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Well-known risk factors for atherosclerosis include hypercholesterolaemia, hypertension, diabetes, and
smoking. These conditions are associated with endothelial dysfunction, which itself is associated with
reduced endothelial generation of nitric oxide (NO). This is an overview of the implications of NO gen-
eration in atherosclerosis and of the potential therapeutic benefit of drugs which donate NO, such as
organic nitrates, nicorandil, and sydnonimines, or those which increase the availability of endogenous
NO, such as statins, angiotensin-converting enzyme inhibitors, L-arginine, and tetrahydrobiopterin.
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Introduction

The discovery of the endothelium-derived relaxing factor, its
identification as nitric oxide (NO) released by the vascular
endothelium, and the elucidation of its biosynthetic
pathway opened a whole new chapter in the quest for
understanding cardiovascular disease and the way in which
it may be prevented.1–4 A reduction in the generation and
bioavailability of NO has been shown to occur in several dis-
orders, including atherosclerosis, which is the major cause
of death and disability in the United States, Europe, and
much of Asia.5 This review aims to consider the implications
of NO in atherosclerosis and to discuss the potential thera-
peutic benefits of NO donors or enhancers of NO availability
in the prevention and treatment of this pathology.

NO and atherosclerosis

Pathogenesis of atherosclerosis

Early atherosclerosis is characterized by the deposition of
intracellular and extracellular lipids and by the appearance
of macrophages and T-lymphocytes in the vessel intima. As
macrophages and smooth-muscle cells (SMCs) below the
endothelial cells (ECs) accumulate lipids, they acquire a
foamy appearance. Clusters of lipid-laden cells become
macroscopically visible as fatty streaks.6 These flat, fatty
lesions may be transformed into raised fibrolipid plaques
and ultimately into a fibroatheroma, which has a character-
istic microanatomy of a core of extracellular lipid covered
on the luminal side by a thick fibrous cap. Surrounding the
core are lipid-laden foam cells, while ischaemia in the
necrotic core initiates angiogenesis.7 This type of plaque
may cause narrowing of the lumen, once compensatory

vascular remodelling becomes inefficient. The ultimate
stage, the complicated plaque, may arise either from a
fissure in the fibrous cap or from intraplaque haemorrhage.
If the thrombus is not occlusive, it becomes incorporated
into the plaque and is organized by invading macrophages,
ECs, and SMCs, thereby further compromising the lumen of
the vessel. The sequence of fissure, thrombus formation,
organization, and incorporation into the plaque may occur
repeatedly.8

Thromboembolic events following plaque fissure are a
major cause of clinically manifest acute ischaemic
syndromes. Major mechanisms leading to coronary thrombo-
sis include frank rupture of a plaque’s fibrous cap, intrapla-
que haemorrhage, and superficial erosion of the
endothelium. Plaque rupture occurs when the mechanical
stresses in the fibrous cap exceed a critical level that the
tissue can withstand.9 Biological factors weakening the
fibrous cap include infiltration with inflammatory macro-
phages and T-cells and a reduction of the SMCs number at
critical locations. The macrophages can promote local
expression or activation of matrix metalloproteinases,
which decrease the strength of the cap by degrading col-
lagen and other matrix components. Furthermore, activated
macrophages in atherosclerotic lesions kill SMCs in their
vicinity either by lytic damage leading to necrosis or by
inducing apoptosis.10–12 As SMCs are central to the biosyn-
thesis and maintenance of the fibrous cap, their number
may become insufficient to repair the degradation. Well-
known accelerating risk factors for atherosclerosis include
hypercholesterolaemia, hypertension, diabetes, and
smoking. In hypercholesterolaemia-induced atherosclerosis,
a causal role is attributed to oxidized-LDL (ox-LDL)13,14

