
Multi-Agent Reinforcement Learning: Weighting andPartitioningRon SunTodd PetersonThe University of AlabamaDepartment of Computer ScienceTuscaloosa, AL 35487April 7, 1999Contact author: Ron Sun, The University of Alabama, Department of Computer Science,Tuscaloosa, AL 35487. Fax: 205-348-2109. Phone: 205-348-6363. Email: rsun@cs.ua.edu.Running title: Multi-Agent Reinforcement LearningACKNOWLEDGEMENT: This work was conducted while the �rst author was funded by the O�ceof Naval Research grant N00014-95-1-0440 and by a supplemental research grant from the Universityof Alabama (which included a research assistantship for the second author). Thanks to the anonymousreviewers for their comments.

1

Multi-Agent Reinforcement Learning: Weighting and PartitioningAbstractThis paper addresses weighting and partitioning in complex reinforcement learning tasks,with the aim of facilitating learning. The paper presents some ideas regarding weightingof multiple agents and extends them into partitioning an input/state space into multipleregions with di�erential weighting in these regions, to exploit di�erential characteristics ofregions and di�erential characteristics of agents to reduce the learning complexity of agents(and their function approximators) and thus to facilitate the learning overall. It analyzes, inreinforcement learning tasks, di�erent ways of partitioning a task and using agents selectivelybased on partitioning. Based on the analysis, some heuristic methods are described andexperimentally tested. We �nd that some o�-line heuristic methods performed the best,signi�cantly better than single-agent models.Keywords: weighting, averaging, neural networks, partitioning, gating, reinforcement learn-ing,

2

1 IntroductionMultiple agents can be used in many problems in lieu of a single agent. The goal is to make acomplex learning task easier and/or to achieve better performance (Whitehead 1993), throughcombining the outcomes of multiple agents (see e.g., Breiman 1996 a, b, c, Schapire et al 1997,Wolpert 1992, Jacobs et al 1991, and Jordan and Jacobs 1994). According to the existing liter-ature, combination can be done in various ways in accordance with the problem characteristics:in classi�cation problems, voting can be used; in numerical prediction problems, averaging canbe used. In combining outcomes, weighting can also be adopted so that each agent carries adi�erent weight (Krogh and Vedelsby 1995, Tresp and Taniguchi 1995, Breiman 1996b). Thegoal is to make sure that the combination is optimal in some sense. Furthermore, weightingneed not be done uniformly throughout the problem space (Tresp and Taniguchi 1995): Uniformweighting may be disadvantageous because of di�ering characteristics of di�erent regions in theproblem space (in which case an agent may perform well in a particular region of the space andshould ideally be weighted more in that region). Thus, we may want to adopt the partitioningof the problem space in addition to weighting so that we can have agents that specialize to localregions (which may or may not overlap each other; see Jacobs et al 1991, Jordan and Jacobs1994, Jacobs 1997, Tresp and Taniguchi 1995). An added advantage of partitioning is that wecan use simpler agents: local agents usually turn out to be a lot simpler than a monolithic,global agent; e.g., simpler functional forms can be used when we approximate polynomial func-tions using multiple agents (Schaal and Atkeson 1996); or much fewer numbers of hidden unitsare needed in backpropagation networks when multiple such networks are used. Consequently,partitioning can potentially improve learning to a signi�cant degree.These methods have not been applied extensively to tasks other than simple regression/predictionand classi�cation problems. Existing proposals related to more involved tasks such as reinforce-ment learning (RL) (i.e., learning by autonomous agents on the basis of only simple feedbackfrom the environment) are limited (such as Tham 1995, Singh 1994, Dayan and Hinton 1993,Humphrys 1996, Dorigo and Gambardella 1995, Dietterich 1997; more discussions of them later).Therefore, there is a need for further exploration of multi-agent approaches in tasks such asreinforcement learning. In this paper, our main aims are (1) to present a uniform perspectiveon various multi-agent approaches (including weighting and partitioning, as mentioned earlier)in reinforcement learning, and (2) to present our new methods motivated and developed in lightof this perspective. In the remainder of this paper, �rst, we will analyze weighting and show theoptimality of several weighting schemes. We will then relate, under the rubric of partitioning,\Mixture of Expert" gating (Jacobs et al 1991), boosting (Freund and Schapire 1996), decisiontrees (McCallum 1996, Chrisman 1993) and so on, and address some issues concerning theiroptimality. In light of these analyses, we will proceed to propose several new ways of achievingoptimal partitioning and optimal weighting. Experiments of these new methods will then bepresented and discussed.The advantage of our methods lies in the fact that they help to make a learning task easierand more manageable and to achieve a better performance (Whitehead 1993), and moreover,they require little a priori domain-speci�c knowledge to begin with, unlike many existing ap-proaches that require detailed domain knowledge to initialize partitioning (such as in the case of\knowledge-based" RBF networks; Taniguchi and Tresp 1997, Kubat 1997), a priori partition-ing of the problem space (such as in Singh 1994 and Humphrys 1996), a priori domain-speci�c3

division of subsequences (such as in the case of gating of reinforcement learners; Tham 1995),or a priori determination of domain-speci�c goal/subgoal structures (such as in the hierarchicalRL approaches of Dayan and Hinton 1993 and Dietterich 1997). Our methods are suitable forincremental reinforcement learning in which changes of domain structures and characteristics canoccur, because it does not involve a priori structuring and tends to make changes easy. In thisrespect, they are similar to the ideas of Jacobs et al (1991), Jordan and Jacobs (1994), Tresp andTaniguchi (1995), and Blanzieri and Katenkamp (1996) (see detailed discussions later). However,these methods did not deal with RL directly. Our methods search for optimal partitioning ofstate space, along with, or separate from, the learning of individual agents, so as to managethe overall complexity of both the learning of individual agents and the combinations of theseagents. In particular, our o�-line methods that learn partitioning separately from the learningof individual agents tend to reduce the overall complexity by isolating to certain extent the twoaspects of learning.2 WeightingWe want to analyze the optimality issues associated with simple averaging and weighted averag-ing. For simple averaging, we have a(x) = Pk ak(x)n (1)where x is an input, k denotes an agent (k 2 [1; n]), ak(x) is the output of agent k, and a(x) isthe averaged output. For weighted averaging, we havea(x) = Pk wkak(x)Pk wk (2)where x is an input, k denotes an agent (k 2 [1; n]), ak(x) is the output of agent k, wk is the weightfor agent k, and a(x) is the combined output. Note that a(x) =Pk wkak(x), if Pk wk = 1. 1In the context of either regression or classi�cation tasks, suppose y(x) is the correct output,where x is the input, and suppose the output of agents are ak(x), where k indicates an agent k.Then the average error (for training or for cross validation) isavgnk=1(y(x) � ak(x))2 = y(x)2 � 2y(x)avgnk=1ak(x) + avgnk=1ak(x)2 (3)� (y(x) � avgnk=1ak(x))2 (4)where avgnk=1ak =Pnk=1 ak=n. This is becauseavgnk=1a2k(x) � (avgnk=1ak(x))2 (5)Summing over all data points, we haveavgnk=1Xx (y(x)� ak(x))2 �Xx (y(x) � avgnk=1ak(x))2 (6)1While the issue of optimality of averaging has been discussed extensively along the line of bias/variancedecomposition, we will extend Breiman (1996 a)'s analysis (the analysis of \bagging", which is simple averagingof agents trained with re-sampling of instances) to address the optimality of weighted averaging. The analysisis limited to showing that averaging or weighted averaging is better than single agents on average, not that itis better than or equal to the best single agent. For some suggestions regarding the latter point, see Breiman(1996b). 4

Note that avgnk=1ak(x) is the output of averaging. This means that the average error of anindividual agent is always greater than or equal to the error of the combined outcome (i.e., theaveraging of all the agents). 2In the above scheme (simple averaging), the weights for all the agents are identical (i.e.,wk = 1=n). But we may vary these weights in the hope of getting better results (i.e., usingweighted averaging instead, as suggested by Wolpert 1992, Breiman 1996 b). To make sure thata di�erential weighting scheme is indeed bene�cial, we need to show thatavgnk=1Xx (y(x) � ak(x))2 �Xx (y(x)� nXk=1wkak(x))2 (7)That is, the weighting scheme of wk 's reduces the error, where wk's are weights, subject to theconstraints wk � 0 and Pwk = 1. A direct way to guarantee that is to minimize (e.g., throughgradient descent) error =Xx error(x) =Xx (y(x) � nXk=1wkak(x))2 (8)with weights subject to the above constraints. Obviously, with such minimization, we are guaran-teed that the needed inequality (7) always holds (i.e., the total error is always reduced), becauseas derived earlier, we have avgnk=1Px(y(x)�ak(x))2 �Px(y(x)�Pnk=1 wkak(x))2, if wk = 1=nfor all k.An alternative way of optimization, which is also common, is to minimizeerror0 =Xx error0(x) =Xx nXk=1wk(y(x)� ak(x))2 (9)with weights subject to the same constraints. As shown by Krogh and Vedelsby (1995),Xx nXk=1wk(y(x) � ak(x))2 (10)=Xx (y(x)� nXk=1wkak(x))2 +Xx nXk=1wk(ak(x) � nXk=1wkak(x))2That is, minimizing this criterion by adjusting combination weights is equivalent to minimizingthe overall sum squared error of the combined outcome (through the �rst term, which is thesame as the earlier approach) plus minimizing the weighted averages of the variances of theagents (through the second term). The second term contributes to the reduction of error byindividual agents, in addition to the reduction of error of the combined outcome (which is alsodealt with by the �rst term).We will refer to the latter approach as the local-error approach (or more speci�cally, theweighted-average-of-local-errors approach), and the former approach as the overall-error ap-proach. As will be discussed later (in the context of reinforcement learning), these two di�erentways constitute two di�erent algorithms for obtaining weights in weighted averaging: that is,either performing gradient descent on (y(x) �Pnk=1 wkak(x))2 or performing gradient descenton Pnk=1 wk(y(x)� ak(x))2. That is, either�wk / @Px(y(x)�Pnk=1 wkak(x))2@wk (11)2As usual, we hope that the estimated errors for an individual or averaged agent are indicative of the trueerrors. 5

or �wk / @PxPnk=1 wk(y(x) � ak(x))2@wk (12)Beside ensuring the combined outcome being better than an individual agent (on average), thesetwo ways go further and ensure that the combination weights are optimal in the sense of mini-mizing the weighted errors as expressed in the two forms given above. 3An issue closely related to weighting is diversity. The precept of choosing a diverse setof agents (i.e., uncorrelated agents) as opposed to a set of identical or highly similar agentsin the averaging or weighted averaging schemes has been justi�ed theoretically on the basisof bias-variance decomposition (see e.g. Breiman 1996c, Ueda and Nakano 1996, Raviv andIntrator 1996, and so on). The heuristics of creating independent agents has been embedded ina number of well-known approaches, such as \bagging", in which diversity is achieved throughrepeated random re-sampling of the training data set and the use of \unstable" (easily varied)agents (Breiman 1996a), and in \boosting", in which diversity is achieved through repeated re-sampling with changing sampling probabilities in favor of those data points that are misclassi�edor mispredicted (Freund and Schapire 1996, Drucker 1997).Certainly other combination functions beside the linear combination can be equally applicablehere. For example, beyond averaging and weighted averaging is the idea of \stacking" as pro-posed by Wolpert (1992) (see also Breiman 1996b). Instead of weighted averaging of outcomesfrom di�erent agents, arbitrarily complex combination functions can be adopted that allow more
exible combinations of outcomes, such as the use of a backpropagation network for combin-ing outcomes of agents, trained using gradient descent (as usual for backpropagation networks)based on cross-validation errors. However, due to the complexity of such combination methods, itwould be harder to ensure accuracy and convergence to optima than simple averaging or weightedaveraging.The above analysis is limited to learning only the combination weights (for weighted aver-aging) without involving the learning of agents themselves. In many circumstances, we trainboth the combination weights and the agents at the same time. This analysis is also limitedto an input space, or a part of an input space, in which combination weights remain constant.When there are multiple regions in an input space, each of which is dynamically formed andacquires dynamically a set of combination weights (for combining the agents within the region),the situation is more complex, due to the fact that we need to consider the partitioning of thespace into regions (when this division is not pre-given) in addition to optimizing the weights forthe agents in each region.3 Weighting and Input Space PartitioningNow let us analyze di�erent ways of partitioning. A number of recent proposals involving multiplelearned agents are concerned with partitioning input spaces into multiple regions. Here the word\region" is used in a generalized sense and refers generically to a subset of inputs.First of all, the \Mixture of Experts" gating model produces a \soft" partitioning of spacesamong di�erent experts, with di�erent experts being weighted di�erently, overlapping each other3A variation to the afore-discussed weighting schemes is to interpret combination weights as probabilities; thatis, instead of combining outcomes of individual agents using these weights, we can select probabilistically theoutcome of an individual agent, using the relative weight of an agent as the probability of selecting it.6

