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Abstract – Over the past six decades, the drug resistance of Plasmodium falciparum has become an issue of utmost
concern. Despite the remarkable progress that has been made in recent years in reducing the mortality rate to about
30% with the scaling-up of vector control, introduction of artemisinin-based combination therapies and other malaria
control strategies, the confirmation of artemisinin resistance on the Cambodia–Thailand border threatened all the pre-
vious success. This review addresses the global scenario of antimalarial resistance and factors associated with it, with
the main emphasis on futuristic approaches like nanotechnology and stem cell therapy that may impede resistant
malaria, along with novel medications which are preparing to enter the global antimalarial market. These novel stud-
ies are likely to escalate over the coming years and will hopefully help to reduce the burden of malaria.
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Résumé – Défis du paludisme résistant. Au cours des six dernières décennies, la résistance aux médicaments de
Plasmodium falciparum est devenue une question extrêmement préoccupante. Malgré des progrès remarquables
accomplis ces dernières années pour réduire le taux de mortalité à environ 30 %, avec l’intensification de la lutte
antivectorielle, l’introduction des thérapies combinées basées sur l’artémisinine et d’autres stratégies de lutte
contre le paludisme, la confirmation de la résistance à l’artémisinine sur la frontière Cambodge-Thaïlande a
menacé tous les succès précédents. Cette synthèse porte sur le scénario global de diverses résistances
antipaludiques et les facteurs qui y sont associés, en soulignant les approches futuristes comme la nanotechnologie
et la thérapie par les cellules souches, qui peuvent entraver le paludisme résistant, et les nouveaux médicaments
qui vont bientôt entrer sur le marché antipaludéen mondial. Ces nouvelles études vont s’intensifier au cours des
prochaines années et, nous l’espérons, contribuer à réduire la charge du paludisme.

Introduction

Malaria has been one of the most extensively studied par-
asitic infectious diseases for millennia. In 2012, there were
around 627,000 malaria deaths worldwide, 90% of which were
in the African Region, followed by Southeast Asia (7%) and
the Eastern Mediterranean (3%). About 482,000 malaria
deaths were estimated to occur in children under 5 years of
age, constituting 77% of the global total. Most of these deaths
were due to Plasmodium falciparum. However, Plasmodium
vivax is now increasingly recognized as a cause of severe
malaria and death [139]. For decades, drug resistance has been
one of the greatest obstacles in fighting malaria. To date, drug
resistance has been reported in three of the five Plasmodium
species that is, P. falciparum, P. vivax and in P. malariae which

are the causative agents for human malaria [45]. Drug resis-
tance was initially outlined by WHO in 1967 as the ability
of a parasite strain to survive or reproduce regardless of the
administration and absorption of a drug when it is given in
doses that are equal to or higher than those usually recom-
mended but within the tolerance range of the given subject
[137]. This was later modified by Bruce-Chwatt et al. [20] to
include ‘‘the amount of the drug which is active against a given
parasite must be able to gain access to the parasite or the
infected erythrocyte for the length of the time necessary for
its natural reaction’’. Drug resistance usually leads to a delay
or failure to clear asexual parasites from the peripheral blood
that eventually enable production of gametocytes which are
responsible for transmission of the resistant genotype. After
the official recommendation by the WHO in 2001 [132] for
use of artemisinin-based combination therapies (ACTs) as
the first-line treatment of P. falciparum malaria, it was seen*Corresponding author: drbikashus@yahoo.com
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after 2005 that there was a substantial decline in outbreak of
this disease [134]. However, parasites that are drug resistant
to artemisinin and its derivatives have recently emerged in var-
ious parts of Southeast Asia, which threaten, all prior success
of malaria control strategies, treatment and elimination efforts
[30, 38]. At present, current antimalarial drugs act on a limited
number of biological targets [124]. Therefore, the next chal-
lenge is to identify new classes of drugs that will attack novel
molecular targets, with sufficient therapeutic lifespans that will
not be compromised by the rapid development of resistance,
and to develop novel technologies, that will effectively clear
the parasite with maximum precision, thus minimising the risk
of drug resistance [25]. This review summarises current sce-
narios, along with existing therapies and novel on-going
approaches to curb drug-resistant malaria.

