Multi-Agent Reinforcement Learning: Weighting and

Partitioning

Ron Sun
Todd Peterson
The University of Alabama
Department of Computer Science
Tuscaloosa, AL 35487

April 7, 1999

Contact author: Ron Sun, The University of Alabama, Department of Computer Science,
Tuscaloosa, AL 35487. Fax: 205-348-2109. Phone: 205-348-6363. Email: rsun@cs.ua.edu.
Running title: Multi-Agent Reinforcement Learning

ACKNOWLEDGEMENT: This work was conducted while the first author was funded by the Office
of Naval Research grant N00014-95-1-0440 and by a supplemental research grant from the University
of Alabama (which included a research assistantship for the second author). Thanks to the anonymous

reviewers for their comments.

Multi-Agent Reinforcement Learning: Weighting and Partitioning

Abstract

This paper addresses weighting and partitioning in complex reinforcement learning tasks,
with the aim of facilitating learning. The paper presents some ideas regarding weighting
of multiple agents and extends them into partitioning an input/state space into multiple
regions with differential weighting in these regions, to exploit differential characteristics of
regions and differential characteristics of agents to reduce the learning complexity of agents
(and their function approximators) and thus to facilitate the learning overall. It analyzes, in
reinforcement learning tasks, different ways of partitioning a task and using agents selectively
based on partitioning. Based on the analysis, some heuristic methods are described and
experimentally tested. We find that some off-line heuristic methods performed the best,
significantly better than single-agent models.

Keywords: weighting, averaging, neural networks, partitioning, gating, reinforcement learn-
ing,

1 Introduction

Multiple agents can be used in many problems in lieu of a single agent. The goal is to make a
complex learning task easier and/or to achieve better performance (Whitehead 1993), through
combining the outcomes of multiple agents (see e.g., Breiman 1996 a, b, c, Schapire et al 1997,
Wolpert 1992, Jacobs et al 1991, and Jordan and Jacobs 1994). According to the existing liter-
ature, combination can be done in various ways in accordance with the problem characteristics:
in classification problems, voting can be used; in numerical prediction problems, averaging can
be used. In combining outcomes, weighting can also be adopted so that each agent carries a
different weight (Krogh and Vedelsby 1995, Tresp and Taniguchi 1995, Breiman 1996b). The
goal is to make sure that the combination is optimal in some sense. Furthermore, weighting
need not be done uniformly throughout the problem space (Tresp and Taniguchi 1995): Uniform
weighting may be disadvantageous because of differing characteristics of different regions in the
problem space (in which case an agent may perform well in a particular region of the space and
should ideally be weighted more in that region). Thus, we may want to adopt the partitioning
of the problem space in addition to weighting so that we can have agents that specialize to local
regions (which may or may not overlap each other; see Jacobs et al 1991, Jordan and Jacobs
1994, Jacobs 1997, Tresp and Taniguchi 1995). An added advantage of partitioning is that we
can use simpler agents: local agents usually turn out to be a lot simpler than a monolithic,
global agent; e.g., simpler functional forms can be used when we approximate polynomial func-
tions using multiple agents (Schaal and Atkeson 1996); or much fewer numbers of hidden units
are needed in backpropagation networks when multiple such networks are used. Consequently,
partitioning can potentially improve learning to a significant degree.

These methods have not been applied extensively to tasks other than simple regression/prediction
and classification problems. Existing proposals related to more involved tasks such as reinforce-
ment learning (RL) (i.e., learning by autonomous agents on the basis of only simple feedback
from the environment) are limited (such as Tham 1995, Singh 1994, Dayan and Hinton 1993,
Humphrys 1996, Dorigo and Gambardella 1995, Dietterich 1997; more discussions of them later).
Therefore, there is a need for further exploration of multi-agent approaches in tasks such as
reinforcement learning. In this paper, our main aims are (1) to present a uniform perspective
on various multi-agent approaches (including weighting and partitioning, as mentioned earlier)
in reinforcement learning, and (2) to present our new methods motivated and developed in light
of this perspective. In the remainder of this paper, first, we will analyze weighting and show the
optimality of several weighting schemes. We will then relate, under the rubric of partitioning,
“Mixture of Expert” gating (Jacobs et al 1991), boosting (Freund and Schapire 1996), decision
trees (McCallum 1996, Chrisman 1993) and so on, and address some issues concerning their
optimality. In light of these analyses, we will proceed to propose several new ways of achieving
optimal partitioning and optimal weighting. Experiments of these new methods will then be
presented and discussed.

The advantage of our methods lies in the fact that they help to make a learning task easier
and more manageable and to achieve a better performance (Whitehead 1993), and moreover,
they require little a priori domain-specific knowledge to begin with, unlike many existing ap-
proaches that require detailed domnain knowledge to initialize partitioning (such as in the case of
“knowledge-based” RBF networks; Taniguchi and Tresp 1997, Kubat 1997), a priori partition-
ing of the problem space (such as in Singh 1994 and Humphrys 1996), a priori domain-specific

division of subsequences (such as in the case of gating of reinforcement learners; Tham 1995),
or a priori determination of domain-specific goal/subgoal structures (such as in the hierarchical
RL approaches of Dayan and Hinton 1993 and Dietterich 1997). Our methods are suitable for
incremental reinforcement learning in which changes of domain structures and characteristics can
occur, because it does not involve a priori structuring and tends to make changes easy. In this
respect, they are similar to the ideas of Jacobs et al (1991), Jordan and Jacobs (1994), Tresp and
Taniguchi (1995), and Blanzieri and Katenkamp (1996) (see detailed discussions later). However,
these methods did not deal with RL directly. Our methods search for optimal partitioning of
state space, along with, or separate from, the learning of individual agents, so as to manage
the overall complexity of both the learning of individual agents and the combinations of these
agents. In particular, our off-line methods that learn partitioning separately from the learning
of individual agents tend to reduce the overall complexity by isolating to certain extent the two
aspects of learning.

2 Weighting
We want to analyze the optimality issues associated with simple averaging and weighted averag-

a(e) = 2 2) (1)

ing. For simple averaging, we have

where z is an input, k& denotes an agent (k € [1,n]), ax(z) is the output of agent k, and a(z) is
the averaged output. For weighted averaging, we have

_ s wkak(x)
Zk Wy,

where z is an input, k denotes an agent (k € [1,n]), ai(z) is the output of agent k, wy, is the weight

(2)

a(x)

for agent k, and a(z) is the combined output. Note that a(z) = Y, wray(z), if >, wp = 1. 1

In the context of either regression or classification tasks, suppose y(z) is the correct output,
where z is the input, and suppose the output of agents are ay(z), where k indicates an agent k.
Then the average error (for training or for cross validation) is

y(2)” = 2y(z)avgi_yar(z) + avgi_ ar(x)” (3)
> (y(z) — avgi_,a(z))” (4)

avgyi_ (y(z) — ax(x))”

where avg}_,ar = > ;_, ax/n. This is because
avgi_,ai () > (avgi_, ar(v))* (5)
Summing over all data points, we have

avgi_y Y (y(z) — ar(2))* > Y (y(x) — avgj_ ax(2))* (6)

While the issue of optimality of averaging has been discussed extensively along the line of bias/variance
decomposition, we will extend Breiman (1996 a)’s analysis (the analysis of “bagging”, which is simple averaging
of agents trained with re-sampling of instances) to address the optimality of weighted averaging. The analysis
is limited to showing that averaging or weighted averaging is better than single agents on average, not that it
is better than or equal to the best single agent. For some suggestions regarding the latter point, see Breiman
(1996b).

Note that avgy_;ar(z) is the output of averaging. This means that the average error of an
individual agent is always greater than or equal to the error of the combined outcome (i.e., the
averaging of all the agents). 2

In the above scheme (simple averaging), the weights for all the agents are identical (i.e.,
w, = 1/n). But we may vary these weights in the hope of getting better results (i.e., using
weighted averaging instead, as suggested by Wolpert 1992, Breiman 1996 b). To make sure that

a differential weighting scheme is indeed beneficial, we need to show that
n
avgi_y Y (y(x) —ar(2))* > Y (y(w) = Y wray(z))’ (7)
T T k=1
That is, the weighting scheme of wy,’s reduces the error, where wy’s are weights, subject to the
constraints wg > 0 and Y wg = 1. A direct way to guarantee that is to minimize (e.g., through
gradient descent)

error = Z error(z) = Z(y(w) - Zwkak(fﬂ))z (8)
k=1

€T €T
with weights subject to the above constraints. Obviously, with such minimization, we are guaran-
teed that the needed inequality (7) always holds (i.e., the total error is always reduced), because
as derived earlier, we have avgp_, > (y(z) — ar(2))? > Y, (y(z) — > p_; wrar(z))?, if w, = 1/n
for all £.

An alternative way of optimization, which is also common, is to minimize

error’ = Z error' (z) = Z Z wi (y(x) — ar(x))? 9)

r k=1

with weights subject to the same constraints. As shown by Krogh and Vedelsby (1995),

D wily(a) — ag(@)? (10)

T k=1

= Z(Z/(ﬂ?) - Zwkak(fﬂ))2 + Z Zwk(ak(iﬂ) - Zwkak(ﬂf))2
T k=1 k=1

z k=1
That is, minimizing this criterion by adjusting combination weights is equivalent to minimizing
the overall sum squared error of the combined outcome (through the first term, which is the
same as the earlier approach) plus minimizing the weighted averages of the variances of the
agents (through the second term). The second term contributes to the reduction of error by
individual agents, in addition to the reduction of error of the combined outcome (which is also
dealt with by the first term).

We will refer to the latter approach as the local-error approach (or more specifically, the
weighted-average-of-local-errors approach), and the former approach as the overall-error ap-
proach. As will be discussed later (in the context of reinforcement learning), these two different
ways constitute two different algorithms for obtaining weights in weighted averaging: that is,
either performing gradient descent on (y(z) — > ,_, wrax(z))? or performing gradient descent
on Y. ;_, wi(y(z) — ar(z))?. That is, either

Aw 03, (y(z) — 34, wra(@))?

k X awk (11)

2As usual, we hope that the estimated errors for an individual or averaged agent are indicative of the true
errors.

o 0%, Ti, wilula) - ou(s)?

Oowy,

Awy < (12)

Beside ensuring the combined outcome being better than an individual agent (on average), these
two ways go further and ensure that the combination weights are optimal in the sense of mini-
mizing the weighted errors as expressed in the two forms given above. 3

An issue closely related to weighting is diversity. The precept of choosing a diverse set
of agents (i.e., uncorrelated agents) as opposed to a set of identical or highly similar agents
in the averaging or weighted averaging schemes has been justified theoretically on the basis
of bias-variance decomposition (see e.g. Breiman 1996c, Ueda and Nakano 1996, Raviv and
Intrator 1996, and so on). The heuristics of creating independent agents has been embedded in
a number of well-known approaches, such as “bagging”, in which diversity is achieved through
repeated random re-sampling of the training data set and the use of “unstable” (easily varied)
agents (Breiman 1996a), and in “boosting”, in which diversity is achieved through repeated re-
sampling with changing sampling probabilities in favor of those data points that are misclassified
or mispredicted (Freund and Schapire 1996, Drucker 1997).

Certainly other combination functions beside the linear combination can be equally applicable
here. For example, beyond averaging and weighted averaging is the idea of “stacking” as pro-
posed by Wolpert (1992) (see also Breiman 1996b). Instead of weighted averaging of outcomes
from different agents, arbitrarily complex combination functions can be adopted that allow more
flexible combinations of outcomes, such as the use of a backpropagation network for combin-
ing outcomes of agents, trained using gradient descent (as usual for backpropagation networks)
based on cross-validation errors. However, due to the complexity of such combination methods, it
would be harder to ensure accuracy and convergence to optima than simple averaging or weighted
averaging.

The above analysis is limited to learning only the combination weights (for weighted aver-
aging) without involving the learning of agents themselves. In many circumstances, we train
both the combination weights and the agents at the same time. This analysis is also limited
to an input space, or a part of an input space, in which combination weights remain constant.
When there are multiple regions in an input space, each of which is dynamically formed and
acquires dynamically a set of combination weights (for combining the agents within the region),
the situation is more complex, due to the fact that we need to consider the partitioning of the
space into regions (when this division is not pre-given) in addition to optimizing the weights for
the agents in each region.

3 Weighting and Input Space Partitioning

Now let us analyze different ways of partitioning. A number of recent proposals involving multiple
learned agents are concerned with partitioning input spaces into multiple regions. Here the word
“region” is used in a generalized sense and refers generically to a subset of inputs.

First of all, the “Mixture of Experts” gating model produces a “soft” partitioning of spaces
among different experts, with different experts being weighted differently, overlapping each other

3 A variation to the afore-discussed weighting schemes is to interpret combination weights as probabilities; that
is, instead of combining outcomes of individual agents using these weights, we can select probabilistically the
outcome of an individual agent, using the relative weight of an agent as the probability of selecting it.

in their domains of expertise (Jacobs et al 1991, Jordan and Jacobs 1994, Xu et al 1995). Accord-
ing to the gating model, using a least-squares approach in a prediction task setting, we attempt
to find optimal agents ay, k € [1,n], and the corresponding optimal weights wy, so as to minimize
the weighted average of errors (Jacobs et al 1991):

error = Z errory = Z Z wi(z)(y(x) — ag(x))? (13)
k k z€eS
where y(z) is the target output for input z in the input space S, ax(x) is the output of agent k
for input z, and wy () is the weight for agent k& and input x (notice that weights vary across the
input space).

