
JOINT SOURCE-CHANNEL VIDEO TRANSMISSION

BY

LEIMING QIAN

B.E., Tsinghua University, Beijing, 1996
M.S., University of Illinois at Urbana-Champaign, 1999

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2001

Urbana, Illinois

c© Copyright by Leiming R. Qian, 2001

ABSTRACT

With the rapid growth of multimedia content in today’s communication links, there

is an increasing demand for efficient image and video transmission systems. Various re-

search work has shown that significant gain in transmission performance can be achieved

from the application of joint source-channel matching (JSCM) techniques, which maxi-

mize the final end-to-end performance by optimally allocating limited system resources

(transmission power, channel capacity, etc.) between the source and channel coders.

This thesis investigates the application of JSCM to video transmission associated with

the following three different types of communication channels:

1. Peer transmission: an adaptive matching technique, based on our earlier work of

general source-channel matching techniques using parametric modeling, is presented

for the case of direct point-to-point video transmission with a reliable feedback

channel.

2. Broadcasting: based on the JSCM principle developed for the previous case of peer

transmission, this thesis proposes an alternative performance criterion under the

name of minimax disappointment (MD) for a multireceiver broadcasting scenario,

where feedback channels do not exist.

3. Network transmission: assuming a network consisting of multiple video senders

and receivers, this thesis presents a joint source-network matching (JSNM) trans-

port layer protocol for video transmission. The JSNM protocol is complete with a

custom packet format, a congestion-control algorithm which is Transmission Con-

trol Protocol (TCP) friendly, and built-in loss-and-error control mechanisms for both

packet loss due to congestion and packet corruption due to wireless fading.

iii

The effectiveness of the proposed JSCM techniques, MD optimization criterion and

JSNM transport protocol is illustrated using simulations based on various video source

coders and standard channel coders.

iv

DEDICATION

To my parents, whose unconditional love has supported me through all these years of

hardship, and to Qi, who brings so much joy into my otherwise dull life. This thesis is

for all of you.

v

ACKNOWLEDGMENTS

This work has largely been supported by the U.S. National Science Foundation through

grant no. MIP-9707742 and the Motorola Corporation.

I would like to express my immense gratitude toward my adviser, Professor Douglas

L. Jones, for all the kindness, patience and understanding he has shown toward me, and

all the helpful and insightful suggestions he has given me, both in research and in my

development as a person. He is always there to listen, to advise, and to help. Working

with him has made research both a fruitful and enjoyable experience.

I would like to thank the authors of the network simulation software package NS-2,

for their excellent work and generosity in donating NS-2 to network research community.

My gratitude also goes to Henry Kwok and Mark Haun, for installing and maintaining

our group’s Linux workstation, on which all my network simulations have been carried

out.

vi

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1

1.1 Summary of Results and Contributions 3

1.2 Future Research Plans . 4

1.3 Impact of the Problem . 4

2 BACKGROUND KNOWLEDGE . 6

2.1 Joint Source-Channel Matching . 6

2.2 Video Source Coding . 10

2.2.1 Motion-JPEG . 11

2.2.2 Motion-SPIHT . 12

2.2.3 Conditional block replenishment 12

2.2.4 3D-SPIHT . 13

2.2.5 H.26x . 14

2.2.6 MPEG 1/2/4 . 14

2.3 Rate Control . 15

2.4 Channel Coding . 16

2.4.1 Reed-Solomon codes . 16

2.4.2 Rate-compatible punctured convolutional codes 17

2.5 Network Channels . 17

2.5.1 User Datagram Protocol . 18

2.5.2 Transmission Control Protocol . 18

2.5.3 Real-Time Transfer Protocol . 19

2.5.4 Heterogeneous Packet Flow Protocol 20

vii

3 JSCM PEER VIDEO TRANSMISSION 21

3.1 The Underlying JSCM Problem . 21

3.2 JSCM General Framework . 22

3.3 Adaptive JSCM Scheme . 24

3.4 Simulation Results . 26

3.4.1 JSCM general system . 26

3.4.2 JSCM adaptive system . 30

3.4.3 Summary . 31

4 BROADCAST: MINIMAX DISAPPOINTMENT 32

4.1 Motivation for an Alternative Criterion 32

4.2 Minimax Disappointment (MD) . 34

4.3 Transaction Broadcasting Framework . 38

4.4 Simulation Results . 40

4.4.1 Motion-SPIHT and RCPC . 40

4.4.2 3D-SPIHT and RCPC . 40

4.4.3 Layered-H.263 and RCPC . 41

4.4.4 3D-SPIHT and bit-power . 41

4.4.5 Result comparison . 43

5 JOINT SOURCE-NETWORK MATCHING 45

5.1 JSNM Implementation Challenges . 47

5.1.1 Dynamic network characteristics 47

5.1.2 Wireless network links . 49

5.1.3 Need for new transport protocol 50

5.1.4 Retransmission versus non-retransmission 50

5.1.5 Network multicasting . 51

5.2 JSNM System Overview . 51

5.3 JSNM System Implementation . 53

5.3.1 The JSNM video sender . 53

5.3.2 The JSNM video receiver . 58

5.4 Simulation Results . 60

viii

5.4.1 Network simulation topology . 60

5.4.2 Simulated wireless fading channels 61

5.4.3 Simulation parameters . 61

5.4.4 Results and discussions . 62

6 A JSNM TRANSPORT PROTOCOL 68

6.1 TCP-Friendly Congestion Control . 69

6.1.1 TCP congestion control . 69

6.1.2 TCP friendliness . 70

6.1.3 JSNM congestion control design guidelines 70

6.2 JSNMP Congestion Control . 72

6.2.1 JSNMP packet types . 72

6.2.2 Network packet loss model . 73

6.2.3 Estimation of available bandwidth 74

6.2.4 JSNM congestion-control algorithm 75

6.3 JSNMP Packet Loss-Error Control . 77

6.3.1 Ploss and Psymbol estimation . 77

6.3.2 JSNM optimization . 78

7 CONCLUSIONS . 82

APPENDIX A: ESTIMATION OF R-D CHARACTERISTICS . . . 85

A.1 Motion-JPEG Encoder . 86

A.2 Motion-SPIHT Encoder . 89

A.3 Conditional Block Replenishment (CBR) Encoder 89

A.4 3D-SPIHT Embedded Encoder . 90

A.5 H.26x Coder . 90

A.6 Layered H.263 Source Coder . 92

APPENDIX B: JSCM PEER TRANSMISSION SYSTEMS 94

B.1 General System . 94

B.2 Adaptive System . 96

APPENDIX C: JSCM BROADCASTING SYSTEMS 98

ix

C.1 Motion-SPIHT and RCPC: Rate-Constrained 98

C.2 3D-SPIHT and RCPC: Rate Constrained 99

C.3 Layered-H.263 and RCPC: Rate Constrained 100

C.4 3D-SPIHT: Power Constrained . 101

APPENDIX D: MINIMAX OPTIMIZATION THEORY 104

D.1 Convexity of the Cost Function . 105

D.2 Simplification of the Optimization Problem 107

APPENDIX E: A JSNM PROTOCOL 109

E.1 Format of JSNM Data Packets . 109

E.2 Recovery of JSNM Packet Header . 112

E.2.1 Checksum verification . 112

E.2.2 Packet type identification . 112

E.2.3 Sequence number recovery . 113

E.2.4 Timestamp recovery . 115

E.2.5 Interpacket RS configuration recovery 115

E.2.6 Intrapacket RS configuration recovery 116

E.2.7 Second-iteration header recovery 116

E.3 Format of the JSNM Feedback Packet . 117

REFERENCES . 119

VITA . 127

x

LIST OF FIGURES

Figure Page

1.1 The joint source-channel matching research framework. 2

2.1 Joint source-channel matching (limited channel capacity). 8

2.2 3D waveform video coding. 10

2.3 Motion-compensated video coding. 11

2.4 Rate-control for video coders. 15

3.1 The underlying JSCM problem. 21

3.2 General joint source-channel matching system. 23

3.3 Adaptive joint source-channel matching system. 24

3.4 Simulation results for a general JSCM video peer-transmission system in

a rate-constrained situation, using Motion-JPEG video source coder and

RS channel coder. 27

3.5 Simulation results for a general JSCM video peer-transmission system in a

rate-constrained situation, using CBR video source coder and RS channel

coder. 28

3.6 Simulation results for a general JSCM video peer-transmission system in

a rate-constrained situation, using CBR video source coder and RS chan-

nel coder. Frame quality variation is used as an alternative performance

criterion. 29

3.7 Simulation results for an adaptive joint source-channel matching video

peer-transmission system in a rate-constrained situation, using H.263 video

source coder and RCPC channel coder. Percent values in figure are corre-

sponding thresholds, ǫ. 30

4.1 A simplified wireless broadcasting scenario. 33

xi

4.2 The minimax disappointment criterion. 36

4.3 Proposed JSCM broadcasting framework. 39

4.4 Simulation results for an MD-optimized video broadcasting system with

five user classes in a rate-constrained situation, using Motion-SPIHT source

coder and RCPC channel coder with nine available protection rates. . . . 41

4.5 Simulation results for a MD-optimized video broadcasting system for five

user classes in a channel-capacity-constrained situation, using 3D-SPIHT

source coder and RCPC channel coder with nine available rates. 42

4.6 Simulation results for an MD-optimized video broadcasting system for

five user classes in a channel-capacity-constrained situation, using layered-

H.263 source coder and RCPC channel coder with nine available rates. . 42

4.7 Simulation results for an MD-optimized video broadcasting system to-

ward five user classes in a transmission-power-constrained situation, using

3D-SPIHT source coder and a bit-power-adjustable transmission scheme.

User-averaged PSNR is used as an alternative performance criterion. . . . 44

4.8 Bit transmission power profiles for different system designs. 44

5.1 JSNM system overview. 52

5.2 JSNM sender diagram. 54

5.3 JSNM system state machine. 55

5.4 Network simulation topology. 60

5.5 Wireless channel fading profiles. 61

5.6 Simulation results for a UDP-based network video-transmission system

with four concurrent video sessions and using 3D-SPIHT video source

encoder and RS codes as channel encoder. 63

5.7 Simulation results for a TCP-based network video-transmission system

with four concurrent video sessions and using 3D-SPIHT video source

encoder and RS codes as channel encoder. 63

5.8 Simulation results for a JSNMP-based network video-transmission system

with four concurrent video sessions and using 3D-SPIHT video source

encoder and RS codes as channel encoder. 64

xii

5.9 Simulation results for a JSNMP-based network video-transmission system

with four concurrent video sessions and using 3D-SPIHT video source

encoder and RS codes as channel encoder. Intrapacket RS protection is

disabled. 65

5.10 Simulation results for a JSNMP-based network video-transmission system

with four concurrent video sessions and using 3D-SPIHT video source

encoder and RS codes as channel encoder. All links are wireline links.

Video Session 1 uses TCP instead of JSNMP as the transport protocol. . 66

6.1 Two-state Markov (Gilbert) model for packet loss. 73

A.1 PSNR versus quality-factor. 87

A.2 Rate versus quality-factor. 87

A.3 Motion-JPEG rate-distortion curves. 87

A.4 The JPEG codec block diagram. 88

A.5 Framewise R-D curves. 89

A.6 Frame-averaged R-D curve. 89

A.7 Blocks versus source rate. 90

A.8 Distortion versus threshold. 90

A.9 3D-SPIHT RD curve. 91

A.10 Source rate versus MQUANT. 91

A.11 Distortion versus MQUANT. 91

A.12 H.263 encoder diagram. 92

A.13 Rate-distortion curve for the H.263 encoder. 93

B.1 Motion-JPEG and RS: JSCM system implementation. 96

B.2 CBR and RS: JSCM system implementation. 97

B.3 Simplified system for H.263 and RCPC encoder. 97

C.1 Power-constrained system. 102

E.1 Format of JSNM packets. 110

E.2 Format of the JSNM feedback packet. 117

xiii

CHAPTER 1

INTRODUCTION

With the recent advancement in signal processing and communication theory, also fueled by

the rapid expansion in available channel bandwidth, multimedia communication (peer-to-peer,

broadcasting, etc.), especially video communication (videophone, videoconference), is attracting

increasing attention from both the academic and industrial world. It is desirable to discover a

general method to design an effective video communication system.

It is widely accepted that Shannon’s source-channel coding theorem [1], which states condi-

tions under which the source and channel coders in a communication system can be optimized

separately without sacrificing the system’s overall performance, is the foundation of design-

ing such a system. To that effect, the source coders are traditionally designed to achieve the

maximum compression ratio (recently, more efforts have been seen in designing channel-robust

coders), and the channel coders are designed to yield the smallest error probability given the

transmission rate. There is no apparent need for information exchange or joint optimization

between source and channel coders.

However, this theorem applies under the assumption of infinite-length codewords (implying

infinite transmission delay) and point-to-point transmission only (no multi-path commonly

observed in wireless communication), which is often not realistic in practical situations. These

assumptions are especially invalid for video transmission, where by nature only a small amount

of delay can be tolerated and the receiver has a finite-size decoding buffer. In practical video

communication applications, where system resources are limited and constraints are posed on

codeword length and tolerable transmission delay, jointly optimizing the source and channel

coders can often bring significant end-to-end performance increase. This topic is explored in

much greater depth in Section 2.1.

The Internet has been experiencing explosive growth of multimedia content, with most

current applications involving web-based audio and video playback. This continuing trend of

growth and the Internet’s mounting popularity is a clear indication that the human society will

1

Peer Transmission
 Broadcast / Multicast
 Network Transmission

Routers

Broadcast Station / Multicast Server
Sender

Receiver

Sender / Receiver

Feedback

Figure 1.1 The joint source-channel matching research framework.

eventually become interconnected in an extraordinary fashion beyond what can be conveyed

by simple text messages or even still images. In the future world of fast communication and

interactive information exchange, animated visual communication over networks will almost

surely play a major role. The basic principle of source-channel joint optimization can also be

applied to video communication systems based on network channels [2], since network links are

fundamentally special cases of the entire class of communication channels.

The design of an efficient joint source-channel (network) optimized system requires that

one traverses three basic research areas: video source coding, channel coding, and network

systems [3]. Therefore, a significant amount of detailed background knowledge needs to be

covered. Technical issues crucial to the understanding of this thesis are addressed in Chapter

2: in Section 2.2 we categorize and list various video source coders, discuss their individual

advantages and shortcomings; in Section 2.3 we address the important video-related issue of

rate control and its impact on the implementation of JSCM; in Section 2.4, we briefly mention

the basic characteristics of two widely-used channel codes, Reed-Solomon (RS) codes and rate-

compatible punctured convolutional codes (RCPC); in Section 2.5, we give a short introduction

to various network protocols. Other relevant detailed technical information can be found in the

appendices.

Based on the type of channel and user configuration under investigation, we roughly divide

our research activities into three major categories (also illustrated in Figure 1.1), with a focus

on the last category:

1. Peer transmission: Simple direct point-to-point transmission consisting one sender and

one receiver, with a reliable feedback channel. The existence of the feedback channel

2

and the guaranteed accuracy of the feedback information are crucial to the successful

implementation of any joint source-channel matching (JSCM) peer transmission scheme.

2. Broadcasting/multicasting: One central broadcast service provider (or multicast server)

transmits the same set of signals to multiple receivers (or clients) under different channel

situations, no feedback channels available.

3. Network transmission: Concurrent bidirectional video transmission between multiple

sender/receiver pairs over hybrid wireless/wireline network links; feedback channels may

exist in either reliable form or unreliable form.

These three categories are not by any means independent or mutually exclusive; they are

organized in this fashion merely for the convenience of presentation.

The following chapters are organized as follows: in Chapter 3 we develop and demonstrate

the effectiveness of the basic JSCM system for simple peer transmission, which also serves as the

foundation for the two following cases; in Chapter 4, based on the JSCM principle, we propose

an alternative broadcast/multicast performance criterion named “minimax disappointment”; in

Chapter 5 we discuss the network extension of the JSCM system, joint source-network matching

(JSNM) system, based on the transport layer Joint Source-Network Matching Protocol (JSNMP)

detailed in Chapter 6; we conclude in Chapter 7 .

Simulations results are presented and discussed at the end of each chapter associated with

the specific type of communication channel it addresses. Related mathematical derivations

and system implementation details are included in the appendices: Appendix A discusses the

rate-distortion estimation procedure for various video source coders; Appendix B gives details

on specific joint source-channel matching system implementations and optimization algorithms;

Appendix C addresses our wireless video broadcasting system; Appendix D provides necessary

theoretical knowledge about minimax optimization; and Appendix E describes our joint source-

network matching transport protocol with implementation-level details.

1.1 Summary of Results and Contributions

In our research toward the topic of JSCM video transmission, we have reached the following

results.

1. We have shown that JSCM can be successfully applied to point-to-point peer video trans-

mission systems based on a wide variety of source-channel coder pairs. Significant end-to-

3

end performance gain can be achieved. A fast adaptive system implementation (Section

3.3) is developed as an extension of our earlier work on a general matching system (Section

3.2).

2. We have proposed an alternative JSCM-based broadcasting performance evaluation crite-

rion: minimax disappointment (Section 4.2), which possesses several appealing properties

such as being universally fair, able to utilize the concept of users’ individual expectation.

3. We have designed a joint source-network matching video transmission system, based on

a simple hybrid wireless / wireline network topology, a new transport protocol on top of

the User Datagram Protocol (UDP), a TCP-friendly congestion control algorithm, and

built-in packet loss-error control mechanisms.

1.2 Future Research Plans

As a typical cross-disciplinary research topic, there are endless exciting research possibilities

for joint source-channel (network) video communication. To cover all these topics in this thesis

would be beyond our capabilities. Here we list only a few which we consider might be of major

interest to fellow JSCM researchers.

1. The practical application of joint source-network video transmission to different network

setups: i.e, various existing network transport protocols, routing algorithms, etc. We seek

a general design methodology for network video communication systems.

2. Network multicasting, the counterpart of wireless broadcasting, is another area to which

we expect to successfully apply joint source-network matching (JSNM) and our minimax

disappointment performance criterion.

3. In addition, the investigation of jointly optimizing the source and network can provide

potentially beneficial insights to the design of source-network coders as well. Examples

include network-robust video source coders, JSCM-aware network transport protocols and

routing algorithms which can take JSCM information as hints, etc.

1.3 Impact of the Problem

We believe it is worthwhile, at the end of this introductory chapter, to briefly discuss the

impact of this problem, and how its solution, once found, could be of great benefit.

4

Based on a simple and elegant concept, JSCM can truly provide meaningful performance

gains under various situations when Shannon’s information separation theorem no longer ap-

plies. The importance of the JSCM principle has already been manifested by the vast amount

of efforts devoted by researchers worldwide, resulting in numerous publications and proposed

specific JSCM system implementations. We made our contribution to this field by developing

not only a general JSCM scheme that works with most existing source-channel coder combina-

tions without knowing their technical details, but also a fast adaptive JSCM scheme that has

more practical value; we also extended the JSCM research field by introducing the concept of

our new JSCM-based broadcast performance criterion: minimax disappointment. Our JSNM

video communication research is another crucial step toward the direction of making JSCM

research more complete, instead of being a mere extension.

Furthermore, we believe that the significance of JSCM research reaches beyond the develop-

ment of specific systems and algorithms. It also addresses a fundamental question in designing a

communication system: where should the designer put his research efforts? Should he focus on

separate source and channel coder optimization (more efficient/robust source coders and more

effective channel coders/network protocols), or should he instead focus on joint source-channel

coder optimization and better cooperation (JSCM)? A good example would be the heteroge-

neous packet flow (HPF) protocol [4], which is an ambitious project whose ultimate objective

is to replace the TCP protocol because of its superior ability in transmitting heterogeneous

multimedia packets. Can smart protocols such as HPF remove the need to have a joint source-

channel matching system, or make the gains insignificant? Answering these questions can help

in designing effective communication systems.

5

CHAPTER 2

BACKGROUND KNOWLEDGE

In this chapter we give a brief overview of the basic background knowledge involved in de-

signing a JSCM-based video communication system. We start by exploring the JSCM principle

in greater depth, followed by a brief introduction of various source and channel coders, and

finish by reviewing necessary background knowledge related to network protocols.

2.1 Joint Source-Channel Matching

Theorem 2.1 (source-channel coding theorem): If V1, V2, . . . , Vn is a finite alphabet stochastic

process that satisfies the asymptotic equality principle (AEP), then there exists a source channel

code with P
(n)
e → 0 if H(V) < C.

Conversely, for any stationary stochastic process, if H(V) < C, the probability of error

is bounded away from zero, and it is not possible to send the process over the channel with

arbitrarily low probability of error.

The above Shannon’s source-channel coding theorem [1] states that in designing a commu-

nications system, one can optimize the source and channel coders separately without sacrificing

any overall performance. However, the validity of this theorem is contingent upon two impor-

tant assumptions, which are generally not true in a realistic situation:

1. Allowance of infinitely long codewords: in other words, the system must be able to

tolerate infinitely long delay. This is clearly not practical in a real-life situation, especially

for video transmission, where even for low-quality requirement applications such as video

conferencing (it has been determined that delays exceeding 150 ms do not give the viewer

the impression of direct visual feedback).

2. Point-to-point transmission path: this is a fair assumption to make with a wireline

transmission system, but certainly not with a wireless channel, where multi-path fading

is unavoidable at times.

6

When either of these two assumptions is no longer valid, jointly optimizing the source and

channel coders will yield performance gains (in this thesis we focus our efforts on the situation

when the first assumption is invalidated), which leads to the joint source-channel coding (JSCC)

[5] principle of designing a communications system.

From a general point of view, JSCC involves jointly optimizing the source and channel coders

to obtain the optimal end-to-end transmission performance. A common approach is to jointly

design the codewords for both the source and channel encoders, which effectively combines the

source and channel coders into one source-channel coder; other approaches involve low-level

tweaking of the coders, in essence a co-design of the source and channel coders. Here we give

an incomplete list of work that has been done in the JSCC research area with regard to image

and video transmission:

1. Image Transmission. The field of JSCC image transmission has been extensively cov-

ered by researchers: Davis and Danskin [6] described a joint source-channel allocation

scheme for transmitting images losslessly over block erasure channels such as the Inter-

net; Ramchandran et al. [7] studied multiresolution coding and transmission in a broad-

casting scenario; Azami et al. [8] derived performance bounds for joint source-channel

coding of uniform memoryless sources using binary decomposition; Belzer et al. [9] de-

veloped a joint source-channel image coding method using trellis-coded quantization and

convolutional codes; Sherwood and Zeger [10] investigated unequal error protection for

the binary symmetric channel; Man et al. [11] examined unequal error protection and

source quantization; Lu et al. [12]developed a closed-form solution for progressive source-

channel coding of images over bursty error channels; Fossorier et al. [13] studied joint

source-channel image coding for a power constrained noisy channel.

