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Stability of Interacting Queues
in Random-Access Systems

Wei Luo, Student Member, IEEE, and Anthony Ephremides,Fellow, IEEE

Abstract—We revisit the stability problem of systems consisting
of N buffered terminals accessing a common receiver over the
collision channel by means of the standard ALOHA protocol.
We find that in the slotted ALOHA system queues have “insta-
bility rank” based on their individual average arrival rates and
transmission probabilities. If a queue is stable, then the queue
with lower instability rank is stable as well. The instability rank
is used to intelligently set up the dominant systems. And the
stability inner and outer bounds can be found by bounding the
idle probability of some queues in the dominant system. Through
analyzing those dominant systems one by one, we are able to
obtain inner and outer bounds for stability. These bounds are
tighter than the known ones although they still fail to identify
the exact stability region for cases ofN > 2. The methodology
used is new and holds promise for successfully addressing other
similar stability problems.

Index Terms— Interacting queues, multiple access, slotted
ALOHA, stability analysis.

I. INTRODUCTION

T HE stability problem for bufferless terminals in the
ALOHA systems has been extensively studied and is well

understood [1]–[3]. In the buffered case, the problem becomes
complicated because it involves interacting queues. Previous
analyses have yielded only various bounds to the regions of
arrival rate values for which the queues are stable [4]–[8].
Exact region identification has been achieved only for the case

[4], [7] and [6].
Tsybakov and Mikailov provided a rigorous treatment on

the problem in [7]. In the same paper, they implicitly used
the concept of dominant system and stated rigorously some
properties of the dominant system. In [4], Rao and Ephremides
explicitly introduced the technique of dominant system, and
pointed out that the dominant system, if properly set up,
is indistinguishable from the original ALOHA system at
saturation. In [6], Szpankowski treated the dominant system
more rigorously and obtained a necessary and sufficient con-
dition for stability by using Loynes’ stability criteria [9].
Although the concept of dominant system is powerful in
deriving the stability bound, how to set up a dominant system
intelligently was not addressed before. In this paper, we
identify an important property of the ALOHA system: queues
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have “stability ranks.” By using this property, we intelligently
set up the dominant system and obtain the improved bounds.

The system we consider is a discrete-time slotted ALOHA
system with terminals. Each terminal has a buffer of
infinite capacity to store the incoming packets. Time is slotted.
Transmission time of a packet is one slot. The packet arrival
process at each terminal is Bernoulli,1 and arrival processes at
different terminals are independent. In each slot, the terminal
attempts to transmit the packet with probability, if its buffer
is not empty. If two or more terminals transmit in the same slot,
a collision occurs. The packets involved in the collision wait
to be retransmitted in the next slot with the same respective
probabilities.

In Section II, we briefly set up the stability problem and
describe the mathematical foundations which our later discus-
sions are based on. In Section III, we investigate the stability
problem. We use the concept of dominance to derive a lower
bound in Section III-A. In Section III-B, we identify the
relative “rank” of stability of the individual queues, and we
obtain an upper bound. In Section III-C, we proceed to obtain
the inner and outer stability regions by using the “ranking”
technique, and we obtain an improved lower bound. Finally,
in Section III-D, numerical results show the improvement of
our bound over the previously obtained ones.

II. BACKGROUND

Consider a slotted ALOHA system with terminals. The
packet arrival rate for theth terminal is . For
an -terminal system, we define anarrival vector and a
vector of probabilities as follows:

(1)

(2)

where , and , for and
where “ ” represents vector transposition.

We adopt the definition of stability used in [6].

Definition: Queue of the system isstable, if

and (3)

where is the size of the queue at time. If

(4)

1In fact, the arrival process at each terminal may be arbitrary as long as it
is stationary and ergodic. All theorems, except Theorem 5, are true for such
arbitrary processes.
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the queue issubstable. Obviously, if a queue is stable, then
it is also substable. If a queue is not substable, then we say
it is unstable.