To see how this model works, let us make some simplifying assumptions. If we can divide
the elements of S into “equivalence classes” or regions, S;’s, in each of which wy(z) (k € [1,n])
remains approximately the same (denoted as wg;). We have U;S; = S and S; NS; = 0,if 7 # j.
Let ey,s; denote 37 ¢ (y(z) — ax(z))?. Then, we have

errore = D7 3 wi() () — an(@))* ~ D wes Y (o) — ax(@)® = Y wjers, (14)

j z€S; zES;

Thus, we have

error = E errory X E E Wgj€k,S; (15)
k kg

We further assume), wi(x) = 1 for each € S, and thus), wg; = 1 for each j. We can
encourage “binarization” of wy;, by using steep sigmoidal function to represent these weights
and using competitive learning schemes to encourage “winner-take-all” among different agents in
each region, or by using feature based logical formulas for specifying regions (see more discussion
regarding this formulation in section 4). If, for each j, we wind up having one k with wy; ~ 1
and other k’s with wy; ~ 0, supposing wgy > wy; for all j, then

0 otherwise

Thus, we have

error & E E Wejek,s; ~ E Wkkek,s, & E €k, Sk (17)
E j k k

From this formula, it is clear that, with the simplification, the gating model is equivalent to
minimizing the local error > _(y(z) — ax(z))? in each of the regions z € Si. In so doing, we try
to optimize (1) the partitioning of S into regions Si’s, each of which is handled by one agent,
and (2) each of the agents ay (which can be a neural network, and can be optimized over its
chosen region Sy with regard to the sum squared error: Y ¢ (y — ag(z))?).

Without the above simplifying assumption, instead of a “hard” partitioning into mutually
exclusive and exhaustive regions, the least-squares gating will carry out a “soft” partitioning,
resulting in graded boundaries and overlapping regions (that are specified by wy(z) € [0,1]).
But the optimization objective is essentially the same. In this case, we interpret the combination
weights as weighting agents differently at each point in the input space and as specifying the

“soft” boundaries of regions. 4

4Note that this is not necessarily the case, especially when hard partitioning of regions is used and multiple
agents are active in each region; see section 5.2. Note also that this is different from the type of partitioning used
in Singh et al (1994) in which partitioning has hard boundaries but inputs are assigned to regions probabilistically.

We can also look into the other error function discussed in section 2:

error = Z(y(r) - Zwk(m)ak (z))? (18)
k

zeS

In this case, we encourage “binarization” as before. Then, let Sy = {z|wi(z) =~ Liw;(z) =~
0,Vj #k} and ers, = Y, cq, (y(x) — ax(x))?. We have

error =3 3 (9(@) - Y wn@ae@)? 3 Y (9(@) — an@)? = Yers, (19)

k z€Sy k k z€Sy k

So the resulting optimization problem is basically the same: optimizing the partitioning and
optimizing the agents simultaneously. Yet another error function, which is a variation of the
first, is as follows (Jacobs et al 1991):

error = — Z(log Zwk(m)ef(y(z)f“(zw) (20)

z€eS k

The same derivation leads to the same conclusion in this case as well. (We will later apply these
methods to RL.)

Second, boosting (as in Freund and Schapire 1996), in a way, can also be viewed as “soft”
partitioning of the input space. This is because in boosting, each agent focuses on different
“regions” of the input space, due to the fact that at each iteration of boosting, different inputs
are weighted differently so as to create a focus on a particular “region” (broadly defined) of the
input space. However, in this case, unlike in gating with “soft” partitioning, the combination
weights are fixed with respect to agents, not a function of inputs. Formally, at each iteration,
instances are sampled according to a sampling weight distribution and are used to train an agent
(a “weak learner”; Freund and Schapi1;e)1996). Starting with an uniform distribution of sampling
0

weights for training instances (i.e., w,

;= 1, for all instances i), weights for the next iteration

k 4+ 1 are modified based on the performance of the current agent Aj at the current iteration:

. 0T 21)

(k+1) _ { wz(»k) * i’“ﬁk if instance i is correctly classified
i - (
i

w otherwise

where k is the iteration (i.e., agent) number and €, is the total error rate for the current agent Ay,
(we should have ¢ < 0.5, or the algorithm should be terminated). That is, weights are reduced
for those instances that are handled correctly by the currently trained agent, so they are less

likely to be sampled for the next iteration. The re-sampling probability for the next iteration
(k1)
% Breiman (1996¢) proposed a similar boosting

2

algorithm (which he termed Arcing): it f)roceeds as in the original boosting algorithm, except

the re-sampling probability is calculated as follows: p;(k + 1) = Zum?

is calculated according to p;(k + 1) =

S where m; is the

misclassification rate of the ith instance by all the previous agents: A1,, Az. ® For combining
the outputs in boosting, Freund and Schapire (1996) proposed a weighted voting scheme, in
1—e

€k -
however, showed that equal voting is equally effective.

which the & agent is weighted by log , where € is error rate for agent k. Breiman (1996¢),

5The performance of this variation is comparable to the original boosting algorithm. Thus the conclusion was
drawn that the specific re-weighting scheme was inconsequential (Breiman 1996c¢).

In either of the two boosting schemes, at each iteration, the graded focus on some instances
creates a form of “region” in the input space: those instances that have the highest weights
are the centers of the region (because an agent assigned to the region will handle the instances
in accordance with these weights), while instances having lower weights constitute (graded)
boundaries of the region in ways much like a radial basis function (Poggio and Girosi 1990). 6
One agent is trained for each such region, and the final classification/prediction regarding a point
in the input space is given by the voting of all the agents whose “regions” cover the point in
question. In order to strengthen our argument regarding the role of partitioning in boosting, we
can “strengthen” the afore-described boosting process: instead of the above described change to
weights at each iteration, we can perform a more radical adjustment of weights, that is,

(22)

i

(k+1) _) 0 if instance iis correctly classified
| 1 otherwise

so that only those instances that were not correctly handled by the previous agent (obtained
from the previous iteration) are focused on during the current iteration. What this amounts to is
the hard partitioning of the inputs into winner-take-all regions, with each region handled by an
individual agent, which is the logical extreme of the original boosting method. 7 According to the
analysis by Breiman (1996¢), which showed that variations of the original boosting algorithm have
little impact on performance, we conjecture that this variation should perform approximately as
well as the original method proposed by Freund and Schapire (1996). However, in this case, the
nature of this method as partitioning inputs becomes apparent.

Third, radial basis function networks constitute yet another way for soft partitioning of the
input space (Poggio and Girosi 1990). Such functions have the highest activation at their
specified centers and gradually taper off until having near zero activation at a certain distance
away from their respective centers. Each of the (non-exclusive and overlapping) regions is
handled by an individual agent (i.e., function). The overall classification or prediction can be
calculated by weighting individual agents in accordance with the distance from the center of each
agent to a particular point in question. Similarly, locally weighted regression (Atkeson et al
1997) can also be viewed as soft partitioning of the input space.

On the other hand, a decision tree (Quinlan 1986) can be viewed as a “hard” partitioning
of the input space into multiple (relatively) homogeneous regions in the sense that each region
ideally leads to a unique classification. In decision trees, there is no weighting involved. Starting
with one node (the root) that contains all the instances, we incrementally create more and more
nodes by splitting a current node. The basic idea is that a node should be split to maximally
gain information (or equivalently, to reduce entropy). We thus choose the input feature with
the maximum information gain for use in splitting. Successive splitting leads to a tree structure.
CART (Breiman et al 1984) is similar to decision trees in this regard. It can also be viewed as
a form of “hard” partitioning, which is based on minimizing the total variance. Starting with
one node (the root) that contains all the instances, we incrementally split nodes by determining

8Tn other words, the vector of weights specifies a graded region with its shape fully determined by weight
values: that is, given W = (w1, wa,,wy), we obtain a region: W’ = (w},w),,w),), where w] = max; w;, and

w;. = maXjg gy 3 w;. Thus, W’ specifies the instances from the centers to the furtherest boundaries.
i-1

“In this method, it may be the case that multiple agents are assigned to identical regions or overlapping regions.
This is because weights on some or all instances may oscillate back and forth between 0 and 1 and thus generate
identical or overlapping regions.

dimensions/types compatible with mechanisms

Boundary types:

soft overlapping graded boundary function

hard overlapping, non-overlapping 0/1 boundary function

Relation to others regions:

overlapping WTA, non-WTA; soft, hard overlapping partition function
non-overlapping WTA; hard non-overlapping partition function
Outcome combination methods:

WTA soft, hard; overlapping, non-overlapping WTA

non-WTA soft, hard; overlapping averaging or weighted averaging
Instance-to-region assignment:

deterministic soft, hard; overlapping, non-overlapping; WTA, non-WTA deterministic assignment function
probabilistic hard; WTA, non-WTA; overlapping stochastic assignment function

Figure 1: Types of partitioning along several dimensions.

a split point so as to minimize:

error = (y(#) = 0griica,y(@))° + D (y(2) = 0Griei>0,y ()’ (23)

T, <xs Tix; >Ts

where z; is a dimension of the input, zs is a split point along that dimension, and (y(z) —
aVGz.z, <2, y(x))? is the variance of the predicted values on the one side of the splitting point and
(y(x) — avgp:z,>2,y(x))? is the variance on the other side. We choose an z; along a dimension
i that minimizes that measure. As with decision trees, incrementally splitting nodes leads to a
tree structure. (These methods will lead to some new methods for RL to be discussed later.)

In all, many methods exist for partitioning the input space given feedback information from
the task to be learned, whether it is classification, prediction, or reinforcement learning (which
is to be discussed later). In prediction tasks, the feedback is the value to be predicted; in
classification tasks, the feedback is the correct class label; in reinforcement learning tasks, the
feedback is (sparse and delayed) reward/punishment, i.e., an indication of how well a sequence of
actions achieved its objective. Regardless of the types of feedback, the objective of partitioning
is to divide up the world structurally, in ways that best facilitate the performance of the tasks. It
is advantageous to group similar inputs into the same regions and separate dissimilar inputs into
different regions (i.e., “cutting the world at its joint”). The partition can be either hard, without
graded boundaries, or soft, with graded boundaries delineated by either sampling weights (as
in boosting) or updating weights (as in gating). Regions may be overlapping (which is a must
for soft partitioning), or may be mutually exclusive (which may be the case for some types
of hard partitioning; e.g., decision trees). The output can be generated in a winner-take-all
(WTA) fashion (including the cases in which each region is handled solely by one agent). On the
other hand, in non-winner-take-all (non-WTA) combinations, each region is handled by a set of
agents (or all of the agents) with each weighted differently in accordance with its performance
characteristics in the region, in order to enhance the overall performance (see section 2 regarding
the optimality of weighted averaging; Breiman 1996b). The mapping from an input to a region in
a partitioning can be either probabilistic or deterministic. See Figure 1 for the table cataloging
these differences.

4 Partitioning and Reinforcement Learning

4.1 Review of Reinforcement learning

First of all, a brief review of single-agent reinforcement learning (see Bellman 1957, Bertsekas
and Tsitsiklis 1996, Kaelbling et al 1995) is in order. Assume there is a discrete-time system

10

(t =0,1,2,....) in which the state transitions are dependent on controls (or actions) performed
by an agent. That is,
P:S—U

T:5U—S

where S is the set of state, U is the set of controls (actions), T is the state transition function
that maps the current state and the current control to a new state in the next time step, and
P is the (reactive) policy that determines the control (action) at the current time step given the
current state: P(z:) = u;. A Markovian process determines a new state x;11 (resulting from a

state transition) after control/action u; is performed in state ;:

Prob(Tep1|Te, e, Te—1,Ug—1,-onn.) = Prob(Tig1 |2, Ug) = Day oy (Ug) (24)

In this process, costs (or its opposite, rewards) can occur at certain states. That is,

N-1

CORTR0 SRPEID (25)

where J is the cost/reward estimate for a starting state xg, controls/actions are selected by a

fixed policy P, g denotes cost, E denotes expectation, and v € (0,1] is a discount factor. The

idea of discounting is that costs/rewards incurred in the future matter less than that incurred

now; the further off a cost/reward is, the less important it is. When v = 1, there is in effect no
discount at all.

To find a cost/reward estimate that results from following a particular policy of control

(action), there are a number of algorithms, one of which is value iteration, which iteratively

updates value estimates J:

J(x) =max Y Puyrs (W(g(Ees) +7 5 I (2e11)) (26)

T441E€S

where z; is any state and z;y; is the new state resulting from action u (determined by a policy
P). The updating of .J for different states can be done asynchronously (i.e., states can be updated
in any order), as long as all states are updated infinitely often (Bertsekas and Tsitsiklis 1996).

A variation is to keep track of the component inside “maz” in the right-hand side of this
equation, using the notation Q(xy,us):

Qiu) = D Pavireys (u)(g(mipr) +7 % J(@111)) (27)
Ti41€S

= > Peowe (W)(g(@g) + 7% max Q (w41, u)) (28)
zi41E€ES

where u; ranges over all possible controls/actions for state x;.

