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Abstract—Streaming audio and video applications are becoming increas-
ingly popular on the Internet, and the lack of effective congestion control
in such applications is now a cause for significant concern. The problem
is one of adapting the compression without requiring video-servers to re-
encode the data, and fitting the resulting stream into the rapidly varying
available bandwidth. At the same time, rapid fluctuations inquality will be
disturbing to the users and should be avoided.

In this paper we present a mechanism for using layered video in the con-
text of unicast congestion control. This quality adaptation mechanism adds
and drops layers of the video stream to perform long-term coarse-grain
adaptation, while using a TCP-friendly congestion controlmechanism to
react to congestion on very short timescales. The mismatches between the
two timescales are absorbed using buffering at the receiver. We present an
efficient scheme for the distribution of available bandwidth among the ac-
tive layers. Our scheme allows the server to trade short-term improvement
for long-term smoothing of quality. We discuss the issues involved in imple-
menting and tuning such a mechanism, and present our simulation results.

Keywords— Quality Adaptive Video Playback, Unicast Layered Trans-
mission, Internet

I. I NTRODUCTION

The Internet has been experiencing explosive growth of audio
and video streaming. Most current applications involve web-
based audio and video playback[1], [2] where stored video is
streamed from the server to a client upon request. This growth is
expected to continue, and such semi-realtime traffic will form a
higher portion of the Internet load. Thus the overall behavior of
these applications will have a significant impact on the Internet
traffic.

To support streaming applications over the Internet, one needs
to address the following twoconflictingrequirements:
1. Application Requirements: streaming applications are delay-
sensitive, semi-reliable andrate-based. Thus they require
isochronous processing and quality-of-service (QoS) from the
end-to-end point of view. This is mainly because stored video
has an intrinsic transmission rate and requires relatively constant
bandwidth to deliver a stream with a certain quality.
2. Network Requirements: the Internet is a shared environment
and does not currently micro-manage utilization of its resources.
End systems are expected to be cooperative by reacting to con-
gestion properly and promptly[3]. Deploying end-to-end con-
gestion control results in higher overall utilization of the net-
work and improves inter-protocol fairness. A congestion con-
trol mechanism determines the available bandwidth based on the
state of the network. Thus the available bandwidth could vary
in an unpredictable and potentially wide fashion.

To satisfy these two requirements simultaneously, Internet
streaming applications should bequality adaptive. That is, the
application should adjust the quality of the delivered stream such
that the required bandwidth matches congestion controlled rate-
limit. The frequent changes in perceived quality resulting from
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this rate adjustment can be disturbing to the users and must be
avoided[4]. The main challenge is to minimize the variations in
quality while obeying the congestion controlled rate-limit.

Currently, many of the commercial streaming applications do
not perform end-to-end congestion control. These rate-based ap-
plications either transmit data at a near-constant rate or loosely
adjust their transmission rates on long timescales since the rate
adaptation required for effective congestion control is not com-
patible with their nature. Large scale deployment of these appli-
cations could result in severe inter-protocol unfairness against
well-behaved TCP-based traffic and possibly even congestion
collapse. Since a dominant portion of today’s Internet traffic
is TCP-based, it is crucial that realtime streams perform TCP-
friendly congestion control. By this, we mean that realtime traf-
fic should share the resources with TCP-based traffic in an even
fashion. We believe that congestion control for streaming ap-
plications remains critical for the health of the Internet even if
resource reservation or differentiated services become widely
available. These services are likely to be provided on a per-class
basis rather than per-flow basis. Thus, different users that fall
into the same class of service or share a reservation still inter-
act as in best effort networks. Furthermore, there will remain a
significant group of users who are interested in using realtime
applications over best-effort service due to lower cost or lack of
access to better services.

This paper presents a novel mechanism to adjust the quality
of congestion controlled video playback on-the-fly. The key fea-
ture of the quality adaptation mechanism is the ability to control
the level of smoothing (i.e., frequency of changes) to improve
quality of the delivered stream. To design an efficient quality
adaptation scheme, we need to know the properties of the de-
ployed congestion control mechanism. Our primary assumption
is that the congestion control mechanism employs an additive
increase, multiplicative decrease (AIMD) algorithm because it
is the most promising rate adaptation algorithm to achieve inter-
protocol fairness from end-points in the Internet. We previously
designed a simple TCP-friendly congestion control mechanism,
the Rate Adaptation Protocol (RAP)[5]. RAP is a rate-based
congestion control mechanism that employs an AIMD algorithm
in a manner similar to TCP. Figure 1 shows the transmission rate
of a RAP source over time. Similar to TCP, it hunts around for
a fair share of the bandwidth. However unlike TCP, RAP is not
ACK-clocked and variations of transmission rate have a more
regular sawtooth shape. Bandwidth increases linearly for a pe-
riod of time, then a packet is lost, and an exponential backoff
occurs, and the cycle repeats. We assume RAP as the underly-
ing congestion control mechanism because its properties are rel-
atively simple to predict. However, our proposed quality adap-
tation mechanisms can be applied with any congestion control
scheme that deploys an AIMD algorithm.
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A. Target Environment

Our target environment is a video server that simultaneously
plays back different video streams on demand for many het-
erogeneous clients. As with current Internet video streaming,
we expect the length of such streams to range from 30 second
clips to full-length movies. The server and clients are connected
through the Internet where the dominant competing traffic is
TCP-based. Clients have heterogeneous network capacity and
processing power. Users expect startup playback latency to be
low, especially for shorter clips played back as part of web surf-
ing. Thus pre-fetching an entire stream before starting its play-
back is not an option. We believe that this scenario reasonably
represents many current and anticipated Internet streaming ap-
plications.

B. Motivation

If video for playback is stored at a single lowest-common-
denominator encoding on the server, high-bandwidth clients will
receive poor quality despite availability of a large amount of
bandwidth. However, if the video is stored at a single higher
quality encoding (and hence higher data rate) on the server, there
will be many low-bandwidth clients that can not play back this
stream. In the past, we have often seen RealVideo streams avail-
able at 14.4 Kb/s and 28.8 Kb/s, where the user can choose their
connection speed. However, with the advent of ADSL, and ca-
ble modems to the home, and faster access rates to businesses,
the Internet is becoming much more heterogeneous. Customers
with higher speed connections feel frustrated to be restricted to
modem-speed playback. Moreover, the network bottleneck may
be in the backbone, such as on links to the server itself. In this
case, the user can not know the congestion level and congestion
control mechanisms for streaming video playback are critical.