2. Video Transmission. JSCC video transmission is investigated to a lesser extent pri-

marily because of the much larger amount of data to process, more complex coders, and

issues such as rate-control. Still, various approaches have been proposed: Bystrom and

Modestino [14] investigated combined source-channel coding for video transmission over a

slow-fading Rician channel; Lan and Tewfik [15] studied power-optimized mode selection

for H.263 video coding in wireless communication; Zheng and Liu [16] used a subband

modulation approach to transmit image and video over wireless channels; Xiong et al.

[17] developed a progressive video coding scheme for noisy channels; Aramvith et al. [18]

7

Source Rate

Decoding Distortion

D(R) Curve

Probability of Error

Pe Curve

Channel Rate

Source Rate Channel Rate

Sr Cr

Dmin

End−to−End Distortion

Figure 2.1 Joint source-channel matching (limited channel capacity).

proposed an alternative rate-control scheme for video transport over wireless channels

using automatic repeat request (ARQ) retransmission scheme.

These approaches, although giving significant performance increase in general, usually suf-

fer from a common disadvantage: they are optimized only for specific source-channel coder

pairs, substituting either coder or both will almost certainly require a redesign of the entire

transmission system. In other words, they do not possess enough degree of generality.

It is our desire to develop a truly general and effective JSCC system, which should perform

well with a wide range of source-channel coder pairs, that leads to our specific choice of approach

to realize JSCC: joint source-channel matching (JSCM). JSCM is a very simple but yet elegant

concept, which can be illustrated using Figure 2.1:

1. The top left plot shows a typical rate-distortion (R-D) curve D(R) that is conventionally

used to characterize a video source encoder. It shows that for a lossy video encoder, if the

8

rate is increased, then more bits are used, the raw source stream is compressed less, and

less distortion is incurred. Thus, given limited channel capacity, it is in our best interest

to compress the video information at the highest rate possible. Most current video source

coders are optimized to give the best performance (lowest decoding distortion) at a certain

rate while assuming no channel transmission errors and that all the coded bits are received

perfectly, which leads to the prolific use of sensitive data types such as marker bytes.

There are efforts to develop channel-robust video source coders; for example, the Moving

Pictures Expert Group (MPEG) video coding standard draft proposes various techniques

such as data partitioning, reversible variable length coding (RVLC) and synchronization,

etc., to reduce the compressed bitstream’s sensitivity toward channel loss. However, they

are still in development stage and not in wide use.

2. The top right plot shows a typical performance curve Pe(R) of a channel encoder. It

essentially shows that when we increase the channel rate (ratio of protection bits versus

information bits), the probability of error Pe decreases. In other words, given sufficiently

wide channel bandwidth, we should heavily protect all information bits before transmis-

sion to avoid channel errors and ensure that the end-to-end distortion could only result

from lossy source compression. Similar to the source coders, most existing channel coders

are designed for a specific channel and target bit error rate without explicit regard for the

source coder characteristics.

3. The bottom plot shows a JSCM system with channel capacity limits: the entire bandwidth

must be divided between the source and the channel coders. Allocating too much capacity

to the source would cause an insufficient amount of channel protection and would lead to

transmission errors, which decrease the end-to-end performance, whereas allocating too

much capacity to the channel would result in an error-free transmission. However the

source material is then over-compressed and thus yields a great distortion, which also

decreases the end-to-end performance. There exists a fundamental trade off, or balance

point, (Sr, Cr), which configures the system to give the optimal performance (smallest

distortion Dmin).

JSCM is not limited to channel-capacity allocation. It can also be used to match the

source and channel coders in a power-limited situation, or whenever the source-channel coders

share some system resources that are limited. In general, JSCM intelligently allocates limited

system resources between the source and channel encoders to achieve the optimal end-to-end

9

3D Waveform

Group Of Pictures (GOP)

Coding Compressed
BitstreamRaw Frames

3D Data Matrix
y A Frame

t

x

Figure 2.2 3D waveform video coding.

transmission performance. Some of our previous JSCM-related work can be found in [19] and

[20].

2.2 Video Source Coding

It is necessary to have a basic understanding of various video source coders before one can

successfully apply joint source-channel coding. Video coders are generally much more complex

than image coders because of the extra temporal dimension and the high amount of data

involved. Depending on whether or not temporal correlations are utilized, video coders can be

roughly categorized into the two following major classes [21]:

1. Intraframe coding, which codes each video frame as an independent image using con-

ventional image compression techniques, such as the Joint Photographic Experts Group

(JPEG) standard [22], or the wavelet codec based on set partitioning in hierarchical trees

(SPIHT) [23]. It has low coding efficiency and is only used when there is a limit on system

complexity or a need for random access to individual frames.

2. Interframe coding, which exploits frame dependency. It can be further divided into the

following subcategories:

a. Three-dimensional waveform coding such as three-dimensional discrete cosine trans-

form (DCT), shown in Figure 2.2.

b. Motion-compensated coding such as the MPEG series and the H.26x series, as shown

in Figure 2.3.

c. Object/knowledge based model coding such as fractal video coding.

10

DCT Q VLC

IDCT

Estimation
Motion Frane

Store

Q
−1

−

+

Motion Vector

Interframe Mode

Intraframe Mode

Frames
Raw

Compressed
bit stream

Figure 2.3 Motion-compensated video coding.

Here we list a few of the typical video coders from each of the above categories. For details

of their encoding/decoding procedures and rate-distortion characteristic estimation, please refer

to Appendix A.

2.2.1 Motion-JPEG

Perhaps the simplest video coder from the intra-frame coding category and the default

codec for low-cost video conferencing [24], [25]. Motion-JPEG simply codes each frame using

the highly efficient JPEG format and transmits the coded frames sequentially. In spite of its

simplicity, it is commonly used because of the relatively uniform frame quality, its ability to

start decoding at any particular frame, and no frame-to-frame error propagation. In addition,

there are hardware chip-implementations of Motion-JPEG codec [26], [27] for various platforms

such as Sun Solaris. It also has the nice property that the rate-distortion function remains

approximately the same for video frames in the same sequence given there is no scene change;

this property greatly simplifies the estimation of R-D characteristics for the source coder, since

we only have to perform the estimation procedure once for every statistically distinctive se-

quence. For a typical R-D curve of the Motion-JPEG encoder and its estimation procedure,

see Appendix A.1.

Although it is simple and hardware-implementable, Motion-JPEG is not the ideal choice for

JSCM. The reason lies in JPEG’s extensive use of error-sensitive marker bytes. Those markers

help to achieve better compression ratio, but at the same increase the output stream’s suscep-

11

tibility to channel errors. A corrupted marker byte could significantly affect the quality of the

decoded frame or, under certain circumstances, render the entire received frame undecodable.

To address this error-sensitivity issue, researchers have proposed approaches such as transcod-

ing or collecting all the error-sensitive marker bytes and transmit them with heavy protection

[28]. These approaches, though effective to some extent, could be inefficient and computa-

tionally expensive. In this thesis, we instead choose the “get-it-or-lose-it” approach and try

to minimize frame losses and compensate for the lost frames by using error-concealment tech-

niques. For details, refer to Appendix B.

2.2.2 Motion-SPIHT

Motion-SPIHT is another candidate from the intraframe coding category; it replaces the

JPEG coder in Motion-JPEG with the wavelet-based SPIHT image coder. SPIHT has excel-

lent progressive properties, with a highly prioritized output bit stream that can be truncated

at any location and yet still produces a coarse version of the original, which facilitates the

implementation of unequal error protection (UEP). Its framewise rate-distortion functions also

have the same frame-independence property as that of Motion-JPEG.

One advantage SPIHT has over JPEG as a still frame encoder is that it does not contain

any special important marker bytes as JPEG does. Every correctly-received bit could introduce

extra gain in performance. In a error-prone situation, Motion-SPIHT could be perform much

better than Motion-JPEG in terms of end-to-end distortion.

2.2.3 Conditional block replenishment

Conditional block replenishment (CBR) coder is one of the earliest approaches in inter-

frame coding (in fact, both H.26x and the MPEG series can degenerate to CBR in their most

primitive mode) and has a wide usage in videoconferencing applications, where the frames

consist of mostly still background and not much movement, and in multicast systems such

as multicast backbone (M-Bone) on the Internet. It has certain advantages, such as coding

simplicity and substantial robustness to transmission errors, over motion-compensation-based

video coders like MPEG. A CBR coder works in the following fashion:

1. The first frame is encoded using conventional image compression techniques (such as

JPEG) and transmitted. It is denoted as the index frame.

12

2. The following frame is divided into blocks and then segmented into “modified” and “un-

modified” blocks with respect to the previously transmitted frame (not the previous raw

frame). The “modified” blocks can be defined as those blocks whose mean square error

(MSE) with regard to the previously transmitted frame are greater than a certain thresh-

old, or simply the K blocks whose MSE are greatest. Other alternative criteria can also

be used.

3. Block address, luminance and chrominance information in the “modified” region are then

encoded by means of any differential pulse coded modulation (DPCM) method and trans-

mitted.

4. The following frames are treated in the same fashion until a forced frame replenishment

occurs, at which point the next frame is transmitted as an index frame.

CBR has the intrinsic disadvantage common to all conditional replenishment coders, which

is error propagation. A corrupted block resulted from transmission errors will propagate to all

the subsequent frames until the next forced frame replenishment occurs (for example, if a black

block appears in a frame, it usually stays there until the next frame replenishment). Thus, the

frame replenishment frequency is a crucial parameter in maintaining playback quality.

Conditional replenishment can also be performed in the frequency domain or on a frame

basis [29]. A review of conditional replenishment algorithms can be found in [30].

2.2.4 3D-SPIHT

The 3D-SPIHT format [31], [32] is an extension to the 2D-SPIHT image compression format;

similar to 2D-SPIHT, it has the feature of being embedded or progressive, which means that

the bits in the compressed stream are ordered by their relative importance. Unlike 2D-SPIHT,

whose progressive property is within each frame only, 3D-SPIHT produces progressive bit-

streams for each group of pictures (GOP). An obvious advantage of using an embedded coder is

that if the receiver has failed to obtain the tail portion of the bitstream, it could still use what

it has received to reconstruct a version of the original with slightly inferior quality; generally,

any extra bit received increases the received quality.

However, since 3D-SPIHT achieves high compression ratio by utilizing both the spatial and

temporal redundancy in a video sequence, it gives only mediocre results when the video sequence

contains a high amount of motion information (less spatial and temporal redundancy). Thus,

13

theoretically it is only suitable for applications such as videoconferencing and video-phone,

and requires motion-compensation extensions to perform well for fast-motion video sequences

[33]. In simulations we observe that for relatively low-resolution sequences, such as the quarter

common intermediate format (QCIF), 3D-SPIHT has H.26x-comparable performance even when

significant amount of motion exists. The 3D-SPIHT format is not commonly used in practical

applications yet because of its high computation requirement. However, with the advancement

of digital signal processing algorithms and faster hardware chips, the computation requirement

barrier is eventually going to dissolve and coders such as 3D-SPIHT would enter the commercial

application ground.

2.2.5 H.26x

Unlike the previously mentioned video coders, the H.26x family of video coders (H.261,

H.263, H.263+) is based on advanced motion-compensation compression techniques and targets

mainly low-rate applications such as videoconferencing and videophone, where the input frames

consist of mostly background information and the amount of motion is limited. Some of its

compression techniques were later adopted and refined by the MPEG-1 and MPEG-2 video

compression standards. The latest MPEG-4 standard is basically an H.263 kernel wrapped

with a shape-coder layer.

The H.26x encoding procedure could be roughly described as the following: first a reference

frame (I-frame) is compressed using the traditional image compression method, then motion-

vectors for the next frame with regard to the reconstructed reference frame are estimated and

encoded. H.26x coders are amenable to low-cost very large scale integration (VLSI) circuit

implementation, which is rather important for widespread commercialization of videophone

and teleconferencing applications. For details of the H.26x encoders, please refer to Appendix

A.5.

2.2.6 MPEG 1/2/4

The MPEG video compression series (MPEG1, MPEG2, MPEG4), developed by the Inter-

national Organization for Standardization (ISO) committee, has become the de facto standard

for video storage. MPEG-1, approved as an international standard in 1992, has been developed

for storage of common intermediate format (CIF) video at about 1.5 Mb/s on various media;

MPEG-2 was designed for data rates of up to 20 Mb/s for high-definition video; the on-going

14

Finite-size decoding buffer

Source Symbols
 Protection Symbols

Buffer Vacancy

Next Frame

Current Frame

Constant

Decode Flow

Constant-rate Playback

Leftover from previous frame

Buffer Occupancy

Figure 2.4 Rate-control for video coders.

MPEG-4 development, however, concerns itself mainly with very-low-bitrate compression (8-32

kb/s) for videophone applications.

The MPEG series and the H.26x series share several key components in compression tech-

niques, for example, block-based motion compensation, DCT transform, and entropy coding.

Their differences are mostly the result of different target bitrates, and are significant only in

their respective advanced compression profiles. For details of the MPEG series, refer to the ISO

MPEG standards.

The MPEG video compression series are traditionally difficult to model mathematically

because of the block-based approach and motion-compensation techniques, thus, real-time es-

timation methods are often used [34].

2.3 Rate Control

Rate (buffer) control (demonstrated in Figure 2.4) is a key issue in video transmission [35]

[36], since a small, finite delay between transmission of frames must be obtained. Furthermore,

in a practical implementation the decoder usually has a finite decoding buffer-size and a constant

decode-flow.

Suppose we have a video frame sequence divided into GOPs of size N . Each picture or frame

is coded to have a stream length of s(i, qi) in bits as defined previously. For the transmission

of the ith frame, a certain amount of protection, denoted by Pi, is used. Then the buffer

occupancy, bi, after frame i is transmitted can be expressed as

bi = max(bi−1 + s(i, qi) + Pi − R, 0), i = 1, 2, . . . (2.1)

15

where R is the constant decoding stream flow (stuffing-bits will be added to avoid underflow

when bi is smaller than zero). The buffer size constraint is then represented as

bi ≤ bmax, i = 1, 2, . . . (2.2)

where bmax is the finite decoding buffer size. The optimization thus becomes a constrained

problem, which usually requires techniques such as the Lagrange algorithm or the penalty

function to solve.

Among all the video coders we mentioned in the previous section, most require a rate-control

mechanism except the 3D-SPIHT coder, in which case we allow an overall delay of one GOP

and start playback only after the entire GOP is received.

2.4 Channel Coding

Here we give a brief introduction to two typical widely used channel coders: the RS codes and

the RCPC codes. Note that both these two codecs attempts to correct any errors present but

do not guarantee an error-free output. For example, an RS codeword might be corrupted by so

many errors that it becomes another valid RS codeword, the decoder would simply assume that

no errors are present. Thus, these codecs are usually used in conjunction with parity-checking

mechanisms to ensure a valid output.

2.4.1 Reed-Solomon codes

RS codes [37] are a well-known class of block codes with good error-correction properties.

They have excellent abilities to correct channel burst errors, which are common in a wireless

environment. An RS code defined by (n, k, t) is a length-n code that contains k = n−2t source

symbols, 2t protection symbols, and can correct t symbol errors. There are RS codes for various

n, most commonly n = 2m − 1 where m is the symbol length in bits (in our scheme we will use

m = 8, because we usually access frames in bytes). An (n, k, t) code will be unable to recover

the original k data symbols if more than t errors occur.

In our JSCM schemes, we employ a packet-based approach in RS channel coding, in which

case each transmission packet is an RS coding unit and contains both the source symbols

and protection symbols. We define, for video transmission, the frame transmission success

16

probability Pfsucc as

Pfsucc =
M
∏

n=1

Ppsucc (2.3)

Ppsucc =

p/2
∑

k=0

(

L

k

)

Pes
kPss

L−k (2.4)

Pss = 1 − (1 − Peb)
m (2.5)

Peb = Q

(

√

2Eb

N0

)

(2.6)

where Ppsucc is the packet transmission success probability, M is the total number of packets

to transmit, Pss is the symbol transmission success probability, L is the packet length, p is the

number of protection symbols in each packet, Peb is the bit-error probability, m is the number

of bits per symbol, Eb is the fixed power per bit, and N0 is the channel noise variance. In

order for the above equations to be valid, sufficient interleaving must be employed so that the

independence assumption is satisfied.

2.4.2 Rate-compatible punctured convolutional codes

RCPC codes, introduced by Hagenauer and colleagues [38], [39], [40], extend traditional

convolutional codes by puncturing a low-rate 1/N code periodically with period P to obtain a

family of codes with rate P/(P + l), where l can be varied between 1 and (N − 1)P . The rate-

compatible restriction on the puncturing tables ensures that all code bits of high rate codes are

used by the lower-rate codes, thus allowing transmission of incremental redundancy in forward

error correction (FEC) schemes and continuous rate variation to change from low to high error

protection within a data frame. RCPC codes are good for source-channel coding because the

basic structure of the codec remains the same as the coding rate changes.

2.5 Network Channels

As a fundamental part of network systems, network protocols allow one to specify or un-

derstand communication without knowing the details of the physical network architecture [41].

Multiple network protocols exist in today’s network systems to deal with the seemingly over-

whelming set of transmission problems such as congestion, routing, data protection, etc. Each

protocol has its own advantages and disadvantages with regard to transmitting video packets.

17

Here below we briefly discuss several of the most widely-used protocol candidates, focusing on

their individual advantages and disadvantages for applying JSNM video transmission.

2.5.1 User Datagram Protocol

The User Datagram Protocol (UDP) [41], [42], [RFC 768], based on the underlying Internet

Protocol (IP) [RFC 791] [RFC 1122], provides an unreliable, connection-less delivery mechanism

to transmit datagrams over the network. It does not use acknowledgments, nor does it provide

feedback to control the rate at which information flows. The application designer assumes full

responsibility for handling the problem of reliability, including packet loss, duplication, delay,

and out-of-order delivery.

The UDP protocol has certain advantages in delivering video packets; because it has no

feedback mechanism, there is no extra delay caused by the receiver requesting retransmission.

Also, UDP has a relatively small overhead; thus, it is possible to custom-build protocols on top

of UDP that are tuned to the task of transmitting video packets.

The unreliable nature of the UDP protocol, however, also poses a problem for transmitting

video packets that contain crucial information bits such as marker bytes. The loss of such

packets usually causes disastrous effect on the receiver end, often resulting in total frame loss.

Thus, the UDP protocol is mostly useful for transmitting progressive video streams, where

heavy penalty for packet loss can be avoided by applying unequal error protection. Besides,

UDP does not have a congestion-control mechanism, which makes it more practical in a local

network environment than in a larger hybrid network such as the Internet.

2.5.2 Transmission Control Protocol

The Transmission Control Protocol (TCP) [41], [42], [RFC 793] provides reliable stream

delivery of packets over networks. TCP uses positive acknowledgement with retransmission

techniques to provide reliability. It also has built-in congestion-control algorithms, a timer

for network time-out, packet sequence numbers for out-of-order packets, and buffered transfer

based on the sliding-window concept [RFC 813].

The TCP protocol has a lot of appealing properties suitable for transmitting video packets.

For example, it is a reliable delivery service, so video streams that are not progressive can be

transmitted without the worry that some crucial information packet might be lost; it has full-

duplex connection via which the receiver can feed back information to facilitate the sender’s

18

rate-control process; it also provides a push mechanism for immediate delivery and the ability to

transmit out-of-band data, which is highly useful in sending control commands to the receiver;

it assigns sequence numbers to its packets, so packet repackaging at the receiver end is done

inherently.

The major disadvantage of using TCP to transmit video packets arises from the potentially

intolerable amount of delay it might introduce; especially in a highly congested or error-prone

network, the receiver would have to wait for a long period of time just for a certain packet

to arrive intact. It is inherently unacceptable for video communication sessions, especially

videophone and videoconferencing applications. Also, because of the transmission delay, one

might question the credibility of the channel information feedback sent by the receiver.

2.5.3 Real-Time Transfer Protocol

The Real-Time Transfer Protocol (RTP) [RFC 1889] provides end-to-end network transport

functions suitable for applications transmitting real-time data, such as audio, video or simula-

tion data, over multicast or unicast networks. It is closely coupled with a control protocol such

as Real-Time Transfer Control Protocol (RTCP) to allow monitoring of the data delivery, and

to provide minimal control and identification functionality.

RTP is typically run on top of UDP to make use of its multiplexing and checksum services;

both contribute parts of the transport functionality. It can also be used with other suitable

underlying network or transport protocols.

RTP is suitable for network video communication because it provides services such as pay-

load type identification, sequence numbering, timestamping, congestion control and delivery

monitoring. However, RTP itself does not provide any mechanism to ensure timely delivery or

provide quality-of-service guarantees, but relies on lower-layer services to do so. It represents

a new style of protocol following the principle of application-level framing and integrated layer

processing. It is a protocol framework that is deliberately incomplete.

It is because of the incompleteness, and the resulting flexibility, that we believe an RTP-like

protocol may be the best choice for a joint source-network video communication system.

19

2.5.4 Heterogeneous Packet Flow Protocol

The HPF [43] protocol is an ambitious new transport protocol, designed by the TIMELY

group at the University of Illinois at Urbana-Champaign for effectively supporting hybrid data

packet flows in the internet environment.

HPF has the following key features:

• HPF supports packet flows that contain different quality-of-service requirements such as

reliability, priority, and deadlines.

• HPF supports application-level framing.

• HPF enables the use of application-specified priorities as hints for network routers to do

preferential dropping during congestion.

• HPF decouples the congestion control and reliability mechanisms in order to support

congestion control for unreliable and heterogeneous packet flows.

HPF differs from RTP in that although both protocols let the application specify policies for

framing, reliability, timing and priority, HPF insists on a clean separation between policies and

mechanisms. In other words, HPF believes that the transport protocol alone should provide

the mechanisms without the participation of the application.

Interestingly, this concept of clean separation between policies and mechanisms goes directly

against the joint source-channel coding principle, which requires a joint optimization and close

integration of the source and channel coders. In the case of an HPF-based system, the source

coder simply assigns priority, cost, and deadline information to the packets without utilizing

channel information, and it is then up to the channel coder (protocol) to carry out procedures

such as packet delivery and dropping. There is no joint optimization or bidirectional information

exchange between the source and channel coders. It would be of great importance to find out

which theory leads to a better video communication system. Besides using HPF as a comparison

in our research, it would also be interesting to discover whether or not JSCM can bring further

performance gains to an HPF-based system.

