:

– Any query at the given resolution can be answered exactly with H.
– The values in each bucket are independent of each other. For example, the number of

objects between 1 and 2 has nothing to do with the number of objects between 1 and 3.

Assume there exists an algorithm which can return exact results for the contains relation
for any datasets by keeping a constant number of values V = v1, v2, . . . , vn , and |V| < |H|.
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Fig. 9 CD and BT algorithms cannot handle Level 2 spatial relations

Since H contains the complete information of a dataset at a given resolution, there must exist
a mapping from the values stored in H to the values in V, and this mapping can be expressed
as an equation array with |V| equations and |H| variables. Now let contains(i, j) be the number
of objects that are contained in the range i, j, then we can use this algorithm to compute H
as follows:

H (m, n) = contains(m, n) −
∑

m≤i<n

∑
i< j≤n

contains(i, j) (5)

Since contains(i, j) can be obtained from V, it follows that we can compute H from V,
which contradicts the fact that at least |H| equations are needed to solve |H| independent
variables. We can also see this from another perspective: |H| values cannot be losslessly
compressed to |V| values unless the original values contain redundant information. Since
the values in H are independent of each other, for any algorithm we can always construct a
dataset that requires the algorithm to keep at least |H| values.

We now prove the following theorem for d-dimensional cases:

Theorem 3.1. Let S be an arbitrary set of d-dimensional rectangular objects and Rd be
a hyper-rectangle that encloses all objects in S. Given a (n1×n2 · · · ×nd) grid of Rd , an
algorithm that can return exact results for the contains spatial relation requires at least∏

1 ≤ i ≤ dni(ni+1)/2 = O(N2) storage space, where N = n1×n2× · · · × nd .
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Fig. 10 A 2-D histogram for 1-D range data

Proof: As in the 1-d dimensional case, we first construct H, which is a 2d-dimensional
histogram. The effective size of H can be calculated as follows:

Let x1, x ′
1, x2, x ′

2, . . . , xd , x ′
d be the 2d dimensions of H , and ha1a′

1a2a′
2...ad a′

d
be a bucket

of H . Note that the 2d dimensions of H can be considered as d pairs of dimensions (xi , x ′
i ),

while xi is the dimension for the start points of the objects in the original i th dimension,
and x ′

i is the dimension for the end points. In order for ha1a′
1a2a′

2...ad a′
d

to be valid, a′
i must be

greater than ai , which means that for each dimension pair (xi , x ′
i ), there are only ni(ni + 1)/2

valid combinations of (ai , a′
i ). So the effective size of H is |H| = ∏

1 ≤ i≤dni(ni + 1)/2.
The next step is to show that we can construct H with an algorithm that returns exact

results for the contains spatial relation. Let A = (a1, a′
1, . . . , ad , a′

d ) be a d-dimensional
range, then ha1a′

1a2a′
2...ad a′

d
is the number of objects contained in A subtracting the number of

objects contained in the d-dimensional subranges of A, so

ha1a′
1...ad a′

d
= contains(a1, a′

1, . . . ad , a′
d )

−
∑

a1≤b1<n1

∑
b1<b′

1≤n1

. . .
∑

ad≤bd <nd

∑
bd<b′

d ≤nd

contains(b1, b′
1, . . . , bd , b′

d ) (6)

Since H contains
∏

1≤ i≤dni(ni + 1)/2 independent variable, an algorithm must keep at
least

∏
1≤ i≤dni(ni + 1)/2 values in order to return exact results for contains. �

We make the following observations about Theorem 3.1:

– The correctness of Theorem 3.1 is based on Eq. (5) (or Eq. (6) for d-dimensional cases),
which states that if we know the contains results for all possible ranges i, j, we will be
able to compute all values in H. However, the equivalent of Eq. (5) does not exist for the
intersect relation, which means that the space complexity of exact algorithms for intersect
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is less than O(N2). In fact, as demonstrated by the CD and BT algorithms, such algorithms
only require O(N) space.

– Theorem 3.1 indicates that exact algorithms for the Level 2 spatial relations are very
expensive in terms of storage requirement. In fact, it is often infeasible for even 2-
dimensional cases. For example, given a 360◦×180◦ space and a grid at the resolution of
(1◦×1◦), such an algorithm requires 4×(360×361)/2×(180×181)/2 � 4 GB space.

– Given a data space and the grid resolution, Theorem 3.1 gives the histogram storage lower
bound for an algorithm to answer contains query accurately for any dataset. This means
that for a particular dataset (for example, a very small dataset), it would be more storage-
efficient to simply use the original dataset to answer contains queries. However, as we
discussed in Section 2, the performance of this approach will not be good for browsing
large datasets.

– In the previous discussions, we have assumed that no object aligns with the grid, so all
objects are of the type (i, j). We can extend this model to more general cases and include
objects of the types (i, j), (i, j and i, j). This will increase the storage requirement by a
constant factor of 4.

4. Theoretical background

Theorem 3.1 indicates that an exact algorithm for the Level 2 spatial relations is likely to
be either space-expensive or time-expensive for large datasets. We will therefore develop
efficient approximation algorithms that can give reasonably accurate results for the Level 2
spatial relations. The algorithms we propose are based on Euler’s Formula and the interior-
exterior model introduced in Section 2. In this section, we first present Euler’s Formula
and some important corollaries, and then use the interior-exterior model to derive a set of
equations that define the relations among the numbers of objects that satisfy the Level 2
spatial relations.