Current scenario of drug resistance

Of the various antimalarial drugs available, the aminoquin-
oline chloroquine was the agent of choice for many decades
because of its safety, efficacy and affordability. However, par-
asite resistance to this drug was initially observed in Thailand
in 1957 and then on the border of Colombia and Venezuela in
1959. By the late 1970s, resistance reached East Africa and by
the mid-1980s had become a major problem in several areas of
the continent [128]. At present, chloroquine remains effective
only in some parts of Central America, where clinical studies
have confirmed it as an effective drug [69]. However, recent
data on the prevalence of chloroquine-resistant genotypes in
these areas present an alarming situation for health officials
[36]. Amodiaquine has been observed to be more effective
than chloroquine mainly in areas of persistent chloroquine
resistance. As a result, amodiaquine in combination with
artesunate was adopted as the first-line treatment by several
countries. Parasite strains that are highly resistant to amodia-
quine have however been reported in Tanzania, which may
additionally compromise the use of artesunate-amodiaquine
in Africa [106]. Another antimalarial, sulfadoxine-pyrimeth-
amine, has been widely used by several countries to treat
chloroquine-resistant malaria. Nonetheless, the treatment fail-
ure rate of this combination has been found to be low in several
countries of South America and Central and Middle East Asia,
as compared to the failure rate in eastern Africa (52.8%) [45].
Presently, resistance to mefloquine continues to be a concern in
the Greater Mekong sub-region, in particular in Thailand and
Cambodia, where artesunate-mefloquine is still used as first-
line treatment [108]. In order to maximise the effectiveness
of artemisinin and its derivatives and to protect them from
the development of resistance, WHO has repeatedly
recommended that they can be combined with other drugs that
have different mechanisms of action and longer half-lives.
As a result, five combinations are currently recommended:
artemether-lumefantrine, artesunate-amodiaquine, artesunate-
mefloquine, artesunate-sulfadoxine-pyrimethamine and dihyd-
roartemisinin-piperaquine (WHO, 2010) [138]. However,
remarkable failure rates of these combinations have been
observed in several African countries where resistance to one
drug has been previously encountered, like in the case of

artemether-lumefantrine. Artemether-lumefantrine remains
highly effective in most parts of the world, with the exception
of Cambodia. This combination mostly shows failure rates less
than 10% [45]. However, resistance to most of these combina-
tions will probably lead to a global epidemic outbreak of
malaria. To overcome this concern, GlaxoSmithKline (GSK)
along with the PATH Malaria Vaccine Initiative (MVI), with
a grant from the Bill & Melinda Gates Foundation, have devel-
oped RTS, S/AS01, the most advanced candidate, which has
proven its protective efficacy in children with a range of
30–50% [2, 3] and is believed to represent the first-generation
malaria vaccine (WHO recommendation expected by 2015).
Nevertheless, with data from Phase III trials indicating that
the leading malaria vaccine candidate, RTS, S, has limited effi-
cacy, it is important to consider new approaches for the devel-
opment of a vaccine that is capable of inducing long-term
protection [112].

Reasons leading to antimalarial resistance

Various factors lead to the occurrence and massive spread
of resistance. Genetic mutations that confer antimalarial drug
resistance mostly occur in nature and are independent of drug
effect and are considered spontaneous mutations. The onset of
resistance is thought to occur in two phases. In the first phase,
an initial genetic event produces a resistant mutant (de novo
mutation) in which a new genetic trait gives the parasite a sur-
vival advantage against the drug. In the second phase, the resis-
tant parasites are then selected and start to multiply, which
finally ends with a parasite population no longer being suscep-
tible to treatment. For a few drugs, to confer resistance there is
only involvement of single point mutation, however for various
other drugs multiple site mutation is required. The acquired
mutations allow the survival or reproduction of the resistant
parasite whereas drug pressure will eliminate susceptible ones
[90]. Antimalarial drug resistance typically arises when there
are spontaneous mutations that are selected by different
concentrations of anti-malarial drug that impart deferential
inhibition to distinct genetic parasite types, i.e. the drug con-
centrations are sufficient to reduce the susceptible parasite pop-
ulation, but can either not inhibit multiplication or cause less
inhibition of the mutants [92]. Drug resistance to several anti-
malarials is sometimes either due to changes in drug accumu-
lation or efflux mechanisms (chloroquine, amodiaquine,
quinine, halofantrine, mefloquine resistance) or due to
decreased affinity of the drug target which may result from
point mutations in the respective genes that encode these tar-
gets (pyrimethamine, cycloguanil, sulphonamide, atovaquone,
artemisinin resistance) [6, 42, 75, 113, 125], shown in Figure 1.

A limited number of genes involved or potentially involved
in P. falciparum antimalarial drug resistance have been identi-
fied: the genes encoding dihydropteroate synthase (Pfdhps),
dihydrofolate reductase (Pfdhfr), the chloroquine resistance
transporter (Pfcrt), the multidrug resistance 1 protein (Pfmdr1),
Na+/H+ exchanger (Pfnhe-1) and cytochrome b, shown in
Table 1.

Drug resistance is complicated by cross-resistance, which
mostly occurs among the groups of drugs which belong to a

2 S. Sinha et al.: Parasite 2014, 21, 61



similar chemical family or which have the same mechanism of
action, for example, development of cross-resistance between
halofantrine and mefloquine [101]. Furthermore, multiple drug
resistance of P. falciparum has been seen when the parasite is

resistant to more than two operational antimalarial compounds
of different chemical classes and modes of action.

Recently, the role of pharmacokinetics in determining anti-
malarial efficacy and in promoting the emergence and spread

Figure 1. Different proteins present inside the parasitic organelle that contribute to drug resistance in malaria under selective drug pressure
and new drugs in development, targeting the same pathway to rescue resistance. PRBC: parasitized red blood cell, ER: endoplasmic
reticulum, MT: mitochondria, DHPS: dihydropterate synthetase, DHFR: dihydrofolate reductase, ATPase6: sacro/endoplasmic reticulum
calcium dependent ATPase orthologue, CRT: chloroquine resistance transporter, MDR1: multidrug resistance.