Here we conclude our background-information chapter, in the following chapters we discuss

thoroughly the application of JSCM to video communication, starting with the most funda-

mental case: peer video transmission.

20

CHAPTER 3

JSCM PEER VIDEO TRANSMISSION

In this chapter we present the foundation of our entire JSCM research: the application of

JSCM for peer video transmission over point-to-point channels. In our earlier work, we have

developed a general JSCM framework suitable for cases where simple video coders are used (i.e,

real-time rate-distortion characteristics estimation is possible) [44]. In this thesis, we extend

the general system and propose an adaptive matching scheme for complex video coders. We

demonstrate the effectiveness of our schemes via simulations using several source-channel coder

combinations.

3.1 The Underlying JSCM Problem

The underlying JSCM problem can be illustrated using Figure 3.1:

At the sender end, a series of raw video frames are source-channel encoded and transmitted

over the channel (where errors might occur to corrupt the information) to the receiver; at the

receiver end, corresponding channel-source decoding is performed to obtain an estimated version

of the original raw video frames. Our objective is to minimize the expected end-to-end distortion

between these two sets of frames. The JSCM operation intelligently allocates limited system

resources (channel capacity, transmission power, etc.) to the source and channel coders, based

Source
Coder

Channel
Coder

Joint Source−Channel
Matching Optimization

Limited System
Resources

Channel Channel Source
Decoder Decoder

Raw
Frames

Decoded
Frames

Rate−Distortion

Feedback

Figure 3.1 The underlying JSCM problem.

21

on the rate-distortion characteristics of the source, and the accurate current channel situation

estimate obtained from a separate reliable feedback channel (both the existence of the feedback

channel and the accuracy of feedback information are crucial to the JSCM system, which is in

later sections).

Mathematically, the JSCM problem can be expressed as the following (using the channel

capacity-limited case and MSE distortion as an example):

Y = Se(X) (3.1)

Z = Ce(Y) (3.2)

Ẑ = H(Z) < C (3.3)

Ŷ = Cd(Ẑ) (3.4)

X̂ = Sd(Ŷ) (3.5)

J = E (X − X̂)2 (3.6)

where X denotes the original raw video frames, which are encoded using source encoder Se to

obtain Y ; Y is further encoded using channel encoder Ce to obtain Z, which cannot exceed

the channel capacity limit C; the channel transmission process H maps Z to Ẑ, which is

subsequently passed through the channel decoder Cd and source decoder Sd to obtain the final

decoded video frames X̂; and J is defined as the MSE between X and X̂. JSCM sets out to

find the optimal Se and Ce which minimize J without invalidating the capacity constraint.

3.2 JSCM General Framework

Most general JSCM frameworks, we believe, should achieve the following objectives:

1. Obtain the best end-to-end overall system performance and satisfy the constraints posed

by limited channel capacity, small allowable delay, and finite decoding buffer-size (rate

control).

2. Achieve a certain level of generality so that it can be applied to various standard source-

channel coder pairs without relying on detailed low-level technical knowledge about the

coders.

3. Can be implemented in real-time with reasonable complexity requirements.

22

Source Model Rate-Distortion

Curve Estimation

Channel Rate-Error

Curve Precalculation

Joint End-to-End

Distortion Optimization

Source Coding

Source Rate

Channel Coding

Channel Rate

Raw Video

Frames

To Transmission

Scene Change

Detection

Figure 3.2 General joint source-channel matching system.

We have demonstrated, via various simulations, that we have achieved all the three objectives

above. The resulting general JSCM system is shown in Figure 3.2, which contains six functional

blocks:

1. Source rate-distortion model estimation: This block models the source coder as

a black box with rate-adjusting dials and estimates its rate-distortion characteristics in

real-time (for cases when this operation is too expensive, we revert to the adaptive JSCM

scheme in Section 3.3.)

2. Channel model precalculation: The channel encoder’s performance curve (probability

of error versus rate) can usually be either calculated from analytical expressions (RS

codes) or estimated from offline simulations (RCPC codes). This block performs this

precalculation step and stores the tabularized values for use in the JSCM optimization.

3. JSCM optimization: This block solves the constrained optimization problem by apply-

ing techniques such as penalty functions and gradient-descent algorithms. The solution

provides the source and channel encoders with their individual coding configuration pa-

rameters.

4. Source coding: This block performs source-encoding on the raw video frames, based on

the parameters passed from the JSCM block.

5. Channel coding: This block performs channel-encoding on the source-encoded bit-

stream, based on the parameters passed from the JSCM block.

6. Scene-change detection: This block is required because we observe in simulations that

the source coder’s rate-distortion characteristic curve is data-dependent. In video se-

quences, a scene-change usually accompanies the change of the statistical properties of

23

Raw
Frames

Source Coder Channel Coder Channel Channel Decoder

Adaptive Parameter Adjustment
Feedback

Figure 3.3 Adaptive joint source-channel matching system.

the current video sequences, thus requiring a re-estimation of the rate-distortion charac-

teristic curve.

Our proposed general JSCM system proves to work well with a variety of source-channel

coding pairs, simulation results are presented in Section 3.4.

3.3 Adaptive JSCM Scheme

In the above-described JSCM system, we make the assumption that it is possible to obtain

the source rate-distortion characteristics using real-time estimation techniques. This assump-

tion is not always valid, given the complexity of some of the current video encoders such as

the H.26x series and the MPEG series. For the cases when this assumption is invalidated, we

propose an alternative adaptive JSCM scheme. It attempts to converge to the locally optimal

system configuration by changing the coding parameters on-the-fly based on feedback informa-

tion and steers the system toward the direction of better performance. In the case of a constant

or very slowly varying channel, it converges to the locally optimal system configuration; in the

case of a slowly-varying channel, it dynamically tracks the channel variation and provides a

sometimes suboptimal configuration. The speed of convergence is determined by how aggres-

sively the system adjusts the source-channel coding parameters. The system is illustrated in

Figure 3.3.

The system is similar to the general JSCM system shown in Figure 3.2. However, the rate-

distortion estimation block is removed because of its high computational requirement with a

complex video coder, and the joint source-channel matching block is replaced with the adaptive

parameter adjustment component, which performs the adaptation task, instead of attempting

to obtain a general solution to the optimization problem.

24

Suppose we use Sr to denote the source encoding rate, Cr to denote the channel protection

rate, and Pe to denote the channel error rate. the basic adaptation strategy can be described

as the following:

Initialize: Sr = S1, Cr = C1

If Pe < Po + ǫ or Pe < Po − ǫ

we are in the stable zone

Sr = So and Cr = Co

else if Pe < Po − ǫ

we are in forward adaptation

Cr = Co − ∆Cr

Sr = C − Cr

else if Pe > Po + ǫ

we are in backward adaptation

Cr = Co + ∆Cr

Sr = C − Cr

endif

where S1 and C1 are the preset initial values for Sr and Cr; C is the total channel capacity; ǫ

is the stable-zone threshold; So, Co, and Po are the original values for Sr, Cr and Pe; and ∆Cr

is the step size used when modifying channel protection rate.

1. Initialization: In the initialization stage, the system assigns the source and channel

coders a set of common coding parameters.

2. Forward adaptation: The system enters forward adaptation stage when the channel

situation improves. The feedback information informs the JSCM parameter adjustment

component that the channel has improved, and the JSCM block reduces the resources

consumed by the channel coder (channel rate, for example) by a small step (the step size

can also be adaptively determined); correspondingly, more resources are then allocated

to the source coder, end-to-end performance is expected to be improved. The forward

adaptation stage continues until the system enters the stable zone or backward adaptation

stage.

3. Backward adaptation: The system enters backward adaptation stage when the channel

situation deteriorates. The JSCM parameter adjusting block then increases the resources

25

consumed by the channel, also by a small step; correspondingly, fewer resources are allo-

cated to the source encoder. However, more allocated channel resources prevent channel

errors, and the combined effect is expected to increase the end-to-end performance. The

backward adaptation stage continues until the system enters the stable zone or forward

adaptation stage.

4. Stable zone: Presumably the system could oscillate between forward and backward adap-

tation states due to small variations in the channel situation, causing stability problems

and unnecessarily frequent coding parameter changes (which could be costly in a hard-

ware implementation). To alleviate this problem, we claim that the system has entered

the stable zone when the change in the channel error rate is below a certain threshold,

in that case, the source-channel coding parameters are preserved from the previous state.

The system leaves the stable zone when the change in the channel error rate is greater

than the preset threshold ǫ.

The adaptive JSCM system works as expected with complex video encoders such as H.263.

The rate of convergence can be adjusted by modifying the step size ∆Cr. Furthermore, we

discover from simulation that the adaptive system converges to the general system as long as

the rate of channel variation (defined as the time duration required for a 10% change in Pe) is

longer than twice the feedback interval. Simulation results are presented in Section 3.4.

3.4 Simulation Results

In this section we present the simulation results for our adaptive matching system. For

completeness, we also first revisit the simulation results for the general matching system, which

was developed in our earlier work.

3.4.1 JSCM general system

To demonstrate the effectiveness of our proposed JSCM general system, we use the following

simulation parameters. (For details of specific system implementation details, please refer to

Appendix B.)

1. Simulation video sequence: The standard fast-motion CIF format grayscale “Football”

sequence (for other simulation sequences such as “Miss America” and “Table tennis,”

results are similar and not presented here) with a GOP structure of size 20.

26

2 3 4 5 6 7 8 9 10
14

16

18

20

22

24

26

28

30

32

Eb/N0 (dB)

A
ve

ra
ge

 P
S

N
R

 (
dB

)

Motion−JPEG and RS coder, Football Sequence, GOP size 20

Optimal Protection
Little Fixed Protection
Medium Fixed Protection
Overabundant Fixed Protection

Figure 3.4 Simulation results for a general JSCM video peer-transmission system in a rate-
constrained situation, using Motion-JPEG video source coder and RS channel coder.

2. Video source coder: We tested both Motion-JPEG and CBR coders.

3. Channel coder: Reed-Solomon block codes with codeword length 255.

4. Transmission channel: Wireless channel with additive white Gaussian noise (AWGN),

signal-to-noise ratio (SNR) ranging from 2 to 10 dB (for the Motion-JPEG case) and

from 2 dB to 7 dB (for the conditional block replenishment (CBR) case). We assume

slowly-varying channels and accurate feedback information.

The simulation results (Figure 3.4, 3.5, and 3.6) show the following when we compare the

performance between JSCM and non-JSCM systems:

• No JSCM: Fixed source compression and channel protection rate parameters.

1. If the system chooses a fixed parameter set where the channel protection rate is

relatively low (higher source rate), the system behaves well in the region of high

channel-SNR but fails miserably when channel SNR deteriorates below a certain

level (shown in Figures 3.4 and 3.5 as the dotted curves).

27

2 3 4 5 6 7
20

22

24

26

28

30

32

34

36

38

Eb/N0 (dB)

A
ve

ra
ge

 P
S

N
R

 (
dB

)

CBR and RS coder, Football Sequence, GOP size 20

Optimal Protection
Little Fixed Protection
Medium Fixed Protection
Overabundant Fixed Protection

Figure 3.5 Simulation results for a general JSCM video peer-transmission system in a rate-
constrained situation, using CBR video source coder and RS channel coder.

2. If they system chooses a fixed parameter set where the channel protection rate is

relatively high (lower source rate), the system behaves well over a wide range of

channel-SNR values, but in the region of high channel-SNR it fails to capture a pos-

sible performance increase of 3 dB because it cannot exploit good channel conditions

(shown in Figures 3.4 and 3.5 as the dash-dot curves).

3. If the channel protection rate is chosen to be a medium value, then the system still

has the two problems mentioned above in the regions of low channel-SNR and high

channel-SNR, albeit to a lesser extent (shown in Figures 3.4 and 3.5 as the dashed

curves).

• JSCM: Source compression and channel protection rate are jointly optimized by the

JSCM procedure to obtain best end-to-end results.

The JSCM performance curve stays above those of the fixed-parameter systems and al-

ways achieves the highest end-to-end peak signal-to-noise ratio (PSNR). It is essentially

the convex hull of all the fixed-parameter system performance curves, with each point cor-

responding to an optimal configuration for a particular channel SNR (shown in Figures

3.4 and 3.5 as the solid curves on top of the other curves).

28

2 3 4 5 6 7
10

−3

10
−2

10
−1

10
0

Eb/N0

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 F

ra
m

e
Q

ua
lit

y

CBR and RS coder, Football Sequence, GOP size 20

Optimal Protection
Little Fixed Protection
Medium Fixed Protection
Overabundant Fixed Protection

Figure 3.6 Simulation results for a general JSCM video peer-transmission system in a rate-
constrained situation, using CBR video source coder and RS channel coder. Frame quality
variation is used as an alternative performance criterion.

• Alternative performance criterion: In order to demonstrate the generality of our

JSCM system, we use the frame quality variation factor in addition to the average frame

PSNR as an end-to-end performance measure. From the result plot (Figure 3.6) we can

observe that the JSCM performance curve does a better job of keeping the frame quality

variation low than either the little-protection or the overabundant-protection case. Its

performance is comparable to that of the medium-protection case in most portions of the

entire channel SNR range, but yields a significantly lower variation in certain regions.

It is now clear why the implementation of JSCM requires the existence of a separate feedback

channel that provides an accurate up-to-date channel condition estimate. JSCM relies on

the knowledge of current channel condition to determine the appropriate amount of channel

protection to employ and is highly sensitive to the accuracy of the feedback information. For

example, in Figure 3.4, if the channel SNR is 5 dB and the feedback erroneously reports it to

be at 6 dB, the performance loss caused by the incorrect coding parameter decision from JSCM

could be more than 15 dB. Thus, it is imperative to have an accurate estimation of the current

channel condition for JSCM to function.

29

0 2 4 6 8 10
20

25

30

35

40

45

50

55

Channel Situation E
b
/N

0
 (dB)

A
ve

ra
ge

 F
ra

m
e

P
S

N
R

 (
dB

)

H.263 and RCPC System

Rate 8/9
Rate 8/16
Rate 8/24
Optimal 2%
Optimal 5%
Optimal 0.1%

Figure 3.7 Simulation results for an adaptive joint source-channel matching video peer-
transmission system in a rate-constrained situation, using H.263 video source coder and RCPC
channel coder. Percent values in figure are corresponding thresholds, ǫ.

3.4.2 JSCM adaptive system

We chose the H.263 video encoder and RCPC channel coder to demonstrate the adaptive

JSCM system. The corresponding coding parameters are H.263’s MQUANT factor, modified

on a macroblock basis, and the RCPC’s puncture rate. The encoded information bit stream

is packetized and sent over the channel, and the channel decoder sends back the cumulative

packet loss ratio as an estimate of the current channel situation. More details about the system

implementation can be found in Appendix B.

From the result in Figure 3.7 (each percent value corresponds to a different stable-zone

threshold ǫ) we essentially observe the same behavior as with the general JSCM system: the

fixed-parameter system’s performance drops as channel deteriorates, and stays constant when

the channel improves greatly, while the JSCM system’s performance curve always resides above

those of the fixed-parameter systems.

30

3.4.3 Summary

We summarize our findings and present them in the form of two conjectures, which also serve

as an underlying supporting factor for the next chapter on JSCM broadcasting. We emphasize

in the conjectures the fact that the “optimal performance” for a user is defined for the current

channel condition only.

Conjecture 3.1 The optimal video transmission performance for a user, with regard to the

current channel condition, can be obtained by applying the JSCM principle in a JSCM-capable

system toward this particular user.

Conjecture 3.2 The adaptive JSCM system converges to the general JSCM system (within

a threshold) given that the speed of channel variation (defined as the time duration for a 10%

change in Pe) is longer than twice the feedback interval.

31

CHAPTER 4

BROADCAST: MINIMAX DISAPPOINTMENT

Users of media broadcasting services generally experience different grades of overall perfor-

mance because of the nonuniform quality of their channel conditions. In order to provide all

users with equally satisfactory performance, we need to define a meaningful and fair perfor-

mance measure for an overall broadcasting scheme. In this chapter we first introduce the most

general form of the broadcasting performance criterion, and then, based on its infinite-norm

special case, we propose an alternative performance criterion named “minimax disappoint-

ment.” This criterion utilizes the concept of layered service levels and the basic principle of

JSCM; it minimizes for all users the maximum value of performance degradation between the

received performance and the users’ optimal expectation, given each user’s individual channel

situation. At the end of this Chapter we develop several demonstration broadcasting systems

and a gradient-based optimization scheme.

4.1 Motivation for an Alternative Criterion

In a broadcasting situation, the central broadcasting station transmits the same set of

signals to all users of its service without regard to their individual connection to the station.

Received performance for different users may vary because of different channel qualities. A

typical example would be a simple wireless broadcasting scenario, where users are scattered

in a pattern of co-centered circles of different radii (shown in Figure 4.1). Depending on their

respective distances to the station and other factors such as geographical environment, structure

density, local weather, and electromagnetic noise activity, users can be categorized into different

classes which observe different channel SNR and fading profiles. In general, the farther away

the user is from the station, the worse the transmission quality because of signal energy decay

over distance.

In view of the above situation, it is considered good practice to define multiple user classes

and provide layered levels of service. In other words, the broadcast signal is divided into multiple

32

User Class 1

User Class 2

User Class 3

Users

(Medium Channel)

(Good Channel)

(Bad Channel)
Broadcasting Station

Figure 4.1 A simplified wireless broadcasting scenario.

successively refinable layers; each class of users can then receive a maximum number of layers

within its ability and obtain a satisfactory performance. It has been shown that layered service

indeed provides performance increase for all users [45], [46].

However, even with layered service and the performance increase it introduces, the prob-

lem of unequal performance for different users still exists, if somewhat alleviated. How to

effectively and meaningfully evaluate the performance of the overall broadcasting system, given

different classes of users, has been a major concern in the development of broadcasting schemes.

Traditionally, people have developed heuristic and intuitive measures such as averaging the in-

dividual performance over all users, using weighted averaging schemes, or simply designing for

the worst-case user. They either penalize certain class(es) of users, or are too ad-hoc to retain

much theoretical significance.

We believe that a desirable and practical broadcast performance criterion should possess

the following properties:

• Fairness to all users: No class of users should be penalized more than the other classes.

For example, greater geographical distance from the broadcasting station is not a legiti-

mate reason for heavier penalty in terms of performance.

• Individual consideration: Although no class of users should be unfairly treated, the

fact that people do anticipate different service quality under different situations should also

be taken into consideration (assuming the users are reasonably informed). For example,

those users far away from the station would naturally expect the transmission quality

to be somewhat inferior to that of the users next to the station. Thus, our objective is

33

to offer different classes of users the same level of relative satisfaction/disappointment,

rather than exactly or approximately the same service quality.

• Theoretical tractability: We should be able to obtain the solution to the optimization

problem based on the performance measure using established optimization methods, and

the performance measure itself should have some theoretical significance.

4.2 Minimax Disappointment (MD)

To develop a good broadcast performance criterion based on the observations above, we

first suggest a very general form of performance measure. Suppose we denote the raw video

sequence as X, the receiver-reconstructed version for the ith user (class) as X̂i, and the total

number of user (classes) as N , then a broadcast performance measure P can be expressed using

the following equation:

P =
1

N

N
∑

i

wi | f(X, X̂i) |p (4.1)

where f(X, X̂i) is a predefined distance measure between X and X̂i, wi is the weighting co-

efficient for the ith user (class), and p is the order of the norm operator. To optimize the

broadcasting system, we set out to maximize performance measure P (or minimize it when P

is defined as distortion). Here we list several commonly-seen special cases [21]:

1. Average mean square error (MSE):

f(X, X̂i) =
X − X̂i
√

M(X)
, wi = 1, p = 2 (4.2)

where M(X) is the cardinality of X. This is probably the most commonly used criterion.

2. Average mean absolute difference (MAD):

f(X, X̂i) =
|X − X̂i|
M(X)

, wi = 1, p = 1 (4.3)

Often used in hardware implementation, when the square operation proves to be too

expensive (for example, MPEG-2 block-matching uses MAD instead of MSE).

34

3. Design for the worst user (in MSE sense):

f(X, X̂i) =
(X − X̂i)

2

M(X)
, wi = 1, p = ∞ (4.4)

This approach provides quality of service (QoS) guarantee by designing the system toward

the worst-case user (p = ∞ essentially yields the worst-case user’s performance as the

dominant term, P = maxi f(X, X̂i)). Substituting f(X, X̂) with other functions redefines

service quality.

4. Average peak signal-to-noise ratio (PSNR):

f(X, X̂i) = 10 × log10

(

255 × 255

(X − X̂i)2/M(X)

)

, wi = 1, p = 1 (4.5)

The log-scale PSNR criterion is commonly used in image/video processing because it

matches to the human visual system (HVS) perception better than the MSE criterion.

5. Phase correlation:

f(X, X̂i) =
F(X) ×F(X̂)

|F(X) ×F(X̂)|
, wi = 1, p = 1 (4.6)

where F(X) stands for the Fourier transform (FT) operation. The phase correlation

criterion is used in image/video processing because it captures the visual similarity better

than MSE or PSNR (for example, a darkened image can have a low PSNR from its original

version, but the phase correlation would be high, indicating that it is similar to its original

version).

If we use nonuniform values for wi, then we essentially create weighted versions of the above

criteria.

From a broadcast system’s point of view, two commonly used performance criteria would

be nonuniform wi and p 6= ∞ (weighted averaging scheme), or uniform wi and p = ∞ (design

for worst user with QoS guarantee). Compared to these two common approaches, our proposed

performance measure, named “minimax disappointment” (in analogy to the minimax regret

concept in decision theory [47]), has the following advantages: (1) it does not employ any

form of weighting, so the entire complex issue of designing weighting coefficients that are both

theoretically meaningful and fair is avoided; (2) instead of sacrificing those users with good

35

Pmin

Pmax

Poptimal

Preceived

Disappointment

Performance

User Index
2
 3
 4
 5
 6
1

Valid User Set
I

Figure 4.2 The minimax disappointment criterion.

channel conditions in order to guarantee a certain performance level for the worst-case users,

MD trades off performance among all users and thus achieves approximately the same level of

efficiency for all users. The disappointment criterion can be explained by Figure 4.2 and the

following formula:

P = max
i∈I

(Pi − pi) (4.7)

I = { i | Pmin ≤ pi ≤ Pmax, i ∈ 1, . . . ,N} (4.8)

where N is the number of user classes, Pi is the ith user’s expected best performance (here per-

formance is defined using any suitable metric; later we explain how this Pi is obtained using the

JSCM principle), and pi is its actually received performance. (Intuitively, for most users Pi > pi

because we have to trade off performance between users. Equality can be achieved under certain

circumstances but usually does not lead to the optimal configuration.) Pmin and Pmax are the

upper and lower bounds for pi; performances smaller than Pmin are considered unacceptable,

and performances greater than Pmax are deemed perfect; those users whose performances satisfy

these two inequality conditions form I, the valid user set.