We say is stableor the ALOHA system with
is stable, if all the queues in the system are stable. If at least
one queue in the system is unstable, the system is unstable.

Let . The vector process
is an irreducible and aperiodic Markov chain with countable
number of states [7]. It is either positive recurrent, or null
recurrent, or transient [10]. The stability as defined above is
equivalent to positive recurrence of the Markov chain. Thus
the system is stable if and only if the Markov chain has
positive probability distribution whenapproaches to infinity.
This criterion is equivalent to the following: The ALOHA
system is stable if and only if every queue
has positive probability of being empty, i.e.,

We define the notion adominant systemcorresponding to
the original -terminal system as in [4]. Theonly difference
between the dominant system and the original system is that
the th terminal in the dominant system continues to transmit
“dummy” packets with probability even when its queue is
empty, if queue belongs to a designated set. We denote the
original system as , and the dominant system with persistent
set as . The dummy packets can result in collision, but
the successful reception of the dummy packet does not reduce
the queue size. Thus the dominant system always has larger
queue size than the original system if both start from the same
initial condition. If the dominant system is stable, then the
original system is stable. Also we can see that any changes
in the arrival rate or in the queue length of any queue in
have no effect on the other queues in the dominant system.
Thus we can get a partially decoupled queuing system when
we consider this kind of dominance.

It is clear that if includes all the queues, and if such a
dominant system is still stable, then the original system is also
stable. The following lemma states this fact.

Lemma 1: Given , if

(5)

for all , then is stable.

If all the queues in of the dominant system are
unstable, then the original system is also unstable, because
in this case, all the queues in tend to grow to infinity, so
the probability of ever sending a dummy packet by a terminal
of the dominant system is zero, hence the dominant system
is indistinguishable from the original system under saturation.
Thus we have the next lemma.

Lemma 2: Given , if

for all , then is unstable.

Loynes theorem is used throughout the paper. It states that
if the arrival process and service process of a queue are all
stationary, and the average arrival rate is less than the average
service rate, then the queue is stable; if the average arrival rate
is greater than the average service rate, the queue is unstable; if
they are equal, which only occurs on the boundary of stability
region, the queue can be either stable, or substable but not
stable, or unstable [9]. In this paper, we are only concerned
with the inner and outer stability region. We do not attempt to
analyze the stability on the boundary points. To apply Loynes
theorem, stationarities of arrival process and service process
are required. Stationarity of arrival process is already given.
But in the system with interacting queues, stationarity of the
service process is not obvious. However, in our approach, this
is not a hindrance. The reason is that in a dominant system

, if all the queues outside of are stable, then they
yield a stationary slot availability (i.e., service) process. In
addition, the queues in also yield stationary slot availability
process by definition of dominant system. Then the overall
service process should also be stationary for any individual
queue. This argument is due to Szpankowski who established
stationarity and ergodicity of service process in the dominant
system in [6].

III. STABILITY PROBLEM

A. Sufficient Conditions for Stability

In this section we will consider the problem of whether the
system is stable for given . Rao and Ephremides in [4]
solved the case of and provided approximate results
for higher dimensional cases. Szpankowski provided a strict
bound for (see [6]). No exact identification of the
stability region is known for the general case of .

The major difficulty, of course, is that the queues are
interacting with each other so that we cannot decouple them
and track the problem with single-dimensional Markovian
analysis. Given the arrival vector , there is an optimal
vector so that the average delay is minimized. However,
it is difficult to determine this . Even given an arbitrary

, it is difficult to determine whether it is advantageous to
increase any one of’s components. Conversely, to obtain the
stable region of arrival rate vector for a given is equally
intractable. So we take the approach of intelligently choosing
dominant systems that we can track and that can tightly bound
the given system.

