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Abstract

This paper gives an overview on numerical aspects of multivariate interpolation
and approximation by radial basis functions. It comments on the correct choice of
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1. Introduction

Over the past decades radial basis functions or, more generally, (conditionally)
positive definite kernels have very successfully been used for reconstructing mul-
tivariate functions from scattered data. This success is mainly based upon the
following facts:

(i) Radial basis functions can be used in any space dimension.
(ii) They work for arbitrarily scattered data, bearing no regularity at all.
(iii) They allow interpolants of arbitrary smoothness.
(iv) The interpolants have a simple structure, which makes RBFs in particular

interesting to users outside mathematics.
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However, these positive properties do not come for free. For example, building a
smooth interpolant using a smooth basis function leads also to an ill-conditioned
linear system that has to be solved. Moreover, since most basis functions are glob-
ally supported, a large number of interpolation points leads to an unacceptable
complexity concerning both space and time.

For these reasons recent research concentrated on resolving these problems. Fast
methods for evaluating and computing an RBF interpolant have been developed and
thoroughly investigated. Smoothing techniques have been employed to regularize
ill-conditioned systems and to smooth out measurement errors.

It is the goal of this paper to describe the most successful approaches in this
research direction. Naturally, the selection is biased by this author’s point of view
and, even if the attempt is made to cover as many methods as possible, there is no
guarantee that some important once are missing.

Nonetheless, this paper should help the reader to understand which basis func-
tion and which efficient method she or he should employ for her or his particular
reconstruction problem. It should also encourage the reader to consult the literature
pointed out in the bibliography for further studying.

This paper is organized as follows. In the next section we will give a short review
on interpolation and approximation by (conditionally) positive definite kernels. The
second section is devoted to efficient methods, while the last section deals with
stabilizing and regularization.

2. Scattered Data Interpolation and Approximation

A general scattered data interpolation problem can be described as follows. Sup-
pose we are given N distinct data sites X = {x1, . . . , xN} situated in a bounded
region Ω ⊆ Rd. Attached to each data site xj comes a data value fj , which might
represent a measured quantity at site xj . Finally, suppose that it is known, or at
least assumed, that the function values fj are generated by an unknown function
f , i.e. fj = f(xj). It might also be possible that the data values are generated by
functionals other than point evaluations. Examples include derivative or cell av-
erage information, but we will not pursue this here, although, to a large extent,
the theory can be developed in a more general context (see [1,2] and the references
therein).

The information given so far (the data sites, the data values and the fact that
the data values are generated by a function) is not enough to built a trustworthy
interpolant or approximant to the unknown function, since it provides only very
localized information. To have a decent reconstruction of the unknown function
on all of Ω and not only at X also certain global information is necessary. This
global information can often be provided by certain smoothness assumptions on the
unknown target function f . This is equivalent to assuming the function to belong
to a certain, normed function space H. With this information at hand, it is possible
and natural to look for the solution of
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min {‖s‖H : s ∈ H with s|X = f |X} , (1)

or, if the data values are known to contain noise, of

min





N∑

j=1

[s(xj) − f(xj)]
2 + λ‖s‖2

H : s ∈ H



 , (2)

where λ > 0 is a certain smoothing parameter, which has to be chosen carefully, to
balance between interpolation and approximation.

2.1. Reproducing Kernel Hilbert Spaces

To discuss the solutions to both problems we have to make two more assumptions
on the function space. The first assumption is a natural one. Since we want to work
with point evaluation functionals, it is reasonable to assume that point evaluation
functionals are continuous on H, i.e. that for every x ∈ Ω there exists a constant
Cx > 0 with

|f(x)| ≤ Cx‖f‖H, for all f ∈ H.

Our second assumption is not that natural but it will simplify the theory dramat-
ically and provides no severe restriction in applications. We will assume that our
function space H is a Hilbert space of functions.

A Hilbert space H of functions f : Ω → R with continuous point evaluation
functionals is known to be a reproducing kernel Hilbert space (RKHS) (see e.g. [3]).

Definition 1. A reproducing kernel Hilbert space H is a Hilbert space of functions
f : Ω → R, which has a unique kernel Φ : Ω × Ω → R, satisfying

(i) Φ(·, x) ∈ H for all x ∈ Ω,
(ii) f(x) = (f,Φ(·, x))H for all x ∈ Ω and all f ∈ H.

In a RKHS the reproducing kernel Φ is always symmetric and positive semi-
definite, i.e. for arbitrary point sets X = {x1, . . . , xN}, the matrices

A = AΦ,X = (Φ(xi, xj))i,j (3)

are symmetric and positive semi-definite. This follows immediately from the repro-
duction property applied to the kernel itself:

Φ(x, y) = (Φ(·, y),Φ(·, x))H,

and this already ensures that (2) has a unique solution for λ > 0. However, for
guaranteeing a unique solution to (1) as well, we have to make the additional
assumption that point evaluation functionals are linearly independent on H. This
is equivalent to the fact that all matrices A of the form (3) are positive definite.
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Theorem 2. Let H ⊆ C(Ω) be a reproducing kernel Hilbert space with reproducing
kernel Φ. Then, for every f ∈ H, both problems (1) and (2) have a unique solution
s0 and sλ, respectively. This solution has a representation

sλ =

N∑

j=1

αjΦ(·, xj),

where the coefficient vector α ∈ RN can be determined by solving the linear system

(A+ λI)α = f |X.

Here, A is the matrix (3) and I denotes the identity matrix.

For a proof, we refer the reader to [2] for problem (1) and to [4] for problem (2).
From this theorem one can read off that the solutions sλ, λ > 0, of (2) converge to
the solution s0 = IXf of (1) with λ approaching zero.

Our main interest will be in kernels that are radial and hence defined on all of
Rd.

Definition 3. A kernel Φ : Rd × Rd → R is said to be translation invariant, if
it can be written in the form Φ(x, y) = ϕ(x − y) for all x, y ∈ Rd with an even
function ϕ : Rd → R.

The kernel is said to be radial if it can be written as Φ(x, y) = φ(‖x − y‖2),
x, y ∈ Rd, with a function φ : [0,∞) → R.