Given a time varying bandwidth channel due to congestion
control, the server should be able to maximize the perceived
quality of the delivered stream up to the level that the avail-
able network bandwidth will permit while preventing frequent
changes in quality. This is the essence of quality adaptation.

C. Quality Adaptation Mechanisms

There are several ways to adjust the quality of a pre-encoded
stored stream, including adaptive encoding, switching among
multiple pre-encoded versions, and hierarchical encoding.

One may re-quantize stored encodings on-the-fly based on
network feedback[6], [7], [8]. However, since encoding is CPU-
intensive, servers are unlikely to be able to do this for large num-
ber of clients. Furthermore, once the original data has been com-
pressed and stored, the output rate of most encoders can not be
changed over a wide range.

In an alternative approach, the server keeps several versions
of each stream with different qualities. As available bandwidth
changes, the server plays back streams of higher or lower quality
as appropriate.

With hierarchical encoding[9], [10], [11], [12], the server
maintains a layered encoded version of each stream. As more
bandwidth becomes available, more layers of the encoding are
delivered. If the average bandwidth decreases, the server may
then drop some of the layers being transmitted. Layered ap-
proaches usually have the decoding constraint that a particular
enhancement layer can only be decoded if all the lower quality
layers have been received.

There is a duality between adding or dropping of layers in the
layered approach and switching streams in the multiply-encoded
approach. However the layered approach is more suitable for
caching by a proxy for heterogeneous clients[13]. In addition,
it requires less storage at the server, and it provides an opportu-
nity for selective repair of the more important information. The
design of a layered approach for quality adaptation primarily en-
tails the design of an efficient add and drop mechanism that max-
imizes quality while minimizing the probability of base-layer
buffer underflow. We have adopted a layered approach to qual-
ity adaptation.

D. Role of Quality Adaptation

Hierarchical encoding provides an effective way for a video
playback server to coarsely adjust the quality of a video stream
without transcoding the stored data. However, it does not pro-
vide fine-grained control over bandwidth, that is, bandwidth
only changes at the granularity of a layer. Furthermore, there
needs to be a quality adaptation mechanism to smoothly adjust
the quality (i.e.,number of layer) as bandwidth changes. Users
will tolerate poor but stable quality video, whereas rapid varia-
tions in quality are disturbing[4].

Hierarchical encoding allows video quality adjustment over
long periods of time, whereas congestion control changes the
transmission rate rapidly over short time intervals (several
round-trip times). The mismatch between the two timescales
is made up for by buffering data at the receiver to smooth the
rapid variations in available bandwidth and allow a near con-
stant number of layers to be played. Quality adaptation can not
be addressed only by initial buffering at the receiver because
long-lived mismatch between the available bandwidth and the
playback quality results in either buffer overflow or underflow.

The main question is “How much change in bandwidth should
trigger adjustment in the quality of the delivered stream?”.
There is a tradeoff between short-term improvement and long-
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term smoothing of quality. Figure 2 illustrates this tradeoff. The
sawtooth waveform shows the available bandwidth specified by
the congestion control mechanism. The quality of the playback
stream in an aggressive and a conservative quality adaptation
schemes are shown by the solid and the dashed lines, respec-
tively. In the aggressive approach, a new layer is added as a
result of a minor increase in available bandwidth. However it
is not clear how long we can maintain this new layer. Thus the
aggressive approach results in short-term improvement. In con-
trast, the conservative alternative does not adjust the quality in
response to minor changes in bandwidth. This results in long-
term smoothing.

The effect of adding and dropping layers on perceived qual-
ity is encoding specific. Instead of addressing this problem for
a specific encoding scheme, we would like to design a quality
adaptation mechanism with the ability to control the level of
smoothing. Having such a tuning capability, one can tune the
quality adaptation mechanism for a particular encoding scheme
to minimize the effect of adding and dropping layers on the per-
ceived quality.

The rest of this paper is organized as follows: first we pro-
vide an overview of the layered approach to quality adaptation
and then explain coarse-grain adding and dropping mechanisms
in Section II. We also discuss fine-grain inter-layer bandwidth
allocation for a single backoff scenario. Section III motivates

the need for smoothing in the presence of real loss patterns and
discusses two possible approaches. In Section IV, we sketch an
efficient filling and draining mechanism that not only achieves
smoothing but is also able to cope efficiently with various pat-
terns of losses. We evaluate our mechanism through simulation
in Section V. Section VI briefly reviews related work. Finally,
Section VII concludes the paper and addresses some of our fu-
ture plans.

II. L AYERED QUALITY ADAPTATION

Figure 3 depicts our end-to-end client-server architecture[14].
All the streams are layered-encoded and stored at the server.
The congestion control mechanism dictates the available band-
width1. We can not send more than this amount, and do not
wish to send less2. All active layers are multiplexed into a sin-
gle RAP flow by the server. At the client side, layers are de-
multiplexed and each one goes to its corresponding buffer. The
decoder drains data from buffers and feeds the display.

In this paper we assume that the layers are linearly spaced-
that is, each layer has the same bandwidth. This simplifies
the analysis, but is not a requirement. In addition, we assume
each layer has a constant consumption rate over time. This is
unlikely in a real codec, but to a first approximation it is rea-
sonable. The second assumption can be relaxed by slightly in-
creasing the amount of receiver buffering for all layers to ab-
sorb variations in layer consumption rate. These assumptions
imply that all buffers are drained with the same constant rate
(C). The congestion control module continuously reports avail-
able bandwidth to the quality adaptation module. The quality
adaptation module then adjusts the number of active layers and
allocated share of congestion controlled bandwidth to each ac-
tive layer. Since the draining rate of each buffer is constant and
known a priori, the server can effectively control the buffer share
of each layer (Bufi) by adjusting its bandwidth share (BWi).
Fine-grain bandwidth allocation is performed by assigning the
next packet to a particular layer. Each ACK packet reports the1Available bandwidth and transmission rate are used inter-changeably
throughout this paper.2The transmission rate might be limited by a flow control mechanism due to
the limited buffer space at the client. For simplicity we ignore flow control issues
in this paper but actual implementations should not. However, our solutions
generally require so little receiver buffering that this isnot often an issue.
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most recent client playout time to the server. Having an estimate
of RTT and a history of transmitted packets for each layer, the
server can estimate the amount of buffered data for each layer
at the client. To achieve robustness against ACK loss and varia-
tions of RTT, each layer buffers a few RTTs’ worth of playback
data beyond what is required by quality adaptation.

