
by S. R. Kunkel
R. J. Eickemeyer
M. H. Lipasti
T. J. Mullins
B. O’Krafka
H. Rosenberg
S. P. VanderWiel
P. L. Vitale
L. D. Whitley

A performance
methodology
for commercial
servers

This paper discusses a methodology for
analyzing and optimizing the performance
of commercial servers. Commercial server
workloads are shown to have unique
characteristics which expand the elements
that must be optimized to achieve good
performance and require a unique
performance methodology. The steps in the
process of server performance optimization
are described and include the following:

1. Selection of representative commercial workloads
and identification of key characteristics to be
evaluated.

2. Collection of performance data. Various
instrumentation techniques are discussed in light
of the requirements placed by commercial server
workloads on the instrumentation.

3. Creation of input data for performance models on
the basis of measured workload information. This
step in the methodology must overcome the
operating environment differences between the
instance of the measured system under test and
the target system design to be modeled.

4. Creation of performance models. Two general types
are described: high-level models and detailed cycle-
accurate simulators. These types are applied
to model the processor, memory, and I/O
system.

5. System performance optimization. The tuning of

the operating system and application software is
described.

Optimization of performance among
commercial applications is not simply an
exercise in using traces to maximize the
processor MIPS. Equally significant are items
such as the use of probabilities to reflect
future workload characteristics, software
tuning, cache miss rate optimization, memory
management, and I/O performance. The
paper presents techniques for evaluating the
performance of each of these key contributors
so as to optimize the overall performance and
cost/performance of commercial servers.

1. Introduction
The performance of commercial servers is a function of
many variables and requires careful design optimization as
a key contributor to product success in the marketplace.
Complexity in satisfying performance demands across the
spectrum of commercial applications arises from two
dimensions of the system design space:

1. Commercial workloads exhibit significant variation in
their usage of computer resources. Some are more
compute-intensive, focusing performance demand on
processor power. Others stress the I/O subsystem,
interacting with disk, LAN, and other device facilities

rCopyright 2000 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other

portion of this paper must be obtained from the Editor.

0018-8646/00/$5.00 © 2000 IBM

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000 S. R. KUNKEL ET AL.

851

over system I/O interconnects. Analysis of the
performance for the range of commercial workloads
must take into account the demands placed on these
server subsystems and must evaluate potential
bottlenecks in each of them.

2. Interaction of subsystems within a given workload
creates performance effects that can be subtle to
analyze and difficult to optimize in the system design.
Key areas of a commercial server computer that are
interrelated include the processor, software (operating
system and applications), I/O bus/interconnect, I/O
device subsystem, and memory management and usage.

Tradeoffs in the design and optimization of commercial
servers must consider the impact on overall system
performance when aspects of each of these subsystems
are varied and affect other subsystems.

In addition, the scale of commercial servers grows ever
larger. Typical configurations of the largest models can
involve many tens of thousands of users, tens of gigabytes
of main memory, nearly a thousand disk actuators, and

tens of terabytes of disk capacity. The extreme scale of
these large commercial servers adds even more complexity
to the pursuit of optimized performance across the
spectrum of workloads.

All of these factors require an extremely challenging
effort in understanding, analyzing, and tuning designs
to perform well across the breadth of the commercial
workload spectrum. The variety of factors that affect
commercial server performance require a broad evaluation
methodology. Whereas traditional analysis methodologies
focus on maximizing processor MIPS, commercial servers
must be optimized in many areas to maximize overall
system performance for customer applications.

This paper presents the key concepts relating to
commercial server performance and describes techniques
that have been successfully used in design optimization
for IBM servers. A sequence of activities is required to
accomplish analysis and tuning of commercial server
designs. Figure 1 illustrates the steps involved. The
following sections of this paper expand on the topics
referenced in the figure:

Figure 1
Analysis and tuning of commercial server design.

Select server workloads
representing commercial
customer applications

Run workloads on real server systems
Install performance instrumentation to
collect measurement data (traces,
counters, etc.)

Create performance models
- Include key performance characteristics

of target design
- Early models (analytic tools)
- Detailed cycle-accurate simulators

Performance model input generation
- Characterize workload attributes for each

server subsystem
- Basis from measured data
- Adjustments to compensate for difference

in measured and target server systems

Analyze
- Processors
- Software
- I/O devices, adapters, and interconnection structure
Performance projections
- System-level server performance
- Subsystem capabilities
Maximize subsystem/component performance
- Tradeoff analysis

Revise server design
to improve performance
vs. requirements

or
Create system specification from
completed, optimal design

System (software) performance
optimization
- Path length
- MIPS tuning
- I/O and memory management

Commercial server performance methodology

S. R. KUNKEL ET AL. IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

852

● Section 2 covers commercial workloads and their
performance traits.

● Section 3 describes the various approaches to
performance instrumentation.

● Section 4 explains the kinds of modification required
to adjust raw data acquired from performance
instrumentation techniques for use as model input data.

● Section 5 considers high-level modeling techniques and
focuses on mean value analysis.

● Section 6 presents details on modeling with cycle-
accurate simulators.

● Section 7 relates to an important aspect of commercial
server performance—I/O device and adapter effects.

● Section 8 continues the presentation of I/O topics and
covers I/O interconnects and their performance
attributes.

● Section 9 presents an example of commercial server
analysis performed for an IBM server processor.

● Section 10 concludes the paper by addressing system
performance optimization through software techniques.

● Section 11 provides a summary of the above topics and
a conclusion to the paper.

The remainder of this paper describes the elements of
the process flow in more detail. This methodology has
proven effective in the design of IBM servers such as
the RS/6000* Model S80 (now pSeries* 6000) and the
AS/400* Model 840 (now iSeries* 400), with CPU chips
including the PowerPC* RS64, RS64-II, RS64-III,
RS64-IV, AS A35, and AS A50.

2. Server workloads
The application domain for commercial server computers
is diversifying at a significant rate. Recent developments
such as the World Wide Web, the proliferation of
collaborative groupware, and the introduction of new
platform-independent languages such as Java** are forcing
new requirements on computer systems in order to run
these workloads effectively. At the same time, customer
growth in the more traditional on-line transaction
processing (OLTP), enterprise resource planning (ERP),
and business intelligence/decision support applications

drives requirements for increased performance in these
domains as well.

Table 1 summarizes some key qualitative attributes of
existing and emerging IBM server system workloads. The
workloads include TPC-C [1], a widely used industry-
standard benchmark that implements an OLTP database
system for warehouse order entry; TPC-H [1], a decision-
support benchmark that measures database query
performance; NotesBench [2], which measures throughput
for the Lotus Notes** collaborative groupware application;
SAP two-tier [3], which implements an enterprise
resource planning (ERP) application within the SAP R/3
environment; SAP 3-tier, which implements the same ERP
application in a three-tiered environment that isolates the
application code (tier 2) and database code (tier 3) to
separate systems; and the Server Java application Java
Business Object Benchmark (jBOB) [4], which is an OLTP
benchmark implemented in Java.

Each workload is characterized in terms of seven
attributes. The first is intra-thread parallelism, which
describes the degree of instruction-level parallelism [5]
that can be extracted from a single thread of execution
in that workload. The second attribute is the instruction
working set, which can be roughly characterized by the
instruction reference miss rates observed in various levels
of the cache. The third is the data working set, which can
likewise be characterized by data reference miss rates in
the cache hierarchy. The fourth is the degree of data
sharing among threads, characterized by cache miss rates
for read/write shared data. The fifth attribute is the degree
of contention for shared data, which is characterized by
the frequency of synchronization primitives such as load-
reserve/store conditional [6].

Two attributes of workload I/O activity are listed next.
The I/O request rate indicates the relative frequency
of activity to the I/O subsystem directed by the
application/operating system. Typically, these are disk
accesses, or communications transfers over a LAN. The
I/O data rate refers to the flow of data across system
buses and interconnects between I/O and memory.
Typically, this activity is measured in megabytes per
second (MB/s). Generally, server workloads that stress

Table 1 Attributes of important server workloads.

Benchmark attribute TPC-C TPC-H NotesBench SAP 2T SAP 3T DB Server Java

Intra-thread parallelism low high medium medium low low
Instruction working set large medium medium medium large large
Data working set large large medium medium large large
Data sharing pervasive medium low medium pervasive medium
Contention high low low low medium low
I/O request rate high low low low medium medium
I/O data rate low high very low very low low low

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000 S. R. KUNKEL ET AL.

853

I/O with high request rates have relatively low data rates.
These are usually cases of small-record access, requiring
minimum-size data blocks to be moved to and from
memory. By contrast, other workloads move large blocks
of information, creating high data rates. However, there
tend to be many fewer discrete requests to initiate the
movement of data.

Clearly, there is a great deal of diversity in attributes
over the range of server workloads shown in the table.
Designing a server system to deliver robust performance
across such a wide range of workloads without significant
compromise in performance for any of them requires
careful identification of the key parameters that must be
optimized. Design guidance must be provided throughout
the product development cycle to ensure that performance
goals are met. Further complications arise from the
fact that server workloads require complex, real-time
interactions with the I/O subsystem, which in turn must
interact with and react to asynchronous external events.

As an example of the complex factors involved in
analyzing commercial server workloads, the case of the
TPC-C workload can be considered. TPC-C presents
many challenges to the system designer because of its low
degree of intra-thread parallelism, its large instruction and
data working sets, its pervasive and contentious data
sharing, and its high rate of I/O activity. Furthermore,
TPC-C receives considerable attention in the marketplace,
and a competitive TPC-C rating provides a great deal of
visibility. TPC-C is not just useful for benchmarking,
however, since it stresses most important aspects of
a server system, including the processor core, the
multiprocessor interconnect, the memory hierarchy,
and the I/O subsystem. As a result, TPC-C is widely
used within IBM server development to identify
design tradeoffs.

TPC-C consists of a set of five client transaction types
that exercise a warehouse inventory database [1]. The
service time for an individual transaction is dominated by
I/O latency and requires relatively little CPU time. Hence,
a balanced and fully loaded TPC-C system will have
thousands of transactions in flight, with frequent processor
interrupts and task switches driven by the initiation or
termination of I/O requests. As a result, both the
instruction and data working sets that the processor
references are very large, and multiple levels of the cache
hierarchy in a given system are referenced continually.
Furthermore, the multiple in-flight transactions share data
within the internal database constructs, and there is a
great deal of database journal lock contention due to the
ACID (atomicity, consistency, isolation, durability)
requirements of TPC-C [1].

A set of key quantitative descriptors are needed to
effectively characterize and model the performance of a
server system running a complex workload such as TPC-C.

These descriptors are typically broken down into processor
core or on-chip attributes, memory subsystem or memory
nest attributes, and system attributes for a given workload.
Processor attributes include factors such as branch
predictability, instruction mix, prevalence of dependence
chains and load-compare-branch sequences, and frequency
of shared-memory synchronization operations. These are
usually characterized with deterministic trace-driven
modeling and analysis, and are summarized with the on-
chip or infinite-cache cycles-per-instruction (CPI) metric.