4.1. Euler’s Formula and corollaries

Euler’s Formula [13] is an important result in graph theory, which states:

Theorem 4.1. For any graph with V vertices, E edges and F faces,

V − E + F = 2 (7)

Figure 11(a) shows an example of Euler’s Formula where the graph is a 3×3 grid. Note
that the exterior of a graph is also counted as a face, so in the example, the number of faces
is 10 instead of 9.

In [4], Beigel and Tanin proved a corollary of the Euler’s Formula. For the purpose of this
paper, we only present the 2-dimensional version of the corollary here:

Corollary 4.1. Let S be a bounded graph. A vertex, edge or face of S is an interior vertex,
edge or face if it is not the exterior face and it is not entirely contained in the boundary of S.
Let Vi , Ei and Fi be the number of interior vertices, interior edges and interior faces, then

Vi − Ei + Fi = 1 (8)
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Fig. 11 Euler’s formula and corollaries

An example illustrating Corollary 4.1 is shown in Fig. 11(b) where we use the same 3×3
grid. After removing the exterior face and the boundary, we now have 4 interior vertices, 12
interior edges and 9 interior faces, and have the formula evaluate to 1.

We extend Beigel and Tanin’s corollary to handle graphs that have more than one exterior
faces. Figure 11(c) shows a graph with two exterior faces, corresponding to a region with
a “hole”, which we will encounter later when we discuss the approximation algorithms.
Comparing Figs. 11(b) and (c), we can see that the face in the middle is now an exterior face.
Consequently, the vertices and edges around this exterior face are no longer interior vertices
or edges. After removing the two exterior faces and the two boundaries, we have 0 interior
vertices, 8 interior edges and 8 interior faces, so Vi − Ei + Fi = 0.

For graphs with k exterior faces, we give the following corollary with a brief proof. A more
rigorous proof can be done using the Euler characteristics in algebraic topology. Interested
readers are referred to [19] for more details.

Corollary 4.2. Let S be a bounded graph with K exterior faces and no two exterior faces
share the same boundary. A vertex, edge or face of S is an interior vertex, edge or face if it
is not one of the exterior faces and it is not entirely contained in one of the boundaries of S.
Let Vi , Ei and Fi be the number of interior vertices, edges and faces, then

Vi − Ei + Fi = 2 − k (9)

Proof: Let Vbi and Ebi be the number of vertices and edges on a boundary bi . From Euler’s
Formula, for a graph with k exterior faces, we have

V − E + F = Vi +
∑

0≤i≤k

Vbi − Ei −
∑

0≤i≤k

Ebi + Fi + k = 2 (10)
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Note that a boundary can be considered as a graph with two faces: an interior face and
an exterior face. Again from Euler’s Formula, we have Vbi − Ebi + 2 = 2, or Vbi − Ebi = 0.
Substituting this result into Eq. (10), we have Vi − Ei + Fi = 2 − k. �

4.2. Analysis of the interior-exterior intersection model

A browsing query consists of an array of tiles, where each tile can be regarded as a spatial
range query. Let q be a spatial range query and S a dataset. Under the interior-exterior model
introduced in Section 2, there are only five possible spatial relations between q and an object
in S. Let Nd , Ncs , Ncd , Neq and No be the number of objects in S that satisfy the five Level 2
spatial relations dis joint , contains, contained, equals and overlaps with respect to q , we
now derive from the interior-exterior model a set of equations that quantify Ncs , Ncd and No.
Let

– nii be the number of objects whose interiors intersect the interior of q
– nie be the number of objects whose exteriors intersect the interior of q
– nei be the number of objects whose interiors intersect the exterior of q
– nee be the number of objects whose exteriors intersect the exterior of q

From the definition of the Level 2 spatial relations (Fig. 3), we have the following
equation:

Nd

[
0 1
1 1

]
+ Ncs

[
1 1
0 1

]
+ Ncd

[
1 0
1 1

]
+ Neq

[
1 0
0 1

]
+ No

[
1 1
1 1

]
=

[
nii nie

nei nee

]

(11)

Note that nee = Nd + Ncs + Ncd + Neq + No. Since (Nd + Ncs + Ncd + Neq + No)
is the total number of objects in the dataset S, and the size of S is usually a known value, we
can replace nee with |S| in Eq. (11), and get

Nd

[
0 1
1 1

]
+ Ncs

[
1 1
0 1

]
+ Ncd

[
1 0
1 1

]
+ Neq

[
1 0
0 1

]
+ No

[
1 1
1 1

]
=

[
nii nie

nei |S|
]

(12)

As discussed in Section 2, spatial relations that involve boundaries such as equals are not
important in the browsing applications, so we would like to eliminate Neq from Eq. (12).
In practice, this can be done by “shrinking” an object a little bit if its boundary completely
aligns with a given grid. For instance, for a 1-d object [1, 3], we treat it as if it is (1,
3). So for all queries at the given resolution, the result of Neq is always 0, and Eq. (12)
becomes:

Nd

[
0 1
1 1

]
+ Ncs

[
1 1
0 1

]
+ Ncd

[
1 0
1 1

]
+ No

[
1 1
1 1

]
=

[
nii nie

nei |S|
]

(13)

Clearly, for a query q , if we can find out the values of nii , nei and nie, we would be able
to find out Nd , Ncs , Ncd and No by solving Eq. (13). In fact, Eq. (13) can be simplified even
further. Note that many real world datasets contain primarily small4 objects. Also for non-
point queries, a user usually specifies a reasonable-sized query which will not be completely

4 Small with respect to the size of a grid cell.
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contained in any objects. So in many cases, it is reasonable to assume that the results of the
contained queries, or Ncd , are always 0, so Eq. (13) is reduced to:

Nd




0
1
1


 + Ncs




1
0
1


 + No




1
1
1


 =




nii

nei

|S|


 (14)

5. Approximation algorithms

5.1. A histogram-based approach

Given a grid of the data space, a straightforward way to construct a histogram is to let each
histogram bucket correspond to a grid cell, and if an object intersects a cell, increment the
value of the corresponding bucket by 1. However, as shown in Figs. 12(a) and (b), such a his-
togram cannot distinguish the difference between one big object that spans several cells and
several small objects that are each contained in an individual cell. Comparing the two cases
in Fig. 12(a), we can see that the main difference between the two cases is that the big object
crosses the cell boundaries while the small objects do not. Based on this observation, we can
construct a histogram which not only keeps information for each cell, but also keeps informa-
tion on the edges and vertices. More precisely, we can construct a histogram H as follows:

– Given a n1 × n2 grid of R2, allocate (2n1−1)(2n2−1) buckets for the histogram H. A
bucket of H corresponds to a vertex, an edge or a cell of the grid.

– Scan through the dataset. For each object, if a vertex, an edge or a cell of the grid intersects
the interior of the object, increment the corresponding bucket by 1. Figure 12(c) shows
two examples of H after this step. Note that the two different cases in Fig. 12(a) now result
in two different histograms.

– Once the whole dataset is processed, invert the values in those buckets that correspond to
edges, as shown in Fig. 12(d). The reason for this step is related to the properties of Euler’s
Formula and will become clear in the next three paragraphs.

Fig. 12 Two approaches to construct a histogram
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Fig. 13 Compute nii

This histogram is the same as the one proposed in the BT algorithm [4]. In fact, our
algorithms are partially inspired by the BT algorithm. The difference is that we try to use
this histogram to answer queries about the Level 2 spatial relations, which is significantly
more complex than handling the Level 1 intersect relation.

To use the histogram H to compute nii , which is the number of objects that intersect a
query, let us first consider a simple example with two objects and a query at (xa, xb, ya, yc),
as shown in Fig. 13(a) (the shaded region is the query region). Both of these objects intersect
the query, and result in two intersecting regions (xa, xb, yb, yc) and (xb, xb, ya, yc).

Figure 13(b) shows the histogram H that corresponds to the dataset in Fig. 13(a). Now
consider the buckets of H that are inside the query region (excluding the query boundary), as
shown in Fig. 13(c). Note that these buckets can be decomposed into two components. The
first component (Fig. 13(d)) consists of 9 non-zero buckets, which correspond to the 1 interior
vertex (Vi + 1), 4 interior edges (Ei + 4) and 4 interior faces (Fi = 4) of the first intersecting
region (xa, xd, yb, yc). From Corollary 8 of Euler’s Formula, Vi + (−Ei ) + Fi = 1, we know
that the sum of these 9 buckets is 1. Similarly, the 5 non-zero buckets of the second component
correspond to the interior edges and faces of the second intersecting region (xb, xb, ya, yc),
and the sum of these 5 buckets is also 1. Based on this observation, we can conclude that
to calculate the number of objects that intersect a query, or Nintersect, we can simply sum
up all the buckets of H that are inside the query region, because each intersecting region
contributes 1 to the sum.

Since nii = No + Ncd + Ncs = Nintersect (Eq. (11)), we have

nii =
∑

b

H (b) (15)

where b is a bucket that inside the query region.
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Fig. 14 Compute nei

5.2. Simple Euler Approximation algorithm

In this subsection we introduce an approximation algorithm which we called Simple Euler
Approximation (S-EulerApprox). This algorithm is based on Eq. (14), which assumes that
the number of objects that contain the query, or Ncd , is always 0. For convenience, we
reproduce Eq. (14) here:

Nd




0
1
1


 + Ncs




1
0
1


 + No




1
1
1


 =




nii

nei

|S|




Since the dataset size |S| is usually known, and nii can be computed as described in Section
5.1, now we only need to compute the value of nei . Intuitively, since the histogram H keeps
the information about the interiors of the objects, and nii can be computed by summing up
all the buckets inside the query rectangle, then nei , which is the number of objects whose
interiors intersect the exterior of the query, can be computed by summing up all the buckets
that are outside the query rectangle (excluding the query boundary). So

nei =
∑

be

H (be) (16)

where be is a bucket that is outside the query region.
Figure 14(a) illustrates an example for computing nei . The query is at (xa, xb, ya, yb), and

to compute nei , we simply sum up all the buckets that are outside the query rectangle (the
shaded buckets of the histogram in Fig. 14(a)). In this case, we have 1 + (−1) + 1 + (−1)
+ 1 = 1, which is the correct result.