Figure 4 graphs a simple simulation of a quality adaptation
mechanism in action. The top graph shows the available net-
work bandwidth and the consumption rate at the receiver with
no layers being consumed at startup, then one layer, and finally
two layers. During the simulation, two packets are dropped and
cause congestion control backoffs, when the transmission rate
drops below the consumption rate for a period of time. The
lower graph shows the playout sequence numbers of the actual
packets against time. The horizontal lines show the period be-
tween arrival time and playout time of a packet. Thus it indi-
cates the total amount of buffering for each layer. This sim-
ulation shows more buffered data for Layer 0 (the base layer)
than for Layer 1 (the enhancement layer). After the first back-
off, the length of these lines decreases indicating buffered data
from Layer 0 is being used to compensate for the lack of avail-
able bandwidth. At the time of the second backoff, a little data
has been buffered for Layer 1 in addition to the large amount
for Layer 0. Thus data is drawn from both buffers properly to
compensate for the lack of available bandwidth.

Figure 5 shows a single cycle of the congestion control mech-
anism. The sawtooth waveform is the instantaneous transmis-
sion rate. There arena active layers, each of which has a con-
sumption rate ofC. In the left hand side of the figure, the
transmission rate is higher than the consumption rate, and this
data will be stored temporarily in the receiver’s buffer. The total
amount of stored data is equal to the area of triangleabc. Such
a period of time is known as afilling phase. Then, at timetb,
a packet is lost and the transmit rate is reduced multiplicatively.
To continue playing outna layers when the transmission rate

drops below the consumption rate, some data must be drawn
from the receiver buffer until the transmission rate reaches the
consumption rate again. The total amount of data drawn from
the buffer is shown in this figure as trianglecde. Such a period
of time is known as adraining phase.
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The quality adaptation mechanism canonlyadjust the number
of active layers and their bandwidth share. This paper attempts
to derive efficient behavior for these two key mechanisms:� A coarse-grainmechanism for adding and dropping layers.
By changing the number of active layers, the server can perform
coarse-grain adjustment on the total amount of receiver-buffered
data. At the same time, this affects quality of delivered stream.� A fine-grain inter-layer bandwidth allocation mechanism
among the active layers. When spare bandwidth is available, the
server can send data for a layer at a rate higher than its consump-
tion rate, and increase the data buffered for that layer at the re-
ceiver. The server can control distribution of total buffered data
during a filling phase via fine-grain inter-layer bandwidth allo-
cation. If there is receiver-buffered data available for a layer, the
server can temporarily allocate less bandwidth than the layer’s
consumption rate to that layer. The layer’s buffer (Bufi) is
drained with a rate equal to (C � BWi) to absorb this reduc-
tion in the layer bandwidth share. Thus the server can control
the draining rate of various layers through fine-grain allocation
of bandwidth across active layers during draining phase.
In the next section, we present coarse-grain adding and dropping
mechanisms as well as their relation to the fine-grain bandwidth
allocation. Then we discuss the fine-grain bandwidth allocation
in the subsequent sections.

A. Adding a Layer

A new layer can be added as soon as the instantaneous avail-
able bandwidth exceeds the consumption rate (in the decoder)
of the existing layers. The excess bandwidth could then be used
to start buffering a new layer. However, this would be problem-
atic as without knowing future available bandwidth we can not
decide when it will first be possible to start decoding the layer.
The new layer’splayoutis determined by the inter-layer timing
dependency between its data and that in the base layer. There-
fore we can not make a reasoned decision about which data from
the new layer to actually send3.3Note that once the inter-layer timing for a new layer is adjusted, it is main-
tained as long as the buffer does not drain completely.
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A more practical approach is to start sending a new layer
when the instantaneous bandwidth exceeds the consumption rate
of the existing layers plus the new layer. In this approach the
layer can start to play out immediately. There is some excess
bandwidth from the time the available bandwidth exceeds the
consumption rate of the existing layers until the new layer is
added. This excess bandwidth can be used to buffer data for
existing layers at the receiver.

This bandwidth constraint for adding is still not sufficiently
conservative, as it may result in several layers being added and
dropped with each cycle of the congestion control sawtooth.
Such rapid changes in quality would be disconcerting for the
viewer. One way to prevent rapid changes in quality is to add a
buffering condition such that adding a new layer does not endan-
ger existing layers. Clearly we need to have sufficient buffering
at the receiver to smooth out variations in the available band-
width so that the number of active layers does not change due
to the normal hunting behavior of the congestion control mech-
anism. Thus, the server may add a new layer when:

1. The instantaneous available bandwidth is greater than the
consumption rate of the existing layers plus the new layer, and,
2. There is sufficient total buffering at the receiver to survive an
immediate backoff and continue playing all the existing layers
plus the new layer.

To satisfy the second condition we assume (for now) that no
additional backoff will occur during the draining phase, and the
slope of linear increase can be properly estimated.

These are the minimal criteria for adding a new layer. If these
conditions are held a new layer can be kept for a reasonable pe-
riod of time during the normal congestion control cycles. We
shall show in section III that more conservative adding mecha-
nisms result in smoother changes in quality.

Expressing the adding conditions more precisely:

Condition 1: R > (na + 1)C
Condition 2:

na�1Xi=0 bufi � ((na + 1)C � R2 )22S
whereR is the current transmission rate

(backoff factor is 2)na is the number of currently active layersbufi is the amount of buffered data for layeriS is the rate of linear increase in bandwidth
(typically one packet per RTT)

B. Dropping a Layer

Once a backoff occurs, if the total amount of buffering at the
receiver is less than the estimated required buffering for recov-
ery (i.e., the area of trianglecde in Figure 5), the correct course
of action is to immediately drop the highest layer. This reduces
the consumption rate (naC) and hence reduces the buffer re-
quirement for recovery. If the buffering is still insufficient, the
server should iteratively drop the highest layer until the amount
of buffering is sufficient. If the buffering is not sufficient to
maintain even the base layer, the session will experience an in-
terruption in playback.

Expressing the dropping mechanism more precisely:

WHILE
�naC > R+vuut2S na�1Xi=0 bufi�

DO na = na � 1
This mechanism provides a coarse-grain criteria for dropping
a layer. However, it may be insufficient to prevent buffer under-
flow during the draining phase for one of the following reasons:� We may suffer a further backoff before the current draining
phase completes.� Our estimate of the slope of linear increase may be incorrect
if the network RTT changes substantially.� There may be sufficient total data buffered, but it may be al-
located among the different layers in a manner that precludes its
use to aid recovery.
The first two situations are due to incorrect prediction of the total
amount of required buffering to recover from a draining phase,
and we term such an event acritical situation. In such events,
the only appropriate course of action is to drop additional layers
as soon as the critical situation is discovered. The probability
of experiencing critical situations can be effectively reduced by
deploying a more conservative adding mechanism as we address
later.