in their domains of expertise (Jacobs et al 1991, Jordan and Jacobs 1994, Xu et al 1995). Accord-ing to the gating model, using a least-squares approach in a prediction task setting, we attemptto �nd optimal agents ak, k 2 [1; n], and the corresponding optimal weights wk, so as to minimizethe weighted average of errors (Jacobs et al 1991):error =Xk errork =Xk Xx2Swk(x)(y(x) � ak(x))2 (13)where y(x) is the target output for input x in the input space S, ak(x) is the output of agent kfor input x, and wk(x) is the weight for agent k and input x (notice that weights vary across theinput space).To see how this model works, let us make some simplifying assumptions. If we can dividethe elements of S into \equivalence classes" or regions, Sj 's, in each of which wk(x) (k 2 [1; n])remains approximately the same (denoted as wkj). We have [jSj = S and Si \ Sj = ;; if i 6= j.Let ek;Sj denote Px2Sj (y(x)� ak(x))2. Then, we haveerrork =Xj Xx2Sj wk(x)(y(x) � ak(x))2 �Xj wkj Xx2Sj(y(x) � ak(x))2 =Xj wkjek;Sj (14)Thus, we have error =Xk errork �Xk Xj wkjek;Sj (15)We further assume Pk wk(x) = 1 for each x 2 S, and thus Pk wkj = 1 for each j. We canencourage \binarization" of wkj , by using steep sigmoidal function to represent these weightsand using competitive learning schemes to encourage \winner-take-all" among di�erent agents ineach region, or by using feature based logical formulas for specifying regions (see more discussionregarding this formulation in section 4). If, for each j, we wind up having one k with wkj � 1and other k's with wkj � 0, supposing wkk � wkj for all j, thenwkj � (1 if j=k0 otherwise (16)Thus, we have error �Xk Xj wkjek;Sj �Xk wkkek;Sk �Xk ek;Sk (17)From this formula, it is clear that, with the simpli�cation, the gating model is equivalent tominimizing the local errorPx(y(x) � ak(x))2 in each of the regions x 2 Sk. In so doing, we tryto optimize (1) the partitioning of S into regions Sk's, each of which is handled by one agent,and (2) each of the agents ak (which can be a neural network, and can be optimized over itschosen region Sk with regard to the sum squared error: Px2Sk(y � ak(x))2).Without the above simplifying assumption, instead of a \hard" partitioning into mutuallyexclusive and exhaustive regions, the least-squares gating will carry out a \soft" partitioning,resulting in graded boundaries and overlapping regions (that are speci�ed by wk(x) 2 [0; 1]).But the optimization objective is essentially the same. In this case, we interpret the combinationweights as weighting agents di�erently at each point in the input space and as specifying the\soft" boundaries of regions. 44Note that this is not necessarily the case, especially when hard partitioning of regions is used and multipleagents are active in each region; see section 5.2. Note also that this is di�erent from the type of partitioning usedin Singh et al (1994) in which partitioning has hard boundaries but inputs are assigned to regions probabilistically.7

We can also look into the other error function discussed in section 2:error =Xx2S(y(x)�Xk wk(x)ak(x))2 (18)In this case, we encourage \binarization" as before. Then, let Sk = fxjwk(x) � 1;wj(x) �0;8j 6= kg and ek;Sk =Px2Sk(y(x)� ak(x))2. We haveerror =Xk Xx2Sk(y(x)�Xk wk(x)ak(x))2 �Xk Xx2Sk(y(x)� ak(x))2 =Xk ek;Sk (19)So the resulting optimization problem is basically the same: optimizing the partitioning andoptimizing the agents simultaneously. Yet another error function, which is a variation of the�rst, is as follows (Jacobs et al 1991):error = �Xx2S(logXk wk(x)e�(y(x)�ak(x))2) (20)The same derivation leads to the same conclusion in this case as well. (We will later apply thesemethods to RL.)Second, boosting (as in Freund and Schapire 1996), in a way, can also be viewed as \soft"partitioning of the input space. This is because in boosting, each agent focuses on di�erent\regions" of the input space, due to the fact that at each iteration of boosting, di�erent inputsare weighted di�erently so as to create a focus on a particular \region" (broadly de�ned) of theinput space. However, in this case, unlike in gating with \soft" partitioning, the combinationweights are �xed with respect to agents, not a function of inputs. Formally, at each iteration,instances are sampled according to a sampling weight distribution and are used to train an agent(a \weak learner"; Freund and Schapire 1996). Starting with an uniform distribution of samplingweights for training instances (i.e., w(0)i = 1, for all instances i), weights for the next iterationk + 1 are modi�ed based on the performance of the current agent Ak at the current iteration:w(k+1)i = (w(k)i � �k1��k if instance i is correctly classi�edw(k)i otherwise (21)where k is the iteration (i.e., agent) number and �k is the total error rate for the current agent Ak(we should have �k < 0:5, or the algorithm should be terminated). That is, weights are reducedfor those instances that are handled correctly by the currently trained agent, so they are lesslikely to be sampled for the next iteration. The re-sampling probability for the next iterationis calculated according to pi(k + 1) = w(k+1)iPi w(k+1)i . Breiman (1996c) proposed a similar boostingalgorithm (which he termed Arcing): it proceeds as in the original boosting algorithm, exceptthe re-sampling probability is calculated as follows: pi(k + 1) = 1+m4iPi(1+m4i) , where mi is themisclassi�cation rate of the ith instance by all the previous agents: A1,, Ak. 5 For combiningthe outputs in boosting, Freund and Schapire (1996) proposed a weighted voting scheme, inwhich the k agent is weighted by log 1��k�k , where �k is error rate for agent k. Breiman (1996c),however, showed that equal voting is equally e�ective.5The performance of this variation is comparable to the original boosting algorithm. Thus the conclusion wasdrawn that the speci�c re-weighting scheme was inconsequential (Breiman 1996c).8

In either of the two boosting schemes, at each iteration, the graded focus on some instancescreates a form of \region" in the input space: those instances that have the highest weightsare the centers of the region (because an agent assigned to the region will handle the instancesin accordance with these weights), while instances having lower weights constitute (graded)boundaries of the region in ways much like a radial basis function (Poggio and Girosi 1990). 6One agent is trained for each such region, and the �nal classi�cation/prediction regarding a pointin the input space is given by the voting of all the agents whose \regions" cover the point inquestion. In order to strengthen our argument regarding the role of partitioning in boosting, wecan \strengthen" the afore-described boosting process: instead of the above described change toweights at each iteration, we can perform a more radical adjustment of weights, that is,w(k+1)i = (0 if instance i is correctly classi�ed1 otherwise (22)so that only those instances that were not correctly handled by the previous agent (obtainedfrom the previous iteration) are focused on during the current iteration. What this amounts to isthe hard partitioning of the inputs into winner-take-all regions, with each region handled by anindividual agent, which is the logical extreme of the original boosting method. 7 According to theanalysis by Breiman (1996c), which showed that variations of the original boosting algorithm havelittle impact on performance, we conjecture that this variation should perform approximately aswell as the original method proposed by Freund and Schapire (1996). However, in this case, thenature of this method as partitioning inputs becomes apparent.Third, radial basis function networks constitute yet another way for soft partitioning of theinput space (Poggio and Girosi 1990). Such functions have the highest activation at theirspeci�ed centers and gradually taper o� until having near zero activation at a certain distanceaway from their respective centers. Each of the (non-exclusive and overlapping) regions ishandled by an individual agent (i.e., function). The overall classi�cation or prediction can becalculated by weighting individual agents in accordance with the distance from the center of eachagent to a particular point in question. Similarly, locally weighted regression (Atkeson et al1997) can also be viewed as soft partitioning of the input space.On the other hand, a decision tree (Quinlan 1986) can be viewed as a \hard" partitioningof the input space into multiple (relatively) homogeneous regions in the sense that each regionideally leads to a unique classi�cation. In decision trees, there is no weighting involved. Startingwith one node (the root) that contains all the instances, we incrementally create more and morenodes by splitting a current node. The basic idea is that a node should be split to maximallygain information (or equivalently, to reduce entropy). We thus choose the input feature withthe maximum information gain for use in splitting. Successive splitting leads to a tree structure.CART (Breiman et al 1984) is similar to decision trees in this regard. It can also be viewed asa form of \hard" partitioning, which is based on minimizing the total variance. Starting withone node (the root) that contains all the instances, we incrementally split nodes by determining6In other words, the vector of weights speci�es a graded region with its shape fully determined by weightvalues: that is, given W = (w1; w2; ::::;wn), we obtain a region: W 0 = (w01; w02; ::::;w0n), where w01 = maxi wi, andw0j = maxi62fw01;::::;w0j�1g wi. Thus, W 0 speci�es the instances from the centers to the furtherest boundaries.7In this method, it may be the case that multiple agents are assigned to identical regions or overlapping regions.This is because weights on some or all instances may oscillate back and forth between 0 and 1 and thus generateidentical or overlapping regions. 9

dimensions/types compatible with mechanismsBoundary types:soft overlapping graded boundary functionhard overlapping, non-overlapping 0/1 boundary functionRelation to others regions:overlapping WTA, non-WTA; soft, hard overlapping partition functionnon-overlapping WTA; hard non-overlapping partition functionOutcome combination methods:WTA soft, hard; overlapping, non-overlapping WTAnon-WTA soft, hard; overlapping averaging or weighted averagingInstance-to-region assignment:deterministic soft, hard; overlapping, non-overlapping; WTA, non-WTA deterministic assignment functionprobabilistic hard; WTA, non-WTA; overlapping stochastic assignment functionFigure 1: Types of partitioning along several dimensions.a split point so as to minimize:error = Xx:xi<xs(y(x) � avgx:xi<xsy(x))2 + Xx:xi�xs(y(x) � avgx:xi�xsy(x))2 (23)where xi is a dimension of the input, xs is a split point along that dimension, and (y(x) �avgx:xi<xsy(x))2 is the variance of the predicted values on the one side of the splitting point and(y(x) � avgx:xi�xsy(x))2 is the variance on the other side. We choose an xs along a dimensioni that minimizes that measure. As with decision trees, incrementally splitting nodes leads to atree structure. (These methods will lead to some new methods for RL to be discussed later.)In all, many methods exist for partitioning the input space given feedback information fromthe task to be learned, whether it is classi�cation, prediction, or reinforcement learning (whichis to be discussed later). In prediction tasks, the feedback is the value to be predicted; inclassi�cation tasks, the feedback is the correct class label; in reinforcement learning tasks, thefeedback is (sparse and delayed) reward/punishment, i.e., an indication of how well a sequence ofactions achieved its objective. Regardless of the types of feedback, the objective of partitioningis to divide up the world structurally, in ways that best facilitate the performance of the tasks. Itis advantageous to group similar inputs into the same regions and separate dissimilar inputs intodi�erent regions (i.e., \cutting the world at its joint"). The partition can be either hard, withoutgraded boundaries, or soft, with graded boundaries delineated by either sampling weights (asin boosting) or updating weights (as in gating). Regions may be overlapping (which is a mustfor soft partitioning), or may be mutually exclusive (which may be the case for some typesof hard partitioning; e.g., decision trees). The output can be generated in a winner-take-all(WTA) fashion (including the cases in which each region is handled solely by one agent). On theother hand, in non-winner-take-all (non-WTA) combinations, each region is handled by a set ofagents (or all of the agents) with each weighted di�erently in accordance with its performancecharacteristics in the region, in order to enhance the overall performance (see section 2 regardingthe optimality of weighted averaging; Breiman 1996b). The mapping from an input to a region ina partitioning can be either probabilistic or deterministic. See Figure 1 for the table catalogingthese di�erences.4 Partitioning and Reinforcement Learning4.1 Review of Reinforcement learningFirst of all, a brief review of single-agent reinforcement learning (see Bellman 1957, Bertsekasand Tsitsiklis 1996, Kaelbling et al 1995) is in order. Assume there is a discrete-time system10

(t = 0; 1; 2; ::::) in which the state transitions are dependent on controls (or actions) performedby an agent. That is, P : S �! UT : S;U �! Swhere S is the set of state, U is the set of controls (actions), T is the state transition functionthat maps the current state and the current control to a new state in the next time step, andP is the (reactive) policy that determines the control (action) at the current time step given thecurrent state: P (xt) = ut. A Markovian process determines a new state xt+1 (resulting from astate transition) after control/action ut is performed in state xt:prob(xt+1jxt; ut; xt�1; ut�1; ::::::) = prob(xt+1jxt; ut) = pxt;xt+1(ut) (24)In this process, costs (or its opposite, rewards) can occur at certain states. That is,J(x0) = limN!1E(N�1Xt=0
tg(xt+1)jx0) (25)where J is the cost/reward estimate for a starting state x0, controls/actions are selected by a�xed policy P, g denotes cost, E denotes expectation, and
 2 (0; 1] is a discount factor. Theidea of discounting is that costs/rewards incurred in the future matter less than that incurrednow; the further o� a cost/reward is, the less important it is. When
 = 1, there is in e�ect nodiscount at all.To �nd a cost/reward estimate that results from following a particular policy of control(action), there are a number of algorithms, one of which is value iteration, which iterativelyupdates value estimates J :J(xt) = maxu Xxt+12S pxt;xt+1(u)(g(xt+1) +
 � J(xt+1)) (26)where xt is any state and xt+1 is the new state resulting from action u (determined by a policyP). The updating of J for di�erent states can be done asynchronously (i.e., states can be updatedin any order), as long as all states are updated in�nitely often (Bertsekas and Tsitsiklis 1996).A variation is to keep track of the component inside \max" in the right-hand side of thisequation, using the notation Q(xt; ut):Q(xt; ut) = Xxt+12S pxt;xt+1(ut)(g(xt+1) +
 � J(xt+1)) (27)= Xxt+12S pxt;xt+1(ut)(g(xt+1) +
 �maxu Q(xt+1; u)) (28)where ut ranges over all possible controls/actions for state xt.In reinforcement learning (with Q-values as speci�ed above), updating can be done completelyon-line, without explicitly using probability estimates. It is done based on actual state transitions;that is, on-line \simulation" is performed. The updating is also incremental, necessitated by thefact that we use only the information about the current state transition. That is,Q(xt; ut) := (1� �)Q(xt; ut) + �(g(xt+1) +
 �maxut+1 Q(xt+1; ut+1)) (29)= Q(xt; ut) + �(g(xt+1) +
 �maxut+1 Q(xt+1; ut+1)�Q(xt; ut)) (30)11

