A New Location Layer for the TCP/IP Protocol Stack

André Zuquete
DETI, IEETA / IT, University of Aveiro
Portugal

andre.zuquete@ua.pt

ABSTRACT

The IPv4 address space is quickly getting exhausted, putting
a tremendous pressure on the adoption of even more NAT
levels or IPv6. On the other hand, many authors propose
the adoption of new Internet addressing capabilities, namely
content-based addressing, to complement the existing IP
host-based addressing. In this paper we propose the intro-
duction of a location layer, between transport and network
layers, to address both problems. We keep the existing [Pv4
(or IPv6) host-based core routing functionalities, while we
enable hosts to become routers between separate address
spaces by exploring the new location header. For a proof
of concept, we modified the TCP/IP stack of a Linux host
to handle our new protocol layer and we designed and con-
ceived a novel NAT box to enable current hosts to interact
with the modified stack.

Categories and Subject Descriptors

C.2.0 [Computer Communications Networks|: Gen-
eral—Open Systems Interconnection reference model (OSI);
C.2.1 [Computer Communications Networks|: Network
Architecture and Design—Store and forward networks; C.2.2
[Computer Communications Networks]: Network Pro-
tocols—Protocol architecture (OSI model), Routing proto-
cols; C.2.5 [Computer Communications Networks]|: Lo-
cal and Wide-Area Networks—Internet; C.2.6 [Computer
Communications Networks|: Internetworking— Routers,
Standards

General Terms

Design, Standardization

Keywords

Internet, addressing, identification, routing, location

1. INTRODUCTION

The end-to-end paradigm of the original IPv4 proposal [26]
assumes an addressing space where an IP address, a 32-bit
number, by itself identifies unequivocally an end-host. IP
addresses are formed by two parts, a network part and a
host part, which are used for routing optimization (namely,
for reducing routing tables on core routers).

For tackling the fast depletion of the IP address space in
the last decade of the last century, Wang & Crowcroft [31]
proposed a two tier addressing space, using internal and ex-
ternal IP addresses. In their proposal, hosts could use one

ACM SIGCOMM Computer Communication Review

17

Carlos Frade
IT
Portugal

gilfrade@hotmail.com

or both types of address, but external addresses should be
used only if required and hosts could allocate them on a
needed basis from a specific server. Therefore, the Internet
could be separated in one global Internet and many, isolated
private networks, with no specific, well-defined bridging be-
tween any of them.

The separation of the IP address space in private and
public addresses was effectively adopted [28] but, again, no
mechanisms where defined, at the IP level solely, for allowing
hosts from private networks to interact with hosts in the
public network, or for allowing independent private networks
to interact among themselves.

Nevertheless, Network Address Translation (NAT [9]) was
already defined and could be used to enable hosts in pri-
vate networks to initiate interactions (TCP streams or UDP
query/response dialogs) with hosts in the public network.
The bridging among the address spaces was possible at the
expense of changing transport ports (or other flow selectors)
and keeping state on the hosts performing the NAT bridging
(NAT boxes).

A NAT box screens a network of hosts behind a single
IP address, i.e. uses the same public IP address for identi-
fying (simultaneously) a set of hosts, which was a modifi-
cation of the original IP addressing paradigm (one IP ad-
dress, one host). The immediate consequence of this fact is
that hosts screened by a NAT box cannot be deliberately
addressed by hosts in the public network. This may be an
interesting feature for security purposes (prevents hosts from
receiving unattended requests), but it does also introduces
limitations when hosts effectively want to be contacted from
outside their private network. Port forwarding partially mit-
igates this limitation, allowing transport ports to be bound
to screened hosts.

1.1 Goal

Our goal is to have a mechanism for allowing end-hosts
on any [P network, public or private, to address each other
without limitations. The key feature that we explore is a
novel hierarchical routing mechanism, inspired in two ex-
isting routing concepts: source routing and route recording.
With our hierarchical routing mechanism, we imagine the In-
ternet to evolve hierarchically (see Figure 1), just like DNS,
from an IPv4 or IPv6 public backbone to several private leaf
networks, each of which with a focused purpose, possibly in-
terconnected by intermediate, private mid-size networks.

Furthermore, IP addresses do not need to be omnipresent
in all networks, and we may also have either IPv4 or IPv6
networks. Consequently, we propose a new identification
paradigm for Internet endpoints, other than the current IP

Volume 42, Number 2, April 2012

addresses, because we want to be independent from them
for identification. This identification paradigm enables a
complete separation of entity identification from entity lo-
cation, while keeping the current Internet host identification
paradigms (either IPv4 or IPv6).

Vprivate

e N ()
(private \ w/‘
Private Private
network @ network

(not IP) (IP)

\\
Public, worldwide)
— network '

(~ private 4.‘ (IPw4 or IPv6)
| Private
network
(not IP)

private

Figure 1: Hierarchical Internet vision, with a cen-
tral, IPv4 or IPv6 public backbone and many hier-
archies of private networks, using IP or not. The di-
agram shows three interactions among pairs of end-
points, both located in leaf, private networks, and
a hierarchical traffic routing between them passing
through a public or private IP network, indirectly
accessible to both entities.

Our goal is not to replace current routing algorithms in ex-
isting networking domains, such as IPv4 or IPv6. Instead,
our goal is to provide end-to-end, overlay routing mecha-
nisms enabling datagrams to travel across different network-
ing domains following a source routing, multi-hop strategy.

In addition, we recognize that the possibility of using the
Internet for addressing endpoints that may not have a pub-
lic IP address, or even an IP address, opens new address-
ing possibilities, namely the possibility to address content.
In our opinion, an hierarchical, heterogeneous addressing
paradigm, such as the one we propose, may help to imple-
ment content addressing, because (i) hierarchical addresses
may accommodate different addressing components, such
as identifiers for content or for content providers, and be-
cause (ii) it may enable dynamic and alternative routing
strategies across a hierarchical infrastructure between con-
tent providers and consumers.

1.2 Contribution

This paper presents a new layer for the TCP /IP protocol
stack. The new location layer stays between the network
and transport layers. Its purpose is to enable the deploy-
ment of addressing bridges on top IP. Such bridging enables
a seamless routing between many types of heterogeneous
addressing domains, such as public/private IPv4 and IPv6
networks (but not limited to these ones).

The location layer will be responsible for adding flexible
addressing, location and routing facilities for IP packets.
This layer allows any IP host to become a locator node be-
tween an IP host and some “addressable entity”, which can
also be another IP host. Addresses handled by these agents
are flexible data structures that use a stacking paradigm to
memorize routes (e.g. the next IP hop) and/or entity iden-

ACM SIGCOMM Computer Communication Review

18

tifiers (e.g. a latitude-longitude location for a wireless sen-
sor or a signed content hash). We propose a simple meta-
structure for implementing location layer headers but we do
not impose specific policies to manage the activities of a
locator node.

The location layer will also be responsible for an effec-
tive separation between endpoint identification and location.
Traditionally, IP addresses are used for host identification
and location. Since with the new location header we may
support the interaction between endpoints belonging to dif-
ferent address spaces, endpoints are identified within a new,
wide identification space, which is totally location-free, and
such identifiers are handled on the context of the location
layer.

For a proof of concept, we implemented this layer on Linux
kernels and we exploited it for implementing an alternative
NAT mechanism. Our NAT box, which is now a host loca-
tor, is totally stateless, allows hosts in a private and public
network to address each other, in both directions, with no
limitations of any kind and, finally, does not need to inter-
fere with upper protocols layers to operate properly. This is
a striking difference to the currently existing NAT, which is
stateful, mainly unidirectional, and requires transformations
of packet contents belonging to upper protocol layers.

Just for demonstration, we describe a simple, world-wide
content addressing infrastructure using our location layer
for routing content consumers to content suppliers or some
intermediate content caches.

1.3 Deployment and transition issues

The exploitation of our location layer does not require any
support from the Internet core infrastructure, either IPv4 or
IPv6. Therefore, the workload and cost of its deployment
for core network operators is null.