(Figure 1, steps 1–16). Oxidation of lipoproteins flooding
the intima may result from the production of reactive
oxygen intermediates, particularly peroxynitrite (ONOO2)
or from 15-lipoxygenase activity in the ECs. Ox-LDL is, in
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Figure 1 Pathogenesis of atherosclerosis in 28 steps. Step 1: LDLs are oxidized to ox-LDL by ROS and by 15-lipoxygenase. Step 2: Ox-LDLs are cytotoxic for the
ECs. Step 3: Ox-LDLs accumulate in the EC, intima, and SMCs. Step 4: The ECs and SMCs react by secreting monocyte MCP-1 and growth factors. Step 5: MCP-1 and
growth factors stimulate monocytes and T-lymphocytes. Step 6: Ox-LDLs elicit an immune response and cytokines are produced. Step 7: Ox-LDL and cytokines
induce the expression of VCAM-1 and ICAM-1 on Ecs. Step 8: Leukocytes and monocytes bind to ICAM-1 and VCAM-1. Step 9: Macrophages migrate into the EC and
phagocyte ox-LDL. Step 10: Macrophages also migrate in the intima and SMC layers. Step 11: They keep phagocytizing ox-LDL and become foam cells. Step 12:
Macrophages are also cytotoxic for SMCs. Step 13: Ox-LDLs are chemotactic for monocytes and T-lymphocytes. Step 14: Activated macrophages produce matrix
metalloproteinases and prothrombin, which stimulate platelet aggregation. Step 15: Macrophages and foam cells contribute to the production of ROS. Step 16:
Ox-LDL upregulates Cav-1 and the complex between Cav-1 and eNOS inactivates e-NOS. Step 17: eNOS uses the precursor L-arginine as well as tetrahydrobiop-
terin and NAD(P)H cofactors to synthesize nitric oxide (NO) and L-citrulline. C-reactive protein is a biomarker of inflammation that is a common denominator in
cell diseases related to atherosclerosis. It downregulates eNOS (step 18) and increases the production of ROS (step 19). Step 20: It stimulates macrophages and
contributes to the activation of iNOS Step 21: iNOS can also be activated by bacterial lipopolysaccharides (LPS) and cytokines such as IFN-g, IL-1b, IL-12, and IL-18
and inhibited by IL-10. Step 22: Activation of iNOS leads to a massive production of NO. Step 23: ROS can oxidize BH4 into BH2. Step 24: BH2 regulates eNOS and
the resulting product is O2

2 instead of NO. Step 25: O2
2 can react with NO to form peroxynitrite (ONOO2). Step 26: ROS can also react directly with NO and amplify

the production of reactive radicals ONOO2. Step 27: By inhibiting NAD(P)H and inducing production of O2
2, NADPH oxidase contributes to the production of

ONOO2. XO and uncoupled mitochondrial respiration products also contribute to ONOO2 formation. Step 28: ecSOD plays an important protecting role by react-
ing with O2

2 and producing hydrogen peroxide (H2O2). Plus sign indicates activation, stimulation, increase, or amplification; minus sign indicates inhibition,
decrease, or attenuation; † sign indicates cytotoxicity.
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turn, cytotoxic to ECs due to the metal-catalyzed pro-
duction of free radicals from lipid hydroperoxides contained
in the modified lipoprotein particle.15 Ox-LDL accumulates
in the ECs, intima, and SMCs. Furthermore, ox-LDL is chemo-
tactic for monocytes and T-lymphocytes. Newly formed anti-
genic determinants (epitopes) in ox-LDL elicit cell-mediated
and humoral immune responses.16 Minimally modified LDL
stimulates the ECs and SMCs to secrete monocyte chemotac-
tic protein-1 (MCP-1) and growth factors involved in the
differentiation and proliferation of monocytes. In addition,
ox-LDL may, synergistically with cytokines, promote mono-
nuclear leukocyte adhesion to the endothelium through
the induction of vascular cell adhesion molecules (VCAM-1)
and intercellular cell adhesion molecules (ICAM-1).17,18

Monocyte-derived macrophages internalize ox-LDL through
scavenger receptors. As these receptors are not downregu-
lated by the intracellular cholesterol level, massive choles-
terol accumulation occurs and the macrophages transform
to foam cells,19 which are continuously recruited by the
vessel wall to remove the lipoprotein particles that have
invaded. Ox-LDL cholesterol increases the synthesis of
caveolin-1 (Cav-1; the principal structural protein in caveo-
lae that binds cholesterol), which inhibits production of NO
by inactivating endothelial NO synthase (eNOS).20

Conversely, normal release of NO prevents oxidative modifi-
cation of LDL cholesterol (Figure 1, steps 1–16).21

Three NO synthase (NOS) isoforms have been identified
and named after the site of their initial isolation. The neur-
onal synthase (nNOS or Type I) and eNOS (Type III) are consti-
tutively expressed and synthesize NO in response to
increased calcium. The high output of the third isoform
NO synthase (iNOS or Type II) may be induced in selected
tissues in response to a range of inflammatory mediators
and its activity is functionally independent of calcium. It is
not a normal constituent of healthy cells but is thought to
be expressed in response to pro-inflammatory signals as
part of an innate host defense mechanism.22

