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Stability of N Interacting Queues
In Random-Access Systems

Wei Luo, Student Member, IEEEand Anthony Ephremidesellow, IEEE

Abstract—We revisit the stability problem of systems consisting have “stability ranks.” By using this property, we intelligently
of NV buffered terminals accessing a common receiver over the set up the dominant system and obtain the improved bounds.
collision channel by means of the standard ALOHA protocol. The system we consider is a discrete-time slotted ALOHA
We find that in the slotted ALOHA system queues have “insta- . . .
bility rank” based on their individual average arrival rates and fsygtgm with N terminals. Each 'termlnal has .a b.uffer of
transmission probabilities. If a queue is stable, then the queue infinite capacity to store the incoming packets. Time is slotted.
with lower instability rank is stable as well. The instability rank  Transmission time of a packet is one slot. The packet arrival
is used to intelligently set up the dominant systems. And the process at each terminal is Bernodilind arrival processes at
stability inner and outer bounds can be found by bounding the - gittarent terminals are independent. In each slot, the terniinal
idle probability of some queues in the dominant system. Through - - PR
analyzing those dominant systems one by one, we are able tof"‘ttempts to transmit the packet W'th probab%y if its buffer
obtain inner and outer bounds for stability. These bounds are IS notempty. If two or more terminals transmit in the same slot,
tighter than the known ones although they still fail to identify a collision occurs. The packets involved in the collision wait
the exact stability region for cases ofV > 2. The methodology to be retransmitted in the next slot with the same respective
used is new and holds promise for successfully addressing Otherprobabilities.
similar stability problems. In Section Il, we briefly set up the stability problem and

Index Terms— Interacting queues, multiple access, slotted describe the mathematical foundations which our later discus-

ALOHA, stability analysis. sions are based on. In Section llI, we investigate the stability
problem. We use the concept of dominance to derive a lower
|. INTRODUCTION bound in Section llI-A. In Section 1lI-B, we identify the

relative “rank” of stability of the individual queues, and we

T HE stability problem for bufferless terminals in the Ptain an upper bound. In Section IlI-C, we proceed to obtain

ALOHA systems has been extensively studied and is w?cLe inner and outer stability regions by using the “ranking”
understood [1]-[3]. In the buffered case, the problem becomtes

. . . . . téchnique, and we obtain an improved lower bound. Finally,
complicated because it involves interacting queues. Previaus : : .
. . .~ In.Section IlI-D, numerical results show the improvement of

analyses have yielded only various bounds to the regions of
arrival rate values for which the queues are stable [4]—[éfi.u
Exact region identification has been achieved only for the case
N =2[4], [7] and N = 3 [6]. Il. BACKGROUND

Tsybakov and Mikailov provided a rigorous treatment on Consider a slotted ALOHA system witlV terminals. The
the problem in [7]. In the same paper, they implicitly usegacket arrival rate for théth (1 < i < N) terminal isA;. For
the concept of dominant system and stated rigorously some N-terminal system, we define arrival vector A and a
properties of the dominant system. In [4], Rao and Ephremidesctor of probabilitiesp as follows:
explicitly introduced the technique of dominant system, and N T
pointed out that the dominant system, if properly set up, A= (AL A AN) (1)
is indistinguishable from the original ALOHA system at P=(p1,pa, o, on)T (2
saturation. In [6], Szpankowski treated the dominant system ]
more rigorously and obtained a necessary and sufficient céﬂ‘hereq sAisl and0 < p; < 1, for< =1,2,---,N, and
dition for stability by using Loynes' stability criteria [9]. Where 1" represents vector transposition.
Although the concept of dominant system is powerful in W& adopt the definition of stability used in [6].
deriving the stability bound, how to set up a dominant system Definition: Queue: of the system isstable if
intelligently was not addressed before. In this paper, we .
identify an important property of the ALOHA system: queues Mm Pr{¢i(t) <z} =F(z) and  lim F(z)=1 (3)