Another important workload attribute is its sensitivity to
memory latency and the potential for memory accesses
overlapping with other useful work. The intra-thread
parallelism in server workloads such as TPC-C is
meager and difficult to extract to an extent sufficient to
successfully overlap off-chip memory latencies. Hence,
server systems that implement multiple threads per chip
(i.e., multithreading or multiple processor cores per chip)
are best able to overlap long memory latencies with useful
work, since there is plenty of parallelism available among
the multiple threads.

The memory subsystem attributes of a server workload
describe the degree of off-chip address and data traffic
generated by the workload. These are typically quantified
as miss rates, which specify the frequency of various types
of misses and address transactions in the cache-coherent
memory hierarchy. These miss rates are generated via
a combination of hardware counters, special-purpose
instrumentation, trace collection, and simulation. For
TPC-C, miss rates tend toward the high end of the
spectrum because of its nature of shared data
manipulation.

Finally, the system attributes of a workload describe
how the processor and memory subsystem communicate
with the I/O subsystem. These are typically quantified as
request rate and average request size for memory-mapped
load and store references by the processor and frequency
of interrupts and direct-memory accesses (DMA) by the
I/O subsystem. Because of its somewhat random, record-
oriented data-accessing algorithms from the file system,
TPC-C tends to generate a relatively large number of
small disk accesses, increasing the I/O request rate.

The other workloads listed in Table 1 all affect server
design in varying ways that differ from TPC-C, but
the concept of system interactions and performance
optimization among several variables in the design is a
constant. How this is accomplished is explained in the
following sections.

3. Performance instrumentation
System instrumentation is the practice of adding hardware
or software probes to a computing system for the purpose
of monitoring the behavior of the instrumented system.
When this data is used for performance-related activities,

S. R. KUNKEL ET AL. IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

854

the process is referred to as performance instrumentation
[7]. The data collected by this process provides input for
conducting analyses of existing systems and projecting the
performance of future system designs.

Performance data collected from a live system provides
designers with a means of judging how effectively various
hardware features respond to typical processing patterns.
This information can then be used to improve existing
hardware or software configurations and guide future
design decisions. Although the following discussion focuses
on data-collection techniques for the purpose of making
performance projections, it should be noted that the same
techniques are used when gathering data for the analysis
of existing systems.

Performance projections are typically based on software
simulations of the proposed system. These simulations
are driven by data collected from an appropriately
instrumented system. Because the simulator output is
directly affected by the performance data used as input,
which in turn affects performance projections, tradeoffs,
and optimizations, the extraction of high-quality
performance data is key to any performance analysis
effort. The quality of the performance data is a function
of the instrumentation mechanism itself and the care
taken in its deployment.

When instrumenting a system to supply performance
data, it is imperative that the data collected be
representative of the system’s normal mode of operation.
This ensures that performance improvements are targeted
toward the system’s most common set of operations. The
workload used to drive the system under test therefore
should produce realistic processing patterns, and
measurements should be made only when this
workload has reached its steady state. The method of
instrumentation should also be designed so that it does
not perturb the system under test [8]. For example, one
direct approach to performance instrumentation is to
augment a program with additional code that records
the amount of time taken by various program events.
However, the addition of this instrumentation code
is also likely to change important indicators of system
performance such as instruction path lengths, cache hit
rates, and I/O utilization. If these perturbations are
significant enough to be reflected in the data collected,
subsequent analysis and projections based on this data
may be erroneous.

The relative speed of the data-collection process must
also be considered. Fast instrumentation enables the
collection of greater amounts of data during a given
measurement period, which in turn improves the statistical
reliability of the data. In addition, a fast collection process
is very desirable when the system under test is available
for a limited amount of time. Although such time
constraints would be considered minor in many

environments, commercial workloads such as TPC-C often
require systems costing several million dollars to run,
making each benchmark test a precious resource not to be
squandered.

Designing a performance instrumentation system that
meets all of the above requirements is a challenge when
doing studies of systems used for commercial processing.
The complexity of commercial workloads and the
increasing dimensions of the systems used to run
these workloads tend to increase both the number of
measurement points and the amount of data that must be
collected from each point. The following section describes
the performance instrumentation techniques used in the
design of iSeries and pSeries systems and how these
techniques address the above issues.

● Trace collection
One of the most direct means of monitoring the behavior
of a system is to extract a trace of events occurring at a
given point within the system. These traces can then be
used to drive future software simulations, as discussed
in Section 10. Many types of events may be traced, but
typically traces of instructions executed by the processor,
memory accesses, and I/O requests are of the greatest
interest [9]. The method by which these traces are
collected is a distinguishing characteristic in any trace-
based projection effort. Because they share many common
collection techniques, instruction and memory traces are
described first.

Instruction and memory tracing
One of the simplest trace-collection techniques is to
instrument an executable file with additional instructions
such that the program itself produces a log of the
path taken through the program at run time [10].
Postprocessing software then combines the contents of this
log file with the instrumented binary file to produce a full
instruction or memory reference trace for the program.
However, this approach is typically applied to single
executable files, making it inadequate for commercial
workloads that consist of many user processes and tend to
spend a significant amount of time executing operating
system code.

An approach that allows for tracing multiple processes
(including the operating system) uses programmable
hardware within the processor to generate an interrupt
whenever a user-specified event occurs [11]. The interrupt
handler then writes the relevant trace information to a
memory buffer, which is later written to disk. These events
and handler routines can be specified in such a way that
full instruction or memory traces can be produced for
each process in the system. CTrace, an internal IBM tool
for the pSeries server, uses this basic approach to generate
traces.

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000 S. R. KUNKEL ET AL.

855

Although CTrace is able to produce relatively complete
trace information, tools such as this rely on frequent
processor interrupts, which can perturb the system under
study. To eliminate or reduce this effect, specialized
measurement hardware can be used to extract traces by
directly probing the system hardware. One of the more
common techniques for hardware trace collection is to
place snooping hardware on the main store bus, which
monitors bus transactions and stores them to a large
memory buffer that can later be written to disk. In this
way, a trace of memory requests can be captured and used
to drive later memory system simulations. The presence
of processor caches means that only those memory
operations that miss in the processor cache hierarchy are
seen by the bus-snooping hardware. Although this has its
advantages when one wishes to filter a trace [12], there
are many instances (such as L1 cache simulations) for
which a full address trace is needed.

The processor may also provide signals that can be
probed to determine the instructions currently being
executed. Because the collection of such an instruction
trace must be done at the speed of the processor, the
hardware for instruction tracing is more challenging to
develop than that required for bus tracing. This effort
can be justified by the wealth of information that can be
derived from instruction traces. Not only is it possible
to determine the processor’s execution path with an
instruction trace, it is also a means of collecting an even
more complete memory trace than is possible with bus
tracing.

For IBM servers, a common collection system is used to
collect both processor and memory traces, as shown in
Figure 2. Hardware probes are connected to a debug port
provided on a specially designed processor board. This
port operates at the speed of the processor and provides

both processor instruction usage information and system
bus snooping. This interface is connected to external
memory arrays via a custom, high-speed ECL connection.
In the current generation of the tracing system, these
memory arrays have a total capacity of 16 GB. Once these
arrays are filled, the trace data is downloaded via a HiPPI
(high-performance parallel interface) connection to a
pSeries workstation which processes the trace and stores it
to an attached RAID (redundant array of independent
disks) tower.

This collection system is designed to gather large traces
as rapidly as possible, because there is typically a limited
amount of time in which the workload driving the system
remains in steady state. Multiple traces are collected for
a single workload to ensure that nonrepresentative traces
can be isolated by using standard validation techniques.
Examples of nonrepresentative traces include those that
happen to be taken while the operating system is involved
in a large amount of paging activity or while a database
journal is being written to disk. Although such events can
have noticeable effects on performance, they are better
addressed as special cases rather than being included in
the analysis of the workload’s steady-state behavior. When
attention is focused on the traces taken during steady
state, the performance optimizations derived from these
traces can be applied to the most common workload
operations and thereby have a greater overall effect
on system performance.

Disk tracing
Unlike instruction and memory tracing, traces of disk
accesses can be collected via software instrumentation
without loss of information or undue perturbation of
the system under study. Because I/O is managed by the
operating system, it is possible to instrument a small

Figure 2
Common trace collection system for pSeries and iSeries servers.

pSeries
or iSeries

server

External
memory
arrays

RS/6000
workstation

RAID
tower

Memory

Memory

Memory

Memory

Custom ECL HiPPI SSA

S. R. KUNKEL ET AL. IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

856

amount of code within the OS to keep track of all disk
accesses. Furthermore, the effect of this instrumentation
on overall system performance is negligible, because the
extra processing time required to keep track of disk
requests is small relative to the service times associated
with these requests.

Software trace collection of the iSeries disk activity
is done with the Performance Explorer tool. This tool
activates instrumentation code within the OS to collect
disk traces that can include such information as the type
of operation (read or write), the number of sectors
accessed, the destination disk unit, and the requested
address.

● Performance monitor counters (PMCs)
Trace-driven simulations are capable of providing
performance analysts with very detailed information on
the behavior of a proposed system working under a given
workload. This level of detail is not always necessary nor
expedient to gather. PMC data can be collected and
processed more quickly. This data is often used to analyze
performance problems in hardware and software during
the system optimization phase described in Section 10; it
is also used to characterize new workloads without all of
the work of collecting traces. If traces are collected, the
PMC data can be used to select the most representative
trace.

Processor PMCs
The current generation of PowerPC processors contain a
set of PMCs that are dedicated to measuring particular
events within the processor and its cache hierarchy. Each
of the counters can be used to measure any of several
types of performance metrics. These metrics can be
divided into three basic categories:

1. Event counters Incremented whenever a specified
event occurs—for example, the number of cache misses
or correctly predicted branches.

2. Event timers Measure the total number of cycles taken
to complete a given class of tasks. For example, the
total number of stall cycles due to instructions
accessing memory.

3. Mask counters Incremented whenever a user-supplied
mask matches the contents of a completed instruction
register. This is useful for deriving instruction
frequency data for a particular instruction or class of
instructions.

The data accumulated by these counters can be combined
to derive a wide range of event probabilities and average
cycle times.

I/O PMCs
The I/O adapters used in iSeries and pSeries systems also
contain counters that count particular events or cycles.
The statistics of most interest include average response
times seen by the operating system, utilizations for storage
adapters and the disk devices, read/write percentages, disk
seek-distance distributions, and hit rates for the caches
and buffers included in the storage subsystem.

● Hardware emulation
While performance counters are useful in summarizing
system activity, they are limited to establishing the
frequency and average latencies of particular events in
an existing system. Conversely, traces can provide very
detailed information for subsequent software simulations,
but the traces themselves can be problematic. On one
hand, it is desirable to gather as long a trace as possible
to provide a statistically significant sample of trace events.
On the other hand, the volume of data needed to model
some configurations can be very large, making the trace
files cumbersome to store and process.