Typical examples of positive definite and radial kernels are Gaussians φ(r) =

e−r2

, inverse multiquadrics φ(r) = 1/
√

1 + r2, and compactly supported functions
like φ(r) = (1 − r)4+(4r + 1). While the associated Hilbert spaces for the first two
kernels are rather small and consist mainly of analytic functions, the RKHS to the
latter kernel is a classical Sobolev space.

This is due to the fact that in all practical situations, the RKHS to a positive
definite, translation invariant kernel can be characterized by Fourier transformation.
Recall that the Fourier transform of f ∈ L1(R

d) is defined by

f̂(ω) := (2π)−d/2

∫

Rd

f(x)e−ixT ωdx, ω ∈ Rd.

Then, the RKHS to Φ(x, y) = ϕ(x − y) = φ(‖x − y‖2) can be characterized as

{f ∈ L2(R
d) ∩ C(Rd) : f̂/

√
ϕ̂ ∈ L2(R

d)},

which shows that for Gaussians and inverse multiquadrics we are confronted with
rather small spaces. The spaces we are mainly interested in are Sobolev spaces

Hτ (Rd) := {f ∈ L2(R
d) : f̂(·)(1 + ‖ · ‖2

2)
τ/2 ∈ L2(R

d)},
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they possess reproducing kernels of finite smoothness. The Sobolev space H τ (Rd)
is known to be a subset of C(Rd) provided that τ > d/2, which will be our general
assumption.

Note that a kernel Φ(x, y) = ϕ(x− y) with a Fourier transform satisfying

c1(1 + ‖ω‖2
2)

−τ ≤ ϕ̂(ω) ≤ c2(1 + ‖ω‖2
2)

−τ

has Hτ (Rd) as its RKHS and the native inner product

(f, g)H := (2π)−d/2

∫

Rd

f̂(ω)ĝ(ω)Φ̂(ω)−1dω

leads to a norm which is equivalent to the Sobolev space norm. In this sense, we
will call Φ also a reproducing kernel of Hτ (Rd).

2.2. From Thin-plate Splines to Conditionally Positive Definite Kernels

If τ = m is a nonnegative integer, the norm on Hm(Rd) can equivalently be
expressed by

‖f‖2
Hm(Rd) =

m∑

k=0

∑

|α|=k

k!

α!
‖Dαf‖2

L2(Rd)

and it is interesting to see that problems (1) and (2) also have a solution if the full
norm is replaced by the semi-norm

|f |2BLm(Rd) :=
∑

|α|=m

m!

α!
‖Dαf‖2

L2(Rd)

and minimization is done over all functions from the Beppo-Levi space

BLm := {f ∈ C(Rn) : Dαf ∈ L2(R
n) for all |α| = m}.

The solution can be expressed in terms of the so-called surface or thin-plate splines
which are defined as

φd,m(r) :=





Γ(d
2 −m)

22mπd/2(m− 1)!
r2m−d, for d odd,

(−1)m+ d−2

2

22m−1πd/2(m− 1)!(m− d/2)!
r2m−d log r, for d even,

and form a Green’s function to the m-th iterated Laplacian operator. To formulate
the result, we introduce πm−1(R

d) as the space of d-variate polynomials of degree
at most m− 1 and let p1, . . . , pQ with Q = dim(πm−1(R

d)) be a basis of πm−1(R
d).

Moreover, we say that a set X is πm−1(R
d) unisolvent, if the only polynomial

p ∈ πm−1(R
d) with p|X = 0 is the zero polynomial. The proof of the following

theorem can again be found in [4,2].
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Theorem 4. Suppose that m > d/2 and that X ⊆ Rd is πm−1(R
d) unisolvent. Let

f ∈ BLm(Rd) be the unknown target function. Then, the solution sλ to

min





N∑

j=1

[f(xj) − s(xj)]
2 + λ|s|2BLm(Rn) : s ∈ BLm(Rd)





as well as the solution s0 to

min
{
|s|BLm(Rn) : s ∈ BLm(Rn) with s|X = f |X

}

is given by

sλ(x) =

N∑

j=1

ajφd,m(‖x− xj‖2) +

Q∑

k=1

bjpj(x).

The coefficients a ∈ RN and b ∈ RQ can be determined as follows. Let A =
(φd,m(‖xi − xj‖2)) ∈ RN×N and P = (pj(xi)) ∈ RN×Q. Then a and b are the
solutions of

(A+ λI)a+ Pb= f |X
P T b= 0,

where I denotes the identity matrix.

Thin-plate splines form a particular class of conditionally positive definite func-
tions. In general, a function ϕ : Rd → R is said to be conditionally positive definite
of order m, if the associated matrices Aϕ,X ∈ RN×N are positive definite on the set



α ∈ RN :

N∑

j=1

αjp(xj) = 0 for all p ∈ πm−1(R
d)



 .

Besides thin-plate splines, multiquadrics, defined by φ(r) =
√

1 + r2, are the most
prominent examples of conditionally positive definite functions. A formal, more
general definition for conditionally positive definite kernels is the following one:

Definition 5. Suppose P is a finite dimensional subspace of C(Ω), Ω ⊆ Rd. A
continuous symmetric kernel Φ : Ω × Ω → R is said to be conditionally positive
definite on Ω with respect to P if for any N pairwise distinct centers x1, . . . , xN ∈ Ω
and all α ∈ RN \ {0} with

∑N
j=1 αjp(xj) = 0 for all p ∈ P , the quadratic form

N∑

j=1

N∑

k=1

αjαkΦ(xj , xk)

is positive.
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The results of Theorem 4 remain true in the situation of a conditionally positive
definite kernel, if the Beppo-Levi space is replaced by an adequate, natural func-
tion space, the so called native space H = NΦ(Ω) of the kernel Φ. For a thorough
discussion of native spaces see [5,6] and Chapter 11 of [2]. Here, only the follow-
ing information is important. The native space H is a function space carrying a
semi-inner product (·, ·)H which has the finite dimensional space P as its kernel.
Moreover, the quotient space H/P is a Hilbert space. This can be used to equip H
with a new inner product and a new kernel so that H becomes a reproducing kernel
Hilbert space itself. Since this will play a role in a later section we will be more
precise here. Suppose Ξ = {ξ1, . . . , ξQ} ⊆ Ω with Q = dim(P) is P-unisolvent,
meaning that the zero function is the only function from P that vanishes on Ξ.
Suppose further that p1, . . . , pQ form a Lagrange basis for P , meaning in particular
pj(ξi) = δij . Then, we can define a new inner product

(f, g) := (f, g)H +

Q∑

`=1

p`(x)p`(y)

and a new kernel

K(x, y) = Φ(x, y) −
Q∑

k=1

pk(x)Φ(ξk , y) −
Q∑

`=1

p`(y)Φ(x, ξ`)

+

Q∑

`=1

Q∑

k=1

pk(x)p`(y)Φ(ξk , ξ`) +

Q∑

`=1

p`(x)p`(y).