The third situation which is more problematic, relates to the
fine-grain bandwidth allocation among active layers during both
filling and draining phases. We devote much of the rest of this
paper to deriving and evaluating a near-optimal inter-layer band-
width allocation scheme. To tackle this problem, we first iden-
tify an optimal inter-layer buffer allocation for a single-backoff
draining phase to maximize buffering efficiency during recov-
ery. We then derive a fine-grain inter-layer bandwidth allocation
that keeps the inter-layer buffer allocation as close as possible
to an efficient state. Finally, we extend our solution to multiple-
backoff scenarios.

C. Inter-layer Buffer Allocation

Because of the decoding constraint in hierarchical coding,
each additional layer depends on all the lower layers, and cor-
respondingly is of decreasing value. Thus a buffer allocation
mechanism should provide higher protection for lower layers by
allocating a higher share of total buffering for them.

The challenge of inter-layer buffer allocation is to ensure the
total amount of buffering is sufficient, and that it is properly
distributed among active layers to effectively absorb the short-
term reductions in bandwidth that might occur. The following
two examples illustrate ways in which improper allocation of
buffered data might fail to compensate for the lack of available
bandwidth.� Dropping layers with buffered data: A simple buffer allo-
cation scheme might allocate an equal share of buffer to each
layer. However, if the highest layer is dropped after a backoff,
its buffered data can no longer be used in absorbing the short-
term reduction in bandwidth. The top layer’s data will still be
played out, but it is not providing buffering functionality. This
implies that it is more beneficial to buffer data for lower layers.� Insufficient distribution of buffered data: An equally sim-
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ple buffer allocation scheme might allocate all the buffering to
the base layer. Consider an example when three layers are play-
ing and a total consumption rate of3C must be supplied for the
receiver’s decoder. If the transmission rate drops toC, the base
layer (L0) can be played from its buffer. Since neitherL1 norL2 has any buffering, they require transmission from the source.
However available bandwidth is only sufficient to feed one layer.
ThusL2 must be droppedeven if the total buffering were suffi-
cient for recovery.
In these examples, although total buffering is sufficient, it can
not be used to prevent the dropping of layers. This isinefficient
use of the buffering. In general, we are striving for a distribu-
tion of buffering that is mostefficientin the sense that it pro-
vides maximal protection against dropping layers for any likely
pattern of short-term reduction in available bandwidth.

These examples reveal the following two tradeoffs for inter-
layer buffer allocations:
1. Allocating more buffering for the lower layers not only im-
proves their protection but it also increasesefficiencyof buffer-
ing.
2. Buffered data for each layer can not provide more than its
consumption rate (i.e.,C) reduction in available bandwidth,i.e.,
each layer’s buffer can not be drained faster than its consumption
rate. Thus there is a minimum number of buffering layers that
are needed for successful recovery from short-term reductions
in available bandwidth. This minimum is directly determined by
the amount of reduction in bandwidth that we intend to absorb
by buffering.

Expressing this more precisely:nb =�na � R2C � ; na > R2Cnb =0 ; na � R2C
wherenb is the min. number of buffering layersR is the transmission rate (before a backoff)

D. Optimal Inter-layer Buffer Allocation

Given a draining phase following a single backoff, we can
derive the optimal inter-layer buffer allocation that maximizes
buffering efficiency. Figure 6 illustrates an optimal buffer al-
location and its corresponding draining pattern for a draining
phase. Here we assume that the total amount of buffering at the
receiver at timetb is precisely sufficient for recovery (i.e., area
of triangleafg) with no spare buffering available at the end of
the draining phase.

To justify the optimality of this buffer allocation, consider that
the consumption rate of a layer must be supplied either from the
network or from the buffer or a combination of the two. If it is
supplied entirely from the buffer, that layer’s buffer is draining
at consumption rateC. The area of quadrilateraldefg in Fig-
ure 6 shows the maximum amount of buffer that can be drained
from a single layer during this draining phase. If the draining
phase ends as predicted, there is no preference for buffer distri-
bution among active layers as long as no layer has more thandefg worth of buffered data. However, if the situation becomes
critical due to further backoffs, layers must be dropped. Allo-
cating areadefg of buffering to the base layer would ensure

that the maximum amount of the buffered data is still usable for
recovery, and maximizes buffering efficiency.

By similar reasoning, the next largest amount an ad-
ditional layer’s buffer can contribute is quadrilateralbcde,
and this portion of buffered data should be allocated toL1, the first enhancement layer, and so on. This ap-
proach minimizes the amount of buffered data allocated
for higher layers that might be dropped in a critical
situation and consequently maximizes buffering efficiency.

The optimal amount of buffering for layeri is:Bufi;opt = C2S (C(2na � 2i� 1)� R) ; i < nb � 1Bufi;opt = C2S (naC � R2 � iC)2 ; i = nb � 1
If the total amount of buffering at the receiver at timetb is
higher than the required buffering for recovery, only the min-
imum number of highest buffering layers should participate in
recovery. This approach maximizes the efficiency because lower
layers will maintain the extra buffering at the end of the draining
phase.

Note that the same reasoning can be used to derive an optimal
inter-layer buffer allocation even if different layers do not have
the same bandwidth. In that case the optimal buffer share of a
layer would be a function of its bandwidth as well.

E. Fine-grain Bandwidth Allocation

The server can control the filling and draining pattern of
receiver’s buffers by proper fine-grain bandwidth allocation
among active layers. During a filling phase, the server should
gradually fill receiver’s buffers such that inter-layer buffer allo-
cation remains close to optimal. The main challenge is that the
optimal inter-layer buffer allocation depends on the transmis-
sion rate at the time of a backoff(R) which is not known a priori
because a backoff may occur at any random time. To tackle this
problem, during the filling phase, the server utilizes extra band-
width to progressively fill receiver’s buffers up to an optimal
state in a step-wise fashion. During each step, the amount of
buffered data for each buffering layer is raised up to an optimal
level in a sequential fashion starting from the base layer. Once
inter-layer buffer allocation reaches the target optimal state, a
new optimal state is calculated and the sequential filling towards
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Figure 7 illustrates such a fine-grain bandwidth allocation to
achieve a sequential filling pattern during a filling phase. The
server maintains an image of the receiver’s buffer state which is
continuously updated based on the playout information included
in ACK packets. During a filling phase, the extra bandwidth is
allocated among buffering layers on a per-packet basis through
the following steps assuming a backoff will occur immediately;
1) “If we keep only one layer (L0), is there sufficient buffering
with optimal distribution to recover?”. If there is not sufficient
buffering, the next packet is assigned toL0 until this condition
is met and then the second step is started. 2) “If we keep only
two layers (L0, L1), is there sufficient buffering with optimal
distribution to recover?”. If there is not sufficient buffering forL0, the next packet is assigned toL0 until it reaches its optimal
level. Then the server starts sending packets forL1 until both
layers have the optimal level of buffering to survive. We then
start a new step and increase the number of expected surviving
layers, calculate a new optimal buffer distribution and sequen-
tially fill their buffers up to the new optimal level. This process
is repeated until all layers can survive a single backoff.