Or �Q(xt; ut) = �(g(xt+1) +
 �maxut+1 Q(xt+1; ut+1)�Q(xt; ut)) (31)where � 2 (0; 1) is the learning rate and ut is determined by an action policy, such as ut =argmaxuQ(xt; u), or using the Boltzmann distribution prob(ut) = eQ(xt;ut)=�Pu eQ(xt;u)=� (where � is thetemperature). With enough sampling, the transition frequency from xt and ut to xt+1 shouldapproach pxt;xt+1(ut), and thus provides an estimation. Therefore, the results will be the samevalues as in the earlier speci�cation of Q-values. This updating formula is commonly referred toas Q-learning (Watkins 1989).With either Q-values or J-values, we need function approximators when state spaces arelarge. We assume that a neural network, such as a backpropagation network, is used (see, e.g.,Lin 1992, Sutton 1990). Although we are aware of potential unpredictability of this type offunction approximation (see Boyan and Moore 1995, Sutton 1996), we hope that partitioningcan help to remedy the problem, in lieu of using a local approximator such as a RBF network(see Comparisons later).In relation to other more frequently studied types of learning tasks, we note that the output ofa reinforcement learning agent, such as that of Q-learning as described above, can be interpretedin two di�erent ways:� As prediction. In Q-learning systems, the output Q(xt; u), where xt is the current stateand u is the chosen action in xt, can be viewed as predicting the discounted cumulativereinforcement: Q(xt; u) =Xt0
t0g(xt+t0)or equivalently, in terms of step-wise updating, as predicting one-step lookahead values:Q(xt; u) = g(xt+1) +
maxv Q(xt+1; v)where g(xt+1) is the reinforcement received after action u, and xt+1 is the new state result-ing from action u. However, we should note that in RL, the target for prediction is a movingtarget, because with learning, maxv Q(xt+1; v) may change over time. Thus, Q(xt; u) mayneed to change as well.� As classi�cation. In Q-learning systems, Q(xt; u) indicates, in state xt, whether an actionu is desirable or not. If an action is desirable, then its Q-value should be high, or close to1. If an action is undesirable, then its Q-value should be low, or close to 0. We assume thatstochastic decision making is done based on Q-values in choosing an action to be performed.Thus, the �nal outcome can be interpreted as stochastic classi�cation decisions. However,this interpretation ignores the point that Q-values are estimates of discounted cumulativereinforcement, and leads to the \coarsening" of Q-values. It can work in some circumstancesand may help to simplify learning.These two interpretations serve as the foundation in the present work for addressing partitioningand weighting in reinforcement learning.4.2 Partitioning in reinforcement learning tasksWith the above overview of reinforcement learning, we are now ready to extend it to multi-agent learning settings. Reinforcement learning can be di�cult, due to, among others things,12

complex value functions and large state spaces as a result of complex real-world scenarios. Evenwhen function approximation is used for value functions, the accuracy of approximation and thecomplexity of learning are seriously a�ected by the complexity and the lack of smoothness ofvalue functions to be approximated, as discussed by e.g. Boyan and Moore (1995). Thus we needto �nd ways to reduce the complexity of value functions. Partitioning a reinforcement learningtask is one way that can help to reduce the complexity and to improve learning (in terms of, e.g.,speeding up learning).Let us discuss all the possibilities of partitioning reinforcement learning tasks, synthesizingvarious existing proposals (Breiman 1996a, b, c, Wolpert 1992, Jacobs et al 1991, Singh 1994,Tham 1995) and new possibilities:� Partition the input space (the state space), so that di�erent inputs located in the di�erentregions of the state/input space can be handled by di�erent agents (e.g., the gating model;see Jacobs et al 1991, Jordan and Jacobs 1994).� Partition a sequence, so that each subsequence is handled by a di�erent agent (e.g., Wier-ing and Schmidhuber 1996, Singh 1994, Tham 1995, Thrun and Schwartz 1995). Thepartitioning of subsequences can either be predetermined (as in Singh 1994), or better yet,automatically determined as part of reinforcement learning (as in Wiering and Schmidhuber1996).� Partition actions (i.e., the action space, when we deal with action-oriented tasks), so thateach agent will be responsible for only certain limited types of actions. For example, Dayanand Hinton (1993) limited an agent to certain actions at a certain level of abstraction. Sunet al (1996) and Sun and Peterson (1997) divided actions into two types, speed and turn,and each type was handled by a separate agent.� Partition the goal of a task, when there are multiple explicit goals to be achieved in re-inforcement learning. For example, in Dayan and Hinton (1993), the goal of an agent isdetermined on the
y, through the action of a higher-level agent. In Reddy and Tadepalli(1997), the partitioning of the goal is learned through using externally provided examplesthrough depth-�rst search. Static partitioning of goals can also be done (e.g., Sun et al1996, Sun and Peterson 1997, 1998).� Partition the reinforcement (in reinforcement learning), so that certain reinforcements aregiven in association with achieving certain aspects of a goal (e.g., Sun et al 1996, Mataric1995). This can be viewed as a form of the partitioning of goals.� Partition outputs. We divide up outputs into multiple sets (either overlapping or disjoint,either probabilistically or deterministically). The partitioning can be done in a variety ofways: for example, (1) based on a set of equal agents each over the entire input space (whichis the simplest way, discussed in section 2; see also Breiman 1996a regarding \bagging"),(2) based on inputs (and thus the input space is also partitioned and the partitioning ofoutputs is the result of partitioning inputs; e.g., see Jacobs et al 1991; see also the discussionlater of our methods), or even (3) based on the particular outputs of some subsets of agents(e.g., see Erickson and Kruschke 1996). 8 The combination of the outputs of the agents8In Erickson and Kruschke (1996), which involves the combination of \exemplar nodes" and \rule nodes",gating is determined based on the \exemplar nodes", independent of the \rule nodes".13

involved in partitioning can be done by averaging (Breiman 1996a), by weighted averaging(Breiman 1996b), or even by more complex methods (Wolpert 1992). 9As has been discussed in the two previous sections, in this work, we are mainly concerned withpartitioning outputs through averaging and weighted averaging (i.e., weighting), and on top ofthat, partitioning the input space for the sake of better weighted averaging (or a better singleagent, as an extreme case) in each region. 10The basic motivation for partitioning inputs/outputs in RL is that it can make learningeasier, especially when a neural network is used for each agent. Divide-and-conquer is generallya good idea and can lead to improved performance. In particular, Whitehead (1993) showed thatlearning time in RL is dependent on the size of the state space and the minimum distance betweenthe starting state and the goal state. By dividing the input/state space into multiple (more orless) separate subspaces, the learning in each subspace is facilitated because of the smaller size ofa subspace, and potentially the overall learning is also facilitated. Another way to see this (whenneural networks are used) is that, since the ease of convergence of a BP network is dependenton the number of input/output patterns to be learned and the complexity of the set of patterns(i.e., the complexity of the underlying function; Hertz et al 1991), by dividing the set of trainingpatterns into multiple (more or less disjoint) sets and using a separate network for learning eachof them, we have less patterns for each network and thus likely improve the convergence of thenetworks. In addition, due to the tendency in BP networks of smoothing the outputs (becauseof generalization), more homogeneous patterns being assigned to each network will lead to moreaccurate outputs (generalization). Partitioning does lead to assigning similar patterns to eachnetwork, and thus more homogeneous mappings are to be learned by each network.5 Improving Partitioning for Reinforcement LearningGiven the perspective in the previous sections, there are the following two possibilities for achiev-ing better partitioning:� On-line optimization: on-line, soft partitioning can be carried out based on a chosen op-timality criterion/method, such as least squares (LS), maximum likelihood (ML) (Jordanand Jacobs 1994), or expectation-maximization (EM) (Jordan and Jacobs 1994). Partition-ing is done on-line, at the same time as individual agents are trained, and it is learned aspart of optimizing the same criterion as that used in training individual agents. Gradientdescent/ascent is usually used to minimize/maximize a criterion.� O�-line optimization: partitioning is obtained separately from the training of individualagents, but based on the performance of these agents (during training or during a separatetesting/cross-validation phase).Below we will explore some possibilities in on-line and o�-line optimization for reinforcementlearning, inspired by ideas discussed in sections 2 and 3.9In case of reinforcement learning tasks, we partition the Q (or J) value outputs so that they combine togenerate values that are proper or even optimal in some sense (in terms of either a prediction or classi�cationinterpretation; see the more detailed discussion later in section 5.1).10Other types of partitioning, e.g., partitioning sequences, actions, goals, and reinforcement, are dealt withelsewhere; see e.g. Sun et al (1996), Sun (1997), and Sun and Peterson (1997, 1998).14

gating

input

output

agent 1 agent 2 agent n

weights

Figure 2: On-line partitioning (gating).5.1 On-line OptimizationLet us discuss on-line optimization �rst. The general structure of the system for soft, on-linepartitioning with multiple agents (i.e., gating) is shown in Figure 2. In this system, we assumethat the outputs (Q-values) from multiple agents are combined using the weighted average, andthen the Boltzmann distribution is used to select an action based on the combined outputs(Q-values).In on-line optimization, the learning rule for partitioning is often derived from the samelearning criterion in exactly the same way as the learning rule for individual agents. We willlook into various possibilities for a learning criterion along several dimensions: target values (i.e.,the desired outputs, which hinge on whether we view reinforcement learning as a prediction taskor a classi�cation task; see section 4), error functions (measuring the overall di�erence betweentarget values and actual outputs; see section 2), and optimization methods (such as LS, ML, orEM), based on which gradient descent/ascent is then used to derive learning rules.First of all, target values can be the Q-values for the new states (discounted or not, alongwith reinforcements received), in which case the task is viewed as predicting such Q-values ateach step of a task (see the earlier discussion regarding the two views of Q-values); or they canbe either 0 or 1 depending on a measure that determines the desirability of the action, in whichcase the task is viewed as a classi�cation task in which at each step (state) we separate desirableactions (which are \positive instances" and have a target value close to 1) from undesirableactions (which are \negative instances" and have a target value close to 0). Let dk(xt; u) denotethe Bellman residual (i.e., the Q-learning updating amount) for agent k. With the predictiontask interpretation, we de�nedk(xt; u) =
maxv Qk(xt+1; v) + g(xt+1)�Qk(xt; u) (32)where xt+1 is the state resulting from action u in state xt. With the classi�cation task interpre-tation, we de�ne dk(xt; u) = class(xt+1)�Qk(xt; u); (33)where class(xt+1) = 1 if a certain criterion of success is met 11 or class(xt+1) = 0 if otherwise.11The criterion is:
Pk wk(xt+1)Pj wj(xt+1) �maxv Qk(xt+1; v) + g(xt+1)�Pk wk(xt)Pj wj(xt) �Qk(xt; u) > �. See Sunand Peterson (1998) for the discussion of its justi�cation.15

Either as a prediction di�erence or as a misclassi�cation, the quantity dk is a local error measurefor agent k, The global error measure can be derived as a combination of local error measures.In terms of deriving a global error measure used for deriving learning rules, there are a num-ber of possibilities (see Section 2 for justi�cations concerning these methods). First we considercombining separate error measures of individual agents (that is, the local-error approach). Wecan combine local errors based on either the weighted average (Breiman 1996b) or the exponen-tiated weighted average (Jacobs et al 1991), both of which treat each agent as a separate entityand tries to minimize each of their errors separately in proportion to their contributions to theoverall error (the justi�cations in terms of reducing the error by the weighted average of outputsas well as reducing the variance of each agent were discussed in section 2; Krogh and Vedelsby1995). Di�erent from the analysis in section 2, here we use normalized weights, because it iseasier this way to keep the total (normalized) weight at 1, which was assumed in the previousanalysis (section 2), and to create a form of competition among agents. That is, the combinederror is de�ned as follows: error(xt ; u) =Xk wk(xt)Pj wj(xt) (dk(xt; u))2 (34)or error(xt ; u) = �logXk wk(xt)Pj wj(xt)e�(dk(xt;u))2 (35)Another way is to use an overall-error measure directly (that is, the overall-error approach;section 2), instead of summing individual error measures in ways that lead to trying to minimizeeach individually. In this case, the overall-error measure is the squared overall Bellman residual:error(xt ; u) = (do(xt; u))2 (36)wheredo(xt; u) =
Xk (wk(xt+1)Pj wj(xt+1) �maxv Qk(xt+1; v)) + g(xt+1)�Xk (wk(xt)Pj wj(xt) �Qk(xt; u)) (37)if we use a prediction task interpretation. That is, we generate a prediction of the weightedaverage of the next-state Q-values from the agents by a weighted average of individual predictions,instead of each agent predicting its own next-state Q-value (the justi�cation of it in terms ofreducing the average error by the weighted average of outputs was discussed in section 2; Breiman1996b). 12 With a corresponding classi�cation task interpretation, we have the following overallBellman residual: do(xt; u) = class(xt+1)�Xk wk(xt)Pj wj(xt) �Qk(xt; u) (38)where xt+1 is the next state resulting from action u in state xt and class(xt+1) is determinedin ways speci�ed earlier. The overall-error measure has the characteristics of encouraging12Note that wk(xt+1)Pj wj (xt+1) is di�erent from wk(xt)Pj wj (xt) if xt 6= xt+1, because weights are dependenton states/inputs. Thus
Pk wk(xt+1)Pj wj(xt+1) � maxv Qk(xt+1; v) + g(xt+1) � Pk wk(xt)Pj wj (xt) � Qk(xt; u) 6=Pk wk(xt)Pj wj(xt) � dk(xt; u). 16