However, unlike nii , the value of nei computed from Eq. (16) is not alway accurate due
to crossover objects. Informally, a crossover object is an object that “crosses” the query
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rectangle, as the one shown in Fig. 14(b). When the interior of a crossover object intersects
the exterior of a query, the result is two intersecting regions. Consider the case in Fig. 14(b)
as an example: if we sum up all the buckets that are outside the query rectangle, we have 1
+ (−1) + 1 + 1 + (−1) + 1 = 2, while the correct result is 1. We expect the number of
crossover objects to be generally small unless the query rectangle is long and narrow, which
is very unlikely in the browsing applications, or, an object is long and narrow, which is rare
in geo-spatial datasets.

The S-EulerApprox algorithm can be summarized by the following equations:

nii =
∑

bi

H (bi ) (17)

nei =
∑

be

H (be) (18)

Ncs = |S| − nei (19)

No = nei − Nd = nei − (|S| − nii ) (20)

where bi is a bucket inside the query rectangle and be is a bucket outside the query rectangle.

5.3. Euler Approximation algorithm

When the number of objects that contain the query rectangle, or Ncd , is comparable to Ncs or
No either because the dataset has a large number of big objects or because the query rectangle
is sufficiently small, the assumption of the S-EulerApprox algorithm is no longer valid. In
this case, to answer queries about Level 2 spatial relations, we need a more sophisticated
algorithm, which we call the Euler Approximation algorithm (EulerApprox). This algorithm
is based on Eq. (13). Again for convenience, we reproduce Eq. (13) here:

Nd

[
0 1
1 1

]
+ Ncs

[
1 1
0 1

]
+ Ncd

[
1 0
1 1

]
+ No

[
1 1
1 1

]
=

[
nii nie

nei |S|
]

Since |S| is usually known and nii can be computed as described in Section 5.1, our task is
to compute the values of nei and nie. First we need to revisit the computation of nei , since
nei = Nd + Ncd + No, and we can no longer assume Ncd is 0.

If an object contains the query rectangle, then the interior of the object intersects the
exterior of a query. If we compute nei by adding up all the buckets of H that outside of
the query rectangle as discussed in Section 5.2, one would expect that the value of nei will
include Ncd . Unfortunately, this is not the case, as shown by the example in Fig. 15.

Figure 15 shows a query at (xb, xc, yb, yc) and an object that contains the query. The
corresponding histogram is shown in Fig. 15(c). Note that the intersecting region of the
object interior and the query exterior is the region (xa, xd, ya, yd) with a “hole” at (xb, xc, yb,
yc). From Corollary 4.2, we know that for this type of regions, Vi − Ei + Fi = 2 − k = 0
(because a hole is an exterior face, the number of exterior faces k = 2). In other words,
this intersecting region does not contribute to nei , which can be verified by adding up all
the shaded buckets in Fig. 15(c). We call this effect the loophole effect. Due to the loophole
effect, adding up the buckets outside the query rectangle does not give the correct result
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Fig. 15 The loophole effect

of nei as specified in Eq. (13), so we use a different notation n′
ei , and let n′

ei = ∑
be

H (be),
where n′

ei ignores all objects containing the query.
Compared to nei , computing the value of nie is an even bigger challenge. Intuitively, since

nie is the number of objects whose exteriors intersect the query interior, we can construct
a histogram He in a similar way as we constructed the histogram H , except that histogram
He keeps the information about object exteriors as opposed to the information about object
interiors kept in H . With He, we might be able to compute the value of nie by adding up
all the buckets of He that are inside the query rectangle. Due to space constraints, we omit
a detailed analysis of He, but it is sufficient to say that this approach also suffers from the
loophole effect. A histogram He does provide some additional information about the dataset,
but it does not help unless the query is of the same size as a unit cell of the grid.

Although computing nie is very difficult, and we only have n′
ei instead of nei , it is still

possible to develop a good approximation algorithm with only histogram H . Note that we
have four variables Nd , No, Ncs and Ncd which require four independent equations to solve,
and these four independent equations do not have to exactly match Eq. (13). Since we already
have nii , |S| and n′

ei , only one more equation is needed.
There are many ways to get the fourth equation. Here we present one of these methods

which we found perform quite well for different datasets. The main idea is to offset the
loophole effect and approximate the value of nie, or Nd + No + Ncd .

As shown in Fig. 16, given a query Q, we can divide the exterior of the query into two
regions: Region A and Region B. We first compute the number of objects that intersect Region
A, and call this number Ni (A). In the same way as we compute nii , the value of Ni (A) can
be obtained by adding up all the buckets of H that are inside Region A. Then we compute
the number of objects that are contained in Region B, and call this number Ncs(B). The
value of Ncs(B) can be computed accurately using the S-EulerApprox algorithm, because
there is no object that can contain or “cross” Region B. Once we have Ni (A) and Ncs(B),
we can use Ni (A) + Ncs(B) to approximate nie, and the difference between these two is that
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Fig. 16 Estimate nei

objects such as O2 in Fig. 16 are missing from Ni (A) + Ncs(B), while objects such as O1
are counted twice. With H , it is not possible to determine the exact numbers of these two
types of objects, but our experiments show that they tend to cancel out each other, especially
when the size of the query rectangle is small.