Under normal conditions, low concentrations of NO are
continuously involved in a variety of physiological functions,
which include the regulation of blood pressure and flow and
platelet aggregability.2 Under pathological conditions,
however, high concentrations of NO, which are generated
for potential anti-bacterial, anti-parasitic, tumoricidal,
and anti-viral activities, may be detrimental to tissues, for
example, in endotoxic shock and some immunological and
degenerative diseases.
In 1986, it was reported that acetylcholine induced vaso-

dilation in the coronary vessels of healthy volunteers, but
not in patients with angiographic evidence of atherosclero-
sis.23 Since then, it has been clearly shown that in athero-
sclerosis there is impaired generation of NO in the vascular
endothelium, leading to vascular dysfunction. This probably
co-exists with the expression of iNOS in the plaque, generat-
ing excessive amounts of NO and leading to an interaction
with oxygen-derived radicals, generation of ONOO2, and
further impaired vascular function.
In mice lacking the LDL receptor, an animal model of

familial hypercholesterolaemia, inhibition of endothelial
NO production accelerates atherosclerotic lesion formation,
whereas L-arginine (the amino-acid precursor of NO) treat-
ment decreases lesion development.24 Moreover, it has
been demonstrated that specific removal of eNOS from
mice prone to develop atherosclerosis, i.e. the

apolipoprotein E (apoE)-knockout mouse model, resulted
in a marked acceleration of atherosclerotic lesion formation
in the aorta and in the coronary arteries.25

In recent years, atherosclerosis has come to be recognized
as active and inflammatory, rather than simply a passive
process of lipid infiltration. The inflammatory immune
system is strongly involved in the development of fatty
streaks.26 Hypercholesterolaemic mice deficient either in
monocyte-macrophages or in mature B- and T-lymphocytes
(RAG-2 gene deficient), develop 10- and two-fold less fatty
streaks than control mice, respectively.27,28 Mice deficient
in various cytokines have demonstrated the aggravating
role of pro-inflammatory cytokines, such as interferon-g
(IFN-g) and interleukins (IL-1, IL-12, and IL-18), and the pro-
tective role of anti-inflammatory cytokines (mainly IL-10), in
the development of the atherosclerotic process.29–31

Macrophages and monocytes can produce excess NO
through iNOS.32 iNOS is calcium-independent and is stimu-
lated by cytokines such as IFN-g and IL-1b. iNOS-derived
NO plays an important role in numerous pathophysiological
conditions (e.g. inflammation)33 It has also been reported
to inhibit proliferation and to induce apoptotic cell death
in SMCs and to activate matrix metalloproteinases.8

The adhesion of leukocytes to the endothelium is a critical
step in the initiation and the development of fatty streaks.
Leukocytes first undergo an interaction between the selec-
tin and the selectin ligand, which allows the cells to roll
along the endothelial surface. Leukocyte chemokine recep-
tors thereby come into contact with chemokines displayed
by the endothelium, leading to activation of integrins. This
is necessary for subsequent firm adhesion, through adhesion
molecules of the immunoglobulin superfamily such as ICAM-1
and VCAM-1. This process is followed by the leukocyte
migration from the vasculature to the subendothelial space.
Increased leukocyte–EC interactions have been observed

in eNOS-deficient mice.34 At a molecular level, inhibition
of eNOS results in increased expression of leukocyte-
adhesion molecules and critical chemokines, such as MCP-
1, which is thought to be responsible for the migration of
monocytes into the intima at sites of atherosclerotic lesion
formation.35,36 Conversely, NOS gene therapy rapidly
reduces hypercholesterolaemia-induced leukocyte-adhesion
molecule expression (VCAM-1) and ameliorates monocyte
infiltration into the arterial wall of cholesterol-fed rabbits.37

Endothelial dysfunction and nitric oxide

Over the last two decades, it has become evident that the
endothelium is not merely an inert, single-cell lining cover-
ing the internal surface of blood vessels, but in fact plays a
crucial role in regulating vascular function.38

As the major regulator of vascular homeostasis, the endo-
thelium maintains the balance between vasodilation and
vasoconstriction, inhibition and stimulation of SMCs prolifer-
ation and migration, and thrombogenesis and fibrinolysis.
Endothelial dysfunction leads to the disruption of this
balance and causes damage to the arterial wall.20,38–40

Endothelium dysfunction is considered as an early indication
of atherosclerosis, preceding angiographic or ultrasonic evi-
dence of atherosclerotic plaque. This has been demon-
strated in acetylcholine- or serotonin-induced vasodilation
tests or through the measurement of flow-mediated
dilation. Endothelium dysfunction was detected at both
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the conduit and microvascular levels in patients with coron-
ary risk factors, but no angiographic or ultrasound evidence
of structural coronary artery disease (CAD).41–43 These
results confirm that endothelial dysfunction is present in
the pre-clinical stage of atherosclerosis. Endothelium dys-
function of the microvasculature has also been associated
with exercise-induced myocardial ischaemia in patients
without haemodynamically significant CAD of the epicardial
arteries, suggesting that endothelial dysfunction of the
microcirculation may contribute to ischaemia when myocar-
dial oxygen demand is increased.44