The handling of location headers only needs to be de-
ployed on the edges of the Internet (personal computers and
servers), and possibly on Internet edge routers (ISP’s). Al-
though massive, such deployment can be mostly automated
using the nowadays common operating system update tools.
Existing applications do not stop working because of the new
header, because we keep all the protocols they currently use
(IP, TCP, etc.). We will come back to this topic on Section 7,
after describing our prototype implementation.

2. CONTRIBUTION: LOCATION LAYER

The location layer will optionally exist between the net-
work layer (IP) and the transport layer. The purpose of
the location layer is to enable the deployment of overlay ad-
dressing, location and routing strategies over IP.

The location layer changes the way an endpoint is iden-
tified and reachable within the Internet. In the classical
IPv4/IPv6 addressing and identification paradigm, an IP
address is both a host identification tag (enabling a unique
pinpointing of a host) and a host location tag (enabling the
routing of a packet to the end-host network and, from there,
to the end-host). With the location layer, we clearly separate
endpoint identification from location and routing informa-
tion (cf. Fig. 2):

e An endpoint is uniquely identified with a unique iden-
tifier (Endpoint Unique Identifier, EUTI) placed in the
new location header. An EUI can be used to identify
hosts or other Internet endpoints.

Volume 42, Number 2, April 2012

| IP header I IF payload |

Location header

I B IP header I”_l

IP address -

IP payload I

LP {Location Path)

— — EUI (Endpoint Unique Identifier)

Figure 2: Diagram showing the placement of the
Location Header and the fields used to identify and
locate an Internet endpoint: the Endpoint Unique
Identifier (EUI) for endpoint identification, the IP
address (of a Location Node, LN) and the Location
Path (LP) for endpoint location (through the LN).

e An endpoint is reachable using the IP address of a
Locator Node (LN) and a Location Path (LP). The IP
address of LN is an ordinary IP address, belonging to
an IP header, and the LP is a variable-length, opaque
byte array located in the location header.

The purpose of the EUI is to provide a constant, location-
independent endpoint identification along packet exchanges
belonging to the same logical session (e.g. a TCP virtual
circuit). By using the EUI for identifying session endpoints
we are also anticipating a potential modification on the lo-
cation of an endpoint during a session, which may imply a
modification on the LN and LP values used by the peer to
reach it.

The location header contains 6 fields: next protocol and
header length; source and destination EUls; source Location
Path (SLP) and Destination Location Path (DLP).

SLP and DLP are variable-length, implementation-free
stacks of location information used by locator nodes. These
push routes into SLP and pop routes from DLP. This way,
SLP and DLP together enable the deployment of multiple,
heterogeneous stackable routing policies. SLP and DLP are
similar to the IP optional fields Record Route and Strict
Source Routing [26], respectively, but they can store any
data, not only IP addresses, and they are managed by lo-
cator nodes, not by IP routers. This topic will be further
addressed in Section 2.5.

In the example of Fig. 3 we show how node A and B
(for instance, two smartphones) establish a VoIP session.
First, node A finds a path to B, using name services and
brokers. For instance, for this kind of service both A and
B can adhere to a naming schema suitable for the purpose
of exploiting VoIP with mobile phones, such as the existing,
hierarchical phone numbering space (e.g. country code plus
national area code plus phone number). At the end of the
search, A will get B’s EUI (if not known from start), the path
to reach B from where A stands, through several locator
nodes (LP_AB), and the nearest locator (LN1), the one that
would be the first to interpret LP_AB. The exact protocol
to obtain all this data is out of the scope of this paper. We
anticipate that many different name services may be used to
provide this data for different purposes, therefore it would
be shortsighted to describe a single one in this paper that
could be used for all purposes (note that DNS is not also the
unique Internet name service capable of translating names
into IP addresses).

Then, A initiates the interaction with B by sending pack-
ets to the nearest LN (LN1) and using the location header

ACM SIGCOMM Computer Communication Review

19

for including its EUT and B’s identification and location path
(EULB and LP_AB). LP_AB will be progressively disman-
tled by locators LN1, LN2 and LN3, until reaching B. Si-
multaneously, they create in SLP a route back towards A
through themselves. When the packets finally reaches B, it
can extract A’s EUI (e.g. its phone number) from the loca-
tion header and A’s location path (LP_BA) to send packets
back through LN3. Using these, B can send packets that
will travel again through LN3, LN2 and LN1 until A. At
this point, A can update the current LP_AB for B, and the
same can do B with LP_BA of the next received message.

2.1 Semantic and generation of an EUI

An EUI is a semantic-free value used only for singulariza-
tion of endpoints. In other words, it should be used only for
discriminating endpoints, although it may be used by loca-
tor nodes to manage session routes. Consequently, an EUI
is a random 128 bit value; it can be generated by anyone
without any coordination with others.

A host can use a particular EUI for self-identification in
several interactions using different network interfaces, possi-
bly explored simultaneously. Or, on the other way around, a
host can use as many EUI values as wanted, possibly simul-
taneously, in order to get some added value. For instance, a
host can use a different EUI per session (e.g. UDP query/re-
sponse, TCP virtual circuit, HTTPS session) in order to
complicate traffic aggregation analysis.

2.2 Global vs. local addressing paradigms

The IP addressing paradigm assumes that public addresses
have the same interpretation (identify the same host) every-
where. On the contrary, private IP addresses have a local
interpretation and can be bound to different hosts belonging
to different domains (or private networks).

With the location header, we enlarge the possibilities to
identify a host, which can now happen with:

e Direct identifier: an ordinary IP address.

e Indirect identifier: an EUI, complemented by the
direct identifier (IP address) of a locator node and a
DLP. We anticipate that these last two components
may be updated for the same EUI, in order to facilitate
the roaming of endpoints identified this way.

An indirect identifier introduces a new paradigm in the
way endpoints can be identified in the Internet, as it allows
them to be globally identified using values that have a local
interpretation. Local interpretation means, in this context,
that the interpretation of an indirect identifier depends on
the particular set of locator nodes that carry on its interpre-
tation, and different endpoints can use different locators for
referring the same target endpoint.

This type of semantic allows the exploitation of the Inter-
net to reach global resources that should not be bound to IP
addresses (e.g. a TV show, a device bound to a phone num-
ber, etc.) using identifiers that change from client to client,
depending on the way the resource access is provided.

2.3 Impact in upper protocol layers

Transport layers, such as UDP and TCP, are naturally
very intertwined with the IP paradigm. For instance, a TCP
virtual circuit is uniquely identified using a tuple contain-
ing two IP addresses and two TCP ports. The inclusion

Volume 42, Number 2, April 2012

Pop route to LNZ from DLP Pop route to LN3 from DLP Pop route to B from DLP
SrcIP=A, DstIP = LN1 Push route to A into SLP Push route to LN1 into SLP Push route to LN2 into SLP Sre P = LN3, DstIP = B
Src EUI=EUI_A, Dst EUl = EUI_B Send to lecater LN2 Sand to locator LN3 Send to B Src EUI = EUI_A, Dst EUl = EUI_B
SLP = (null}, DLP = LP_AB SLP = LP_BA, DLP = {null)
A T AT T AT ST T,
/ \ / ~ pe \ R / ~
{ y / b / % / 5, / A
{ | / { { h |
B identification: A identification:
EUI_B, EUI_A,
LN1, LP_AB ¢ & LN3, LP_BA
i— Q) | _ Q8
SrcIP = LNA, DstIF = A — — — srelP=B, DstIP=LN3
Sre EUl = EULB, Dst EUl = EUI A Pop route to A from DLP Pop route to LN1 from DLP Pop route to LN2 from DLP Src EUl = EULB, Dst EUL = EUL A
SLP=LP AB, DLP = (null) - Push route to LN2 into SLP Push route to LN3 into SLP Push route to B into SLP SLP = {null), - DLP=LP BA
- Send to & Send to LN1 Send to LN2 -

Figure 3: Example of how traffic can be routed from A to B and vice-versa using three locator nodes (LN1,
LN2 and LN3) and the location header. Locators push location information into SLP fields and pop location
information from DLP fields. The information pushed and popped is defined by each locator node.

of the location layer introduces an alternative paradigm for
identifying end-hosts: their EUI.