We define Pi − pi as the ith user’s disappointment, and our objective is to minimize the

maximum performance degradation for all users in set I. In other words; all users in this set

will be “disappointed” to a certain extent because they cannot receive their expected optimal

36

performance, and the maximum value of their “disappointment” P is the proposed performance

measure: the smaller P is, the better the performance. We introduce the valid user set I to

prevent users with extremely bad channels from having parasitic effects on the entire system,

and avoid wasting resources on users whose received performances are already so good that any

extra gain would not introduce perceptible effects. In this paper we make the assumption that

the set I is predetermined before system optimization.

This performance measure does not penalize any class of users, and it is reasonable and

fair because all users in set I know that everybody else is equally as satisfied/disappointed as

they are. It is theoretically tractable because optimizing the performance simply falls into the

minimax optimization framework.

The MD criterion can be extended to a minimax relative disappointment criterion (defined

below):

P = max
i∈I

(

Pi − pi

Pi

)

(4.9)

This criterion optionally scales each user’s disappointment by its optimal expectation Pi. It

reflects the fact that the user’s perceived performance degradation is not proportional to the

transmission system’s absolute performance degradation: users who have extremely good per-

formance might be willing to accept a relatively larger performance degradation since it will not

significantly affect their perceived service quality; whereas users who already have mediocre or

bad performance might be reluctant to accept any further performance degradation. Since this

is simply a scaling operation, everything we describe for nonrelative minimax disappointment

still applies.

The MD criterion can also be expressed as a special case of the general expression in Equation

(4.1):

Minimax disappointment (MSE sense):

f(X, X̂i) =
| (X − X̄i)

2 − (X − X̂i)
2 |

M(X)
, wi = 1, p = ∞ (4.10)

X̄i = arg min
C

(X − X̄i)
2 (4.11)

where C is the complete set of parameters to be optimized, such as the source and channel

coding configurations in a JSCM system.

37

The existence of a unique solution for the maximization (or minimization) of performance

measure P depends on the characteristics of the distance measure function f(X, X̂i) and the

order of norm operator, p.

1. p = 2: The order-2 norm case is tractable because we can calculate the analytical ex-

pression of the first-order derivative of P and successfully apply gradient-descent-based

algorithms. It is guaranteed to converge to a global minimum if the cost function is convex

and has a finite number of discontinuities.

2. p = 1: The order-1 norm case involves a change of sign in the zero point, for which the

gradient is not defined. However, in the region where the cost function is monotonic,

gradient-descent-based optimization methods can still be used.

3. p = ∞: The infinite-norm case translates to a minimax optimization problem. It can

be solved using the first method of successive approximations (a derivative of gradient-

descent-based algorithm for solving minimax problems) when the cost function is convex,

as we will show in later sections.

4. p < ∞: For finite p-norm case, it is essentially similar to either case (1) or (2).

In our JSCM video transmission/broadcasting system, the distance measure function f(X, X̂i)

is determined by the rate-distortion function R(D) of the source encoder, the performance curve

Pe(r) of the channel encoder, and the broadcast scheme. It is, under most practical situations,

a continuous and convex function (see examples in Appendix A). Thus, the optimization

of performance measure P in its most general form can usually be solved using gradient or

gradient-derived algorithms. We concentrate on the MD measure as a meaningful special case.

4.3 Transaction Broadcasting Framework

To best implement layered service and JSCM broadcasting, we propose a broadcasting sys-

tem (shown in Figure 4.3) based on a progressive video encoder and investigate several possible

candidates. For channel protection we elect to use the RCPC channel encoder and, alterna-

tively, a bit-power-adjustment approach. The encoding procedure can be generally described

as follows:

38

p p p p p p p

C1 C2 Ck

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

R1 R1p p R2 R2p p

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

Divide into equal size packets

Group packets into k classes

Apply different RCPC protection to packet in each class

p p

Pre−encoded constant bit−rate progressive video stream

Send an optimal number of packets with their protection

R1 R1p p R2 R2p p

Figure 4.3 Proposed JSCM broadcasting framework.

1. Pre-encoding: The raw video frames are first pre-encoded using a fixed-rate progressive

video encoder. Adjusting the encoding rate with a progressive video encoder is approxi-

mately equivalent to truncating the encoded bit-stream.

2. Packetizing: The encoded video stream is divided into equal-size video packets.

3. Packet classification: The packets are further categorized into k classes. The number

of classes corresponds to the number of layers the broadcasting service provides.

4. Channel encoding: RCPC protection is applied to each packet in a class with a spe-

cific rate; it is possible for the least important (tail) packets to be transmitted without

protection.

5. Transmitting: A certain number of RCPC-encoded packets are then transmitted. The

number of transmitted packets is optimally determined by the JSCM procedure.

Information crucial to the decoding process, such as packet size, number of packets in

each class, RCPC encoding rates, must be either predetermined and known to the receiver

or pretransmitted to the receiver in the handshake or synchronization process. We do not

investigate the implementation details of this operation in this thesis.

39

4.4 Simulation Results

In order to demonstrate the use of MD criterion and compare system performances, we

choose to use the same set of simulation parameters for all four simulation systems:

1. Simulation sequence: fast-motion football test sequence cropped to the quarter computer

intermediate format (QCIF).

2. Simulation channel: AWGN channels with SNRs ranging from 1 dB to 9 dB.

3. Number of user classes: 5 classes evenly spread out in the entire SNR range.

The last example is different from the previous three because it uses an energy-varying

transmission with a power constraint instead of a rate constraint. We cannot directly compare

its performance with the other three cases.

In order to adapt to the human visual system characteristics, we also elect to calculate disap-

pointment using the log-scale PSNR. We use user-averaged-PSNR (UA-PSNR) as an alternative

broadcast performance criterion to make general comparisons.

4.4.1 Motion-SPIHT and RCPC

To test the Motion-SPIHT-RCPC simulation system, the broadcasting station transmits

the test sequence using the optimized system parameters with nine available RCPC protection

rates. At the decoder end, a constant decode buffer size of approximately 1 bit/pixel is used.

Simulation results are shown in Figure 4.4.

From Figure 4.4 we observe that the received performance for all users of our MD-optimized

system is roughly the same distance from their individual expected best performance; in other

words, they experienced the same level of disappointment, whereas in the other system con-

figurations optimized toward one single user class, one or more users are invariably highly

disappointed; i.e, their received performance is far below their best expectation. Thus, our

system does give the optimal performance in terms of the MD criterion, achieving a maximum

disappointment of 0.6703 dB.

4.4.2 3D-SPIHT and RCPC

In the case of 3D-SPIHT with RCPC simulation, the result is quite similar to the previ-

ous case. We again observe that systems designed for individual user class suffer from great

40

1 1.5 2 2.5 3 3.5 4 4.5 5
19

20

21

22

23

24

25

26

27

28

Channel SNR / User Index

A
ve

ra
ge

 fr
am

e
P

S
N

R

Video Broadcasting, Rate−Constrained, Minimax Disappointment (MD) Optimized

RCPC 9/24
RCPC 8/70
RCPC 8/56
RCPC 8/14
Expected
MD Optimized

Figure 4.4 Simulation results for an MD-optimized video broadcasting system with five user
classes in a rate-constrained situation, using Motion-SPIHT source coder and RCPC channel
coder with nine available protection rates.

disappointment values for other users, and the MD-optimized system gives each user class

approximately the same level of performance degradation (shown in Figure 4.5).

4.4.3 Layered-H.263 and RCPC

In the case of layered-H.263 with RCPC, we use the same simulation sequence and RCPC

codes as before; the result is shown in Figure 4.6. In this case, we observe that not only the

amount of disappointment experienced by each user varies, but also the level of maximum

disappointment in the system is much greater (almost 2.4 dB) than the previous cases. This

behavior is expected because of the inefficiency of retransmitting the coarse information in every

layer. However, the better compression performance of this source coder may offset the larger

disappointment in practical situations.

4.4.4 3D-SPIHT and bit-power

To demonstrate the generality of the MD criterion, we take an alternative approach by using

the 3D-SPIHT-bit-power simulation system. We similarly make the assumption that we have

41

1 2 3 4 5 6 7 8 9
19

20

21

22

23

24

25

26

27

28

Channel SNR (dB)

P
S

N
R

 (
dB

)

3D−SPIHT and RCPC: Minimax Disappointment Optimized

JSCC Optimized
SNR = 1dB
SNR = 3dB
SNR = 5dB
SNR = 7dB
SNR = 9dB
MD Optimized

Figure 4.5 Simulation results for a MD-optimized video broadcasting system for five user
classes in a channel-capacity-constrained situation, using 3D-SPIHT source coder and RCPC
channel coder with nine available rates.

1 2 3 4 5 6 7 8 9
16

18

20

22

24

26

28

30

32

34

Channel SNR (dB)

P
S

N
R

 (
dB

)

Layered H.263 and RCPC: Minimax Disappointment Optimized

JSCC Optimized
SNR = 1dB
SNR = 3dB
SNR = 5dB
SNR = 7dB
SNR = 9dB
MD Optimized

Figure 4.6 Simulation results for an MD-optimized video broadcasting system for five user
classes in a channel-capacity-constrained situation, using layered-H.263 source coder and RCPC
channel coder with nine available rates.

42

five classes of users mapped to different SNR levels of AWGN channels, and the transmission

system can adjust the power for each bit. A total power constraint of Etotal is also assumed.

Simulation results are shown in Figure 4.7. Figure 4.8 shows the bit transmission power profiles

for all the different system designs.

From the plot we again observe that all users experience approximately the same level

of disappointment in our MD-optimized system, while using a transmission bit-energy profile

optimized for any single user leads to one or more highly disappointed users. Our system

achieves a maximum disappointment of 1.4418 dB.

From the plot we can also observe the performance curve for the case when we elect to

use user-averaged PSNR as the performance criterion. In terms of user-averaged PSNR, the

performance of the MD-optimized system is slightly inferior to that of the UA-PSNR-optimized

system (by a mere 0.2 dB). However, in terms of maximum disappointment, the UA-PSNR-

optimized system observes a maximum disappointment of 2.9871 dB, which is twice higher.

4.4.5 Result comparison

Comparing the result for Motion-SPIHT, 3D-SPIHT, and layered-H.263 under the capacity-

constrained situation, we can see that for any individual user, using layered-H.263 with JSCM

actually gives a higher absolute performance because of the H.263 encoder’s much greater coding

efficiency. However, the MD for layered-H.263 is much higher because its lack of progressive

property makes unequal-error-protection difficult and inefficient. This example illustrates that

the MD approach can be applied with success both to progressive and non-progressive video

source coders, but that a highly-progressive coder is needed to maximally exploit the potential

of MD broadcasting.

43

1 2 3 4 5 6 7 8 9
15

20

25

30

35

Channel SNR (dB)

P
S

N
R

 (
dB

)

3D−SPIHT and Bit Power Adjusting: Minimax Disappointment Optimized

JSCC Optimal
SNR = 1dB
SNR = 3dB
SNR = 5dB
SNR = 7dB
SNR = 9dB
MD Optimized
Average PSNR Optimized

Figure 4.7 Simulation results for an MD-optimized video broadcasting system toward five
user classes in a transmission-power-constrained situation, using 3D-SPIHT source coder and
a bit-power-adjustable transmission scheme. User-averaged PSNR is used as an alternative
performance criterion.

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

Bit index

B
it

T
ra

ns
m

is
si

on
 P

ow
er

Bit Transmission Power Profile for Different System Designs

SNR = 9dB
SNR = 7dB
SNR = 5dB
SNR = 3dB
SNR = 1dB
MD Optimized
Average PSNR Optimized

Figure 4.8 Bit transmission power profiles for different system designs.

44

CHAPTER 5

JOINT SOURCE-NETWORK MATCHING

Thanks to the explosion in network bandwidth and advancement in software development,

the Internet has recently seen a flood of network video applications, ranging from videoconfer-

encing packages such as Microsoft NetmeetingTM (where video sequences are captured, encoded

and transmitted all in real-time) to video-streaming software such as Apple QuicktimeTM and

RealNetworks RealPlayerTM (where preencoded video is streamed from the server to a client

upon request). Dot-com companies such as FilmSpeed and CinemaPop are experimenting with

on-line movie distribution; education institutions such as the University of California at Berke-

ley have already established Web-based video-tutor programs. Network video applications are

becoming increasingly popular.

In order to provide better support for video transmission over networks, two conflicting

requirements need to be addressed [48]:

1. Application requirements: Video applications are delay-sensitive and require a semi-

reliable channel. In addition, video streaming applications require isochronous processing

and QoS guarantees from the end-to-end point of view, since stored video has an intrinsic

transmission rate and demands a relatively constant bandwidth to deliver a stream with

a certain quality.

2. Network requirements: Congestion is a frequent phenomenon in a network when the

amount of ongoing traffic exceeds the total network link capacity [49]. End systems in

the network usually utilize a congestion-control mechanism to determine the available

bandwidth based on the state of the network. Thus, the available bandwidth could vary

in an unpredictable and potentially wide-ranging fashion.

To satisfy these two requirements simultaneously, network video applications should be

bandwidth adaptive: the application should attempt to deliver the video stream with the best

45

possible quality while the required bandwidth matches congestion-controlled rate-limit. In other

words, the application should match the source coder and the network channel. Currently, most

of the commercial network video applications do not perform source and network matching.

They either transmit data at a near-constant rate that is negotiated during session initialization,

or loosely adjust their transmission rates on long time-scales [48]. They are not responsive to

network variations and therefore can neither take advantage of increased network bandwidth nor

degrade gracefully during congestion (for example, during congestion, network video streaming

through Microsoft Windows media player will stall and skip a large number of frames instead

of showing continuous frames of somewhat inferior quality). Large-scale deployment of these

video applications could result in severe interprotocol unfairness against well-behaved TCP-

based traffic and possibly congestion collapse. Joint source-network matching is no longer

merely a performance-enhancing technique, but a necessity to ensure a healthy network and

end-user satisfaction.

Conceivably, the same joint source-channel matching principle demonstrated in the previ-

ous chapters can be applied to network video transmission with expected performance gains.

However, the implementation of joint source-network-matched video transmission presents sev-

eral unique challenges associated with the nature of network links. Various approaches have

been proposed in the literature to solve those issues and to facilitate network video transmis-

sion: Freytes et al. [50] described Kinesis, an H.263+ video transmission system for IEEE

802.11 wireless networks; Cai and Chen [51] proposed a FEC-based robust video streaming

system over a packet loss network with pre-interleaving; Vickers, et al. [52] defined a class of

algorithms known as source-adaptive multi-layered multicast (SAMM) for real-time video distri-

bution; Rejaie et al. [48] discussed layered quality adaptation for Internet video streaming; Kim

et al. [53] developed a joint encoder and channel-rate control scheme and a dynamic bandwidth

renegotiation method with traffic smoothing for asynchronous transfer mode (ATM) networks;

Wu et al. [54] presented an end-to-end architecture for transporting MPEG-4 video over the

Internet and an adaptive framework that specifically addresses video transport over wireless

networks [46]; Kim et al. [55] demonstrated a TCP-friendly internet video streaming scheme

using variable frame-rate encoding and interpolation; Liu et al. [56] investigated on-line dy-

namic bandwidth allocation algorithms for variable-bit-rate (VBR) video transmission; Zhu et

al. [57] designed a new network-adaptive rate control scheme for scalable video communication

in conjunction with unequal loss protection.

46

In this chapter, we discuss these various research challenges and propose our solution: the

joint source-network matching protocol, which optimizes the end-to-end video transmission

performance, using a TCP-friendly congestion-control algorithm and a built-in error-control

mechanism.

5.1 JSNM Implementation Challenges

5.1.1 Dynamic network characteristics

The greatest difficulties in implementing JSNM video transmission arise from the dynamic

and multi-user characteristics of network links. In a network video communication environ-

ment, there are, by definition, multiple bidirectional concurrent video sessions sharing the same

network. Channel capacity with regard to any particular user in the network is a varying com-

modity instead of a fixed resource [58]. Packets with the same source and destination could

travel entirely different paths with different delay parameters as a result of routing and queuing

mechanisms.

Due to the sharing of network resources, the network link is not reserved for any particular

user’s exclusive use. Therefore, the previous “resource-greedy” approach employed by JSCM

peer transmission systems is no longer applicable, since it will almost surely flood the network

and cause instabilities. In addition, because the Internet does not currently manage utilization

of its resources on a micro level, end systems are expected to be cooperative by reacting to

network congestion properly and promptly; in other words, a congestion-control mechanism is

required.

To perform congestion control, the following issues need to be addressed.

1. Network modeling

One way to perform effective congestion-control is to assume an accurate underlying model

for network traffic. Network modeling is an active research field: besides the conventional

Poisson model and multistate Markov chain (MSMC) model [59], there are also the wavelet

multifractal model [60], a mathematical model based on partial differential equations [61],

a traffic model based on M -step Kalman filter [62], and many others.

This thesis does not attempt to establish a new network model. Instead, it concentrates

on comparing existing network models and choosing one appropriate for JSNM video

transmission. Our simulations show that for our application, the MSMC is a good choice

47

with sufficient flexibility to describe network variations and desirable simplicity in terms

of implementation.

2. Network estimation

An alternative approach, which circumvents the necessity of choosing a network model

versatile enough for all possible situations, estimates the network traffic situation in real-

time based on receiver or router feedback. Real-time network estimation yields a model-

independent, more accurate and responsive system if we can ensure the accuracy and

timeliness of the feedback information.

In our proposed JSNM protocol, the receiver generates a feedback packet containing

important information regarding the network. The packet is delivered to the sender via a

reliable protocol, and the sender can subsequently derive crucial network statistics from

these data.

3. TCP-friendly congestion control

The rapid deployment of multicast and real-time video streaming applications is highly

likely to increase the percentage of non-TCP traffic in the Internet. These applications

rarely perform congestion control in a TCP-friendly manner; in other words, they do not

share the available bandwidth fairly with TCP-based applications such as Web browsers,

File Transfer Protocol (FTP) clients, or electronic mail (Email) programs. The Internet

community strongly fears that this trend could lead to starvation of TCP traffic or even

congestion collapse [63] (i.e., the undesirable situation where the available bandwidth

in a network is almost exclusively occupied by packets that are discarded because of

congestion before they reach their destination). Thus, the mere existence of a congestion-

control mechanism is not sufficient; it is also vital for our JSNM protocol to behave

fairly with respect to coexistent TCP flows and degrade gracefully to TCP-like behavior

under unfavorable conditions (i.e., conditions not designed for JSNM applications) [64].

A detailed survey on TCP-friendly congestion-control algorithms can be found in [65] and

[66].

In this thesis, we propose a TCP-friendly congestion-control mechanism roughly based on

the original TCP congestion-control algorithm. It mimics the long-term behavior of TCP

and yet does not have the saw-tooth pattern typical of TCP traffic, which introduces large

variation in received video quality. The definition of TCP-friendliness and our proposed

congestion-control algorithm are elaborated in Section 6.1 and Section 6.2.

48

4. Routing and queuing

In a packet-switching network such as the Internet, packets usually travel through several

intermediate nodes before they reach the final destination. Packets sent by the same

transmitter to the same receiver could go through entirely different paths given the varia-

tion in network traffic or network topology, each path having its own characteristics such

as transmission delay and queuing strategy. It is conceivable that we can ignore the IP

layer details and regard the entire path as an entity, but since routers are essential parts of

the network channel, a truly optimized JSNM system should also take them into consid-

eration. Routers can be programmed to be JSNM-aware, so that hints regarding packet

importance and delay requirement may be passed on to them and be used in the decision

process. For example, in a channel-congestion situation, based on the hint information,

the intermediate router may choose to promote packets with higher importance from the

back of the queue to the front and transmit them first, or to drop those packets that are

not expected to reach the receiver before their individual deadline.

Research on JSNM routing support and queuing is out of the scope of this thesis. It is

presented here to induce potential research interest.

5.1.2 Wireless network links

Networks, especially those with large-scale topology, are usually made of heterogeneous

types of network links. For example, mobile video transmitters or receivers connect to their base

stations via error-prone wireless links with high delay, while base stations are interconnected

via high-speed large-capacity wireline links which are relatively error-free.

Networks involving wireless links are different from wireline-based networks in the following

aspects:

1. Less reliable

Wireless channels are typically much more noisy with fading phenomena and a signifi-

cantly higher channel error rate, which puts a robustness requirement on video transmis-

sion systems.

2. Higher fluctuations

The bandwidth for a user in a wireless mobile network could fluctuate for many reasons:

(1) the mobile terminal moves across cell or network boundaries and hand-off occurs; (2)

49

there could be a burst of new traffic flows due to the introduction of new users; (3) the

throughput may be reduced due to multipath fading, co-channel interference, or noise

disturbances; and (4) the link capacity could vary with the changing distance between

the base station and the mobile terminal. Consequently, bandwidth fluctuations pose a

serious problem for real-time video if a wireless link is present.

Because of the popularity of wireless video applications, it is imperative that our proposed

JSNM protocol recognizes the possible inclusion of wireless links in the end-to-end transmission

path and address the above issues.

5.1.3 Need for new transport protocol

As mentioned previously, we consider none of the existing network protocols discussed in

Section 2.5 entirely suitable for a joint source-network matching video transmission system be-

cause of their respective disadvantages: UDP does not provide congestion control and feedback

mechanism, which are essential to JSNM; TCP employs retransmission techniques to guarantee

reliability, which is sometimes not suitable for delay-sensitive applications such as video com-

munication; even RTP, though flexible in the sense that it is deliberately incomplete, may prove

to be an overkill for the task at hand; furthermore, it is not designed with wireless network

links in mind. JSNM needs a new transport-layer protocol that provides congestion-control, a

feedback mechanism, the ability to combat wireless fading, and avoids packet retransmission.

However, it is inefficient and unnecessary for us to develop an entirely new protocol from the

ground up. We can take advantage of the services provided by existing protocols by modifying

them or building a custom-designed layer on top. We design our proposed JSNM protocol on top

of UDP to utilize its checksum and multiplexing service; the protocol follows the design principle

of RTP and provides video session support. It features a congestion-control mechanism that is

TCP-friendly, and includes two levels of protections to recover from both network congestion

loss and wireless packet errors. For details, please refer to later sections.