Many of the traditional coronary risk factors that
predispose a person to the development of atherosclerosis,
such as hypercholesterolaemia, hypertension, smoking, dia-
betes, and a positive family history of premature CAD, are
also associated with endothelial dysfunction.45,46 In a
study in which vasodilation was evaluated using plethysmo-
graphy of forearm blood flow in response to acetylcholine
(endothelium-dependent) and sodium nitroprusside
(endothelium-independent), patients who experienced
cardiovascular events over a mean follow-up of 4.5 years
showed impaired vasodilator responses.47

A defect in NO production or activity has been proposed to
be a major mechanism of endothelial dysfunction and a con-
tributor to atherosclerosis.48 Impaired production or activity
of NO leads to events or to actions such as vasoconstriction,
platelet aggregation, SMCs proliferation and migration, leu-
kocyte adhesion, and oxidative stress.49 However, endo-
thelial dysfunction is likely to be a multifactorial process.
There is accumulating evidence that increased vascular pro-
duction of reactive oxygen species (ROS) plays an important
role (Figure 1, steps 18–28). Increased vascular production
of superoxide anion has been demonstrated in all major con-
ditions predisposing to atherosclerosis.50–53 For example,
there is increased production of superoxide anion in coron-
ary arteries in patients with CAD.54 In particular, superoxide
anion reacts rapidly with NO, resulting in the formation of
the highly reactive and cytotoxic ONOO2 and loss of the
bioactivity of NO. Increased vascular production of ROS pro-
motes the oxidative degradation of the critical eNOS cofac-
tor tetrahydrobiopterin (BH4), leading to eNOS uncoupling
and the consequent reduced production of NO and the
increased production of superoxide anion from the
enzyme.55–57 There is indirect evidence to suggest that
eNOS uncoupling contributes to endothelial dysfunction
and increased production of superoxide anion in the oxi-
dative stress of ischaemia/reperfusion injury,58 hypercholes-
terolaemia,59 hypertension,60 diabetes,61 and heart
failure.62

The nicotinamide adenine dinucleotide phosphate
NAD(P)H oxidase has been identified as an important
vascular source of superoxide anion. This enzyme is stimu-
lated by pro-atherosclerotic stimuli such as angiotensin II,
mechanical stretch, and pro-inflammatory cytokines.63,64

Enhanced NAD(P)H oxidase protein subunit levels have
been found in human vascular endothelium in atherosclero-
sis,65 hypertension,66 and diabetes61 in association with
increased production of superoxide anion. Recent data
have demonstrated that the coronary activity of the
NAD(P)H oxidase is significantly increased in patients with
coronary disease.67

Another potential vascular source of superoxide anion is
xanthine oxidase (XO).68,69 In patients with coronary

disease, increased activity of coronary and endothelium-
bound XO activity has recently been observed. This was
inversely related to endothelium-dependent vasodilation,
suggesting that increased activity of this enzyme contributes
to endothelial dysfunction.67

Vascular levels of superoxide anion and bioactivity of NO
are determined not only by the rate of superoxide anion pro-
duction but also by its rate of degradation. The major super-
oxide anion-degrading enzyme system is superoxide
dismutase (SOD); the extracellular form of SOD (ecSOD) is
of particular interest in the vessel wall because it is highly
expressed and strategically located in the extracellular
space around vascular SMCs.70,71 In coronary arteries from
patients with coronary disease, ecSOD activity has been
shown to be profoundly reduced. Furthermore, in patients
with coronary disease, endothelium-bound ecSOD activity
was shown to be reduced and closely related to impaired
endothelium-dependent, NO-mediated vasodilation,
suggesting that reduced ecSOD activity may contribute to
endothelial dysfunction (Figure 1, steps 18–28).72

In patients with CAD, endothelium-dependent vasomotion
at the forearm is related to serum levels of a systemic
marker of inflammation, the high-sensitive C-reactive
protein (hs-C-reactive protein). Recent studies suggest
that C-reactive protein, besides being a marker of inflam-
mation, may also directly contribute to endothelial dysfunc-
tion. Exposure of ECs to C-reactive protein decreases
endothelial NO production and downregulates eNOS
expression due to decreased stability of eNOS
mRNA.19,73,74 Numerous studies from various parts of the
world have clearly established that C-reactive protein pre-
dicts future risk for cardiovascular disease in apparently
healthy persons, independently of established risk factors
in the majority of studies.75,76 These studies clearly
support a role of C-reactive protein in atherogenesis.