r bound over the previously obtained ones.
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the queue isubstable Obviously, if a queue is stable, then Loynes theorem is used throughout the paper. It states that
it is also substable. If a queue is not substable, then we sayhe arrival process and service process of a queue are all
it is unstable. stationary, and the average arrival rate is less than the average
We say(A,p) is stableor the ALOHA system with(A,p) service rate, then the queue is stable; if the average arrival rate
is stable, if all the queues in the system are stable. If at leégsgreater than the average service rate, the queue is unstable; if
one queue in the system is unstable, the system is unstablthey are equal, which only occurs on the boundary of stability
Letg(t) = [q1(t), g2(1),- - -, qn(t)]. The vector procesg(t) region, the queue can be either stable, or substable but not
is an irreducible and aperiodic Markov chain with countablgtable, or unstable [9]. In this paper, we are only concerned
number of states [7]. It is either positive recurrent, or nuivith the inner and outer stability region. We do not attempt to
recurrent, or transient [10]. The stability as defined above asalyze the stability on the boundary points. To apply Loynes
equivalent to positive recurrence of the Markov chain. Thubeorem, stationarities of arrival process and service process
the system is stable if and only if the Markov chaift) has are required. Stationarity of arrival process is already given.
positive probability distribution whehapproaches to infinity. But in the system with interacting queues, stationarity of the
This criterion is equivalent to the following: The ALOHA service process is not obvious. However, in our approach, this

system is stable if and only if every queué; = 1,2,---,N) is not a hindrance. The reason is that in a dominant system

has positive probability of being empty, i.e., QV, if all the queues outside of/ are stable, then they
lim Pr{¢(t) =0} > 0. yield a stationary slot availability (i.e., service) process. In
t—00 addition, the queues il also yield stationary slot availability

We define the notion @ominant systencorresponding to process by definition of dominant system. Then the overall
the original NV-terminal system as in [4]. Thenly difference service process should also be stationary for any individual
between the dominant system and the original system is thgeue. This argument is due to Szpankowski who established
the ith terminal in the dominant system continues to transmitationarity and ergodicity of service process in the dominant
“dummy” packets with probabilityy; even when its queue is system in [6].
empty, if queue belongs to a designated dét We denote the
original system ag), and the dominant system with persistent 1
setV asQ@Y. The dummy packets can result in collision, but
the successful reception of the dummy packet does not redLAceS
the queue size. Thus the dominant system always has larger
queue size than the original system if both start from the samen this section we will consider the problem of whether the
initial condition. If the dominant system is stable, then th&ystem is stable for give(, p). Rao and Ephremides in [4]
original system is stable. Also we can see that any chang&dved the case oV = 2 and provided approximate results
in the arrival rate or in the queue length of any queud’in for higher dimensional cases. Szpankowski provided a strict
have no effect on the other queues in the dominant systépund for V. = 3 (see [6]). No exact identification of the

Thus we can get a partially decoupled queuing system whei@bility region is known for the general case/gf> 3.
we consider this kind of dominance. The major difficulty, of course, is that the queues are

It is clear that ifV includes all the queues, and if such dnteracting with each other so that we cannot decouple them
dominant system is still stable, then the original system is aldgd track the problem with single-dimensional Markovian

. STABILITY PROBLEM

ufficient Conditions for Stability

stable. The following lemma states this fact. analysis. Given the arrival vectaA, there is an optimal
_ ) vector p so that the average delay is minimized. However,
Lemma 1: Given (A, p), if it is difficult to determine thisp. Even given an arbitrary
N (A, p), itis difficult to determine whether it is advantageous to
Ao<p []@-p) (5) increase any one gf's components. Conversely, to obtain the
jf{ stable region of arrival rate vectdx for a givenp is equally

intractable. So we take the approach of intelligently choosing

dominant systems that we can track and that can tightly bound
If all the queues inV of the dominant systen"” are the given system.

unstable, then the original system is also unstable, becaus&0, consider a given paf\, p). According to Lemma 1, if

in this case, all the queues ¥ tend to grow to infinity, so for everyd, 1 <i < N, we have that

the probability of ever sending a dummy packet by a terminal

forall ¢ (¢t =1,---,N), then(A,p) is stable.

of the dominant system is zero, hence the dominant system Ai < pi H(l — ;) (6)
is indistinguishable from the original system under saturation. g7
Thus we have the next lemma. then the system is stable. According to Lemma 2, if foriall
Lemma 2: Given (A, p), if 1 <4 < N, we have
1 x> [ - ) ™)
)‘i>piH(1_pi) JI;IZ
i
J=1 then the system is unstable. What interests us is whether the

forall¢ (¢ =1,---,N), then(A,p) is unstable. system is stable if for some pai(ay, pr), say,1 < k < K,
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we have We know that
Ak < pr H(l — ) (8) P(all the queues from2 to K — 1 do not
J#k K-1
and for other pair{K > k < N) transmit/queud is empty > [[(1-p;) (12)
j=2
J#k
P(all the queues froni to K — 1 do not
Lemma 3:In an ALOHA system with(A, p), if K1
transmit/queud. is not empty > 1-p;) (13
)\i<piH(1—pj) q py_H( p;) (13)