the agents to cooperate with each other (in making prediction or classi�cation), rather than tocompete with each other as in the case of the �rst two measures (Jacobs et al 1991).In terms of optimization methods, we can use e.g. least squares (LS), maximum likelihood(ML), or expectation-maximization (EM). We will limit ourselves to LS, because ML and EMrequire some assumptions regarding underlying probability distributions and thus lead to para-metric statistical models (Jordan and Jacobs 1994). 13 For deriving learning rules based on LS,we may use steepest descent, Newton's method, Quasi-Newton method, Gauss-Newton method,or other numerical methods (Bertsekas and Tsitsiklis 1996). Here we will focus on (on-line)incremental steepest descent approach (i.e., updating is done based on gradients after only oneor a few steps). We need some form of soft partitioning with graded boundaries determined byweights, for the sake of calculating the gradients of partitioning. We need to derive the learningrules for two types of weights: combination weights wk and individual agent network weightswknet for agent k.Let us �rst look into the weighted-average-of-local-errorsmeasure. Using incremental steepestdescent, after experiencing (xt; u) (i.e., performing action u in state xt), we update the two typesof weights as follows: 14�wk(xt) = �(�@error(xt ; u)@wk(xt)) = � � Pj 6=k wj(xt)(dj(xt; u)2 � dk(xt; u)2)(Pj wj(xt))2 (39)�wknet = �(�@error(xt ; u)@Qk(xt; u) @Qk(xt; u)@wknet) = � � dk(xt; u) � wk(xt)Pj wj(xt) � @Qk(xt; u)@wknet (40)where � and � are learning rates. When the gating weights wk(xt) are generated using a lookuptable, then �wk(xt) can be viewed as the amount of updating applied to the corresponding entryof the table. When the gating weights wk(xt) are generated by a gating network (based on inputsxt), �wk(xt) can be viewed as the error to be minimized by the gating network. A learning ruleconcerning the internal weights of the gating network (not speci�ed here) can then be easilyderived. Similarly, the learning rule for �wknet depends on the neural network implementingQ-learning, because the derivative @Qk(xt;u)@wknet depends on the particular structure of the neuralnetwork chosen for an agent.Using the exponentiated weighted-average-of-local-errors measure, we similarly derive thefollowing incremental steepest descent rules:�wk(xt) = �(�@error(xt ; u)@wk(xt)) = �� 1Pj wj(xt)e�dj(xt;u)2 �Pj 6=k wj(xt)(e�dk(xt;u)2 � e�dj(xt;u)2)Pj wj(xt) (41)�wknet = �(�@error(xt ; u)@Qk(xt; u) @Qk(xt; u)@wknet) = � � dk(xt; u) � wk(xt)e�dk(xt;u)2Pj wj(xt)e�dj(xt;u)2 � @Qk(xt; u)@wknet (42)13In addition, although EM and ML may learn faster, there is no indication of better eventual performancecompared with LS (Jordan and Jacobs 1994).14In deriving the learning rules, in accordance with either the prediction or the classi�cation interpretation,we treated the target values as constants, although strictly speaking they were not. The same applies to otherderivations later. 17

Using the overall-error measure, we have the following learning rules:�wk(xt) = �(�@error(xt ; u)@wk(xt)) = � � do(xt; u) � Pj 6=k wj(xt)(Qk(xt; u)�Qj(xt; u))(Pj wj(xt))2 (43)�wknet = �(�@error(xt ; u)@Qk(xt; u) @Qk(xt; u)@wknet) = � � do(xt; u) � wk(xt)Pj wj(xt) � @Qk(xt; u)@wknet (44)In some cases, combination weights tend to keep falling or rising simultaneously. Thus,competition among weights is necessary in order to keep the total weight constant to avoidsaturation (under
ow or over
ow). We derived heuristically the following competition: givenweight updating amount �wk(xt), the new updated weight is wt+1k (xt) = wtk(xt) + �wk(xt),where t indicates the current step. Then the adjusted weight updating amount is :�0wk(xt) = wt+1k (xt)Pk wt+1k (xt) � wtk(xt) = wtk(xt) + �wk(xt)Pk(wtk(xt) + �wk(xt)) � wtk(xt) (45)which keeps the total at 1. Although this is not a principled solution, it helps the computationalimplementation.Care must also be taken in setting learning rates for the gating network and the agent networksand in setting their respective schedules of changes. In general, we want to initialize the learningrate of the gating network to a higher value compared with that of the agent networks, and thenquickly reduce it to a very low value (or 0), so that gating can learn and stabilize faster than theagent networks, so as to provide a stable structure (a stable division of subtasks) in which agentscan learn and become stable (see Experiments).Given the current Q-values, the decisions on actions to be performed at each step are madein the following way. At each step, each agent receives the same input and computes its outputs(i.e., Q-values). Then weighted averaging is used for combining the Q-values of all the agents:Q(xt; u) = Pk wk(xt)Pj wj (xt)Qk(xt; u). An action is then selected based on the maximum Q-value(i.e., ut = argmaxuQ(xt; u)) or the Boltzmann distribution of Q-values.The complete but generic speci�cation of the algorithm is in Figure 3. The details of thelearning rules and error measures (and their di�erent interpretations and implications) have beendiscussed above in text and thus omitted from the speci�cation in the �gure. The optimality ofthe above methods in terms of minimizing the total error is only guaranteed to the extent thatthe (on-line) incremental steepest descent method is likely to be optimal with respect to �ndlocal minima/maxima.Note that di�erent inputs can be given to the gating network compared with those given toindividual agents. This may potentially improve learning, since potentially di�erent informationmay be needed for individual agents performing a task and the gating mechanism that assignssubtasks to di�erent agents. The inputs for partitioning must re
ect the useful structure ofthe state/input space of a task, and enable meaningful division of the space into regions. Forexample, instead of a local view that is given to agents as their inputs, we can use x-y coordinatesfor partitioning (see Experiments). The inputs can be either full or partial descriptions of currentstates, and thus either full state-based or partial observation-based RL may be used. (This isessentially the same for o�-line methods, to be discussed next.)18

1. Each agent receives the same input and computes its output Q-values2. Combine the Q-values of all the agents through weighted averaging: Q(xt; u) =Pk wk(xt)Pj wj (xt)Qk(xt; u). An action is then selected based on the maximum Q-valuesor the Boltzmann distribution3. Perform the selected action4. Each agent receives the same new input and computes its new Q-values5. Generate the global error with one of the following two ways:5.1. generate a local error measure for each agent based on either the Q-updating for-mulas:
maxv Qk(xt+1; v) + g(xt+1) � Qk(xt; u), or the abstract Q-updating formula:class(xt+1) � Qk(xt; u). Then combine the local errors based on either the weightedaverage or the exponentiated weighted average5.2. generate a global error measure directly based on the weighted combined Q-updatingformula:
Pk wk(xt+1)Pj wj(xt+1) �maxv Qk(xt+1; v) + g(xt+1)�Pk wk(xt)Pj wj(xt) �Qk(xt; u)6. Apply an appropriate updating rule derived from the adopted global error measure tothe gating network, adjusting its weights7. Apply an appropriate updating rule derived from the adopted global error measure tothe individual agents, adjusting their internal weights8. Go to step 1 Figure 3: The on-line gradient descent algorithm.5.2 O�-line OptimizationO�-line optimization provides better alternatives for partitioning the state/input space (for thesake of producing better overall performance). This is because o�-line methods enable a learn-ing/partitioning decomposition 15 | separating the two issues and optimizing them separately,which facilitates the whole task. There are many possible ways for o�-line optimization of par-titioning. However, what is especially important is the fact that we can use hard partitioning ino�-line optimization; this is because in the o�-line case, we do not need to calculate gradients ofpartitioning and are thus free to choose either hard or soft partitioning, and hard partitioning iseasy to do o�-line. 16 In addition, according to the analysis by Meir (1995), in many cases, hardpartitioning with non-overlapping regions can be superior to overlapping (hard or soft) partition-ing. Krogh and Vedelsby (1995) also showed the advantage of hard, non-overlapping partitioning,based on their analysis of ensemble generalization with the decomposition of the generalizationerror into the weighted average of individual generalization errors and the ensemble ambiguity(see section 2). An added advantage of o�-line partitioning (the learning-partitioning decompo-sition) is that we can use di�erent criteria, based on di�erent inputs, for partitioning, di�erentfrom the learning of agents (and their speci�c inputs and learning criteria).We can sum up the main process behind di�erent methods for o�-line, hard, non-overlappingpartitioning in a uni�ed way: The algorithm is described in generic terms in Figure 5. Thealgorithm basically generates one or more plausible partitions and test agents on the partition(s)to measure performance; based on the performance, it selects one or more better partitions topursue further, by generating variations of these selected partitions for testing; the loop goes on15Here, learning refers to the learning of individual agents.16This is unlike the case of on-line optimization, in which the use of gradient descent basically dictates that softpartitioning be used (otherwise, it would be di�cult, if not impossible, to calculate gradients).19

input

output

agent 1 agent 2 agent n

region
specs

Figure 4: O�-line partitioning.until some termination conditions are satis�ed. This algorithm is, in a way, a variation of thegating model of Jacobs et al (1991), but it is o�-line in terms of partitioning the input/statespace while the gating method is on-line. The general structure of a multi-agent system whenhard, non-overlapping partitioning is used is shown in Figure 4. We assume that at each step, theinput to the system is checked against region speci�cations and directed to the agent responsiblefor handling the region to which the input belongs. The output (the Q-values) from the selectedagent is used as the �nal outcome of the whole system. The Boltzmann distribution is used toselect an action based on these Q-values. We use the prediction task interpretation here for agentlearning.In terms of means for generating partitions and for selecting better partitions, we have thefollowing possibilities:� We can apply gradient descent/ascent (based on LS, ML, or EM methods) in a batch mode(with large batches). For example, assuming a gating network is used, while we trainindividual agents in a completely on-line fashion, we train the gating network after eachlong period of training of individual agents during which we collect updates that are laterused to adjust the gating network.� Or, if the space of all possible partitionings is relatively small, we can perform an explicitsearch of possible partitionings, e.g., with hill-climbing.� A more promising search technique is the genetic algorithm (GA), which can be eitherapplied to the gating network (with weights of the gating network being mutated andcrossed over during search), or applied directly to partitions (with regions of a partitionbeing mutated and crossed over).� Yet another possibility is a decision tree like procedure, in which progressive splittingis applied that leads to an optimal partitioning of the input/state space (Sanger 1991,Blanzieri and Katenkamp 1996). The criterion for splitting can be based on one of theerror functions mentioned earlier.Let us discuss the last two possibilities below. First, the decision tree like region-splittingalgorithm is described in Figure 6. In the algorithm, a region in a partition (non-overlapping andwith hard boundaries) is handled exclusively by a single agent (a neural network) (see Figure 4).20

The algorithm looks at one partition at a time and attempts to �nd a better partitioning bysplitting regions incrementally when a certain criterion is satis�ed (e.g., Quinlan 1986, Breimanet al 1984). The splitting criterion is based on the total magnitude of the errors that incurredin a region during training and also based on the consistency of the errors (which concerns thedistribution of the directions of the errors, either positive or negative). These two considerationscan be combined (Blanzieri and Katenkamp 1996). Speci�cally, in the context of Q-learning, erroris de�ned as the Q-value updating amount (the Bellman residual). We select those regions tosplit that have high sums of absolute errors (or alternatively, sums of squared errors), which areindicative of the high magnitude of the errors (the Bellman residuals), but have low sums of errors,which together with high sums of absolute errors are indicative of low error consistency (i.e., thatQ-updates/Bellman residuals are distributed in di�erent directions; Blanzieri and Katenkamp1996, Sanger 1991). That is, our combined criterion isconsistency(r) = jXx2r error(x)j �Xx2r jerror(x)j < threshold1 (46)where x refers to the data points encountered during previous training that are within the regionr to be split. We de�ne error(x) = maxu0 Qk0(x0; u0) + g(x0) � Qk(x; u), where x is a (full orpartial) state description, u is the action taken, x0 is the new state resulting from action u instate x, k is the agent responsible for x, and k0 is the agent responsible for x0.Next, we select a dimension to be used in splitting, within each region to be split. Insteadof being random, we again use the heuristics of high sums of absolute errors but low errorconsistency. Since the sum of the absolute errors remains the same regardless what we do, whatwe can do is to best split a dimension to increase the overall error consistency, i.e., the sums oferrors (which is analogous to CART; see Breiman et al 1984). Speci�cally, we compare for eachdimension i in the region r the following measure: the increase in consistency if a dimension isoptimally split, that is,�consistency(r; i) = maxvi (j Xx2r:xi<vi error(x)j + j Xx2r:xi�vi error(x)j) � jXx2r error(x)j (47)where vi is a split point for a dimension i, x refers to the points within region r on the one sideor the other of the split point, when projected to dimension i. This measure indicates how muchmore we can increase the error consistency if we split a dimension i optimally. The selection ofdimension i is contingent upon �consistency(r; i) > threshold2 (48)Among those dimensions that satisfy �consistency(r; i) > threshold2, we choose the one withthe highest �consistency(r; i). For a selected dimension i, we then optimize the selection of asplit point v0i based on maximizing the sum of the absolute values of the total errors on bothsides of the split point:v0i = argmaxvi(j Xx2r:xi<vi error(x)j + j Xx2r:xi�vi error(x)j) (49)where v0i is the split point for dimension i. Such a point is optimal in the exact sense that errorconsistency is maximized (Breiman et al 1984). Then, we split the region r using a boundarycreated by the split point: We create a split hyperplane using the selected point spec = xj < vj .21