Potential therapeutic effects of NO donors and
enhancers of NO availability

Enhancers of NO availability

Statins
The statins are a group of compounds which lower LDL
cholesterol by inhibiting the enzyme 3-hydroxy-3-methyl-
glutaryl co-enzyme A. These drugs improve vascular
relaxation, reduce vascular inflammation, reduce oxidative
stress, decrease thrombosis and platelet aggregation,
decrease adhesion of platelets and white cells to the vascu-
lar endothelium, stabilize vulnerable plaques, and promote
new vessel formation.52,77 These beneficial effects of statins
are, in part, mediated by an effect on eNOS because they
can be blocked by L-NMMA, an inhibitor of eNOS,45,78 or
are absent in eNOS deficient mice.79

Simvastatin has been shown to prevent the decreased
bioavailability of endothelium-derived NO and downregula-
tion of endothelial eNOS that result from elevated levels
of native LDL.80 Elevated LDL reduces NO production, in
part, by increasing the interaction between Cav-1 and
eNOS. Atorvastatin has been shown to reduce Cav-1
expression in ECs by inhibiting the interaction between
Cav-1 and eNOS, resulting in increased NO production.81,82

In addition, statins block rac 1 isoprenylation,83 an import-
ant component of NAD(P)H oxidase complex, thus reducing
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the expression of NAD(P)H oxidase subunits.84 This results in
an inhibition of endothelial production of superoxide anion,
and a shift in the balance between NO and the free radical,
thus improving endothelial function. A further proposed
mechanism for the increase in eNOS expression with statin
therapy is an increased stability of eNOS messenger RNA,
which would permit preservation of eNOS expression in the
presence of ox-LDL.85

Augmented endothelium-dependent dilation has been
noted in the forearm of healthy normocholesterolaemic
men after only 1 day of high-dose atorvastatin (80 mg),
even before appreciable reduction in plasma LDL cholesterol
or in C-reactive protein could be detected. This rapid
increase in dilation is consistent with a cholesterol-inde-
pendent effect of statins.86 In the RECIFE (Reduction of
Cholesterol in Ischaemia and Function of the Endothelium)
trial, 6 weeks of pravastatin therapy (40 mg/day) rapidly
increased flow-mediated dilation compared with placebo
in patients with acute coronary syndromes. Changes in
flow-mediated dilation were not correlated with decreases
in total and LDL cholesterol, suggesting that the improve-
ment in endothelial function was not related to the
lipid-lowering effects of the statin.87 Statin therapy
also reduces circulating levels of the adhesion molecules
P-selectin, E-selectin, and ICAM-1 in hypercholesterolaemic
and CAD patients88,89 This reduction has been shown to be
associated with an increase in levels of NO.90

Furthermore, treatment with high doses of statin (80 mg
atorvastatin) has been shown to decrease significantly hs-
C-reactive protein and fibrinogen in parallel with an
increase in NO in patients with CAD. Conventional treatment
with 20 mg simvastatin, while significantly decreasing lipid
concentrations, was unable to achieve this effect on inflam-
matory markers.91

Angiotensin-converting enzyme inhibitors
Animal and human studies indicate that angiotensin-
converting enzyme (ACE)-inhibition, leading to a decrease
in the stimulation of angiotensin II type I receptors (AT-1),
can improve endothelial dysfunction and oppose early
atherosclerosis. These effects are attributable to the
attenuation of the superoxide anion-generating effects of
angiotensin II and to the enhanced endothelial release of
NO, secondary to diminished breakdown of bradykinin and
related kinins.8,52 Indeed, the AT-1 receptor mediates classi-
cal angiotensin II effects such as vascular contraction, SMC
hypertrophy, extracellular matrix synthesis, increased
platelet aggregation, monocyte adhesion and activation,
and release of inflammatory cytokines. These events are
crucial steps both in atherosclerosis and in the control of
vascular homeostasis.52 Some effects of angiotensin II are
mediated by ROS; for example, angiotensin II is a potent
stimulus for the activation of NAD(P)H oxidase63 and ACE-
inhibitors potently decrease NAD(P)H oxidase activity.52,92

Several clinical studies have shown cardiac ischaemic
events to be prevented by ACE-inhibition in patients with
a history of acute myocardial infarction (MI).93–96 However,
a quantitative coronary angiography study in patients with
normal left ventricular function could not demonstrate any
effect of quinapril on stenosis progression or new stenosis
development when compared with placebo treatment.97

Though the improved EC function by ACE-inhibition may
help to explain the beneficial effects of ACE-inhibitors in

reducing the number of ischaemic events in patients with
left ventricular dysfunction,94 their clinical value as anti-
atherosclerotic agents remains controversial, with both
positive98,99 and negative100 results obtained in recent ran-
domized placebo- or reference-controlled clinical trials.