J7
. Furthermore,
then queue is stable.
Proof: Consider a dominant system in which all the

gueues except queuetransmit dummy packet. Then queue Substituting from (12)—(14) into (11), we obtain

P(queuel is not empty = 1 — P(queuel is empty). (14)

¢ in this dominant system is &/M/1 Markov chain with ’ K-1
service ratep; ][, (1 — p;). Because Pg‘) > P(queuel is empty) H (1—py)
j=2
Ai < pi H(l - pj) K—1
i + (1 - P(queuel is empty) [J (1 -p;). (15)
queue: is stable in the dominant system, thus it is also stable j=1
in the original ALOHA system. O We know that queue 1 is stable by Lemma 3. And by Little’s
Now we proceed to obtain the sufficient conditions for th@eorem
stability of the queueg:, for which A\
. 1
A > pr H (1—p)). P(queuel is empty =1 — e (16)
J#k
We set up the dominant syste@t’, for which V' = {k : K <  Substituting from (10) in (16), we obtain
k < N}; we denote this system a3", when no ambiguity ) A\
arises. It is clear that if the original syste@ is unstable, P(queuel is empty > 1 — TR 17)
then the dominant syste@” is unstable. Furthermore, if _ Prilj= Pi
the dominant systen@’ is stable, then the original systemUsing (17), we can rewrite (15) as
is also stable. Our goal is to establish a sufficient condition () K1 K1 AL
for the stability of the dominant system, which will also beP5"’ > [[ 1 —pj)+p: [[ 0 —p))— =5 1 :
sufficient for the stability of the original system. Consider the J=1 j=2 HJ=K( —pj)
first K — 1 terminals which satisfy (8) in the dominant system (18)
QY. We define as average service rajeof theith terminal,  Theuth terminal,m > K, is stable in the dominant system
the successful transmission probability when terminialnot = o« jf
empty. (K)
The average service ratge of the ith terminal satisfies the Am < pm Ly H (1= p;)- (19)
following inequality: K@’;N
i zpiH(l —pj)- (10) By using (18), a sufficient condition for queue to be
g stable is
That this is so follows from the fact that since the fikStermi- K-1 K-1 AL
nals are stablé,l —p,) is the “nontransmission” probability of Am <pm H (1-pj)+p:1 H (1= pj)— =¥
queuej when it is not empty. S¢1—p,) is the underestimation j=1 j= Ik (1 —p;)
81; ?uees;verall (unconditional) “nontransmission” probability of % H (1-p,)
Je L . : jFEm
Assume that the “nontransmission” probability for the first Kj<jﬁN
K — 1 terminals isPY"; then ’ i
P = P(queuel is empty) —Pm 1;[ (1=pm)+ 1—pm |7 1;[1 (=py)=h]. (20)
jFEm L
x P(queues froer o K — 1 donot Without loss of generality, we assume that
transmit/queud is empty) -
+ P(queuel IS not empty P1 H (]_ —pj) — )\1 = 11<r}€a<XN Pk H(]_ —pj) — )\k B (21)
x P(queues froml to K — 1 do not J#1 R Y

transmit/queud is not empty. (11) Then we obtain the following lemma.
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Lemma 4: Given (A, p), if there is an integef{ (2 < K < or, equivalently,
N) such that\; < p; [[;,, (1 —p;), forl <i< K, and

A

)\2<p2<1—1_1 ) (26)
AXzp [Ja-py) bz
J#i Symmetrically, we consider the case where
for K <7 < N, and if Ao < pa(l —py) (27)
H i H and we obtain that

XN <pi | |Q=p)+ o max |pe | [(1-pj) =N \

i 1—p; 1<k<N ik A< p1 <1 -3 _2p1>' 28)

(22)
Interestingly, this is theecessary and sufficienbndition for
for K < i < N, then the system is stable. stability as in [4].