Table 1. First reported resistance to antimalarial drugs and molecular markers for drug resistance.

Antimalarial drug Introduction date First reported resistance Molecular marker References

Quinine 1632 1910 pfnhe: microsatellite ms4670 [40, 53, 87, 91]
Chloroquine 1945 1957 crt: C72S, M74I, N75D/E, K76T, A220S, Q271E

mdr1: N86Y, Y184F, S1034C,
N1042D, D1246Y

[19, 29, 33, 128]

Proguanil 1948 1949 dhfr: A16V, S108T or N51I, C59R, S108N, I164L [49, 54, 91]
Sulfadoxine +
Pyrimethamine

1967 1967 dhps: S436A/F, A437G, K540E, A581G, A613S/T
dhfr: N51I, C59R, S108N, I164L or
C50R, N51I, S108N, I164L

[16, 91]

Mefloquine 1977 1982 Deamplification of Pfmdr1 copy [55, 88]
Halofantrine 1988 1993 Changes in Pfmdr1 copy number [18, 123, 129]
Atovaquone 1996 1996 cyt b: Y268S/N [60, 70, 135]
Artemisinin 1971 1980 Amplification of Pfmdr1 copy numbers,

Mutation of PfATPase6 and Pfubp-1.
Recently, mutation in K13-Propeller domain
has been confirmed.

[35, 75, 103, 113, 133]

Artesunate 1975 2008 NA [86]
Artesunate +
Mefloquine

2000 2009 Deamplification of Pfmdr1 copy [31, 73, 103]
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of drug resistance has gained far more attention [10]. In the
past, plasma levels of drugs were rarely measured, so it was
thought that all episodes leading to clinical treatment failure
were due to inherent parasite resistance. The dose selected is
usually the lowest dose that achieves a good response so as
to minimise adverse effects. However, during expansion of
resistance, it has been found that relatively low amounts of
drug allow remarkable spread of resistant parasites because
the therapeutic level that is needed to clear partially resistant
parasites is usually higher than the level which is required to
eliminate the fully susceptible ones [11]. Therefore, incomplete
understanding of pharmacokinetic factors may shorten the use-
ful life of antimalarial drugs and may hasten the spread of
resistance.

The subsequent spread of resistant mutant malaria parasites
is facilitated by administration of drugs with longer elimination
phases. The remaining antimalarial activity which persists dur-
ing the post-treatment period acts as a ‘‘selective filter’’, that
found to be preventive in case of infection by sensitive para-
sites, but enables infection by resistant parasites. Drugs like
chloroquine, mefloquine and piperaquine, which persist for
longer durations in the blood plasma, provide a selective filter
long after administration has ended [140]. The longer the ter-
minal elimination half-life of the drug, the greater is the chance
that any freshly acquired parasite can encounter partially effec-
tive drug concentrations [51, 126, 127]. The duration of the ter-
minal elimination half-life is therefore a vital determinant of
the propensity for an antimalarial drug to become ineffective
because of the development of resistance. The prolonged pres-
ence of drugs like mefloquine, piperaquine and chloroquine in
the host’s blood provides a lengthy exposure time during which
resistant parasites may be selected [131] (Fig. 2).

The host immune response to malaria infection likely influ-
ences the speed of spread of drug resistance and the extent to
which drug resistance translates into clinical drug failure [52].
Host defence contains a major antiparasitic impact, and
any drug-resistant mutant Plasmodium that generated

spontaneously should contend not only with the antimalarial
drug concentrations but also with host immunity that kills par-
asites irrespective of their antimalarial resistance and reduces
the likelihood of parasite survival (independently of drugs) at
almost all stages of the transmission cycle. Immunity in case
of Plasmodium infection acts by non-specifically eliminating
erythrocytic-stage parasites which includes rare de novo resis-
tant mutants, and found to improve curative rates, even with
the failing drugs, hence diminishing the comparative transmis-
sion advantage taken by the resistant parasites. If a resistant
mutant survives the initial drug regimens and is able to prolif-
erate, this will then often result in sufficient gametocytes which
finally increase the disease transmission rate. However this fre-
quency of transmission can be decreased if there is immunity
against the asexual stage (which reduces the multiplication rate
and lowers the density at which the infection is controlled) and
to the sexual stage.

Epidemiological studies have implicated low-transmission
settings as the primary origin of drug resistance [102]. This
is most likely attributable to the fact that in areas of low-
transmission intensity, most of the malaria infections are symp-
tomatic and so, proportionately lots of people receive
treatment, which ultimately generates higher chances for selec-
tion. However, there is less chance of emergence of drug resis-
tance in areas with high-transmission intensity primarily
because most malaria infections are asymptomatic and infec-
tions are acquired repeatedly throughout life. Also, in high-
transmission areas, malaria-experienced populations slowly
acquire partial immunity (‘‘premunition’’), and therefore the
infection is controlled, sometimes at levels below those that
cause people to develop symptoms.