Proposition 6. With this kernel and this inner product the native space H becomes
a RKHS with kernel K.

Hence, in many situations one can reduce the conditionally positive definite case
to the positive definite one.

2.3. Error Estimates and Condition Numbers

To understand the numerical behavior of the interpolant or approximant it is
essential to have bounds on the approximation error and on the condition number
of the interpolation matrix. These bounds are usually expressed employing two
different geometric measures. For the approximation error, it is crucial to know how
well the data sites X fill the region Ω. This can be measured by the fill distance

hX,Ω := sup
x∈Ω

min
xj∈X

‖x− xj‖2,

which gives the radius of the largest “data-site free ball” in Ω. The condition num-
ber, however, will obviously only depend on the data sites X and not on the region
Ω. Moreover, if two data sites tend to coalesce then the corresponding interpolation



8 Holger Wendland

matrix has two rows which are almost identical. Hence, it is reasonable to measure
the condition number in terms of the separation distance

qX =
1

2
min
j 6=k

‖xj − xk‖2.

In the case of interpolation, i.e. for the solution of (1) interpolation error and
condition number are well investigated. See for example [7–18] for error estimates
and [19–25,15,2]) for investigations on the condition number. Both lists are far from
being complete.

In our situation, when working in Hτ (Ω) or BLτ (Ω), respectively, error estimates
for the solutions s0 = IXf of (1) are of the form

‖Dα(f − IXf)‖Lp(Ω) ≤ Ch
τ−|α|−d(1/2−1/p)+
X,Ω ‖f‖Hτ (Ω), (4)

provided that f ∈ Hτ (Ω), Ω is a bounded Lipschitz domain, and τ > |α| + d/2.
The condition number of the interpolation process is mainly determined by the

smallest eigenvalue of the matrix A, i.e. by

λmin(A) = inf

{
αTAα

αTα
: α ∈ RN \ {0} with P Tα = 0

}
,

where the condition P Tα = 0 can be neglected in the case of positive definite
kernels. The asymptotic behavior of λmin(A) has extensively been studied over the
past years. It is now well known that λmin(A) behaves like

λmin(A) ≥ Cq2τ−d
X . (5)

The interpolation error (4) and the eigenvalue estimate (5) indicate that interpo-
lation with smooth kernels will lead to a good approximation behavior at the price
of an ill-conditioned problem.

In the case of the smoothing spline solution of (2) there exists also estimates
on the approximation error and on the condition number but we will delay this
discussion until later.

2.4. Choosing an Appropriate Kernel

By now it should be apparent, that the knowledge on the assumed smoothness of
the unknown target function f leads automatically to a specific interpolation prob-
lem and hence to a specific kernel. The user should use this smoothness information,
if at hand, to set up the correct interpolation problem.

If the precise smoothness of the the target function is unknown, it is better to
overestimate the smoothness, as long as no ill-conditioning problems arise, and to
work with a kernel that might be smoother than necessary.

It can be shown, that the resulting norm-minimal interpolant still produces op-
timal approximation rates, which are now determined by the rougher smoothness
of f , as long as the data sets are quasi-uniform (see [26,12,27]).
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3. Reducing the Complexity

The naive approach to solve the linear systems associated to the interpolation
or smoothing problems leads to a complexity of O(N 3) time and O(N2) space.
Furthermore, every evaluation needs another O(N) time. For a large number N of
data sites this is unacceptable. Thus more efficient methods are necessary. We will
review some of the most promising approaches in this section.

3.1. The Multipole Expansion

In the case of a globally supported basis function and a large number of data
sites it is impossible to use direct methods for solving the resulting linear equa-
tions. Instead, iterative methods have to be employed. For the time being, we do
not want to discuss a specific iterative method here. It is only important to realize
that the main operation in such an iterative method is a matrix by vector multipli-
cation which takes generally O(N 2) operations. In our situation, the matrix vector
multiplication reduces mainly to the evaluation of N sums of the form

s(x) =
N∑

j=1

αjΦ(x, xj) (6)

neglecting the low order polynomial in the case of conditionally positive definite
kernels.

Hence, it is crucial to find efficient algorithms that are able to perform this
evaluation in less than O(N) time, preferably in O(logN) or even constant time.
Obviously we cannot achieve this goal if we want to reproduce the exact value of s at
x. But since s is already an approximation to an unknown function, an additional
error might be acceptable. Hence, we only try to approximate s up to a certain
accuracy ε > 0.

In the following, we will call t in Φ(x, t) a source point and x an evaluation point.
The idea of multipole expansions is based on a far field expansion of Φ. Suppose all
source points are situated in a certain region, also called panel, which is centered at
a point t0. Suppose further that we want to evaluate the function (6) at a point x
that is sufficiently far away from the source panel. If we can expand Φ in the form

Φ(x, t) =

p∑

k=1

φk(x)ψk(t) +R(x, t) (7)

with a remainder R that tends to zero for ‖x− t0‖2 → ∞ or for p→ ∞ if ‖x− t0‖2

is sufficiently large, then we call (7) a far field expansion for Φ around the source
t0. Using (7) to evaluate (6) yields

s(x) =

N∑

j=1

αjΦ(x, xj)
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=

N∑

j=1

αj

p∑

k=1

φk(x)ψk(xj) +

N∑

j=1

αjR(x, xj)

=

p∑

k=1

φk(x)

N∑

j=1

αjψk(xj) +

N∑

j=1

αjR(x, xj)

=:

p∑

k=1

βkφk(x) +

N∑

j=1

αjR(x, xj).