So, consider a given pair . According to Lemma 1, if
for every we have that

(6)

then the system is stable. According to Lemma 2, if for all
we have

(7)

then the system is unstable. What interests us is whether the
system is stable if for some pairs , say, ,
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we have

(8)

and for other pairs

(9)

Lemma 3: In an ALOHA system with , if

then queue is stable.
Proof: Consider a dominant system in which all the

queues except queuetransmit dummy packet. Then queue
in this dominant system is a Markov chain with

service rate Because

queue is stable in the dominant system, thus it is also stable
in the original ALOHA system.

Now we proceed to obtain the sufficient conditions for the
stability of the queues , for which

We set up the dominant system , for which
; we denote this system as , when no ambiguity

arises. It is clear that if the original system is unstable,
then the dominant system is unstable. Furthermore, if
the dominant system is stable, then the original system
is also stable. Our goal is to establish a sufficient condition
for the stability of the dominant system, which will also be
sufficient for the stability of the original system. Consider the
first terminals which satisfy (8) in the dominant system

. We define as average service rateof the th terminal,
the successful transmission probability when terminalis not
empty.

The average service rate of the th terminal satisfies the
following inequality:

(10)

That this is so follows from the fact that since the firsttermi-
nals are stable, is the “nontransmission” probability of
queue when it is not empty. So is the underestimation
of the overall (unconditional) “nontransmission” probability of
queue .

Assume that the “nontransmission” probability for the first
terminals is ; then

queue is empty

queues from to do not

transmit/queue is empty

queue is not empty

queues from to do not

transmit/queue is not empty (11)

We know that

all the queues from to do not

transmit/queue is empty (12)

and that

all the queues from to do not

transmit/queue is not empty (13)

Furthermore,

queue is not empty queue is empty (14)

Substituting from (12)–(14) into (11), we obtain

queue is empty

queue is empty (15)

We know that queue 1 is stable by Lemma 3. And by Little’s
theorem

queue is empty (16)

Substituting from (10) in (16), we obtain

queue is empty (17)

Using (17), we can rewrite (15) as

(18)

The th terminal, , is stable in the dominant system
if

(19)

By using (18), a sufficient condition for queue to be
stable is

(20)

Without loss of generality, we assume that

(21)

Then we obtain the following lemma.
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Lemma 4: Given , if there is an integer
such that , for , and

for , and if

(22)

for , then the system is stable.

The condition above in the lemma can be written in a
concise way. First, we can let ; secondly, we note
that for is not necessary
because the violation of this condition simply means smaller
arrival rates. Note that the system with smaller arrival rates will
be stable if the original one is. So the conditions in Lemma 4
can be summarized as follows:

1)

2) for queues , (22) is satisfied.

Actually, even for , (22) is satisfied; and if (22) is satisfied
for

Therefore, we have the following theorem.

Theorem 1: Given , if for every ,

(23)

then the system is stable.

A concise proof of Theorem 1 consists of setting up a
dominant system in which all the queues except queue 1 send
dummy packets; and we can then prove that the service rate
for queue , for the dominant system, is given
by the expression on the right-hand side of (22). If (22) is
satisfied, then queueis stable in the dominant system, and
hence stable in the original system.

Consider the following example. Let ; if

(24)

the stable condition for , according to Theorem 1, is given
by

(25)

or, equivalently,

(26)

Symmetrically, we consider the case where

(27)

and we obtain that

(28)

Interestingly, this is thenecessary and sufficientcondition for
stability as in [4].

Similar results were also derived in [5]. Later in the paper,
we will provide bounds that improve further the one given
here.

B. Ranking of the Queues

The previous section discussed a sufficient condition for
stability. Although we are not able to obtain a condition
that is both sufficient and necessary, we do derive here a
separate necessary condition. When , the two conditions
coincide. The following theorem is the basis for our discussion
thereafter.

Theorem 2: Given , we order the indices of the
terminals so that ,
if . If queue is stable, then queue is also stable.