In reinforcement learning (with Q-values as specified above), updating can be done completely
on-line, without explicitly using probability estimates. It is done based on actual state transitions;
that is, on-line “simulation” is performed. The updating is also incremental, necessitated by the
fact that we use only the information about the current state transition. That is,

Qe ur) = (1 —a)Q(xs,us) + a(g(wegr) + % %3§Q($t+1aut+1)) (29)
= Qm,ur) + alg(wirr) + 7% I£il>1<Q($t+1=Ut+1) = Q(z4,ur)) (30)

11

Or
AQ(wr,ur) = alg(wir) + v % %if@(fﬂwhutﬂ) = Q(z¢,ur)) (31)

where a € (0,1) is the learning rate and u; is determined by an action policy, such as u; =
argma, Q(z;,u), or using the Boltzmann distribution prob(u;) = % (where 7 is the

temperature). With enough sampling, the transition frequency from z; and u; to z;y; should
approach pg, 4., (u;), and thus provides an estimation. Therefore, the results will be the same
values as in the earlier specification of Q-values. This updating formula is commonly referred to
as Q-learning (Watkins 1989).

With either Q-values or J-values, we need function approximators when state spaces are
large. We assume that a neural network, such as a backpropagation network, is used (see, e.g.,
Lin 1992, Sutton 1990). Although we are aware of potential unpredictability of this type of
function approximation (see Boyan and Moore 1995, Sutton 1996), we hope that partitioning
can help to remedy the problem, in lieu of using a local approximator such as a RBF network
(see Comparisons later).

In relation to other more frequently studied types of learning tasks, we note that the output of
a reinforcement learning agent, such as that of Q-learning as described above, can be interpreted
in two different ways:

e As prediction. In Q-learning systems, the output Q(x¢, u), where x; is the current state
and u is the chosen action in z;, can be viewed as predicting the discounted cumulative
reinforcement:

Qzi,u) =Y 7 g(wie)
t/
or equivalently, in terms of step-wise updating, as predicting one-step lookahead values:
Q(z1,u) = g(z441) + 7y max Q(ri41,v)

where g(z;41) is the reinforcement received after action u, and x;41 is the new state result-
ing from action u. However, we should note that in RL, the target for prediction is a moving
target, because with learning, max, Q(x41,v) may change over time. Thus, Q(x;,u) may
need to change as well.

e As classification. In Q-learning systems, Q(x;,u) indicates, in state x;, whether an action
u is desirable or not. If an action is desirable, then its Q-value should be high, or close to
1. If an action is undesirable, then its Q-value should be low, or close to 0. We assume that
stochastic decision making is done based on QQ-values in choosing an action to be performed.
Thus, the final outcome can be interpreted as stochastic classification decisions. However,
this interpretation ignores the point that Q-values are estimates of discounted cumulative
reinforcement, and leads to the “coarsening” of Q-values. It can work in some circumstances

and may help to simplify learning.
These two interpretations serve as the foundation in the present work for addressing partitioning
and weighting in reinforcement learning.
4.2 Partitioning in reinforcement learning tasks

With the above overview of reinforcement learning, we are now ready to extend it to multi-
agent learning settings. Reinforcement learning can be difficult, due to, among others things,

12

complex value functions and large state spaces as a result of complex real-world scenarios. Even

when function approximation is used for value functions, the accuracy of approximation and the

complexity of learning are seriously affected by the complexity and the lack of smoothness of

value functions to be approximated, as discussed by e.g. Boyan and Moore (1995). Thus we need

to find ways to reduce the complexity of value functions. Partitioning a reinforcement learning

task is one way that can help to reduce the complexity and to improve learning (in terms of, e.g.,

speeding up learning).

Let us discuss all the possibilities of partitioning reinforcement learning tasks, synthesizing

various existing proposals (Breiman 1996a, b, ¢, Wolpert 1992, Jacobs et al 1991, Singh 1994,

Tham 1995) and new possibilities:

Partition the input space (the state space), so that different inputs located in the different
regions of the state/input space can be handled by different agents (e.g., the gating model;
see Jacobs et al 1991, Jordan and Jacobs 1994).

Partition a sequence, so that each subsequence is handled by a different agent (e.g., Wier-
ing and Schmidhuber 1996, Singh 1994, Tham 1995, Thrun and Schwartz 1995). The
partitioning of subsequences can either be predetermined (as in Singh 1994), or better yet,
automatically determined as part of reinforcement learning (as in Wiering and Schmidhuber
1996).

Partition actions (i.e., the action space, when we deal with action-oriented tasks), so that
each agent will be responsible for only certain limited types of actions. For example, Dayan
and Hinton (1993) limited an agent to certain actions at a certain level of abstraction. Sun
et al (1996) and Sun and Peterson (1997) divided actions into two types, speed and turn,
and each type was handled by a separate agent.

Partition the goal of a task, when there are multiple ezplicit goals to be achieved in re-
inforcement learning. For example, in Dayan and Hinton (1993), the goal of an agent is
determined on the fly, through the action of a higher-level agent. In Reddy and Tadepalli
(1997), the partitioning of the goal is learned through using externally provided examples
through depth-first search. Static partitioning of goals can also be done (e.g., Sun et al
1996, Sun and Peterson 1997, 1998).

Partition the reinforcement (in reinforcement learning), so that certain reinforcements are
given in association with achieving certain aspects of a goal (e.g., Sun et al 1996, Mataric
1995). This can be viewed as a form of the partitioning of goals.

Partition outputs. We divide up outputs into multiple sets (either overlapping or disjoint,
either probabilistically or deterministically). The partitioning can be done in a variety of
ways: for example, (1) based on a set of equal agents each over the entire input space (which
is the simplest way, discussed in section 2; see also Breiman 1996a regarding “bagging”),
(2) based on inputs (and thus the input space is also partitioned and the partitioning of
outputs is the result of partitioning inputs; e.g., see Jacobs et al 1991; see also the discussion
later of our methods), or even (3) based on the particular outputs of some subsets of agents
(e.g., see Erickson and Kruschke 1996). 8 The combination of the outputs of the agents

8In Erickson and Kruschke (1996), which involves the combination of “exemplar nodes” and “rule nodes”,

gating is determined based on the “exemplar nodes”, independent of the “rule nodes”.

13

involved in partitioning can be done by averaging (Breiman 1996a), by weighted averaging
(Breiman 1996b), or even by more complex methods (Wolpert 1992). °

As has been discussed in the two previous sections, in this work, we are mainly concerned with
partitioning outputs through averaging and weighted averaging (i.e., weighting), and on top of
that, partitioning the input space for the sake of better weighted averaging (or a better single
agent, as an extreme case) in each region. !0

The basic motivation for partitioning inputs/outputs in RL is that it can make learning
easier, especially when a neural network is used for each agent. Divide-and-conquer is generally
a good idea and can lead to improved performance. In particular, Whitehead (1993) showed that
learning time in RL is dependent on the size of the state space and the minimum distance between
the starting state and the goal state. By dividing the input/state space into multiple (more or
less) separate subspaces, the learning in each subspace is facilitated because of the smaller size of
a subspace, and potentially the overall learning is also facilitated. Another way to see this (when
neural networks are used) is that, since the ease of convergence of a BP network is dependent
on the number of input/output patterns to be learned and the complexity of the set of patterns
(i.e., the complexity of the underlying function; Hertz et al 1991), by dividing the set of training
patterns into multiple (more or less disjoint) sets and using a separate network for learning each
of them, we have less patterns for each network and thus likely improve the convergence of the
networks. In addition, due to the tendency in BP networks of smoothing the outputs (because
of generalization), more homogeneous patterns being assigned to each network will lead to more
accurate outputs (generalization). Partitioning does lead to assigning similar patterns to each
network, and thus more homogeneous mappings are to be learned by each network.

5 Improving Partitioning for Reinforcement Learning

Given the perspective in the previous sections, there are the following two possibilities for achiev-
ing better partitioning:

e On-line optimization: on-line, soft partitioning can be carried out based on a chosen op-
timality criterion/method, such as least squares (LS), maximum likelihood (ML) (Jordan
and Jacobs 1994), or expectation-maximization (EM) (Jordan and Jacobs 1994). Partition-
ing is done on-line, at the same time as individual agents are trained, and it is learned as
part of optimizing the same criterion as that used in training individual agents. Gradient

descent /ascent is usually used to minimize/maximize a criterion.

e Off-line optimization: partitioning is obtained separately from the training of individual
agents, but based on the performance of these agents (during training or during a separate
testing/cross-validation phase).

Below we will explore some possibilities in on-line and off-line optimization for reinforcement
learning, inspired by ideas discussed in sections 2 and 3.

9Tn case of reinforcement learning tasks, we partition the Q (or J) value outputs so that they combine to
generate values that are proper or even optimal in some sense (in terms of either a prediction or classification
interpretation; see the more detailed discussion later in section 5.1).

100ther types of partitioning, e.g., partitioning sequences, actions, goals, and reinforcement, are dealt with
elsewhere; see e.g. Sun et al (1996), Sun (1997), and Sun and Peterson (1997, 1998).

14

input

agent 1 agent 2 oo o o agent n

ot

output

Figure 2: On-line partitioning (gating).

5.1 On-line Optimization

Let us discuss on-line optimization first. The general structure of the system for soft, on-line
partitioning with multiple agents (i.e., gating) is shown in Figure 2. In this system, we assume
that the outputs (Q-values) from multiple agents are combined using the weighted average, and
then the Boltzmann distribution is used to select an action based on the combined outputs
(Q-values).

In on-line optimization, the learning rule for partitioning is often derived from the same
learning criterion in exactly the same way as the learning rule for individual agents. We will
look into various possibilities for a learning criterion along several dimensions: target values (i.e.,
the desired outputs, which hinge on whether we view reinforcement learning as a prediction task
or a classification task; see section 4), error functions (measuring the overall difference between
target values and actual outputs; see section 2), and optimization methods (such as LS, ML, or
EM), based on which gradient descent/ascent is then used to derive learning rules.

First of all, target values can be the Q-values for the new states (discounted or not, along
with reinforcements received), in which case the task is viewed as predicting such Q-values at
each step of a task (see the earlier discussion regarding the two views of Q-values); or they can
be either 0 or 1 depending on a measure that determines the desirability of the action, in which
case the task is viewed as a classification task in which at each step (state) we separate desirable
actions (which are “positive instances” and have a target value close to 1) from undesirable
actions (which are “negative instances” and have a target value close to 0). Let dg(z,u) denote
the Bellman residual (i.e., the Q-learning updating amount) for agent k. With the prediction
task interpretation, we define

dy (e, u) = ymax Qp(wer1,0) + g(wr41) — Qp (s, u) (32)

where z;11 is the state resulting from action u in state z;. With the classification task interpre-
tation, we define
di(zy,u) = class(xir1) — Qi (xe,u), (33)

where class(z;11) = 1 if a certain criterion of success is met 1 or class(z;11) = 0 if otherwise.

HThe criterion is: vy Zk L AGIES DI Qr(Ti41,v) + 9(Te41) — Zk)y Q(ze,u) > v. See Sun

Zj wj(Tiq1) Zj wj(zt)

and Peterson (1998) for the discussion of its justification.

15

Either as a prediction difference or as a misclassification, the quantity dj is a local error measure
for agent k, The global error measure can be derived as a combination of local error measures.

In terms of deriving a global error measure used for deriving learning rules, there are a num-
ber of possibilities (see Section 2 for justifications concerning these methods). First we consider
combining separate error measures of individual agents (that is, the local-error approach). We
can combine local errors based on either the weighted average (Breiman 1996b) or the exponen-
tiated weighted average (Jacobs et al 1991), both of which treat each agent as a separate entity
and tries to minimize each of their errors separately in proportion to their contributions to the
overall error (the justifications in terms of reducing the error by the weighted average of outputs
as well as reducing the variance of each agent were discussed in section 2; Krogh and Vedelsby
1995). Different from the analysis in section 2, here we use normalized weights, because it is
easier this way to keep the total (normalized) weight at 1, which was assumed in the previous
analysis (section 2), and to create a form of competition among agents. That is, the combined
error is defined as follows:

wlc ﬂft

error(zy,u Z ws(z dk($t=u))2 (34)
7 t
or
error(z,u) = —logz 2 wt e~ (d(oew))” (35)

Another way is to use an overall-error measure directly (that is, the overall-error approach;
section 2), instead of summing individual error measures in ways that lead to trying to minimize

each individually. In this case, the overall-error measure is the squared overall Bellman residual:
error(x;,u) = (d°(x¢,u))? (36)

where

wi (T4)

(g,) = 72 ~wi(w41) e) *mEXQk(IH_l’U)) + g(z441) Z * Qp(ze,u)) (37)

> wi(Tes) Wj > w;i(xy)

if we use a prediction task interpretation. That is, we generate a prediction of the weighted
average of the next-state Q-values from the agents by a weighted average of individual predictions,
instead of each agent predicting its own next-state Q-value (the justification of it in terms of
reducing the average error by the weighted average of outputs was discussed in section 2; Breiman
1996b). 12 With a corresponding classification task interpretation, we have the following overall
Bellman residual:

Wk \T
d°(z¢,u) = class(zis1) ZZ 1;) tr * Qg (4, u) (38)
j t

where x;11 is the next state resulting from action u in state z; and class(z¢+1) is determined

in ways specified earlier. The overall-error measure has the characteristics of encouraging
12Note that —22@41) g different from —2e(®) jf x¢ # w141, because weights are dependent
jwj(ﬂct+1) jwj(m)

on states/inputs. Thus 'yzk % * maxy Qk(Ti+1,v) + g(Ti41) Zk Zwk(wt(lt) x Qrlze,u) #
5 wilts J

wy (z¢)
Zk Z kw]t(mt) * dp, (ze,u).