Hence, if we use the approximation s̃(x) =
∑p

k=1 βkφk(x) we have an error bound

|s(x) − s̃(x)| ≤ ‖α‖1 max
1≤j≤N

|R(x, xj)|,

which is small if x is far enough away from the sources xj . Moreover, each coefficient
βk can be computed in advance in linear time. Thus, if p is much smaller than N ,
we can consider it as constant and we need therefore O(N) time to compute the
coefficients {βk} and constant time for each evaluation of s̃.

One could say that we have averaged the information given at the sources xj to
one information given at the center t0 of the panel. In this sense, (7) is a unipole
expansion of Φ. Note that in the case of translation invariant kernels it is easy to
get the far field expansion of Φ around any t0 if the far field expansion around 0
is known. To see this, suppose (7) is the far field expansion of Φ(x, t) = Φ(x − t)
around zero. Then we can write

Φ(x − t) = Φ((x− t0) − (t− t0)) =

p∑

k=1

φk(x− t0)ψk(t− t0) +R(x− t0, t− t0)

to derive the far field expansion around t0.
In general, the evaluation points are close to at least a few of the data sites.

To cope with this situation, we have to refine our approach. The solution is a
hierarchical subdivision of the region Ω of interest into panels or cells of sources.
This is generally achieved using tree-based algorithms. Let us explain the idea by
an example. Suppose all data points are contained in the interval [0, 1] and suppose
we hierarchically divide this interval into panels as shown in Figure 1.

[0, 1]

[0, 1/2)

[0, 1/4)

[0, 1/8)

�� TT
[1/8, 1/4)

�� ZZ
[1/4, 1/2)

[1/4, 3/8)



 JJ
[3/8, 1/2)

���� PPPP
[1/2, 1]

[1/2, 3/4)

[1/2, 5/8)



 JJ
[5/8, 3/4)

�� ZZ
[3/4, 1]

[3/4, 7/8)

�� TT
[7/8, 1]

Fig. 1. Hierarchical decomposition of [0, 1].
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With every source panel T we associate the part of the function s that corresponds
to the sources in that panel by setting

sT =
∑

xj∈T

αjΦ(·, xj).

Moreover, we also assign the far field expansion s̃T of sT to the panel T .
Then, the approximation s̃ to the function s at evaluation point x is computed

by adding the associated functions sT for the panel that contains x itself and all
neighboring panels. Those panels that are well-separated from x contribute only
by their far field expansion s̃T to s̃. Here, we say that a point x is well-separated
from a panel T if it has at least the distance diam(T ) from T . A panel U is called
well-separated from a panel T if all points in U are well-separated from T . Since
we want to save floating point operations we always use the largest possible source
panel for the far field series.

Let us return to the example given in Figure 1. If we want to approximate s(x)
for x in the panel [0, 1/8) we form

s̃(x) = s[0, 1
8
)(x) + s[ 1

8
, 1
4
)(x) + s̃[ 1

4
, 3
8
)(x) + s̃[ 3

8
, 1
2
)(x) + s̃[ 1

2
, 3
4
)(x) + s̃[ 3

4
,1](x).

Note, that we use the two level 2 approximants s̃[ 1
2
, 3
4
) and s̃[ 3

4
,1](x) instead of the

four level 3 approximants s̃[ 1
2
, 5
8
), . . . , s̃[ 7

8
,1]. This halves the computational com-

plexity in this case. We can do this because the panels [1/2, 3/4) and [3/4, 1] are
well-separated from [0, 1/4), the panel on the same level that contains x. On the
other hand, we could not use the approximant s̃[ 1

2
,1] because its panel [1/2, 1] is

not well-separated from the panel [0, 1/2], which is the panel on the same level that
contains x.

Similarly, to approximately evaluate s(x) in the panel [ 38 ,
1
2 ) we would use

s̃(x) = s[ 3
8

, 1
2
)(x) + s[ 1

4
, 3
8
)(x) + s[ 1

2
, 5
8
)(x)

+ s̃[0, 1
8
)(x) + s̃[ 1

8
, 1
4
)(x) + s̃[ 5

8
, 3
4
)(x) + s̃[ 3

4
,1](x).

This finishes the description of the general idea of the multipole technique to
speed up the evaluation of sums like (6). What still has to be done is to find a far
field expansion for the underlying kernel. Since this, in general, has to be done for
every kernel separately, it would go beyond the scope of this text. Hence, we refer
the reader to the constructions, for example, in [28–36].

3.2. The Domain Decomposition Method

Now, we want to discuss one particular iterative method for interpolation, which
has been introduced in [37]. The idea of this method is to subdivide the original
data set into several smaller data sets and to iteratively solve the interpolation
equations and to form residuals. To be more precise, let us decompose X in subsets
X1, . . . , Xk. These subsets need not be disjoint but their union must be X . Then the
algorithm starts to interpolate on the first set X1, forms the residual, interpolates
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Fig. 2. The test data set consisting of 23574 points (left) and the decomposition (right).

this on X2 and so on. After k steps one cycle of the algorithm is complete and it
starts over again. A more formal description is

(i) Set f0 = f , s0 = 0.
(ii) For n = 0, 1, 2, . . .

For r = 1, . . . , k
fnk+r = fnk+r−1 − IXr

fnk+r−1

snk+r = snk+r−1 + IXr
fnk+r−1

If ‖f(n+1)k‖L∞(X) < ε stop.
This algorithm approximates the interpolant IXf up to the specified accuracy.

The convergence result is based upon the fact that the interpolant s0 = IXf is also
the best approximant to f from the subspace

VX :=





N∑

j=1

αjΦ(x, xj) : P Tα = 0



 + P .