Proof: If the system is stable then the theorem is trivial.
If the system is unstable and among the unstable queues
there is a queue , for which is less than

, and queue is stable, we will arrive at a
contradiction. Define as the set which contains only those
queues that are unstable. Hence, ifis the complement of ,

contains only those queues that are not unstable. Now let us
consider the dominant system ; we note that all the queues
in are unstable in , so is indistinguishable from .

Because queueis stable, the successful transmission prob-
ability is equal to its arrival rate, that is,

queue transmits and no other queue transmits

(29)

Queue independently decides whether to transmit when
nonempty. So

queue nonempty and no other queue transmits

queue transmits and no other queue transmits(30)

and

queue nonempty, no queue transmits

queue nonempty, no other queue transmits

(31)

Let us rewrite (30) as

queue nonempty, noother queue transmits

(32)
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and substitute it into (31); we obtain

queue nonempty and no queue transmits

(33)

Furthermore, the probability that no queue intransmits
is equal to , which is independent of the status
of the queues in . Thus we have

queue nonempty, no queue in transmits

queue nonempty, no queue transmits

(34)

It then follows that

queue nonempty, no queue in transmits

(35)

Now we know that queue is unstable. Therefore,

no queue in transmits

queue nonempty, no queue in transmits

(36)

However, the last inequality violates the assumption that

and thus it leads to a contradiction. Hence, the statement in
Theorem 2 is proven.

The above theorem offers an illuminating insight. It points
out that if a system is unstable then the unstable queues are
those that have larger values of . Furthermore,
the theorem holds true for general packet arrival pattern.

By repeating the steps used in the proof of Theorem 2, we
obtain the following corollary.

Corollary 1: Given , and a dominant system , in
which the terminal indices are ordered so that

we have that, in system , for , if queue is stable
then queue is also stable.

Proof: There are three cases: 1) , 2) ,
and 3) . For Case 1, the logic is identical with that
used in the proof of Theorem 2. For Case 3, if queueis
stable, then it follows that

(37)

where is the probability that none of the queues from
to transmit. Because ,

we have

(38)

So queue is also stable. Thus we prove the statement for
Case 3. For Case 2, if queueis stable but queue is not,
then from Case 1 we know that in system all the queues
from to are unstable. So system is indistinguishable
from system . Then from Case 3, we see that queueis
unstable in the system because queueis unstable in that
system. So queueis unstable in system which contradicts
the hypothesis. Hence the corollary has to be true for Case 2
as well.

Now, consider the order of the indices of the queues as
before. For a stable system, in the corresponding dominant
system those persistent queues cannot be all unstable.
Otherwise, the probability of sending a dummy packet of the
dominant system is zero, and hence there is no distinction be-
tween the dominant system and the original system. And then
the instability of the dominant system implies the instability
of the original system. By Corollary 1, the queues fromto

should be stable. Indeed, we only need to check whether
queue is stable. If it is stable then queues fromto
are also stable; if not, the original system is unstable. Based on
this idea, we obtain the necessary condition for the stability
as follows.

Theorem 3: Given , and

a necessary condition for stability is that for every
, we have

(39)

Proof: Assume that we have a stable system with pa-
rameters , and that

Given an arbitrary index , we consider the
associated dominant system . In , queue is stable.
Hence it follows that

(40)

where is the probability that no terminal from the first to
the th transmits in system . We also know that the
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queues from to should be stable, otherwise, the queues
from to would all be unstable; and then the unstable
system would be indistinguishable from the original system

. The probability of successful transmission by one of the
queues from to is given by . Because the
queues from to are sending packets independently, the
probability that only one of the queues fromto
transmits a packet is given by

Therefore, we have

(41)

and, hence, it follows that

(42)

which we can rewrite as

(43)

Note that was arbitrarily chosen. Then the proof of the
theorem is complete.