The EulerApprox algorithm can be summarized with the following equations:

nii =
∑

bi

H (bi ) (21)

n′
ei =

∑
be

H (be) (22)

No = n′
ei − Nd = n′

ei − (|S| − nii ) (23)

Ncd = Ni (A) + Ncs(B) − n′
ei (24)

Ncs = |S| − Ncd − Nd − No (25)

5.4. Multi-resolution Euler Approximation algorithm

As we discussed in Section 5.3, the accuracy of the EulerApprox algorithm depends on
the number of O1 type of objects being roughly equal to the number of O2 type of ob-
jects. However, observe that as the size of a query rectangle increases, the edges of the
query rectangle become longer, so the possibility that an object intersects an edge of the
query increases, while the possibility that an object completely contains an edge of the query
decreases. In other words, the difference between the number of O1 type of objects and the
number of O2 type of objects becomes larger as the query size increases, which indicates
that the EulerApprox algorithm would not perform well for large queries. To address this
issue, we propose the Multi-resolution Euler Approximation (M-EulerApprox) algorithm.
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The idea of the M-EulerApprox algorithm is to divide the objects into multiple groups
based on their areas, and construct a histogram for each group. To answer a query, we go
through each of the histograms, get a partial answer by invoking either S-EulerApprox or
EulerApprox algorithm based on the area of the query rectangle and the areas of the objects
stored in the histogram, and combine the partial answers into the final result.

The M-EulerApprox algorithm works as follows: given a dataset and a grid, we construct
m histograms Hi , where i = 0, 1, . . . , m − 1. The way to construct these histograms is the
same as described in Section 5.1, except for the following:

– For each histogram Hi , we associate it with a area attribute, denoted as area(Hi ), where
area(Hi ) < (Hi+1) and area(H0) = 1 × 1 (the area of the unit cell).

– Hi , where i �= m − 1 or 0, stores the objects whose areas are greater than or equal to
area(Hi ), but are smaller than area(Hi+1).

– Hm−1 stores the objects with areas greater than or equal to area(Hm−1).
– H0 stores the objects with areas from 0 to area (H1).

So essentially, area(Hi ) where i = 0, . . . , m − 1 is a sequence of pre-determined values
which partition the dataset into different groups, so that the objects within each group have
similar areas (from area(Hi ) to area(Hi+1)). Finding an algorithm to determine the optimal
m and the sequence area(Hi ) for any dataset is extremely difficult due to the fact that m and
area(Hi ) depend on not only the areas of the objects, but also on the shapes and positions of
the objects. Although an analysis based on the uniform distribution assumption is possible,
we decide that it is unlikely to be useful for any practical applications. So in this paper, we
introduce a pragmatic approach to determine m and area(Hi ) as follows:

Let area(Q) be the area of a query rectangle, and assume that for a given dataset and an
acceptable estimation error rate, the minimal and maximal area(Q) to be supported are 1 × 1
and k × l. We can start with 2 histograms with area(H0) = 1 × 1 and area(H1) = k/2 × l/2,
and get the estimation errors for a set of test queries. If, for example, the error rate of the
queries with area(Q) < (H1) is too high, we can add another histogram H with area(H )
being either area(H1)/4 or area(Q) where at area(Q) there is a peak of the estimation error
rate. Repeat these steps until either the error rate for all area(Q) is lower than the given limit,
or adding more histograms no longer reduces the estimation error, in which case we consider
the M-EulerApprox algorithm fails. Although this whole process sounds tedious, in practice
it works reasonably well because m is usually a very small number (from 2 to 5).

Given a set of histograms, we can answer queries by going through each histogram from
Hm−1 to H0. For a query with area(Q),

– if area(Q) ≤ size(Hi ), it means that no objects in Hi that are contained in Q, or Ncs = 0.
So we just need to compute the number of overlapping objects No. Note that both S-
EulerApprox and EulerApprox use the same method to compute No (No = ∑

be
H (be) −

(|S| − nii )), we can simply invoke S-EulerApprox.
– if si ze(Q) > si ze(Hi ), there are two possible cases:

1. si ze(Q) ≥ si ze(Hi+1). Since Hi+1 > Hi , we can be sure that no objects in Hi can
contain Q, so we invoke the S-EulerApprox algorithm and obtain N i

o and N i
cs .

2. si ze(Q) < (Hi+1) or i = m − 1. In this case, there could be objects in Hi that contain
Q, so we invoke the EulerApprox algorithm and obtain N i

o and N i
cs .

And the final results are Ncs = ∑
i N i

cs , No = ∑
i N i

o, where i = 0, 1, . . . , m, and Ncd =
|S| − No − Ncs .
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5.5. Space and time complexity

Both S-EulerApprox and EulerApprox algorithms operate on the same histogram H, while
M-EulerApprox algorithm uses multiple histogram, with each histogram having the same
size as H. Given an n1 × n2 grid, the storage space required for H is (2n1−1) ∗ (2n2−1) =
O(N). The size of the grid depends on the resolution requirement of the browsing application.