Hardware emulation [13] provides a means of sampling
large amounts of data without the need to store the
sample in a trace file. In this approach, hardware probes
are connected to a live system to capture trace events that
are then used to drive a hardware emulator. This emulator
replaces the function of a software simulator by mimicking
the behavior of a proposed system design point. At the
same time, the emulator collects statistics on the behavior
of the emulated system.

Caching structures are particularly appropriate
candidates for hardware emulation. Given the increasingly
significant effect of memory latency on the overall
performance of a system, designers have begun to rely on
larger and more complex cache hierarchies to avoid long
memory latencies. This trend presents a challenge to
performance analysts because modeling very large caches
using software simulation requires proportionally large
traces.

Recognizing the limitations of trace-based cache studies,
members of the IBM Server and Research divisions have
co-developed a hardware cache emulation system [14].
The cache emulator attaches to the main store bus and is
therefore able to snoop all memory transactions coming
from the processor cache hierarchies. The emulator
contains the logic and memory necessary to mimic the
contents of up to four cache directories. Because the
emulator design is based on field-programmable gate
arrays (FPGAs), the board can be quickly reprogrammed
to emulate a variety of cache configurations.

The cache geometries to be emulated are specified by
the user via a PC console attached to the emulator card.
The console sends configuration information to the card,
which then updates the FPGA code for each directory to

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000 S. R. KUNKEL ET AL.

857

set the emulated cache size, line size, associativity, and
other attributes. The overall topology of the emulated
caches is also specified by the user. For example, given
a four-processor host machine, the emulator can be
configured as a single cache shared by four processors,
two coherent caches each sharing two processors apiece,
or four coherent caches, each under a single processor.
Once configured, the emulator card receives a signal from
the console to begin the measurement for a fixed period
of time. When the measurement completes, the contents
of the emulator’s statistical counters are downloaded to
the console and stored to disk for later analysis.

One of the primary advantages of hardware cache
emulation over trace-based techniques is the emulator’s
ability to measure cache behavior over relatively long
periods of time. While most hardware trace collection
systems are capable of sampling only a few seconds of a
workload, the emulator’s 40-bit counters allow data to be
collected over several minutes or hours. It is this attribute
of the cache emulator that enables it to model cache sizes
that are too large for accurate trace-based simulation.
Long sample periods are also desirable when the workload
under study exhibits uneven cache behavior. In this case,
the cache emulator can take measurements over the entire
workload and therefore provide statistics on average cache
performance.

Like the other instrumentation mechanisms, hardware
emulation has its limitations. Although it is programmable,
the emulation hardware is not as flexible as pure software
simulators, which can be rewritten to model virtually
any proposed design point. In contrast to trace-based
techniques, the flow of events into an emulator cannot
easily be repeated, making direct comparisons between
subtly different design points more challenging.

● Performance instrumentation summary
Honoring the many constraints imposed on performance
instrumentation yields a diverse range of techniques. The
choice of technique to use for a given type of analysis is
based on an understanding of the limitations and strengths
of each method of instrumentation. Once a method is
chosen, care must be taken that it is implemented in
such a way that data can be collected unobtrusively and
efficiently during a representative portion of the workload.

4. Model input generation
The quality of performance projections is heavily
dependent on the quality of the data used to drive the
projection models. For the most part, cache performance
projections are based on trace-driven cache simulations
and hardware event counts collected from systems already
implemented. Unless validation of the projection process
is the goal, the system configuration from which
characterization data is collected will be different from

the system configuration for which performance projections
are targeted. Because of these mismatches, most collected
data and the associated first-level analysis results do not
correctly reflect the attributes needed for an accurate
performance projection. Hardware changes, software
changes, and the limitations of the collection system
itself can all lead to projection aberrations. This section
presents an overview of data manipulations that have been
used to compensate for attributes that do not match
between the measured system and the target system.

● Accounting for hardware differences
The target system might support a greater number of
processors than can be found in current systems. Trend
analysis is used to make up for a lower number of
processors in the collection system. Detailed performance
data (PMCs and traces) is gathered from current systems
while varying the number of processors. Counter data
and trace simulation results are then fitted to curves and
combined. Extrapolations are made utilizing those curves
for projecting cache component performance to match
the number of processors in the target configuration.

Multithreading, like higher levels of multiprocessing,
increases the number of concurrent threads in the system.
Projections based on current systems may pose some
difficulties. The target system may be multithreaded,
whereas the current system is not. Even if the current
system is already multithreaded, it may have implemented
a considerably different multithreading design than the
one being considered for implementation in the target
system. In either case, detailed instruction and address
traces of a single thread are split by task identification
number and are fed to a pipeline simulator that emulates
more than one concurrent thread.

In the multitasking environment found in commercial
workloads, increased processor clock frequency leads to
increased pressure in the supporting caches. Individual
tasks, or groups of tasks, are dependent on the completion
of I/O events for dispatch. Tasks face displacement of
their working sets while waiting. Because I/O latency
reductions generally lag behind processor clock rate
increases, the risk of displacement is higher for faster
processors than if the processors were running more
slowly. Adjustments due to the multiprogramming level
are based on measurements in which the clock rate is
varied and a trend curve is derived.

● Accounting for software differences
Software, including both the operating system and
applications, presents a difficult problem for projection.
The first (and biggest) assumption is that the workload of
today will resemble the workload of the target release
date. This approximation can be made with more
confidence if there is knowledge of how the software

S. R. KUNKEL ET AL. IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

858

and workload will evolve. Component attributes may be
adjusted to account for software trends or programming
commitments.

One example of compensation anticipates the effects of
compiler optimization. Early in the development cycle, the
modules that make up the operating system, database, and
application have not been profiled [15]. Projections based
on trace or PMC data from the early builds are missing the
cache-friendly arrangement of code to be found in the
final release. Projected miss rates are adjusted to reflect
reductions in instruction cache and TLB miss rates when
the system software has been profiled.

As another example, cache miss rate components may
be adjusted to reflect the expected results of software
engineering efforts aimed at reducing data sharing among
processors [16].

Task interaction will affect miss rates. Compensation
may be needed to account for contention over serialized
code paths (such as spinning for a shared lock). As the
number of processors increases, the amount of spinning
increases, and miss rate projections may have to be
modified accordingly.

● Accounting for collection mechanisms
The collection method and equipment itself may introduce
artifacts that require compensation. Limitations in trace
collection capacity may result in a trace that, in a
simulated directory, produces a comparatively large
number of references to uninitialized congruence sets.
It is uncertain whether a reference to an uninitialized set
should be considered a hit or a miss in the target system.
A bound on this uncertainty produces a delta which is
used to identify “good” simulation results. Only the
simulation results from configurations with sufficient trace
length (small deltas) are used in further calculations;
those with wide deltas are discarded. Curves are fitted to
the remaining points and are then used to project miss
rates for those caches too large for individual traces.
Figure 3 shows an example of this process. The actual
miss rate (obtained with longer traces) is shown as the
solid line; the brackets define the bounds derived from
analyzing shorter traces. If only the short traces were
available, the 4M and 8M points would be selected for
extrapolation to larger cache sizes. The dashed line shows
the result of applying a simple log–log extrapolation to the
4M and 8M points.

Collecting bus traces from a multiprocessor system is
a problem of balance. If the bus traces are collected
with no underlying caches, the system runs too slowly to
provide a worthwhile representation of memory and cache
interactions. If too large a cache is used as a filter, the
ability to simulate the smaller-sized caches is lost.

Assuming that balance can be obtained by using a small
direct-mapped cache as a filter, it still may not be possible

to consider a memory component in isolation from the
hardware configuration. For example, the miss rate
of a second-level cache may depend on the first-level
subsystems that interact underneath that cache. (A large
TLB puts less pressure on a data cache than would a small
one.) If the configuration of the collection system does not
match that of the target system, adjustments are made to
the simulation results. These adjustments are based on
simulating both the current and the target directory
configurations with instruction-address (unfiltered) traces
and then applying a relative adjustment factor to bus
(cache-filtered) trace simulations.

● Accounting for the collection system
Commercial benchmark setups tend to consume large
quantities of resources, first to tune and then to measure.
These resources include operators, performance analysts,
disk arrays, system memory cards, software support, driver
systems, and floor space. For systems large enough to
serve as worthwhile measurement platforms, time slots
available to performance data collection are usually
limited in frequency and duration. Measurement
opportunities represent a compromise between what is
wanted for projection work and what resources can be
spared from development. The situation can cause missing
measurement points, making trend analysis more difficult.

Even if there are sufficient resources to collect data for
projection purposes, there may be other reasons why the
collected data may not be suitable for direct use. Not all
configurations in a series may be suitable for use in direct

Correlation between extrapolated and actual cache miss rates.

Figure 3

Actual, with bounds

4M 8M extrapolations

0 16 32 48 64 80 96 112 128 144
Simulated cache size (MB)

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000 S. R. KUNKEL ET AL.

859

comparisons because of variations in workload setups.
Great care must be exercised to ensure that series of
benchmark runs yield comparable data. Disk balancing,
number of simulated users, size of memory pool, and
utilization are all key attributes that must be monitored
[17].

To make the data collected under such conditions
relevant, adjustments of measured components may be
needed. Component adjustments are performed with a
combination of curve-fitting tools of both the automatic
and manual varieties.

5. High-level models
There are several models and simulators that are driven
by the data described in the previous section; one such
set of models is known as high-level models. These are
models that are written early in the design process to
make gross tradeoffs among alternative cache structures,
bus bandwidths, and topologies. A wide variety of
alternatives are typically considered, so high-level models
must be easy to write and modify, and should have a short
execution time. Systems at this level of detail can usually
be represented as closed queuing networks of infinite
queues, which can be described and analyzed quickly
using analytic methods. This section describes how
these queuing models are written and solved.

In practice, because of their speed and flexibility, high-
level models are used over the entire design cycle from
concept to customer delivery. This is because a family of
servers includes several tens of configurations, each of
which requires a performance projection for several
workloads. Furthermore, configurations can vary widely

until late in the design cycle, requiring frequent modeling
runs. It is less time-consuming to use a high-level model
rather than a trace-driven model to maintain projections
on so many variations.

● Mean value analysis
A closed queuing network (Figure 4) is a collection of
interconnected queuing centers with a fixed number
of customers (shown as tokens) that cannot leave the
network. Each customer has an initial position in the
network from which it can travel along one or more
randomly selected routes, and each route must return to
the initial position. At each visit to a queuing center
along a route, a service time distribution is specified for
that center. When a customer leaves a queue, it may
randomly select one of several destination queues.

Mean value analysis (MVA) is the name of an exact
algorithm for finding the mean performance measures
of “product-form” closed queuing networks [18, 19].
A closed queuing network has a product-form solution
if the customer routes satisfy certain properties:

● The service distributions must belong to a narrow class,
the most common being the exponential distribution.