Finally, vector and environmental factors may influence the
proliferation of resistant parasites [129]. It is likely that drug-
resistant parasites are less fit compared to their wild type.
As such, there is a possibility of disappearance of resistant par-
asites by removing the drug pressure [8]. Recently, Lewis et al.
studied the re-emergence of a chloroquine-sensitive strain in a

Figure 2. Different parameters that contribute to antimalarial resistance.
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wild population by demonstrating that development of chloro-
quine resistance is mainly due to a defect in the ability of the
parasite to degrade haemoglobin, which inhibits active repro-
duction compared to sensitive ones [67].

Novel on-going approaches to impede drug
resistant malaria

The treatment regimens of malaria are directly correlated
to parasite drug resistance and dictated by government political
strategies of prevention and control of morbidity and mortality
due to the disease [9]. Considering the few number of new
drugs or innovative antimalarial medicines approved since
1990, the search for more potent and less toxic antimalarials,
the development of a successful vaccine, antimalarial peptides
and the design of nanotechnology-based delivery systems
applied to drugs and antigens and other approaches like
RNA interference (RNAi) and stem cell therapy, are likely to
be the main strategies in combating this disease. However,
the main drawbacks associated with conventional malaria che-
motherapy are the development of single or multiple drug
resistance and the non-specific targeting to intracellular para-
sites which results in high dose requirements and subsequent
intolerable toxicity that provides a new vision to apply novel
approaches in disease treatment.

RNA interference (RNAi)

RNA interference (RNAi) is a method of interrupting gene
expression that acts as a post-transcriptional event specifically
degrading targeted mRNA that results in decreased synthesis
of specific proteins [41]. RNAi is now emerging as a powerful
technology with vast applications for genomics, elucidation of
molecular signalling pathways, and target identification in drug
discovery. Presently, RNAi studies reveal the clinical potential
of small interfering RNAs (siRNAs) in metabolic diseases,
AIDS, cancer, malaria, dental diseases, neurodegenerative dis-
orders and various other illnesses. Recent studies have shown
that the tiny RNA molecules, either endogenously made as
microRNAs (miRNAs) or exogenously administered as
synthetic double-stranded RNAs (dsRNAs) could efficiently
activate a selective gene in a sequence specific manner despite
silencing it [96]. The recent discovery of RNAi and its possible
adaptation to mosquitoes is now contributing as a crucial tool
for understanding vector-parasite interactions as well as provid-
ing insight to analyse different aspects of mosquito biology that
could influence vectorial capacity. At present, two RNAi
approaches have been well-established in mosquitoes. Firstly,
transient gene silencing achieved by direct delivery of dou-
ble-stranded RNA, and secondly, steady and stable expression
of hairpin RNAs from the transgenes that integrated in the gen-
ome [21]. Few studies has been reported about the role of
RNAi in Plasmodium and then taken as a tool to understand
their genetic function. Although these studies [72, 74] reveal
the down-regulation of gene expression after application of
dsRNA targeting specific proteins in P. falciparum, they were

unable to prove that these introduced dsRNA were ultimately
processed to true siRNA inside Plasmodium. Mohammed
et al. also reported specific down-regulation of P. berghei cys-
teine protease berghepain when targeted with siRNAs in Plas-
modium berghei-infected mice and resulted in only about
0.01% of the siRNA which are being internalised inside the
parasite that leads to 40–50% reduction in berghepain mRNA
levels. However, the experiment did not alter the level of par-
asitaemia in infected mice treated with siRNA. In addition,
others have reported the successful application of RNAi for
silencing genes at the blood stage of Plasmodium [77]. In this
context, various experiments have been carried out by employ-
ing the technique of electroporation to introduce long dsRNAs
within infected erythrocytes. Kumar et al. successfully applied
siRNA to confirm the essential role of P. falciparum serine/
threonine phosphatase (PP) in Plasmodium growth as it was
found to be expressed all along the erythrocytic stages [63].
Gissot et al. performed gene silencing experiments by using
pfmyb1 double-stranded RNA (dsRNA) to interfere with the
cognate messenger expression which results in 40% reduction
in parasite growth as compared to untreated culture [44].
P. falciparum signal peptidase was also found to be essential
for the intra-erythrocytic growth of the parasite, as implication
of PfSP21 dsRNA specifically leads to inhibition in the growth
of P. falciparum [118]. Tuteja and Pradhan elucidated the appli-
cation of RNAi by targeting P. falciparum translation initiation
complex eIF4F with the specific dsRNA corresponding to each
complex for revealing the importance of these initiation com-
plexes in parasite multiplication, and shows approximate 45%
reduction in parasite growth [119]. In a recent study, P. falcipa-
rum UvrD helicase revealed that N-terminal UvrD (PfUDN)
dsRNA shows inhibition in the growth of the parasite particu-
larly during earlier phase of schizont development. The study
reveals that the growth of parasite was inhibited by approxi-
mately 40% by adding PfUDN dsRNA in culture [114].
Another study observed transcriptional down-regulation of
the hypusinated form of either eIF-5A or DHS upon transfec-
tion of P. berghei ANKA merozoites with eIF-5A-shRNA and
DHS-shRNA, respectively, as hypusination of eIF-5A is impor-
tant for cell proliferation of the parasite. This study provided
evidence for a noncanonical RNAi-related pathway [109].
However, other studies have revealed the absence of
RNAi genes [13]. Taken together, the presence of RNAi in
Plasmodium is still quite contradictory. The experimental
identification and validation of the P. falciparum small anti-
sense nonprotein-coding RNA (npcRNA) transcriptome may
provide an alternative to the classical RNAi pathway [97].