This fine-grain bandwidth allocation strategy during filling
phase results in the most efficient inter-layer buffer allocation
at any point of time. If a backoff occurs exactly at timetb, all
layers can survive the backoff. Occurrence of a backoff earlier
thantb results in dropping one or more active layers. However
the buffer state is always as close as possible to the optimal state
without those layers. If no backoff occurs until adding condi-
tions (section II-A) are satisfied, a new layer is added and we
repeat the sequential filling mechanism.

Figure 7 also illustrates how the server controls the draining
pattern by proper fine-grain bandwidth allocation among active
layers. At each point of time during the draining phase, band-
width share plus draining rate for each layer is equal to its con-
sumption rate. Thus maximally efficient buffering results in the
upper layers being supplied from the network during the drain-
ing phase while the lower layers are supplied from their buffers.
For example, just after the backoff, layer 2 is supplied entirely
from the buffer, but the amount supplied from the buffer de-
creases to zero as data supplied from the network takes over.
Layers 0 and 1 are supplied from the buffer for longer periods.

III. SMOOTH ADD AND DROP STRATEGY

In the previous section, we derived an optimal filling and
draining scheme based on the assumption that we only buffer to
survive a single backoff with all the layers intact. However, ex-
amination of Internet traffic indicates that real networks exhibit
near-random[15] loss patterns with frequent additional backoffs
during a draining phase. Thus, aiming to survive only a sin-
gle backoff is too aggressive and results in frequent adding and
dropping of layers.

A. Smoothing

To achieve reasonable smoothing of the add and drop rate, an
obvious approach is to refine our adding conditions (in section
II-A) to be more conservative. We have considered the follow-
ing two mechanisms to achieve smoothing:� We may add a new layer if theaverageavailable bandwidth is
greater than the consumption rate of the existing layers plus the
new layer.� We may add a new layer if we have sufficient amount of
buffered data to surviveKmax backoffs with existing layers,
whereKmax is asmoothing factorwith value greater than one.
Although each of these mechanisms results in smoothing, the
latter not only allows us to directly tie the adding decision to
appropriate buffer state for adding, but it can also utilize limited
bandwidth links effectively. For example, if there is sufficient
bandwidth across a modem link to receive 2.9 layers, the aver-
age bandwidth would never become high enough to add the third
layer. In contrast, the latter mechanism would send 3 layers for
90% of the time which is more desirable. For the rest of this pa-
per we assume that the only condition for adding a new layer is
availability of optimal buffer allocation for recovery fromKmax
backoffs.

ChangingKmax allows us to tune the balance between max-
imizing the short-term quality and minimizing the changes in
quality. An obvious question is “What degree of smoothing is
appropriate?”. In the absence of a specific layered codec and
user-evaluation,Kmax can not be analytically derived. Instead
it should be set based on real-world user perception experiments
to determine the appropriate degree of smoothing that is not
disturbing to the user.Kmax should be set based on the aver-
age bandwidth and RTT since these determine the duration of a
draining phase.

To achieve smoothing, we extend our optimal inter-layer
buffer allocation strategy to accommodate efficient recovery
from a multiple-backoff scenario. Then evolution of inter-layer
buffer allocation determines fine-grain bandwidth allocation.

B. Buffering Revisited

If we delay adding a new layer to achieve smoothing, this
affects the way we fill and drain the buffers. Figure 8 demon-
strates this issue. Up until timet3, this is the same as Figure 7.
The second filling phase starts at timet3, and att4 there is suf-
ficient buffering to survive a backoff. However, for smoothing
purposes, a new layer is not added at this point and we continue
buffering data until a backoff occurs att5.

Note that as the available bandwidth increases, the total
amount of buffering increases but the required buffering for re-
covery from a single backoff decreases. At timet5, we have
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more buffering than we need to survive a single backoff, but in-
sufficient buffering to survive a second backoff before the end of
the draining phase. We need to specify how we allocate the ex-
tra buffering after timet4, and how we drain these buffers aftert5 while maintaining efficiency.

Conceptually, during the filling phase, the server sequentially
examines the following steps:

Step 1: enough buffer for one backoff withL0 intact.
Step 2: enough buffer for one backoff withL0, L1 intact.

...
Stepna: enough buffer for one backoff withL0, ...,Lna�1 intact.
Stepna+1: enough buffer for one backoff withL0, ...,Lna�1 intact,

and two backoffs withL0 intact.
...

Step 2*na: enough buffer for one backoff withL0, ...,Lna�1 intact,
and two backoffs withL0, ...,Lna�1 intact.
...

StepKmax*na: enough buffer for one backoff withL0, ...,Lna�1 intact,
and two backoffs withL0, ...,Lna�1 intact,
...
andKmax backoffs withL0, ...,Lna�1 intact

At any point during the filling phase we are working towards
completion of one step. During each step, optimal inter-layer
buffer allocation is calculated based on the current transmission
rate and number of active layers. Then the buffering layers are
sequentially filled up to their optimal level as we described in
section II-D and II-E. Once the adding condition is met, a new
layer is added.

When a draining phase is started due to one or more back-
offs, we essentially reverse the filling process. First we identify
between which two steps we are currently located. This deter-
mines how many layers should be dropped due to lack of suf-
ficient buffering. Then we traverse through the steps in the re-
verse order to determine which buffering layers must be drained
and by how much. The amount and pattern of draining is then
controlled by fine-grain inter-layer bandwidth allocation by the
server as shown in Figure 8.

In essence, during consecutive filling and draining phases, we
traverse this sequence of steps (i.e., optimal buffer states) back
and forth such that at any point of time the buffer state is as close
to optimal as possible. Once a layer is added or dropped, a new
sequence of optimal buffer states is calculated and this process
continues. In the next section, we describe further details on the
calculation of a set of optimal buffer states.

IV. BUFFERALLOCATION WITH SMOOTHING

To design efficient filling and draining mechanisms in the
presence of smoothing, we need to know the optimal inter-layer

buffer allocation and the corresponding maximally efficient fine-
grain inter-layer bandwidth allocation for multiple-backoff sce-
narios.