The condition above in the lemma can be written in a Similar results were also derived in [5]. Later in the paper,
. . we will provide bounds that improve further the one given
concise way. First, we can lek = 2; secondly, we note

that A; > p; [, ., (1 —p;) for K < ¢ < N is not necessary here.
because the violation of this condition simply means smaller
arrival rates. Note that the system with smaller arrival rates wi
be stable if the original one is. So the conditions in Lemma 4 The previous section discussed a sufficient condition for
can be summarized as follows: stability. Although we are not able to obtain a condition
that is both sufficient and necessary, we do derive here a
1) separate necessary condition. Whén= 2, the two conditions
coincide. The following theorem is the basis for our discussion
n H (1—p;)—A = x| oy H (1=p;)— A | >0; thereafter.
J#l ik Theorem 2: Given (A,p), we order the indices of the
. . . . terminalsl,2,---, N, so thatA; (1 — p;)/p; < N1 —pi)/ps,
2) for queues (2 <i < N), (22) is satisfied. if 7 < i. If queuet is stable, thég quet}i{j? 1) is( also s)télble.
Actually, even for: = 1, (22) is satisfied; and if (22) is satisfied Proof: If the system is stable then the theorem is trivial.

. Ranking of the Queues

fors =1 If the system is unstable and among the unstable queues
there is a queugj, for which A\;(1 —p;)/p; is less than
n H(l —pj)— A1 > 0. Ai(1l—p;)/p;, and queuei is stable, we will arrive at a
i#l contradiction. Defind/ as the set which contains only those

gueues that are unstable. Hencd/ifs the complement o/,

U contains only those queues that are not unstable. Now let us

Theorem 1:Given (A, p), if for every4, i =1,2,--- N consider the dominant syste@¥ ; we note that all the queues

in U are unstable iRV, so @Y is indistinguishable frons.
Because queugis stable, the successful transmission prob-

ability is equal to its arrival rate, that is,

Therefore, we have the following theorem.

No<pi [Ja-pp)+
i#i

T e H(l —pj) —
JFk

(23)  P(queue: transmits and no other queue transmis;.
. (29)
then the system is stable.
Queuei independently decides whether to transmit when

A concise proof of Theorem 1 consists of setting up a
no&1empty So

dominant system in which all the queues except queue 1 se
dummy packets; and we can then prove that the service rate= P(queue: nonempty and no other queue transmits
for queuei (2 < ¢ < N), for the dominant system, is given _ P(queuei transmits and no other queue transmnit30)
by the expression on the right-hand side of (22). If (22) is

satisfied, then queugis stable in the dominant system, andénd

hence stable in the original system.

Consider the following example. LéY = 2; if P(queuei nonempty, no queue transmits

= P(queue: nonempty, no other queue transnytis— p;).
AL < pi(1—p2) (24) (31)

the stable condition foh,, according to Theorem 1, is given [et us rewrite (30) as
by s
P(queuei nonempty, noother queue transmijs= —

Di

e <pal=p) 2 pi(l=p2) = N](29) @)
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and substitute it into (31); we obtain Proof: There are three cases:dx j < k,2)t < k < 7,
and 3)k < < j. For Case 1, the logic is identical with that
Ai(1 = pi) used in the proof of Theorem 2. For Case 3, if quguis
p;  stable, then it follows that

(33) bj (k)
Ay < = p) I>Hk (1—p)Py (37)

P(queuei nonempty and no queue transnits

Furthermore, the probability that no queuelintransmits
is equal to] [, (1 — p;), which is independent of the statuSypere P{*) is the probability that none of the queues from

of the queues ir/. Thus we have 110 k — 1 transmit. Becausa, i =p))/p; > N1 —pi)/pi,
_ we have
P(queue:i nonempty, no queue ity transmit 1—p i )
(g pty. no q skcHU( pr) < (ﬂm T1C-pE®. 39)
= P(queuei nonempty, no queue transmits 12k
(=) (34) So queuei is also stable. Thus we prove the statement for
- i ) Case 3. For Case 2, if queyeis stable but queué is not,
then from Case 1 we know that in systepf all the queues
It then follows that fromi to k — 1 are unstable. So syste@¥ is indistinguishable
from system@’. Then from Case 3, we see that queues
P(queuei nonempty, no queue ity transmitg unstable in the)’ system because queuds unstable in that
(1 —pi) system. So queugis unstable in syster®* which contradicts
= _ - (39 the hypothesis. Hence the corollary has to be true for Case 2
Y2 erU (1—px)
as well. O
Now we know that queug is unstable. Therefore, Now, consider the order of the indices of the queues as
before. For a stable systef, in the corresponding dominant
Aj >y systemQ” those persistent queues cannot be all unstable.
- P p P(no queue inl/ transmity H (1—pr) Otherwise, the probability of sending a dummy packet of the
1—p; heU dominant system is zero, and hence there is no distinction be-
S D P(queuei nonempty, no queue il transmits tween the dominant system and the original system. And then
1—p; ' the instability of the dominant system implies the instability
o H (1- e of the original system. By Corollary 1, the queues frano
byar K should be stable. Indeed, we only need to check whether