Therefore, IP-based transport protocols, such as UDP and
TCP, will have to deal with two types of endpoint identifiers:
direct and indirect. When using direct identifiers (ordinary
IP addresses) they should use them with ports for matching
endpoints and for addressing endpoints. When using indi-
rect identifiers, they should use EUls and ports for match-
ing endpoints and should use locators’ IP addresses and lo-
cation paths for addressing endpoints. Consequently, with
the introduction of the location layer, transport endpoints
(sockets) naming keeps IP addresses and ports and includes
three extra fields: the local EUI, the peer EUI, and the peer
location path (closest locator node IP and peer DLP).

Another issue for upper protocol layers is their use of IP
addresses for computing checksums. In fact, protocols such
as UDP and TCP have on their header a checksum field
that is computed from the transport data (header and pay-
load) prefixed by a pseudo header. As this pseudo-header
includes the source and destination IP addresses, changing
IP addresses along locators, as displayed in Fig. 4, creates
checksum validation errors at receiving end-hosts, ultimately
leading to a discard of all UDP and TCP packets. A solu-
tion for this checksum issue is to completely remove data
of lower layers from the checksum computation; this means
removing IP addresses from it.

2.4 EUI spoofing issues

The addressing space of EUIs is large enough for prevent-
ing their involuntary collision. Even in such case, collision is
only a problem when it creates confusion, e.g. when a server
host receives two TCP segments from the same EUI and us-
ing exactly the same source and destination ports, but not
necessarily the same source IP address.

However, attackers may explore this sort of collisions to
interfere with others’ communications: we can call it EUI
spoofing. But this is not exactly a new threat for the Inter-
net, since IP spoofing is also possible nowadays. Currently,
the Internet only ensures source authentication for received
data (using IP) when some sort of secure communication
channel is used over IP (IPSec [20], SSL [7], etc.).

The location layer may also be properly explored in or-
der to reduce the risk of EUI spoofing attacks. First, EUls
of endpoints initiating a remote session should be random
whenever possible, for reducing spoofing capabilities. Sec-
ond, TCP and UDP endpoints may enforce a strict con-

ACM SIGCOMM Computer Communication Review

20

stancy of the peer indirect address (EUI, IP of locator node
and DLP) on all received datagrams belonging to the same
session. This way, EUI spoofing would not be enough for
interfering with an existing session; IP spoofing and knowl-
edge of the DLP used by the spoofed endpoint would also be
required. This way, some anti-spoofing techniques used for
IP (e.g. ingress filtering [12]) could also prevent the spoofing
of indirect addresses.

2.5 Routing security issues

Strict or Loose Source and Record Routing (SSRR, LSRR)
and Record Routing (RR) are three options of the current
IPv4 standard. SSRR and LSRR enables the datagram
sender to specify (force with SSRR, suggest with LSRR)
the ordered set of IP addresses of the hosts responsible for
routing the packet until its destination. SSRR, LSRR and
RR enable a datagram to record the IP address of all its
actual routers. IPv6 also has support for a Routing Header
(RH) extension, which is similar to SSRR.

To the best of our knowledge, SSRR, LSRR and RH are
not used nowadays, mainly for security reasons, but some
protocols use source routing information for routing IP data-
grams. An example is Dynamic Source Routing Protocol
(DSR [19]), which uses a new protocol layer and a set of
IPv4 addresses for implementing strict source routing in ad-
hoc IP networks. To the best of our knowledge, RR is only
used by some route tracing tools.

Our location layer has some similarities with the referred
routing mechanisms (SSRR/LSRR, HR, RR and DSR) but
there are many fundamental differences.

First, the existing source routing mechanisms only work
with homogeneous sets of IP addresses, i.e., routes are al-
ways lists of IPv4 or IPv6 addresses (not mixed). In our
case, locator nodes are free to use other kinds of addresses,
as they manage alone one specific portion of SLP or DLP.

Second, the routes used in the existing source routing
mechanisms may be created by anyone, there are no pro-
tection mechanisms to their authenticity or integrity. In our
case, locator nodes are responsible for managing their spe-
cific portion of an SLP or DLP, therefore they may introduce
arbitrary protection mechanisms, such as ciphers for hiding
routing information and integrity control checksums for de-
tecting spoofing attempts.

Third, IP routes used in existing source routing mecha-
nisms may artificially introduce routing overheads, or cre-
ate DoS scenarios in particular routers or links by directing

Volume 42, Number 2, April 2012

overwhelming routing workloads to them. This is possible
because anyone can play around with source routes. In our
case, this issue can be avoided because locators nodes may
protect themselves from DLP forgery or DLP spoofing in
locator headers.

Fourth, IP routes used in existing source routing mecha-
nisms may be used to overcome addressing limitations, for
instance, to address hosts with private addresses reachable
through a host with a public address. Note that this is pre-
cisely part of our goal, but we want to do it on a controlled
way, with proper routing, access control policies and mech-
anisms implemented by locator nodes. The current mech-
anisms and policies, however, do not enable routers to im-
plement complex decision policies for separating legitimate
from illegitimate source routes; therefore, for security rea-
sons, packets carrying them are usually discarded. We want
to enable such traffic to flow, but with the proper controls
implemented by the locator nodes.

Finally, IP routes used in existing source routing mecha-
nisms may be used to explore IP spoofing attacks, because
source routing overrules the default IP routing and enables
datagrams to bounce and travel along the network according
to the wishes of attackers. In our case, however, we are not
changing the way IP routing is performed, but we are adding
a new routing level, across domains linked by locator nodes.
And since locators will mainly be used to establish hierar-
chical routes across domains, and not alternative routes as
in IP, the source spoofing risks raised by source routing in
IP do not directly apply to our locator-based routing.

2.6 Routing inefficiency issues

Our location header enables the implementation of multi-
hop, overlay routing policies on top of IP. Our goal is not
to replace IP routing, but rather to complement it to ex-
tend routing across several IP domains (public and private
networks) and possibly non-IP networks.

We cannot ensure that one would not create routing in-
efficiencies by using our location layer. Ultimately, that
depends on the exact overlay routing functionality imple-
mented by a set of locators nodes. For instance, multi-hop
overlay networks providing end-hosts’ anonymity introduce
notorious routing inefficiencies (e.g. Tor [8]), but that is a
price that one has to pay for getting the desired anonymity;
and the same may happen as well in particular exploitations
of our location layer.

Source routing is always a more static and restrictive rout-
ing paradigm than the one implemented by default in IP
networks, where the network has the capability of adjusting
its routing to provide the best possible routing service. How-
ever, to incorporate richer routing policies we need to explore
other routing services, namely the ones implemented on top
of our locator nodes, which may be unique and located in
specific network locations. Therefore, routing inefficiencies
may occur due to bottlenecking situations created by some
locator nodes. However, such bottlenecks may as well be
solved by a careful provisioning of network and computing
resources to highly-demanded locator nodes.

3. ROUTING ACROSS NETWORKS

Let us illustrate the functionality of the location layer with
two locators acting somehow as NAT boxes. In Fig. 4 we
have a diagram where A initiates a request/response inter-
action with B. Both A and B belong to separate, private

ACM SIGCOMM Computer Communication Review

21

L1, IP
address

L1,IP
address

L2,IP
address

-)
(a3

Lz 1P
address

H

private IPv4 network

IPv4 network public IPv4 network
IP header Location header SLP DLP
o src=A src EUl= X, dst EUl = Y f— H
dst=L1, | SLP=(null), DLP=8, L2, pay i i[B]
src=L1, | src EUI=X, dstEUI=Y N I
9 dst=L2, SLP=A,DLP=B | IP payload ‘ =
a | src = L2, src EUI= X, dst EUT= Y —, ‘ E
dst=B | SLP=A, L1, DLP = (null) pay H
B EUI=Y, dst EUl = X S P
sSrc= src = S = H H

; I NP
& | dst=L2 | SLP=(null), DLP = A, L1, | FEEEEE ‘ I
src =L2, src EUI=Y, dst EUl = X P payload : i i
dst=L1, SLP=B,DLP=A i =]
src=1L1, src EUI=Y, dst EUl = X 2, |: :

& | dst=A | SLP =B, L2,, DLP = (nul)) | 7 Pa¥lead ‘ 5!