5.1.4 Retransmission versus non-retransmission

The automatic repeat request (ARQ) mechanism exists in many protocols (such as TCP) that

uses positive and negative acknowledgments with retransmission to ensure reliability. There is a

debate whether or not ARQ techniques are suitable for real-time multimedia transmission such

as videoconferencing. On one hand, ARQ ensures the reliable delivery of multimedia packets

50

that contain crucial information for decoding and avoids total decoding failure [67]; on the

other hand, ARQ inevitably introduces unpredictable delays, which are detrimental to video

communication, where only a small amount of delay can be tolerated.

At least two approaches can be used to solve this problem. One is to use a hybrid ARQ

scheme [68] where only crucial packets evoke the ARQ mechanism; the other is to eliminate the

necessity for ARQ by using the combination of progressive video source coders and an un-equal

error protection scheme, where the successful transmission of crucial packets is ensured via

the means of channel protection and error recovery instead of retransmission [57], [69]. Our

investigation shows that the latter approach provides satisfactory results without relying on the

relatively more complex and delay-sensitive retransmission-based schemes.

5.1.5 Network multicasting

Rather than sending a copy of each packet to each network user individually (unicast), mul-

ticasting sends the same packets simultaneously to all receivers. Though bandwidth-efficient,

this delivery mechanism is undesirable because users are usually connected to the Internet at a

heterogeneous set of rates [70].

Similar to wireless video broadcasting, JSNM can also benefit network video multicasting by

applying MD performance criterion. One popular approach for video multicasting is receiver-

driven layered multicast [70], [71], where video streams are encoded into several layers [72]; by

subscribing to a subset, each user can have the best performance given the capacity limit of his

network connection. JSNM and MD criterion can be used as a guideline to design these layers

so that maximum end-to-end performance is achieved.

5.2 JSNM System Overview

In principle, our JSNM system is similar to the wireless peer transmission systems discussed

in Chapter 3, since they simply replace the wireless channels with network links or packet-

erasure channels. The same matching principle and optimization approach can be applied

given an appropriate network channel model.

Figure 5.1 demonstrates the JSNM system framework, which is similar to the general JSCM

system shown in Figure 3.2, pg. 24, with the following differences:

1. Instead of using a fixed channel capacity, JSNM contains a congestion-control unit that

determines the current available bandwidth based on receiver feedback. JSNM’s conges-

51

JSNM Optimization
Network

Congestion
Control

Receiver

Symbol Error

Symbol Errors
A Packet With

Recovered
Packet

Packet Loss Due
to Congestion

Packet Loss Due
to Corruption

A Packet Layer With
Lost Packets

Packet Layer
Recovered

Raw
Frames

Source
Compression

Inter−PacketIntra−Packet
Protection Protection

Available
Bandwidth

Packet Status

Video

Channel

Feedback

JSCM
Packet−Loss Probability, Symbol−Error Probability

Intra−Packet Protection

Channel Coder

Inter−Packet Protection

Figure 5.1 JSNM system overview.

tion control algorithm competes fairly with co-existing TCP data flows in the long term,

and produces a smoother traffic pattern than that of TCP.

2. The point-to-point wireless channel is replaced with the network, which can include both

wireless and wireline links.

3. The channel coder for JSNM consists of two concatenated operations: intrapacket pro-

tection and interpacket protection (see top portion of Figure 5.1). Intrapacket protection

provides redundancy within a data packet to combat symbol errors caused by noisy wire-

less channels; interpacket protection recovers packets lost due to network congestion,

time-out, or packet corruption due to transmission errors. JSNM is designed with wire-

less links in mind and recognizes the possible inclusion of noisy wireless links in the entire

packet transmission path and takes corresponding measures to reduce its impact. In a

pure wireline environment, intra-packet protection can be safely disabled.

In general, given the constraint on available channel capacity (estimated by the congestion-

control algorithm), a JSNM protocol jointly optimizes the source compression rate and channel

protection rate (both intrapacket protection and interpacket protection) to achieve the best

end-to-end video transmission performance. Under good channel conditions, it decreases the

amount of protection to reduce distortion caused by source compression; under bad channel

52

conditions it applies greater compression to the video source in exchange for more bits to spend

on channel protection. JSNM ensures the expected optimal performance by trading off source

and channel rates.

5.3 JSNM System Implementation

In this section we introduce the JSNM implementation based on our JSNM protocol. The

details of the protocol itself can be found in Chapter 6 and Appendix E; here we discuss the

two most important components in our implementation: the video sender and receiver.

5.3.1 The JSNM video sender

Our proposed general JSNM system diagram (the sender side) is shown in Figure 5.2. The

encoding and transmitting procedure can be briefly described as follows (the session state

machine is shown in Figure 5.3):

1. Session establishing: The sender sends (via TCP) a request (REQ) message to the

receiver and waits for the acknowledgment (ACK) message from the receiver. The REQ

message also carries crucial decoding information such as video type (color or grayscale),

video frame size, GOP size (number of frames in each GOP), target bit-rate, the initial

sequence number and timestamp, etc. If the receiver accepts this request, it sends back

an ACK message and waits for the sender to initialize the session; if not, it sends a finish

(FIN) message to the server to indicate rejection of the request. The ACK message also

contains useful information, such as the receiver’s current timestamp and an estimate of

the current network condition, to help the sender decide on the initial set of parameters

to use. The sender finishes the hand-shaking process by sending an initialization (INI)

message to the receiver. The INI message contains additional information that could be

useful to the receiver. The video transmission session is now established (for details of

the information carried in each message, please refer to Appendix E).

(In this thesis, we make the assumption that the handshaking messages are always cor-

rectly received in time by the receiver.)

2. Video GOP encoding: The raw video frame sequence is first divided into GOPs of

size M . Each GOP is then fed into a progressive-fine-granularity scalable (PFGS) video

53

Encoded GOP Encoded GOPEncoded GOP

HDR

HDR

HDR

HDR

SLSL

SL

SL

SL

S1 S1

S1

S1

S1

S2 S2

S2

S2

S2

S3S3

P1

sP1 S3

Progressive
Video Coder

Tail

S Block2 RS ProtectionHDR

S Block1 RS Protection

S Block 2HDR

Dropped

Raw GOP of Video Frames

HDR Inter−Packet RS Protection

Inter−Packet RS Protection

Inter−Packet RS Protection

Inter−Packet RS Protection

La
ye

r−
2

In
te

r−
P

ac
ke

t R
S

La
ye

r−
1

In
te

r−
P

ac
ke

t R
S

T
ai

l P
ac

ke
ts

Block Importance

Dropped

Source Block Location

RS Protection Packet

Packet Types and Sizes

ss s

P2

P2 P3ss s

HDR S Block2 RS Protection

S Block 1HDR

HDR S Block1 RS Protection

1

2

2

1

L

L

Figure 5.2 JSNM sender diagram.

54

Sender

Receiver

Sender

Receiver

ReceiverSender
Video / JSNM

Feedback / TCP

Sender

Receiver

Sender

REQ / TCP

Stop Receiving

Receiving...

Transmitting...

Stop Transmitting

INI / TCP

ACK / TCP

FIN / TCP

ACK / TCP

Figure 5.3 JSNM system state machine.

encoder (for example, 3D-SPIHT, which we use in our simulations), which outputs con-

secutively encoded GOP streams of approximately the same length (the encoding rate

specification might not be exact).

3. Stream segmentation: Each GOP stream is further divided into L layers of blocks

(shown in Figure 5.2 as S1 to SL). The first L − 1 layers symbolize blocks with different

importance (corresponding to L−1 different receiver performance levels), and the last (L-

th) layer, contains trivial tail blocks that can be safely dropped without significant impact

on performance. Blocks belonging to the first L−1 layers are packetized and transmitted;

blocks belonging to the last layer can be dropped without being sent. The size of blocks

in each layer Ki − 1, the number of blocks in each layer ki, and the number of packets

in each layer ni, are all determined by the JSNM optimization procedure (described in

Section 6.3.2) based on receiver feedback.

4. Packetization: This step packetizes all the blocks in three stages:

a. Error detection checksum: A checksum byte is appended to all video source

information blocks as a final check for the correctness of received information.

b. Intrapacket protection: The block, together with the checksum byte, is encoded

using a systematic RS encoder (shown in a Figure 5.2 as RS encoding in the horizontal

direction). A packet header (for packet header syntax, refer to Appendix E.1) is then

prefixed to the encoded block. The intrapacket RS encoder has the same codeword

55

length N for all layers but different encoding rates Ki for each layer. Intrapacket RS

protection is used to combat packet transmission errors due to wireless fading.

c. Interpacket protection: After all the blocks from a certain layer are packetized,

we generate protection packets for this layer by performing systematic RS encoding

across the packets (shown in Figure (5.2) as RS encoding in the vertical direction).

Both the interpacket RS codeword length ni and encoding rate ki could vary for dif-

ferent layers. Interpacket RS protection is used to combat packet loss due to channel

congestion, timeout, and other reasons.

d. Tail-packets: Neither intrapacket protection nor interpacket protection is applied

to blocks from the Lth layer. They are sent “as is” (with the header prefix) using a

best-effort delivery strategy.

5. Video delivery: All the packets for this GOP are then transmitted at a constant rate

within the scheduled delivery time. The transmitter goes back to step 1 to process the

next GOP.

6. Session termination: All video GOPs have been transmitted. Sender sends the FIN

message to the receiver and waits for the receiver to acknowledge. Once acknowledged,

the transmitter ends the current video transmission session.

To summarize, three different types of packets are generated and transmitted in the entire

transmitting process: the protected source packets, which contain video source information and

intrapacket RS protection; the RS protection packets, which contain interpacket RS protection

information; the unprotected source packets, which contains only video source information and

no intrapacket or interpacket RS protection.

Some important observations about the JSNM transmitter scheme follow:

1. Corresponding to their relative location in the progressive video bitstream, the importance

of blocks from different layers is different. An ith layer block (packet) is more important

than an (i + 1)th layer block (packet). Packets with smaller layer index need greater

protection.

2. The intrapacket RS encoding rate (Ki/N) increases with i. This is not a physical con-

straint but a logical conclusion from their relative importance stated above, if we want to

achieve the optimal end-to-end performance. As a direct result, the source information

56

block length Ki − 1 stays the same within the same layer but increases with i; i.e, an ith

layer block is shorter than an (i + 1)th layer block. The intrapacket protection for an ith

layer packet Ti is greater than that of an (i+1)th layer packet Ti+1 (since the intrapacket

RS codeword length N stays the same across layers, and N = Ki +2Ti = Ki+1 +2Ti+1).

3. The interpacket RS encoding rate (ki/ni) generally increases with i. In other words,

the interpacket RS protection rate is decreasing with i, and the combined effect of the

intrapacket and interpacket protection decreases with i.

4. The number of packets in each layer ni, the intra-packet RS encoding rate Ki/N , and the

interpacket RS encoding rate ki/ni, are determined by the JSNM algorithm (discussed

in Section 6.3.2). The JSNM algorithm relies on periodic reliable receiver information

feedback to make corresponding parameter adjustments.

5. The packet length N and the size (in packets) of each intra-packet protection layer ni

must be valid RS codeword length. For simplicity, we fix N with a value of 255 in our

systems. ni could be all the valid values (2m − 1, m is an integer) up to 31. Similarly,

both Ki and ki have to be odd integers smaller than N and ni, respectively.

6. Both the intrapacket RS coding configuration (N,Ki, Ti) and the interpacket RS coding

configuration (ni, ki, ti) must be known at the receiver to ensure correct RS decoding.

The most obvious solution (namely, pretransmitting those information to the receiver

with heavy protection or through a reliable protocol like TCP) is inefficient and against

the design philosophy of JSNMP. Our proposed solution is to embed the RS coding con-

figurations in the header section of every packet; thus, they are inherently protected by

large redundancy, which enables the receiver to make a well-informed guess of the RS

coding parameters. For details of the receiver RS coding parameter recovery procedure,

please refer to Appendix E.2.

7. Our proposed JSNM protocol is a transport protocol on top of UDP. Every JSNM packet

is embedded in a UDP packet with its own header and checksum (which could be used

to check for transmission errors). It provides a clean interface, or set of application

programming interfaces (APIs), to the upper-layer applications.

57

5.3.2 The JSNM video receiver

Unlike the receivers in other JSCM systems, the JSNM video receiver is fairly complex

because it not only performs source-channel decoding of the received information, but also

carries out two additional important tasks: determining the correct RS decoding parameters,

constructing and sending the feedback information packet. The receiver’s tasks can be described

as follows:

1. Session establishing: After receiving the REQ message from the sender, the receiver

acknowledges by sending an ACK message (or a FIN message if it decides to reject the

request), which also carries important information such as the receiver’s estimated band-

width to facilitate the sender in choosing the initial set of coding parameters to use. The

receiver then waits for the INI message from the sender. Once the INI message arrives,

the receiver collects all the useful information and waits for the first packet to arrive.

2. Packet header recovery: Assuming there is a wireless link in the entire network chan-

nel, packet headers, which contain crucial RS decoding information and sequence numbers,

could have been corrupted by transmission errors. The receiver identifies the type of each

packet, recovers the sequence number, extracts the intra-inter RS encoding parameters

from the packet headers, and determines the layer boundaries. If the receiver fails to

recover the header, the packet is labeled as corrupted.

3. Interpacket RS decoding: For the ith layer, if the receiver has received more than

ki packets (regardless of packet type), then it can recover all the packets via RS erasure

decoding (assuming we know the locations of erased packets from the sequence numbers).

If the receiver has received less than ki packets, it can recover the first consecutive set of

type-1 packets because we use a systematic RS encoder.

4. Intrapacket RS decoding: For each type-1 packet, the receiver performs RS decoding

within the packet and attempts to correct all transmission errors. If the decoded block

has a checksum mismatch, then RS decoding has failed and the receiver labels the packet

as corrupted. The receiver also records the number of symbol errors observed.

5. Video bit-stream reassembly: The video source information portions of each type-1

packet are ordered by the packet sequence number and concatenated to form the original

progressive video bit-stream. For the regions corresponding to lost packets, zeroes are

58

filled; for the regions corresponding to corrupted packets, decoded blocks are filled in

“as-is” in the hope that they would increase the decoding quality.

6. Sending feedback packet: The receiver constructs a feedback packet and transmits

it back to the sender via a reliable protocol such as TCP. The feedback packet contains

important channel error-rate related information, plus an array of bytes with every two-bit

allocated to reflect the four possible states of a packet (See Appendix E.3 for details). The

four possible states are: “correct” (received in time and correctly decoded), “corrupted”

(received in time but unable to decode), “lost” (never received or received after deadline),

and “unknown” (which corresponds to any unreceived type-3 packets that are either lost

or not sent out at all). The sender can then use this information to perform JSCM.

7. Session termination: The receiver either voluntarily terminates the current video ses-

sion or waits for the sender’s FIN message. Upon receiving the FIN message, the receiver

plays back the last GOP and terminates the video session.

A few important details of the receiver scheme are:

1. The feedback information, sent via a TCP packet or any reliable method, involves a delay,

which means it might not have arrived when the sender needs it for the optimization of

transmitting the next GOP. In the case when the feedback packet fails to reach the sender

in time, the sender will use the same coding and transmitting parameters for the previous

GOP in the hope that they are still valid. The sender stores a feedback packet whenever

it arrives, and uses its content to optimize the transmission of the next GOP.

2. Another important issue with feedback information is its accuracy. In our simulation, the

information-feedback packet is sent at fixed intervals. When the packet reaches the sender,

the information it contains about the channel, such as the packet loss ratio, might already

be out of date and thus inaccurate. In this thesis, we make two assumptions to ensure the

accuracy of the feedback information: (1) we assume that the receiver sends the feedback

frequently enough that the current network traffic status is truthfully represented (in our

simulation the receiver sends feedback for every GOP it receives) and (2) we assume that

we encounter only long-term fading in any possible wireless links, with a fading duration

much longer than the feedback update period, and thus the feedback information about

wireless channel error rate is still valid when the sender receive it. Occasional fast fading

errors can be corrected by the extra safe-guard protection discussed in Section 6.3.2.

59

1

2

3

Wireline Link 40kbps

Wireless Link 15kbps

Normal Session (0, 100)

BS

4

3

2

1

BS

4

Burst Session (25, 60)

Figure 5.4 Network simulation topology.

5.4 Simulation Results

The real-life testing of the functionality of a complete network protocol is a complex task

that requires considerable resources. Hence, we verify the performance of our JSNM protocol

mostly based on simulation results from the freely available network simulation software package

NS-2 from the University of California at Berkeley.

5.4.1 Network simulation topology

We use the typical “dumb-bell” network topology shown in Figure 5.4. The network contains

four individual video sender-receiver pairs and two base-stations. The four video sessions start

at different time instants. Each end-user is connected to the base station using a wireless link

of capacity 15 kb/s and a delay of 100 ms, which simulates a mobile phone link with a good

channel condition. The two base-stations are connected using a wireline link of capacity 40

kb/s (it is deliberately set to be smaller than the sum of the capacity of four individual wireless

links to create network congestion when there are four concurrent video sessions) with a delay

of 10 ms. The four video sessions start and terminate at different time instants to simulate

the dynamic nature of network channels and traffic bursts. Video Sessions 1, 2, and 3 all start

transmitting video at time instant 0 s and terminate video session at time t = 100 s; Video

Session 4 enters the system at time t = 25 s, causes network traffic congestion, and terminates

video session at time t = 60 s.

60

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12
Wireless Fading Profiles for Video Sessions

time sample (sec)

sy
m

bo
l e

rr
or

 p
ro

ba
bi

lit
y

P
sy

m
bo

l

Session 1
Session 2
Session 3
Session 4 (Burst)

Figure 5.5 Wireless channel fading profiles.

5.4.2 Simulated wireless fading channels

We simulate the wireless mobile phone links with four fading profiles (generated off-line and

shown in Figure 5.5) for the four video sessions. Video Session 1 observes a relatively good

channel with slight SNR variations; Video Session 2 observes a constantly improving channel;

Video Session 3 observes a constantly degrading channel; and Video Session 4 observes the peak

of a relatively bad fading channel.

5.4.3 Simulation parameters

We use the JSNM system described in Section 5.3. The system uses 3D-SPIHT as the

progressive video encoder, RS codes as the FEC channel encoder, and the JSNM protocol for

the transport layer. The sender performs TCP-friendly congestion-control and packet loss-error

control for every GOP, the receiver periodically sends a feedback packet via TCP. The standard

“Miss America” sequence is used at QCIF resolution with a GOP size of 16 and total sequence

length of 1600 frames. The sender transmits video at a constant rate of 1 GOP per second (16

frames per second (fps), which is normally used in videoconferencing) and the receiver plays

61

back the sequence at the same rate. Unlimited buffer size is assumed for both the sender and

the receiver. The two base stations employ the “drop-tail” strategy for queued packets during

network congestion.

The following section shows a comparison of the performance between our JSNM system

and those of systems using other non-JSNM protocols. We also investigate the performance

of our JSNM system in a pure-wireline environment with coexisting flows using the TCP. To

correctly interpret the results, we again note that each user has a distinct channel fading profile

as shown in Figure 5.5.

5.4.4 Results and discussions

Each figure in this section shows the performance of a particular transmission system, based

on 100 s of simulation. Each curve shows the received GOP’s PSNR trace for a particular video

session. From the figures we can observe the following:

We conclude that our system behaves the way that we expect. (It is difficult to compare our

system with schemes proposed by other papers, since most of them assume a wireless channel

capacity of at least 60 kb/s, while ours assumes a more realistic 15 kb/s per channel.). A

comparison between our system and non-JSNM systems reveals the following:

1. Figure 5.6 shows the performance when we use UDP as the transport protocol, which

provides neither congestion control nor error control. The PSNR traces, although rela-

tively smooth because the sending rate is constant, are actually quite bad. First, because

there is no congestion control, when Video Session 4 enters the system, the performance

for all sessions dropped to as low as 13 dB, about 10 dB lower than the JSNM system in

average. Second, due to the lack of error control, video PSNR is low when the wireless

channel experiences a high probability of error, in Session 2 in time = 0−20 s and Session

3 in time = 60− 100 s. Third, even when the traffic burst is not present and the channel

is relatively good, video PSNR performance is still slightly lower than the JSNM system

by approximately 1 dB.

2. Figure 5.7 shows the performance when we use TCP as the transport protocol. Now there

is congestion control, but no error control. We observe that because of the existence of

congestion control, the impact of the burst user is significantly reduced. However, session

PSNR performance is inferior when the channel error probability is high because of the

62

0 20 40 60 80 100
0

5

10

15

20

25

30

35
Video Transmission using UDP

time sample (sec)

P
S

N
R

 (
dB

)

Session 1
Session 2
Session 3
Session 4 (Burst)

Figure 5.6 Simulation results for a UDP-based network video-transmission system with four
concurrent video sessions and using 3D-SPIHT video source encoder and RS codes as channel
encoder.

0 20 40 60 80 100
0

5

10

15

20

25

30

35
Video Transmission using TCP

time sample (sec)

P
S

N
R

 (
dB

)

Session 1
Session 2
Session 3
Session 4 (Burst)

Figure 5.7 Simulation results for a TCP-based network video-transmission system with four
concurrent video sessions and using 3D-SPIHT video source encoder and RS codes as channel
encoder.

63

0 20 40 60 80 100
0

5

10

15

20

25

30

35
Video Transmission using JSNM Protocol

time sample (sec)

P
S

N
R

 (
dB

)

Session 1
Session 2
Session 3
Session 4 (Burst)

Figure 5.8 Simulation results for a JSNMP-based network video-transmission system with four
concurrent video sessions and using 3D-SPIHT video source encoder and RS codes as channel
encoder.

lack of error control. The high amount of delay introduced by TCP’s retransmission mech-

anism also slightly reduces overall performance. TCP’s “saw-tooth” like traffic behavior

contributes to the higher variation of the performance curves.

3. Figure 5.8 shows the performance of our JSNMP-based system. We can observe that due

to the congestion-control mechanism, when the burst traffic occurs, the performance of all

video sessions degrade gracefully without drastic decrease as in the UDP-based system;

second, the performance curves are much smoother than those of the TCP-based system;

third, because of the error control mechanism, the impact of packet errors caused by

wireless fading is reduced, and the performance curves under a bad channel are higher

than those of the UDP and TCP-based systems.