The optimal buffer allocation for a scenario with multiple
backoffs is not unique because it depends on the time when
the additional backoffs occur during the draining phase. If we
have knowledge of future loss distribution patterns it might, in
principle, be possible to calculate the optimal buffer allocation.
However such a solution would be excessively complex for the
problem it is trying to solve, and rapidly becomes intractable as
the number of backoffs increases. Let us first assume that only
one additional backoff occurs during the draining phase. The
possible scenarios are shown in Figure 9. This Figure illustrates
that the optimal buffer allocation for each scenario depends on
the time of the second backoff, the consumption rate, and the
transmission rate before the first backoff.
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We can extend the idea of optimal buffer allocation for a sin-
gle backoff (section II-D) to each individual scenario. Added
complexity arises from the fact that different scenarios require
different buffer allocations. For an equal amount of the total
buffering needed for recovery, scenarios 1 and 2 are two extreme
cases in the sense that they need the maximum and minimum
number of buffering layers, respectively. Thus addressing these
two extreme scenarios efficiently should cover all the interme-
diate scenarios (e.g.,scenario 3) as well.

We need to decide which scenario to consider during the fill-
ing phase. We make the following key observation:If the to-
tal amount of buffering for scenarios 1 and 2 are equal, having
the optimal buffer distribution for scenario 1 is sufficient for re-
covery from scenario 2, although it is not maximally efficient.
However, the converse is not feasible.The higher flexibility in
scenario 1 comes from the fact that this scenario needs a larger
number of buffering layers than does scenario 2. Thus, if we
have a buffer distribution that can recover from a scenario 1, we
will be able to cope with a scenario 2 that requires the same total
buffering, but not vice versa.

This suggests that during the filling phase for the two backoff
scenarios, first we consider the optimal buffer allocation for sce-
nario 1 and fill up the buffers in a step by step sequential fashion
as described in section III-B. Once this is achieved, then we
move on to consider scenario 2.

A. Filling Phase with Smoothing

To extend this idea to scenarios ofk backoffs, we need to
examine the optimal buffer allocation for scenario 1 and 2 for
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each successive value ofk. Figure 10 illustrates a set of opti-
mal buffer states, including the total buffer requirement and its
optimal inter-layer allocation in scenario 1 and 2, for different
values ofk. Ideally, we would like to monotonically increase
per-layer and total buffering during the filling phase as we tra-
verse through the optimal buffer states in turn. Oncek exceedsKmax (the smoothing factor), then we add a new layer and start
the process again with a new set of optimal buffer states.
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Fig. 10. Buffer distributions for k backoffs

Toward this goal, we order these different buffer states in in-
creasing value of total amount of required buffering in Figure
11. Thus by traversing this sequence of buffer states, we always
work towards the next optimal state that requires more buffering.

S=1
k=1
S=1
k=1
S=1
k=1
S=1
k=1
S=1
k=1

S=2
k=1
S=2
k=1
S=2
k=1
S=2
k=1
S=2
k=1

S=2
k=2
S=2
k=2
S=2
k=2
S=2
k=2
S=2
k=2

S=1
k=2
S=1
k=2
S=1
k=2
S=1
k=2
S=1
k=2

S=1
k=3
S=1
k=3
S=1
k=3
S=1
k=3
S=1
k=3

S=1
k=4
S=1
k=4
S=1
k=4
S=1
k=4
S=1
k=4

S=2
k=3
S=2
k=3
S=2
k=3
S=2
k=3
S=2
k=3

S=1
k=5
S=1
k=5
S=1
k=5
S=1
k=5
S=1
k=5

S=2
k=4
S=2
k=4
S=2
k=4
S=2
k=4
S=2
k=4

S=2
k=5
S=2
k=5
S=2
k=5
S=2
k=5
S=2
k=5

Layer 0 buffer

Layer 1 buffer

Layer 2 buffer

Layer 3 buffer

Layer 4 buffer

Fig. 11. Distributions in increasing order of buffering

Unfortunately this requires us to occasionally drain an exist-
ing buffer in order to reach the next state4. Two examples of this
phenomenon are visible in Figure 11:� Moving from the {scenario 2,k=2} case to the {scenario 1,k=2} case involves drainingL0’s buffer.� Moving from the {scenario 1,k=4} case to the {scenario 2,k=3} case involves drainingL3’s buffer.

We do not want to drain any layer’s buffer during the filling
phase because that buffering provides protection for a previous
scenario that we have already passed. Thus we seek the maxi-
mally efficient sequence of buffer statesthat is consistent with
the existing buffering. This ensures that the total amount of re-
quired buffering and the per layer buffer requirement are mono-
tonically increasing as we traverse through optimal buffer states.

The key observation that we mentioned earlier allows us to
calculate such a sequence. We recall that having the optimal
buffer distribution for scenario 1 is sufficient for recovery from4This means that the order of these states based on increasingvalue of total
required buffering is different from their order based on increasing value of per
layer buffering for at least one layer.

scenario 2, although it is not maximally efficient. Given this
flexibility, the solution is to constrain per layer buffer allocation
in each scenario-2 state to be no less than the previous scenario-1
state, and no more than the next scenario-1 state (in the sequence
of states in Figure 11). Figure 12 depicts a sequence of maxi-
mally efficient buffer states after applying the above constraints
where each step in the filling process is numbered. By enforc-
ing this constraint, we can traverse through the buffer states such
that buffer allocation for each state satisfies the buffer require-
ment for all the previous states. This implies that both the total
amount of buffering and the amount of per layer buffering in-
crease monotonically. Thus the per layer buffering can always
be used to aid recovery. Once we have sufficient buffering for
recovery fromKmax backoffs in both scenarios, a new layer will
be added and a new set of optimal states are calculated.
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The following pseudo-code (FUNCTION SendPacket) expresses
our per-packet algorithm to ensure that buffer state remains
maximally efficient during the filling phase. The algorithm
performs fine-grain bandwidth allocation by assigning the next
transmitting packet to a particular layer.Kmax is the smoothing
factor, giving the number of backoffs for which we buffer data
before adding a new layer.