Figure 4: Example of how traffic can be routed from
A to B and vice-versa using two locators (L1 and L2)
connecting separate private networks to the public
Internet. In this example, locators L1 and L2 push
and pop IP addresses from SLP and DLP fields of
the locations header.

IP networks connected to the publicly-addressable Internet
through edge locators (L1 and L2). Both L1 and L2 have
public IP addresses and use the existing core IP network to
reach each other.

First, A uses some name service to get the identification
and location of B: its EUI (Y), the locator node (L1;) and
LP_A—B (B, L2,). Given these values, traffic from A to B
will first be IP-routed towards L1 and L1 changes the packet
as follows: (1) pushes the source IP address into SLP; (2)
changes the source IP address to its outer IP address (L1,);
and (3) pops the IP address of L2 (L2,) from DLP and uses
it to replace the destination IP address.

The packet is then IP-routed to L2, which changes the
packet similarly to L1: (1) pushes the source IP address
into SLP; (2) changes the source IP address to its inner IP
address (L2;); and (3) replaces the destination IP address
with the IP address of B popped from DLP.

The packet is then IP-routed to B. When B receives the
packet, it realizes that the peer EUI is X (the EUTI of A), its
locator node is L2 (namely its L2; address) and L2 knows
how to locate the peer using the location path SLP. Conse-
quently, B stores L2; and the received SLP as the location
of the peer endpoint, as well as its EUT X.

When B replies, it will send a packet to X through L2;
and including a location path DLP equal to the received
SLP. When L2 receives the packet, it pops L1, from DLP,
pushes the IP of B into SLP, changes source and destination
addresses to L2, to L1,, respectively, and sends it. Similarly,
when L1 receives the packet, it pops the IP address of A from
DLP, pushes L2, into SLP, changes source and destination
addresses to L1; to A, respectively, and sends it.

Unlike the current NAT, we do not need to mangle with
transport flow selectors (UDP and TCP ports, GRE keys [10],
etc.) to multiplex traffic between hosts screened by NAT.
Instead, we use the location header to add multiplexing in-
formation. Consequently, we are able to multiplex any trans-
port protocol.

Volume 42, Number 2, April 2012

Similarly to the current NAT, we change the source IP of
the packet that flows from private network to the public one
(or to the outer one) and vice-versa. Currently, with NAT,
this is not dramatic, except with protocols that do not tol-
erate such modifications (e.g. FTP, IPSec, H.323, cf. [15,
1]) and require extra actions to be taken by one end-host
(e.g. adoption of NAT-T (21, 17] for IPSec or H.460 exten-
sions for H.323 [14]) or by the NAT boxes (e.g. deployment
of FTP application-level gateways [29]). But in our case
we may follow a more general approach to overcome address
modification issues. Namely, such protocols may be updated
in order to use the locator header (when present), and peer
EUT addresses, to enforce the constancy of the peer identity.
This is interesting because end-peers may depend exclusively
on their own to keep working currently on a future Internet
exploring the location layer.

3.1 Prevention of DLP prediction

One relevant security feature of the current NAT is that
only hosts referred in port forwarding tables can be ad-
dressed by traffic initiated from outside the private network.
And, apparently, this feature is ruined by using location
headers and locators to reach hosts inside private networks.

However, the values pushed into SLP by the NAT box,
and latter popped from DLP on the return traffic, can be
unpredictable for external observers. This way, the NAT
box can prevent others from guessing a valid DLP leading
to particular host behind the NAT. For example, they can be
implemented as random, sparse values on a large address-
ing space (e.g. 64 bit values), each bound in a table to a
particular IP address of an internal host. Alternatively, one
can use ciphers and per-locator secret keys. The locator en-
crypts the (randomly) padded private IP address in order
to produce the value to push into SLP; and, inversely, de-
crypts the value popped from DLP to retrieve the private
IP address.

4. CONTENT ADDRESSING

As previously referred, we believe that our location layer
can be used to implement some forms of content addressing
in the Internet. In this section we will give a useful and
realistic example of how it could be implemented. Note,
however, that this example does not represent a unique view
of how content addressing could be implemented with the
location layer.

Nowadays there are many static contents that are fully
downloaded by Internet clients (leaf hosts). Examples of
such contents are self-contained documents (e.g. PDF), pub-
lic software packages, software patches, news articles, etc.
All these contents may be known by a single, unique num-
ber, for instance, a digest of themselves, and could be stored
in a Content Addressable Storage (CAS) using the digest as
index (as SHA-1 based content-hash keys of Freenet [6]).

Lets assume that we use a very basic application-level
content transfer protocol: a TCP-based protocol where the
server expects a client connection on a fixed port and sends
the complete contents immediately after the connection. The
contents to provide are identified using a local, content EUI
(which can indirectly identify a file, for instance).

Lets assume that all ISP’s providing access to the pub-
lic Internet collaborate in order to implement a world-wide
Distributed Hash Table (DHT), acting as a Content Ad-
dressable Network (CAN [27]). ISP’s allow local content

ACM SIGCOMM Computer Communication Review

22

Content DHT entries
publisher

EUIx — X

h(X) — EUL,
IP address of supplier’s ISP,
DLP (referring the content publisher)

Figure 5: Values used to reach content X from its
publisher using indirect addresses stored in a DHT
indexed by h(X)

DHT

E hix), EUL h(X) = EUl, IP,, DLP,

h(x) hix)

EUIy IP,, DLP,

EUIly IP;; DLP,
/‘______.\< N
\m———— v/ V
h(X
h(x) X
EUI, IP, DLP,

EUI[IPJIP-+DLP;)
PR | [y SRS RN § <—>
Qi K W

Figure 6: Multi-hop content addressing example.
LP is the locator node used by the content publisher
to register X in the DHT; LC is the locator node
closer to the content consumer. Thin arrows repre-
sent procedure calls; thick arrows represent single-
hop content transfers. On the upper transfer, X is
fetched from the supplier or from LP’s cache; on the
bottom transfer, X can be fetched either from the
publisher or from LP or LC caches.

publishers to register contents in the DHT and allow world-
wide content consumers to reach local content publishers
using location headers.

The entries of the DHT could be identified by content
hashes (e.g. SHA-1 digests), and each entry would contain
an indirect identifier: content EUI, IP address of a locator
node and a DLP (see Figure 5). Locators nodes would be
ISP’s, and DLP could contain the following stacking of data
(outermost to innermost): internal ISP tag for content ad-
dressing and the local IP address of the content publisher.

Given this infrastructure, content publishing and fetching
would take place as follows (see Figure 6). Content X pub-
lisher generates an EUI for it (EUIx) and stores a mapping
between them. Then, it registers the tuple (h(X), EUIx) in
the content addressing service of its ISP (ISPp), which stores
it in the DHT, together with its own IP address and a DLP
that enables future clients to reach the publisher through
ISPp. The DLP would contain a content addressing tag and
the IP address of the content publisher.

For content fetching, the client must first get h(X) in some
Internet service (e.g. a new kind of URI in Web pages, such
as a Named Information URI [11]). Then, it contacts the
local ISP (ISP¢) for resolving h(X) into some indirect ad-
dress. ISPc uses the DHT to fetch the related indirect ad-
dress: EUlx, IP of the locator node (ISPp) and DLP for
reaching the content publisher from the locator node. Once
having the indirect address, the consumer can use it to con-
tact the content publisher, together with basic transport
protocol above referred, in order to get the intended con-
tent.