16

the agents to cooperate with each other (in making prediction or classification), rather than to
compete with each other as in the case of the first two measures (Jacobs et al 1991).

In terms of optimization methods, we can use e.g. least squares (LS), maximum likelihood
(ML), or expectation-maximization (EM). We will limit ourselves to LS, because ML and EM
require some assumptions regarding underlying probability distributions and thus lead to para-
metric statistical models (Jordan and Jacobs 1994). '3 For deriving learning rules based on LS,
we may use steepest descent, Newton’s method, Quasi-Newton method, Gauss-Newton method,
or other numerical methods (Bertsekas and Tsitsiklis 1996). Here we will focus on (on-line)
incremental steepest descent approach (i.e., updating is done based on gradients after only one
or a few steps). We need some form of soft partitioning with graded boundaries determined by
weights, for the sake of calculating the gradients of partitioning. We need to derive the learning

rules for two types of weights: combination weights wj; and individual agent network weights

k
net

Let us first look into the weighted-average-of-local-errors measure. Using incremental steepest

w,.., for agent k.

descent, after experiencing (z;,u) (i.e., performing action u in state z;), we update the two types

of weights as follows: '

_ ., Oerror(zy,u), 0x 2k Wi(xe)(dj (e, u)? — dg (24, u)?)
Aun(an) = o= =5 o) = SIERIE (39

Oerror(xy,u) 8Qk(mt,u)) = B % di (g, u) * wi (x4) . 0Qk (x4, u)

Awk = B(—
et = 00 G out, S wy(a) " dul,,

(40)
where a and 3 are learning rates. When the gating weights wy (z;) are generated using a lookup
table, then Awy (z;) can be viewed as the amount of updating applied to the corresponding entry
of the table. When the gating weights wy,(z;) are generated by a gating network (based on inputs
xt), Awg (z¢) can be viewed as the error to be minimized by the gating network. A learning rule
concerning the internal weights of the gating network (not specified here) can then be easily
derived. Similarly, the learning rule for Awf_, depends on the neural network implementing
OQr (z4¢,u)
Tk,

Q-learning, because the derivative depends on the particular structure of the neural

network chosen for an agent. h
Using the exponentiated weighted-average-of-local-errors measure, we similarly derive the

following incremental steepest descent rules:

867"T07"(.77t,u)) . 1 *Zj;ék wj (xt)(e*dk(ﬁtyu)2 B efdj(wt,u)z)
=«
Owy (x¢) Zj w; (.’z,g)e*dj(ﬂu,U)2 Zj wj(x)

Awy (z4) = a(—
(41)

derror(x,u) 0Q(xe,u),
- 0Qk(zy,u) Awk) = Bxdp(xe,u)*

net

wh (y)e~ e (@ew)? *an(mt,u)
S wj(wy)e dizew)? owk

i net

Awk = p(

net —

(42)

131n addition, although EM and MT. may learn faster, there is no indication of better eventual performance
compared with LS (Jordan and Jacobs 1994).

1n deriving the learning rules, in accordance with either the prediction or the classification interpretation,
we treated the target values as constants, although strictly speaking they were not. The same applies to other
derivations later.

17

Using the overall-error measure, we have the following learning rules:

2 Wi (20) Qi (1) — Q;(4, 1))

Oerror(xy, u)

Awg(zt) = a(— Gwe (1))= axd’(xs,u) * 5w (@)’ (43)
Awfwt _ ﬂ(iaerror(mt,u) 8Qk(mt,u)) = Bxd () * wi (x4) 0Qk (x4, u) (44)

OQi(wi,u) ok, >, wi(w) ok,

In some cases, combination weights tend to keep falling or rising simultaneously. Thus,
competition among weights is necessary in order to keep the total weight constant to avoid
saturation (underflow or overflow). We derived heuristically the following competition: given
weight updating amount Awy(z;), the new updated weight is wi"' (z¢) = wh () + Awy (),
where t indicates the current step. Then the adjusted weight updating amount is :

wit! (z4) . wh (z4) + Awy, (z4)

) = ey S S+ Am ey R @)

which keeps the total at 1. Although this is not a principled solution, it helps the computational

implementation.

Care must also be taken in setting learning rates for the gating network and the agent networks
and in setting their respective schedules of changes. In general, we want to initialize the learning
rate of the gating network to a higher value compared with that of the agent networks, and then
quickly reduce it to a very low value (or 0), so that gating can learn and stabilize faster than the
agent networks, so as to provide a stable structure (a stable division of subtasks) in which agents
can learn and become stable (see Experiments).

Given the current QQ-values, the decisions on actions to be performed at each step are made
in the following way. At each step, each agent receives the same input and computes its outputs
(i.e., Q-values). Then weighted averaging is used for combining the Q-values of all the agents:

Qxg,u) = >, %Qk(mt,u). An action is then selected based on the maximum Q-value

(i.e., uy = argmaz,Q(zs,u)) or the Boltzmann distribution of Q-values.

The complete but generic specification of the algorithm is in Figure 3. The details of the
learning rules and error measures (and their different interpretations and implications) have been
discussed above in text and thus omitted from the specification in the figure. The optimality of
the above methods in terms of minimizing the total error is only guaranteed to the extent that
the (on-line) incremental steepest descent method is likely to be optimal with respect to find
local minima/maxima.

Note that different inputs can be given to the gating network compared with those given to
individual agents. This may potentially improve learning, since potentially different information
may be needed for individual agents performing a task and the gating mechanism that assigns
subtasks to different agents. The inputs for partitioning must reflect the useful structure of
the state/input space of a task, and enable meaningful division of the space into regions. For
example, instead of a local view that is given to agents as their inputs, we can use z-y coordinates
for partitioning (see Experiments). The inputs can be either full or partial descriptions of current
states, and thus either full state-based or partial observation-based RL may be used. (This is
essentially the same for off-line methods, to be discussed next.)

18

1. Each agent receives the same input and computes its output Q-values
2. Combine the Q-values of all the agents through weighted averaging: Q(z:,u) =
Zk nlz) Qr(zt,u). An action is then selected based on the maximum Q-values

>, wien)

or the Boltzmann distribution

3. Perform the selected action

4. Each agent receives the same new input and computes its new Q-values

5. Generate the global error with one of the following two ways:

5.1. generate a local error measure for each agent based on either the Q-updating for-
mulas: ymaxy, Qk (zt+1,v) + g(xi4+1) — Qr(wt,u), or the abstract Q-updating formula:
class(xi+1) — Qr(x,u). Then combine the local errors based on either the weighted
average or the exponentiated weighted average

5.2. generate a global error measure directly based on the weighted combined Q-updating

formula: ’ka iﬂk(mt(::_il) * maxy Qk(Te41,v) + g(Te41) Zk Zw’:i“() * Qr (T, u)

6. Apply an appropriate updating rule derived from the adopted global error measure to
the gating network, adjusting its weights

7. Apply an appropriate updating rule derived from the adopted global error measure to
the individual agents, adjusting their internal weights

8. Go to step 1

Figure 3: The on-line gradient descent algorithm.

5.2 Off-line Optimization

Off-line optimization provides better alternatives for partitioning the state/input space (for the
sake of producing better overall performance). This is because off-line methods enable a learn-

15 geparating the two issues and optimizing them separately,

ing/partitioning decomposition
which facilitates the whole task. There are many possible ways for off-line optimization of par-
titioning. However, what is especially important is the fact that we can use hard partitioning in
off-line optimization; this is because in the off-line case, we do not need to calculate gradients of
partitioning and are thus free to choose either hard or soft partitioning, and hard partitioning is
easy to do off-line. 16 In addition, according to the analysis by Meir (1995), in many cases, hard
partitioning with non-overlapping regions can be superior to overlapping (hard or soft) partition-
ing. Krogh and Vedelsby (1995) also showed the advantage of hard, non-overlapping partitioning,
based on their analysis of ensemble generalization with the decomposition of the generalization
error into the weighted average of individual generalization errors and the ensemble ambiguity
(see section 2). An added advantage of off-line partitioning (the learning-partitioning decompo-
sition) is that we can use different criteria, based on different inputs, for partitioning, different
from the learning of agents (and their specific inputs and learning criteria).

We can sum up the main process behind different methods for off-line, hard, non-overlapping
partitioning in a unified way: The algorithm is described in generic terms in Figure 5. The
algorithm basically generates one or more plausible partitions and test agents on the partition(s)
to measure performance; based on the performance, it selects one or more better partitions to
pursue further, by generating variations of these selected partitions for testing; the loop goes on

15Here, learning refers to the learning of individual agents.
16This is unlike the case of on-line optimization, in which the use of gradient descent basically dictates that soft
partitioning be used (otherwise, it would be difficult, if not impossible, to calculate gradients).

19

input

region

agent 1 agent 2 o o0 o o agent n

output

Figure 4: Off-line partitioning.

until some termination conditions are satisfied. This algorithm is, in a way, a variation of the
gating model of Jacobs et al (1991), but it is off-line in terms of partitioning the input/state
space while the gating method is on-line. The general structure of a multi-agent system when
hard, non-overlapping partitioning is used is shown in Figure 4. We assume that at each step, the
input to the system is checked against region specifications and directed to the agent responsible
for handling the region to which the input belongs. The output (the Q-values) from the selected
agent is used as the final outcome of the whole system. The Boltzmann distribution is used to
select an action based on these Q-values. We use the prediction task interpretation here for agent
learning.

In terms of means for generating partitions and for selecting better partitions, we have the
following possibilities:

e We can apply gradient descent/ascent (based on LS, ML, or EM methods) in a batch mode
(with large batches). For example, assuming a gating network is used, while we train
individual agents in a completely on-line fashion, we train the gating network after each
long period of training of individual agents during which we collect updates that are later
used to adjust the gating network.

e Or, if the space of all possible partitionings is relatively small, we can perform an explicit
search of possible partitionings, e.g., with hill-climbing.

e A more promising search technique is the genetic algorithm (GA), which can be either
applied to the gating network (with weights of the gating network being mutated and
crossed over during search), or applied directly to partitions (with regions of a partition
being mutated and crossed over).

e Yet another possibility is a decision tree like procedure, in which progressive splitting
is applied that leads to an optimal partitioning of the input/state space (Sanger 1991,
Blanzieri and Katenkamp 1996). The criterion for splitting can be based on one of the
error functions mentioned earlier.

Let us discuss the last two possibilities below. First, the decision tree like region-splitting
algorithm is described in Figure 6. In the algorithm, a region in a partition (non-overlapping and
with hard boundaries) is handled exclusively by a single agent (a neural network) (see Figure 4).

20

The algorithm looks at one partition at a time and attempts to find a better partitioning by
splitting regions incrementally when a certain criterion is satisfied (e.g., Quinlan 1986, Breiman
et al 1984). The splitting criterion is based on the total magnitude of the errors that incurred
in a region during training and also based on the consistency of the errors (which concerns the
distribution of the directions of the errors, either positive or negative). These two considerations
can be combined (Blanzieri and Katenkamp 1996). Specifically, in the context of Q-learning, error
is defined as the Q-value updating amount (the Bellman residual). We select those regions to
split that have high sums of absolute errors (or alternatively, sums of squared errors), which are
indicative of the high magnitude of the errors (the Bellman residuals), but have low sums of errors,
which together with high sums of absolute errors are indicative of low error consistency (i.e., that
Q-updates/Bellman residuals are distributed in different directions; Blanzieri and Katenkamp
1996, Sanger 1991). That is, our combined criterion is

consistency(r) = | Zerror(m)\ - Z lerror(z)| < threshold; (46)

Ter xer

where x refers to the data points encountered during previous training that are within the region
r to be split. We define error(z) = max, Qp (z',u') + g(z') — Qr(x,u), where z is a (full or
partial) state description, u is the action taken, x' is the new state resulting from action u in
state x, k is the agent responsible for z, and k' is the agent responsible for z'.