gueuekK is stable. If it is stable then queues franmo K — 1

=P i1 — pi) I a-»s are also stable; if not, the original system is unstable. Based on
(1 =pi) pi llnco 1 —p) kU this idea, we obtain the necessary condition for the stability
p 1—p; as follows.
SV O (36)
(I-pj) pi Theorem 3: Given (A, p), and
However, the last inequality violates the assumption that M =p1)/pr < < A1 —pN)/pN

a necessary condition for stability is that for evéryl < k& <

Ai(L=pi)/pi 2 Aj(1 = p;)/p N. we have

and thus it leads to a contradiction. Hence, the statement in Ae(1 = pr) ¥

Theorem 2 is proven. O — < H(1 - ;)=
i=k 7

—1
A (39)
Pk 1

The above theorem offers an illuminating insight. It points Proof- A that h tabl " ith
out that if a system is unstable then the unstable queues are trooA ssumg that we have a stable system with pa-
those that have larger values &f(1 — p;)/p;. Furthermore, ameters(A,p), and tha

the theorem holds true for general packet arrival pattern. MO —p)/pL<--- < Av(1—pn)/pN-
By repeating the steps used in the proof of Theorem 2, we )
obtain the following corollary. Given an arbitrary index, (1 < k < NN), we consider the

. _ ~ associated dominant syste@’“. In Q%, queuek is stable.
Corollary 1: Given (A,p), and a dominant systei®*, i Hence it follows that

which the terminal indices are ordered so that

D (k)
A 7P TT0 - ) (40)
M =p)/pr £ < An(1 —pN) /PN (1 — Pr) H !

we have that, in syster@*, for i < j, if queuej is stable wherePg“) is the probability that no terminal from the first to
then queug is also stable. the (k — 1)th transmits in systen*. We also know that the
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queues froni to £ — 1 should be stable, otherwise, the queues Theorem 4: Given an N-terminal ALOHA system with
from £ to N would all be unstable; and then the unstablparametergA, p), and if

system* would be indistinguishable from the original system
Q. The probability of successful transmission by one of the

M1 —p)/p £ <AL —pN)/pN

queues froml to (k—1) is given byzf;f A;. Because the the sufficient condition for stability is that
gueues fromk to N are sending packets independently, the N

probability that only one of the queues frointo (k£ — 1)
transmits a packet is given by

k—1 N
> /I a=p).
i=1 =k

Therefore, we have
k—1
> A
Pék) <1-— - =1

I (A-p))

i=k

(41)

and, hence, it follows that

oA N
[Ta-»p

i=k

Pk

T fraem

N k—1

= (1 fkpk) H (1 —pj) - Z)\j

j=k j=1

Ak <

(42)

[

which we can rewrite as

k—1

M<ﬂ(1—pg’)— Aj-

P J=k j=1

(43)

Ak < (44)

P H(l_ N plk)
pi)Pg
(1= p) =k

for all k, (1 < k < N); the sufficient condition for instability
is that there exist&, 1 < k < N

N

L) [Ta-p)F

(L =pr) (45)

A >

wherePg“) is the probability that none of the queues frdm
to k£ — 1 transmit in the corresponding dominant systé

Proof: The right-hand side of (44) is actually the prob-
ability of the successful transmission for quekien system
Q*. The inequality means that the arrival rate at ke queue
is less than the successful transmission probability, so that the
kth queue is stable in syste@*. Hence, it is stable in the
original system@. This is true for allk (1 < k < N). So if
(44) holds for allk, the original systen) is stable.

Now let us prove the second part. If there exigtsfor
which (45) holds, then gqueuk is unstable in the dominant
system@*. By Corollary 1, all the queues with higher rank
than that of queué: are unstable as well. So systa@¥ is
indistinguishable from the original systeth Thus the original
system is unstable. O

Theorem 4 does not tell us in case of equality in (44),
whether the system is stable. Thus right on the boundary of
the stability region it is not clear whether the system is stable
or not.