Volume 42, Number 2, April 2012

This basic content access methodology can be enriched
with other features, such as caching in ISP’s for increasing
locality of reference. In this case, ISP’s implementing caches
could resolve h(X) to a slightly different indirect address,
using their own IP as locator host and complementing the
DLP with the IP address of the original locator. In this case,
for fetching the content the client would contact its own ISP,
which could use a local cache or fetch the contents from the
original location (expressed in the DLP of the indirect ad-
dress used by the client). For the client, however, everything
is transparent, it always gets the required content.

We could also cache content ahead of content publishers,
in their own ISP’s, for further increasing the performance of
content downloads. In fact, ISP’s act as locator nodes, and
thus have the opportunity to cache contents on their first
download from local content publishers. Again, this would
be totally transparent to clients and would not interfere in
any way with the previously described caching strategy.

This example cannot be seen as a final and totally speci-
fied proposal for implementing a context-addressable infras-
tructure for the Internet. Namely, in this description we did
not address security issues, such as malicious manipulations
of the content of the DHT. Our unique goal was to provide
a simple example of how our location layer and our indirect
addresses could be used to address content, instead of hosts,
with transparent caching for improving download efficiency
(one publisher, many possible suppliers).

S. PROTOTYPE IMPLEMENTATION

For testing our location layer we changed the TCP/IP
protocol stack of a Linux and we created a new NAT func-
tionality, exploring location headers and using a userland
packet processing application invoked from the kernel using
the IPTABLES queueing functionality.

5.1 Location header structure

The location header used in our implementation has the

following structure:

protocol: next level protocol (1 byte) (ICMP, UDP, TCP,
etc.), just like in IP. For the location layer we used the
number 200.

length: header length (2 bytes), the total length of the fol-
lowing data field. The first byte provides the size of
the source-related data (source EUI and SLP); the sec-
ond byte provides the same information about desti-
nation EUI and DLP. Both bytes have the same struc-
ture: the most significant bit indicates the presence
of the EUI; the remaining 7 bits give the size of the
LP (SLP or DLP), allowing at most 127 bytes for
each LP. The maximum length of a location layer is
142416+ 16 + 127 4 127, thus 289 bytes.

data: variable-size payload field containing source and des-
tination EUIs, SLP and DLP (by this order).

5.2 NAT scenario

Since we do not have yet name servers providing our in-
direct addresses, and existing applications cannot explore
them directly, we cannot implement exactly the NAT func-
tionality described in Section 3 and illustrated by Fig. 4.
Therefore, we decided to implement an alternative NAT ap-
proach that mixes the existing behaviour (source IP screen-
ing) with the exploitation of the new location header (traffic
in the public network uses the location header).

ACM SIGCOMM Computer Communication Review

23

L1.IP LzIP

address

L2,IP
address

L3P
address

L3, IP
address

Public
Server

Client

L1IP {

?z??%

private IPv4 network private IPv4 network

pnvala IPv4 network puhlm IPv4 network

0 | ;:; : 2 IP payload ‘ 5 Ec E] HHEUI X 1P payload
IP header ~ Location header dst=1L3, DLP ALl L2,

ol:lrsct : ;1“ ;TPE: .L= * lEavicad ‘ € E:: - fzu g?_tPE::_\Y Ii(h | IP payload ‘

O S TT, [reww | o [fEIE [e

olzzj = ;3.. src EUT = X i \ P payload ‘ vt 2 1P payload ‘

Figure 7: Tested scenario, using client A with the
current TCP/IP stack and server S with a modified
stack. Traffic is routed from A to B and vice-versa
using NAT boxes that act as locators, connecting
separate private networks or a private network to
the public Internet. In this scenario, the locators
push IP addresses into SLP in outbound traffic and
pop IP addresses from DLP of inbound traffic. The
innermost NAT, NAT1, has the additional task of
adding a complete location header to outbound traf-
fic and removing it from inbound traffic.

In the scenario we deployed, illustrated by Fig. 7, there is
a host with the current TCP/IP stack in a private network
(host A, client) and a host with a modified stack in a public
network (host S, server). To interconnect both networks we
used three of our novel NAT boxes, all of them implemented
on top of the current TCP/IP stack.

The server’s modified TCP/IP stack recognizes and uses
EUIs when matching transport packets to communication
endpoints (UDP or TCP sockets), thus fully complying with
our proposal. However, by default it does not add a location
header to all outbound traffic; it only adds that header when
it was first used by a client. Thus, if a socket refers a peer
using an indirect identifier (EUI, IP address of locator and
DLP), the location header is used in all outbound traffic to
that peer. Otherwise, the location header is not used.

The server’s modified TCP/IP stack also disregards check-
sums on UDP and TCP packets that arrive with a location
header. This checksum for outbound packets is also left ze-
roed, as we can see in Fig. 12.

In this scenario we never use an EUI for the host S because
it was not necessary; we can reach it from A using only IP
addresses and the ordinary IP routing.

5.3 NAT functionality

All the outbound traffic generated by the NAT boxes has a
location header. This means that the innermost NAT must
generate a fake EUI for outbound traffic of host A. It does so
in such a way that a) the same host gets the same EUI and
b) there is a minimum state kept in the NAT to maintain
the coherence of fake EUIs. Namely, the EUI is computed
by hashing the source IP address, the NAT outer IP address
and an internal key.

Our NAT box implementation must deal with traffic gen-
erated from current TCP/IP stacks (e.g. from host A) and
from hosts that are using the location header (e.g. outbound
traffic that reaches NAT2 and NAT3 coming from NAT1).
The NAT box supports both types of clients very easily (cf.
pseudo-code in Fig. 8). If an outbound datagram includes

Volume 42, Number 2, April 2012

Listing 1: Outbound NAT processing

if (pkt—>hasLocationHeader=—=FALSE) {
srcEUI=hash128 (pkt—>srcIP , myPublicIP , key);
dstEUI=0;
SLP=DLP=0;
pkt—>addLocHdr (srcEUI, dstEUI, SLP, DLP);
¥
pkt—>pushIntoSLP (pkt—>srcIP);
pkt—>srcIP=myPubliclP ;

Listing 2: Inbound NAT processing

dstIP=pkt—>popFromDLP ();

if (pkt—>dstEUI==hash128 (dstIP ,pkt—>dstIP ,key)) {
pkt—>remLocHdr () ;
pkt—>computeLegacyTransportChecksums ();

}
pkt—>dstIP=dstIP ;

Figure 8: C-like pseudo-code of the datagram pro-
cessing executed by the NAT box and involving the
location header and the IP header.

—i iIF —t mangle —A PREROUTING —j MARK ——set—mark 1
—i oIF —t mangle —A PREROUTING —j MARK ——set —mark 2
—A FORWARD —j QUEUE

—A INPUT —p 200 —j QUEUE

Figure 9: iptables rules used to send IP packets
to the userland application that performs NAT us-
ing the location layer (protocol number 200). The
names iIF and oIF represent the inner and outer in-
terfaces, respectively. Marks 1 identifies outbound
packets, which may require a totally new location
header; mark 2 identifies inbound packets, which
must have a location header in order to be routed to
an inner network. The userland application should
process all (outbound) forwarded packets and all (in-
bound) packets targeted to itself and possessing a
location header.

a location layer, then the NAT only updates the SLP field.
Otherwise, it adds a new location header, computes a fake
EUI of the source, and updates the SLP field. For inbound
traffic the distinction is slightly more complex: if the des-
tination EUI was generated by the NAT, the location layer
is removed before routing the datagram to the destination;
otherwise, the header remains in the datagram, only its DLP
field is updated.

In any case, the NAT box uses the IP address of the
screened host (belonging to the private network) when push-
ing information for the SLP in outbound traffic and popping
information from the DLP in inbound traffic.

The NAT box is completely stateless, as all packet trans-
formations are performed using data from the packets them-
selves or local, constant configuration parameters. Routed
packets are processed in the PREROUTING chain to add
IPTABLES’ packet marks, which will be used by the userland
application to distinguishes inbound from outbound packets
(see Fig. 9). Outbound packets will be queued for that appli-
cation using a rule in the FORWARD chain (as they are tar-
geted to some other host); inbound packets will be queued in
the INPUT chain (as they are targeted to the current host).
As it happens with current NAT, our NAT model cannot
handle IP fragments; both cases are handled similarly using
the IPTABLES’ defragmentation module (nf_defrag_ipv4).