● The selection of a queuing center at each step in a route
must be independent of all previous routing selections
(Markovian routing).

The mean value analysis algorithm is efficient, so complex
networks with hundreds of queues and hundreds of
complex routes can be solved in seconds.

Closed queuing networks are a natural representation
for computer systems at a high level of abstraction:
Queuing centers represent microarchitectural resources,
and customers represent cache misses. Examples of
microarchitectural resources include cache reload logic,
buses, memory arrays, and a processor as it behaves with
infinite level-one caches. While the network topology and
service times are determined by hardware assumptions,
the routing probabilities are determined by workload
characteristics, such as miss rate.

Mean value analysis is the preferred method for
analyzing closed queuing networks because it takes into
account the finite number of customers (i.e., misses) in
the system when queuing delays are computed. There are
ad hoc approaches for analyzing closed queuing networks
that use open queuing network delay equations (based on
results for M/M/1 queues). These are pessimistic, however,
in that they can result in queuing delays that would
require a much larger number of outstanding misses than
is possible. This problem is most acute when a system has
one or more resources that are at or near saturation.

Queueing network models need not be solved
analytically; they can also be solved via simulation.

Closed queuing network used to construct a simple model of a
two-processor system.

Figure 4

Delay center

Customer

Queuing center

CPU CPU

Address bus

Data bus

Memory

S. R. KUNKEL ET AL. IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

860

Analytic solutions are preferable, however, since they are
much faster, and many studies have shown that analytic
approximations are quite good [20]. Simulation is a good
alternative when the limitations of MVA are expected to
have a significant impact on performance. An example of
this would be some dominant finite queue behavior.
Sections 7 and 8 describe the use of queuing network
simulation to model important finite queue effects in I/O
subsystems.

● EZMVA: A generic MVA solver optimized for computer
systems analysis
Despite its computational efficiency, the equations for a
complex MVA model with many processors and routes are
cumbersome to construct. It is common for an MVA
model to use hundreds of queues with hundreds of
hardware and software parameters. This results in a
thousand or more MVA equations. IBM has written a
queuing network analyzer, called EZMVA, that automates
the creation of these equations by compiling them
automatically from an abstract description of the system.

An EZMVA model description contains three parts:

● A parameter section, where hardware and workload
parameters are declared.

● A topology section, where queues are defined.
● A routing section, where customer routing (timing) is

defined in a natural way as a list of visits to queuing
resources.

A model description is usually highly parameterized
and represents a family of configurations with different
numbers of processors, optional caches, variable latencies,
and adjustable bus attributes.

The compiled model is only a single piece of the
EZMVA modeling environment. The complete
environment includes a source of workload and
configuration parameters, a model solver, and a variety
of output statistics and diagrams.

● Limitations of mean value analysis
Some characteristics of computer systems violate the
requirements of product-form closed queuing networks:

● Most computer systems use discrete time instead of
continuous time. In practice, this has little effect on
accuracy.

● Few resources exhibit exponential service times. Most
resources exhibit deterministic (or constant) service
times. An approximation technique is used to model
deterministic service times [21]. This technique has
been empirically shown to be accurate.

● Some machine resources use a non-FIFO queuing
discipline, and the actual queuing discipline can be

quite complicated. In practice, the FIFO discipline
is often sufficiently accurate. It is possible to use
approximation techniques for some types of priority
queues.

● No machine resource has infinite queue space. Even if
finite queues could be modeled, there are widely varying
schemes for handling queue overflow that require
complex interactions among groups of queues. In the
early stages of system design, it is usually assumed that
queues will be sized so that queue overflows will be
infrequent. When finite queue effects must be identified
or modeled, a more detailed simulation model must be
used.

● Processors must either stall or not stall on a cache miss;
overlap scenarios cannot be modeled. This restriction
has not been a problem for level-one cache misses until
the most recent generation of PowerPC processors.
These have sufficient out-of-order resources that there is
significant overlap between level-one misses that hit in
the level-two cache. Fortunately, little overlap occurs
for level-two cache misses, so the processor can be
represented as a delay center with service time equal to
the average interval between level-two cache misses.

6. Detailed timer models

● Overview of timing simulator
To carry out detailed performance studies, a cycle-
accurate model of the system is written. This allows
for detailed analysis of the workings of the design as
it evolves. The goal of the model is to do detailed
design tradeoffs when looking at low-level interactions
between instructions and events in the system. The MVA
model, described above, covers the high-level memory-
system tradeoffs but does not cover tradeoffs in the
processor core, or more detailed tradeoffs in the memory
system. A model that does this is generally referred to as
a “timing simulator.” Examples of modeled details include
number of functional units, pipeline depth, thread-switch
algorithms, cache-replacement algorithms, cache snooping,
and DRAM bus utilization. The timing simulator covers
core pipeline details, caches, TLBs, and the memory
system of a multiprocessor system. Inputs consist of
instruction traces and other workload characteristics
described by probabilities. In general, the timing simulator
described here is similar to various other timing simulators
[22–24]. Significant features are the use of probabilities
to augment trace-driven simulation and the use of the
simulator in multiprocessor configurations. This section
describes the scope of the simulator and some of the
methodology used to evaluate performance.

A model can be constructed in several different ways,
and different degrees of detail can be implemented. Some

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000 S. R. KUNKEL ET AL.

861

different approaches to modeling are the following:
1) a very-high-level trace-driven simulator to determine
gross tradeoffs; 2) a detailed cycle-accurate trace-driven
simulator, either fully deterministic, fully probabilistic, or
a combination of the two; 3) a detailed cycle-accurate
execution-based simulator; and 4) actual logic design
(represented in a hardware description language, or HDL)
used as a timing simulator for performance analysis.
The approach taken for processor and memory system
modeling is the second one, with some aspects of the first
included. Initially, the model is developed at a high level
in order to compare more gross design decisions. Since
there is an MVA model (described above) to do high-level
analysis of the memory and MP system, the high-level
timing simulator, described here, is not used for these
tradeoffs. However, a simple memory model is used to
introduce cache-miss effects into the analysis, including
effects on the processor core. This type of simulator
covers design options such as the number of execution
units and their function split, pipeline lengths, and branch-
prediction algorithms. As the design progresses, more
details are defined, and the timing simulator becomes
more specific. The memory system also becomes more
detailed as memory tradeoffs for the system (including
multiprocessor topology) are made using the timing
simulator. The timing simulator and MVA model are
compared to ensure that they correlate well.

The choice of a trace-driven methodology or an
execution-driven methodology is based on several
constraints, as described in Section 3. Given the nature of
commercial workloads, it should be clear that running in
an execution mode requires the simulation of much more
than a single processor. The size of the system to simulate
becomes prohibitively large, and the interactions among
operating system, application, multiple processors, and I/O
become very complex. Because traces are available, they
provide a primary source of inputs to the timing simulator.
Therefore, a trace-driven methodology is used rather
than an execution-based methodology.

The trace-driven methodology has its limitations,
however. To overcome these limitations, as described
above, additional timing simulator inputs consist of
probabilities of events that are not readily available from
the traces, are in error on the traces, or are expected to
change in the future. Because traces are collected from a
current system, and the system for which performance
tradeoff analysis is done will be shipped some number of
years later, the collected traces reflect an old system by
the time the new one ships. Building systems with more
processors than previous systems, or with multithreading,
are primary examples of the change in workload
characteristics over time. In addition, there will be new
workloads, for which there are no traces yet, that are
expected to become more important by the time the new

system is available. Since the exact characteristics of the
future workloads cannot be known, the use of probabilities
provides a method to vary the workload characteristics to
observe behavior for a range of such characteristics.

When doing performance tradeoffs for a multiprocessor
system, running completely from traces is difficult and
misleading. The solution used during performance
modeling for the systems described in this paper is to
do uniprocessor core tradeoffs using uniprocessor traces.
The uniprocessor part of the timing simulator has the
capability to do a pure trace-driven simulation in addition
to using probabilities. The trace is used as input for
providing a stream of instructions and inter-instruction
register and memory dependencies. When a cache access
is initiated, a probability or a cache directory model can
be used to determine hit or miss. Note that addresses
on the trace are still used for memory dependencies,
including different references to the same line or page,
when running with probabilities. This allows simulation
of load-store interaction, unaligned data, and multiple
references to a line that has a cache miss. In addition to
supplementing the traces with probabilities, traces are
modified to reflect any important changes that may occur
at the instruction level, such as new instructions added to
the architecture.

From the multiprocessor standpoint, probabilities are
the key timing simulator input, since complete MP
instruction traces are not available, even for the number
of processors in current systems. The multiprocessor
characteristics are summarized in a set of probabilities
describing where and in what state different types of
requested data can be found. For example, given an L2
cache miss, data may be found modified in another
processor’s L2 cache, found shared in one or more other
L2 caches, or not found in any L2 cache, in which case the
data comes from main memory. The probability specifies
which of these instances is to be used, which processor
supplies the data, if any, and which caches must invalidate
lines. The act of snooping is performed in the timing
simulator by modeling buses, directories, etc.

Many different types of events can, in general, be
modeled deterministically or probabilistically. Probability
modeling can begin with simple random events, given
an exponentially distributed probability; this is what is
usually used when running the model. However, other
distributions can also be used. Specifically, most events
exhibit more clumping than is described by an exponential
distribution. For that reason, the model also implements
hyperexponential distributions, which we have found to
produce better models of event arrivals in real systems.
When running the model, the user can specify the
characteristics of the probabilities. A second class of
improvements is correlation of events. In our models,
correlation effects are limited to a combination of a single

S. R. KUNKEL ET AL. IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

862

probability and subsequent address comparisons (e.g., two
references to the same line).

● Modeling process
The full model is constructed in three parts: core model,
cache and translation model, and memory nest model.
The core model consists of a detailed uniprocessor model
covering the pipeline structure from instruction fetch
through execution and completion. This part does not
include cache or translation. When there is a memory
request, the cache/translation part of the timing simulator
is accessed to determine a hit or miss, as well as to
simulate the details in the cache/translation pipelines and
buffers. The hit or miss determination is made using a
deterministic cache directory or a probabilistic cache
directory. This part includes the L2 cache, the primary
cache for multiprocessor coherence, and the TLBs. The
third part couples multiple processors with a detailed
model of the memory system. In a multiprocessor system,
only one of these detailed pipeline models is used. The
remaining processors are characterized by a very simple
processor model, in which infinite-cache CPI is a primary
input. These processors access the same cache/translation
models and are used primarily as traffic generators for the
system. The timing simulator therefore consists of one
(or zero) detailed instruction-level timing simulators and
N 2 1 (or N) simplified processor models. Each of the N
processors has its own private caches (as appropriate for
the design) and any shared caches and memory that are
in the system.