From Theorem 4, it is clear that evaluating the bound for
stability is equivalent to evaluating the quantifgék) of the

dominant system@*. Unfortunately, the precise value Bﬁ“)

Note thatk was arbitrarily chosen. Then the proof of thés not known or easy to evaluate. However, we can steer our

theorem is complete. O

C. Tighter Lower Bound

efforts toward bounding its value and thus toward obtaining
separate necessary and sufficient conditions from upper and
lower bounds, respectively. Szpankowski obtained a similar
theorem to Theorem 4 and applied the theorem to obtain a

With the help of the concept of dominant system, we mayyht stability bound for three-terminal ALOHA system [6].

improve our insight concerning the interaction of the queugse difference of our theorem from his is that we observe the
in the ALOHA system. If anV-terminal ALOHA system is «ank” of the queues so that we do not need to evaluate the
not stable, we can identify the unstable queues on the bagiges ofP(* for every combination of the dominant systems.
of the comparison of the valueg(1 — p;)/p;. Let us aSSUMe \ye can start from syste@®, check whether queue 1 is stable
that all queuegj (k < J < N) are unstable. Then for the . nsiaple inQ!. If queue 1 is unstable, we stop there and
corresponding syster@”, the same queues (k < j < N)  conclude that syster® is unstable, and queues fromto N

are also unstable. Theorem 2 implies a “rank” of the queugge gl unstable; if queue 1 is stable we then continue with
Specifically, if we order the queues so that system@? and check queue 2. The procedure continues until
we find that in systen@?™, queuek is unstable; or ends with
system@” in which queuel is stable. For the former case,
we can conclude that in the original systémqueues fromk

then either all the queues are stable or there is an int&ger to IV are all unstable; and for the latter case, we can conclude
such that every queug (K < 57 < N) is unstable, and every that @ is stable.

queue: (1 < ¢ < K) is stable. These observations can be Now, we will explore in detail how to derive the bounds
summarized in the following form. by using Theorem 4. Before we begin to bound the value of

M1 —p)/p £ < AN —pN)/pN
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Pg“), we need to introduce some notation. We denotwj@ TABLE |
the successful transmission probability of tft queue for ITERATION RECORD OF THEOREM 5, FOR V' = 3

AND p1 = p2 = p3 = 0.5, /\1 = )\2 = 0.6

systemQ* when queug is nonempty. In addition, we denote
by U, the set of queues frork to N, and byl/; the set of k L 2 3
By, | 0.125 ] 0.190 | 0.341
qgueues froml thl’oughk — 1. Cr | 0.125 1 0.190 | 0.341
Following the procedure as described above, assume we Dy | 0.125 | 0.190 | 0.276
continue with indext. Then we can say that in syste@f,
gueues froml to k£ — 1 are all stable.

k
In system@*, we know that TABLE I
N ITERATIONRECORD OF THEOREM 5, FOR N = 3 AND
Né ) _ : H (1— pj)Pé ) (46) PL=p2 =p3 5 A1 2
(1—pr) iy K 1 2 3

B, [ 0125 | 0.130 | 0130

WherePék) is the probability that no queue i transmits in Ci | 0125 § 0.130 | 0.130
systemQ*. We also have that in syste* Dy | 0.125 ] 0.130 | 0.130

P =1 - P(only one queue iy, transmit3
— P(more than one queues [, transmi). (47) TABLE Il

ITERATION RECORD OF THEOREM 5, FOR N = 5 AND
We may compute one of the terms in (47) exactly; thatis, under ,, = p, = py = ps = p5 = 0.5, A} = Ay = A3 = Ay = 0.03
stable operation the throughput of the fi(ét— 1) queues is X 1 5 3 7 5
given by B, | 0.0312 | 0.0325 | 0.0362 | 0.0402 | 0.0482
N b1 Cy | 0.0312 | 0.0325 | 0.0362 | 0.0354 | -0.0049
P(only one queue iT, transmits - H (1—p;) = by Dy | 0.0312 | 0.0325 | 0.0349 | 0.0392 | 0.04669

1
(48)

j=k J

Note that)\j/]'[f;k (1 —p;) is the probability that terminal
j transmits a packet in a slot and no other terminaljp
Z_: Aj transmits a packet in the same slot.
From (47) and (49), we obtain

or

i=1

P(only one queue it/ transmit$ = 1\ (49)
1—p; k—1
k Jj=
The other term in (47) can only be bounded from above o’ =1-—F
below. Specifically, we have II1 1—p)
j=k