For query efficiency, we use a cumulative histogram Hc instead of H , where Hc(m, n) =∑
0≤i≤m,0≤ j≤n H (i, j). An example of H with corresponding Hc is shown in Fig. 17. Note

that to compute the sum of the buckets in a rectangular region of H, it takes at most 4 lookups
in Hc and 3 arithmetic operations, so the query response time of all three algorithms can be
considered as O(1).

6. Performance evaluation

In this section we evaluate the performance of the three proposed approximation algorithms:
S-EulerApprox, EulerApprox and M-EulerApprox. We use different datasets, both synthetic
and real, and a variety of query sets. We are particularly interested in studying the ramifica-
tions of the different approximation assumptions made to develop these algorithms.

6.1. Experimental setup

6.1.1. Datasets

We used four datasets in our experiments. All four datasets are spatial data in the 2-
dimensional 360×180 space, all data objects are represented by their MBRs, and we use
histograms at the 1×1 resolution for each of the following datasets:

– sp skew is a synthetic dataset consisting of 1 million rectangular objects, each with width
3.6 units and height 1.8 units. This dataset is designed to simulate many real world datasets
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Fig. 18 sp skew and sz skew datasets

which mainly consist of small objects while demonstrating significant spatial skewness.
The distribution of the centers of the objects are shown in Fig. 18(a). For clarity, we only
plot the first 100 thousand object centers of this dataset.

– sz skew is another synthetic dataset with one million square objects. The centers of the
objects are uniformly distributed in the 360×180 space. The side lengths of the objects
follows a Zipf distribution between 1.0 and 180.0, as shown in Fig. 18(b). This dataset
contains a significant number of large objects, which is rather unusual in real world
scenarios, but provides a good measurement for Level 2 approximation algorithms because
all three spatial relations contains, contained and overlap are well presented.

– adl is a dataset from the the Alexandria Digital Library [3]. This dataset consists of
2,335,840 objects, ranging from point data to large objects such as state, country and
world maps.

– ca road consists of 2,665,088 California road segments extracted from the US Census
TIGER dataset [22]. All objects are normalized to the 360×180 space so we can use a
consistent set of queries for all the datasets.

6.1.2. Query sets

The query sets are designed to simulate the browsing queries. As we discussed in Section 1,
each browsing query consists of an array of “tiles” covering a selected region, and each tile
is interpreted as a single spatial range query. In our experiments, we use 11 query sets. The
query sets are labeled as Qn , where n = 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20. Each query set
Qn is equivalent to a browsing query with the selected region being the complete 360 × 180
data space. A query in the query set Qn corresponds to a “tile” of the size n × n, and the
number of queries in Qn can be calculated as 360/n × 180/n. For example, the Q10 query
set consists of 360/10×180/10 = 648 queries of size 10×10. We chose the values for n
to be n = 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20 because both 180 and 360 are divisible by these
values of n.

6.1.3. Performance metrics

We evaluate the performance of our algorithms in two aspects: approximation accuracy and
query processing time. For approximation accuracy, we use Average Relative Error [2] as a
quantitative metric.
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Given a query set Q consisting of rectangles q1, q2, . . . , qn , if ei is the estimated answer
and ri is the actual answer for a given query qi , the average relative error for the query set Q
is given as: (

∑
qi ∈Q |ri − ei |)/(

∑
qi ∈Q ri ). Here, Q represents the set of all query rectangles

with a particular query size and we evaluate our techniques for each of the 11 different sets
(Qs) with query sizes ranging from 2 to 20 as described before. For query processing time,
we record the time to process each query set in wall-clock time on a PIII 800 desktop PC.

6.2. Approximation accuracy of the S-EulerApprox algorithm

We first evaluate the approximation accuracy of the S-EulerApprox algorithm with all four
datasets. Since the S-EulerApprox algorithm assumes Ncd = 0 for all queries, we only show
the results for the overlap results No and the contains results Ncs . Figures 19 and 20 shows
No and Ncs for the Q10 query set. In this figure, the x-coordinate of a data point is the exact
result of a query in the query set Q10 and the y-coordinate is the estimated result, so ideally,
all data points should fall on the y = x line.

From Figs. 19 and 20, we can see that S-EulerApprox works very well for the sp skew,
the ca road and the adl datasets. Note that the accuracy of S-EulerApprox depends on two
factors: the number of objects that contain the query, and the number of objects that “cross”
the query. In this case, both of these factors are in favor of S-EulerApprox because the
query size (10 × 10) is fairly large and the datasets consist of mostly small objects. On the
other hand, for the sz skew dataset, although S-EulerApprox gives good No results, whose
accuracy only depends on the number of cross-over objects, the algorithm performs very
badly on Ncs . This clearly indicates that the Ncd = 0 assumption is not applicable to the
sz skew dataset even for large queries.
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Fig. 20 No and Ncs results for the Q10 query set over adl and sz skew datasets

Figure 21(a) shows the average relative error of the overlap results for each query set from
Q2 to Q20. Note that the accuracy of the No estimation is only affected by the number of
crossover objects. As the query size decreases from 20×20 to 2×2, the chance of an object
crossing a query generally increases, which results in a decrease of estimation accuracy. This
effect is barely noticeable in the ca road dataset due to its large number of small objects, but
is quite evident and consistent in the adl dataset which contains objects with various sizes.
What is very interesting and indicative are the results of the sp skew and the sz skew datasets.
Note that the objects in the sp skew dataset are of the fixed size 3.6×1.8, so a “crossover”
can only occur when the query size is below 4×4. This is the reason why the error rate jump
from 0 to about 1.5 percent when the query size changes from 4×4 to 3×3. In the case of
the sz skew dataset, the error rate of No is effectively zero, since both queries and objects are
squares and it is impossible for two squares to cross each other. In general, we note that the
estimation for No is highly accurate. The error rate ranges from negligible to about 3.2% in
all cases except a single worst case of 6.6%, which is still somewhat tolerable.