ACM SIGCOMM Computer Communication Review

24

Comparing this NAT paradigm with the current one, both
solutions update source or destination IP addresses in IP
headers. On the other hand, current NAT changes fields
on transport headers, while we change fields of the loca-
tion header. The current NAT must keep a table of port
mappings performed to multiplex traffic and must manage
lifetimes of those mappings, while we do not need to keep
and manage any translation state. Finally, the current NAT
must recompute the checksums of all inbound and outbound
UDP and TCP packets, while we only have to recompute the
checksum of inbound UDP and TCP that have no location
header (hosts that know how to handle the location layer,
such as S, ignore checksums on inbound packets).

5.4 Testing and performance evaluation

We tested several types of client-server communication
protocols, including Ping, Telnet, OpenVPN and HTTP,
and all worked without problems. Appendix A shows some
packet captures that illustrate the behavior of our NAT.

We did not test, but the server host could also initiate
communications towards the client host, since it could gen-
erate all the location header parameters that could lead to a
successful inbound NAT box traversal. Note that with this
approach to NAT, ISPs could use only one public IPv4 ad-
dress to provide unconstrained, bidirectional access between
hosts using private and public addresses.

Using the timestamps of Wireshark captures we can have
a notion of the latency overheads imposed by each of our
NAT boxes. For reducing overheads, we shift the IP header
instead of the IP payload when adding or removing the lo-
cation header. Nevertheless, we could not avoid the memory
copy costs imposed by the packet transfers between kernel
and the userland NAT process. To remove this cost we need
to implement the NAT functionality in the kernel, as it hap-
pens today with the current NAT technology.

100.00

—e—Location layer NAT

1000 1

——Masquerading

Wj\

Average processing time (ms)

A
LI i WY MR

5512 10512 15512 20512

IP datagram length (bytes)

25512 30512

Figure 10: Overhead of NAT operation for outbound
traffic in NAT1, both for the current NAT (mas-
querading) and for NAT with the location layer, as
a function of the original IP datagram length.

Figure 10 shows a graphic where we display the average
latency overhead of our NAT for outbound packets as a func-
tion of the original IP datagram length. The traffic samples
for the graphic were collected in the two interfaces of NAT1.
The sampled traffic was generated with ICMP pings with
crescent payloads (total IP lengths from 512 bytes to 32
KiB); for each datagram length we generated 10 pings. The
figure also shows the latency of the actual NAT (masquerad-
ing), just to have a reference for comparison.

As we can observe in the collected values, both overheads
increase with the length of the IP payload, but this fact is

Volume 42, Number 2, April 2012

more notorious with our NAT, as we copy packets from ker-
nel memory to user memory, and vice-versa, for adding a lo-
cation header. Furthermore, those memory transfers and the
process switching involved in our NAT are responsible for an
overhead that is less stable and about an order of magnitude
higher than masquerading. However, we are comparing an
optimized, in-kernel NAT implementation with a prototype
implemented in a user process. We believe that a future
in-kernel implementation may be competitive, in terms of
performance, with masquerading.

6. RELATED WORK

Readers with good networking background may be led to
compare our work with tunneling or adaptation technologies
developed to overcome locality problems or coexistence is-
sues raised by incompatible IP address spaces. Examples
of such technologies are GRE encapsulation [10] used in
PPTP [16], that enables PPP connections to be established
over the Internet, or the 6to4 transition mechanism [4], that
enables IPv6 domains to interact through an IPv4 cloud.
But our contribution is quite different, as we do not provide
tunnels, we provide overlay multi-hop routing.

Our contribution is comparable to three types of related
works: overlay networks, data-oriented routing and propos-
als for separating host identity from location in the Internet.

Overlay networks are flexible and variable sets of Inter-
net hosts that arrange themselves to provide a particular
service to clients, usually data storage and retrieval using
Peer-to-Peer (P2P) Distributed Hash Tables [24]. To fulfil
this goal, overlay networks use some particular applicational
protocol to transfer commands and data, implementing some
kind of specific addressing and routing protocol. Therefore,
our work can be used to implement many different routing
strategies directly over IP within overlay networks.

In content-oriented routing [2], such as in DONA [22] and
CCN [18], communications are routed in order to link a con-
tent consumer to the closest copy of some content, instead
of a specific providing host. DONA uses the route-by-name
paradigm of TRIAD [13] and a flat name space to dynami-
cally connect content consumers to content providers. CCN
relies on the broadcast of data interest packets to reach any
satisfying content store, which can send the same content to
many consumers using multicast. CCN uses a hierarchical
name space and intermediate network elements can cache
contents to optimize future transfers of the same content.
We believe that both functionalities can be achieved using
our locators and by embedding names in DLP, thus keeping
the basic TCP/IP stack and the IP core routing, while CCN
proposes a completely new protocol stack.

Regarding the separation of identity from location in the
Internet, we can find many common ideas in the work of
Balakrishnan et al. [3], which also borrowed ideas from Nim-
rod [5], HIP [25] and I3 [30] that are related with our work.
Balakrishnan et al. proposed a new layered naming archi-
tecture for the Internet. In their architecture, there is a new
layer (End Point Identifier Resolution), between transport
and network layers, that is responsible for resolving an EID
into an IP address. Comparing with our proposal, an EID
can be compared to our indirect identifier (EUI, locator IP
and location path), but they are completely different: an
EID is resolved by the source into an IP address using name
resolvers, while our indirect identifiers already contain an IP
address (of the locator) and are iteratively resolved by one

ACM SIGCOMM Computer Communication Review

25

or more locators, and not necessarily into IPv4 addresses.
This enables us to expand object addressing within the in-
ternet beyond the closed addressing space of IPv4 public
addresses. Furthermore, we combine name resolution (or
addressing) with routing, while they use independent name
servers for name resolution and the standard IP routing for
packet routing. The EID delegation mechanism, allowing a
host to resolve an EID to an IP address that will then for-
ward the packet to another IP address, is somehow similar
to the service implemented by our locators. However, its not
clear how they route traffic back towards an initiator that
reaches a target host using many EID delegations. Further-
more, it is not clear how they can implement delegation with
stateless servers.

The location path of our indirect identifiers is similar to
Nimrod’s Connectivity Specification Chains (CSC) or Se-
quences (CSS) of locators, which are Nimrod’s host iden-
tifiers [5]. Both CSC and CSS can be used to implement
packet forwarding according to paths completely controlled
by users or devices acting on their behalf. But we go one
step further, since the stacking strategy used by our locator
nodes for managing location paths’ elements allows them to
manage private forwarding rules and data, possibly trans-
parently to endpoints.

HIP [25] uses an Host Identity Tag (HIT) to identify each
host, and an HIT is a cryptographic hash of an Host Identi-
fier, which is the public key of an asymmetric key pair. HITs
are resolved to IP addresses when used to address a destina-
tion host, this way decoupling host identification from host
addressing. Our approach is different, host identification
is given by the EUI, which can have some meaning (as an
HIT) or may be fully random, and EUls may be used or
not by locators to find or memorize routes, but endpoints
do not do so. We use an EUI mainly for session identifica-
tion at end-hosts, and location paths to reach targets, while
HIP uses the HIT for find the current IP address of a target
host. Therefore, HIP cannot be used to address Internet
endpoints other than hosts with IP addresses.

I3 [30] uses rendez-vous points for decoupling the act of
sending data from the act of receiving data. Rendez-vous
points use triggers inserted by receivers to forward senders’
packets; triggers contain an identifier and the destination IP
address. Our locators can be used to implement 13 rendez-
vous points, enabling the implementation of specific routing
policies, in this case the ones designed for I3 (mobility [32],
multicast [23], etc.). On the other hand, I3 naturally as-
sumes that rendez-vous points are stateful, while we allow
our locators to perform stateless routing decisions based on
received location paths. This way, we provide a more flexible
platform to implement novel addressing and routing strate-
gies than I3.