Next, we select a dimension to be used in splitting, within each region to be split. Instead
of being random, we again use the heuristics of high sums of absolute errors but low error
consistency. Since the sum of the absolute errors remains the same regardless what we do, what
we can do is to best split a dimension to increase the overall error consistency, i.e., the sums of
errors (which is analogous to CART; see Breiman et al 1984). Specifically, we compare for each
dimension i in the region r the following measure: the increase in consistency if a dimension is
optimally split, that is,

Aconsistency(r,i) = max(] Z error(z)| + | Z error(z)|) — | Zerror(m)\ (47)

Ui
zErx;<v; TETIXT; >V; TET

where v; is a split point for a dimension i, x refers to the points within region r on the one side
or the other of the split point, when projected to dimension i. This measure indicates how much
more we can increase the error consistency if we split a dimension ¢ optimally. The selection of

dimension ¢ is contingent upon
Aconsistency(r,i) > thresholdy (48)

Among those dimensions that satisfy Aconsistency(r,i) > thresholds, we choose the one with
the highest Aconsistency(r,i). For a selected dimension i, we then optimize the selection of a
split point v} based on maximizing the sum of the absolute values of the total errors on both
sides of the split point:

! p—
V; = argmai,, (

Z error(z)| + | Z error(z)|) (49)

zErx;<v; TETIXT; >V;

where v} is the split point for dimension . Such a point is optimal in the exact sense that error
consistency is maximized (Breiman et al 1984). Then, we split the region r using a boundary
created by the split point: We create a split hyperplane using the selected point spec = z; < v;.

21

1. Initialize one, or a set of, partition(s), each of which contains one or more regions that
together cover the entire input/state space

2. Train a set of agents on each of the partition(s); record the performance on each partition

3. Modify the partition(s) through operations such as merge, split, and recombination, based
on the performance on each partition

4. Train a set of agents again on each of the new partition(s); record the performance on
each partition

5. If a termination condition is satisfied, stop; else, go to 3

Figure 5: The off-line optimization algorithm. Here is the generic description of off-line opti-
mization. Specific instances will be described later.

We then split the region using the hyperplane: region; = region N spec and region, = region N
—spec, where region is the specification of the original region. Replicating the existing agent
for handling the old region, two new agents are created to handle the two new regions. After
splitting a region, if the number of regions exceeds R, we combine some (randomly selected)
existing regions until the number is right (preferring adjacent regions for combination). After a
combination of two regions, one of the two agents involved is deleted.

From the above description, this algorithm is clearly related to a number of partitioning
algorithms we examined in section 3, such as decision trees (Quinlan 1986) and CART (Breiman
et al 1984), in addition to being inspired by the gating model (Jacobs et al 1991). Note that it
is different from stochastic hard partitioning (such as Singh et al 1994), which assigns inputs to
different regions probabilistically and is better suited for on-line partitioning (using e.g. gradient
descent).

The region-splitting algorithm is domain independent in the sense that no domain knowledge
(e.g., concerning which dimension to split and at which point) is needed. However, domain
knowledge, when available, can be useful. For example, in a navigation setting, if we know which
input dimension (such as a particular instrument reading) is more important, then we can use
that dimension first. This way not only we are more likely to find a good partition, but also we

can save much computation.

Let us now turn to an algorithm more complex than region-splitting, a GA-inspired algorithm
with direct manipulations of regions, which is described in Figure 7. It is more complex, because
it considers simultaneously a set of different partitions and then select a subset of them, modify
them, and test them further. It thus involves a much larger search space. In this algorithm, we
use two types of operations inspired by GA: mutation and crossover. In the mutation operation,
the selection of regions to be split, dimensions to be split and split points as well as the selection
of regions to be combined are guided by the same criteria prescribed for the previous algorithm
(which will not be repeated, but see Figure 6). Thus, different from the usual GA, mutation is
not random but follows the consistency measure; mutation therefore has a strong likelihood of
improving a partition. Because of this, mutation can be safely applied to all the partitions in a
population. In the crossover operation, we use the performance of a partition (i.e., the success
rate) as the “fitness” value in selecting partitions to be crossed over. But the selection of the
split hyperplane for crossover (see Figure 7) is random. Duplication operations in the usual GA
are not explicitly specified here but implied in the crossover operation (as detailed in Figure 7):
Successful partitions will be copied into the next generation. See Figure 7 for the full details of

22

1. Initialize one partition to contain only one region that covers the whole input/state space

2. Repeat for n times (each time with a different randomly generated initial condition):
Train an agent on the partition for m trials.

3. Further split the partition

4. Repeat for n times (each time with a different randomly generated initial condition for
each agent): Train a set of agents, with each region assigned to a different agent, each
for m trials.

5. If no more splitting can be done, stop; else, go to 3
Further splitting a partition:

For each region that satisfies consistency(r) < threshold; do:

1. Select a dimension j in the input/state space that maximizes Aconsistency, provided
that Aconsistency(r, j) > threshold,

2. In the selected dimension j, select a point (a value v;) lying within the region and
maximizing Aconsistency(r, j)

3. Using the selected point in the selected dimension, create a split hyperplane: spec =
r; < v

4. Split the region using the newly created hyperplane: regioni = region N spec and
regtony = region N —spec, where region is the specification of the original region; create
two new agents for handling these two new regions by replicating the agent for the original
region

5. If the number of regions exceeds R, keep combining regions until the number is right:
randomly select two regions (preferring two adjacent regions) and merge the two; keep

one of the two agents responsible for these two regions and delete the other

Figure 6: The region-splitting algorithm. An instance of off-line optimization. See text for
details.

23

1. Randomly generate a population (i.e., a set) of different partitions, each of which contains
a certain number of regions (randomly determined between 1 and the upper limit R)

2. Repeat for n times (each time with a different randomly generated initial condition for
each agent): Train a set of agents on a corresponding partition in the partition population
(with each region in the partition assigned to a different agent), each for m trials; do so
for each partition. Record the average performance on each partition

3. Perform crossover on the entire population of partitions; perform mutation on each
partition in the resulting population

4. If the number of iteration is less than a preset limit, goto 2; else, stop

See Figure 8 for further details.

Figure 7: The GA-based algorithm. An instance of off-line optimization.

this simplified version of GA.

In all of these above algorithms, regions are made up of hypercubes, each of which is specified
by a logical conjunction of simple inequalities each concerning one of the input dimensions.
Beside such a simple type of region, we can also use alternative types of regions, for example,
hyperspheres as specified by radial basis functions. Or we can use a linear mapping (e.g., by
using a linear perceptron network for specifying regions). We can even extend to more general,
arbitrarily shaped regions as, for example, specified by a backpropagation network (which can
serve as a gating mechanism). Such an extension would be analogous to extending weighted
averaging to general “stacking” (Wolpert 1992), although it is on the input side, as opposed to
stacking which is on the output side.

If we measure optimality of the above partitioning algorithms by the resulting overall per-
formance (for example, based on a pre-set success rate criterion, the number of steps or trials
to reach a success rate criterion, or transfer performance to test generalization abilities), there
is no guarantee of optimality. The quality of the results from the region-splitting algorithm is
dependent on the quality of the heuristics used. The quality of the results from the GA based
algorithm relies on the optimality of GA per se. Empirical evidence in the literature in numerous
domains indicates that GA is a good weak search/learning algorithm although there is no formal
guarantee of being optimal. On the other hand, if we measure optimality by the maximization
of Aconsistency (and by the increase of consistency, which is a result of the maximization of
Aconsistency), then there is some potential: if only local minima are sought, the region-splitting

algorithm is optimal in this sense. 17

While the above description of the specific algorithms is for hard partitioning, soft partitioning
as in the case of the on-line algorithms is also possible. In a way this is a generalization of
bagging and boosting algorithms, as well as a generalization of the gating method, due to the
use of overlapping regions. However, computationally there is little justification for it since
we are doing partitioning off-line and thus are not required to use soft partitioning. Another
alternative is to keep hard partitioning but use multiple agents in each region. This way we can
maintain the simplicity of hard, off-line partitioning but at the same time improve the overall

7Note that for the sake of simplicity, we assumed that errors were fixed values to be distributed to different
regions and thus to different agents in order to reduce inconsistency; in reality these values change as a function
of partitioning and are not fixed, which further complicates analysis.

24

Crossover:

Do the following for I times (where [is randomly selected between 0 and ;) over the entire
current-generation population:

1. Select two partitions: pl and p2, with the probability of selecting a partition determined
by a Boltzmann distribution of success rates of different partitions

2. Divide the input space into two half spaces (s1 and s2):

2.1. Randomly select a dimension ¢ and a split point v; in the dimension that can be used
to split both partitions;

2.2. For any z: if ; > v;, then z belongs to s1; otherwise, it belongs to s2;

3. Crossover pl and p2 (by combining all the regions in pl that are in s1 and all the regions
in p2 that are in s2): any region is in the resulting partition, if and only if region € pl
and region € sl or region € p2 and region € s2 (any region that crosses the border
between s1 and s2 is pre-split into two regions in the two half spaces respectively); each
region keeps its corresponding agent

4. If the number of regions exceeds R, do the following until the number of regions is at or
below R: select two regions (preferring adjacent regions) and combine them; keep one of
the two agents responsible for the two original regions and delete the other

5. Put the resulting partition into the next-generation population

6. Remove an existing partition that has the lowest performance from the current-generation
population

In the end, move all the remaining partitions in the current-generation population into the
next-generation population

Mutation:

For each partition, repeat for [times (where [is randomly selected between 0 and 11):

1. Split a selected region, along a selected dimension at a selected point (using the prescribed
criteria; see Figure 6 for details); create two new agents for handling these two regions
by replicating the agent for the original region

2. If splitting leads to exceeding the limit on the number of regions in a partition (R),
combine two randomly selected regions in the partition (preferring adjacent regions) (see
Figure 6); keep one of the two agents responsible for the two combined regions

Random generation of a partition (of R’ regions):

Initialize the partition to contain one region region: that covers the entire input/state space.

For i= 2 to R’ do:

1. Randomly select a region r where r € [1,7 — 1]

2. Randomly select one dimension j in the input/state space that can be used to split region
r

3. Randomly select a point (a value v;) in dimension j that can be used to split region r

4. Create two regions out of the original region r by using the selected value point: spec, :=
spec, Nzj < vj and spec; := spec, Nxj > v; (whereby one new region is used to replace
the original region and the other new region is set to be region %)

Create R’ agents, each responsible for one region.

Figure 8: Some details of the GA-based algorithm.

25

Initialize the partition to contain only one region that covers the whole input space
Train a set of K agents on the region.
Further split the partition

Ll

Repeat for n times (each time with a different randomly generated initial condition for
each agent): Train K agents on each region, while learning a set of combination weights
on each region.

5. If no more splitting can be done, stop

6. Else, go to 3

Further splitting a partitioning (up to a total of R regions): see Figure 6.

Figure 9: The region-splitting algorithm with weighted averaging. A special case of off-line

optimization.

performance in each region by combining the outcomes of multiple agents (see section 2; Breiman
1996 a,b). For example, consider an extension to the region-splitting algorithm: the region-
splitting algorithm with weighted-averaging (i.e, with weighted averaging being added to the
region-splitting algorithm described in Figure 6) shown in Figure 9. Since this is a straightforward
extension, we will not repeat the details of the region splitting algorithm. However, the learning
rules need to be specified. For combination weights in each region, using incremental steepest
descent on the weighted-average-of-local-errors measure, we obtain

2y Wi (dj (e, u)® — di (4, u)?)
(22 wj)?

Different from the gating algorithm (see section 5.1 and Figure 3), however, is the fact that

Awy = a x

(50)

the combination weights wy’s are not completely input-dependent; rather, they are wuniform
throughout a region. We do not need to consider partitioning when we learn the combination
weights — the partitioning is done separately, off-line, with hard boundaries. For internal weights

of agents in a region, we have,

Wy, 0Qk (x4, u)

Aw? B x dy(x,u) *
Zj wj 6U)7I?Let

net —

(51)

OQx (Zt ,U)
owp .,

Other error measures discussed before can also be adopted; see section 5.1 for details. The overall

The derivative is dependent on the network type and structure chosen for an agent.

performance from combining these agents can benefit from the diversity among these agents (see
Appendix) as in the case of weighted averaging (section 2).

6 Experiments

6.1 Tasks

We looked into two maze tasks, with different difficulty levels in their layouts, one easy and one
hard. For each maze, we also varied the size of the layout. Maze 1 of the small size is shown
in Figure 10. Maze 2 of the small size is shown in Figure 11. The median size is the double of
the original size, and the large size is 3 times the original size. We performed experiments with
all the combinations of the task parameters: difficulty level of maze layout (easy, hard), and size

26

Figure 10: The easy maze.

Figure 11: The hard maze.

of maze layout (large, median, small). The task setting is as follows: an agent has views of five
sides: left, soft left, front, soft right, and right, and can tell in each direction whether there is an
obstacle or not, up to a distance of two cells away. (Thus, the input is orientation-dependent.) It
has also the information of the distance and the bearing to the goal. There is a total of 20 binary
inputs (and thus more than 10° possible inputs/states). The separate inputs for gating or region
specifications consist of z-y coordinates. An agent can move by selecting two output parameters:
turn (left, right, or no turn) and speed (0 or 1). 400 steps are allowed for each episode. If agents
fail to reach the goal within the limit, failure is declared. Reinforcement is provided (1) when
the target is reached, the value of which is 1 in this case, (2) when the time runs out, the value
of which is -1, and (3) when any move is made, the value of which is determined as follows:
when the agent is going toward the target, the reinforcement is gr = 1/c* ((z2 — z1)/x)*, where
¢ = 5.0, zo — x; is the distance traveled in the target direction in one step, and x is set to 40.
When the agent is going away from the target, the reinforcement is gr' = —0.5¢r.