1. Initialize one, or a set of, partition(s), each of which contains one or more regions thattogether cover the entire input/state space2. Train a set of agents on each of the partition(s); record the performance on each partition3. Modify the partition(s) through operations such as merge, split, and recombination, basedon the performance on each partition4. Train a set of agents again on each of the new partition(s); record the performance oneach partition5. If a termination condition is satis�ed, stop; else, go to 3Figure 5: The o�-line optimization algorithm. Here is the generic description of o�-line opti-mization. Speci�c instances will be described later.We then split the region using the hyperplane: region1 = region\ spec and region2 = region \:spec, where region is the speci�cation of the original region. Replicating the existing agentfor handling the old region, two new agents are created to handle the two new regions. Aftersplitting a region, if the number of regions exceeds R, we combine some (randomly selected)existing regions until the number is right (preferring adjacent regions for combination). After acombination of two regions, one of the two agents involved is deleted.From the above description, this algorithm is clearly related to a number of partitioningalgorithms we examined in section 3, such as decision trees (Quinlan 1986) and CART (Breimanet al 1984), in addition to being inspired by the gating model (Jacobs et al 1991). Note that itis di�erent from stochastic hard partitioning (such as Singh et al 1994), which assigns inputs todi�erent regions probabilistically and is better suited for on-line partitioning (using e.g. gradientdescent).The region-splitting algorithm is domain independent in the sense that no domain knowledge(e.g., concerning which dimension to split and at which point) is needed. However, domainknowledge, when available, can be useful. For example, in a navigation setting, if we know whichinput dimension (such as a particular instrument reading) is more important, then we can usethat dimension �rst. This way not only we are more likely to �nd a good partition, but also wecan save much computation.Let us now turn to an algorithm more complex than region-splitting, a GA-inspired algorithmwith direct manipulations of regions, which is described in Figure 7. It is more complex, becauseit considers simultaneously a set of di�erent partitions and then select a subset of them, modifythem, and test them further. It thus involves a much larger search space. In this algorithm, weuse two types of operations inspired by GA: mutation and crossover. In the mutation operation,the selection of regions to be split, dimensions to be split and split points as well as the selectionof regions to be combined are guided by the same criteria prescribed for the previous algorithm(which will not be repeated, but see Figure 6). Thus, di�erent from the usual GA, mutation isnot random but follows the consistency measure; mutation therefore has a strong likelihood ofimproving a partition. Because of this, mutation can be safely applied to all the partitions in apopulation. In the crossover operation, we use the performance of a partition (i.e., the successrate) as the \�tness" value in selecting partitions to be crossed over. But the selection of thesplit hyperplane for crossover (see Figure 7) is random. Duplication operations in the usual GAare not explicitly speci�ed here but implied in the crossover operation (as detailed in Figure 7):Successful partitions will be copied into the next generation. See Figure 7 for the full details of22

1. Initialize one partition to contain only one region that covers the whole input/state space2. Repeat for n times (each time with a di�erent randomly generated initial condition):Train an agent on the partition for m trials.3. Further split the partition4. Repeat for n times (each time with a di�erent randomly generated initial condition foreach agent): Train a set of agents, with each region assigned to a di�erent agent, eachfor m trials.5. If no more splitting can be done, stop; else, go to 3Further splitting a partition:For each region that satis�es consistency(r) < threshold1 do:1. Select a dimension j in the input/state space that maximizes �consistency, providedthat �consistency(r; j) > threshold22. In the selected dimension j, select a point (a value vj) lying within the region andmaximizing �consistency(r; j)3. Using the selected point in the selected dimension, create a split hyperplane: spec =xj < vj4. Split the region using the newly created hyperplane: region1 = region \ spec andregion2 = region\:spec, where region is the speci�cation of the original region; createtwo new agents for handling these two new regions by replicating the agent for the originalregion5. If the number of regions exceeds R, keep combining regions until the number is right:randomly select two regions (preferring two adjacent regions) and merge the two; keepone of the two agents responsible for these two regions and delete the otherFigure 6: The region-splitting algorithm. An instance of o�-line optimization. See text fordetails.

23

1. Randomly generate a population (i.e., a set) of di�erent partitions, each of which containsa certain number of regions (randomly determined between 1 and the upper limit R)2. Repeat for n times (each time with a di�erent randomly generated initial condition foreach agent): Train a set of agents on a corresponding partition in the partition population(with each region in the partition assigned to a di�erent agent), each for m trials; do sofor each partition. Record the average performance on each partition3. Perform crossover on the entire population of partitions; perform mutation on eachpartition in the resulting population4. If the number of iteration is less than a preset limit, goto 2; else, stopSee Figure 8 for further details.Figure 7: The GA-based algorithm. An instance of o�-line optimization.this simpli�ed version of GA.In all of these above algorithms, regions are made up of hypercubes, each of which is speci�edby a logical conjunction of simple inequalities each concerning one of the input dimensions.Beside such a simple type of region, we can also use alternative types of regions, for example,hyperspheres as speci�ed by radial basis functions. Or we can use a linear mapping (e.g., byusing a linear perceptron network for specifying regions). We can even extend to more general,arbitrarily shaped regions as, for example, speci�ed by a backpropagation network (which canserve as a gating mechanism). Such an extension would be analogous to extending weightedaveraging to general \stacking" (Wolpert 1992), although it is on the input side, as opposed tostacking which is on the output side.If we measure optimality of the above partitioning algorithms by the resulting overall per-formance (for example, based on a pre-set success rate criterion, the number of steps or trialsto reach a success rate criterion, or transfer performance to test generalization abilities), thereis no guarantee of optimality. The quality of the results from the region-splitting algorithm isdependent on the quality of the heuristics used. The quality of the results from the GA basedalgorithm relies on the optimality of GA per se. Empirical evidence in the literature in numerousdomains indicates that GA is a good weak search/learning algorithm although there is no formalguarantee of being optimal. On the other hand, if we measure optimality by the maximizationof �consistency (and by the increase of consistency, which is a result of the maximization of�consistency), then there is some potential: if only local minima are sought, the region-splittingalgorithm is optimal in this sense. 17While the above description of the speci�c algorithms is for hard partitioning, soft partitioningas in the case of the on-line algorithms is also possible. In a way this is a generalization ofbagging and boosting algorithms, as well as a generalization of the gating method, due to theuse of overlapping regions. However, computationally there is little justi�cation for it sincewe are doing partitioning o�-line and thus are not required to use soft partitioning. Anotheralternative is to keep hard partitioning but use multiple agents in each region. This way we canmaintain the simplicity of hard, o�-line partitioning but at the same time improve the overall17Note that for the sake of simplicity, we assumed that errors were �xed values to be distributed to di�erentregions and thus to di�erent agents in order to reduce inconsistency; in reality these values change as a functionof partitioning and are not �xed, which further complicates analysis.24

Crossover:Do the following for l times (where l is randomly selected between 0 and l2) over the entirecurrent-generation population:1. Select two partitions: p1 and p2, with the probability of selecting a partition determinedby a Boltzmann distribution of success rates of di�erent partitions2. Divide the input space into two half spaces (s1 and s2):2.1. Randomly select a dimension i and a split point vi in the dimension that can be usedto split both partitions;2.2. For any x: if xi > vi, then x belongs to s1; otherwise, it belongs to s2;3. Crossover p1 and p2 (by combining all the regions in p1 that are in s1 and all the regionsin p2 that are in s2): any region is in the resulting partition, if and only if region 2 p1and region 2 s1 or region 2 p2 and region 2 s2 (any region that crosses the borderbetween s1 and s2 is pre-split into two regions in the two half spaces respectively); eachregion keeps its corresponding agent4. If the number of regions exceeds R, do the following until the number of regions is at orbelow R: select two regions (preferring adjacent regions) and combine them; keep one ofthe two agents responsible for the two original regions and delete the other5. Put the resulting partition into the next-generation population6. Remove an existing partition that has the lowest performance from the current-generationpopulationIn the end, move all the remaining partitions in the current-generation population into thenext-generation populationMutation:For each partition, repeat for l times (where l is randomly selected between 0 and l1):1. Split a selected region, along a selected dimension at a selected point (using the prescribedcriteria; see Figure 6 for details); create two new agents for handling these two regionsby replicating the agent for the original region2. If splitting leads to exceeding the limit on the number of regions in a partition (R),combine two randomly selected regions in the partition (preferring adjacent regions) (seeFigure 6); keep one of the two agents responsible for the two combined regionsRandom generation of a partition (of R0 regions):Initialize the partition to contain one region region1 that covers the entire input/state space.For i= 2 to R0 do:1. Randomly select a region r where r 2 [1; i� 1]2. Randomly select one dimension j in the input/state space that can be used to split regionr3. Randomly select a point (a value vj) in dimension j that can be used to split region r4. Create two regions out of the original region r by using the selected value point: specr :=specr \ xj < vj and speci := specr \ xj � vj (whereby one new region is used to replacethe original region and the other new region is set to be region i)Create R0 agents, each responsible for one region.Figure 8: Some details of the GA-based algorithm.
25

1. Initialize the partition to contain only one region that covers the whole input space2. Train a set of K agents on the region.3. Further split the partition4. Repeat for n times (each time with a di�erent randomly generated initial condition foreach agent): Train K agents on each region, while learning a set of combination weightson each region.5. If no more splitting can be done, stop6. Else, go to 3Further splitting a partitioning (up to a total of R regions): see Figure 6.Figure 9: The region-splitting algorithm with weighted averaging. A special case of o�-lineoptimization.performance in each region by combining the outcomes of multiple agents (see section 2; Breiman1996 a,b). For example, consider an extension to the region-splitting algorithm: the region-splitting algorithm with weighted-averaging (i.e, with weighted averaging being added to theregion-splitting algorithm described in Figure 6) shown in Figure 9. Since this is a straightforwardextension, we will not repeat the details of the region splitting algorithm. However, the learningrules need to be speci�ed. For combination weights in each region, using incremental steepestdescent on the weighted-average-of-local-errors measure, we obtain�wk = � � Pj 6=k wj(dj(xt; u)2 � dk(xt; u)2)(Pj wj)2 (50)Di�erent from the gating algorithm (see section 5.1 and Figure 3), however, is the fact thatthe combination weights wk's are not completely input-dependent; rather, they are uniformthroughout a region. We do not need to consider partitioning when we learn the combinationweights | the partitioning is done separately, o�-line, with hard boundaries. For internal weightsof agents in a region, we have,�wknet = � � dk(xt; u) wkPj wj � @Qk(xt; u)@wknet (51)The derivative @Qk(xt;u)@wknet is dependent on the network type and structure chosen for an agent.Other error measures discussed before can also be adopted; see section 5.1 for details. The overallperformance from combining these agents can bene�t from the diversity among these agents (seeAppendix) as in the case of weighted averaging (section 2).6 Experiments6.1 TasksWe looked into two maze tasks, with di�erent di�culty levels in their layouts, one easy and onehard. For each maze, we also varied the size of the layout. Maze 1 of the small size is shownin Figure 10. Maze 2 of the small size is shown in Figure 11. The median size is the double ofthe original size, and the large size is 3 times the original size. We performed experiments withall the combinations of the task parameters: di�culty level of maze layout (easy, hard), and size26

�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

������������������

��������������������

������������������

������������������

������������������

������������������

����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

����
��

�������
�������
�������
�������

�������
�������
�������
�������

������
������
������
������

������
������
������
������

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

���
���
���
���

���
���
���
���

S

GFigure 10: The easy maze.
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������

��������
��������
��������
��������

��������
��������
��������
��������

�������
�������
�������
�������

�������
�������
�������
�������

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��������
��������
��������
��������

��������
��������
��������
��������

�������
�������
�������
�������

�������
�������
�������
�������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�������
�������
�������
�������

�������
�������
�������
�������

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

G

S

Figure 11: The hard maze.of maze layout (large, median, small). The task setting is as follows: an agent has views of �vesides: left, soft left, front, soft right, and right, and can tell in each direction whether there is anobstacle or not, up to a distance of two cells away. (Thus, the input is orientation-dependent.) Ithas also the information of the distance and the bearing to the goal. There is a total of 20 binaryinputs (and thus more than 106 possible inputs/states). The separate inputs for gating or regionspeci�cations consist of x-y coordinates. An agent can move by selecting two output parameters:turn (left, right, or no turn) and speed (0 or 1). 400 steps are allowed for each episode. If agentsfail to reach the goal within the limit, failure is declared. Reinforcement is provided (1) whenthe target is reached, the value of which is 1 in this case, (2) when the time runs out, the valueof which is -1, and (3) when any move is made, the value of which is determined as follows:when the agent is going toward the target, the reinforcement is gr = 1=c � ((x2 � x1)=x)4, wherec = 5:0, x2 � x1 is the distance traveled in the target direction in one step, and x is set to 40.When the agent is going away from the target, the reinforcement is gr0 = �0:5gr.6.2 Algorithms and ParametersWe tested the following multi-agent RL algorithms: we tested on-line partitioning (gating), witheither the prediction or the classi�cation interpretation, with the weighted-average-of-local-errorscombination, the exponentiated weighted-average-of-local-errors combination, or the overall-error(thus, there is a total of 6 algorithms, denoted as PWA, PEWA, PO, CWA, CEWA, CO, where P27

indicates prediction, C indicates classi�cation, and WA, EWA or O indicate respective error com-bination methods). We also tested the batch version of gating (denoted as BA), in which we usedthe prediction interpretation with the weighted-average-of-local-errors measure (which resembledo�-line algorithms; section 5.2). We tested o�-line partitioning, including region-splitting (de-noted as RS) and GA. We also tested a variation of region-splitting with multiple agents for eachregion combined with weighted averaging, trained with the weighted-average-of-local-errors mea-sure (denoted as MRS). For comparison purposes, we also tested simple averaging and weightedaveraging (without partitioning) of multiple agents (denoted as SA and WA respectively), basedon the prediction interpretation and the weighted-average-of-local-errors measure. In construct-ing agents for these two types of models, random variations of the initial internal structures ofindividual agents (including initial weights, numbers of hidden units, and learning rates) wereused to generate uncorrelated agents (see Appendix; Raviv and Intrator 1997, Breimen 1996a).We also tested single-agent Q-learning (denoted as Q).The parameters for di�erent algorithms were set as follows: The learning rate for each indi-vidual agent was set at �0 = 0:05 initially and gradually lowered by �t := �0��t, where � = 0:996.and t denotes episode numbers. 7 hidden units were used for the backpropagation network ineach agent. The discount factor
 was set at 0:95. The initial temperature � for the Boltzmanndistribution action selection was set at 0:04 and the temperature changed according to �t = �0��t,where � = 0:9999. Speci�cally, in gating algorithms (i.e., on-line partitioning, including PWA,PEWA, PO, CWA, CEWA, CO), we used a linear network for gating (as in Jordan and Jacobs1994), and we used the x-y coordinates as input to the gating network while local orientationdependent views (described earlier) were given to agents. In the classi�cation-based versions, theerror criterion � was set at 0.05. The number of agents was set at 5 (but we also tried othernumbers). We set the learning rate of the gating network to be higher than the individual agentnetworks initially and reduced it toward 0 more quickly; that is, �0 = 0:07 and �t := �0 � �t,where � = 0:985. In BA, we updated gating weights every 20 episodes (while updating agentsimmediately; section 5.2). In RS (region splitting), threshold1 was set at -100, and threshold2at 5. The maximum number of regions (R) was set at 20, and the number of repetition n was setat 1. We trained agents on a partition for 20 episodes before the partition was changed. In MRS,we set the number of agents in each region (K) at 5 (but we also tried other numbers), and theother parameters were the same as used in RS (speci�ed before). In GA, the population size ofdi�erent partitions was set at 10, l1 at 20, and l2 at 10. We trained agents on each partition in ageneration for 20 episodes (but we also tried other numbers). The maximum number of regionsin each partition (R) was set at 20, and the number of repetition n was set at 1. The thresholdsin the mutation operation were set the same way as in RS. In SA and WA, 5 agents were used.6.3 ResultsLet us compare the di�erent algorithms discussed earlier by their test performance in each maze.The test performance was measured by the average success rates over 100 \test" episodes, con-ducted after su�cient training of each algorithm (that is, when their averaged learning curvesleveled o�), using their respectively best parameter settings within the range of parameter set-tings we tested. Roughly, on average, the on-line partitioning algorithms (PWA, PEWA, PO,CWA, CEWA, CO) took a total of 1000 training episodes, the weighting/averaging algorithms(SA and WA) took 1000 episodes, the single-agent algorithm (Q) took 1000 episodes, the o�-line28

partitioning algorithm RS (and MRS) also took 1000 episodes (due to the use of non-overlappingregions in RS, there is no need for additional training episodes), but GA took 2000 episodes(due to having 10 partitions in each generation, with each partition trained for 20 episodes, andtraining for 10 generations). Note also that the on-line algorithms and the weighting/averagingalgorithms require far more updatings than the other algorithms, because of their use of overlap-ping or identical regions and thus the simultaneous updating of multiple (5) agents at each step.Figure 12 shows the performance of all the algorithms after training in each of the six di�erentmazes (with all the combinations of di�culty levels and sizes). Overall, we can see that somepartitioning methods improved performance compared with single agent systems. Comparedwith all the other multi-agent algorithms, RS fared the best: it was better than or comparableto all these other algorithms, and it was better than others in more di�cult settings (i.e., thehard mazes in large sizes), which demonstrated the merit of this algorithm.Comparing on-line and o�-line partitioning. As shown in Figure 12, the on-line (gating)algorithms performed worse than RS and GA (the o�-line algorithms). The performance di�er-ences were statistically signi�cant. This is because the on-line (gating) algorithms performedboth agent learning and partitioning at the same time (both with gradient descent) and thuscomplicated the overall process. On the other hand, the o�-line algorithms were able to separatethe two aspects of learning and thus facilitated the overall learning process as discussed earlier.Comparing RS and GA. GA in general conducts a more thorough search than RS, and thusincurs a higher cost, but we would expect it to achieve a better performance. However, judgingfrom the experimental data, performance-wise there was little di�erence between the two. Thiswas probably because of the randomness introduced by the crossover operation. It appeared thatin this particular setup there was not much advantage in introducing such randomness.Comparing RS and MRS. The two algorithms performed comparably (although MRS wasslightly better, the di�erence was not statistically signi�cant). Similarly, WA and SA did notoutperform Q.Comparing gating algorithms. As mentioned earlier, the classi�cation interpretationleads to inaccurate Q-values, and thus we expect worse performance from it compared with theprediction interpretation. This conjecture was borne out by the data: PWA performed betterthan CWA, PEWA performed better than CEWA, and PO performed better than CO. Thedi�erences were statistically signi�cant. The exponentiated versions performed at an equal orbetter level compared with the non-exponentiated versions (by comparing PEWA with PWA andPO, and comparing CEWA with CWA and CO). The batch version performed no better thanthe corresponding non-batch version (that is, BA performed comparably to PWA). Overall, thegating algorithms were not better than single agent Q-learning, simple averaging, or weightedaveraging.Note that in the above experiments, the x-y coordinates provided to the multi-agent algo-rithms for the purposes of partitioning were also provided to single-agent Q-learning as part ofits input, so as to avoid putting the single-agent algorithm at a disadvantage. In so doing, wecompared the performance of the single-agent algorithm with vs. without the x-y coordinates,and found no signi�cant performance di�erence.Examining RS. Let us look into RS speci�cally. Figure 13 shows the learning curve (interms of success rate for each block of 20 episodes). Figure 14 shows the consistency curve (interms of the consistency measure used in RS). Both demonstrate a gradual improvement of amulti-agent system using RS over the course of learning. Figure 15 shows a partition of regions29

algorithm n task 1xEasy 2xEasy 3xEasy 1xHard 2xHard 3xHardRS 100.0(0.0) 94.6(5.1) 93.4(6.5) 89.0(3.5) 57.6(8.3) 42.8(6.5)MRS 100.0(0.0) 98.2(2.4) 96.0(3.4) 91.2(8.2) 64.4(8.7) 48.8(5.0)GA 97.2(5.6) 97.2(2.4) 96.8(2.3) 86.6(8.6) 49.4(38.5) 21.8(13.2)PWA 100.0(0.0) 94.2 (3.3) 95.2(6.8) 77.8(9.5) 35.4(19.8) 6.6(7.0)PEWA 100.0(0.0) 99.6 (0.5) 93.4(2.1) 79.2(6.6) 37.2(10.2) 6.0(8.9)PO 100.0(0.0) 99.4 (0.8) 98.2(1.2) 70.2(13.3) 19.4(10.1) 12.0(5.2)CWA 99.6(0.8) 50.4(37.9) 38.6(36.4) 27.8(32.5) 0.6(0.4) 0.4(0.8)CEWA 100.0(0.0) 94.4 (2.3) 92.2(3.3) 63.2(7.0) 9.0(9.0) 9.5(4.5)CO 100.0(0.0) 75.8(38.8) 66.8(37.8) 38.6(14.2) 3.6(4.0) 0.4(0.5)BA 100.0(0.0) 97.6(1.4) 97.6(1.9) 76.2(5.7) 20.2(17.5) 8.8(10.9)SA 100.0(0.0) 99.4(0.8) 97.3(0.9) 56.6(16.3) 22.0(6.2) 10.6(1.5)WA 100.0(0.0) 99.8(0.4) 92.6(5.5) 64.4(14.2) 18.6(3.1) 12.6(4.2)Q 100.0(0.0) 95.0(6.6) 93.4(6.5) 73.8(12.5) 34.6(14.3) 15.6(5.5)Figure 12: Comparisons of di�erent algorithms in terms of average test performance (averagenumbers of successful episodes out of 100 test episodes). The standard deviations are in paren-theses. See text for explanation.as the result of RS, and also some trajectories through these regions of the maze to reach thegoal (at the end of learning).As conjectured earlier, using multiple agents may reduce the requirement regarding the com-plexity of individual agents. That is, when multiple agents are used, we may be able to learnthe same task equally (or more) e�ectively using simpler individual agents. Because we usedbackpropagation networks, the complexity of the agents was determined by the number of hid-den units in their networks. Our data (see Figure 20) shows that when we gradually reducedthe number of hidden units in Q (a single-agent algorithm) and RS (a multi-agent algorithm)respectively, Q performed worse and worse, but the performance of RS was hardly a�ected.Recall that the point of using di�erent agents for di�erent regions was to be able to specializeeach agent to a di�erent region, in order to exploit di�erential characteristics of regions and todevelop di�erential characteristics in the corresponding agents (and thus to reduce the complexityof individual agents). Figures 16, 17, 18, and 19 show the average Q-values for each agent infour typical settings. Comparing these di�erent agents (each for a di�erent region), we foundthat the average Q-values of di�erent agents were di�erent, which implied that di�erent actionpolicies were formed (comparing Figures 16, 17, 18, and 19). Each agent was indeed specializedto its corresponding region because its Q-values were speci�cally concerned with actions in thatspeci�c region.7 DiscussionsLet us retrace the development of various ideas in this paper. The discussion of gating 18 ledto the adoption of on-line partitioning for RL (with all its variations in terms of error measures;Figure 3). O�-line algorithms for RL (Figure 5 as well as Figures 6 and 7) were then formulatedas alternatives to the on-line algorithms that enable the decomposition of learning (of agents) and18The analysis of bagging led to the analysis of weighted averaging (an extension of simple averaging), whichin turn led to partitioning in general and gating in particular.30

0

5

10

15

20

0 200 400 600 800 1000

S
uc

ce
ss

Episode

Hard x1
Hard x2
Hard x3

Figure 13: The learning curve of RS (in terms of success rates) in three hard mazes.

-700

-600

-500

-400

-300

-200

-100

0

0 200 400 600 800 1000

A
ve

ra
ge

 M
in

 C
on

si
st

en
cy

Episode

Hard x1
Hard x2
Hard x3

Figure 14: The consistency measure over the course of learning in three hard mazes.
31

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������

��������
��������
��������
��������

��������
��������
��������
��������

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��������
��������
��������
��������

��������
��������
��������
��������

�������
�������
�������
�������

�������
�������
�������
�������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��������
��������
��������
��������

��������
��������
��������
��������

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����

��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

����������������
��
��
��

��
��
��
��

��������
��������
��������
��������

��������
��������
��������
����������

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

S

G

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��������
��������
��������
��������

��������
��������
��������
��������

�������
�������
�������
�������

�������
�������
�������
�������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��������
��������
��������
��������

��������
��������
��������
��������

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

G

S

Figure 15: A partition of regions from RS and ten sample successful trajectories through theseregions (as tested after training).
32

(1) (2)
0

0.2

0.4

0.6

0.8

1

Turn Left Go Straight Turn Right

Q
 V

al
ue

Action

0

0.2

0.4

0.6

0.8

1

Turn Left Go Straight Turn Right

Q
 V

al
ue

Action(3) (4)
0

0.2

0.4

0.6

0.8

1

Turn Left Go Straight Turn Right

Q
 V

al
ue

Action

0

0.2

0.4

0.6

0.8

1

Turn Left Go Straight Turn Right

Q
 V

al
ue

ActionFigure 16: The averaged Q-values of an agent (agent 1) in each of the four major categories ofstates: (1) no wall in sight, (2) wall in front, (3) wall on right, and (4) wall on left. For thepurpose of comparing di�erent agents, the Q-values (for \turn left", \go straight", and \turnright" respectively) of all the input states that �t into one of the above four categories wereaveraged for each agent.

33

(1) (2)
0

0.2

0.4

0.6

0.8

1

Turn Left Go Straight Turn Right

Q
 V

al
ue

Action

0

0.2

0.4

0.6

0.8

1

Turn Left Go Straight Turn Right

Q
 V

al
ue

Action(3) (4)
0

0.2

0.4

0.6

0.8

1

Turn Left Go Straight Turn Right

Q
 V

al
ue

Action

0

0.2

0.4

0.6

0.8

1

Turn Left Go Straight Turn Right

Q
 V

al
ue

ActionFigure 17: The averaged Q-values of an agent (agent 2) in each of the four major categories ofstates: (1) no wall in sight, (2) wall in front, (3) wall on right, and (4) wall on left. For thepurpose of comparing di�erent agents, the Q-values (for \turn left", \go straight", and \turnright" respectively) of all the input states that �t into one of the above four categories wereaveraged for each agent.