Crossover objects also affect the accuracy of the estimation of the contains results, but
to a lesser extent than the effect of large objects. As shown in Fig. 21(b), the estimations
for the sp skew and the ca road datasets, which consist mostly of small objects, are very
accurate for all query sizes. However, the error rate of the sz skew dataset go out of chart
even for large query sizes. The error rate of the adl also increases rapidly as the query size
decreases, and reaches a worst case of about 120% error at the smallest query size. Note that
the S-EulerApprox algorithm assumes that the number of objects that contain the query, or
Ncd , is sufficiently small compared to No and Ncs . Apparently, this assumption is not valid
for the sz skew or the adl dataset which contains a significant number of large objects. As the
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Fig. 21 Average relative error of the S-EulerApprox algorithm

query size decreases, the number of objects that are contained in a query becomes smaller,
while the number of objects that contain the query becomes larger. The combined effect is
that the error rate increases almost exponentially.

6.2.1. Browsing directional relations

In Section 3, we claimed that a solution for browsing topological relations suffices for
browsing direction relations. We now evaluate browsing of direction relations for rectangular
query objects using the S-EulerApprox technique. We chose north east, restricted east
relations as representatives of the directional queries because, all other commonly asked
direction queries are either symmetric or can be expressed as a combination of these relations.
Tables 1 and 2 show the relative average error for the above direction queries evaluated using
query sets of sizes 2 and 10 respectively.

These results show that both north east and restricted east queries are estimated with
a very high degree of accuracy even in the case of sz skew dataset which has siginificant
number of cross-over objects. This is because, both these queries translate into intersect
queries (Nintersect) for their respective rectangular regions (see Fig. 6), which simply evaluate
to nii . Since the cross-over objects contribute exactly 1 to the value of nii , its value is
accurately estimated using the Euler histogram. Further, the estimated value of nii depends

Table 1 Average relative error (in percentage) for directional relations
for query set size 2

Query ca road sp skew adl sz skew

north east 0.000026 0 0 0
restricted east 0.000024 0 0 0

Table 2 Average relative error (in percentage) for directional relations
for Query set size 10

Query ca road sp skew adl sz skew

north east 0.000022 0 0 0
restricted east 0.00003 0 0 0
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Fig. 22 Ncd and Ncs results for the Q10 query set

only on the accuracy of the Euler histogram, which implies that the direction relations can
be efficiently browsed irrespective of the approximation technique used.

6.3. Approximation accuracy of the EulerApprox algorithm

In this section we evaluate the EulerApprox algorithm, which takes large objects into con-
sideration. Since the S-EulerApprox algorithm already provides good approximation results
for the sp skew and the ca road datasets, in these experiments we only consider the adl and
the sz skew datasets. Also since all three approximation algorithms S-EulerApprox, Euler-
Approx and M-EulerApprox use exactly the same method to estimate No, and the estimation
is very accurate as shown in Fig. 21(a), we omit the No results in this section and in Section
6.4.

Figure 22 shows the estimated Ncd and Ncs results versus the exact results of the Q10

query set. The results for the adl dataset show that while the EulerApprox algorithm does
not estimate the Ncd well, it does a good job of estimating the Ncs results. The situation is
reversed for the sz skew dataset, where the Ncd estimation is reasonably accurate but the Ncs

results are quite bad. Figure 22 seems to contradict the intuition that given an accurate No

estimate, the more accurate the Ncd estimate is, the more accurate the Ncs estimate will be.
However, a closer look at the y-axis reveals that for the adl dataset, the Ncs values are several
orders of magnitude larger than the Ncd results, which means that the Ncs results are very
resilient to Ncd estimation errors; while in the case of the sz skew dataset, the values of Ncd

are about an order of magnitude larger than the values of Ncs , so about 10% error in Ncd

completely dominates the error in Ncs .
Figure 23 shows the average relative error of the EulerApprox algorithm. Note that

EulerApprox assumes that the O1 type of objects (see Fig. 16) are about the same number as
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Fig. 23 Average relative error of the EulerApprox algorithm

the O2 objects, which is clearly a very simplistic assumption. However, by making this very
simplistic assumption, the accuracy of Ncs , which is often considered as a more important
metric in practice, improves noticeably. Comparing Fig. 23 with Fig. 21(b), we can see that
for the adl dataset, the worst case Ncs error rate drops from 120% to a somewhat tolerable
15%; and for the sz skew dataset, although the Ncs error rate is still quite high, it is still
a great improvement compared to the error rate in Fig. 21(b). Overall, the EulerApprox
algorithm is a big improvement over the S-EulerApprox algorithm, but the end results are
still not satisfactory.