7. DEPLOYMENT EVALUATION

Our location layer was not invented exclusively for tack-
ling IPv4 scarcity issues, but rather to allow the Internet
to evolve in a hierarchical fashion, instead of a large, flat
addressing space (e.g. using IPv6). NAT did something
similar, and was widely accepted and adopted because it
could be used with some limitations without changing ex-
isting TCP/IP stacks. We cannot do the same with our
NAT mechanisms based on the location layer, because they
require TCP/IP stacks of endpoints to recognize location
layer headers. Nevertheless, after an update phase of those

Volume 42, Number 2, April 2012

stacks we could replace existing NAT boxes by ours with
clear benefits, such as unrestricted bidirectional access. This
is possible with a gradual, phased migration strategy: first,
TCP/IP stacks are updated, mainly through automatic up-
dates; then, after a reasonable update period, network ser-
vices exploring the location layer could start to be used.

Current applications exploring the Internet for remote in-
teractions need to manipulate information of both network
and transport layers, i.e. IP addresses and TCP/UDP com-
munication endpoints (sockets). Therefore, any migration
among IP addressing paradigms, namely from IPv4 to IPv6,
has a tremendous impact on applications, because they are
only prepared to handle IPv4 addresses, and not IPv6 ad-
dresses.

On the contrary, the location layer is not mandatory, it
is an option layer between the existing IP and TCP/UDP
layers. This means that applications that are prepared to
deal with IP and TCP/UDP data structures continue to ob-
serve the exact same data structures, because they do not
disappear or are modified. Nevertheless, future versions of
those applications may include extra functionalities for ob-
serving and exploiting location headers, in order to provide
enhanced features related with the location layer.

With our prototype we demonstrated that an existing
server using a modified TCP/IP stack can interact with a
client that is using the location layer as long as the server’s
stack recognizes the existence of the location layer and uses
it correctly when sending traffic to the client. The server
application doesn’t need to handle the location header, just
like it doesn’t need to handle many operational options of
TCP/IP; the kernel, by itself, is able to automatically handle
location headers with a few default policies.

Concluding, the location layer can be introduced grad-
ually, without dramatic migration steps. First, operating
systems may be updated to include support for handling
location headers, just like we did. Simultaneously, name
servers, such as DNS or others, may be updated or created
from scratch to provide the resolution of names into indirect
addresses. Once this done, existing applications may be up-
dated or new applications may appear in order to provide
new functionalities exploring the location layer, such as our
content-addressing system described in Section 4. Last, but
not least, the Internet core routers are not affected by the
use of the location layer, and don’t need to be updated.

8. CONCLUSIONS

We presented a new location layer for the TCP/IP stack,
inserted between IP and transport protocols. This layer is
optional and enhances the addressing capabilities of the In-
ternet, by allowing locator nodes with specific addressing
and routing tasks to reach target endpoints. Target end-
points may be hosts or other entities, such as contents.
It also allows the Internet to survive to the depletion of
the IPv4 address space, without requiring modifications on
the core routing infrastructure, or a worldwide migration to
IPv6 or a massive mitigation with the current NAT model.
As we have shown with our prototype, the TCP/IP stack of
hosts on the edge of the Internet can be progressively up-
dated until reaching a state where the location layer could
be explored ubiquitously.

Among the many possible research lines using the loca-
tion layer, we anticipate new name services, mobility, multi-
homing, multicast and content-addressing.

ACM SIGCOMM Computer Communication Review

26

9. REFERENCES

[1] B. Aboba and W. Dixon. IPsec-Network Address
Translation (NAT) Compatibility Requirements. REFC
3715, Mar. 2004.

[2] M. Alduan, F. Alvarez, T. Zahariadis, N. Nikolakis,
F. Chatzipapadopoulos, D. Jiménez, and J. M.
Menéndez. Architectures for Future Media Internet. In
2nd Int. Conf. on User Centric Media, Palma de
Mallorca, Spain, Sept. 2010.

[3] H. Balakrishnan, K. Lakshminarayanan,

S. Ratnasamy, S. Shenker, I. Stoica, and M. Walfish.
A Layered Naming Architecture for the Internet. In
ACM SIGCOMM 2004, Portland, OR, USA, Aug.
2004.

[4] B. Carpenter and K. Moore. Connection of IPv6
Domains via IPv4 Clouds. RFC 3056, Feb. 2001.

[5] I. Castineyra, N. Chiappa, and M. Steenstrup. The
Nimrod Routing Architecture. RFC 1992, Aug. 1996.

[6] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong.
Freenet: A distributed anonymous information storage
and retrieval system. In Int. Works. on Designing
Privacy Enhancing Technologies: Design Issues in
Anonymity and Unobservability, Berkeley, California,
USA, 2001.

[7] T. Dierks and E. Rescorla. The Transport Layer
Security (TLS) Protocol Version 1.2. RFC 5246, Aug.
2008.

[8] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
the second-generation onion router. In Proc. of the
13th Conf. on USENIX Security Symposium, San
Diego, CA, USA, Aug. 2004.

[9] K. Egevang and P. Francis. The IP Network Address

Translator (NAT). RFC 1631, May 1994.

D. Farinacci, T. Li, S. Hanks, D. Meyer, and

P. Traina. Generic Routing Encapsulation (GRE).

RFC 2784, Mar. 2000.

S. Farrell, D. Kutscher, C. Dannewitz, B. Ohlman,

and P. Hallam-Baker. The Named Information (ni)

URI Scheme: Core Syntax. Internet-Draft, Oct. 2011.

draft-farrell-decade-ni-00, expires in April 26, 2012.

P. Ferguson and D. Senie. Network Ingress Filtering:

Defeating Denial of Service Attacks which employ IP

Source Address Spoofing. RFC 2827, May 2000.

M. Gritter and D. R. Cheriton. An Architecture for

Content Routing Support in the Internet. In 3rd

USENIX Symp. on Internet Tech. and Systems, San

Francisco, CA, USA, 2001.

H. S. Group. Packet-based Multimedia

Communications Systems. ITU-T Recommendation

H.323 (Revised Version 7), 2009.

T. Hain. Architectural Implications of NAT. RFC

2993, Nov. 2000.

K. Hamzeh, G. Pall, W. Verthein, J. Taarud,

W. Little, and G. Zorn. Point-to-Point Tunneling

Protocol (PPTP). RFC 2637, July 1999.

A. Huttunen, B. Swander, V. Volpe, L. DiBurro, and

M. Stenberg. UDP Encapsulation of IPsec ESP

Packets. RFC 3948, Jan. 2005.

V. Jacobson, D. Smetters, J. Thornton, M. Plass,

N. Briggs, and R. Braynard. Networking Named

Content. In ACM CoNEXT, Rome, Italy, Dec. 2009.

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

Volume 42, Number 2, April 2012

[19]

[23]

[24]

[25]

26

[28]

[29]

[30]

31]

32]

D. Johnson, Y. Hu, and D. Maltz. The Dynamic
Source Routing Protocol (DSR) for Mobile Ad Hoc
Networks for IPv4. RFC 4728, Feb. 2007.

S. Kent and K. Seo. Security Architecture for the
Internet Protocol. RFC 4301, Dec. 2005.

T. Kivinen, B. Swander, A. Huttunen, and V. Volpe.
Negotiation of NAT-Traversal in the IKE. RFC 3947,
Jan. 2005.

T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy,
K. H. Kim, S. Shenker, and I. Stoica. A Data-Oriented
(and Beyond) Network Architecture. In ACM
SIGCOMM 2007, Kyoto, Japan, 2007.