L-Arginine
The beneficial effects of supplementation with L-arginine,
the biochemical precursor of NO, have been documented
both in animals and in humans in several conditions, includ-
ing hypercholesterolaemia, hypertension, CAD, and dia-
betes.101–103 In a recent study investigating the extent of
lymphocyte activation and anti-ox-LDL antibodies in
patients with unstable angina pectoris undergoing percuta-
neous transluminal coronary angioplasty (PTCA) with stent
placement, L-arginine has been shown to attenuate the sys-
temic rise in peripheral lymphocyte activation, to limit oxi-
dative stress markers induced by vessel wall injury, and to
decrease anti-ox-LDL antibody levels.104

Although the way in which L-arginine influences the syn-
thesis of NO and alters the oxidant status of the athero-
sclerotic blood vessel is not well understood, it has been
suggested that the beneficial effects of L-arginine adminis-
tration are partially caused by a competition of this amino
acid with the derivative asymmetrical dimethyl-L-arginine
(ADMA), which is an endogenous inhibitor of eNOS
activity.105,106 However, in men with stable angina, the
increase in plasma L-arginine/ADMA ratio after 2 weeks
oral supplementation with L-arginine was not associated
with an improvement in endothelium-dependent vasodila-
tion, oxidative stress, or exercise performance.107

Since ECs contain L-arginine in concentrations thousand
times greater (millimolar range) than those required for
the activity of eNOS (micromloar range), it is unlikely that
a lack of L-arginine accounts for reduced production of NO
in cardiovascular disorders. However, it has been argued
that native ECs in vivo are continuously exposed to hormonal
and mechanical stimuli that might lead to relative intra-
cellular deficiency in L-arginine, especially in the close
proximity of eNOS.108

Short-term effects are beneficial but long-term adminis-
tration reveals that the effects are not sustained.109

Indeed, a recent study has even shown functional and bio-
chemical evidences for an increased superoxide anion pro-
duction in atherosclerotic aortas from hypercholesterol-
aemic rabbits treated with L-arginine for 12 weeks.110

Tetrahydrobiopterin
Tetrahydrobiopterin (BH4) is critical for eNOS activity. When
ECs are in the presence of sub-optimal concentrations of
BH4, eNOS generates superoxide anion instead of NO.111

Administration of BH4 has been shown to improve
endothelium-dependent relaxation in patients with
hypercholesterolaemia112 and type II diabetes113,114 as well
as in smokers.115 However, the benefit of such treatment
remains uncertain in vascular disease states in which oxi-
dative stress is much more pronounced,56,116 such as in
atherosclerosis. Indeed, in a recent placebo-controlled
study testing the influence of BH4 on insulin sensitivity
index and flow-mediated dilation in type II diabetic patients
suffering from CAD, it has been shown that BH4 was able to
increase insulin sensitivity without any discernable
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improvement in endothelial function, i.e. no change in bra-
chial artery diameter.117

NO donors

Because NO elicits protective and beneficial actions in
various disease states, direct delivery of NO is expected to
be effective in the prevention and/or treatment of essential
hypertension, stroke, CAD, vascular complications of dia-
betes, and other disorders involving the vascular system.
On the other hand, as previously mentioned, NO is known
to have both beneficial and deleterious actions. For
example, it reacts with the superoxide anion that is pro-
duced by activated macrophages and other cells, to form
ONOO2. For this reason, the tissue levels of NO need to be
well controlled to obtain its therapeutic benefits.118

The pathways leading to NO formation differ significantly
among individual NO-donor classes, as do their chemical
reactivities. Some compounds require enzymatic catalysis,
whereas others produce NO non-enzymatically. Some NO
donors require interaction with thiols to release NO, some
have to undergo reduction, and others oxidation. A further
complication is the formation of different end products
during decomposition or metabolism.119

Indirect NO donors
Nitrovasodilators, such as organic nitrates [nitroglycerin
(NTG), isosorbide mononitrate (ISMN), and isosorbide dini-
trate (ISDN)], have been used as therapeutic agents for
over a century. These compounds have been administered
successfully in the treatment of symptomatic CAD and
hypertension, and evidence suggests that they offer
benefit in the management of vascular disorders character-
ized by endothelial dysfunction and NO deficiency.120

Although studies on the effect of chronic administration of
organic nitrates on the progression of atherosclerosis are
very limited, long-term treatment of hypercholesterolaemic
rabbits with a low dose of pentaerythritol tetranitrate
(6 mg/kg/day for 16 weeks) has been shown to reduce the
progression of lesion formation, endothelial dysfunction,
and LDL-oxidation.121

Continuous transdermal administration of NTG has been
found to be associated with increased vascular production
of superoxide anion and endothelial dysfunction. In con-
trast, it was unclear whether vascular production of super-
oxide anion increased during eccentric administration of
oral nitrates, which is a widely used therapeutic dosing
regimen. However, recent data suggest that eccentric
ISMN (200 mg/kg/day during 16 weeks) can decrease super-
oxide anion concentrations and partially prevent intimal
lesion formation and endothelial dysfunction in hypercholes-
terolaemic rabbits.122,123