RNAi technology is one of the most significant advances to
elucidate the genetic function of an organism, but its clinical
implication in malarial parasites is limited. However, two
major organelles, having their own genomes, i.e. Plasmodial
apicoplast and mitochondria, are consider as a potent drug tar-
get with respect to their function. These organelles might be
explored clinically in coming decades for their particular func-
tion in parasite growth by applying RNAi technology [80].
Looking into Plasmodial apicoplast reveals homology with
respect to plant and algal chloroplast that share various
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metabolic pathways found to be unique to plants like biosyn-
thesis of isoprenoids, fatty acid and heme synthesis. But at
the same time, Plasmodial apicoplast has lost its photosyn-
thetic function. This apicoplast is also involved in housekeep-
ing functions which are found to be the same as bacterial
housekeeping. Therefore, non-existence of these pathways in
humans suggests apicoplast as a major drug target. Moreover,
the functional activity of apicoplast like replication, transcrip-
tion and translation suggests it as an immense and effective tar-
get for various anti-apicomplexan drugs [71]. Studies have
inferred the uses of reverse genetic techniques to get a clear
picture of apicoplast function along with its various processes
that helps in parasite growth and survival [47]. Furthermore,
Plasmodial mitochondria are the second major organelle regu-
lating various metabolic processes all along the Plasmodium
life cycle [85]. The active electron transport chain of Plasmo-
dium contains distinct dehydrogenases compared to human
mitochondria so the driving metabolic energy is also quite dif-
ferent from the mammalian host [117] which shows Plasmo-
dial mitochondria as a valuable drug target and it can also
be exploited for applying RNAi clinically.

There are numerous advantages of RNAi for studying gene
function in P. falciparum: the assay can be conducted in a few
days compared with months required for gene inactivation,
multiple genes can be analysed simultaneously for genome
screening purposes, the cost is considerably less than the syn-
thesis of modified antisense oligonucleotides, and the transient
nature of the assay may be an advantage for investigating
essential genes. Disadvantages with the current methodology
include the dependence on the electroporation efficiency and
the lack of a marker phenotype following manipulation of this
organism. Both areas of optimisation are currently under inves-
tigation. Moreover, effective delivery of RNAi is the biggest
concern in Plasmodium as it has to cross the erythrocyte mem-
brane, parasitophorous vacuolar membrane, parasite cytoplasm
membrane and the parasite nuclear membrane in order to reach
the Plasmodium nuclei [141].

Techniques used for genetic interference in Plasmodium
are found to be refractory especially for the genes that are
involved in the blood stage development of the parasite.
So, the transformation of an RNAi deficient Plasmodium into
RNAi possessing one with the lowest set of RNAi transgene
machinery might be the foremost challenge for implication
of RNAi technology [32]. Thus, more studies will be needed
to elucidate the mechanisms of gene silencing observed in
Plasmodium and to assess the therapeutic potential of RNAi
in this important parasite. In future, practical implications of
RNAi in gene silencing will provide us powerful means for
developing novel therapeutics [120].

Nanotechnology

The development of drug resistance by malaria parasites
may also be due to the use of ineffective pharmaceutical dos-
age forms of antimalarials. In pharmaceutical sciences, nano-
technology has made dissolution rates remarkably faster and
higher, increased the bioavailability of many drugs, and

improved the stability of sensitive agents. To our current con-
cern, nanosized carriers are now receiving special attention
with the aim of minimising the side effects that arises from
conventional drug therapy, like inappropriate bioavailability
and least selectivity of drugs. These nanocarriers have now
been implicated for malaria diagnosis [110, 136] and treatment
[43] and in vaccine formulation [4]. Malaria parasites fre-
quently develop drug resistance due to the administration of
low drug concentrations in the presence of a high parasitic
count [83]. Furthermore, nanotechnology has the potential to
restore the use of old and toxic drugs by modifying their
bio-distribution and reducing toxicity [43]. This advantage is
particularly important in malaria therapy, since the develop-
ment of new dosage forms for delivering drugs to parasite
infected cells is urgently needed, especially for the antimalari-
als in clinical use. Nanocarriers may not only allow the use of
potentially toxic antimalarials [26], but also increase the effi-
cacy of immune response in vaccine formulations [89].