4. To demonstrate the necessity of having intrapacket RS protection, we disabled the intra-

packet RS protection mechanism in our JSNM-based system in our simulation. The result

(Figure 5.9) shows that with intrapacket protection disabled, due to packet corruption

caused by transmission errors and the lack of a retransmission scheme, performance for

the JSNMP-based system in some cases could drop to the level of that of the UDP-based

64

0 20 40 60 80 100
0

5

10

15

20

25

30

35
Video Transmission Using JSNM Protocol and No Intra−Protection

time sample (sec)

P
S

N
R

 (
dB

)

Session 1
Session 2
Session 3
Session 4 (Burst)

Figure 5.9 Simulation results for a JSNMP-based network video-transmission system with four
concurrent video sessions and using 3D-SPIHT video source encoder and RS codes as channel
encoder. Intrapacket RS protection is disabled.

system, much lower than those of the TCP-based and JSNMP-based (with intrapacket

protection enabled) systems. Having symbol-level error-correction capability can drasti-

cally improve performance for wireless mobile video transmission systems.

5. Although JSNMP is designed with wireless mobile video transmission in mind, its per-

formance in a pure wireline environment is also important and may be of higher value in

practice, since most wireless network infrastructure has yet to support symbol-level ma-

nipulation ability to take advantage of JSNMP’s intrapacket RS protection mechanism.

It is also of interest to investigate whether or not JSNMP flows can coexist with TCP

flows in a fair fashion.

Figure 5.10 shows the performance of JSNMP in the same simulation system but with all

wireless links replaced by wireline links and Video Session 1 using TCP instead of JSNMP

as the transport protocol. We observe that without the effect of fading, performance for

all video sessions have greatly increased, and the effect of network congestion is well

controlled by JSNMP’s congestion-control algorithm. Due to JSNMP’s smoother traffic

regulation, its performance is better than that of TCP at the beginning stage of network

65

0 20 40 60 80 100
0

5

10

15

20

25

30

35
Wireline Video Transmission using JSNM and TCP Protocol

time sample (sec)

P
S

N
R

 (
dB

)

Session 1 (TCP)
Session 2 (JSNMP)
Session 3 (JSNMP)
Session 4 (JSNMP−Burst)

Figure 5.10 Simulation results for a JSNMP-based network video-transmission system with
four concurrent video sessions and using 3D-SPIHT video source encoder and RS codes as
channel encoder. All links are wireline links. Video Session 1 uses TCP instead of JSNMP as
the transport protocol.

congestion, but generally converges to TCP performance when traffic stablizes. Our

claim that JSNMP congestion control is TCP-friendly in the long-term behavior is again

demonstrated.

For details of the JSNM protocol such as packet format, the congestion control and error

control algorithm, please refer to Chapter 6. Here, in conclusion, we list a few of the observations

we made regarding the simulation results:

1. The JSCM principle can be applied to network video communication systems with sig-

nificant performance improvements compared to conventional systems using standard

non-JSNM protocols.

2. Simulation shows that intrapacket protection is required for the JSNM system to have

good performance.

3. The JSNM protocol performs equally well in a pure wireline environment with coexisting

TCP flows. It is truly TCP-friendly in its long-term behavior. It also produces smoother

quality variations than TCP.

66

4. Simulation shows that using a scalable video encoder in conjunction with unequal error

protection techniques is an acceptable alternative to ARQ-based systems. It also has the

advantage of requiring less transmission overhead and functions better for delay-sensitive

application. A hybrid ARQ-FEC scheme is certainly an interesting further research pos-

sibility.

67

CHAPTER 6

A JSNM TRANSPORT PROTOCOL

To successfully implement the JSNM video transmission system introduced in Section 5.3

and achieve the optimal end-to-end video transmission performance, we need to answer the

following questions:

1. How many packets should be sent for the current GOP?

2. What are the interpacket RS coding parameters (the values for all ni, ki and ti, where i

is the layer index)?

3. What are the intrapacket RS coding parameters for all type-1 packets (the values for all

Ni, Ki and Ti)?

Obtaining the answers to these three questions correspond to the three major tasks that

the JSNM protocol needs to perform: effective congestion control, recovery of packet loss due

to network congestion and packet corruption, and correction of corrupted packets caused by

wireless transmission errors. We denote them as network congestion control, packet loss control,

and packet error control, respectively.

In the most complete sense of JSNM, these three aspects should be jointly optimized for

best end-to-end performance. However, we recognize the fact that the Internet is a distributed

system without a centralized mechanism to regulate network traffic; therefore, users must co-

operate with each other in determining available bandwidth without being resource greedy. It

is necessary that we decouple the congestion-control mechanism from the JSNM optimization.

Thus, the JSNM protocol involves two indepedent steps: first the sending rate is determined

based on congestion control, then the amount of protection for packet loss and error control is

determined using JSCM.

In this chapter we propose a joint source-network matching transport protocol, which in-

cludes a TCP-friendly congestion-control algorithm and a packet loss-error control algorithm.

68

For implementation-level details such as packet format and header specification, please refer to

Appendix E.

6.1 TCP-Friendly Congestion Control

It is noted in Section 5.1 that a TCP-friendly congestion-control algorithm is desirable for

a JSNM video system. In this section we first briefly review TCP congestion control and

define TCP-friendliness, then we derive JSNM congestion-control design guidelines based on

algorithm classification. We present our proposed JSNM congestion-control algorithm and

discuss its behavior in Section 6.2.

6.1.1 TCP congestion control

TCP provides congestion control by maintaining a congestion window that controls the

number of outstanding unacknowledged packets in the network. On startup, TCP performs

slow start, during which it doubles the rate for each round-trip time (RTT) to quickly gain its

fair share of network bandwidth; in steady state, TCP uses an additive increase, multiplicative

decrease (AIMD) mechanism to probe the network and react to congestion. When there is no

indication of congestion, TCP increases window by one slot per RTT; in case of packet loss

indicated by a timeout, the window is reduced to one slot and TCP re-enters the slow-start

phase. Packet loss indicated by three duplicate ACKs instructs TCP to reduce the window to

half its original size.

TCP’s throughput T can be approximated by the two following models [65], depending on

the network environment, respectively:

1. Simplified model: This model does not take into account TCP timeouts:

T (tRTT , s, p) =
c · s

tRTT · √p
(6.1)

where tRTT is the round-trip time, s is the segment size, p is the packet loss rate, and c

is a constant value commonly approximated to be 1.5
√

2/3.

69

2. Complex model: Equation (6.2) models TCP more accurately in an environment with

a high loss rate:

T (tRTT , tRTO, s, p) = min















Wm · s
tRTT

,
s

tRTT

√

2bp
3 + tRTO min

(

1, 3
√

3bp
8

)

p(1 + 32p2)















(6.2)

where b is the number of packets acknowledged by each ACK, Wm is the maximum size

of the congestion window, and tRTO is the TCP timeout interval. This model takes into

account rate deductions due to TCP timeouts.

6.1.2 TCP friendliness

TCP friendliness has multiple definitions and is a subject for ongoing debate. In [63], non-

TCP flows are defined as TCP friendly when they satisfy the following definition:

Definition 6.1 Non-TCP flows are TCP friendly when their long-term throughput does not

exceed the throughput of a conformant TCP connection under the same conditions.

A more restrictive definition (for unicast only) can be found in [65].

Definition 6.2 A unicast flow is considered TCP friendly when it does not reduce the long-

term throughput of any coexistent TCP flow more than another TCP flow on the same path

would under the same network conditions.

In this thesis, Definition 6.1 is used for simplicity.

6.1.3 JSNM congestion control design guidelines

Congestion-control schemes can be classified based on various characteristics: window-based

versus rate-based, unicast versus multicast, single-rate versus multi-rate, end-to-end versus

router-supported, etc. Since JSNM currently addresses only unicast flows, it is confined to

single-rate. In addition, based on simple algorithm classification, we conclude that JSNM

congestion control should be a rate-based, end-to-end algorithm. We explain our reasoning

below.

70

1. Window-based versus rate-based:

Algorithms belonging to the window-based category use a congestion window with size

adjusted based on acknowledgment information from the receiver; algorithms belonging to

the rate-based category avoid congestion by dynamically adapting the transmission rate

according to some network feedback mechanism that indicates congestion. Our JSNM

protocol does not have a packet acknowledgment (at least not in the instantaneous sense)

mechanism; thus, it is limited to using a rate-based congestion-control algorithm.

Rate-based algorithms can further be divided into simple AIMD schemes and model-based

schemes. Simple AIMD schemes mimic the short-term behavior of TCP congestion control

and display the typical sawtooth like rate fluctuation pattern, which makes AIMD schemes

unsuitable for continuous video streaming. Model-based congestion control adapts the

sending rate to the average long-term throughput of TCP and produces much smoother

rate changes that are better suited to real-time video traffic. They do not mimic TCP’s

short-term behavior but are still TCP friendly in longer time scales.

Based on the above discussion, we offer our first guideline about JSNM congestion control:

Guideline 6.1 JSNM congestion control should not attempt to emulate the short-term

behavior of TCP congestion control, which is detrimental to real-time video transmission.

It should adjust the sending rate based on network models that conform to TCP’s long-term

characteristics.

2. End-to-end versus router-supported:

Depending on whether or not additional network functionality is required, congestion-

control algorithms can be divided into end-to-end algorithms and router-supported algo-

rithms.

End-to-end congestion-control algorithms are designed for best-effort IP networks and

can be deployed rapidly. They can be further divided into sender-based and receiver-based

approaches depending on which side carries out active congestion control. End-to-end

algorithms have the disadvantage of relying on the collaboration of end systems; i.e, they

are defenseless against greedy user/applications.

Router-supported congestion-control algorithms provide additional network capabilities

such as feedback aggregation, hierarchical RTT measurements, modification of queueing

71

strategies. Ultimate fair resource sharing in the presence of unresponsive or non-TCP-

friendly flows can only be achieved with router support. However, this mechanism is

difficult to deploy because of the high cost in terms of money, time and effort that would

have to be spent on Internet infrastructure modifications.

Our JSNM protocol currently does not involve a JSNM-aware router design (although it

is certainly an attractive research possibility); it is a transport layer protocol on top of

UDP and does not target at modifying existing Internet infrastructure. Thus, we desrive

our second guideline about JSNM congestion control:

Guideline 6.2 A JSNM congestion control algorithm should be an end-to-end, sender-

based mechanism that can be readily deployed and does not require additional network

functionality support.

Based on the design guidelines derived above, we designed a JSNM protocol using a simple

model-aided, sender-based, single-rate, end-to-end, congestion-control scheme.

6.2 JSNMP Congestion Control

To perform effective congestion control, we need to cope with the bandwidth fluctuation in

the network and estimate the currently available network bandwidth based on receiver feedback

and a network model. In JSNMP, we use the TCP model developed in [73] and base our network

bandwidth estimation technique on the multimedia streaming TCP-friendly protocol (MSTFP)

developed by Zhang et al. [74], which attempts to minimize the number of future packets that

are likely to be dropped and smooth the sending rate based on the observed packet-loss ratio

Ploss, round-trip time, and timeout (TO).

6.2.1 JSNMP packet types

Our JSNMP employs three major types of packets: message packets, video data packets,

and feedback packets. The message packets carry instructions and messages between sender and

receiver and facilitate session-related tasks such as initialization and termination. The video

data packets are the delivery vehicle for actual compressed video; the header of every video

data packet includes the sequence number (SEQ), intra-inter packet RS coding parameters, the

timestamp (TS) indicating the time at which the packet is sent. The feedback packets are sent

72

P
00

P
01

P
10

P
110 1

Gilbert Model for packet loss

1: lost (late) state

0: received state

Figure 6.1 Two-state Markov (Gilbert) model for packet loss.

by the receiver at regular intervals, they include a 2-bit flag for each video data packet from

the sender (for details refer to Appendix E.3) and information necessary for estimating RTT

and TO. When the receiver generates the feedback packet, it acknowledges the latest received

video data packet by feeding back its sequence number (SEQL), timestamp (TSL), and the

time duration this packet spent in the receiver (∆RT). The 2-bit flag can reflect one of the four

possible states for a packet at the receiver: received and corrected, received but corrupt, received

too late or lost, and other cases.

6.2.2 Network packet loss model

In a network video-transmission system that includes possible wireless links, a packet could

reach its destination but be corrupted by wireless fading, or be lost in the network due to

network congestion or timeouts. We simplify the problem by assuming that packet loss due

to congestion and packet corruption due to transmission errors are independent. We use a

packet-loss model to determine the currently available bandwidth and sending rate, and use

the packet-loss rate and channel symbol-error rate to determine the appropriate interpacket

and intrapacket RS protection configurations.

We use the two-state Markov model (Gilbert model) to model packet loss in the network.

This model is able to capture the dependence between consecutive states. For packet losses,

we assume that the transmitted packets are represented by an indicator array {Si}M
i=1, where

Si = 1 indicates that the ith packet has arrived successfully and 0 otherwise. The current state

Si of this stochastic process (shown in Figure 6.1) depends only on its previous state Si−1. We

define the transition probabilities between these two states as follows:

73

P01 = Prob [Si = 1 | Si−1 = 0] (6.3)

P10 = Prob [Si = 0 | Si−1 = 1] (6.4)

The maximum-likelihood (ML) estimators of P01 and P10 given an indicator array {Si} can be

expressed as:

P̂01 =
m01

m0
(6.5)

P̂10 =
m10

m1
(6.6)

PL =
P̂10

(P̂01 + P̂10)
(6.7)

where m0 and m1 are the number of zeroes and ones in the indicator array, m01 is the number

of times in the indicator array when 1 follows 0, m10 is the number of times in the indicator

array when 0 follows 1, m0 + m1 = M , where M is the length of the indicator array, and

PL is the probability that the current state is the loss state. The value of M determines the

amount of memory in the estimation; small M allows for faster response to network changes

and large M prevents inaccurate estimation due to small-duration network burst variations. In

our simulation we set M to be equal to L, the number of packets sent for one GOP.

6.2.3 Estimation of available bandwidth

We estimate the available bandwidth based on information such as RTT, TO, and PL. RTT

can be estimated by the sender based on the feedback from the receiver, using the TCP’s RTT

calculation equation:

RTT = α1 × RTTO + α2 × (TSnow − TSL − ∆RT) + α3 × RTTtcp (6.8)

1 = α1 + α2 + α3 (6.9)

where RTTO is the previously estimated round-trip time, RTT is the current estimate for the

round-trip time, RTTtcp is the round-trip time estimate from the TCP feedback link (α3 is set to

zero if an alternative reliable protocol instead of TCP is used to transmit the feedback), TSnow

is the timestamp indicating the time at which the feedback packet is received at the sender,

74

and α1, α2, and α3 are weight parameters that are set to 0.72, 0.25, and 0.03, respectively. We

adopt the exact same method as in TCP (TO = β × RTT) to estimate timeout TO without

actually retransmitting any data.

After obtaining the necessary parameters, the sender can estimate the present available

bandwidth/throughput X as follows:

X(RTT, TO,N,PL) =
N

RTT ×
√

2 PL

3 + 3 × TO × PL ×
√

3 PL

8 ×
√

1 + 32 P 2
L

(6.10)

where N is the size of the video data packet in bytes. Note the similarity between Equation

(6.10) and the TCP throughput expression in Equation (6.2). Our throughput model is actually

a simplification of the original TCP model, we define X as the TCP-estimated throughput.

6.2.4 JSNM congestion-control algorithm

Because of the delay constraint for video communication, JSNM does not provide an ac-

knowledgment and retransmission scheme. Lost packets cannot be resent. In addition, real-time

video applications suffer greatly from large quality variations. Therefore, we must be careful

when modifying the packet transmission rate. For example, the current TCP congestion-control

algorithm, which uses the AIMD scheme independent of the lost fraction and adjusting inter-

val, will certainly not suit our purpose. Thus, we choose an alternative method to adjust the

sending rate based on [74]. The detailed congestion-control algorithm is explained below.

If (Xk > Tk)

θ = (TSnow - TSlast) / RTT

If (θ > 2)

θ = 2

else if (θ < 1)

θ = 1

Tk+1 = Tk + (N / RTT) × θ

else

Tk+1 = γ × Xk + (1 - γ) × Tk

where Xk is the current (kth iteration) TCP-estimated throughput, Tk is the throughput for the

current (kth) iteration, Tk+1 is the throughput for the (k + 1)th iteration, θ is a multiplicative

75

factor, TSlast is the timestamp indicating the time at which previous rate adjustment hap-

pened, and γ is the weight parameter (between zero and one) that can be used to adjust traffic

smoothness. Using the above rate-adjusting procedure, JSNMP has a smaller local variation

on the transmission rate, and is less sensitive to random loss caused by channel error.

Theorem 6.1 The congestion-control algorithm employed in the JSNM protocol is TCP friendly

in its long-term behavior.

Theorem 6.2 The congestion-control algorithm employed in the JSNM protocol exhibits smoother

rate variations than those of TCP.

Proof: Assuming the TCP-estimated throughput during congestion (Xk < Tk) forms an array

of random variables that have an independent identical distribution (i.i.d), X0, . . ., Xk, with

mean µ and variance σ2, we have:

Tk+1 = γ Xk + (1 − γ)Tk (6.11)

We can determine our congestion-control algorithm’s long-term behavior by calculating the

expectation of throughput, E (Tk+1), when there is congestion:

E (Tk+1) = E (γ Xk + (1 − γ)Tk)

= γ
(

1 + (1 − γ) + . . . + (1 − γ)k−1
)

E (Xk) + (1 − γ)k E (T0)

=
(

1 − (1 − γ)k
)

E (Xk) + (1 − γ)k E (T0)

→ E (Xk), for k sufficiently large, 0 < γ < 1 (6.12)

Equation (6.12) indicates that the expected throughput of JSNM congestion-control algorithm

converges to that of the TCP-estimated throughput given k sufficiently large and γ between

zero and one, thus demonstrating long-term similarity to TCP. Theroem 6.1 is proved.

To demonstrate the smoother rate variation of our JSNM protocol, we can compare the

respective variances of our congestion-control algorithm and that of TCP (denote the correlation

76

between Xk and T0 as cov (X,T0), which is independent of k):

var (Tk+1) = var (γ Xk + (1 − γ)Tk)

= var
(

γ Xk + γ(1 − γ)Xk−1 + . . . + γ(1 − γ)k−1 X0 + (1 − γ)k T0

)

= γ2
(

1 + (1 − γ)2 + . . . + (1 − γ)2k
)

σ2 + (1 − γ)2k var (T0) +

2 γ (1 − γ)k
(

1 + (1 − γ) + . . . + (1 − γ)k−1
)

cov (X,To)

=
γ

2 − γ

(

1 − (1 − γ)2k
)

σ2 + (1 − γ)2k var (T0) +

2(1 − γ)k cov (X,T0) (6.13)

→ γ

2 − γ
σ2, for k sufficiently large, 0 < γ < 1 (6.14)

For k sufficiently large and γ between zero and one, the second and third items in the right-hand

side of Equation (6.13) go to zero. In addition, the coefficient for the first item is always smaller

than one, thus demonstrating that var (Tk+1) < σ2 = var (Xk) for k sufficiently large. Theorem

6.2 is proved.

6.3 JSNMP Packet Loss-Error Control

After the congestion-control step determines the current network link capacity and sending

rate, the JSNM system needs to perform channel FEC encoding. This section explains in detail

how the JSNM protocol controls the effect of packet loss and packet error by jointly matching the

source and network based on the current packet congestion-loss probability Ploss and wireless

symbol-error probability Psymbol. We first describe a method to estimate these two probabil-

ities, then establish the optimization problem, and finally propose our local-exhaustive-search

algorithm to obtain the optimal set of interpacket and intrapacket RS encoding parameters.

6.3.1 Ploss and Psymbol estimation

The network packet congestion-loss probability Ploss can be easily estimated at the sender

side by counting the total number of “lost” and “other” flags in the feedback packet indicator

array (we consider those packets that have arrived late also lost). The wireless symbol-error

probability Psymbol, which we use to characterize the wireless links assuming slow fading, can

be estimated at the receiver side: for each type-1 packet, the receiver keeps count of the number

of symbol-errors reported from RS decoding. Psymbol is then obtained by averaging the number

77

of symbol-errors over all symbols, and subsequently transmitted back to the sender via the

feedback packet.

6.3.2 JSNM optimization

Instead of adjusting interpacket RS coding parameters (ni, ki, ti) and intrapacket RS coding

parameters (Ni,Ki, Ti) using ad hoc or adaptive strategies, JSNMP attempts to achieve the

optimal end-to-end performance by solving an optimization problem based on the R-D curve

of the progressive video source encoder and channel characteristics. First, we impose neces-

sary constraints on these parameters (all parameters listed below are integers unless specified

otherwise):

T =
L−1
∑

i=1

[ni · (Ni + Nhdr)] + nL · (NL + Nhdr) (6.15)

TS =

L−1
∑

i=1

[ki · (Ki − 1)] + kL · (KL − 1) (6.16)

ni = 2w − 1, 1 ≤ i ≤ L − 1, 1 ≤ ni ≤ 31 (6.17)

Ni = 2W − 1, 1 ≤ i ≤ L − 1, W = 8, Ni = 255 (6.18)

ki = 2 · y + 1, 1 ≤ i ≤ L − 1, 1 ≤ ki ≤ ni (6.19)

Ki = 2 · Y + 1, 1 ≤ i ≤ L − 1, 1 ≤ Ki ≤ Ni − 4 (6.20)

where T is the total video sending rate determined by the network congestion-control algorithm

in Section 6.2.4, Nhdr is the length of the header section of a JSNMP packet, TS is the portion

of the sending rate corresponding to video source information (note that there is one checksum

byte that has to be deducted), and w, W , y, and Y are all integers. Equation (6.17) and (6.18)

indicate that the size of both the packet (in symbols) and layer (in packets) has to be the length

of a valid RS codeword (we fix Ni to be 255 and use the notation N in the following sections);

Equation (6.20) specifies that a minimum amount of four safe-guard protection symbols are

always present; this is to avoid complete packet loss due to a single symbol error caused by fast

fading. The Lth layer is neither intra-RS encoded or inter-RS encoded, so KL = N , nL = kL,

and the latter two can be all positive integers not limited to valid RS codeword length.

The expected end-to-end distortion, E(D), is equivalent to

78

E(D) =

L−1
∑

i=1

Player(i) Dlayer(i) +

nL
∑

j=1

Ppacket(j) Dpacket(j) (6.21)

Dlayer(i) = d

(

i−1
∑

m=1

ki · (Ki − 1)

)

Dpacket(j) = d

(

L−1
∑

m=1

ki · (Ki − 1) + j · N
)

Player(i) =

i−1
∏

m=1

player(m) [1 − player(i)] , i = 1, . . . , L − 1

player(i) =

2ti
∑

m=0

(

ni

m

)

ppacket(i)
m [1 − ppacket(i)]ni−m , i = 1, . . . , L − 1

ppacket(i) = ploss + perror(i), i = 1, . . . , L (6.22)

perror(i) =

Ti
∑

m=0

(

N

m

)

psymbol
m [1 − psymbol]N−m , i = 1, . . . , L (6.23)

Ppacket(j) = ppacket(L) [1 − ppacket(L)]j−1
L−1
∏

m=1

player(m)

where

1. L is the preset number of packet layers. Dlayer(i) is the resulting distortion if layer i is

the first layer that cannot be recovered. Dpacket(j) is the resulting distortion if the jth

packet in layer L is the first packet that cannot be recovered. d(·) is the rate-distortion

function associated with the video coder that we use.