TotalBufRequired()

Scenario 1Buftotal =0 ; k � log2 RnaCBuftotal = 12S �naC � R2k �2 ; k > log2 RnaC
wherek is the number of backoffs being considered

Scenario 2Buftotal =0 ; k � log2 RnaCBuftotal = 12S��naC � R2k1 �2 + (k � k1)�naC2 �2�k1 =�log2 RnaC � ; k > log2 RnaC
The functionTotalBufRequiredreturns the total amount of required
buffering for all layers to recover from the scenario in question,
given the current sending rate, the number of active layers, and
the number of backoffs being considered.
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BufRequired()

Scenario 1Bufi;opt =0 ; k � log2 RnaCBufi;opt = C2S (C(2na � 2i� 1) � R2k�1 )k >log2 RnaC ; 0 � i < nb
Scenario 2Bufi;opt =0 ; k � log2 RnaCBufi;opt = C2S��C(2na � 2i� 1)� R2k1�1 �+ (k � k1)C(na � 2i� 1)�k >log2 RnaC ; 0 � i < nb

The functionBufRequiredreturns the maximally efficient amount
of required buffering for a particular layer in the scenario of the
state we are currently working towards. The input parameters
for this function are: the layer number, the current sending rate,
the number of active layers, and the number of backoffs being
considered.

FUNCTION SendPacket

S1Backoffs= 0; S2Backoffs= 0

BufReq1= 0; BufReq2= 0

WHILE (BufReq1< TotBufAvailable) AND (S1Backoffs<Kmax)

INCREMENTS1Backoffs

BufReq1= TotalBufRequired(CurrentRate, Scenario=1,

S1Backoffs, ActiveLayers)

WHILE (BufReq2< TotBufAvailable)

INCREMENTS2Backoffs

BufReq2= TotalBufRequired(CurrentRate, Scenario=2,

S2Backoffs, ActiveLayers)

FORLayer= 1 TOActiveLayers

LayerBuf1= BufRequired(CurrentRate, Scenario=1,

S1Backoffs, Layer, ActiveLayers)

LayerBuf2= BufRequired(CurrentRate, Scenario=2,

S2Backoffs, Layer, ActiveLayers)

IF (BufReq1< BufReq2) AND (S1Backoffs<Kmax)

#We’re considering scenario 1

IF (LayerBuf1> BufAvailable(Layer)

SendPacketFromLayer(Layer)

RETURN

ELSE #We’re considering scenario 2

IF (LayerBuf2> BufAvailable(Layer)) AND

((S1Backoffs>Kmax) OR

(LayerBuf1< BufAvailable(Layer)))

SendPacketFromLayer(Layer)

RETURN

It is worth noting that the proposed per-packet bandwidth
scheduling is inherently adaptive to major changes in RTT. The
server maintains a moving average of RTT to calculate the slope
of linear increase (S). Thus major variations of RTT affects
calculation of the current set of optimal buffer states and con-
sequently impact the inter-layer fine-grain bandwidth alloca-
tion. This implies that the buffer state could temporarily become
sub-optimal until inter-layer bandwidth allocation reacts to the
changes.

B. Draining Phase with Smoothing

As we traverse through the maximally efficient states, one or
more backoffs eventually move us into a draining phase. Given
that we incrementally traverse the maximally efficientpath of
buffer states during the filling phase, we would like to traverse
the same path, but in the reverse direction, during the draining
phase. Conceptually, at any point of time, we have a maximally
efficient buffer state and regressively drain toward the previous
maximally efficient buffer state along the maximally efficient
path. This approach guarantees that the highest layer buffers
are not drained until they are no longer required, and the lowest
layer buffers are not drained too early.

To achieve such a draining pattern, we periodically calculate
the draining pattern for a short period of time, during which we
expect to drain a certain amount of total buffering. This amount
is determined based on the current estimate of slope of linear
increase, the current total consumption rate, the current trans-
mission rate, and the length of draining period (T ). We then cal-
culate (using an algorithm similar to the above pseudo-code) the
previous state along the maximally efficient path (called target
buffer state) that we can reach after draining this total amount of
buffering. Comparing the target and the current buffer state, we
can determine which buffering layers should be drained and by
how much. Given the constraint that the draining rate of each
layer’s buffer can not be higher than its consumption rate, the
amount of drained data from each layer’s buffer is limited by
the maximum amount that can be consumed during this period
(i.e.,C � T ). Then the fine-grain inter-layer bandwidth alloca-
tion is performed such that each buffering layer is drained up to
the specified amount with a pattern similar to Figure 8. If the
buffer state reaches the target buffer state before the end of cur-
rent period5, a new draining period is started, then we move on
to consider a new target state along the maximally efficient path
and calculate the corresponding draining pattern. This drain-
ing strategy is able to adapt with variations of RTT by periodic
adjustment of fine-grain inter-layer bandwidth allocation. This
process is repeated until the draining phase is ended.

V. SIMULATION

We have evaluated our quality adaptation mechanism through
simulation using bandwidth traces obtained from RAP in the ns2
[16] simulator and real Internet experiments.

Figure 13 provides a detailed overview of the mechanisms in
action. It shows a 40 second trace where the quality-adaptive5This occurs when the server over-estimates the slope of linear increase and
total buffering is drained faster than the expected rate.
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RAP flow co-exists with 10 Sack-TCP flows and 9 additional
RAP flows through an 800 KB/s bottleneck with 40ms RTT. The
smoothing factor was set to 2 so that it provides enough receiver
buffering for two backoffs before adding a new layer (Kmax =
2). The consumption rate of each layer (C) is equal to 10 KB/s.

Figure 13 shows the following parameters:� The total transmission rate, illustrating the saw-tooth output
of RAP. We have also overlaid the consumption rate of the active
layers over the transmission rate to demonstrate the add and drop
mechanism.� The transmission rate broken down into bandwidth per layer.
This shows that most of the variation in available bandwidth is
absorbed by changing the rate of the lowest layers (shown with
the light-gray shading).� The individual bandwidth share per layer. Periods when a
layer is being streamed above its consumption rate to build up
receiver buffering are visible as spikes in the bandwidth.� The buffer drain rate per layer. Clearly visible are points
where the buffers are used for playout because the bandwidth
share is temporarily less than the layer consumption rate.� The accumulated buffering at the receiver for each active
layer.
Graphs in Figure 13 demonstrate that the short-term varia-
tions in bandwidth caused by the congestion control mecha-
nism can be effectively absorbed by receiver buffering. Further-
more, playback quality is maximized without risking complete
dropouts in the playback due to buffer underflow.

Smoothing Factor
To examine the impact of smoothing factor on the behavior, we
repeated the previous simulation with different values ofKmax.
Figure 14 shows the number of active layers and buffer alloca-
tion across active layers forKmax=2, Kmax=3, andKmax=4.
As expected, higher values ofKmax reduce the number of
changes in quality at the expense of increasing the time it takes
to first achieve the best short-term quality. This manifests itself
in two ways. AsKmax increases, first the total amount of buffer-
ing is increased. Second, more of the buffering is allocated for
higher layers to cope with the larger variations in available band-
width as a result of successive backoffs.