34

(1) (2)
0

0.2

0.4

0.6

0.8

1

Turn Left Go Straight Turn Right

Q
 V

al
ue

Action

0

0.2

0.4

0.6

0.8

1

Turn Left Go Straight Turn Right

Q
 V

al
ue

Action(3) (4)
0

0.2

0.4

0.6

0.8

1

Turn Left Go Straight Turn Right

Q
 V

al
ue

Action

0

0.2

0.4

0.6

0.8

1

Turn Left Go Straight Turn Right

Q
 V

al
ue

ActionFigure 18: The averaged Q-values of an agent (agent 3) in each of the four major categories ofstates: (1) no wall in sight, (2) wall in front, (3) wall on right, and (4) wall on left. For thepurpose of comparing di�erent agents, the Q-values (for \turn left", \go straight", and \turnright" respectively) of all the input states that �t into one of the above four categories wereaveraged for each agent.

35

(1) (2)
0

0.2

0.4

0.6

0.8

1

Turn Left Go Straight Turn Right

Q
 V

al
ue

Action

0

0.2

0.4

0.6

0.8

1

Turn Left Go Straight Turn Right

Q
 V

al
ue

Action(3) (4)
0

0.2

0.4

0.6

0.8

1

Turn Left Go Straight Turn Right

Q
 V

al
ue

Action

0

0.2

0.4

0.6

0.8

1

Turn Left Go Straight Turn Right

Q
 V

al
ue

ActionFigure 19: The averaged Q-values of an agent (agent 4) in each of the four major categories ofstates: (1) no wall in sight, (2) wall in front, (3) wall on right, and (4) wall on left. For thepurpose of comparing di�erent agents, the Q-values (for \turn left", \go straight", and \turnright" respectively) of all the input states that �t into one of the above four categories wereaveraged for each agent.
algorithm/hidden units 1xHard 2xHard 3xHardQ /15 85.2 (11.8) 23.8 (3.3) 19.2 (3.3)Q /7 73.8 (12.5) 34.6 (14.3) 15.6 (5.5)Q /3 61.8 (12.4) 26.0 (2.8) 13.8 (7.4)Q /2 41.0 (18.0) 12.9 (9.5) 2.4 (1.9)RS /15 86.4 (5.5) 61.0 (15.4) 42.0 (9.6)RS /7 89.0 (3.5) 57.6 (8.3) 42.8 (6.5)RS /3 83.2 (5.7) 73.4 (6.7) 49.6 (10.9)RS /2 79.8 (10.3) 55.8 (15.7) 52.4 (16.0)Figure 20: The e�ect of the number of hidden units in backpropagation networks when single-agent and multi-agent algorithms were used. The success rates are shown here. The standarddeviations are in parentheses. 36

partitioning, drawing inspirations also from other methods discussed. Speci�cally, the discussionof decision trees and CART (and similar ideas by Sanger 1993, Blanzieri and Katenkamp 1996)led to the formulation of the region-splitting algorithm. The region-splitting algorithm withweighted averaging (Figure 9) was an extension of it. The GA-based algorithm was anotherextension of it (and also a straight application of GA).We can sum up the optimization issues in di�erent settings as follows:� On-line optimization of soft partitioning (such as gating discussed in section 5.1): we op-timize the two sets of parameters, those concerning combination weights wk's and internalagent weights wknet's, together. The partitioning is the direct result of wk 's. With analgorithm such as gradient descent, we are guaranteed to reach local optima. If wknet'sare guaranteed to reach global optima (with proper internal structures and learning algo-rithms), then the learning of wk 's (using e.g. gradient descent) can reach global optima (ifwe use the linear combination of agents as in section 5.1 and thus there is no problem oflocal optima with regard to wk 's).� O�-line optimization of soft partitioning: we optimize the two sets of parameters separately,wk's and wknet's. If the learning of wknet's is guaranteed to reach global optima, thenthe overall learning can reach global optima (if we use the linear combination of agents).Otherwise, with gradient descent, local optima can be reached. Compared with the previousmethod, the cost will be much higher due to the fact that for each adjustment of wk's,we have to train wknet's to convergence. We can, of course, interleave combination weightlearning and agent training by having a certain amount of agent training without necessarilytraining agents to convergence before each combination weight change. In that case, themethod is essentially a batch version of the on-line method just discussed.� O�-line optimization of hard partitioning (such as region-splitting and GA as discussedin section 5.2): in this case, we optimize di�erent parameters separately: wk's, wknet's,and P (the partitioning into regions). Iteratively, we adjust P , and then wknet's and wk's(only if multiple agents are used in each region as in MRS) on the basis of the currentP . The optimality can be ensured in this case only in very limited cases (with respect toregion-splitting as discussed in section 5.2). To avoid high cost that would incur in orderto train the system to convergence for each partitioning change, we interleave partitioningand training of agents (including the training of wk 's when used).� On-line optimization of hard partitioning: in this case, we optimize three sets of parameterstogether simultaneously: wk's, wknet's, and P (the partitioning). When gradient descent isused, local optima can be reached. In order to perform on-line optimization of P , we need toselect a type of partitioning so that on-line learning methods can be applied. In particular,when gradient descent is used, we need to create a continuous, di�erentiable partitioningfunction, and thus we need to use soft partitioning (as discussed before), or a probabilisticfunction (Singh et al 1994; which resembles soft partitioning except with weights beinginterpreted as probabilities instead of as soft boundaries). Due to this di�culty, on-lineoptimization of hard partitioning was not adopted in this work.
37

8 ComparisonsWith regard to averaging or weighted averaging, in addition to various theoretical analyses men-tioned earlier (such as Breiman 1996 a, b, Raviv and Intrator 1996, Uedo and Nakano 1996),empirically, there have been demonstrations of performance advantages resulting from combininga set of (diversi�ed) learners, for example, Hashem (1993), Perrone (1993), Parmanto, Munro andDoyle (1996), Rosen (1996), Tumer and Ghosh (1996), and Taniguchi and Tresp (1997). Thereare also many empirical demonstrations of bagging and boosting in particular (such as Ting andWitten 1997, Quinlan 1996, Drucker 1997, Margineantu and Dietterich 1997, etc). However, theafore-mentioned work did not deal with reinforcement learning.With regard to partitioning, there are other variations besides what we discussed earlier: forexample, variance-based weighting (that is, setting a gating weight at each input point to be theinverse of the variance of the corresponding agent at that point), error-based weighting (thatis, setting a gating weight to be the inverse of the residual error of the corresponding agent ateach input point), or density-based weighting (that is, using the conditional probability estimateP (agentijx) as the gating weight for agent i at input point x), and their various combinationsthereof (e.g., as discussed by Tresp and Taniguchi 1995). Also very relevant, especially to ouro�-line partitioning methods, is the work by Chrisman (1993), McCallum (1996), Blanzieri andKatenkamp (1996), and Sanger (1991). In these approaches, di�erent criteria for splitting wereadopted, for example, based on di�erences in Q-value distribution with regard to di�erent actions(McCallum 1996, Chrisman 1993), based on the variance of error (Sanger 1991), or based on theamount of error (Blanzieri and and Katenkamp 1996), or based on error consistency (as used inour methods; i.e., the ratio or di�erence between the sum of absolute errors vs. the sum of errors;Blanzieri and Katenkamp 1996). van der Smagt and Groen (1995) formed tree-like structuresfor multi-resolution hierarchies through splitting (when error exceeds a preset threshold) andmerging, after training with self-organizing-map (SOM) algorithms. Rosca (1997) devised aevolutionary divide-and-conquer method that was independently developed but similar to ourGA-based method. 19Comparing with most of the other weighting and partitioning work (which rarely dealt withRL; such as Breiman 1996b, Wolpert 1992, van der Smagt and Greon 1995, Jacobs et al 1991,Jordan and Jacobs 1994, Blanzieri and Katenkamp 1996, Sanger 1991), our work extends intoreinforcement learning tasks, which are more complex because of the lack of any clear learningtarget. In fact, in RL, we only have moving targets that are changing constantly during learning.However, some of these models, such as Chrisman (1993) and McCallum (1996), were speci�callydesigned for reinforcement learning, especially Q-learning. Comparing with the existing workinvolving RL, our approach has some di�erences and/or relative advantages. Our approach doesnot require a priori partitioning of the input/state space such as done in Singh (1994), andHumphrys (1996). 20 Our approach does not require a priori division of a task into subtasks asin e.g. Dietterich (1997) and Tadeppali and Dietterich (1997), which is one way of simplifyinglearning, but it requires some a priori decisions that determine preset subgoals or predeterminedsubsequences and is very di�erent from our approach of learning to partition the input/state19However, his method relied on complex �tness functions, and used clustering for grouping together di�erentagents. It is not only more costly computationally, but it also tends to produce irregular regions that are composedof disjoint parts.20For example, Humphrys (1996) used pre-wired, di�erential input features and reward functions for di�erentagents. Singh (1994) used separate training on di�erent subtasks for di�erent agents.38

space. Our approach does not even require knowledge to initialize partitioning, as in the caseof \knowledge-based" RBF networks in Taniguchi and Tresp (1997) and Kubat (1997). Ourapproach is not limited to selecting an agent for an entire (sub)sequence as in Tham (1995) andDayan and Hinton (1993), so di�erent agents may alternate in dealing with a sequence. In termsof assigning agents to regions, our approach 21 appears to be better justi�ed algorithmicallythan more ad hoc methods such as Humphrys (1996) and Dorigo and Gambardella (1995), whichinvolve purely heuristic methods for competition to determine a winner agent for a region. Ourapproach also di�ers from feature selection approaches such as McCallum (1996) and Chrisman(1993) (which use decision trees to select input features in order to create useful states on whichreinforcement learning is based), because such work does not divide up the input/state space intoregions for di�erent agents to learn (and thus makes learning tasks easier overall), although theydo divide up input/state space through using decision trees. Our approach di�ers from radial-basis functions (such as in Blanzieri and Katenkamp 1996, Schaal and Atkeson 1996, Petersonand Sun 1998, and van der Smagt and Greon 1995), in that (1) we use hypercubes or otherregion forms di�erent from the spherical form used by RBF and (2) more importantly, insteadof a Gaussian function as in the RBF approach, we use a more powerful approximator in eachregion, which is capable of arbitrary functional mappings and thus eliminates the need for highlyoverlapping regions (especially when hard partitioning is used). 22 Our approach also di�ers fromCMAC (Albus 1975, Lane et al 1992, Sutton 1996), in that we use a more powerful approximatorin each region, thus avoiding highly overlapping placement of regions again. The same pointapplies also to fuzzy logic based methods (see e.g. Takagi and Sugeno 1985).Our approach is somewhat more suitable for incremental learning that involves changes overtime, unlike some of the existing work that predetermines partitioning and thus makes it hardor impossible to undergo changes. It is especially suitable for learning situations in which theworld changes in a minor way throughout the course of learning. The changes can be quicklyaccommodated due to the use of localized regions which make each individual mapping (as a partof the overall mapping) to be learned by each approximator (i.e., neural network) simpler and thusmake the overall learning easier. Localized regions also tend to group together inputs/states thathave similar value distributions (with regard to actions) and thus are easier to adjust. Whenmajor change occurs that cannot be localized, our approach can also accommodate them bycreating corresponding drastic changes in the allocations of local agents. However, such changesare costly.9 Concluding RemarksThis work is concerned with weighting and partitioning in reinforcement learning tasks. Wedeveloped various multi-agent approaches for the purpose of facilitating reinforcement learningtasks, through partitioning a input/state space into di�erent regions and/or weighting multipleagents di�erently. In this work, various multi-agent learning approaches were viewed as (implicit)21In our on-line methods, agents are assigned to regions by nonconstant weighting with weights learned on-linewith respect to di�erent points in the input space, and in our o�-line methods, by incrementally creating agentswhenever the splitting of a region occurs,22Note that each individual radial basis function is not capable of arbitrary mappings, and thus overlappingplacement of such functions throughout the input/state space is necessary in order to approximate arbitraryfunctions. 39