Several nanosized delivery systems have previously been
proved in terms of their effectiveness in experimental models
for the treatment and prophylaxis of malaria. For example, a
rapid test for malaria diagnosis was developed by the
Udomsangpetch group, based on agglutination of sensitive
polystyrene particles [94], in order to overcome prior limita-
tions which are associated with the high cost of currently avail-
able rapid diagnostic kits. This test includes aggregation of
nanoparticles with antigen or antibody-called latex-antigen
(or antibody) conjugates under in vitro conditions, in the pres-
ence of malaria specific antibody (or antigen). The assay was
successfully evaluated for P. falciparum at an outpatient
malaria clinic (Mae Sot, Thailand) and claimed to be the
quickest and easiest test that can be performed in the field.
Plasmodium throughout its intra-erythrocytic phase modifies
the host RBC plasma membrane, which has made lipid-based
nanocarrier as the most promising carrier for targeting the
infected RBCs [26]. This includes encapsulated liposomes
which have been used for targeted delivery of antimalarials
in vivo [95]. Liposomal nanovessels containing amino acid
sequences of P. berghei have been used to target the hepatocyte
stage of Plasmodium [100]. Others formulated PEGylated
liposomes containing artemisinin, which is mainly a long cir-
culating vesicle representing an efficient nanocarrier that can
be used therapeutically in parasitic infection as well as in
tumours [56]. However, despite these appreciable results,
liposomal-based delivery was not adopted in disease rescue
programmes mainly due to its non-selectivity towards parasi-
tised RBCs. In this context, Urbán et al. [121] developed a
nanovector for targeted delivery of antimalarials to human
parasitized RBCs. At the same time, these lipid-based nano-
delivery systems provide a frame to re-formulate existing
and toxic antimalarials for achieving better and appreciable
pharmacokinetic profiles, and biodistribution, along with
appropriate targetability [57]. To this end, transferrin-
modified-artemether lipid nanospheres have also been devel-
oped as targeted drug delivery systems against tumour cell
lines [37]. Significant results shows its might be beneficial in
targeting parasitised RBCs. Earlier, Tayade and Nagarsenker
formulated microemulsions of artemether which have 1.5 times
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better antimalarial activity than the marketed one, Larither�,
which was mainly due to quick release of drug from their
formulation [115].

In addition, the most important property of a nanocarrier in
the context of malaria is its ability to remain for a longer time
in the blood stream in order to improve the interaction with
infected RBCs and parasite membranes [78]. Furthermore,
other features are protection against unstable drugs, properties
of cell adhesion, as well as the potential to be modified at the
surface after being conjugated by specific ligands [59].
Remarkably, during treatment of cerebral malaria, most of
these potential benefits can be achieved by colloidal nanocarri-
ers that can be administered intravenously. In case of uncom-
plicated malaria, the non-parenteral routes are mainly
preferred, but this reduces the spectrum of possibilities in terms
of the use of drug nanocarriers. Various strategies have been
made to make it possible to implement this technology to curb
malaria [23, 26, 50, 66]. There are two main strategies for tar-
geting antimalarial drugs to the infected erythrocytes and occa-
sionally the hepatocytes using nanocarriers by the intravenous
route: passive and active targeting. Passive targeting is mostly
achieved using conventional nanocarriers (e.g. liposomes,
hydrophobic polymeric nanoparticles) [12] or surface-modified
long-circulating nanocarriers (e.g. PEGylated) [48, 65]. On the
contrary, active targeting is achieved by means of nanocarriers
surface-modified with specific ligands such as carbohydrates,
proteins, peptides or antibodies [12]. Recently, polymer-based
nanoaggregates, i.e. polyamidoamine (PAA)-derived polymer,
have been used for administering antimalarials into pRBCs.
However, after encapsulation, in vitro efficacy of the drugs
was found to be moderate [122]. Afterwards, Movellan et al.
developed Janus dendrimer based on 2,2-bis(hydroxy-
methyl)propionic acid (bis-MPA) monomers for encapsulating
two antimalarial, i.e. chloroquine and primaquine and their
results show significant reduction in in vitro IC50 compared
to free drug. Also, encapsulation of primaquine was found to
be promising as compared to free primaquine which causes
haemolysis in patients having deficiency of glucose-
6-phosphate dehydrogenase (G6PD) [79]. The wide range of
modulations of the surface properties of these nanometric car-
riers aimed at improving antimalarial selectivity in the
recently-discovered parasite targets has been little exploited
to date. From this study it emerged that nanotechnology
applied to malaria therapy is a domain that is still in its
infancy [107].

Apart from nanocarriers, nano/microfluidic technologies
are also emerging as methods that could address the challenges
imposed by other conventional diagnostic devices [24, 81].
These approaches enable real-time monitoring of infectious
diseases from a small volume of bodily fluids [35], and can
be used to integrate various assays into a single device [28,
64, 111, 130], and have the ability to deliver each sample to
specific reaction chambers in a systematic manner [58].
Among these technologies, nanofluidics have been highlighted
by the recent advent of nanoscience and nanotechnology since
the rise of microfluidics in the 1990s. Generally, nanofluidics
can be defined as the field of study in fluid flow in and around
nanoscale objects [34]. For example, the RDT strip chip can
detect proteins derived from the blood of malaria parasites in

a microfluidic format and can also be realised as commercial-
ized products. This chip enables the generation of a series of
visible lines to indicate the presence of specific antigens in
blood that are clearly visible to the naked eye when antibody
is accumulated at the test line. Rathod et al. developed micro-
fluidic channels to study malaria pathogenesis related complex
interactions between host cell ligands and parasitised erythro-
cytes [5]. Since the microfluidic channels successfully mimic
the sizes and shapes of capillary blood vessels, they could
observe host-parasite interaction and malaria-infected red
blood cells in a capillary environment. The malaria diagnostic
device is inexpensive and handheld for on-site analysis of
patient samples and only requires microliter sample volume.
Therefore, it has the potential to be widely used at field sites
for more accurate malaria diagnosis. Nanotechnology systems
may therefore afford a better therapeutic outcome by targeting
drugs specifically to their site of action.