Convergence is achieved under very mild assumptions on the decomposition. The
data sets Xj have to be weakly disjoint meaning that Xj 6= Yj and Yj+1 6= Yj for
each 1 ≤ j ≤ k − 1, where Yj = ∪k

i=jXi, 1 ≤ j ≤ k. This is, for example, satisfied,
if each Xj contains at least one data site, which is not contained in any other Xi.

Theorem 7. Let f ∈ H be given. Suppose X1, . . . , Xk are weakly distinct subsets
of Ω ⊆ Rd. Set Yj = ∪k

i=jXi, 1 ≤ j ≤ k. Denote with s(j) the approximant after j
completed cycles. Then there exists a constant c ∈ (0, 1) so that

‖sf,Y1
− s(n)‖H ≤ cn‖f‖H.

For a proof of this theorem and for a more thorough discussion on how the subsets
Xj have to be chosen we refer the reader to [37,2].

We want to demonstrate the behavior of this method as well as that of the ones
still coming. To this end we applied all methods to the data set represented in the
left part of Figure 2.

This data set consists of a moderate number of points; most of them are ar-
ranged in a grid like manner. However, as one can clearly see the data set contains
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regions without points and the reader should compare the behavior of the numerical
methods discussed in this paper in particular in these regions.

The results for the alternating-projection algorithm are shown in Figure 3. The
point sets Xk have been chosen as axes parallel boxes containing at most 300 points,
see the right part of Figure 2. The choice is not optimal and can be improved
by an adaptive domain decomposition algorithm as we will employ it in the next
subsection.

The first picture from the left in Figure 3 shows the reconstruction after one
outer half cycle. The second and the third show the reconstruction after one com-
pleted outer cycle. While the reconstruction seems accurate from above, the side
view reveals that the solution is not yet decent. The final two pictures present the
reconstruction after 88 cycles where the residuum has dropped below 10−6.

Fig. 3. Alternating-projection reconstruction.

3.3. The Partition of Unity Idea

The idea of a partition of unity method is comparable to the idea of the do-
main decomposition method. In the context of radial basis function interpolation,
a partition of unity approach has first been introduced in [38,39].

This time not only the set of data sites is decomposed but the entire region Ω, i.e.
we choose an overlapping covering {Ωj}M

j=1 of Ω. Along with this covering we need
a partition of unity, i.e. a family of compactly supported, nonnegative, continuous
functions {wj} with supp(wj) ⊆ Ωj and

M∑

j=1

wj(x) = 1, x ∈ Ω.

Moreover, we choose for every cell Ωj an approximation space Vj . Then, a function
f is approximated on each cell by a local approximant sj ∈ Vj and the global
approximant is formed by the weighted sum of local approximants:

sf =

M∑

j=1

sjwj . (8)
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Note that this process respects an interpolation property, i.e. if all sj are inter-
polants at X ∩ Ωj then sf is an interpolant at the entire set X .

Moreover, even in this general situation, the simple estimate

|f(x) − sf (x)| =

∣∣∣∣∣∣

M∑

j=1

[f(x) − sj(x)]wj(x)

∣∣∣∣∣∣

≤
M∑

j=1

|f(x) − sj(x)|wj(x)

≤ max
1≤j≤M

‖f − sj‖L∞(Ωj )

shows, that the global approximation error is governed by the worst local error.
In other words, if the local approximants provide good approximations so will the
global one. In our situation, the local approximants are formed as solutions of (1)
or (2) where the global data set is replaced by the local data sets Xj := Ωj ∩X .

The complexity of this approach is governed by the following assumptions.
(i) We need a data structure for our point set such that we can find the data

sites in each cell efficiently.
(ii) We need a cell structure such that

– each cell contains only a small number of points,
– each x ∈ Ω is contained only in a small number of cells,
– these cells can be found efficiently.

Note that these assumptions lead to the requirement that the number of cells M
is proportional to the number N of points. This means in particular that the O(N)
interpolation/approximation problems can be solved in O(N) time.

Again, tree-like decompositions lead to good data structures in both cases and,
employing such data structures, one can show that the operations can be performed
in O(logN) time with an additional preprocessing step to build the data structure
in O(N logN) time.

The results for our test data sets are shown in the left part of Figure 4. The right
part of that figure indicates how the overlapping boxes are chosen this time.

Fig. 4. Partition-of-unity reconstruction.
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3.4. Multilevel and Compactly Supported RBFs

The numerical methods discussed so far are tailored for globally supported radial
basis functions. In particular the domain decomposition method necessarily needs
a multipole expansion for an efficient implementation. Even if compactly supported
basis functions can be used as globally supported ones, this does not take the local
character of these functions into account. Hence, it is time to discuss ideas for
efficiently using compactly supported functions.

One possibility is to adjust the support radius as a function of the data density.
Instead of using the function Φ one better employs the function Φδ = Φ(·/δ) and
chooses δ as a function of the fill distance hX,Ω. The choice δ = chX,Ω with a
sufficiently small c > 0 will always lead to a sparse matrix. Moreover, since the
interpolation matrix using Φδ and X coincides with the interpolation matrix using
Φ and X/δ, we know from (5) that our scaled problem has a smallest eigenvalue,
which behaves like

λmin ≥ C
(qX
δ

)2τ−d

.

Hence, in the case of quasi-uniform data, the choice δ = chX,Ω leads to a stable
interpolation problem.

Unfortunately, it is also possible to show that the error scales in a similar way.
To see this, we cannot directly use (4), since the constant there includes a norm
equivalence constant, which now depends also on δ. Nonetheless, it is possible to
show the following result:

Theorem 8. Let Ω ⊆ Rd be a bounded Lipschitz domain satisfying an interior
cone condition. If Φ is the reproducing kernel of Hτ (Ω), τ = k + σ with k > d/2
and 0 < σ ≤ 1, then interpolation with the scaled kernel Φδ leads for 0 < δ ≤ 1 to

‖f − IX,Φδ
f‖L2(Ω) ≤ C

(
hX,Ω

δ

)τ

‖f‖Hτ (Ω),

with a constant C > 0 independent of hX,Ω, δ, and f .