6.2 Algorithms and Parameters

We tested the following multi-agent RL algorithms: we tested on-line partitioning (gating), with
either the prediction or the classification interpretation, with the weighted-average-of-local-errors
combination, the exponentiated weighted-average-of-local-errors combination, or the overall-error
(thus, there is a total of 6 algorithms, denoted as PWA, PEWA, PO, CWA, CEWA, CO, where P

27

indicates prediction, C indicates classification, and WA, EWA or O indicate respective error com-
bination methods). We also tested the batch version of gating (denoted as BA), in which we used
the prediction interpretation with the weighted-average-of-local-errors measure (which resembled
off-line algorithms; section 5.2). We tested off-line partitioning, including region-splitting (de-
noted as RS) and GA. We also tested a variation of region-splitting with multiple agents for each
region combined with weighted averaging, trained with the weighted-average-of-local-errors mea-
sure (denoted as MRS). For comparison purposes, we also tested simple averaging and weighted
averaging (without partitioning) of multiple agents (denoted as SA and WA respectively), based
on the prediction interpretation and the weighted-average-of-local-errors measure. In construct-
ing agents for these two types of models, random variations of the initial internal structures of
individual agents (including initial weights, numbers of hidden units, and learning rates) were
used to generate uncorrelated agents (see Appendix; Raviv and Intrator 1997, Breimen 1996a).
We also tested single-agent Q-learning (denoted as Q).

The parameters for different algorithms were set as follows: The learning rate for each indi-
vidual agent was set at cg = 0.05 initially and gradually lowered by a; := ag*€’, where e = 0.996.
and t denotes episode numbers. 7 hidden units were used for the backpropagation network in
each agent. The discount factor v was set at 0.95. The initial temperature 7 for the Boltzmann
distribution action selection was set at 0.04 and the temperature changed according to 7; = Tp*€’,
where € = 0.9999. Specifically, in gating algorithms (i.e., on-line partitioning, including PWA,
PEWA, PO, CWA, CEWA, CO), we used a linear network for gating (as in Jordan and Jacobs
1994), and we used the z-y coordinates as input to the gating network while local orientation
dependent views (described earlier) were given to agents. In the classification-based versions, the
error criterion v was set at 0.05. The number of agents was set at 5 (but we also tried other
numbers). We set the learning rate of the gating network to be higher than the individual agent
networks initially and reduced it toward 0 more quickly; that is, ag = 0.07 and a; := g * €,
where € = 0.985. In BA, we updated gating weights every 20 episodes (while updating agents
immediately; section 5.2). In RS (region splitting), threshold; was set at -100, and thresholds
at 5. The maximum number of regions (R) was set at 20, and the number of repetition n was set
at 1. We trained agents on a partition for 20 episodes before the partition was changed. In MRS,
we set the number of agents in each region (K) at 5 (but we also tried other numbers), and the
other parameters were the same as used in RS (specified before). In GA, the population size of
different partitions was set at 10, [; at 20, and l5 at 10. We trained agents on each partition in a
generation for 20 episodes (but we also tried other numbers). The maximum number of regions
in each partition (R) was set at 20, and the number of repetition n was set at 1. The thresholds
in the mutation operation were set the same way as in RS. In SA and WA, 5 agents were used.

6.3 Results

Let us compare the different algorithms discussed earlier by their test performance in each maze.
The test performance was measured by the average success rates over 100 “test” episodes, con-
ducted after sufficient training of each algorithm (that is, when their averaged learning curves
leveled off), using their respectively best parameter settings within the range of parameter set-
tings we tested. Roughly, on average, the on-line partitioning algorithms (PWA, PEWA, PO,
CWA, CEWA, CO) took a total of 1000 training episodes, the weighting/averaging algorithms

(SA and WA) took 1000 episodes, the single-agent algorithm (Q) took 1000 episodes, the off-line

28

partitioning algorithm RS (and MRS) also took 1000 episodes (due to the use of non-overlapping
regions in RS, there is no need for additional training episodes), but GA took 2000 episodes
(due to having 10 partitions in each generation, with each partition trained for 20 episodes, and
training for 10 generations). Note also that the on-line algorithms and the weighting/averaging
algorithms require far more updatings than the other algorithms, because of their use of overlap-
ping or identical regions and thus the simultaneous updating of multiple (5) agents at each step.
Figure 12 shows the performance of all the algorithms after training in each of the six different
mazes (with all the combinations of difficulty levels and sizes). Overall, we can see that some
partitioning methods improved performance compared with single agent systems. Compared
with all the other multi-agent algorithms, RS fared the best: it was better than or comparable
to all these other algorithms, and it was better than others in more difficult settings (i.e., the
hard mazes in large sizes), which demonstrated the merit of this algorithm.

Comparing on-line and off-line partitioning. As shown in Figure 12, the on-line (gating)
algorithms performed worse than RS and GA (the off-line algorithms). The performance differ-
ences were statistically significant. This is because the on-line (gating) algorithms performed
both agent learning and partitioning at the same time (both with gradient descent) and thus
complicated the overall process. On the other hand, the off-line algorithms were able to separate
the two aspects of learning and thus facilitated the overall learning process as discussed earlier.

Comparing RS and GA. GA in general conducts a more thorough search than RS, and thus
incurs a higher cost, but we would expect it to achieve a better performance. However, judging
from the experimental data, performance-wise there was little difference between the two. This
was probably because of the randomness introduced by the crossover operation. It appeared that
in this particular setup there was not much advantage in introducing such randomness.

Comparing RS and MRS. The two algorithms performed comparably (although MRS was
slightly better, the difference was not statistically significant). Similarly, WA and SA did not
outperform Q.

Comparing gating algorithms. As mentioned earlier, the classification interpretation
leads to inaccurate QQ-values, and thus we expect worse performance from it compared with the
prediction interpretation. This conjecture was borne out by the data: PWA performed better
than CWA, PEWA performed better than CEWA, and PO performed better than CO. The
differences were statistically significant. The exponentiated versions performed at an equal or
better level compared with the non-exponentiated versions (by comparing PEWA with PWA and
PO, and comparing CEWA with CWA and CO). The batch version performed no better than
the corresponding non-batch version (that is, BA performed comparably to PWA). Overall, the
gating algorithms were not better than single agent Q-learning, simple averaging, or weighted
averaging.

Note that in the above experiments, the x-y coordinates provided to the multi-agent algo-
rithms for the purposes of partitioning were also provided to single-agent QQ-learning as part of
its input, so as to avoid putting the single-agent algorithm at a disadvantage. In so doing, we
compared the performance of the single-agent algorithm with vs. without the z-y coordinates,
and found no significant performance difference.

Examining RS. Let us look into RS specifically. Figure 13 shows the learning curve (in
terms of success rate for each block of 20 episodes). Figure 14 shows the consistency curve (in
terms of the consistency measure used in RS). Both demonstrate a gradual improvement of a
multi-agent system using RS over the course of learning. Figure 15 shows a partition of regions

29

algorithm \ task 1xEasy 2xEasy 3xEasy 1xHard 2xHard 3xHard
RS 100.0(0.0) 94.6(5.1) 93.4(6.5) 89.0(3.5) 57.6(8.3) 42.8(6.5)
MRS 100.0(0.0) 98.2(2.4) 96.0(3.4) 91.2(8.2) 64.4(8.7) 48.8(5.0)
GA 97.2(5.6) 97.2(2.4) 96.8(2.3) 86.6(8.6) 49.4(38.5) 21.8(13.2)
PWA 100.0(0.0) 94.2 (3.3) 95.2(6.8) 77.8(9.5) 35.4(19.8) 6. 6(7 0)
PEWA 100.0(0.0) 99.6 (0.5) 93.4(2.1) 79.2(6.6) 37.2(10.2) 6.0(8.9)
PO 100.0(0.0) 99.4 (0.8) 98.2(1.2) 70.2(13.3) 19.4(10.1) 12. 0(5 2)
CWA 99.6(0.8) 50.4(37.9) 38.6(36.4) 27.8(32.5) 0.6(0.4) 0.4(0.8)
CEWA 100.0(0.0) 94.4 (2.3) 92.2(3.3) 63.2(7.0) 9.0(9.0) 9.5(4.5)
CO 100.0(0.0) 75.8(38.8) 66.8(37.8) 38.6(14.2) 3.6(4.0) 0.4(0.5)
BA 100.0(0.0) 97.6(1.4) 97.6(1.9) 76.2(5.7) 20.2(17.5) 8.8(10.9)
SA 100.0(0.0) 99.4(0.8) 97.3(0.9) 56.6(16.3) 22.0(6.2) 10.6(1.5)
WA 100.0(0.0) 99.8(0.4) 92.6(5.5) 64.4(14.2) 18.6(3.1) 12.6(4.2)
Q 100.0(0.0) 95.0(6.6) 93.4(6.5) 73.8(12.5) 34.6(14.3) 15.6(5.5)

Figure 12: Comparisons of different algorithms in terms of average test performance (average
numbers of successful episodes out of 100 test episodes). The standard deviations are in paren-
theses. See text for explanation.

as the result of RS, and also some trajectories through these regions of the maze to reach the
goal (at the end of learning).

As conjectured earlier, using multiple agents may reduce the requirement regarding the com-
plexity of individual agents. That is, when multiple agents are used, we may be able to learn
the same task equally (or more) effectively using simpler individual agents. Because we used
backpropagation networks, the complexity of the agents was determined by the number of hid-
den units in their networks. Our data (see Figure 20) shows that when we gradually reduced
the number of hidden units in Q (a single-agent algorithm) and RS (a multi-agent algorithm)
respectively, Q performed worse and worse, but the performance of RS was hardly affected.

Recall that the point of using different agents for different regions was to be able to specialize
each agent to a different region, in order to exploit differential characteristics of regions and to
develop differential characteristics in the corresponding agents (and thus to reduce the complexity
of individual agents). Figures 16, 17, 18, and 19 show the average Q-values for each agent in
four typical settings. Comparing these different agents (each for a different region), we found
that the average Q-values of different agents were different, which implied that different action
policies were formed (comparing Figures 16, 17, 18, and 19). Each agent was indeed specialized
to its corresponding region because its Q-values were specifically concerned with actions in that
specific region.

7 Discussions

Let us retrace the development of various ideas in this paper. The discussion of gating '® led
to the adoption of on-line partitioning for RL (with all its variations in terms of error measures;
Figure 3). Off-line algorithms for RL (Figure 5 as well as Figures 6 and 7) were then formulated
as alternatives to the on-line algorithms that enable the decomposition of learning (of agents) and

8 The analysis of bagging led to the analysis of weighted averaging (an extension of simple averaging), which
in turn led to partitioning in general and gating in particular.

30

20

15

10

Success

0 L L L L
0 200 400 600 800 1000
Episode

Figure 13: The learning curve of RS (in terms of success rates) in three hard mazes.

0
-100
-200
3
c
2
8
@ -300 |
o
o
£
=
o -400 [
©
Q
>
<
-500
-600 - E
700 L L L L
0 200 400 600 800 1000
Episode

Figure 14: The consistency measure over the course of learning in three hard mazes.

31

Figure 15: A partition of regions from RS and ten sample successful trajectories through these
regions (as tested after training).

32

0.8

0.6 -

Q Value

0.4

0.2 r

0.8

0.6 -

Q Value

0.4

02 r

Turn Left Go Straight Turn Right
Action

3)

Turn Left Go Straight Turn Right
Action

Q Value

Q Value

0.8

0.6 -

0.4

0.2 r

0.8

0.6 -

0.4

0.2 r

Turn Left Go Straight Turn Right
Action

(4)

Turn Left Go Straight Turn Right
Action

Figure 16: The averaged Q-values of an agent (agent 1) in each of the four major categories of
states: (1) no wall in sight, (2) wall in front, (3) wall on right, and (4) wall on left. For the
purpose of comparing different agents, the Q-values (for “turn left”, “go straight”, and “turn
right” respectively) of all the input states that fit into one of the above four categories were

averaged for each agent.

33

0.8

0.6 -

Q Value

0.4

0.2 r

0.8

0.6 -

Q Value

0.4

02 r

Figure 17: The averaged Q-values of an agent (agent 2) in each of the four major categories of
states: (1) no wall in sight, (2) wall in front, (3) wall on right, and (4) wall on left. For the
purpose of comparing different agents, the Q-values (for “turn left”, “go straight”, and “turn
right” respectively) of all the input states that fit into one of the above four categories were

Turn Left Go Straight Turn Right
Action

3)

Turn Left Go Straight Turn Right
Action

averaged for each agent.

Q Value

Q Value

34

0.8

0.6 -

0.4

0.2 r

0.8

0.6 -

0.4

0.2 r

Turn Left Go Straight Turn Right
Action

(4)

Turn Left Go Straight Turn Right
Action

0.8

0.6 -

Q Value

0.4

0.2 r

0.8

0.6 -

Q Value

0.4

02 r

Turn Left Go Straight Turn Right
Action

3)

Turn Left Go Straight Turn Right
Action

Q Value

Q Value

0.8

0.6 -

0.4

0.2 r

0.8

0.6 -

0.4

0.2 r

Turn Left Go Straight Turn Right
Action

(4)

Turn Left Go Straight Turn Right
Action

Figure 18: The averaged Q-values of an agent (agent 3) in each of the four major categories of
states: (1) no wall in sight, (2) wall in front, (3) wall on right, and (4) wall on left. For the
purpose of comparing different agents, the Q-values (for “turn left”, “go straight”, and “turn
right” respectively) of all the input states that fit into one of the above four categories were

averaged for each agent.