A major limitation of the use of nitrates is the rapid devel-
opment of tolerance during sustained therapy. Several
hypotheses have been proposed to explain this loss of
haemodynamic and anti-anginal efficacy but the exact
mechanism of tolerance remains unresolved.124 Two hypoth-
eses are frequently evoked. The free radical hypothesis
suggests that nitrate tolerance is caused by an increased
production of superoxide anion by the endothelium during
nitrate therapy. Inactivation of the NO released from
organic nitrates by the superoxide anion would then result
in the loss of responsiveness to nitrates. According to the

second hypothesis, tissue sulfhydryl groups (2SH) are
required for the expression of vasodilator action of organic
nitrates, possibly in order to react with the nitrates to liber-
ate NO from the intermediate S-nitrosothiols that are
formed. Repeated administration of relatively large doses
of NTG would lead to the depletion or to the oxidation of
tissue thiols, resulting in a gradual attenuation of the
action of NTG.

Nitroglycerin, when administered intra-arterially for
20 min at a dose that does not affect resting forearm
blood flow (1 nM), specifically increased the vasodilator
response to intra-arterial administration of acetylcholine
in patients with congestive heart failure but not in normal
subjects. The vasodilator response to acetylcholine was con-
sistently enhanced by low-dose NTG throughout a 12 h
period.125 Furthermore, in a recent study, the addition of
a fixed dose of ISDN plus hydralazine to standard therapy
for heart failure including neurohormonal blockers was
found efficacious and increased survival (10.2 vs. 6.2% mor-
tality in the placebo and ISDNþ hydralazine groups, respect-
ively) among 1050 black patients with advanced heart
failure (NYHA Class III or IV).126

In contrast, in the ISIS-4 (Fourth International Study of
Infarct Survival) placebo-controlled study, there was no sig-
nificant reduction in 5 week mortality in patients with acute
MI receiving oral controlled-release mononitrate (30–60 mg
once daily) during 1 month when compared with patients
receiving placebo. Further follow-up did not indicate any
later survival advantage.95 Furthermore, chronic adminis-
tration of long-acting nitrates in patients with a healed MI
resulted in an increased number of patients with fatal and
non-fatal cardiac events during a 18 month observation
period.127 These results were in agreement with the
increased risk of cardiac death in patients with CAD
treated with long-acting nitrates during the chronic phase
of the disease.128 However, due to shortcomings in both
studies, the association of an increased risk of cardiac
death and the use of long-acting nitrates is controversial
and randomized controlled trials are necessary to resolve
this important issue.129

Direct NO donors
Nicorandil. Nicorandil is a nicotinamide ester with a dual
mechanism of action. Its distinctive pharmacological effect
is to open ATP-sensitive potassium channels (KATP), thereby
dilating peripheral and coronary resistance arterioles; but
it also possesses a nitrate moiety, which dilates systemic
veins and epicardial coronary arteries.130 Thus nicorandil
increases coronary blood flow, reduces pre-load and after-
load,131–133 and has an anti-anginal efficacy and safety
profile similar to that of organic nitrates.134

In 44 patients with angina who underwent PTCA, nico-
randil pretreatment resulted in the induction of myocardial
pre-conditioning, independently of the severity of ischae-
mia. The same effect was not observed with ISDN, proving
that the opening of KATP channels plays an important role
in the protecting effect of nicorandil.135,136

In addition to its anti-ischaemic effects, nicorandil is
thought to have cardioprotective properties. The IONA
(Impact Of Nicorandil in Angina) placebo-controlled trial in
patients with stable angina showed a significant improve-
ment in outcome due to a reduction in major coronary
events during a mean follow-up period of 1.6 years.137
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Recently, nicorandil has been shown to affect fibrinolysis
in 11 patients with CAD. There were no significant changes
in the plasma concentrations of tissue-type plasminogen
activator or type-1 plasminogen activator inhibitor (PAI-1)
antigens after oral administration of nicorandil for 2
weeks. However, the plasma activity of PAI decreased signifi-
cantly after the treatment. This finding suggests that nicor-
andil improves the fibrinolytic capacity and may reduce the
risk of coronary thrombus formation in such patients.138

Sydnonimines. The most studied representative of the
heterocyclic direct NO donors is molsidomine, a sydnonimine
that has been used since the 1970s in several European
countries in the treatment of stable angina pectoris.139–143

Although molsidomine itself is only poorly vasoactive in
vitro, SIN-1 (the active metabolite of molsidomine) is a
potent vasorelaxant and anti-platelet aggregating agent.
These activities are thought to be mediated largely by the
release of NO. Activation of soluble guanylate cyclase by syd-
nonimines is independent of the presence of thiols.144 Being
thiol-independent, molsidomine and SIN-1 do not cause
tolerance and are not cross-tolerant to organic nitrates.145