Proof. Since the function u := f−IX,Φδ
f ∈W τ

2 (Ω) vanishes on X , a general result
from [14] gives

‖f − IX,Φδ
f‖L2(Ω) ≤ Chτ

X,Ω|f − IX,Φδ
f |Hτ (Ω)

It remains to show that the expression |f − IX,Φδ
f |Hτ (Ω) can be bounded by a

constant times δ−τ‖f‖Hτ (Ω). To this end, we assume that the interpolant is given
by

s := IX,Φδ
f =

N∑

j=1

cjΦ((· − xj)/δ).
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Moreover, since Ω is a Lipschitz domain, we can extend f ∈ Hτ (Ω) continuously
to a function from Hτ (Rd). Next, the fractional semi-norm can, up to a constant,
be expressed as

|s|2Hτ (Ω) =
∑

|α|=k

∫

Ω

∫

Ω

|Dαs(x) −Dαs(y)|2
‖x− y‖d+2σ

2

dxdy,

which leads, with s̃ =
∑

j cjΦ(· − yj), yj = xj/δ, to

|s|2Hτ (Ω) ≤ |s|2Hτ (Rd)

= δ−2k
∑

|α|=k

∫

Rd

∫

Rd

|Dαs̃(x/δ) −Dαs̃(y/δ)|2
‖x− y‖d+2σ

2

dxdy

= δd−2τ
∑

|α|=k

∫

Rd

∫

Rd

|Dαs̃(x) −Dαs̃(y)|2
‖x− y‖d+2σ

2

dxdy

= δd−2τ |IX/δ,Φf(δ·)|2Hτ (Rd)

≤ δd−2τ‖f(δ·)‖Hτ (Rd)

using the fact that s̃ = IX/δ,Φf(δ·) is the ‖ · ‖Hτ (Rd)-norm minimal interpolant to
f(δ·). Finally, the latter norm can, up to a constant, be bounded by

‖f(δ·)‖2
Hτ (Rd) =

∫

Rd

|f̂(δ·)(ω)|2(1 + ‖ω‖2
2)

τdω

= δ−2d

∫

Rd

|f̂(ω/δ)|2(1 + ‖ω‖2
2)

τdω.

= δ−d

∫

Rd

|f̂(ω)|2(1 + ‖ω‖2
2δ

2)τdω

≤ δ−d‖f‖2
Hτ (Rd)

provided that δ ≤ 1. Putting things together leads to

|f − s|Hτ (Ω) ≤ |f |Hτ (Ω) + |s|Hτ (Ω) ≤ (1 + Cδ−τ )‖f‖Hτ (Ω) ≤ Cδ−τ‖f‖Hτ (Ω),

which finally gives the stated result.

Thus, the choice δ = chX,Ω leads only to an acceptable error if c is sufficiently
large, which stands in contrast to choosing c as small as possible. This is also
reflected in the so called uncertainty or trade-off principle, see [15].

However, in practical applications generally only one data set is given and it
is often possible to find a compromise in choosing an appropriate support radius.
Nonetheless, our goal now is to describe a possible approach so that the application
benefits from both a stable interpolation matrix and a good approximation property.
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The idea of a multilevel method is again based on a decomposition of the set of
data sites X , but this time in a nested sequence of subsets,

X1 ⊆ X2 ⊆ . . . ⊆ Xk = X. (9)

If X is quasi-uniform meaning that qX has comparable size to hX,Ω, then the
subsets Xj should also be quasi-uniform. Moreover, they should satisfy qXj+1

≈
caqXj

and hXj+1 ,Ω ≈ cahXj ,Ω with a fixed constant ca. A good choice for ca would
be ca = 1/2.

Now, the multilevel method, introduced in [40], is simply one cycle of the domain
decomposition method discussed in Section 3.2. But this time we use compactly
supported basis functions with a different support radius at each level. We could
even use different basis functions at different levels. Hence, a general formulation
goes as follows. For every 1 ≤ j ≤ k we choose a basis function Φj and form the
interpolant

Ijf := IX,Φj
f =

∑

xj∈Xj

cxj
(f)Φj(· − xj),

but using now the basis function Φj on level j. We have in mind to take Φj as
Φ(·/δj) with a compactly supported basis function Φ and scaling parameter δj

proportional to hXj ,Ω. The idea behind this algorithm is that one starts with a
very thin, widely spread set of points and uses a smooth basis function to recover
the global behavior of the function f . In the next level a finer set of points is used
and a less smooth function possibly with a smaller support is employed to resolve
more details and so on.

As said before, the algorithm performs one cycle of the domain decomposition
algorithm. This means

(i) set f0 = f and s0 = 0.
(ii) for 1 ≤ j ≤ k:

sj = sj−1 + Ijfj−1,
fj = fj−1 − Ijfj−1.

Even if the multilevel algorithm resembles the alternating projection algorithm,
the idea behind it is completely different. The most obvious differences are that
we use different basis functions at each level and that we perform only one cycle.
The latter is reasonable since any further cycle would not change our interpolant
because the data sets are nested.

The results of our test data sets are represented in Figure 5. The data set has
been subdivided into a sequence of 5 nested subsets. The first row of Figure 5 shows
the accumulated interpolants while the second row contains the residuals.

3.5. Which Method to Choose?

As mentioned earlier, the right choice of the basis function depends mainly upon
additional information on the target function such as smoothness. The right choice
of the particular reconstruction method depends also on the application. For ex-
ample, if exact interpolation is necessary, any method that is based on a far field
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Fig. 5. Multilevel-reconstruction.

expansion is only of limited use, since such a method lives on the approximate
character in the far field. On the other hand, if the data set has holes which have
to be filled (e.g. for mesh repair) any purely local method is the wrong choice, even
the partition of unity approach has to be handled with care here. Better suited is a
global method such as domain decomposition or the multilevel method. In all other
cases, it seems that, in particular for huge data sets, the partition of unity method
is the fastest one.