1<11n<az§ 1 P(a packet of queug collides with packets from — P(more than one terminal ifV; transmiy  (52)

other queues /)

P(more than one queue i transmity and, then, by using (50) and (51), we upper-bouﬁﬁ) as

follows:
1
5 Z P(a packet of queug collides with packets from CPR N
=1 Py S T—po) H (1-p;)
other queues it ). (50) =k -
The factor 4" in (50) accounts for the fact that every collision X {1 - ]\2“1 As
involves at Ieast two queues. Next, we have HJ:k (1—-pj;)
L . s A\
P(a packet of queug collides with packets from —max|p; (i) S (53)
other queues i) i<k s (U= i)
o - Aj
= P(terminal j attempts transmissior- — and we lower- boundﬂ)
IT (1= pi)
3, i=k N k—1
= P(queuej nonemptyp, — ————— e > (167’“”) [Ta-p=->N
I1(t-p) =k =t
=k k—1 N
A A 1 Aj
=i~ (51) -5 [(j)p;’ﬂ(l—pi)—%}
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TABLE IV
ITERATION RECORD OF THEOREM 5, FORIN = 10 AND p1 = p2 = p3 = p4 = p5 = Pg = p7 = ps = ps = pio = 0.5,
/\1:/\2:/\3:/\4:/\5:0.036,)\5:)\7:>\8:)\9:0.39

k 1 2 3 4 5 6 7 8 9 10

B | 0.0387 | 0.0390 | 0.0394 | 0.0398 | 0.0402 | 0.0406 | 0.0408 | 0.0410 | 0.0412 | 0.0414
Cr | 0.0387 | 0.0390 | 0.0394 | 0.0398 | 0.0402 | 0.0406 | 0.0406 | 0.0404 | 0.0400 | 0.0392
Dy, | 0.0387 | 0.0390 | 0.0393 | 0.0398 | 0.0401 | 0.0406 | 0.0408 | 0.0410 | 0.0412 | 0.0414

In [4], it was proved thamEk) > ugj), for 7 < k. Thus (54) TABLE V
becomes COMPARISON OF BOUNDS FORA N FORN = 3 AND p1 = p2 = p3 = 0.5
N E_1 AL A2 | Upp. bound | Low. bound | {4]’s bound
(k) 5 Dk N ' GL| 00 | 00 0.500 0.500 0.375
P = 0= p) H (1 —pj) >N 0.0 | 0.12 0.380 0.380 0.315
j=k j=l1 G2 | 0.06 | 0.06 0.380 0.341 0.276
= ) r G3 | 012 | 0123 0.257 0.140 0.137
j ' N . G4 | 012 | 0.13 0.250 0.130 0.130
T34 K <j>>pﬂ [[a-») AJ]
j=1 Ry i=k
(55) TABLE VI
i - . . COMPARISON OF BOUNDS FORAy FOR N = 3
which leads to asuff|C|ent cond|t|on for stability. Furthermore, AND p1 = 0.6, po = 0.7, p3 = 0.8
in [4] a lower bound foruk was obtained and is given by N %2 | Upp. bound | Low. Bound | [4]'s bound
N Gl | 00 0.0 0.800 0.800 0.464
k) o, _ Pk 1 Di 56 00 | 005 0.600 0.600 0.384
e = (1 Pr) H +Z (1—p) |’ (56) G2 | 0.018 | 0.028 0.616 0.508 0.328
_ _ G3 | 0.03 | 0.05 0.480 0.240 0.184
To obtain an |mpr0ved suff|C|ent condltlon we simply combine| G4 | 0.035 | 0.0561 0.4356 0.1152 0.1086
(55) and (56) as stated in the following theorem. Let us defin 0.025 | 0.0563 |  0.4748 0.2777 0.2096

Cy and D, as the terms on the right-hand sides of (55) and
(56), respectively; that is, fok > 2 ) )
and thus (53) yields an upper bound t@ff , hamely,