35

1 1
0.8 4 0.8
® 0.6 - — ® 0.6 -
=3 =3
© ©
> >
© o4t 1 © oaf
0.2 1 0.2
0 0
Turn Left Go Straight Turn Right Turn Left Go Straight Turn Right
Action Action
(3) (4)
1 T 1
0.8 4 0.8
® 0.6 - — ® 0.6 -
=3 =3
© ©
> >
© o4t 1 © oaf
0.2 1 0.2
0 0
Turn Left Go Straight Turn Right Turn Left Go Straight Turn Right
Action Action

Figure 19: The averaged Q-values of an agent (agent 4) in each of the four major categories of
states: (1) no wall in sight, (2) wall in front, (3) wall on right, and (4) wall on left. For the
purpose of comparing different agents, the Q-values (for “turn left”, “go straight”, and “turn
right” respectively) of all the input states that fit into one of the above four categories were

averaged for each agent.

algorithm /hidden units 1xHard 2xHard 3xHard
Q /15 85.2 (11.8) 238 (3.3) 192 (3.3)
Q /7 73.8 (12.5) 34.6 (14.3) 15.6 (5.5)
Q /3 61.8 (124) 26.0 (2.8) 13.8 (7.4)
Q /2 410 (18.0) 12.9 (9.5) 2.4 (1.9)
RS /15 86.4 (5.5) 61.0 (15.4) 42.0 (9.6)
RS /7 89.0 (3.5) 57.6 (8.3) 42.8 (6.5)
RS /3 832 (5.7) 73.4 (6.7) 49.6 (10.9)
RS /2 79.8 (10.3) 558 (15.7) 52.4 (16.0)

Figure 20: The effect of the number of hidden units in backpropagation networks when single-
agent and multi-agent algorithms were used. The success rates are shown here. The standard

deviations are in parentheses.

36

partitioning, drawing inspirations also from other methods discussed. Specifically, the discussion
of decision trees and CART (and similar ideas by Sanger 1993, Blanzieri and Katenkamp 1996)
led to the formulation of the region-splitting algorithm. The region-splitting algorithm with
weighted averaging (Figure 9) was an extension of it. The GA-based algorithm was another
extension of it (and also a straight application of GA).

We can sum up the optimization issues in different settings as follows:

e On-line optimization of soft partitioning (such as gating discussed in section 5.1): we op-
timize the two sets of parameters, those concerning combination weights wy’s and internal
agent weights wk _,’s, together. The partitioning is the direct result of wy’s. With an
algorithm such as gradient descent, we are guaranteed to reach local optima. If wk ,’s
are guaranteed to reach global optima (with proper internal structures and learning algo-
rithms), then the learning of wy,’s (using e.g. gradient descent) can reach global optima (if
we use the linear combination of agents as in section 5.1 and thus there is no problem of
local optima with regard to wy’s).

e Off-line optimization of soft partitioning: we optimize the two sets of parameters separately,
wy’s and wk,,’s. If the learning of wk,,’s is guaranteed to reach global optima, then
the overall learning can reach global optima (if we use the linear combination of agents).
Otherwise, with gradient descent, local optima can be reached. Compared with the previous

method, the cost will be much higher due to the fact that for each adjustment of wy’s,

k

we have to train w,,

’s to convergence. We can, of course, interleave combination weight
learning and agent training by having a certain amount of agent training without necessarily
training agents to convergence before each combination weight change. In that case, the

method is essentially a batch version of the on-line method just discussed.

e Off-line optimization of hard partitioning (such as region-splitting and GA as discussed

in section 5.2): in this case, we optimize different parameters separately: wy’s, wk,,’s,

k
net

and P (the partitioning into regions). Iteratively, we adjust P, and then wy,,’s and wy’s
(only if multiple agents are used in each region as in MRS) on the basis of the current
P. The optimality can be ensured in this case only in very limited cases (with respect to
region-splitting as discussed in section 5.2). To avoid high cost that would incur in order
to train the system to convergence for each partitioning change, we interleave partitioning

and training of agents (including the training of wy’s when used).

e On-line optimization of hard partitioning: in this case, we optimize three sets of parameters
together simultaneously: wy’s, wk ,’s, and P (the partitioning). When gradient descent is
used, local optima can be reached. In order to perform on-line optimization of P, we need to
select a type of partitioning so that on-line learning methods can be applied. In particular,
when gradient descent is used, we need to create a continuous, differentiable partitioning
function, and thus we need to use soft partitioning (as discussed before), or a probabilistic
function (Singh et al 1994; which resembles soft partitioning except with weights being
interpreted as probabilities instead of as soft boundaries). Due to this difficulty, on-line
optimization of hard partitioning was not adopted in this work.

37

8 Comparisons

With regard to averaging or weighted averaging, in addition to various theoretical analyses men-
tioned earlier (such as Breiman 1996 a, b, Raviv and Intrator 1996, Uedo and Nakano 1996),
empirically, there have been demonstrations of performance advantages resulting from combining
a set of (diversified) learners, for example, Hashem (1993), Perrone (1993), Parmanto, Munro and
Doyle (1996), Rosen (1996), Tumer and Ghosh (1996), and Taniguchi and Tresp (1997). There
are also many empirical demonstrations of bagging and boosting in particular (such as Ting and
Witten 1997, Quinlan 1996, Drucker 1997, Margineantu and Dietterich 1997, etc). However, the
afore-mentioned work did not deal with reinforcement learning.

With regard to partitioning, there are other variations besides what we discussed earlier: for
example, variance-based weighting (that is, setting a gating weight at each input point to be the
inverse of the variance of the corresponding agent at that point), error-based weighting (that
is, setting a gating weight to be the inverse of the residual error of the corresponding agent at
each input point), or density-based weighting (that is, using the conditional probability estimate
P(agent;|x) as the gating weight for agent i at input point z), and their various combinations
thereof (e.g., as discussed by Tresp and Taniguchi 1995). Also very relevant, especially to our
off-line partitioning methods, is the work by Chrisman (1993), McCallum (1996), Blanzieri and
Katenkamp (1996), and Sanger (1991). In these approaches, different criteria for splitting were
adopted, for example, based on differences in Q-value distribution with regard to different actions
(McCallum 1996, Chrisman 1993), based on the variance of error (Sanger 1991), or based on the
amount of error (Blanzieri and and Katenkamp 1996), or based on error consistency (as used in
our methods; i.e., the ratio or difference between the sum of absolute errors vs. the sum of errors;
Blanzieri and Katenkamp 1996). van der Smagt and Groen (1995) formed tree-like structures
for multi-resolution hierarchies through splitting (when error exceeds a preset threshold) and
merging, after training with self-organizing-map (SOM) algorithms. Rosca (1997) devised a
evolutionary divide-and-conquer method that was independently developed but similar to our
GA-based method. !?

Comparing with most of the other weighting and partitioning work (which rarely dealt with
RL; such as Breiman 1996b, Wolpert 1992, van der Smagt and Greon 1995, Jacobs et al 1991,
Jordan and Jacobs 1994, Blanzieri and Katenkamp 1996, Sanger 1991), our work extends into
reinforcement learning tasks, which are more complex because of the lack of any clear learning
target. In fact, in RL, we only have moving targets that are changing constantly during learning.
However, some of these models, such as Chrisman (1993) and McCallum (1996), were specifically
designed for reinforcement learning, especially Q-learning. Comparing with the existing work
involving RL, our approach has some differences and/or relative advantages. Our approach does
not require a priori partitioning of the input/state space such as done in Singh (1994), and
Humphrys (1996). 2° Our approach does not require a priori division of a task into subtasks as
in e.g. Dietterich (1997) and Tadeppali and Dietterich (1997), which is one way of simplifying
learning, but it requires some a priori decisions that determine preset subgoals or predetermined
subsequences and is very different from our approach of learning to partition the input/state

9However, his method relied on complex fitness functions, and used clustering for grouping together different
agents. It is not only more costly computationally, but it also tends to produce irregular regions that are composed
of disjoint parts.

20For example, Humphrys (1996) used pre-wired, differential input features and reward functions for different
agents. Singh (1994) used separate training on different subtasks for different agents.

38

space. Our approach does not even require knowledge to initialize partitioning, as in the case
of “knowledge-based” RBF networks in Taniguchi and Tresp (1997) and Kubat (1997). Our
approach is not limited to selecting an agent for an entire (sub)sequence as in Tham (1995) and
Dayan and Hinton (1993), so different agents may alternate in dealing with a sequence. In terms
of assigning agents to regions, our approach 2! appears to be better justified algorithmically
than more ad hoc methods such as Humphrys (1996) and Dorigo and Gambardella (1995), which
involve purely heuristic methods for competition to determine a winner agent for a region. Our
approach also differs from feature selection approaches such as McCallum (1996) and Chrisman
(1993) (which use decision trees to select input features in order to create useful states on which
reinforcement learning is based), because such work does not divide up the input/state space into
regions for different agents to learn (and thus makes learning tasks easier overall), although they
do divide up input/state space through using decision trees. Our approach differs from radial-
basis functions (such as in Blanzieri and Katenkamp 1996, Schaal and Atkeson 1996, Peterson
and Sun 1998, and van der Smagt and Greon 1995), in that (1) we use hypercubes or other
region forms different from the spherical form used by RBF and (2) more importantly, instead
of a Gaussian function as in the RBF approach, we use a more powerful approximator in each
region, which is capable of arbitrary functional mappings and thus eliminates the need for highly
overlapping regions (especially when hard partitioning is used). 22 Our approach also differs from
CMAC (Albus 1975, Lane et al 1992, Sutton 1996), in that we use a more powerful approximator
in each region, thus avoiding highly overlapping placement of regions again. The same point
applies also to fuzzy logic based methods (see e.g. Takagi and Sugeno 1985).

Our approach is somewhat more suitable for incremental learning that involves changes over
time, unlike some of the existing work that predetermines partitioning and thus makes it hard
or impossible to undergo changes. It is especially suitable for learning situations in which the
world changes in a minor way throughout the course of learning. The changes can be quickly
accommodated due to the use of localized regions which make each individual mapping (as a part
of the overall mapping) to be learned by each approximator (i.e., neural network) simpler and thus
make the overall learning easier. Localized regions also tend to group together inputs/states that
have similar value distributions (with regard to actions) and thus are easier to adjust. When
major change occurs that cannot be localized, our approach can also accommodate them by
creating corresponding drastic changes in the allocations of local agents. However, such changes
are costly.

9 Concluding Remarks

This work is concerned with weighting and partitioning in reinforcement learning tasks. We
developed various multi-agent approaches for the purpose of facilitating reinforcement learning
tasks, through partitioning a input/state space into different regions and/or weighting multiple
agents differently. In this work, various multi-agent learning approaches were viewed as (implicit)

21In our on-line methods, agents are assigned to regions by nonconstant weighting with weights learned on-line
with respect to different points in the input space, and in our off-line methods, by incrementally creating agents
whenever the splitting of a region occurs,

22Note that each individual radial basis function is not capable of arbitrary mappings, and thus overlapping
placement of such functions throughout the input/state space is necessary in order to approximate arbitrary
functions.

39

optimization of the partitioning of the input/state space to achieve better learning performance.
Such optimization can be done either on-line or off-line. Partitioning can be with done either hard
or soft boundaries. However, the goal is always the same: to exploit differential characteristics of
regions and differential characteristics of agents to reduce the learning complexity of agents (and
their function approximators) and thus to facilitate learning overall. We experimentally tested
various approaches discussed in the paper in a reinforcement learning setting, using several tasks
differing in state space size and difficulty level. To summarize our findings from the experiments,
off-line algorithms, especially region-splitting, performed the best; on-line algorithms had var-
ied performance; some good multi-agent methods (especially region-splitting) indeed facilitated
learning and reduced the requisite complexity of individual agents.

Appendix: Diversity in Weighting

The precept of choosing a diverse set of agents (i.e., uncorrelated agents) as opposed to a set
of identical or highly similar agents in the averaging or weighted averaging schemes has been
justified on the basis of bias-variance decomposition (see e.g. Breiman (1996¢), Ueda and Nakano
(1996), Raviv and Intrator (1996), and so on). That is,

variance(avgia;) = avg, (y(x) — avgia;(x))?