4. Stabilizing the Interpolation Process and Dealing with Noise

4.1. Error Estimates and Condition Numbers

Our discussion of error estimates and condition numbers in Section 2.3 has in
particular shown that, when working in Hτ (Ω) or BLτ (Ω), we are confronted with
an error and a smallest eigenvalue behaving like

‖f − IXf‖L∞(Ω) ≤ Ch
τ−d/2
X,Ω ‖f‖W τ

2
(Ω) =: CfF (hX,Ω)

λmin(A) ≥ cq2τ−d
X =: cG(qX )

and the reader should be aware of the fact that the exponent 2τ − d of qX in the
lower bound of λmin is precisely twice the exponent of hX,Ω in the error estimate,
or, with other words, F (h2) = G(h), using the above introduced functions. This is
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indeed an intrinsic relation between error estimates and smallest eigenvalues. To be
more precise, the uncertainty relation (cf. [15]) states roughly that

cG(qX ) ≤ λmin(A) ≤ CF (hX,Ω).

This has the unfortunate side-effect that in the case of quasi-uniform data sets,
i.e. data sets where qX and hX,Ω are of comparable size, the smallest eigenvalue
indeed behaves like

ch2τ−d
X,Ω ≤ λmin(A) ≤ Ch2τ−d

X,Ω ,

so that this is the best rate that we can expect for deriving an prescribed error of

size h
τ−d/2
X,Ω .

Proposition 9. The interpolation process derives an error of size O(h
τ−d/2
X,Ω ) with

a smallest eigenvalue of size O(q2τ−d
X ). Moreover, the most stable interpolation

process, where qX is comparable to hX,Ω still has a smallest eigenvalue of size
O(h2τ−d

X,Ω ).

This proposition has direct consequences for any numerical strategy for solv-
ing the interpolation equations. In particular, we have to deal, at least, with the
following two situations:

(i) The data set has a moderate sized hX,Ω but a small qX .
(ii) Both quantities hX,Ω and qX are small, but of comparable size.
If hX,Ω is rather small, it might still happen that qX is still essentially smaller

than hX,Ω. However, the solution for the first case will show that we can avoid such
a situation, and that it suffices to restrict ourselves then to the situation described
in the second case.

In the first case, our point set is actually sparsely distributed over Ω with some
almost identical points. Proposition 9 tells us that we achieve the accuracy at a cost
that is too high, namely O(q2τ−d

X ), while a more “intelligent” chosen data set would

lead to the same accuracy but with a smallest eigenvalue behaving like O(h2τ−d
X,Ω ),

which is, for a not too small hX,Ω acceptable.
One strategy to avoid the situation described in the first case is to sort out nearly

identical points in a preprocessing step. This, assuming a good data structure,
can be done efficiently, as long as the number of coalescing points is small when
compared to the number of all points.

However, sorting out coalescing points only makes sense if the information carried
by two such points is also almost identical. But if, for example, the points xj

and xk are almost identical and if the associated function values fj and fk differ
significantly, additional information from the user is required to specify that point
that is to be sorted out. Unfortunately, such a situation can and will quite often
appear in real-world applications, where the data represents measured quantities
that contain noise.
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Fortunately, the solution of (2) gives another possibility for stabilizing the in-
terpolation process by regularization. We will discuss this in the next subsection,
while the final subsection deals with the situation in the second case.

4.2. Regularization and Stabilization by Smoothing

Suppose we still work in the spaces Hτ (Ω) or BLτ (Ω). Let sλ denote the solution
of the smoothing problem (2). From Theorems 2 and 4 we see that sλ can be
computed by inverting a slightly modified interpolation matrix. The modification
simply consists in adding a λ to the diagonal of the main part A of the interpolation
matrix. This already gives the first part of the following theorem. The second part
has recently been proved in [41].

Theorem 10. Suppose the data are generated by a function f ∈ H τ (Ω) or f ∈
BLτ (Ω) respectively. Let sλ be the solution of (2). Then, the smallest eigenvalue of
the associated system matrices behaves like

λmin(A+ λI) = λmin(A) + λ ≥ Cq2τ−d
X + λ,

where I denotes the N ×N identity matrix. Moreover, the error between f and sλ

can be bounded by

‖Dα(f − sλ)‖Lp(Ω) ≤ C
(
h

τ−|α|−d(1/2−1/p)+
X,Ω + h

−|α|
X,Ω

√
λ
)
‖f‖Hτ (Ω),

provided that Ω is a bounded Lipschitz domain satisfying an interior cone condition,
and τ = k + σ with k > |α| + d/2.

If we look at the particular situation of pure L∞(Ω) error estimates we see that

‖f − sλ‖L∞(Ω) ≤C
(
h

τ−d/2
X,Ω +

√
λ
)
‖f‖Hτ (Ω)

λmin(A+ λI)≥ cq2τ−d
X + λ.

Hence, choosing λ = c̃h2τ−d
X,Ω leads to

‖f − sλ‖L∞(Ω) ≤Ch
τ−d/2
X,Ω ‖f‖Hτ (Ω)

λmin(A+ λI)≥ cq2τ−d
X + ch2τ−d

X = ch2τ−d
X .

Corollary 11. If the smoothing parameter λ > 0 is determined in this way then
the best possible approximation order is achieved in the most stable way, meaning
that the “interpolation matrix” has a largest possible smallest eigenvalue.

Here, we have restricted ourselves to the most important case of L∞-error es-
timates. But Theorem 10 indicates also how the smoothing parameter has to be
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chosen if one is interested in estimates employing different Lp-norms and deriva-
tives.

Theorem 10 can also be interpreted in a slightly different, more practicable way.
To guarantee stability, the user can simply add an a priori λ to the diagonal entries
of A, for example something like λ = 10−6. Then, Theorem 10 implies stability
and an error which is of size O(10−3), which, in many applications, is sufficient. As
a matter of fact, since this is a worst case upper bound, the user can, in general,
expect a much better behavior.

4.3. Change of Basis

So far, we have learned that smoothing is an adequate choice in the situation of
highly non-uniform data sets. It also helps in the case of quasi-uniform data sets
and infinitely smooth basis functions, like Gaussians and (inverse) multiquadrics,
since their associated interpolation matrices are already highly ill-conditioned in
that particular situation for moderate separation distances. Unfortunately there
exists no theoretical coverage of error estimates in that situation, even if numerical
test (cf. [41]) show promising results.

Our final task, for basis functions of finite smoothness, is to deal with the case
of really dense data sets. Due to the last section we can restrict ourselves to quasi-
uniform data sets.