Stem cells

Stem cells are unspecialised cells found in embryos during
the blastocyst stage and in various tissues of adults. They have
the typical characteristic of dividing mitotically in order to
self-renew and differentiate into various types of cells under
appropriate conditions for each specific function. They also
serve as cell reservoirs for fulfilling the purpose of repair of
damaged tissues inside the body. Recent studies suggests that
stem cells, especially the mesenchymal stem cells, have
immuno-modulatory characteristics and due to this property
many trials are being conducted by transplanting these mesen-
chymal stem cells in disease conditions which are thought to
arise from immunological abuse.

Severe destruction of red blood cells causes anaemia, thus
posing pressure on bone marrow to meet the requirements of
myeloid cells. Scientists from the National Institute for Medi-
cal Research, UK, have identified an atypical progenitor cell
from malaria infected mice which can give rise to a lineage
of cells capable of fighting this disease [14]. Transplantation
of these specific cells into mice with severe malaria was found
to help these infected mice in recovering from the disease.
Other reports also support stem cell therapy for malaria treat-
ment [105]. Manipulation in stem cells can also produce
erythrocytes with modified haemoglobin variants that are asso-
ciated with protection from malaria. Thakur et al. [99] identi-
fied recruitment of MSCs as a novel host protective
mechanism adopted by the host to combat malaria by modulat-
ing Treg-cell responses. A massive accumulation of
Sca-1+CD44+CD29+CD34� cells (where Sca-1 is stem cell
antigen-1), a phenotype consistent with mesenchymal stem
cells (MSCs) but not conventional stem cells, was found in this
study. Infusion of purified MSCs from infected animals to
naive animals dramatically protected against infection by
Plasmodium berghei (Pb). Furthermore, prior infusion of
MSCs from infected mice prevented splenomegaly, infiltration
of NKT cells, and haemozoin accumulation. This was accom-
panied by a profound reduction in inhibitory cytokines such as
IL-10 and up-regulation of inflammatory cytokines such as
IL-12 and IL-1b. In addition, these animals had reduced levels
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of Treg cells that were able to dampen antigen specific protec-
tive immune responses. Taken together, the study identified
accumulation of MSCs as a novel host response to combat
malaria by inhibiting haemozoin and anti-inflammatory cyto-
kine production, and by reducing Treg-cell accumulation in
the spleen. In addition, multipotent haematopoietic stem cells
were reported to play an important role in the host’s defence
mechanisms against Plasmodium berghei infection [7]. Based
on these studies, it is believed that although stem cell therapy
is at initial stages, it will soon be a real therapeutic option for
various parasitic diseases and with continuous effort along with
vast knowledge of the present subject will lead to new exper-
imental models, appropriate type and number of stem cells,
route of administration and similar disease conditions that will
possibly be beneficial for the treatment of the patient with a
parasitic infection [142]. Therefore, approaches may differ

from disease to disease but stem cells are always in focus to
treat several diseases including malaria.

Miscellaneous approaches

Peptides

Besides these novel approaches, peptides that has been iso-
lated from various natural sources like plant, fungi and bacteria
or derived synthetically are often widely explored novel mole-
cules that have large chemotherapeutic potential and can serve
various diseases including malaria [62]. They are basically sec-
ondary metabolites displaying huge amounts of heterogeneity
in their primary as well as secondary structures. However, they
share some common features that reveal their cytotoxic

Table 2. Antimalarial peptides with their native source and mechanism of action.

Peptides Sources Mechanism of action References

Apicidin** Fusarium pallidoroseum
(Fungal Metabolite)

Inhibits protozoan histone
deacetylase (HAD)

[27]

Dermaseptin S4*
(ALWMTLLKKVLKAAAKAALN
AVLVGANA)

Frog skin Inhibits the parasite’s
ability to incorporate [3H]
hypoxanthine

[46]

Dermaseptin S3*
(ALWKNMLKGIGKLAGKAALGA
VKKLVGAES)

Frog skin Inhibits the parasite’s
ability to incorporate [3H]
hypoxanthine

[46]

Beauvericin Paecilo mycestenuipes
(Insect pathogenic fungus)

NA [84]

Jasplakinolide* Jaspis sp. (marine sponge) Interfere with erythrocyte
invasion by the merozoites

[76]

Dolastatin 10* Dolabella auricularia
(Sea hare)

Microtubule inhibitor [39]

CEL-1000 (DGQEEKAGVVSTGLIGGG)** b-chain of the human major
histocompatibility complex
class II molecule

Elicited Immune response [22]

Hirsutellic acid A* Hirsutella sp. BCC 1528
(Entomopathogenic fungus)