= avg, (y(z) — avgmy(rﬁ))2 + (avgravg;a;(z) — avgmy(ﬂ:))2 + avg, (avg;a;(x) — avgzavgiai(m))z

So, the total error is determined mainly by the bias avg,avg;a;(z) — avg,y(z) and variance

avg, (avg;a;(z) — avgzavg;a;(x))?
not reduce the bias of individual agents, it may reduce the variance of individual agents and

of the averaged outcome of the agents. While averaging may

thereby improve the performance of the aggregated system. The variance can be decomposed as
follows (Raviv and Intrator 1996):

avgz(avg;a;(x) — avgmavgiai(.r))2

= avgz(avgiai(m))2 — (avgzavgiai(m))2

=1/n%x Z(avgmaz2 (z) — (avgza;(x))?) + 2/n* Z(avggE (a;(z)aj(z)) — avgza;(z) * avgza;(x))

where n is the number of agents. If a; are independent and identically distributed, then

variance(avg;a;) = 1/n” * Z(avgwa?(:n) — (avgpa;(z))?) = 1/n x variance(a;)
i

where variance(a;) = avg, (a;(r) — avgya;(z))? = avga?(z) — (avgza;(x))? and variance(a;) =
variance(a;) for all i and j. That is, the variance is reduced by a factor of n. On the other hand,

if a;’s are identical, i.e., a;(z) = a(x), for all i and j, then

2 n(n-1)

- * Tvariance(a) = variance(a)

variance(avg;a;) = 1/n * variance(a) +
where variance(a) = avg,(a(z) — avgza(z))? = avg,a®(z) — (avgya(z))?. That is, there is

no reduction. Most averaging methods fall somewhere in between. The heuristics of creating
independent agents has been embedded in a number of well-known approaches, such as “bagging”,

40

in which diversity is achieved through repeated random re-sampling of the training data set and
the use of “unstable” (easily varied) agents, and in “boosting”, in which diversity is achieved
through repeated re-sampling with changing sampling probabilities in favor of those data points
that are misclassified (or mispredicted, Drucker 1997). This idea is also relevant to gating
(Jacobs et al 1991). Jacobs (1997) aimed at achieving not only uncorrelated agents but anti-
correlated (i.e., negatively correlated) agents.

References

J. Albus, (1975). A new approach to manipulator control: the cerebellar model articulation
control. Journal of Dynamic Systems Measure and Control, 97, 270-277.

C. Atkeson, A. Moore, and S. Schaal, (1997). Locally weighted regression. Artificial Intelligence
Review.

R. Bellman, (1957). Dynamic Programming. Princeton University Press, Princeton, NJ.

D. Bertsekas and J. Tsitsiklis, (1996). Neuro-Dynamic Programming. Athena Scientific, Belmont,
MA.

E. Blanzieri and P. Katenkamp, (1996). Learning radial basis function networks on-line. Proc.
of International Conference on Machine Learning. 37-45. Morgan Kaufmann, San Francisco,

CA.

J. Boyan and A. Moore, (1995). Generalization in reinforcement learning: safely approximating
the value function. in: J. Tesauro, and D. Touretzky, and T. Leen, (eds.) Neural Information
Processing Systems 7, 369-376, MIT Press, Cambridge, MA.

L. Breiman, L. Friedman, and P. Stone, (1984). Classification and Regression. Wadsworth,
Belmont, CA.

L. Breiman, (1996a). Bagging predictors. Machine Learning, 24, 123-140.
L. Breiman, (1996b). Stacked regressions. Machine Learning, 24, 49-64.

L. Breiman, (1996¢). Bias, variance and arcing classifiers. Technical Report 460. University of
California, Berkeley.

L. Chrisman, (1993). Reinforcement learning with perceptual aliasing: the perceptual distinction
approach. Proc. of AAAI 183-188. Morgan Kaufmann, San Francisco, CA.

P. Dayan and G. Hinton, (1993). Feudal reinforcement learning. Neural Information Processing
Systems, MIT Press, Cambridge, MA.

T. Dietterich, (1997). Hierarchical reinforcement learning with MAXQ value function decompo-
sition. ftp://www.cs.orst.edu

M. Dorigo and L. Gambardella, (1995). Ant-Q: a reinforcement learning approach to combina-
torial optimization. Technical Report 95-01. Universite Libre de Bruxelles. Belgium.

H. Drucker, (1997). Improving regressors using boosting techniques. 107-115. Proc. of ICML’97.
Morgan Kaufmann, San Francisco, CA.

M. Erickson and J. Kruschke, (1996). Rules and Examplars in Category Learning. Manuscript.

41

Y. Freund and R. Schapire, (1996). Experiments with a new boosting algorithm. 148-156. Proc.
of ICML’97. Morgan Kaufmann, San Francisco, CA.

S. Hashem, (1993). Optimal Linear Combinations of Neural Networks. Ph.D. Thesis, Purdue
University. Purdue, Indiana.

M. Humphrys, (1996). W-learning: a simple RI-based society of mind. Technical report 362,
University of Cambridge, Computer Laboratory. Cambridge, UK.

J. Hertz, A. Krogh, and R. Palmer, (1991). Introduction to the Theory of Neural Computation.
Addison-Wesley, Reading, MA.

R. Jacobs, (1997). Bias/variance analysis of mixtures-of-experts architectures. Neural Compu-
tation. 9, 369-383.

R. Jacobs, M. Jordan, S. Nowlan, and G. Hinton, (1991). Adaptive mixtures of local experts.
Neural Computation. 3, 79-87.

M. Jordan and R. Jacobs, (1994). Hierarchical mixtures of experts and the EM algorithm. Neural
Computation. 6, 181-214.

L. Kaelbling, M. Littman, and A. Moore, (1996). Reinforcement learning: A survey. Journal of
Artificial Intelligence Research, 4, 237-285.

A. Krogh and J. Vedelsby, (1995). Neural network ensembles, cross validation, and active learn-
ing. Neural Information Processing Systems, 231-238. MIT Press, Cambridge, MA.

M. Kubat, (1997). Decision trees can initialize radial-basis-function networks. Manuscript.

S. Lane, D. Handelman, and J. Gelfand, (1992). Theory and development of higher-order CMAC
neural networks. IEEE Control Systems, pp.23-31. April, 1992.

L. Lin, (1992). Self-improving reactive agents based on reinforcement learning, planning, and
teaching. Machine Learning. Vol.8, pp.293-321.

D. Margineantu and T. Dietterich, (1997). Pruning adaptive boosting. Proc. of ICML, 211-218.
Morgan Kaufmann, San Francisco, CA.

M. Mataric, (1995). Reward functions for accelerated learning. Proc. Conference on Simulation
of Adaptive Behavior. MIT Press, Cambridge, MA.

A. McCallum, (1996). Learning to use selective attention and short-term memory in sequencetial
tasks. Proc. Conference on Simulation of Adaptive Behavior. 315-324. MIT Press, Cambridge,
MA.

R. Meir, (1995). Bias, variance and the combination of least sqaures estimators. Neural Infor-
mation Processing Systems, 295-302. MIT Press, Cambridge, MA.

B. Parmanto, P. Munro and H. Doyle, (1996). Reducing variance of committee prediction with
resampling techniques. Connection Science, 8 (3/4), 405-426.

M. Perrone, (1993). Improving Regression Estimation: Averaging Methods for Variance Reduc-
tion with Extensions to General Convex Measure Optimization. Ph.D. Thesis, Brown University.
Providence, RI.

T. Peterson and R. Sun, (1998). An RBF network alternative to a hybrid architecture. Proceed-
ings of IEEE International Conference on Neural Networks, Anchorage, Alaska. May 4-9, 1998.
IEEE Press, Piscataway, NJ.

42

T. Poggio and F. Girosi, (1990). Networks for approximation and learning. Proceedings of IEEE,
78 (9), 1481-1497.

R. Quinlan, (1986). Inductive learning of decision trees. Machine Learning. 1, 81-106.

R. Quinlan, (1996). Bagging, Boosting and C4.5. Proc. of AAAI’96. 725-730. Morgan Kauf-
mann, San Francisco, CA.

Y. Raviv and N. Intrator, (1996). Bootstrapping with noise: an effective regularization technique.
Connection Science, 8 (3/4), 355-372.

C. Reddy and P. Tadepalli, (1997). Learning goal-decomposition rules using exercises. Proc of
ICML’97. 278-286. Morgan Kaufmann, San Francisco, CA.

J. Rosca, (1997). Hierarchical Learning with Procedural Abstraction Mechanisms. Ph.D Thesis,
Department of Computer Science, University of Rochester, Rochester, NY.

B. Rosen, (1996). Ensemble learning using decorrelated neural networks. Connection Science, 8
(3/4), 373-384.

T. Sanger, (1991). Tree-structured adaptive networks for function approximation in high-dimensional
spaces. IEEE Transaction on Neural Networks, 2 (2), 285-293.

S. Schaal and C. Atkeson, (1996). From isolation to cooperation: an alternative view of a system
of experts. Advances in Neural Information Processing Systems 8. pp.605-611. MIT Press.
Cambridge, MA.

R. Schapire, Y. Freund, P. Bartlett, and W. Lee, (1997). Boosting the margin: a new explanation
for the effectiveness of voting methods. Proc.of International Conference on Machine Learning.
322-330. Morgan Kaufmann, San Francisco.

S. Singh, (1994). Learning to Solve Markovian Decision Processes. Ph.D Thesis, University of
Massachusettes, Amherst, MA.

S. Singh, T. Jaakkola, and M. Jordan, (1994). Reinforcement learning with soft state aggregation.
In: S.J. Hanson J. Cowan and C. L. Giles, eds. Advances in Neural Information Processing
Systems 7. Morgan Kaufmann, San Mateo, CA.

R. Sun, (1997). Planning from reinforcement learning. Technical report TR-CS-97-0027, Uni-
versity of Alabama, Tuscaloosa, AL.

R. Sun and L. Bookman, (eds.) (1994). Computational Architectures Integrating Neural and
Symbolic Processes . Kluwer Academic Publishers. Norwell, MA.

R. Sun and T. Peterson, (1997). A hybrid agent architecture for reactive sequential decision

making. In: R. Sun and F. Alexandre, (eds.) Connectionist-Symbolic Integration. Lawrence
Erlbaum Associates. Hillsdale, NJ.

R. Sun and T. Peterson, (1997). A hybrid model for learning sequential navigation. Proc.
of IEEE International Symposium on Computational Intelligence in Robotics and Automation
(CIRA’97). Monterey, CA. pp.234-239. IEEE Press. Piscateway, NJ.

R. Sun and T. Peterson, (1998). Some experiments with a hybrid model for learning sequential
decision making. Information Sciences. 111, 83-107. October, 1998.

R. Sun, T. Peterson, and E. Merrill, (1996). Bottom-up skill learning in reactive sequential
decision tasks. Proc.of 18th Cognitive Science Society Conference, Lawrence Erlbaum Associates,
Hillsdale, NJ. pp.684-690. 1996.

43

R. Sutton, (1988). Learning to predict by the methods of temporal difference. Machine Learning.
Vol.3, 9-44.

R. Sutton, (1990). Integrated architectures for learning, planning, and reacting based on approx-
imating dynamic programming. Proc.of Seventh International Conference on Machine Learning.
Morgan Kaufmann, San Meteo, CA.

R. Sutton, (1996). Generalization in reinforcement learning: successful examples using sparse
coarse coding. Neural Information Processing Systems 8, MIT Press, Cambridge, MA.

P. Tadepalli and T. Dietterich, (1997). Hierarchical explanation-based reinforcement learning.
Proc. International Conference on Machine Learning. 358-366. Morgan Kaufmann, San Fran-
cisco.

T. Takagi and M. Sugeno, (1985). Fuzzy identification of systems and its applications to modeling
and control. IEEFE Transactions on Systems, Man and Cybernetics. 15, 1. 116-132.

M. Taniguchi and V. Tresp, (1997). Averaging regularized estimators. Neural Computation, 9,
1163-1178.

C. Tham, (1995). Reinforcement learning of multiple tasks using a hierarchical CMAC architec-
ture. Robotics and Autonomous Systems. 15, 247-274.

S. Thrun and A. Schwartz, (1995). Finding structure in reinforcement learning. Neural Infor-
mation Processing Systems 7, MIT Press, Cambridge, MA.

W. K. Ting and I. Witten, (1997). Stacking bagged and dagged models. 367-375. Proc. of
ICML’97. Morgan Kaufmann, San Francisco, CA.

K. Tumer and J. Ghosh, (1996). Error correlation and error reduction in ensemble classifiers.
Connection Science, 8 (3/4), 385-404.

V. Tresp and M. Taniguchi, (1995). Combining estimators using non-constant weighting func-
tions. Neural Information Processing Systems 7, 419-426. MIT Press, Cambridge, MA.

N. Ueda and R. Nakano, (1996). Generalization error of ensemble estimators. IEEE International
Conference on Neural Networks, pp.90-95. IEEE Press. Piscateway, NJ.

P. van der Smagt and F. Groen, (1995). Approximation with neural networks. Proc. of 1995
International Conference on Neural Networks, Perth, Australia. IEEE Press, Piscateway, NJ.

C. Watkins, (1989). Learning with Delayed Rewards. Ph.D Thesis, Cambridge University, Cam-
bridge, UK.

M. Wiering and J. Schmidhuber, (1996). HQ-learning. TR IDSIA-95-96.

S. Whitehead, (1993). A complexity analysis of cooperative mechanisms in reinforcement learn-
ing. Proc. AAAI’93, 607-613. Morgan Kaufmann, San Francisco, CA.

D. Wolpert, (1992). Stacked generalization. Neural Networks, 5, 241-259.

L. Xu, M. Jordan and G. Hinton, (1995). An alternative model for mixtures of experts. Neural
Information Processing Systems 7, 633-640. MIT Press, Cambridge, MA.

44