The modeling process begins as the next design is
contemplated and the high-level direction is starting to
take shape. By this point, there is an analytical model
used to help define the overall structure of the system
and some high-level pipeline model in place to cover
that part of the system. The model writer is writing to
a specification that is derived primarily from verbal
descriptions from the design team, with some block
diagrams and timing diagrams. The high-level design
evolves in part from feedback from performance
information from the high-level models. As the design
progresses, more details are determined, and those are
implemented in the timing simulator. Details include the
facilities that are available and the expected timing
relationships expressed through timing diagrams. The
process begins rather informally but becomes more formal
as the design is documented.

The most important part of this process is the
evaluation of design tradeoffs. The design team must
evaluate the performance tradeoffs of alternative designs.
Most of these performance tradeoffs are made using the
timing simulator to compare the designs when running
with the traces and probabilities described above. In
addition, outputs from the timing simulator are used to

identify problem areas in the design or areas where the
design can be scaled back without hurting performance.
An important part of the process is the generation of
timing diagrams by the timing simulator. This provides
feedback to the design team on the behavior of the
design and provides an indication of how well the timing
simulator is matching the designer’s description of the
design.

Another significant use of the model is for system
performance projections used for positioning the product
and defining different models (cycle time, external cache
size, number of processors, and other configurations).
This process is similar to that used for design tradeoffs
and also takes into account software path length and I/O
effects; I/O traffic is included in the model and is specified
by a rate (requests per completed instruction), block sizes,
and other characteristics. The timing simulator is used
for calibrating the high-level MVA model as well.

The timing simulator is used primarily for running a
trace augmented with probabilities derived from workload
characterizations; in addition, the use of probabilities
offers another advantage. This area can be characterized
as sensitivity studies. In these studies, workload
characteristics can be altered to represent characteristics
of new workloads, if there is some information available
to describe them. Also, the existing workload
characterizations are altered in order to determine the
stability of the design. This helps to make the design
more robust over a larger variety of workloads.

After the high-level design is completed and much of
the logic design is completed, the HDL simulator enters
the performance picture as a means of verifying the timing
simulator against the actual design. At this point, the
timing simulator can be compared to the HDL simulator
for performance verification. A series of short test cases
are written; each tests one or two specific parts of the
design. The shortest test cases may be only three or four
instructions. A goal is to keep the number of test cases to
a manageable level. As a result, the situations deemed
most important for performance are chosen as test cases.
One or two hundred test cases is enough to satisfy these
goals, although the number will be a function of the
complexity of the design and the range of workloads
of interest. The test cases are run through the timing
simulator and the hardware description language model
and are compared both for total number of cycles and for
activities on each cycle in the test. As differences are
noted and understood, either the timing simulator or the
logic design is changed. For subsequent versions of the
hardware design, the test cases are also run so that the
model accurately reflects the final hardware design.

The timing simulator is used after the first-pass
hardware primarily for analyzing the effect of subsequent
changes due to bugs discovered during functional

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000 S. R. KUNKEL ET AL.

863

verification and testing or to design changes to improve
performance (CPI or cycle time), and for software
optimization, including compiler tuning for the processor.
In the latter case, the timing simulator is made available
to compiler developers who can optimize the code to the
specific processor design.

7. I/O devices and adapters
In order for server workloads to take full advantage of the
performance capabilities of the processor and memory
subsystem, the I/O subsystem must be sized to handle
the I/O traffic generated by the workload. The I/O
interconnect, which connects the I/O adapters and devices
to the memory subsystem, must have sufficient bandwidth
for all of the disk, tape, and communications data and
control information that passes between the I/O adapters
and memory. The storage subsystem, consisting of the
storage adapters and the disk and tape devices, must be
able to handle the traffic generated by the workload
while minimizing the response time. Designing a server
whose I/O subsystems properly match the performance
capabilities of its processor is not a trivial task. The
system designers and planners must balance the cost of
the I/O components against the requirements of the
workloads, and must ensure that no I/O component
becomes a performance bottleneck. Performance analysis
plays many roles in this process. In the remainder of this
section, we discuss how performance analysis is used
during the design of the storage subsystem of server
systems. The use of performance analysis in the design of
the I/O interconnect is discussed in the following section.

For personal computers and single-user workstations,
the key criterion in selecting storage devices and adapters
is typically capacity, with performance being a secondary
criterion. For servers, the performance of the storage
subsystem is critical; capacity, while important, is
secondary. OLTP workloads generate a high throughput
(operations per second) to the storage subsystem. Business
intelligence workloads require high bandwidth (megabytes
per second) for data flowing from the storage subsystem.
If the storage subsystem is not designed to provide
adequate performance, it becomes a bottleneck which
prevents full utilization of the capabilities of the system.
If the storage subsystem is designed to meet the
performance requirements, the capacity requirements
can usually be satisfied as well.

Performance analysis of the storage subsystem starts
with the characterization of the I/O properties of the
server workloads. These characteristics are discussed in
Section 2. This information is used to establish the
performance requirements for each component in the
subsystem. These requirements are stated in terms of the
operations per second (ops/s) that the subsystem must be
able to handle with a specified acceptable response time,

and the peak megabytes per second (MB/s) that must flow
from each component. For the storage subsystem, the
ops/s requirements are determined on the basis of the
characteristics of the OLTP workloads. The ops/s
requirement is the number of operations per second that
the subsystem must handle at a specific average subsystem
utilization, with a specified maximum response time. For
example, for iSeries systems, this requirement is specified
at an average utilization, over all of the disks in the
subsystem, of 40%. This value was selected in order to
ensure that the utilization of the most heavily used disk
is no greater than 60 –70%, beyond which response time
quickly becomes unacceptable. The MB/s requirement is
determined on the basis of the characteristics of business
intelligence and other data-intensive workloads. This is the
amount of data that must be able to flow from the device
buses into the memory subsystem.

More detailed characterization of the I/O workload is
then performed in order to obtain the parameters needed
in the detailed analysis of the I/O components. The
workload characteristics are used to drive the detailed
performance analysis during the design phase of each
component. Performance analysis during the design
phase serves two purposes: maximizing the performance
of the components and developing projections of actual
performance. By maximizing the performance of each
of the I/O components, we can build balanced system
configurations with a minimum number of components.
By projecting the performance capabilities, we can ensure
that selected I/O configurations meet the I/O requirements
dictated by the selected workloads.

The storage subsystem and its relationship to the rest of
the system is shown in Figure 5. The main components of
the storage subsystem are the storage adapters, the disk
devices, the removable media devices, the adapter bus
that connects the adapter to the I/O interconnection,
and the device bus that connects the various devices
to the adapter. Each of these components possesses
characteristics which affect the overall performance of the
subsystem. High-function storage adapters used on most
server systems include powerful microprocessors, complex
microcode, and special-purpose hardware. These are used
to manage interactions with the I/O interconnect, perform
DMAs of data and control information, manage protection
schemes (such as RAID [25] or mirroring) on arrays of
disk devices, and implement protocols (such as SCSI-3)
used to interact with the storage devices. In addition, the
storage adapters often contain memory dedicated to a
nonvolatile write cache, which is used to reduce response
time on write operations and to reduce the number of
operations actually occurring on the disks, and a read
cache, which is used to reduce the response time on read
operations. Management of these caches is also done by
microcode running on the local microprocessor. The most

S. R. KUNKEL ET AL. IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

864

important performance characteristics of the disk devices
are seek time, rotational latency, and command latency.
In addition, disks have differing amounts of read-ahead
buffer memory. The most obvious effect of the buses on
the subsystem performance is on the maximum bandwidth
that can be achieved. However, the transfer latency of the
bus and the impact of bus arbitration schemes also play a
role in the overall performance.

The performance analysis of storage subsystems is done
in a hierarchical fashion. A high-level analytical queuing
model, as described in Section 5, is used to compute
both system- and subsystem-level performance effects of
changes in the storage subsystem. The model takes as
parameters the characteristics of disks (e.g., seek and
rotational latencies), buses (e.g., peak usable bandwidth)
adapters (e.g., service times, RAID overheads, and write
cache size and type), and workload, including the impact
of the workload on such subsystem parameters as write-
cache effectiveness (disk writes to nearby sectors may be
combined, reducing the number of writes flowing to the
disks), read-ahead buffer hit rate, and seek-distance
distribution. The outputs of this model are projections of
system-level throughput, throughput vs. response-time
curves, and component utilizations for the I/O subsystem.
This type of model allows calibration with existing designs,
projection of future changes, and analysis of sensitivity
parameters. The parameters for this model are obtained
from a number of sources, such as detailed modeling of
components, analysis of traces, measurements, and
published device specifications.

Detailed performance modeling is typically used to
evaluate the performance of the storage adapter and
to understand the performance effects of interactions
between the adapter and disks. Both analytical and
simulation models are used. Analytical models are
typically used to project the impact of changes in existing
designs on performance. For example, analytical models
are used when projecting the performance impact of
changes in processor, cache structure, memory controller,
or memory technology on overall adapter performance.
Creating these models requires analysis of address traces
and measurements of the current design in order to
determine the percentage of the overall latency which
is attributable to the various sources (e.g., in-core
computation, satisfying cache misses, processor loads, and
stores to device control registers). These investigations
are made significantly simpler than those for the main
processor by the fact that the processor workload of a
storage adapter is relatively static and can be well
characterized by a few well-chosen address traces. Similar
analyses can be performed to determine the effect of
changes in microcode path length and data structures.

Simulation models are used to aid designers in making
complex design tradeoffs and to determine additional

parameters for the high-level model. The simulation
models are typically driven by traces of host-generated
disk operations. The collection of these traces is discussed
in Section 3. The traces are collected from benchmarks
(e.g., TPC-C, TPC-H, NotesBench) and from customer
systems running actual workloads. The traces used
represent a large range of possible environments. In
addition, traces are synthetically generated, and alterations
are made to existing traces, in order to evaluate the effect
of anticipated changes in future workloads as described in
Section 4. For design decisions, these traces are used to
drive a simulation model of the storage subsystem. This
model is written in C11 using the CSIM [26] modeling
libraries and includes details about the storage adapter,
device bus, and disks. Each component is parameterized
to allow its characteristics to be altered to represent a
wide range of actual hardware. This simulator has been
used to examine the effect of changes in adapter buffer
sizes and structure, disk technology, and RAID parity
layout on subsystem-level performance. It can also be
used to determine seek-time distributions for different
workloads. It is similar to, but less general than, the
Disksim Simulator [27], since it has been tailored to the
specifics of IBM storage subsystems.

In addition to their use in driving the simulation
models, the disk traces are analyzed to determine various
workload-specific parameters. For example, the traces are
run through simulators of the adapter’s write and read
caches in order to determine hit rates and write-cache

Model of the storage subsystem.

Figure 5

Processors,
caches

Memory

Upper hubs

B
ri

dg
e

B
ri

dg
e

L
ow

er
hu

b

B
ri

dg
e

B
ri

dg
e

B
ri

dg
e

B
ri

dg
e

B
ri

dg
e

B
ri

dg
e

L
ow

er
hu

b

L
ow

er
hu

b
L

ow
er

hu
b

R
IO

L
in

k

I/
O

ad
ap

te
rs

I/
O

ad
ap

te
rs

I/
O

ad
ap

te
rs

I/
O

ad
ap

te
rs

D
is

k
I/

O
ad

ap
te

r
C

om
m

un
ic

at
io

ns
I/

O
ad

ap
te

r

I/O

I/O

I/O

I/O

Disk devices

Device bus

Communications
interface

CPU/memory

PCI
buses

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000 S. R. KUNKEL ET AL.