2. Player(i) is the probability of the ith layer being the first layer which cannot be recovered,

player(i) is the probability that the ith layer cannot be recovered. The cause of failure to

recover a layer can be too many packets lost due to network congestion and transmission

errors. For the ith layer, at most 2ti packets can be lost.

3. Ppacket(j) is the probability of the jth packet (in layer L) being the first packet that

cannot be recovered; ppacket(i) is the probability that any single ith layer packet cannot

be recovered, this probability characterizes the channel packet loss rate. It is the sum of

the probability of the packet being late or lost in the network ploss, and the probability

of an ith layer packet being corrupted by fading errors perror(i). The term ploss can be

estimated from the packet-status indicator array in the feedback packet, perror(i) can be

79

calculated from the symbol-error probability (we assume 8-bit symbols in this thesis, so

a symbol is effectively a byte), psymbol, which has to be estimated by the receiver and

transmitted back to the sender.

Most of the variables are intermediate values created only for the convenience of presenta-

tion. The most important variables are ploss, which characterizes the network congestion status,

and psymbol, which characterizes the wireless channel condition. In the event that no wireless

links exist, we assume that packets are always received perfectly and the only packet losses

are due to congestion; i.e., ppacket(i) = ploss. Our objective here is to find the optimal set of

(N,Ki, Ti) and (ni, ki, ti) that minimizes E(D), within the constraints. Assuming L layers and

wireless links, we have 3L − 2 variables (Ki, ni, and ki) to optimize; assuming wireline links

only, we have 2L − 1 variables.

This constrained optimization problem can be solved locally using numerical gradient proce-

dures. However, in this case, given the limited range of possible values for all the RS parameters

and the computing power of today’s computers, we propose a local-exhaustive-search method

(denoted as the LES algorithm). The algorithm first initializes all parameters to be the same

as those used for the previous GOP, then performs an exhaustive search within a local window

of those parameters and finds the optimal set. For first-time system initialization, a fixed set

of conservative values are used.

By running simulations using a global-exhaustive-search algorithm and analyzing the results,

we derive a suitable set of local window sizes for the LES algorithm: for the intra-RS encoding

rate Ki, a window size of ±16 symbols is used; for the inter-RS encoding parameters ni and

ki, a global exhaustive search is performed since there are only four possible choices for ni.

Simulations show that this algorithm works well and gives excellent results (see Section 5.4).

If we compare the optimization setup for both the JSCM peer video-transmission system

(see Appendix B.1) and the minimax disappointment video broadcasting system (see Appendix

C), a fundamental similarity can be observed in the following aspects:

1. All three systems achieve the best expected end-to-end performance by using prioritized

source bit-stream coupled with unequal error protection techniques.

2. All three systems involve solving a constrained, non-linear, possibly integer-based opti-

mization problem, which can be solved using a gradient-based algorithm (the LES algo-

rithm for JSNM is just a simpler alternative).

80

3. In all three cases, both the source and channel coders are not modified in any way. Their

individual R-D characteristics (source) or error-probability performance curves (channel)

are all that is required, thus demonstrating the generality of the matching approach.

81

CHAPTER 7

CONCLUSIONS

To conclude this thesis, we first briefly recall our original objectives. Based on the acknowl-

edged fact that jointly matching the source and channel encoders can bring performance gains

in some communication systems, this thesis applies JSCM to video transmission with differ-

ent types of channels to achieve the following specific goals: (1) to demonstrate that JSCM

truly benefits video transmission under a resource-limited situation; (2) to develop a matching

scheme for peer video transmission; (3) to show that JSCM can be efficiently applied to video

broadcasting; (4) to extend JSCM to JSNM; and (5) to address the fundamental question of

whether the communication engineer should focus his efforts on separate source and channel

coder optimization, or on better cooperation (matching) between the source and channel coders.

Our results demonstrate that we have, indeed, achieved all these objectives:

1. JSCM does truly achieve end-to-end performance gains for all three types of channels:

single sender-receiver pair, multireceiver broadcasting, and multisender-multireceiver net-

work video transmission. The application of JSCM to video communication is beneficial.

2. Our general JSCM system for peer video transmission functions well regardless of the

specific source and channel coder. Additionally, the adaptive system reduces system

computational complexity and facilitates the practical application of the JSCM scheme.

3. Video broadcasting also stands to benefit from JSCM by applying the MD performance

criterion, which, we believe, has advantages over conventional criteria in that it is univer-

sally fair, intuitive, and theoretically meaningful.

4. Successful application of JSCM over networks has been achieved by designing a JSNM

transport layer protocol, JSNMP, complete with its specific packet format, congestion-

control algorithm, packet loss-error control mechanisms, and session support. Simulations

demonstrate superior performance to conventional approaches.

82

We conclude from our findings that significant gains can be achieved by the simple appli-

cation of JSCM to existing communication systems, without any modifications to the current

video source coders and channel coders. Given the fact that current research progress in sep-

arate coder optimization has more or less reached the point of saturation (the performance

increase in video source coders are now measured in one tenth of a decibel in PSNR, and chan-

nel coders’ performance are close to the Shannon limit), significant system-level (end-to-end)

performance improvements are most easily achieved by jointly matching the source and channel

coders.

Furthermore, while joint source-channel matching can be regarded as merely a special case of

the more general joint source-channel coding, it has certain advantages. The more general JSCC

approaches often involve low-level source and channel coder co-design, which brings extensive

modifications to the original source or channel coders or both. In addition, the resulting JSCC

systems usually function only for the specific source-channel coder. On the other hand, JSCM

techniques require neither detailed technical knowledge nor extensive modifications to the source

and channel coders, and the resulted JSCM systems perform well for a wide range of source-

channel coder pairs.

Many interesting problems related with JSCM have not been fully addressed in this thesis

because of time limitations; we would like to mention a few interesting possibilities:

1. In our simulation we have made the assumption of slow-fading wireless channels. It would

be desirable to find out how well our system performs under fast-fading channels and, if

necessary, develop a JSCM system for fast-fading channels as well.

2. ARQ-based techniques can improve performance under noisy channels by ensuring the

delivery of video information. However, for channels with high delays, ARQ techniques

are at a disadvantage. From our simulation we observe that progressive video stream

coupled with unequal error protection using FEC can give excellent results without the

help of ARQ, although ARQ-based system does give a slightly better performance under

bad channel conditions. Thus, a hybrid ARQ-FEC scheme could potentially perform

better. This is certainly a worthwhile research direction.

3. Our current JSNM protocol is a unicast protocol without network support. It is of high

interest to determine how to design JSNM system for a multicast scenario and how to

design JSNM-aware routers.

83

It is our hope that this thesis will prove beneficial to other JSCM researchers and stimulate

more research interest toward the topic of joint source-channel video transmission.

84

APPENDIX A

ESTIMATION OF R-D CHARACTERISTICS

The rate-distortion characteristic function for a particular video encoder is usually difficult

to obtain because of the following three major issues:

1. The complexity of the coder and lack of an accurate model, which makes the derivation

of an analytical expression for the R-D function or even its approximated form highly

difficult.

2. The high volume of raw data involved, which eliminates the possibility of using exhaustive

real-time estimation techniques because of the computational load required.

3. The R-D function’s video-content-dependency, which prevents the R-D function (obtained

off-line) for one sequence to be used on the sequence being processed.

Various approaches have been proposed to address these issues.

1. Instead of trying to derive the exact or approximate expressions of the R-D functions,

researchers try to estimate the functions using exhaustive procedures and fit them to a

universal parametric model such as sum of exponentials or order-n polynomials [21]. This

approach provides sufficient accuracy despite the lack of a theoretic model.

2. To reduce the computational complexity, instead of exhaustively estimating the R-D func-

tion in its entire range, several “control points” can be defined and their R-D values esti-

mated [75]. The points in between can be either obtained by interpolation/extrapolation

or directly calculated from the parametric model.

3. To solve the content-dependency problem, the following procedure can be used [76] [77]:

a. A large set of typical sample sequences are classified into a number of representative

categories, or “eigen-categories.”

85

b. For each eigen-category, the R-D functions for each sequence in the category are

estimated; the average of these functions is then defined as the R-D function for this

eigen-category. The R-D functions for all the eigen-categories are then assumed to

form a basis for all common sequences.

c. For any new sequence out of the sample set, it is projected onto the basis using

sequence-identification based or similar methods; its R-D function can be represented

using the basis R-D functions.

One of our design objectives for the JSCM system is generality, namely, that it can be

applied to a wide variety of source-channel coder pairs. To achieve this end, the JSCM system

should require as little detailed low-level technical knowledge of the encoder as possible, and

should estimate the rate-distortion characteristics of the encoder in real time. Our proposed

approach is to model the video source encoders as a “black box” with rate-adjusting switches;

we perform source encoding-decoding at several predetermined “control points” on the rate-

distortion curve, and obtain the entire curve via cubic-spline interpolation between these points.

Here we discuss, in detail, how to perform the real-time rate-distortion estimation, using

several commonly used video coders as examples. Although attempts have been made to address

candidates from each of the major video coder categories, this is certainly by no means a

complete list. We demonstrate the following examples in the hope that R-D estimation for

other coders would be essentially similar.

A.1 Motion-JPEG Encoder

Motion-JPEG encodes every single video frame in JPEG format and uses a frame-specific

quality factor q to adjust the coding rate. Figures A.1, A.2, and A.3 show the rate-distortion

curves for the “Football,” “Miss America,” and “Tennis” video sequences containing 20 frames.

Experimental evidence revealed that the curves are very similar for all the frames within the

same GOP, given there is no scene change; this fact greatly simplifies the estimation of the

rate- distortion characteristics for the Motion-JPEG coder. Now we only have to perform rate-

distortion estimation once and then use the obtained curve for the rest of the current sequence

until we detect a scene change.

The computational complexity involved in obtaining the distortion for the several “control

points” can be further reduced by recognizing the following facts:

86

0 20 40 60 80 100
20

25

30

35

40

45

50

55

60

Quality Factor (5−100)

P
S

N
R

 (
dB

)

Frame−wise Quality−PSNR Curves for Three Sequences

Football
Miss America
Tennis

Figure A.1 PSNR versus quality-factor.

0 20 40 60 80 100
0

1

2

3

4

5

6

7

Quality Factor (5−100)

E
nc

od
in

g
R

at
e

(b
it/

pi
xe

l)

Frame−wise Quality−Rate Curves for Three Sequences

Football
Miss America
Tennis

Figure A.2 Rate versus quality-factor.

0 1 2 3 4 5 6 7
20

25

30

35

40

45

50

55

60

Encoding Rate (bit/pixel)

P
S

N
R

 (
dB

)

Frame−wise R−D Curves for Three Sequences

Football
Miss America
Tennis

Figure A.3 Motion-JPEG rate-distortion curves.

87

Table
Specifications

Table
Specifications

FDCT

Table
Specifications

Table
Specifications

Entropy
Decoder

DCT−Based Decoder

Image Data

IDCT

Decoded

Compressed
Data

Quantizer
Entropy
Encoder

DCT−Based Encoder

Source
Image Data

Compressed
Data

DeQuantizer

8x8 blocks

Figure A.4 The JPEG codec block diagram.

1. The most computationally expensive operation involved in JPEG encoding (shown in

Figure A.4) is the 2-D DCT operation, which needs to be performed only once for each

sequence in our R-D estimation.

2. There is no need to perform the equally expensive inverse 2-D DCT transform because

distortion can be calculated from the DCT coefficients directly, thanks to the unitary

property of the DCT.

3. For a size N ×M frame, if we want to obtain K “control points,” the required operations

are K 2-D quantization of size N × M , plus K entropy coding operations.

After the initial estimation is performed, the rest of the curve can be obtained by piecewise

cubic interpolation between the “control points.” It is observed in simulation that at most five

“control points” are required to achieve a high degree of approximation accuracy. Furthermore,

the JPEG encoder seldom operates at the q > 85 and q < 15 region for compression efficiency

and image quality concerns; thus, the R-D curves within the region where we are mostly in-

terested in are almost linear. With the help of chip-level Motion-JPEG instruction support,

real-time implementation of this estimation procedure is feasible.

88

−5 −4 −3 −2 −1 0
0

0.5

1

1.5

2

2.5

3
RD curves of 100 continuous frames for Football sequence

Source Rate in bit/pixel (log−scale)

P
S

N
R

 (
dB

, l
og

−
sc

al
e)

Figure A.5 Framewise R-D curves.

0 0.2 0.4 0.6 0.8 1
14

16

18

20

22

24

26

28

30

32

Source Rate (bit/pixel)

P
S

N
R

 (
dB

)

R−D curve for Football sequence encoded using Motion−SPIHT

Figure A.6 Frame-averaged R-D curve.

A.2 Motion-SPIHT Encoder

The collection of framewise R-D curves for frames in a Motion-SPIHT-encoded video se-

quence are no longer close to each other. However, it is observed (from Figure A.5) that, when

plotted in a log-log scale, R-D curves for frames in a Motion-SPIHT-coded video sequence can

be approximated by a collection of converging linear functions. The R-D function for any par-

ticular frame is thus determined by a single point on the curve, which is readily available when

we perform the initial source compression. In fact, because SPIHT is progressive and its under-

lying wavelet transform is unitary, distortions can be calculated accumulatively in the encoding

process and a single run of the encoder could yield multiple points from the R-D curve, thus

increasing approximation accuracy. The corresponding computation requirement is essentially

neglegible.

The frame-averaged R-D curve for the Motion-SPIHT encoder is shown in Figure A.6.

A.3 Conditional Block Replenishment (CBR) Encoder

As mentioned in Chapter 2.2, the CBR coder has many different ways to adjust its encoding

rate. To simplify encoding, we choose Nb, the number of blocks to be coded and sent, as the

encoding rate parameter. Figure A.7 shows the typical relation between Nb and the source rate.

Similar to the Motion-JPEG coder, its R-D curve estimation can also be simplified by removing

frame-dependency (this is not true if we use Tb, the “modified” block MSE threshold as the

89

0 200 400 600 800 1000 1200 1400
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Number of Blocks to Send

S
ou

rc
e

R
at

e

Twenty Frames, Football Sequence

Figure A.7 Blocks versus source rate.

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9
x 10

5

Normalized Threshold

T
ot

al
 D

is
to

rt
io

n

Twenty Frames, Football Sequence

Figure A.8 Distortion versus threshold.

encoding rate parameter, as can be observed from Figure A.8, where curves are obviously not

close to each other.)

A.4 3D-SPIHT Embedded Encoder

The bitstream produced by a 3D-SPIHT encoder is almost-strictly progressive and has a

typical rate-distortion curve as shown in Figure A.9. The three different R-D curves in the

plot are obtained in the following fashion: the “original” curve is the true R-D curve generated

by evaluating the 3D-SPIHT encoder at different rates; the “truncated” R-D curve is obtained

by decoding a fixed-rate encoded bit-stream truncated at locations corresponding to different

rates; the “nontruncated” R-D curve is obtained similarly to the “truncated” version except

that instead of truncating at location i, it creates a bit error at location i and keeps the entire

bit-stream for decoding. The closeness of the “truncated” and “nontruncated” R-D curves

indicates that 3D-SPIHT produces a highly prioritized bit-stream. If we use either one of

these two curves as an approximation of the “original” 3D-SPIHT R-D curve, then similarly to

Motion-SPIHT, the R-D function for a 3D-SPIHT coder can be obtained in a single run of the

coder at a fixed rate.

A.5 H.26x Coder

H.26x generally uses a macroblock quantization (MQUANT) factor to adjust coding rate.

Figures A.10 and A.11 show the approximate relationship between the average MQUANT factor

90

0 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

35

Source rate (bit/pixel)

P
S

N
R

 (
dB

)

Football sequence initially coded in 1 bit/pixel using 3D−SPIHT

non−truncated
truncated
original

Figure A.9 3D-SPIHT RD curve.

0 5 10 15 20 25 30 35
0

200

400

600

800

1000

1200

1400

1600

1800

MQUANT value

A
ve

ra
ge

 fr
am

e
si

ze
 (

by
te

s)

H.263 MQUANT vs. Source rate curve

Figure A.10 Source rate versus MQUANT.

0 5 10 15 20 25 30 35
25

30

35

40

45

50

MQUANT value

D
is

to
rt

io
n

(d
B

)

H.263 MQUANT vs. Distortion curve

Figure A.11 Distortion versus MQUANT.

91

Intra/Inter
Switch Quantize

Quantize
Inverse

Intra/Inter
Switch

Output
Buffer

Previous
Recon

Calculate
Difference DCT

Calculate

VLC

Coding
Control

Current
Recon

Prediction

IDCT

Sum of Difference

Prediction Block

MQUANT

Number
of Bytes

Motion Vectors
Original
Frames

Recon

Figure A.12 H.263 encoder diagram.

and the source rate or the decoding distortion. However, because of the much higher complexity

of the H.263 encoder and the online rate-control algorithm it applies, it is no longer practical

to estimate its rate-distortion characteristics on-line. Instead, we developed an adaptive JSCM

system for this type of coder; for details please refer to Appendix B. A block diagram for the

H.263 encoder is shown in Figure A.12.

A.6 Layered H.263 Source Coder

The H.26x series of video coders do not produce progressive bit-streams. In order to create

a pseudoprogressive property for coders like these, we propose a layered H.263 video encoder.

This layered H.263 encoder encodes the same video sequences at different rates and then simply

concatenates the compressed sequences together to form the layered stream. Each layer is an

independent H.263-encoded sequence targeted for a specific performance level, typically in a

descending order. Upon the reception of the signal, users decode the layer which gives the least

92

0 0.2 0.4 0.6 0.8 1
25

26

27

28

29

30

31

32

33

34

35

Source rate (bit/pixel)

P
S

N
R

 (
dB

)

R−D curve for Football sequence encoded using H.263

Figure A.13 Rate-distortion curve for the H.263 encoder.

decoding distortion. Figure A.13 shows the output distortion of an H.263 encoder working at

different rates. The layered H.263 encoder simply locates the corresponding rate to achieve a

certain distortion level and uses these rates to create the layers.

We note that this layered H.263 encoder is a highly inefficient multiresolution coder, with

layers that are totally independent and cannot enhance each other. Furthermore, simulation

results show that the inefficiency of retransmitting coarse information at fine layers renders any

layer-configuration with more than three layers wasteful and impractical. However, the system

is simple and exploits the increased compression efficiency of the advanced H.263 coder.

93

APPENDIX B

JSCM PEER TRANSMISSION SYSTEMS

B.1 General System

The general JSCM system developed in our early work has been tested on various source-

channel coder combinations. Here we describe the Motion-JPEG and RS coder combination as

a detailed example; the other cases are essentially similar.

To formulate the problem when the source coder is Motion-JPEG, we assume that we have

a series of video frames that are divided into GOPs of size N .

We define the optimization problem as minimizing the final end-to-end distortion with re-

spect to two size-N vectors Q and P , where Q = (q1, q2, ..., qN)T contains the quality-factors

used to JPEG-encode each frame, and P = (p1, p2, ..., pn)T contains the amount of protection

we use for transmitting all the packets contained in a certain frame. Because the source rate

and distortion are both functions of the quality factor q, we define the source model to be

two sets of curves: the distortion versus quality-factor curve di(qi) and the source-rate versus

quality-factor curve si(qi) (i is the frame index).

However, as we mentioned in Chapter 2, further investigation into the problem revealed

that the di(qi) and si(qi) curves are very similar for all the frames in the same GOP (see

Figure A.3). We can use the same quality factor and amount of protection for all the frames in

the same GOP, provided that the buffer size limitation is also satisfied. Though this yields a

slightly suboptimal solution, this approach is comparable in performance with the truly optimal

solution but is much simpler in terms of computational complexity because we reduced the 2N -

D optimization problem to a 2-D problem.

94

The final optimization problem can be formulated as finding the optimal scalars q and p

that minimize the final distortion D:

D =
1

N

N
∑

i=1

D(i) (B.1)

D(i) = Pfsucc(p) × d(q) + Pffail(p) × dconceal(i) (B.2)

Pfsucc =

M(q)
∏

n=1

Ppsucc (B.3)

M(q) =
s(q)

L
(B.4)

Here D is the final end-to-end distortion, D(i) is the expected distortion for the ith frame,

Pfsucc(p) and Pffail(p) are the frame transmission success and failure probabilities when we

use p protection symbols for each block, d(q) is the distortion for each frame when coded using

quality-factor q, dconceal(i) is the distortion when we use the (i− 1)th frame in place of the ith

frame, M(q) is the number of packets in each frame, s(q) is the frame length when coded using

quality-factor q, and L is the predefined RS packet size.

We must also satisfy the following decoding buffer-size constraints:

bi = max(bi−1 + s(q) + p − R, 0) (B.5)

bi ≤ bmax, i = 1, 2, ...,N (B.6)

The optimization problem we have defined is constrained and nonlinear; furthermore, the vari-

ables can only take integer values. In order to solve this problem, we need to transform it into

an unconstrained problem. We chose the penalty function approach [78], [79] and modified our

cost function as:

D =

N
∑

i=1

D(i) + C ×
N
∑

i=1

max(0, bi − bmax) (B.7)

where D(i) is defined in Equation (B.2) and the extra term is the penalty function; when C

goes to infinity, this forces the solution to converge to the optimal solution to the constrained

problem. (Because the solution to our problem is discrete, the converged solution is the truly

optimal answer, not a suboptimal one as in the continuous case.) In practice, we use a suffi-

ciently large value for C.

Figure B.1 shows the detailed system implementation. The system complexity is of the

same order as DCT coding, and usually no more than three iterations are required to find the

95

Calculate Inter-

Frame Blockwise

MSE

Calculate Inter-

Frame Blockwise

MSE

DCT Code

the Frame

DCT Code

the Frame
 Quantization at Multiple

"Anchor Points"

Quantization at Multiple

"Anchor Points"

Rate vs.. Q

Rate vs.. Q

Distortion vs.. Q

Distortion vs.. Q

Interpolate over the full Q

range and store the resulting

two curves in memory

Interpolate over the full Q

range and store the resulting

two curves in memory

Acquire

Distortion

Concealment

Curve

Acquire

Distortion

Concealment

Curve

Scene

Change?

Scene

Change?