C. Tighter Lower Bound

With the help of the concept of dominant system, we may
improve our insight concerning the interaction of the queues
in the ALOHA system. If an -terminal ALOHA system is
not stable, we can identify the unstable queues on the basis
of the comparison of the values . Let us assume
that all queues are unstable. Then for the
corresponding system , the same queues
are also unstable. Theorem 2 implies a “rank” of the queues.
Specifically, if we order the queues so that

then either all the queues are stable or there is an integer,
such that every queue is unstable, and every
queue is stable. These observations can be
summarized in the following form.

Theorem 4: Given an -terminal ALOHA system with
parameters , and if

the sufficient condition for stability is that

(44)

for all , ; the sufficient condition for instability
is that there exists ,

(45)

where is the probability that none of the queues from
to transmit in the corresponding dominant system.

Proof: The right-hand side of (44) is actually the prob-
ability of the successful transmission for queuein system

. The inequality means that the arrival rate at theth queue
is less than the successful transmission probability, so that the
th queue is stable in system . Hence, it is stable in the

original system . This is true for all . So if
(44) holds for all , the original system is stable.

Now let us prove the second part. If there exists, for
which (45) holds, then queue is unstable in the dominant
system . By Corollary 1, all the queues with higher rank
than that of queue are unstable as well. So system is
indistinguishable from the original system. Thus the original
system is unstable.

Theorem 4 does not tell us in case of equality in (44),
whether the system is stable. Thus right on the boundary of
the stability region it is not clear whether the system is stable
or not.

From Theorem 4, it is clear that evaluating the bound for
stability is equivalent to evaluating the quantity of the
dominant systems . Unfortunately, the precise value of
is not known or easy to evaluate. However, we can steer our
efforts toward bounding its value and thus toward obtaining
separate necessary and sufficient conditions from upper and
lower bounds, respectively. Szpankowski obtained a similar
theorem to Theorem 4 and applied the theorem to obtain a
tight stability bound for three-terminal ALOHA system [6].
The difference of our theorem from his is that we observe the
“rank” of the queues so that we do not need to evaluate the
values of for every combination of the dominant systems.
We can start from system , check whether queue 1 is stable
or unstable in . If queue 1 is unstable, we stop there and
conclude that system is unstable, and queues fromto
are all unstable; if queue 1 is stable we then continue with
system and check queue 2. The procedure continues until
we find that in system , queue is unstable; or ends with
system in which queue is stable. For the former case,
we can conclude that in the original system, queues from
to are all unstable; and for the latter case, we can conclude
that is stable.

Now, we will explore in detail how to derive the bounds
by using Theorem 4. Before we begin to bound the value of
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, we need to introduce some notation. We denote by
the successful transmission probability of theth queue for
system when queue is nonempty. In addition, we denote
by the set of queues from to , and by the set of
queues from through .

Following the procedure as described above, assume we
continue with index . Then we can say that in system ,
queues from to are all stable.

In system , we know that

(46)

where is the probability that no queue in transmits in
system . We also have that in system

only one queue in transmits

more than one queues in transmit (47)

We may compute one of the terms in (47) exactly; that is, under
stable operation the throughput of the first queues is
given by

only one queue in transmits

(48)

or

only one queue in transmits (49)

The other term in (47) can only be bounded from above or
below. Specifically, we have

a packet of queue collides with packets from

other queues in

more than one queue in transmits

a packet of queue collides with packets from

other queues in (50)

The factor “ ” in (50) accounts for the fact that every collision
involves at least two queues. Next, we have

a packet of queue collides with packets from

other queues in

terminal attempts transmission

queue nonempty

(51)

TABLE I
ITERATION RECORD OF THEOREM 5, FOR N = 3

AND p1 = p2 = p3 = 0:5; �1 = �2 = 0:6

TABLE II
ITERATIONRECORD OF THEOREM 5, FOR N = 3 AND

p1 = p2 = p3 = 0:5; �1 = 0:12; �2 = 0:13

TABLE III
ITERATION RECORD OF THEOREM 5, FOR N = 5 AND

p1 = p2 = p3 = p4 = p5 = 0:5; �1 = �2 = �3 = �4 = 0:03

Note that is the probability that terminal
transmits a packet in a slot and no other terminal in

transmits a packet in the same slot.
From (47) and (49), we obtain

more than one terminal in transmit (52)

and, then, by using (50) and (51), we upper-bound as
follows:

(53)

and we lower-bound by

(54)
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TABLE IV
ITERATION RECORD OFTHEOREM 5, FOR N = 10 AND p1 = p2 = p3 = p4 = p5 = p6 = p7 = p8 = p9 = p10 = 0:5;

�1 = �2 = �3 = �4 = �5 = 0:036; �6 = �7 = �8 = �9 = 0:039

In [4], it was proved that , for . Thus (54)
becomes

(55)

which leads to a sufficient condition for stability. Furthermore,
in [4] a lower bound for was obtained and is given by

(56)

To obtain an improved sufficient condition we simply combine
(55) and (56) as stated in the following theorem. Let us define

and as the terms on the right-hand sides of (55) and
(56), respectively; that is, for

(57)

and

(58)

where the quantity is chosen as the maximum of and
for , i.e.,

(59)

and is equal to .

Theorem 5: Given an -terminal ALOHA system with
parameters , and such that

if for every

(60)

then the system is stable.
Of course, we also know that

TABLE V
COMPARISON OFBOUNDS FOR�N FOR N = 3 AND p1 = p2 = p3 = 0:5

TABLE VI
COMPARISON OF BOUNDS FOR�N FOR N = 3

AND p1 = 0:6; p2 = 0:7; p3 = 0:8

and thus (53) yields an upper bound for , namely,

(61)

which provides a necessary condition for stability that is
identical to the one we obtained in Theorem 3.

D. Comparison of the Bounds

Tables I–IV provide the comparison of the bounds corre-
sponding to the quantities or separately. In these tables,
“ ” represents the combined maximum value as given in
(59).

Table I shows a case in which is always greater than or
equal to . Note that is always equal to in Theorem
5. Table II shows a case in which is always equal to .
Table III shows a case in which at first is greater than
(i.e., for small values of ) but as the iteration of (57), (58)
proceeds, decreases rapidly compared to , and finally

is less than . We can see in this case that is less
than zero which means the bound for is meaningless. So
using only or separately cannot give the best bound
across all values of . Table IV shows another example in
which the combined use of and improves over the use
of or alone. From our observations, the trend seems
to be that is usually better for the beginning (low) values
of and becomes worse when the iteration proceeds toward
large value of .

In Tables V–VIII, “Upp. bound” represents the necessary
condition calculated from Theorem 3. “Low. bound” repre-
sents the sufficient condition calculated from Theorem 5.
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TABLE VII
COMPARISON OF BOUNDS FOR�N FOR N = 5 AND p1 = p2 = p3 = p4 = p5 = 0:5

TABLE VIII
COMPARISON OF BOUNDS FOR�N FOR N = 10 AND p1 = p2 = p3 = p4 = p5 = p6 = p7 = p8 = p9 = p10 = 0:1

The values of the arrival rates chosen for each table are
organized into four groups, designated as G1, G2, G3, G4 as
was done in [4]. In G1, one or more values of are zero.
In G1, G2, and G3 every given value of is less than the
corresponding value of , and G3 is close to
the symmetric case [7]. In G4 one or more of theare more
than the corresponding value of . We can see
from the Tables V–VIII that our upper and lower bounds are
very close to each other for the G1 group. In particular, they
are equal to each other for which shows why the case
of was amenable to a necessary and sufficient condition
from the outset in [4]. In the G4 group, we find that the two
lower bounds are very close and both are also close to the
tight lower bound.

IV. CONCLUSION

We revisited the problem of stability of an -terminal
slotted ALOHA system. We identified the relative liability for
instability of the queues by identifying the notion of the “rank”
in the Theorem 2. And, based on Theorem 2, we improved the
inner bound for stability. An outer bound was also separately
obtained.
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