K. Lakshminarayanan, A. Rao, I. Stoica, and

S. Shenker. End-host Controlled Multicast Routing.
Elsevier Computer Networks, Special Issue on Overlay
Distribution Structures and their Applications, 2005.
E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and

S. Lim. A Survey and Comparison of Peer-to-Peer
Overlay Network Schemes. IEEE Comm. Surveys and
Tutorials, 7(2), 2005.

R. Moskowitz and P. Nikander. Host Identity Protocol
(HIP) Architecture. RFC 4423, May 2006.

J. Postel. Internet Protocol. RFC 791, Sept. 1981.

S. Ratnasamy, P. Francis, S. Shenker, R. Karp, and
M. Handley. A scalable content-addressable network.
In Proc. of ACM SIGCOMM, San Diego, California,
USA, Aug. 2001.

Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J.

de Groot, and E. Lear. Address Allocation for Private
Internets. RFC 1918, Feb. 1996.

P. Srisuresh and M. Holdrege. IP Network Address
Translator (NAT) Terminology and Considerations.
RFC 2663, Aug. 1999.

I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and

S. Surana. Internet Indirection Infrastructure. In ACM
SIGCOMM 2002, Pittsburgh, PA, USA, Aug. 2002.
Z. Wang and J. Crowcroft. A Two-Tier Address
Structure for the Internet: A Solution to the Problem
of Address Space Exhaustion. RFC 1335, May 1992.
S. Q. Zhuang, K. Lai, I. Stoica, R. H. Katz, and

S. Shenker. Host Mobility using an Internet
Indirection Infrastructure. In 1st Int. Conf. on Mobile
Systems, Applications, and Services (ACM/USENIX
Mobisys 2003), San Francisco, CA, USA, May 2003.

APPENDIX

A.

PACKET CAPTURES

Figures 11 and 12 show packet captures with a modified
Wireshark that is capable of showing the contents of the
location header as implemented by our NAT mechanism.

Figure 11 shows a Ping dialog between client A and server S,
captured in the interfaces of both hosts. The expanded data-
gram is an inbound Echo Response, showing a destination
EUI of A (faked by N1) and a DLP that enables the data-
gram to reach A through N1, N2 and N3.

Figure 12 shows the setup of a TCP/IP connection be-
tween A and S, captured in the interface of S. The expanded
segment, a SYN/ACK sent by S, uses a location header that
happens to be equal to the one used for the Ping. This hap-
pens because the policy to fake the EUI is the same for all
protocols, and the path along NAT boxes is also the same.

ACM SIGCOMM Computer Communication Review

27

In both expanded location headers, S replicates the re-
ceived Source EUI as Destination EUI, the received Source
Location Path (created by N1, and N2 and N3) as Desti-
nation Location Path, and the received source IP address
(192.168.1.3, L3, address of Fig. 7) as destination IP ad-
dress. [P addresses 192.168.1.1 and 192.168.1.2 in the
Destination Location Path represent addresses L1, and L2,
of Fig. 7. Client A has a faked EUI (661CA75D80EOB447)
created by NAT1; the server S does not have an EUI

©© @ ping.pcap - Wireshark
File Edit View Go Capture Analyze

(3
stics Telephony Tools Help

Protocol Info

ICMP Echo (ping) request (id=0x3416, seq(be/le)=1/256, ttI=64)
ICMP Contains Protocol Location Layer

ICMP Contains Protocol Location Layer

ICMP Echo (ping) reply (id=0x3416, seq(be/le)=1/256, tt=64) -

Source Destination
192.168.1.254 192.168.1.150
192.168.1.3 192.168.1.150
192.168.1.150 192.168.1.3
192.168.1.150 192.168.1.254

No. Time
1 0.000000
2 0.009801
5 0.014832
12 0.035150

+ Frame 2: 574 bytes on wire (4592 bits), 574 bytes captured (4592 bits)
+ Ethernet II, Src: Vmware_cc:d4:b8 (00:0c:29:cc:dd:b8), Dst: Vmware_ec:cd:bd (00:0c:29:ec:c4:bd)
+ Internet Protocol, Src: 192.168.1.3 (192.168.1.3), Dst: 192.168.1.150 (192.168.1.150)
- Location Layer Protocol
Next Protocol: 1
Variable Data Length: 30
- Location Layer Options
Source EUl: 661ca75d80e0b447
- Source Location Path
Path: 192.168.1.254 (192.168.1.254)
Path: 192.166.1.1 (192.168.1.1)
Path: 192.168.1.2 (192.168.1.2)
~ Internet Control Message Protocol
Type: 8 (Echo (ping) request)
Code: 0
Checksum: 0xd2b3 [correct]
Identifier: 0x3416
Sequence number: 1 (0x0001)
Sequence number (LE): 256 (0x0100)
+ Data (500 bytes)

Figure 11: Traffic captures of a single Ping dialog
between client A and server S on their interfaces
(IP addresses 192.168.1.254 and 192.168.1.150, re-
spectively) using the network architecture of Fig. 7.
The expanded Echo Reply, captured on the inter-
face of S, shows the structure of the location header
added by S. All the traffic created and received by
client A does not have location headers.

©© @ cap_TCP_Bv2.pcap

File Edit View Go Capture hony Tools Help

Protocol Info

TCP Contains Protocol Location Layer
TCP Contains Protocol Location Layer
TCP Contains Protocol Location Layer
TELNET Contains Protocol Location Layer
TCP Contains Protocol Location Layer
TELNET Contains Protocol Location Layer
TELNET Contains Protocol Location Layer
TELNET Contains Protocol Location Layer

Source Destination
192.168.1.3 192.168.1.150
192.168.1.150 192.168.1.3
192.168.1.3 192.168.1.150
4.0.010144 192.168.1.3 192.168.1.150
50.010412 192.168.1.150 192.168.1.3
11 15.045468 192.168.1.150 192.168.1.3
13 15.258248 192.168.1.150 192.168.1.3
15 15.680817 192.168.1.150 192.168.1.3

No. Time
1 0.000000
2 0.000269
3 0.008440

19 16.530802 192.168.1.150 192.168.1.3
21 18.225839 192.168.1.150 192.168.1.3
23 21.618374 192.168.1.150 192.168.1.3
27 28.400984 192.168.1.150 192.168.1.3

30 31.825223 192.168.1.150 192.168.1.3
31 41.970541 192.168.1.150 192.168.1.3

TELNET Contains Protocol Location Layer
TELNET Contains Protocol Location Layer
TELNET Contains Protocol Location Layer
TELNET Contains Protocol Location Layer

29 31.824502 192.168.1.3 192.168.1.150 TELNET Contains Protocol Location Layer

TCP Contains Protocol Location Layer
TELNET Contains Protocol Location Layer

+ Frame 2: 106 bytes on wire (848 bits), 106 bytes captured (848 bits)
+ Ethernet Il, Src: Vmware_ecic4:bd (00:0c:29:ecic4:bd), Dst: Vmware_23:be:8b (00:0c:29:23:be:8h)
+ Internet Protocol, Src: 192.168.1.150 (192.168.1.150), Dst: 192.168.1.3 (192.168.1.3)
- Location Layer Protocol
Next Protocol: 6
Variable Data Length: 30
- Location Layer Options
Destination EUI: 661ca75d80e0bd47
- Destination Location Path
Path: 192.168.1.254 (192.168.1.254)
Path: 192.168.1.1 (192.168.1.1)
Path: 192.168.1.2 (192.168.1.2)
- Transmission Control Protocol, Src Port: telnet (23), Dst Port: 32947 (ahﬂ), Seq: 1614742321, Ack: 2564229767, Len: O
Source port: telnet (23)
Destination port: 32947 (32947)
[Stream index: 0]
Sequence number: 1614742321 (relative sequence number)
Acknowledgement number: 2564229767 (relative ack number)
Header length: 40 bytes
+ Flags: 0x12 (SYN, ACK)
Window size: 5792
+ Checksum: 0x0000 [validation disabled]
+ Options: (20 bytes)

Figure 12: Traffic captures of a Telnet connection
between client A and server S on the interface of
the latter (IP address 192.168.1.150). The expanded
SYN/ACK segment shows the structure of the lo-
cation header added by S.

Volume 42, Number 2, April 2012