A few studies have looked directly at the effect of NO or
NO donors on the prevention of intimal hyperplasia in
humans, including ACCORD (Angioplastie Coronaire
Corvasal Diltiazem), in which 700 patients undergoing elec-
tive PTCA were randomized to receive either an infusion of
SIN-1 followed by oral molsidomine or calcium channel
blockers, for 6 months. Although no improvement was docu-
mented in clinical outcomes such as death, non-fatal MI, or
need for repeat procedures, there was a reduction in the
rate of restenosis (.50% stenosis) from 47 to 38%, in
patients who received the NO donors.146

Flow-mediated dilation of human blood vessels is essential
to adaptation and regulation of peripheral blood flow and is
mediated by endogenous NO. Computerized ultrasonography
was used in a randomized double-blind placebo-controlled
study to measure diastolic diameters of the brachial artery
before and after hyperaemia in two groups of 10 patients
with CAD. Each group received orally either placebo or
12 mg molsidomine a day for 48 h. In the molsidomine
group, flow-mediated dilation was improved with a 60%
increase after the first intake and a less pronounced
increase was observed after the last intake. A significant
increase in diastolic diameter was observed after the last
molsidomine intake, but not after the first one. Thus, it
appears that molsidomine has an early positive effect on
flow-mediated dilation in addition to a delayed vasodilator
effect. Improvement of endothelial dysfunction by molsido-
mine in patients with CAD might uncover new therapeutic
perspectives in the use of NO donors.147

Although the haemodynamic effects of molsidomine and
SIN-1 are well recognized, there are only a few studies
having explored their potential therapeutic benefits in the
prevention and/or treatment of atherosclerosis. Treatment
of cholesterol-fed rabbits with molsidomine (1 mg/kg/day)
during cholesterol withdrawal did not affect plaque size
but increased the thickness of the subendothelial macro-
phage-free layer consisting of SMCs and normalized superox-
ide formation and SOD mRNA expression. This demonstrates
that molsidomine can decrease signs of oxidative stress and
can increase the features of stable atherosclerotic
plaques.148

Monocyte adhesion to vascular endothelium is a crucial
step in the early stages of atherosclerosis, which may be
mediated by the interaction with adhesion molecules
expressed on the surface of ECs. In vitro, IL-1b markedly
increases the expression of ICAM-1 and VCAM-1. This effect
is antagonized by SIN-1 in a dose-dependent manner. This
action of SIN-1 was abolished in the presence of a scavenger
of NO, such as haemoglobin.149 In apoE-knockout mice150

and in clinical studies,151 the level of soluble ICAM-1 corre-
lates with the degree of atherosclerosis and is suggested to
be an appropriate biomarker reflecting the development of
atherosclerosis.152 Therefore, lowering of soluble ICAM-1
levels might be beneficial, since in atherosclerotic mice
models, a deficiency in ICAM-1 was shown to protect sub-
stantially against the progression of atherosclerosis.153,154

A recent review focusing on the relationship between
adhesion molecules and atherosclerosis concluded that the
levels of adhesion molecules might correlate with clinical
risk and serve as therapeutic targets.155

Patients with stable angina pectoris (n ¼ 172) were
treated daily for 1 year with molsidomine (16 mg once-a-
day Geomatrix formulation). After 4 weeks of treatment,
angina attacks and frequency of consumption of sublingual
ISDN were significantly reduced without altering soluble
ICAM-1 levels when compared with baseline values. The
anti-anginal effect of molsidomine was sustained and even
improved during the following year of treatment and a sig-
nificant decrease of 10% was measured in soluble ICAM-1
levels. When the soluble ICAM-1 changes during the 1 year
treatment period were distributed in four quartiles, it was
demonstrated that the decrease in sublingual ISDN consump-
tion between the start and the end of the study was most
pronounced in the group with the largest decrease in
soluble ICAM-1. The results of this open study may indicate
that molsidomine, in addition to its anti-anginal function,
promotes a less activated state of the endothelium and
thereby may modulate the progression of atherosclerosis
in patients with stable angina.156 However, further random-
ized and controlled studies are needed to confirm these pre-
liminary results.

Conclusion

The vascular endothelium and its product NO are key regu-
lators of vascular health. Reduced bioavailability of NO is
involved in the initiation, progression, and complications
of atherosclerosis. This pathology is the major cause of
death and disability in the United States, Europe, and
much of Asia. Elucidating the precise mechanisms by
which NO elicits protective effects in atherogenesis will
directly impact on the successful development of NO-
based therapies. Appropriate treatment of vascular inflam-
mation by direct or indirect NO donors, enhancement of
the action of NO, and/or scavenging of ROS should be
further explored for prevention of atherosclerosis. In this
respect, new technologies such as controlled, slow, and
regular release of NO from prolonged-release NO-donor
tablets appear to be promising strategies.
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