865

efficiencies. The write-cache efficiency is the percentage of
write operations generated by the system that are later
issued to a disk.

As both a validation tool and a source of model
parameters, measurements are a key part of the
performance evaluation of storage subsystems.
Measurements of the throughput, response time, and
utilization for existing designs are used to validate the
high-level performance models. Measurements of detailed
parameters, such as write-cache efficiency, can be used to
validate the detailed simulators. Measurements of existing
designs greatly simplify the modeling of proposed design
changes. In addition, measurements of usable bus
bandwidth are critical in determining whether the
subsystem will meet the MB/s requirements.

The end product of the performance analysis of a
storage subsystem is a projection of the subsystem
response time and utilization at a range of throughputs
and for a range of workloads. These projections can be
used to determine the number of adapters and disks
needed to meet the requirements for a system under
different workload conditions. In addition, by using
performance analysis to guide key design decisions, we can
optimize subsystem performance and therefore reduce the
number of components required in the storage subsystem.
This, together with performance analysis of the I/O
interconnect and other I/O subsystems, can ensure that no
bottlenecks exist in the I/O subsystem that prevent the
main processor and memory subsystem from achieving its
performance potential.

8. I/O interconnection performance
Large servers often attach hundreds, even thousands of
disk drives to meet the demands of commercial workloads.
Similarly, these servers attach many communications lines,
both LANs (local-area networks) and WANs (wide-area
networks). This requires that the I/O interconnect for
large servers support the attachment of hundreds of I/O
adapter cards that access the system’s main memory at
high I/O bandwidths.

IBM servers address these requirements using the
structure shown in Figure 5. The I/O slots for attaching
I/O are physically located at some distance (5 to 15
meters) in a box separate from the CPU and its memory.
The upper hub shown in the figure resides close to the
CPU/memory and generates several remote I/O (RIO)
links. Each RIO link is a high-speed, byte-wide, full-
duplex interface designed to handle a distance over copper
wires of 5 to 15 meters. The RIO links connect to lower
hubs, which in turn produce one or more PCI (peripheral
component interconnect) buses. Together, the upper hub
and the lower hub perform the function referred to in the
PCI specification as the processor host bridge (PHB).

In addition to creating PCI buses, the lower hub has
another set of RIO links that can connect to additional
downstream lower hubs. The last lower hubs in a pair of
RIO links are connected, creating a RIO loop. This loop
provides an alternate path for I/O traffic in the event of a
break in one of the RIO links. The “passthrough” function
of the lower hub is designed to be low-latency. It forwards
the packets received to the next link without waiting for
the entire packet to be received. The PCI bus produced
by the lower hub can have I/O attachment cards and
bridges in accordance with the PCI specification.

The I/O adapters in Figure 5 are standard PCI bus
adapters. Some are designed to meet the special needs of
a commercial server; others are off-the-shelf PCI cards
that are common in the industry.

● I/O adapter distance to memory
The arrangement described above solves the packaging
problem of getting all of the adapter cards into the same
box as the CPU and introduces the concept of a “distance
to memory” to I/O. In client systems, where one or two
PCI buses are sufficient, the distance to memory is small
enough to be negligible. In large server systems, this
distance can become a significant problem in maintaining
bandwidth and controlling latency.

The performance goal for the lower hub and bridges is
simply stated: Be able to sustain high bandwidths on the
PCI buses while at a significant distance from memory.
Exploring various approaches to the design of the upper
hub, lower hub, and bridge, or changes to the RIO
communications protocol, is the primary function of
I/O interconnection performance modeling.

● I/O interconnect simulator
The performance simulator is written in C11 and uses
CSIM [26] as its simulation engine. The simulator is cycle-
accurate and has an object-oriented structure that closely
parallels the structure of the physical components in
Figure 5. The I/O traffic used to drive the simulator is
synthetically generated, using probabilities, by objects
representing the I/O adapters (IOA objects) shown in
Figure 6. Each IOA object attempts to access its simulated
PCI bus in a manner similar to the way in which a real
IOA would attempt to access its real PCI bus. The
simulated PCI bus can be allocated to just one simulated
IOA at any moment in time, causing feedback to IOAs
which fail to get the bus, delaying their requests. In this
manner, contention for shared resources (arbiters, buses,
buffers, RIO links, etc.) is resolved throughout the model.

Figure 6 shows a simplified view of the object structure
of the simulator. The term “fabric” is used to describe
collectively the upper hub, RIO links, and lower hub. In
the simulator, fabric is not a class but a source file that
comprises the upper hub, RIO, and lower hub classes. The

S. R. KUNKEL ET AL. IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

866

protocol on the RIO links resembles a communications-
oriented protocol more than a bus-oriented protocol, with
acknowledgments of the successful receipt of transmitted
packets flowing on the opposite sides of the full-duplex
links. The class definitions of the upper hub and the
lower hub are dependent on each other. By putting both
definitions in the fabric file, the interactions between the
lower hub and the upper hub can be made clearer,
reducing the number of errors in the code.

The simulator also includes the processor’s accesses to
the I/O adapters. The increase in latency caused by the
need to locate the I/O buses at some distance from the
CPU and memory causes the latency of the processor’s
memory-mapped I/O load instructions to increase. The
increase can be an important factor in the performance of
the processor. The purpose and behavior of the processor
object are analogous to those of the IOA objects. Processor
traffic is synthetically generated by each processor object
as it contends for the resources in the upper hub. Note
that there are many processes running simultaneously on
processor objects, generating the I/O traffic.

From the model, we extract the I/O bandwidth per PCI
bus, per lower hub, per RIO link, and per upper hub. We
also gather information on the latency seen by the I/O
adapter to first data and to last data. From the processor’s
viewpoint, we gather information showing the distribution
of latencies for memory-mapped I/O stores and loads. We
use these metrics with various design options to increase
bandwidth, lower latency, and reduce cost or design risk of
the components of the I/O interconnection structure.

The I/O interconnection simulator is cycle-accurate and
focuses on the upper hub, lower hubs, bridges, RIO links,
and PCI buses that make up the I/O interconnect. Its
purpose is to determine the best implementation of each
component as a functioning part of a whole. The workload
for the simulator is synthetically generated by objects
acting as processors generating I/O requests and handling
responses and objects acting as I/O adapters doing DMA
reads and writes to memory in response to the processor
requests.

9. An example commercial server
The above methodology and server workloads are used
in the development of some PowerPC processors. As
an example, a processor code named Northstar and its
associated memory system are described. This processor
is known as the A50 and also as the RS64 II. It became
available for purchase in both product lines in the third
quarter of 1998. A later version of this processor, SStar,
known as the RS64 IV, began shipping in the third
quarter of 2000. The RS64 IV is described in more detail
in an accompanying paper in this issue of this journal [28].

Because this processor was used only in iSeries and
pSeries servers and not in any workstations, it is optimized

solely for server workloads. As a result, the microarchitecture
of this processor is somewhat different from those of
other processors. Because of the high cache-miss rates
of server workloads, the processor spends a large portion
of its execution time stalled on these misses, which reduces
the benefit of a fast clock. Instead of using a fast clock
which requires a long pipeline, the four-dispatch-wide,
in-order pipeline is kept short and efficient. Characteristic
of this approach, this processor optimizes specific

Simulator object structure.

Figure 6

Processor Processor

Memory interface

Processor Processor

Fabric
Upper hub

Inbound buffer
pool 1

Inbound buffer
pool 2

Inbound buffer
pool N

Outbound
buffer pool

Lower hub

Write buffer
pool

Read buffer
pool

Bridge

Read/write pool Read/write pool

Split read pool

Arbitration

Latency timer

IOA arbitration

IOA ops

Latency timer

IOA

IOA arbitration

IOA ops

Latency timer

IOA

RIO
Out1

PCIX
bus

PCIX
bus

PCIX
bus

RIO
In1

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000 S. R. KUNKEL ET AL.

867

control paths. Server workloads tend to have more
loads and stores, with a higher frequency of the load-use
dependency. They also have a higher frequency of the
compare-branch dependency. By keeping the pipeline
short and optimizing these critical dependencies, it is not
necessary to have dynamic branch prediction [28]. Server
workloads also have a large instruction footprint, requiring
large tables to obtain good branch-prediction rates. The
high cache-miss rates and frequent dependencies limit the
instruction-level parallelism of these workloads [29 –31].
This limits the benefit of out-of-order execution and
register renaming. These features also add significant chip
area and design complexity. Instead of including these
features, the chip area is used to address the cache-miss
portion of the CPI.

The most unique feature included in this processor is
multithreading. This feature was added specifically to
address level-two cache misses, because they are a
significant portion of the CPI and they are long-
latency events which multithreading can cover well.
Multithreading utilizes the natural, thread-level parallelism
that exists in server workloads which are multiuser and
multitasking. By utilizing another thread, useful processing
can be performed during long-latency events such as
level-two cache misses. Because these events comprise a
significant portion of the execution time of a single thread,
multithreading significantly increases the throughput
of the processor. For further information on the
implementation of multithreading in this processor, see
the accompanying paper in this issue of this journal [28].

In addition to adding multithreading to address the stall
time of long-latency, level-two cache misses, the significant
CPI component of the level-one caches was addressed by
making them large and making the level-one instruction
cache line size 128 bytes. Both the instruction cache and
data cache were 64 kilobytes. This reduced the miss rate
and the portion of the CPI associated with level-one cache
misses. The level-two cache is also large and associative;
making it four-way associative significantly reduces the
miss rate.

All modern servers are multiprocessors, and
multiprocessors contain an additional source of misses.
These misses come from the cache-to-cache movement
of read-write shared data. When a level-two cache miss
occurs, the command sent to the memory system is
snooped by all processors. If one of the processors has the
line and it has been modified, that processor must supply
the line of data to the requesting processor. Since these
misses do not occur in a uniprocessor, the miss rate of the
level-two cache is higher in a multiprocessor. For some
server workloads, these misses can be a very significant
portion of the level-two cache misses [31]. They are also
very important to the scalability of both hardware and
software. Therefore, the cache-to-cache miss latency of

this processor and its memory system is optimized. The
result is a latency for a cache-to-cache movement that
is significantly faster than accessing the main store.

10. System performance optimization
All of the previous sections have focused on performance
analysis of hardware (processor, memory system, and
I/O system). However, there is also a great deal of
performance to be gained from optimizing software.
Tuning compiler optimizations to the microarchitecture
of the processor is widely recognized as beneficial. While
this is necessary for server workloads, it is not sufficient.
Server workloads are large and complex, requiring higher-
level optimizations. The unpredictability of the memory-
access patterns makes it difficult for the compiler to
significantly affect the cache-miss rates. More significantly,
the multiuser, multitasking nature of server workloads and
the multiprocessor nature of the hardware lead to complex
interactions among the cache footprints of the many tasks
and the movement of read-write shared data among the
processors. Optimizing the software with respect to the
hardware and optimizing the software for increased
throughput significantly increases system performance [16].