In the first place, the bad conditioning in this situation is due to the natu-
rally chosen basis, namely Φ(·, x1), . . . ,Φ(·, xN ) (plus a basis for P), provided Φ is
conditionally positive definite with respect to P . Thus, it seems to be natural to
investigate and to search for better suited bases for the subspace

VX :=





N∑

j=1

αjΦ(·, xj) : P Tα = 0



 + P ,

where P ∈ RN×Q is the usual matrix with entries pj(xi). The ideas we are going
to describe now are in particular fitted to the situation of thin-plate splines, while
they might also work for other conditionally positive definite kernels. They mainly
come from [37].

To introduce a different basis of VX , we first select a P-unisolvent subset Ξ =
{ξ1, . . . , ξQ} of X ⊂ Ω and a cardinal basis p1, . . . , pQ for P satisfying p`(ξk) = δ`,k.
Then we define the kernels

κ(x, y) := Φ(x, y) −
Q∑

k=1

pk(x)Φ(ξk , y) −
Q∑

`=1

p`(y)Φ(x, ξ`)

+

Q∑

`=1

Q∑

k=1

pk(x)p`(y)Φ(ξk, ξ`) (10)

and
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K(x, y) = κ(x, y) +

Q∑

`=1

p`(x)p`(y).

It is easily verified that the resulting functions κ(·, xj) and K(·, xj) belong to the
space VX defined above. However, κ has the additional feature κ(·, ξ`) = 0, 1 ≤ ` ≤
Q. The following results can be found in [37], see also [2].

Theorem 12. The kernel K : Ω × Ω → R is positive definite on Ω. Moreover, if
Ω̃ = Ω \ Ξ then κ : Ω̃ × Ω̃ → R is positive definite on Ω̃.

Thus we can restate our initial interpolation problem in two new ways. Let us
start with the simpler one.

Corollary 13. If Ξ ⊆ X then the interpolant IXf can be written as

IXf =

N∑

j=1

αjK(·, xj),

where the coefficients are determined by IXf(xj) = fj , 1 ≤ j ≤ N .

When using κ we have to be more careful, since Ξ ⊆ X does not lead to linearly
independent functions κ(·, xj). But we need Ξ ⊆ X to ensure that we get the same
interpolant. So assume that xj = ξj for 1 ≤ j ≤ Q. Then we know at least that the
matrix

C = (κ(xi, xj))Q+1≤i,j≤N

is positive definite. Or with other words the family {κ(·, xj) : Q + 1 ≤ j ≤ N} is
linearly independent. Since κ(·, xj) = 0 for 1 ≤ j ≤ Q, we can immediately conclude
that {κ(·, xj) : Q+ 1 ≤ j ≤ N} ∪ {pk : 1 ≤ k ≤ Q} is a basis for VX .

Thus we can restate the interpolation problem using this basis.

Corollary 14. If Ξ ⊆ X satisfies xj = ξj for 1 ≤ j ≤ Q then the interpolant can
be written as

IXf(x) =

Q∑

j=1

βkpk(x) +

N∑

j=Q+1

αjκ(x, xj)

and the coefficients are again determined by IXf(xj) = f(xj), 1 ≤ j ≤ N .

Since the {p`} form a Lagrangian basis for Ξ and since κ vanishes if one of its
arguments is an element from Ξ the interpolation conditions lead to the matrix
equation



Computational Aspects of Radial Basis Function Approximation 23

 I O

P̃ C




(
β

α

)
= f |X

with the Q×Q identity matrix I and the (N −Q)×Q matrix P̃ = (pj(xi)) where
i runs over the last indices starting with i = Q+ 1. The first Q rows in this system
indicate β = (f(x1), . . . , f(xQ))T , so that we can reduce the system to solving

Cα = f̃ − P̃β

where f̃ = (f(xQ+1), . . . , f(xN )).
Hence, we now have three possibilities to solve the interpolation equations. We

can either use the conventual approach using the (N +Q)× (N +Q)-interpolation

matrix Ã from Theorem 4, or one of our new approaches.
Table 1 shows the results for all three approaches using a regular grid of 25

points with grid size h. This reflects in particular the situation in the partition of
unity approach, where the number of data sites is small but the fill and separation
distance can become arbitrarily small. The results show that both new methods are
superior to the conventional one, and that the system involving the matrix C even
leads to a condition number which is independent of the parameter h.

Table 1
Condition numbers for a fixed number of centers.

Fill distance Conventional Reproducing kernel Homogeneous

h matrix Ã matrix K matrix C

0.001 2.4349 × 108 8.4635 × 108 5.4938 × 103

0.01 2.4364 × 106 8.4640 × 106 5.4938 × 103

0.1 2.5179 × 104 8.5134 × 104 5.4938 × 103

1.0 3.6458 × 102 1.3660 × 103 5.4938 × 103

10 1.8742 × 106 1.2609 × 103 5.4938 × 103

100 1.1520 × 1011 1.1396 × 105 5.4938 × 103

1000 3.5478 × 1015 1.1386e × 107 5.4938 × 103

The theoretical background for such a behavior is given in the next theorem. It
states that for a specific class of basis functions, which includes thin-plate splines,
the associated kernel κ is invariant under scaling. This means in particular, that
the eigenvalues of the matrix C scale in the same way showing that the condition
number of C is independent of the scaling parameter.

Theorem 15. Suppose the symmetric kernel Φ ∈ C(Rd×Rd) satisfies Φ(hx, hy) =
hλΦ(x, y)+qh(x−y) for all h > 0 and x, y ∈ Rd, where λ ∈ R and qh ∈ π2m−1(R

d).
Let Ξ = {ξ1, . . . , ξQ} be unisolvent for πm−1(R

d) with associated Lagrange basis
p1, . . . pQ. Let κ be the kernel (10) and κh for h > 0 be the kernel κ for the set
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hΞ = {hξ1, . . . , hξQ} and the Lagrange functions ph
1 , . . . , p

h
Q associated to this set.

Then κh(hx, hy) = hλκ(x, y) for all x, y ∈ R.
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