Responsiveness
We have also explored the responsiveness of the quality adapta-
tion mechanism to large step changes in available bandwidth.
Figure 15 depicts a RAP trace with the same parameters as
Figure 13 but a CBR source with a rate equal to half of the
bottleneck bandwidth is started att=30s and stopped att=60s
andKmax=4. The RAP congestion control mechanism rapidly
responds to these changes by adjusting the average transmis-
sion rate. The quality adaptation mechanism closely follows the
changes in bandwidth.L3 and thenL2 are dropped when band-
width reduces and thenL2 is added when bandwidth becomes
available again. Notice that every layer’s buffer is involved in
this process, but the reception of the base layer is never jeopar-
dized. Thus, we have satisfied our original design goal of pro-
viding smoothing of quality while providing protection to the
most critical layers.
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Efficiency
The performance of our algorithms can be examined from the
efficiency of the buffer allocation. The inter-layer buffer alloca-
tion is maximally efficient if the following conditions are both
satisfied: (i) no data is buffered for a layer that is dropped, and
(ii) the layer is only dropped because thetotal amount of buffer-
ing is insufficient. To quantify the efficiency of our scheme with
respect to the first condition, we have calculated the percentage
of remaining buffer for each dropped layer as follows:e = buftotal�bufdropbuftotal
wherebuftotal andbufdrop denote the total buffering and the
buffer share of the dropped layer. Then we averaged out the
value ofe across all drop events during the simulation and use
that as an evaluation metric for efficiency.

Table 1 shows these efficiency values for different values ofKmax during two tests, T1 and T2. T1 is the 10 RAP, 10 TCP
test depicted in Figures 13, whereas T2 is the 10 RAP, 10 TCP
test with a large CBR burst shown in Figure 15. These results
show that our scheme is very efficient - very little buffered data
is still available in a layer that is dropped.Kmax=2 Kmax=3 Kmax=4 Kmax=5 Kmax=8

T1 99.77% 99.97% 99.84% 99.85% 99.99%
T2 99.15% 99.81% 99.92% 99.80% 96.07%

Table 1: Efficiency of buffer allocation

Table 2 shows the percentage of drops due to poor buffer dis-
tribution in tests T1 and T2. These are drops that would not have
happened if the amount of buffered data that was at the receiver
had been distributed differently. Our mechanism is completely
efficient in this respect for the T1 test, and performs fairly well
for the T2 case. Clearly the mechanism becomes less efficient
asKmax increases. The higher the value ofKmax, the more
buffering is allocated for higher layers. Hence there is a higher
probability of dropping the highest layer with some buffering
particularly after sudden drops in available bandwidth such as
when a CBR source appears. In essence, conservative buffer-
ing (i.e., higherKmax) enables the server to cope with wider
variations in bandwidth. However sudden drops of bandwidth
in these situations results in lower efficiency.Kmax=2 Kmax=3 Kmax=4 Kmax=5 Kmax=8

T1 0% 0% 0% 0% 0%
T2 2.4% 0% 4.8% 11% 8.5%

Table 2: % drops due to poor buffer distribution

VI. RELATED WORK

Receiver-based layered transmission has been discussed in
the context of multicast video[17],[18],[19] to accommodate
heterogeneity while performing coarse-grain congestion con-
trol. This differs from our approach that allows fine-grain
congestion control for unicast delivery with no step-function
changes in transmission rate.

Merz et al. [20] present an iterative approach for sending high
bandwidth video through a low bandwidth channel. They sug-
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Fig. 15. Effect of long-term changes in bandwidth

gest segmentation methods that provide the flexibility to play-
back a high quality stream over several iterations, allowing the
client to trade startup latency for quality.

Work in [21],[22],[23] discuss congestion control for stream-
ing applications with a focus on rate adaptation. However, vari-
ations of transmission rate in a long-lived session could result in
client buffer overflow or underflow. Quality adaptation is com-
plementary for these schemes because it prevents buffer under-
flow or overflow while effectively utilizing the available band-
width.

Feng et al. [24] propose an adaptive smoothing mechanism
combining bandwidth smoothing with rate adaptation. The send
rate is shaped by dropping low-priority frames based on prior
knowledge of the video stream. This is meant to limit quality
degradation caused by dropped frames, but the quality variation
cannot be predicted.

Unfortunately, technical information for evaluation of popular
applications such as RealVideo G2 [2] is unavailable.

VII. CONCLUSIONS ANDFUTURE WORK

We have presented a quality adaptation mechanism to bridge
the gap between short term changes in transmission rate caused
by congestion control and the need for stable quality in stream-
ing applications. We exploit the flexibility of layered encod-
ing to adapt the quality along with long-term variations in avail-
able bandwidth. The key issue is appropriate buffer distribution
among the active layers. We have described an efficient mecha-
nism that dynamically adjusts the buffer distribution as the avail-
able bandwidth changes by carefully allocating the bandwidth
among the active layers. Furthermore, we introduced a smooth-
ing parameter that allows the server to trade short term improve-
ment for long term smoothing of quality. The strength of our
approach comes from the fact that we did not make any assump-
tions about loss patterns or available bandwidth. The server
adaptively changes the receiver’s buffer state to incrementally
improve its protection against short term drops in bandwidth in
an efficient fashion. Our simulation and experimental results re-
veal that with a small amount of buffering the mechanism can
efficiently cope with short term changes in bandwidth results
from AIMD congestion control. The mechanism can rapidly
adjust the quality of the delivered stream to utilize the available
bandwidth while preventing buffer overflow or underflow. Fur-
thermore, by increasing the smoothing factor, the frequency of
quality variation is effectively limited.

Given that buffer requirements for quality adaptation are not
large, we believe that these mechanisms can also be deployed
for non-interactivelive sessions where the client can tolerate a
short delay in delivery.

We plan to extend the idea of quality adaptation to other con-
gestion control schemes that employ AIMD algorithms and in-
vestigate the implications of the details of rate adaption on our
mechanism. We will also study quality adaptation with a non-
linear distribution of bandwidth among layers. Another inter-
esting issue is to use a measurement-based approach to adjustKmax on-the-fly based on the recent history.

Finally, quality adaptation provides a perfect opportunity for
proxy caching of multimedia streams. The proxy can cache
a low-quality version of a stream and gradually pre-fetches
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higher-quality layers in a demand-driven fashion. Our prelimi-
nary results show that the proxy can effectively improve quality
of delivered streams to high bandwidth clients despite presence
of a bottleneck along the path to the server [13].
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