Note that the goal is to maximize system performance,
not MIPS. Traditionally, hardware engineers focus
on increasing MIPS, and software engineers focus on
reducing path length (instructions per transaction). Most
optimizations affect both system performance and MIPS
in a positive way—a win–win situation. However, some
optimizations increase throughput but decrease MIPS or
increase path length. While decreasing MIPS or increasing
path length is not very popular with hardware or software
engineers, respectively, the focus must remain on the
system performance. To achieve this, good teamwork
between hardware and software engineers is essential.
It is also important for software engineers to perform
optimizations that primarily increase MIPS.

An additional benefit gained from having engineers
participate in system performance optimization is that the
hardware engineers gain knowledge about how software is
changing. Because hardware design decisions are made
several years before the product ships, and software is
continuously evolving, it is important to anticipate changes
to the software when making hardware design decisions.
The information gained by the hardware engineers can be
used to adjust the characteristics of the measurement data
to better match the expected characteristics of future
software. These adjustments are part of the process
described in Section 4. This makes the methodology
described in this paper a closed-loop process, as
information from system optimization is fed back into the
early stages of the design of future hardware (Figure 1).

As mentioned above, cache misses waste a significant
portion of the processor execution time. Because

S. R. KUNKEL ET AL. IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

868

processors are increasing performance faster than
memories are decreasing access latency, this will be
an increasingly important area for focus over time.
Optimizing software to reduce cache misses, especially
those from read–write sharing, can significantly increase
performance.

Feedback-directed profiling (FDPR) is an optimization
that not only improves branch direction, which increases
pipeline utilization, but also improves L1 instruction
cache-miss rates and instruction misses in the TLB. The
information gathered while profiling is used to lay out the
code so that the paths most likely to be executed are close
together and branches fall through. This means that the
instructions most likely to be fetched and executed are in
fewer cache lines. The profile information is also used to
place together the methods/functions most likely to be
executed. This minimizes the number of pages containing
“hot” methods/functions and the entries in the TLB
needed for the related instructions. This is a good
example of how information learned by hardware
engineers from software engineers, as a result of working
closely together before the optimization was performed,
influenced the design of the branching in the processor
described in Section 9. For more information on this type
of optimization, see the papers by Schmidt et al. [15]
and Kalamatianos and Kaeli [32].

Read–write shared data causes cache-to-cache
movement of cache lines. This kind of cache miss is
problematic because a bigger cache does not reduce its
frequency. It exists regardless of cache size. Also, a
significant portion of the latency of such misses is
determined by wire delay, packaging, and physical
distance. Because these factors change little with
advancing technology, the latency of these misses
consumes a larger number of clock cycles as processor
clock frequency increases. These two factors make this an
increasingly important component of the CPI affecting the
scalability of the multiprocessor MIPS. Hardware traces,
as described in Section 3, can be used as input to a
multiprocessor cache simulator to find these cache lines
and sort them by frequency of movement. These addresses
can then be mapped back to their source code classes and
objects. This information gives the software engineers very
good guidance and prioritization in their efforts to reduce
these misses.

Another tool used to attack cache misses, including
those caused by read–write sharing, is the PMCs in the
processors, which were described in Section 3. These
counters can be configured to count cache misses or
snoop-hit-modified misses and to cause an overflow
interrupt on every Nth occurrence. Software to capture
the instruction and data address associated with the
instruction that caused the event can be incorporated in
the interrupt handler. This information can produce a

profile of the software on the monitored events. This
profile also gives the software engineers good guidance
when attacking cache misses of all kinds.

Other optimizations performed on the software are
aimed at increasing throughput and scalability on
multiprocessors. Both of these often come down to
optimizing locks protecting shared data structures.
The classic lock spins in a loop until the lock becomes
available. This spinning increases path length and reduces
scalability. Spinning must be kept to a minimum for good
scalability. In addition to the classic spinning lock, a
number of different types of locks can be used to
minimize wasted time [33]. The lock type to choose
depends upon the utilization of the lock and how long
the lock is held once obtained. In addition to selecting
the right lock, there are many ways to make locks more
granular. For example, many locks can be created, each
protecting a small part of a data structure, rather than one
lock protecting the whole data structure. The approach to
making locks more granular depends upon the type of
data structure(s) being protected and the algorithm that
uses the data.

In addition to improving scalability on multiprocessors,
algorithms and commonly used paths through the code can
be optimized. There are a variety of tools that can provide
useful information when performing these optimizations.
At the lowest level, it is helpful to have tools that show
commonly used paths through the code. At a slightly
higher level, a tool that shows the call tree (a sequence
of calls from one method to another) with statistics on the
frequency of each branch of the tree can be very useful in
optimizing algorithms. At an even higher level, tools that
show the sequence of task switches and the reason for
each switch can also provide useful insight into how the
various tasks and algorithms are interacting. Some of
the tools and how they are used to optimize the iSeries
operating system are described in more detail in a paper
by Kunkel et al. [16].

Software optimization extends to other subsystems of
commercial servers as well—in particular I/O and memory
management. A good example of this relates to disk
activity. Overall system throughput increases as the
frequency of instructions to handle disk requests
decreases. More processor cycles are made available to
complete user transactions, and the system becomes more
efficient. As with all key software functions, significant
effort is made to minimize the path length required to
complete each disk request. However, the number of
disk accesses required per unit of system work is also
optimized. Memory capacity and the software algorithms
that manage it play a direct role in this element of
performance tuning.

Obviously, the more memory that is available, the more
disk accesses can be reduced as page faults decrease.

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000 S. R. KUNKEL ET AL.

869

However, memory can be one of the more costly
components for servers, and software algorithms tend to
focus on minimizing the required memory capacity. Thus,
a tradeoff exists: memory capacity vs. number of disk I/Os
vs. path length per disk I/O. Software algorithms manage
the optimization of these separate elements so as to meet
the performance and price-performance goals of the
server design.

11. Summary
In summary, this paper discusses a methodology for
analyzing and optimizing the performance of commercial
servers. Customer workloads for these systems are shown
to have significant variation in their characteristics,
creating complexity in designing servers to perform well
across the spectrum of applications. The TPC-C workload
is highlighted as an example in which many different
factors in server performance must be addressed, and
tradeoffs evaluated, so as to optimize a design to meet
the needs of customers in the marketplace.

The steps in the process of server performance
optimization are described and include the following:

1. Selection of representative commercial workloads and
identification of key characteristics to be evaluated.

2. Operation of workloads on real systems to collect
performance data. Various instrumentation techniques
are discussed (software approaches, traces, counters,
and hardware emulators), and their limitations are
presented.

3. Creation of input data for performance models on the
basis of measured workload information. This step in
the methodology must overcome the operating
environment differences between the instance of the
measured system under test and the target system
design to be modeled. Various difficulties to consider
and techniques to overcome these differences are
explained.

4. Creation of performance models. Two general types are
described: analytic models and detailed cycle-accurate
simulators. Both approaches have their advantages and
limitations, which are discussed.

5. Performance prediction and analysis of model results.
6. System performance optimization. Tuning of the

operating system and application software is described.

This paper presents a variety of design issues that
relate to optimizing the performance of processors, I/O
subsystems, and software. From the information provided
by models, tradeoffs can be evaluated and optimized, and
performance projections can be made with respect to a
commercial server for its spectrum of applications.

Throughout this discussion of commercial server
performance methodology, a common theme is expressed:

Optimization of performance among commercial
applications is not simply an exercise in using traces to
maximize the processor MIPS. Certainly, processor
throughput is an important contributor, but equally
significant are items such as using probabilities to
reflect future workload characteristics, software tuning
for path length, cache miss-rate optimization, memory
management, and I/O performance. The paper has
presented techniques for evaluating the performance
of each of these key contributors so as to optimize the
overall performance and cost/performance of commercial
servers.

Acknowledgments
We would like to acknowledge Jack Randolph for his
years of work on the PMCs and tracing port of the
processor chip, David Pease for the development of the
interface hardware to collect traces, Men-Chow Chiang
for establishing mean value analysis as our preferred
technique for high-level modeling, Brad Nelson for his
many hours of collecting I/O traces, and Harold Kossman
for his many years of leadership of the performance team.
We would also like to honor the memory of William
Hardell for his contributions to the EZMVA high-level
modeling environment.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems,
Inc.

References
1. http://www.tpc.org.
2. http://www.notesbench.org.
3. http://www.sap-ag.de.
4. R. Odell and E. Barsness, “IBM AS/400 Business Object

Benchmark for Java (jBOB),” IBM White Paper, April
1999, IBM Corporation, available at http:
//www.as400.ibm.com/whpapr/jbob400.htm.

5. M. Johnson, Superscalar Microprocessor Design, Prentice-
Hall, Inc., Englewood Cliffs, NJ, 1991.

6. The PowerPC Architecture, Second Edition, C. May,
E. Silha, R. Simpson, and H. Warren, Eds., Morgan
Kaufmann Publishers, San Francisco, 1994.

7. A. Mink, R. Carpenter, G. Nact, and J. Roberts,
“Multiprocessor Performance-Measurement
Instrumentation,” IEEE Computer 23, 63–75 (1990).

8. A. D. Malony, D. A. Reed, and H. A. G. Wijshoff,
“Performance Measurement Intrusion and Perturbation
Analysis,” IEEE Trans. Parallel & Distr. Syst. 3, No. 4,
433– 450 (1992).

9. C. B. Stunkel, B. Janssens, and W. K. Fuchs, “Address
Tracing for Parallel Machines,” IEEE Computer 24, 31–38
(1991).

10. J. R. Larus, “Efficient Program Tracing,” IEEE Computer
26, 52– 61 (1993).

11. A. Agarwal, R. L. Sites, and M. Horwitz, “ATUM: A New
Technique for Capturing Address Traces Using
Microcode,” Proceedings of the 13th International
Symposium on Computer Architecture, 1986, pp. 119 –127.

S. R. KUNKEL ET AL. IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

870

12. T. R. Puzak, “Cache-Memory Design,” Ph.D. thesis,
Department of Electrical and Computer Engineering,
University of Massachusetts, Amherst, 1985.

13. L. A. Barroso, S. Iman, M. Dubois, and K. Ramamurthy,
“RPM: A Rapid Prototyping Engine for Multiprocessor
Systems,” IEEE Computer 28, No. 2, 26 –34 (1995).

14. A. Nanda, K.-K. Mak, K. Sugavanam, R. K. Sahoo,
V. Soundararajan, and T. B. Smith, “MemorIES: A
Programmable, Real-Time Hardware Emulation Tool for
Multiprocessor Server Design,” Proceedings of the Ninth
International Conference on Architecture Support for
Programming Languages and Operating Systems, November
2000, pp. 37– 48.