NA [116]

Venturamide* Cyanobacterium oscillatoria NA [68]
Antiamoebin I* Emericellopsis poonensis

(Fungus)
Inhibitors of mitochondrial activity [82]

Efrapeptin* Tolypocladium niveum
(Fungus)

Inhibitors of mitochondrial activity [82]

Zervamicin* Emericellopsis salmosynnemata
(Fungus)

Inhibitors of mitochondrial activity [82]

Tyrothricin* Bacillus brevis (Bacteria) Exert its parasitic inhibition
by rapid and selective lysis of
infected erythrocytes

[98]

Isariins* Isaria (Fungus) Exact mechanism not known,
inhibitory effect on the intra-
erythrocytic growth of Plasmodium

[104]

Peptide IDR-1018 (Immune defence
regulator)**

Host defence peptides
(Synthetic)

Ability to modulate inflammatory
responses

[1]

Benzyloxycarbonyl Z-Phe-Arg-CH2F* Synthetic Inhibit haemoglobin degradation
by acting on cysteine proteinase

[103]

Phe-Orn-Phe-Orn* Synthetic NA [93]
Lys-Phe-Phe-Orn* Synthetic NA [93]

* In vitro study.
** In vitro and vivo study.
NA: Not available.
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activity, such as amphipathic along with net positive charge
[17]. Although their exact mechanism of action has not been
completely studied, most are considered to have cytocidal
effects by disintegrating the membrane structure [15].

In addition to various antimalarial drug classes, a number
of promising antimalarial peptides of natural or synthetic ori-
gin have been reported previously and are listed in Table 2.

Antimalarials under development

For diseases like malaria, there is an urgent need for active
drug candidates that combat developing resistance mechanisms
of Plasmodium. To address this concern, various lead mole-
cules and vaccines are in the pipeline of drug discovery that
can target Plasmodium at its different life cycle stages,
Pre-erythrocytic (liver stage), Erythrocytic (blood stage), or
Post-erythrocytic (gametocytic stage) to prevent relapses and
transmission. They are listed in Table 3.

Conclusion

Currently, the biggest concern all over the globe is to treat
patients with safe and effective medications and to avoid the
emergence of drug-resistant malaria parasites. However, the
emergence of vector resistance to widely used insecticides
and parasite resistance to first-line drugs including artemisinin
combination therapy has resulted in a rise in malaria incidence
in many endemic areas, which has called for development of
new therapeutic and technology approaches to combat the dis-
ease and impede drug resistance. However, more progress and
better understanding in terms of scientific research and innova-
tion is needed to develop these novel technologies as tools to
reduce the occurrence of malaria.
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Table 3. Antimalarial compounds and clinical trial phases.

Product name Clinical trial phase Target stage/site

Malaria vaccine 257049 Phase III Pre-erythrocytic stages, Erythrocytic stages
FMP011/AS01B Phase I/II trial Pre-erythrocytic stages, Erythrocytic stages
FMP2.1/AS02A Phase II Pre-erythrocytic stages, Erythrocytic stages
FMP1/AS02A Phase II completed Pre-erythrocytic stages, Erythrocytic stages
RTS, S/AS02D Phase II completed Pre-erythrocytic stages, Erythrocytic stages
Recombinant hybrid GMZ 2 [GLURP + MSP 3] Phase I Erythrocytic stage
Malaria vaccine candidates (VAC045)
1) ChAd63-MVA CS
2) ChAd63-MVA ME-TRAP

Phase I Pre-erythrocytic stage

Phase II completed
Plasmodium falciparum malaria protein 010 (FMP010) Phase I completed Erythrocytic stage
Falciparum malaria protein (FMP012), E. Coli-expressed
PfCelTOS

Phase I completed Pre-erythrocytic stage

Peptides MSP3 long synthetic peptide 30 micrograms of
MSP3 LSP Phase II

Erythrocytic stage

Protease inhibitors
Lopinavir/ritonavir
Zidovudine
Lamivudine

Phase III completed Erythrocytic stage

OZ439 (second generation endoperoxide) Phase II Erythrocytic stage
KAE609 Phase II completed Post-erythrocytic stage
NITD609 (spiroindolone class, plant Product) Phase II Post-erythrocytic stage
Ferroquine (SSR-97193, FQ), Phase II completed Erythrocytic stage
Trioxaquine SAR116242 Preclinical Erythrocytic stage
MK4815 Preclinical Erythrocytic stage
GNF156; an imidazolopiperazine Phase II Pre-erythrocytic, Erythrocytic

Post-erythrocytic stage
DSM265 selective triazolopyrimidine-based inhibitor
(first compound to target DHODH)

Phase I Erythrocytic stage

P218 inhibitor of DHFR Phase I Erythrocytic stage
CDRI97/98 Phase I Erythrocytic stage
CDRI9778 Phase I Erythrocytic stage
Methylene blue Phase II Erythrocytic stage
Argemone mexicana Phase II NA
Rapid diagnostic test for malaria Phase IV completed Based on Immuno-detection of HRP2, pLDH

Source: http://www.clinicaltrials.gov/
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