optimization of the partitioning of the input/state space to achieve better learning performance.Such optimization can be done either on-line or o�-line. Partitioning can be with done either hardor soft boundaries. However, the goal is always the same: to exploit di�erential characteristics ofregions and di�erential characteristics of agents to reduce the learning complexity of agents (andtheir function approximators) and thus to facilitate learning overall. We experimentally testedvarious approaches discussed in the paper in a reinforcement learning setting, using several tasksdi�ering in state space size and di�culty level. To summarize our �ndings from the experiments,o�-line algorithms, especially region-splitting, performed the best; on-line algorithms had var-ied performance; some good multi-agent methods (especially region-splitting) indeed facilitatedlearning and reduced the requisite complexity of individual agents.Appendix: Diversity in WeightingThe precept of choosing a diverse set of agents (i.e., uncorrelated agents) as opposed to a setof identical or highly similar agents in the averaging or weighted averaging schemes has beenjusti�ed on the basis of bias-variance decomposition (see e.g. Breiman (1996c), Ueda and Nakano(1996), Raviv and Intrator (1996), and so on). That is,variance(avgiai) = avgx(y(x) � avgiai(x))2= avgx(y(x)� avgxy(x))2 + (avgxavgiai(x) � avgxy(x))2 + avgx(avgiai(x)� avgxavgiai(x))2So, the total error is determined mainly by the bias avgxavgiai(x) � avgxy(x) and varianceavgx(avgiai(x) � avgxavgiai(x))2 of the averaged outcome of the agents. While averaging maynot reduce the bias of individual agents, it may reduce the variance of individual agents andthereby improve the performance of the aggregated system. The variance can be decomposed asfollows (Raviv and Intrator 1996):avgx(avgiai(x)� avgxavgiai(x))2= avgx(avgiai(x))2 � (avgxavgiai(x))2= 1=n2 �Xi (avgxa2i (x)� (avgxai(x))2) + 2=n2 �Xi<j (avgx(ai(x)aj(x))� avgxai(x) � avgxaj(x))where n is the number of agents. If ai are independent and identically distributed, thenvariance(avgiai) = 1=n2 �Xi (avgxa2i (x)� (avgxai(x))2) = 1=n � variance(ai)where variance(ai) = avgx(ai(x)� avgxai(x))2 = avgxa2i (x)� (avgxai(x))2 and variance(ai) =variance(aj) for all i and j. That is, the variance is reduced by a factor of n. On the other hand,if ai's are identical, i.e., ai(x) = a(x), for all i and j, thenvariance(avgiai) = 1=n � variance(a) + 2n2 � n(n� 1)2 variance(a) = variance(a)where variance(a) = avgx(a(x) � avgxa(x))2 = avgxa2(x) � (avgxa(x))2. That is, there isno reduction. Most averaging methods fall somewhere in between. The heuristics of creatingindependent agents has been embedded in a number of well-known approaches, such as \bagging",40

in which diversity is achieved through repeated random re-sampling of the training data set andthe use of \unstable" (easily varied) agents, and in \boosting", in which diversity is achievedthrough repeated re-sampling with changing sampling probabilities in favor of those data pointsthat are misclassi�ed (or mispredicted, Drucker 1997). This idea is also relevant to gating(Jacobs et al 1991). Jacobs (1997) aimed at achieving not only uncorrelated agents but anti-correlated (i.e., negatively correlated) agents.ReferencesJ. Albus, (1975). A new approach to manipulator control: the cerebellar model articulationcontrol. Journal of Dynamic Systems Measure and Control, 97, 270-277.C. Atkeson, A. Moore, and S. Schaal, (1997). Locally weighted regression. Arti�cial IntelligenceReview.R. Bellman, (1957). Dynamic Programming. Princeton University Press, Princeton, NJ.D. Bertsekas and J. Tsitsiklis, (1996). Neuro-Dynamic Programming. Athena Scienti�c, Belmont,MA.E. Blanzieri and P. Katenkamp, (1996). Learning radial basis function networks on-line. Proc.of International Conference on Machine Learning. 37-45. Morgan Kaufmann, San Francisco,CA.J. Boyan and A. Moore, (1995). Generalization in reinforcement learning: safely approximatingthe value function. in: J. Tesauro, and D. Touretzky, and T. Leen, (eds.) Neural InformationProcessing Systems 7, 369-376, MIT Press, Cambridge, MA.L. Breiman, L. Friedman, and P. Stone, (1984). Classi�cation and Regression. Wadsworth,Belmont, CA.L. Breiman, (1996a). Bagging predictors. Machine Learning, 24, 123-140.L. Breiman, (1996b). Stacked regressions. Machine Learning, 24, 49-64.L. Breiman, (1996c). Bias, variance and arcing classi�ers. Technical Report 460. University ofCalifornia, Berkeley.L. Chrisman, (1993). Reinforcement learning with perceptual aliasing: the perceptual distinctionapproach. Proc. of AAAI. 183-188. Morgan Kaufmann, San Francisco, CA.P. Dayan and G. Hinton, (1993). Feudal reinforcement learning. Neural Information ProcessingSystems, MIT Press, Cambridge, MA.T. Dietterich, (1997). Hierarchical reinforcement learning with MAXQ value function decompo-sition. ftp://www.cs.orst.eduM. Dorigo and L. Gambardella, (1995). Ant-Q: a reinforcement learning approach to combina-torial optimization. Technical Report 95-01. Universite Libre de Bruxelles. Belgium.H. Drucker, (1997). Improving regressors using boosting techniques. 107-115. Proc. of ICML'97.Morgan Kaufmann, San Francisco, CA.M. Erickson and J. Kruschke, (1996). Rules and Examplars in Category Learning. Manuscript.41

Y. Freund and R. Schapire, (1996). Experiments with a new boosting algorithm. 148-156. Proc.of ICML'97. Morgan Kaufmann, San Francisco, CA.S. Hashem, (1993). Optimal Linear Combinations of Neural Networks. Ph.D. Thesis, PurdueUniversity. Purdue, Indiana.M. Humphrys, (1996). W-learning: a simple RL-based society of mind. Technical report 362,University of Cambridge, Computer Laboratory. Cambridge, UK.J. Hertz, A. Krogh, and R. Palmer, (1991). Introduction to the Theory of Neural Computation.Addison-Wesley, Reading, MA.R. Jacobs, (1997). Bias/variance analysis of mixtures-of-experts architectures. Neural Compu-tation. 9, 369-383.R. Jacobs, M. Jordan, S. Nowlan, and G. Hinton, (1991). Adaptive mixtures of local experts.Neural Computation. 3, 79-87.M. Jordan and R. Jacobs, (1994). Hierarchical mixtures of experts and the EM algorithm. NeuralComputation. 6, 181-214.L. Kaelbling, M. Littman, and A. Moore, (1996). Reinforcement learning: A survey. Journal ofArti�cial Intelligence Research, 4, 237-285.A. Krogh and J. Vedelsby, (1995). Neural network ensembles, cross validation, and active learn-ing. Neural Information Processing Systems, 231-238. MIT Press, Cambridge, MA.M. Kubat, (1997). Decision trees can initialize radial-basis-function networks. Manuscript.S. Lane, D. Handelman, and J. Gelfand, (1992). Theory and development of higher-order CMACneural networks. IEEE Control Systems, pp.23-31. April, 1992.L. Lin, (1992). Self-improving reactive agents based on reinforcement learning, planning, andteaching. Machine Learning. Vol.8, pp.293-321.D. Margineantu and T. Dietterich, (1997). Pruning adaptive boosting. Proc. of ICML, 211-218.Morgan Kaufmann, San Francisco, CA.M. Mataric, (1995). Reward functions for accelerated learning. Proc. Conference on Simulationof Adaptive Behavior. MIT Press, Cambridge, MA.A. McCallum, (1996). Learning to use selective attention and short-term memory in sequencetialtasks. Proc. Conference on Simulation of Adaptive Behavior. 315-324. MIT Press, Cambridge,MA.R. Meir, (1995). Bias, variance and the combination of least sqaures estimators. Neural Infor-mation Processing Systems, 295-302. MIT Press, Cambridge, MA.B. Parmanto, P. Munro and H. Doyle, (1996). Reducing variance of committee prediction withresampling techniques. Connection Science, 8 (3/4), 405-426.M. Perrone, (1993). Improving Regression Estimation: Averaging Methods for Variance Reduc-tion with Extensions to General Convex Measure Optimization. Ph.D. Thesis, Brown University.Providence, RI.T. Peterson and R. Sun, (1998). An RBF network alternative to a hybrid architecture. Proceed-ings of IEEE International Conference on Neural Networks, Anchorage, Alaska. May 4-9, 1998.IEEE Press, Piscataway, NJ. 42

T. Poggio and F. Girosi, (1990). Networks for approximation and learning. Proceedings of IEEE,78 (9), 1481-1497.R. Quinlan, (1986). Inductive learning of decision trees. Machine Learning. 1, 81-106.R. Quinlan, (1996). Bagging, Boosting and C4.5. Proc. of AAAI'96. 725-730. Morgan Kauf-mann, San Francisco, CA.Y. Raviv and N. Intrator, (1996). Bootstrapping with noise: an e�ective regularization technique.Connection Science, 8 (3/4), 355-372.C. Reddy and P. Tadepalli, (1997). Learning goal-decomposition rules using exercises. Proc ofICML'97. 278-286. Morgan Kaufmann, San Francisco, CA.J. Rosca, (1997). Hierarchical Learning with Procedural Abstraction Mechanisms. Ph.D Thesis,Department of Computer Science, University of Rochester, Rochester, NY.B. Rosen, (1996). Ensemble learning using decorrelated neural networks. Connection Science, 8(3/4), 373-384.T. Sanger, (1991). Tree-structured adaptive networks for function approximation in high-dimensionalspaces. IEEE Transaction on Neural Networks, 2 (2), 285-293.S. Schaal and C. Atkeson, (1996). From isolation to cooperation: an alternative view of a systemof experts. Advances in Neural Information Processing Systems 8. pp.605-611. MIT Press.Cambridge, MA.R. Schapire, Y. Freund, P. Bartlett, and W. Lee, (1997). Boosting the margin: a new explanationfor the e�ectiveness of voting methods. Proc.of International Conference on Machine Learning.322-330. Morgan Kaufmann, San Francisco.S. Singh, (1994). Learning to Solve Markovian Decision Processes. Ph.D Thesis, University ofMassachusettes, Amherst, MA.S. Singh, T. Jaakkola, and M. Jordan, (1994). Reinforcement learning with soft state aggregation.In: S.J. Hanson J. Cowan and C. L. Giles, eds. Advances in Neural Information ProcessingSystems 7. Morgan Kaufmann, San Mateo, CA.R. Sun, (1997). Planning from reinforcement learning. Technical report TR-CS-97-0027, Uni-versity of Alabama, Tuscaloosa, AL.R. Sun and L. Bookman, (eds.) (1994). Computational Architectures Integrating Neural andSymbolic Processes . Kluwer Academic Publishers. Norwell, MA.R. Sun and T. Peterson, (1997). A hybrid agent architecture for reactive sequential decisionmaking. In: R. Sun and F. Alexandre, (eds.) Connectionist-Symbolic Integration. LawrenceErlbaum Associates. Hillsdale, NJ.R. Sun and T. Peterson, (1997). A hybrid model for learning sequential navigation. Proc.of IEEE International Symposium on Computational Intelligence in Robotics and Automation(CIRA'97). Monterey, CA. pp.234-239. IEEE Press. Piscateway, NJ.R. Sun and T. Peterson, (1998). Some experiments with a hybrid model for learning sequentialdecision making. Information Sciences. 111, 83-107. October, 1998.R. Sun, T. Peterson, and E. Merrill, (1996). Bottom-up skill learning in reactive sequentialdecision tasks. Proc.of 18th Cognitive Science Society Conference, Lawrence Erlbaum Associates,Hillsdale, NJ. pp.684-690. 1996. 43

R. Sutton, (1988). Learning to predict by the methods of temporal di�erence. Machine Learning.Vol.3, 9-44.R. Sutton, (1990). Integrated architectures for learning, planning, and reacting based on approx-imating dynamic programming. Proc.of Seventh International Conference on Machine Learning.Morgan Kaufmann, San Meteo, CA.R. Sutton, (1996). Generalization in reinforcement learning: successful examples using sparsecoarse coding. Neural Information Processing Systems 8, MIT Press, Cambridge, MA.P. Tadepalli and T. Dietterich, (1997). Hierarchical explanation-based reinforcement learning.Proc. International Conference on Machine Learning. 358-366. Morgan Kaufmann, San Fran-cisco.T. Takagi and M. Sugeno, (1985). Fuzzy identi�cation of systems and its applications to modelingand control. IEEE Transactions on Systems, Man and Cybernetics. 15, 1. 116-132.M. Taniguchi and V. Tresp, (1997). Averaging regularized estimators. Neural Computation, 9,1163-1178.C. Tham, (1995). Reinforcement learning of multiple tasks using a hierarchical CMAC architec-ture. Robotics and Autonomous Systems. 15, 247-274.S. Thrun and A. Schwartz, (1995). Finding structure in reinforcement learning. Neural Infor-mation Processing Systems 7, MIT Press, Cambridge, MA.W. K. Ting and I. Witten, (1997). Stacking bagged and dagged models. 367-375. Proc. ofICML'97. Morgan Kaufmann, San Francisco, CA.K. Tumer and J. Ghosh, (1996). Error correlation and error reduction in ensemble classi�ers.Connection Science, 8 (3/4), 385-404.V. Tresp and M. Taniguchi, (1995). Combining estimators using non-constant weighting func-tions. Neural Information Processing Systems 7, 419-426. MIT Press, Cambridge, MA.N. Ueda and R. Nakano, (1996). Generalization error of ensemble estimators. IEEE InternationalConference on Neural Networks, pp.90-95. IEEE Press. Piscateway, NJ.P. van der Smagt and F. Groen, (1995). Approximation with neural networks. Proc. of 1995International Conference on Neural Networks, Perth, Australia. IEEE Press, Piscateway, NJ.C. Watkins, (1989). Learning with Delayed Rewards. Ph.D Thesis, Cambridge University, Cam-bridge, UK.M. Wiering and J. Schmidhuber, (1996). HQ-learning. TR IDSIA-95-96.S. Whitehead, (1993). A complexity analysis of cooperative mechanisms in reinforcement learn-ing. Proc. AAAI'93, 607-613. Morgan Kaufmann, San Francisco, CA.D. Wolpert, (1992). Stacked generalization. Neural Networks, 5, 241-259.L. Xu, M. Jordan and G. Hinton, (1995). An alternative model for mixtures of experts. NeuralInformation Processing Systems 7, 633-640. MIT Press, Cambridge, MA.
44