N k—1
Pk
Cp=—— H (1 —pj) — )\j N k—1
1—p . : Pr =1 Ai
=p) | j =1 e < § - )H(l_pf)[l_ e ] oy
1 N br) S Hj:k (1-p;)
1 Aj )
- 52 _J ij(l —pi) = A which provides a necessary condition for stability that is
=1 =k identical to the one we obtained in Theorem 3.
(57)
and D. Comparison of the Bounds
Di Tables I-IV provide the comparison of the bounds corre-
D = (1 — P ) H (I —p) 1+ Z < ) 1— pz)] sponding to the quantitigs;, or D, separately. In these tables,
“B;” represents the combined maximum value as given in
58)  (59).
where the quantity3,. is chosen as the maximum 6f; and  Table | shows a case in whidf is always greater than or
Dy for k > 2, ie, equal toD;.. Note thatC; is always equal td); in Theorem
By, = max (Cy, Dy) (59) 5. Table Il shows a case in whidf, is always equal td)y.

Table Ill shows a case in which at fir€l, is greater tharD,,
(i.e., for small values of) but as the iteration of (57), (58)
Theorem 5: Given an N-terminal ALOHA system with proceeds() decreases rapidly compared £, and finally

and B, is equal top; [T}, (1 - p).

parameterg A, p), and such that Cy is less thanD;. We can see in this case th@} is less
than zero which means the bound fay is meaningless. So
A =p)/p <--- < AN(L = pN)/pN using only C,, or D, separately cannot give the best bound
if for every k (1 < k < N) across all values of. Table IV shows another example in
- = which the combined use @ and D;, improves over the use
A < By (60) of Cy or D;, alone. From our observations, the trend seems

to be thatCy, is usually better for the beginning (low) values
of &k and becomes worse when the iteration proceeds toward
large value ofk.
(k) N In Tables V-VIII, “Upp. bound” represents the necessary
<p; H(l —pi) condition calculated from Theorem 3. “Low. bound” repre-
i=k sents the sufficient condition calculated from Theorem 5.

then the system is stable.
Of course, we also know that
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TABLE VII
COMPARISON OF BOUNDS FORAN FORN = 5 AND py = p2 = p3 = p4 = p5s = 0.5
A1 Ao A3 Ag Upp. bound | Low. Bound | [4]’s bound
Gl 0.0 0.0 0.0 0.0 0.500 0.500 0.156
0.0 0.0 0.0 0.015 0.485 0.485 0.153
0.0 0.0 0.015 | 0.015 0.470 0.462 0.147
0.0 0.015 | 0.015 | 0.015 0.455 0.422 0.139
G2 | 0.015 | 0.015 | 0.015 | 0.015 0.440 0.337 0.120
G3 | 0.03 0.03 0.03 0.03 0.380 0.048 0.047
G4 | 0.03 0.03 0.03 | 0.033 0.377 0.0458 0.0443
0.033 | 0.032 | 0.031 | 0.03 0.374 0.0393 0.0381
0.0325 | 0.032 | 0.0315 | 0.03 0.374 0.0377 0.0369
TABLE VI
COMPARISON OF BOUNDS FORAN FORN = 10 AND p1 = p2 = p3 = pa = pPs = pg = pr = ps = po = p1o = 0.1
A1 Ao A3 A4 As A6 A7 Asg Ag Upp. bound Low. Bound [4]'s bound
G1 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 0.0 0.1 0.1 0.077
0.0 0.019 | 0.019 | 0.019 | 0.019 | 0.019 { 0.019 | 0.019 | 0.019 0.083 0.077 0.065
G2 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 0.081 0.073 0.062
G3 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 0.064 0.04386 0.04284
G4 | 0.039 [ 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 0.0636 0.04255 0.04253
0.039 | 0.039 | 0.039 | 0.039 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 0.0627 0.04141 0.04139

The values of the arrival ratels chosen for each table areby the U.S. Army Research Laboratory under the Federated
organized into four groups, designated as G1, G2, G3, G4laaboratory Program, Cooperative Agreement DAAL01-96-2-
was done in [4]. In G1, one or more values bf are zero. 0002. The views and conclusions contained in this document
In G1, G2, and G3 every given value ¢f is less than the are those of the authors and should not be interpreted as
corresponding value gb; H#i (1-p,), and G3 is close to representing the official policies, either expressed or implied,
the symmetric case [7]. In G4 one or more of theare more of the Army Research Laboratory or the U.S. Government.
than the corresponding value pif]_[j#i (1 —p;). We can see
from the Tables V-VIII that our upper and lower bounds are
very close to each other for the G1 group. In particular, they REFERENCES
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