15. W. J. Schmidt, R. R. Roediger, C. S. Mestad,
B. Mendelson, I. Shavit-Lottem, and V. Bortnikov-
Sitnitsky, “Profile-Directed Restructuring of Operating
System Code,” IBM Syst. J. 37, No. 2, 270 –297 (1998).

16. S. Kunkel, B. Armstrong, and P. Vitale, “System
Optimization for OLTP Workloads,” IEEE Micro 19,
56 – 64 (1999).

17. K. Keeton, “The Impact of Database System
Configuration on Computer Architecture Performance
Evaluation,” presented in tutorial session with the Eighth
International Conference on Architectural Support for
Programming Languages and Operating Systems, October
1998.

18. K. M. Chandy, U. Herzog, and L. Woo, “Parametric
Analysis of Queuing Networks,” IBM J. Res. Develop. 19,
36 – 42 (1975).

19. S. S. Lavenberg and M. Reiser, “Stationary State
Probabilities at Arrival Instants for Closed Queuing
Networks with Multiple Types of Customers,” J. Appl.
Prob. 17, 1048 –1061 (1980).

20. M. Chiang and G. S. Sohi, “Experience with Mean Value
Analysis Models for Evaluating Shared Bus, Throughput-
Oriented Multiprocessors,” Proceedings of the 1991 ACM
SIGMETRICS Conference on Measurement and Modeling
of Computer Systems, 1991, pp. 90 –100.

21. M. K. Vernon, E. D. Lazowska, and J. Zahorjan, “An
Accurate and Efficient Performance Analysis Technique
for Multiprocessor Snooping Cache-Consistency
Protocols,” Proceedings of the 15th Annual Symposium on
Computer Architecture, Honolulu, 1988, pp. 308 –315.

22. M. Reily and J. Edmondson, “Performance Simulation of
an Alpha Microprocessor,” IEEE Computer 31, No. 5,
50 –58 (1998).

23. P. Boos and T. Connate, “Performance Analysis and Its
Impact on Design,” IEEE Computer 31, No. 5, 41– 49
(1998).

24. M. Moudgill, J.-D. Wellman, and J. H. Moreno,
“Environment for PowerPC Microarchitecture
Exploration,” IEEE Micro 19, No. 3, 15–25 (1999).

25. D. A. Patterson, P. Chen, G. Gibson, and R. H. Katz,
“Introduction to Redundant Arrays of Inexpensive Disks
(RAID),” Proceedings of COMPCON Spring ’89, Thirty-
fourth IEEE Computer Society International Conference,
1989, pp. 112–117.

26. http://www.mesquite.com.
27. G. Ganger, “System-Oriented Evaluation of Storage

Subsystem Performance,” Ph.D. Dissertation, Publication
No. CSE-TR-243-95, University of Michigan, Ann Arbor,
June 1995.

28. J. M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla, and
S. R. Kunkel, “A Multithreaded PowerPC Processor for
Commercial Servers,” IBM J. Res. Develop. 44, No. 6,
885– 898 (2000, this issue).

29. A. Maynard, C. Donnelly, and B. Olzewski, “Contrasting
Characteristics and Cache Performance of Technical and
Multi-User Commercial Workloads,” Proceedings of the
International Conference on Architecture Support for

Programming Languages and Operating Systems, October
1994, pp. 145–156.

30. K. Keeton, D. Patterson, Y. He, R. Raphael, and W.
Baker, “Performance Characterization of a Quad Pentium
Pro SMP Using OLTP Workloads,” Proceedings of the
25th Annual International Symposium on Computer
Architecture, Barcelona, June 1998, pp. 15–26.

31. L. Barroso, K. Gharachorloo, and E. Bugnion, “Memory
System Characterization of Commercial Workloads,”
Proceedings of the 25th Annual International Symposium on
Computer Architecture, Barcelona, June 1998, pp. 3–14.

32. J. Kalamatianos and D. Kaeli, “Temporal-Based
Procedure Reordering for Improved Instruction Cache
Performance,” Proceedings of the Fourth International
Symposium on High-Performance Computer Architecture,
Las Vegas, January 1998, pp. 244 –253.

33. P. Magnusson, A. Landin, and E. Hagersten, “Queue
Locks on Cache Coherent Multiprocessors,” Proceedings
of the Eighth International Parallel Processing Symposium,
April 1994, pp. 165–171.

Received February 2, 2000; accepted for publication
November 20, 2000

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000 S. R. KUNKEL ET AL.

871

Steven R. Kunkel IBM Server Group, 3605 Highway
52 N, Rochester, Minnesota 55901 (srkunkel@us.ibm.com).
Dr. Kunkel received his Ph.D. degree from the University
of Wisconsin at Madison in 1987. He then joined IBM in
Endicott, New York, doing performance analysis of a vector
facility for a mid-range S/390 product. In 1989, he transferred
to Rochester, Minnesota, where he has worked on
architecture and performance analysis for AS/400 products,
including such areas as NUMA, VLIW, caches, MP cache
coherency, SCI, multithreading, and converting AS/400 to
PowerPC-architecture processors. Dr. Kunkel is currently a
Senior Technical Staff Member doing architecture and
performance analysis for iSeries (AS/400), pSeries (RS/6000),
and xSeries (Netfinity) servers.

Richard J. Eickemeyer IBM Server Group, 3605 Highway
52 N, Rochester, Minnesota 55901 (eick@us.ibm.com). Dr.
Eickemeyer is a Senior Engineer in the IBM Server Group.
He is currently the processor core performance team lead
for IBM PowerPC servers. Prior to this, he worked on the
performance and architecture of several processors used in
AS/400 systems and S/390 systems in Rochester, Minnesota,
and Endicott, New York. Since joining IBM, he has received
awards which include the Seventh Plateau IBM Invention
Achievement Award, an Outstanding Technical Achievement
Award, an Outstanding Innovation Award, and a Corporate
Award for Hardware Multi-Threading. He has also been
named a Server Group Master Inventor. Dr. Eickemeyer
received the B.S. degree in electrical engineering from
Purdue University and the M.S. and Ph.D. degrees from the
University of Illinois at Urbana–Champaign. His research
interests are computer architecture and performance analysis.

Mikko H. Lipasti University of Wisconsin at Madison, 4613
Engineering Hall, 1415 Engineering Drive, Madison, Wisconsin
53706 (mikko@engr.wisc.edu). Dr. Lipasti has worked for IBM
in both software and future processor and system performance
analysis and design guidance, as well as operating system
kernel implementation. He has published several conference
and journal papers, primarily in the area of value prediction,
filed seven patent applications, won the Best Paper Award at
MICRO-28, and received IBM Invention Achievement, Patent
Issuance, and Technical Recognition awards. His research
interests include operating systems, compiler optimization,
commercial workloads, and the interaction of these with
computer system architecture and microarchitecture. Dr.
Lipasti joined the Department of Electrical and Computer
Engineering at the University of Wisconsin at Madison as an
Assistant Professor in August 1999.

Timothy J. Mullins IBM Server Group, 3605 Highway 52 N,
Rochester, Minnesota 55901 (mullinst@us.ibm.com). Mr.
Mullins joined the Rochester Development Laboratory after
receiving his B.S.E.E. degree from the University of California
at Berkeley in 1977. In 1982, he received his M.S.E.E. degree
from the University of Minnesota. He has done work in I/O
controller design and in CPU development in the areas of
logic design and timing analysis. Since 1986, he has been
involved in various assignments relating to computer system
performance analysis, including processors, I/O design, system
buses, storage subsystems, and system designs. Mr. Mullins is
currently a Senior Technical Staff Member in the Rochester
Laboratory’s Future Processor Performance Department; he is
involved in system design and performance analysis for Server
Group products.

Brian O’Krafka Sun Microsystems, MS AUS08, 5300 Riata
Park Court, Austin, Texas 78727 (okrafka@central.sun.com).
Dr. O’Krafka joined the IBM Austin Laboratory in 1992 after
receiving his Ph.D. degree in electrical engineering and
computer science from the University of California at
Berkeley. From 1992 to 1997, he worked on multiprocessor
verification for RS/6000 servers. In 1997 he joined the
RS/6000 performance group, where he worked on
multiprocessor performance modeling and analysis. In 2000
Dr. O’Krafka joined Sun Microsystems, where he is now doing
performance analysis of future Sun commercial servers.

Harold Rosenberg Sun Microsystems, One Network
Drive, MS UBUR03-212, Burlington, Massachusetts 01803
(haroldr.Rosenberg@east.sun.com). Mr. Rosenberg worked
as an Advisory Engineer in the IBM Server Group. In that
position his main focus was on I/O performance, including
storage subsystems and I/O interconnects. He holds a B.S.
degree in electrical engineering from Tufts University and an
M.S. degree in electrical and computer engineering from the
University of Massachusetts; and he has performed additional
graduate work, through Ph.D. candidacy in computer science,
at the University of Michigan, where his research interests
included fault-tolerant computing and dependability
evaluation. He previously worked at Digital Equipment
Corporation as an ASIC designer in the Storage Subsystems
Group. Mr. Rosenberg currently works at Sun Microsystems
as an I/O Performance Architect.

Steven P. VanderWiel IBM Server Group, 3605 Highway
52 N, Rochester, Minnesota 55901 (svw@us.ibm.com).
Dr. VanderWiel is a member of the Future Processor
Performance Department of the IBM Server Group, where he
analyzes design alternatives for next-generation server systems
including the iSeries and pSeries eServers. He received a B.S.
degree and an M.S. degree, both in computer engineering,
from Iowa State University, and a Ph.D. degree in electrical
engineering from the University of Minnesota.

Philip L. Vitale IBM Server Group, 3605 Highway 52 N,
Rochester, Minnesota 55901 (vit@us.ibm.com). Mr. Vitale is an
Advisory Engineer with the IBM Server Group. He specializes
in performance instrumentation, workload analysis, and the
development of technology to unite hardware and software
optimization efforts. He holds a master’s degree in computer
science from the University of Wisconsin at Madison.

Larry D. Whitley IBM Server Group, 3605 Highway 52 N,
Rochester, Minnesota 55901 (ldw@us.ibm.com). Mr. Whitley is
a Senior Engineer in the RS/AS Hardware Performance group
at the Rochester, Minnesota, facility of the IBM Server
Group. After receiving a B.S. degree in electrical engineering
from the University of Missouri at Columbia in 1969, he
joined IBM and has worked on the design of processors, I/O,
and system control programming for several IBM systems,
including the System/32, System/34, and System/36. More
recently, as a part of the design process, he has created
performance models of processor memory subsystems, I/O
subsystems, and I/O interconnection fabrics for the AS/400,
RS/6000, and Netfinity servers. Mr. Whitley has received
Outstanding Technical Contribution awards and holds three
patents.

S. R. KUNKEL ET AL. IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

872