6.4. Approximation accuracy of the M-EulerApprox algorithm

In this section we evaluate the M-EulerApprox algorithm on the adl and the sz skew datasets,
and see if trading storage space can further improve the accuracy of the Ncs and Ncd

estimates. An important issue in using the M-EulerApprox algorithm is to determine the
number of histograms m and the attribute area(Hi ) associated with each histogram Hi (where
1 ≤ i ≤ m). Unfortunately, finding the optimal m and areas(Hi s) is extremely difficult due
to the fact that m and areas(Hi s) depend not only on the areas of the objects, but also on the
shapes and positions of the objects. Although an analysis based on the uniform distribution
assumption is possible, we decided that it is unlikely to be useful for application. Here we
introduce a pragmatic approach to determine m and areas(Hi s):

Let area(Q) be the area of a query rectangle, and assume that for a given dataset and an
acceptable estimation error rate, the minimal and maximal area(Q) to be supported are 1 × 1
and k × l. We can start with 2 histograms with area(H0) = 1 × 1 and area(H1) = k/2 × l/2,
and get the estimation errors for a set of test queries. If, for example, the error rate of the
queries with area(Q) < (H1) is too high, we can add another histogram H with area(H )
being either area(H1)/4 or area(Q) where at area(Q) there is a peak of the estimation error
rate. Repeat these steps until either the error rate for all area(Q) is lower than the given limit,
or adding more histograms no longer reduces the estimation error. In practice this process
works reasonably well because m is usually very small number (from 2 to 5).

Figure 24 shows the average relative error of the M-EulerApprox algorithm with 2
histograms, where si ze(H0) = 1 × 1 and si ze(H1) = 10 × 10. Comparing Fig. 24 to Fig. 23,
we can see that by simply adding one additional histogram, the estimation accuracy improves
dramatically. For the adl dataset, the worst case Ncs error rate is now less than 5%. For the
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Fig. 24 Average relative error of the M-EulerApprox algorithm with 2 histograms
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Fig. 25 Average relative error of the M-EulerApprox algorithm for the sz skew Dataset

sz skew dataset, both Ncs and Ncd estimations are highly accurate for large query sizes, but
the Ncs accuracy is still unsatisfactory for small query sizes.

To further improve the estimation accuracy for the sz skew dataset, we increase the number
of histograms used in the M-EulerApprox algorithm, and the results are shown in Fig. 25.
The area(Hi ) values in the three experiments shown in Fig. 25 are:

– 3-histogram case: area(Hi ) = 1 × 1, 3 × 3 and 10 × 10
– 4-histogram case: area(Hi ) = 1 × 1, 3 × 3 and 5 × 5, 10 × 10
– 5-histogram case: area(Hi ) = 1 × 1, 3 × 3 and 5 × 5, 10 × 10, 15 × 15
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Fig. 26 Query processing time

As we can see, with 3 histograms, the worst case error rate already drops from about 58
to below 3% (note the difference of the y-axis scales in Fig. 24(b) and Fig. 25, and with 5
histograms the error rate is further reduced to under 0.5%. More importantly, we note that
as the number of histograms increase, the estimation accuracy consistently improves.

6.5. Query response time

Theoretically, both S-EulerApprox and EulerApprox algorithms take constant time to answer
a single query. We measured the query response time for each query set and give some
quantitative results in Fig. 26. As mentioned in Section 6.1.2, the size of a query set Qn is
360/n×180/n, so the largest query set Q2 consists of 16200 queries.

As we can see, all three algorithms take less than 25 milliseconds to process the largest
query set, so all of them are efficient enough for browsing applications.5 One thing worth not-
ing is that the time difference between S-EulerApprox and EulerApprox is almost negligible.
This is because the query processing time of both algorithms are dominated by computing
the indexes of the histogram H from the query rectangle. This computation involves floating
point arithmetic and branch statements, which are much more expensive than lookups and
integer operations on modern processors. Another somewhat surprising result is that the
query processing time is roughly the same for the M-EulerApprox algorithm regardless of
the number of the histograms used. This may also be due to the fact that the most expensive
operation, namely, the index computation, is done only once for all histograms.

7. Conclusion and future work

Spatial dataset browsing is an important problem that has not been systematically studied
before. In this paper, we concentrated on the efficient computation of Level 2 spatial relations
which need to be supported in browsing applications. By extending the spatial relations that
can be efficiently handled from Level 1 to Level 2, we open up many new application
possibilities. We proposed the interior-exterior model, which presents a new perspective on
the topological and directional relationships between queries and objects. This allows us to
explore types of queries like contains which were not handled by prior approaches. Under

5 The goal we started out with was to process a browsing query with 5000 tiles under 100 ms.
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this model, we proved that exact evaluation of Level 2 queries requires substantial storage
overhead, and developed three storage-efficient approximation algorithms with constant time
complexity. The performance evaluation shows that the S-EulerApprox algorithm achieve
high approximation accuracy for datasets that are dominated by small objects, and for datasets
in which the number of large objects is significant, the M-EulerApprox performs very well
with slightly increased time and space costs. Although to date, our work has concentrated
on supporting spatial dataset browsing, we believe that our approach can be very useful in
query optimization for spatial database systems. Our future work will explore this direction
and other types of database queries.
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