Yes

Rate vs.. Q

Curve

Rate vs.. Q

Curve

No, Use Previous

Initial P and Q

Estimation

Initial P and Q

Estimation

Distortion vs.. Q

Curve

Distortion vs.. Q

Curve

Channel Situation

Feedback

Channel Situation

Feedback

Gradient Projection

Algorithm Using

Penalty Function

Approach

Gradient Projection

Algorithm Using

Penalty Function

Approach

Rate Control

Feedback

Rate Control

Feedback

Optimal P and Q

Optimal P and Q

Source Code and

Add Protection

Source Code and

Add Protection

Will be used

as the starting

point in next

iteration

To Transmission

Collect Video

Frames

Figure B.1 Motion-JPEG and RS: JSCM system implementation.

optimal configuration. For further details on issues such as system initialization, please refer

to the author’s Master’s thesis [44]. For the reader’s reference, the system implementation

diagram for the CBR-RS coder combination is attached here in Figure B.2.

B.2 Adaptive System

For the adaptive system introduced in Section 3.3, we choose H.263 as the source encoder

and RCPC codes as the channel coder. The simplified system diagram is shown in Figure B.3:

As shown in the figure, the raw video frames are first input to the H.263 video encoder, the

resulting intra and inter frames are then packetized and CRC-protected before they are sent to

the RCPC channel encoder. The joint matching system adjusts the source and channel rate by

modifying the MQUANT factor and RCPC puncture rate for each packet using the algorithm

described in Section 3.3, the optimal puncture rate is estimated from periodic channel feedback,

and the MQUANT value is predicted from the current buffer occupancy using H.263’s internal

rate-control algorithms.

96

Collect Video

Frames
 Calculate Inter-

Frame Blockwise

MSE

Acquire the relationship between

the number of blocks to send and

the resulting distortion

Adjust the common

frame distortion

Initial Common

Distortion Estimation

Use the previous

parameters

Determine number of

blocks to send for

each frame

Assign coded blocks to RS

coder packets and get the

final stream length

Acquire the relationship

between the number of

blocks to send and the

final coded stream length

Acquire the coded

length of each

individual block

Source code at

Selected Several

"Anchor Points"

Piecewise Cubic

Spline Approximation

Blockwise Entropy

Calculation

Actual Source Coding and

Packet Assignment Using the

Optimal Parameter

Final Buffer Size

Constraint Checking

Channel

Situation

Feedback

Protection

Estimation

Scene

Change?

Buffer Size

Constraint?

Average Distortion

Minimized?

Yes

No

No

Will be used

in the next

iteration

To Transmission

Figure B.2 CBR and RS: JSCM system implementation.

Raw Video

Frames

H.263 Encoder

Coded Intra Frame

Coded Inter Frame

Coded Inter Frame

Coded Inter Frame

Packetizing and

CRC Encoding

Rate-Compatible

Puncturing (RCPC)

Coder

Joint Source-Channel

Matching Loop, Optimize for

every data packet

Puncture Rate

Buffer Occupany

Estimator

MQUANT

Channel BER Feedback

To Transmission

Figure B.3 Simplified system for H.263 and RCPC encoder.

97

APPENDIX C

JSCM BROADCASTING SYSTEMS

In this section we explain in detail our four simulation systems and the underlying mathe-

matical optimization problems.

C.1 Motion-SPIHT and RCPC: Rate-Constrained

First we consider the case where the channel capacity is limited. We choose Motion-SPIHT

as the source encoder and RCPC as the channel encoder.

The minimax optimization problem can be shown mathematically as follows:

Ki =

J
∑

j

mij (C.1)

si =

J
∑

j

mij rj p (C.2)

Di,l =

Ki
∑

k=1

[

Pk+1,l

k
∑

n=1

(1 − Pn,l)

]

di(k) (C.3)

D0,l = min
mij

(

∑N
i Di,l

N

)

(C.4)

P = max
l,mij

(

D0,l −
∑N

i Di,l

N

)

(C.5)

bi = max(bi−1 + si − R, 0) (C.6)

bi ≤ bmax, i = 1, 2, . . . ,N (C.7)

where Ki, mij, and rj are defined as before; p is the fixed packet size in bytes; si is the total

length (source plus protection) for the ith frame; Di,l is the expected received performance for

the ith frame by the lth user; and di(k) is the quality of the decoded ith frame if the kth packet

98

is the first packet lost. Pn,l is the transmission failure probability of the nth packet for the lth

user (the mij packets in the jth packet group would have Pn,l equal to the error probability for

user l when using RCPC protection rate rj), D0,l is the expected optimal performance for user

l, which can be obtained by solving Equation (C.4), and N is the size of the video sequence.

P is the maximum of the disappointment, the value we need to minimize. Note that we solve

(C.4) and (C.5) as two separate optimization problems; the solution of (C.4) gives us D0,l, while

the solution of (C.5) gives us the optimal mij and minimax disappointment P .

A particular problem related with video transmission, called rate control [80], must also be

addressed. Since video transmission usually allows only a small, finite delay, and the decoder

usually has a finite decoding buffer size and constant decoding flow, we should avoid buffer

overflow or underflow. If we use bi to denote the buffer occupancy at the ith time index and

R to denote the constant decode flow, we should ensure that bi is never greater than bmax, the

maximum decoding buffer-size. Our optimization becomes a constrained problem because of

this particular requirement and the total channel capacity constraint.

One way to incorporate the rate-control constraint is to modify the cost function P by

adding a penalty item associated with buffer overflow:

P ′ = P + C ×
N
∑

i=1

max(0, bi − bmax)

where C is a large constant. When C goes to infinity, the nonconstrained solution converges

to the constrained solution; in a discrete optimization setting, they will be equal given C

sufficiently large.

To solve this optimization problem, we initialize the values for mij with the expectation

that they are close to the optimal values, and employ a gradient-based procedure to derive

the optimal solution. Usually at least six to seven iterations are required for the algorithm to

converge, but since broadcasting parameter optimization is usually done off-line, we can afford

the cost.

C.2 3D-SPIHT and RCPC: Rate Constrained

In this case we substitute the Motion-SPIHT coder in the previous simulation system with

the 3D-SPIHT video encoder. The same encoding procedure still applies except that now

instead of encoding on a frame basis, we encode and transmit the entire GOP in one step. We

99

do not have framewise rate-control issues with this transmission scheme; on the other hand, a

total delay of one GOP is introduced.

Similar to the previous case, the minimax optimization problem can be shown mathemati-

cally as follows:

K =

J
∑

j

mj (C.8)

s =
J
∑

j

mj rj p (C.9)

Dl =
K
∑

k=1

[

Pk+1,l

k
∑

n=1

(1 − Pn,l)

]

d(k) (C.10)

D0,l = min
mj

Dl (C.11)

P = max
l,mj

(D0,l − Dl) (C.12)

where the entire 1 bit/pixel encoded 3D-SPIHT bitstream is first divided into packets of size p,

and only the first K are sent; The K packets are further divided into J groups, each containing

mj packets; each packet group is assigned a particular RCPC encoding rate rj ; Pn,l is again the

transmission failure probability of the nth packet for the lth user; d(k) is the decoding distortion

if the kth packet is the first packet lost; Dl is the expected distortion for the lth user; D0,l is the

expected minimal distortion for the lth user; and P is our minimax disappointment. Equation

(C.11) defines the single-user JSCC optimization problem, and Equation (C.12) defines the

minimax disappointment optimization problem for this broadcasting system. They can be

solved using exactly the same technique used in the previous case.

C.3 Layered-H.263 and RCPC: Rate Constrained

In this case we again consider the situation when we have a limited channel capacity. We

choose layered-H.263 as the source encoder. The encoding procedure can be described as follows:

1. Obtain all layers by performing multiple compression using predetermined layer-specific

compression parameters.

2. Apply RCPC protection with different rates to each layer.

100

3. Concatenate the encoded sequences together and transmit.

This minimax problem can be mathematically expressed as follows:

N
∑

i

s(qi)ri ≤ C (C.13)

Dk =
N
∑

i

i−1
∏

j

Pk(qj , rj)

(1 − Pk(qi, ri))d(qi) (C.14)

log(Pk(qi, ri)) = Aks(qi)ri + Bk (C.15)

D0,k = min
Q,R

Dk (C.16)

P = max
k,Q,R

(D0,k − Dk) (C.17)

where N is the number of layers, qi is the ith quality factor we use to compress the sequence,

s(qi) is the resulting compressed sequence length, and rj is the RCPC coding rate for the ith

layer. The sum of the length of all layers with channel protection should be less than the

total channel capacity. Pk(qj, rj) is the layer-error probability for the jth layer and kth user;

we approximate its value using a log-affine function given in (C.15) (the channel SNR for the

kth user is then hidden inside parameter Ak and Bk, which need to be preestimated before

optimization) [12]. The term d(q) is the decoding distortion when using quality factor q. Q and

R are the quality factor vector (q1, q2, . . . , qN) and the RCPC coding rate vector (r1, r2, . . . , rN).

Equations (C.16) and (C.17) again define the joint source-channel optimization problem for a

single user and the minimax optimization problem for the entire broadcasting system. They

can similarly be solved using gradient-descent-based algorithms.

C.4 3D-SPIHT: Power Constrained

Unlike the previous three cases, this time we consider the case where the total system

transmission power is limited. We employ 3D-SPIHT as the source coder and adjust the

transmission power for each bit in order to achieve unequal protection. The transmission

bit-power profile is shown in Figure C.1 and the transmission procedure can be described as

follows:

101

Bit index for a fine granularity progressive video bitstream

Transmission power per bit

Low priority bits

Medium priority bits

High priority bits

Fixed total system transmission power

Bit transmission power profile

Figure C.1 Power-constrained system.

1 Raw video frames are first divided into groups of size 16 and compressed using the 3D-

SPIHT video encoder; its rate-distortion curve is then estimated.

2 The compressed video source stream is transmitted with energy per bit optimized under

the total energy constraint.

The minimax optimization problem can be cast mathematically as follows:

Ls
∑

j

ej ≤ Etotal (C.18)

pk(ej) = Q

(√

2ej

N0,k

)

(C.19)

Dk =

Ls
∏

j=1

(1 − pk(ej))Dc +

Ls
∑

i=1





i−1
∏

j=1

(1 − pk(ej))



 pk(ei) d(i) (C.20)

D0,k = min
E

Dk (C.21)

P = max
k,E

(D0,k − Dk) (C.22)

where Etotal is the total limit on system transmission power, pk(ej) is the transmission error

probability for the jth bit for the kth user, given bit energy ej and channel noise N0,k; Dk is

102

the resulting distortion for the kth user; Ls is the total number of bits and Dc is the distortion

caused by source compression. The term d(i) is essentially the rate-distortion curve for the

current video stream; it is the decoding distortion if the ith bit is the first bit in error (we

discard all bits after it); and E is the bit transmission power profile vector (e1, e2, . . . , eLs).

D0,k is the expected optimal performance for the kth user, which can be obtained by solving

(C.21), and we obtain P , the maximum disappointment value for all users, by solving (C.22).

We try to minimize P by finding the optimal energy allocation vector E (e1, e2, . . . , eLs).

This minimax optimization problem can be similarly solved by the first method of successive

approximation. Rate-control is not a concern in this case since we always encode a group

of frames as an entity and do not start decoding until we receive the entire stream. This

entails an initial delay of one group of frames, which is acceptable in typical video-conferencing

applications.

103

APPENDIX D

MINIMAX OPTIMIZATION THEORY

In this chapter we elaborate on the performance and convergence issues of our algorithms

used to solve the minimum disappointment minimax [81] optimization problem. We focus on

the case of a power-constrained system.

The standard minimax optimization problem with constraints can be stated as follows: Let

fi(X), i ∈ [0 : N],X = (x1, . . . , xn) be functions defined and continuously differentiable on

some open set Ω′ ⊂ En; let Ω be a convex closed (not necessarily bounded) subset of Ω′. The

objective is to find a point X∗ ∈ Ω such that

max
i∈[0:N]

fi(X
∗) = inf

X∈Ω
max

i∈[0:N]
fi(X)

Consider the function defined on Ω′

φ(X) = max
i∈[0:N]

fi(X)

The problem we have set is precisely to minimze the function φ(X) on the set Ω. Also define

the following set R(X)

R(X) = {i ∈ [0 : N] | fi(X) = φ(X)}

The necessary (and sufficient for convex cost functions) conditions for a minimax solution is

stated in the following theorem [81]:

Theorem D.1 A necessary condition for a point X∗ ∈ Ω to be a minimum point of φ(X) on

Ω is that

inf
Z∈Ω

max
i∈R(X∗)

(

∂fi(X
∗)

∂X
,Z − X∗

)

= 0

If φ(X) is convex, this condition is also sufficient, and the point X∗ is called a stationary point

of φ(X) on Ω.

104

Condition D.1 is equivalent to the following theorem [81]:

Theorem D.2 In order that φ(X) have a minimum on En at a point X∗, it is necessary, and

if φ(X) is convex, also sufficient that

inf
g∈Γ̄(X∗)

‖g‖=1

max
i∈R(X∗)

(

∂fi(X
∗)

∂X
, g

)

≥ 0

Theorems D.1 and D.2 essentially state that we can apply gradient-descent type algorithms

to solve the minimax optimization problem. Based on the above theorems, we employ the first

method of successive approximations (a direct generalization of the steepest-descent algorithm)

to solve the minimax optimization problem. For details of the algorithm please refer to [81].

We discuss the convexity of our φ(X) function in the following section.

D.1 Convexity of the Cost Function

The necessary and sufficient conditions for a minimax solution stated in the previous section

requires that the cost function φ(X) be convex, which is equivalent to the convexity of fi(X),

based on Theorem D.3. Thus, it is of great interest to investigate the convexity of fi(X). In

showing fi(X) is convex, we also prove that the joint source-channel optimization problem for

a single user class has a convex cost function, and thus various gradient-descent algorithms can

be used with a guarantee of convergence to a global minimum.

We make the following observations:

1. The rate-distortion functions for both the Motion-SPIHT and the 3D-SPIHT encoders

are continuous, monotonic, and convex (in the MSE sense). This is not strictly true in a

real situation, but it is a reasonable assumption to make.

2. The error probability versus bit-energy function of an AWGN channel is expressed by the

Q function.

We revisit the mathematical expression for our optimization problem and relate it with the

minimax optimization theorems:

105

Dk =

Ls
∏

j=1

(1 − pk(ej)) Dc +

Ls
∑

i=1





i−1
∏

j=1

(1 − pk(ej))



 pk(ei) d(i) (D.1)

fk(E) = D0,k − Dk, E = (e1, e2, . . . , eLs) (D.2)

φ(E) = J = max
k,E

(D0,k − Dk) (D.3)

Based on Assumptions 1 and 2, both the Q function and d(i) are continuous, twice differ-

entiable functions. We show that Dk is a convex function by first calculating the gradient of

the distortion Dk with regard to the lth energy factor el:

∂Dk

∂el
= −Dc

∂pk(el)

el

Ls
∏

j=1,j 6=l

[1 − pk(ej)] + d(l)
∂pk(el)

∂el

l−1
∏

j=1

[1 − pk(ej)]

−
Ls
∑

i>l







∂pk(el)

∂el

i−1
∏

j=1,j 6=l

[1 − pk(ej)]







pk(ei)d(i) (D.4)

=
∂pk(el)

∂el

{

−
Ls
∏

j=1,j 6=l

[1 − pk(ej)] Dc +

l−1
∏

j=1

(1 − pk(ej))d(l)

−
Ls
∑

i>l





i−1
∏

j=1,j 6=l

(1 − pk(ej))



 pk(ei)d(i)

}

(D.5)

Denote the item in the braces as A (note that A does not depend on el) and take the

second-order derivative and we get:

∂2Dk

∂e2
l

=
∂2pk(el)

∂2el
A (D.6)

so the convexity of Dk is determined by convexity of pk(el). We next observe the following:

pk(ej) = Q

(√

2ej

N0,k

)

(D.7)

∂pk(ej)

∂ej
=

1√
2πN0

e
−

ej

N0 ej
− 1

2 (D.8)

∂2pk(ej)

∂ej
2

=
1√

2πN0

e
−

ej

N0 ej
− 1

2

(

− 1

N0
− 1

2ej

)

(D.9)

106

We note that the second derivative of pk(ej) is always negative when ej is positive, thus pk(ej)

is convex over this region, and so is Dk. Following Theorem D.3 [81], φ(E) = J is thus convex.

Theorem D.3 Let Ω be a convex set. If all fi(X) are convex on Ω, then φ(X) is also convex

on Ω.

D.2 Simplification of the Optimization Problem

In the power-constrained case, since we are optimizing with regard to each bit, the size

of the optimization problem can become relatively large when we have a large number of

bits to transmit. To reduce the computational complexity, we can make the following two

simplifications.

The first simplification comes from an observation during simulation. We observe that

when we have a reasonable number of user classes (more than seven), with channel SNRs

relatively spread out, the optimal energy allocation vector for the minimax optimization problem

is approximately a linear combination of all the optimal energy allocation vectors for the joint

source-channel coding problem for each individual user class. Thus, we can reduce the dimension

of the problem down to less than 10 variables by solving for the linear scaling factors. This

significantly reduces computational complexity.

For the second simplification, instead of adjusting the transmission power for each bit, we

group bits into blocks and adjust the transmission power on a block basis. Using blocks of

bits means a lesser computational load but possibly larger minimax disappointment since we

have lost part of the flexibility to adjust. A reasonable block size is essential to the system

performance (a typical value could be 8, for a byte). Furthermore, we need to show that the

cost function is still convex. Assuming a block size of N , we make the following modifications

to the original expressions:

LB =

⌊

Ls

N

⌋

(D.10)

Pk(ej) =

N
∑

i=1

(

N

i

)

pk(ej)
i (1 − pk(ej))

(N−i)

Dk =

LB
∏

j=1

(1 − Pk(ej))Dc +

LB
∑

i=1





i−1
∏

j=1

(1 − Pk(ej))



Pk(ei) d(iN) (D.11)

107

where N is the bit-block size, LB is the total number of blocks, Pk(ej) is the block transmission

error probability if each bit inside this block is transmitted with power ej (we assume that the

total block is lost if even a single bit is in error and ignore the location of the error).

Similarly, we can show that the convexity of the cost function depends on the convexity of

Pk(ej). We can calculate the second derivative of Pk(ej) as follows:

∂Pk(ej)

∂ej
= N

∂pk(ej)

∂ej
(1 − pk(ej))

N−1 (D.12)

∂2Pk(ej)

∂ej
2

= N(1 − pk(ej))
N−2

[

∂2pk(ej)

∂ej
2

− (N − 1)(
∂pk(ej)

∂ej
)2
]

(D.13)

∂2pk(ej)

∂ej
2

< 0 (D.14)

thus we conclude that the second derivative of Pk(ej) is always negative, so the cost function

remains convex.

108

APPENDIX E

A JSNM PROTOCOL

The JSNM protocol is a transport-layer protocol that tries to achieve best end-to-end net-

work video transmission quality by jointly optimizing the video source encoder and network

link. It contains a congestion-control mechanism to regulate video traffic and an error-control

algorithm to combat packet loss due to congestion and transmission errors. The sender per-

forms the task of network estimation based on feedback information, JSNM optimization, video

stream segmentation, intrapacketizing and interpacketizing, and transmission; the receiver han-

dles video stream reassembly, RS decoding, and creating feedback packet. The feedback packet

is transmitted back to the sender via a separate TCP link.

This is a very primitive protocol used for demonstration purposes only. Many secondary

implementation details are not addressed for the time being. Significant refinements are required

in order for this protocol to be used in a real-life application.

E.1 Format of JSNM Data Packets

The following diagram (Figure E.1) shows the basic format of a JSNM packet embedded in

a UDP packet. As mentioned in previous chapters, there are three types of JSNM packets:

1. Protected source information packet: This type of packet contains a segment of

encoded video source information, one checksum byte, plus intrapacket RS protection

bytes.

2. Interpacket RS protection packet: This type of packet contains only interpacket RS

protection bytes.

3. Unprotected source information packet: This type of packet contains only encoded

video source information and its checksum byte with no intrapacket RS protection, nor

does it have any parallel packets containing interpacket RS protection.

109

Intra−Packet RS

UDP Hdr

Packet Type Identifier

Intra−RS N

Intra−RS K

UDP Hdr Encoded VideoJSNM Hdr CS

UDP Hdr JSNM Hdr

JSNM Hdr CS

Inter−Packet RS Protection

Encoded Video

Protected Source−Information Packet (Type 1)

Inter−packet RS Protection Packet (Type 2)

Unprotected Source−Information Packet (Type 3)

TS

Header Checksum

Sequence Number

TimeStamp

Inter−RS k

Inter−RS n

Data Checksum

SEQPTI N K n k CS

Figure E.1 Format of JSNM packets.

All packets are sent in the form of a UDP packet, so there is a leading UDP header, followed

by a JSNM header section, which contains 10 bytes (throughout this thesis we define a byte as

an octet):

1. Packet header identifier (PTI): The PTI byte identifies the type of current packet. Its

value is 255 for packet types 1 and 3, 0 for packet type 2.

2. Sequence number (SEQ): The SEQ is a double-byte integer that records the current

packet’s sequence number to facility receiver reassembly.

3. Timestamp (TS): The TS is a double-byte integer that records the current packet’s times-

tamp in milliseconds. The receiver uses this information to estimate the round-trip time.

4. N , K, n, k (RS Parameters): These single-byte values are intra and inter RS protection

parameters (hence the reason why the value of N and n are upper-limited by 255.) Note

that N is actually redundant since it is fixed to be 255 and known to the receiver. It is

provided here for potential future variable-length packet support.

110

5. Header checksum (CS): The JSNM header contains crucial information for decoding, so

it is imperative to know if the header is correctly received. If not, efforts must be made

to recover the correct header.

The following rules are employed in generating the header section:

1. The two values for the PTI byte, 255 and 0 (binary expressions: 11111111 and 00000000)

are chosen to be as distant as possible from each other in a Hamming sense.

2. The initial sequence number SEQ0 for a video session are generated randomly. For the

following packets: SEQi+1 = (SEQi + 1) mod (65535).

3. The timestamp TS has two bytes, the first of which represents seconds, the second of

which represents milliseconds. We assume that the sender and receiver synchronize their

system clock beforehand in the session initialization process.

4. The values for all the RS encoding parameters are positive integers less than 256. More

specifically:

a. Since the value of n (the interpacket RS codeword length) has to be equal to 2m − 1,

where m is an integer, a valid value for n has a binary form of a series of consecutive

1s. Also, for all practical uses, the value of n will not exceed 31. (Otherwise, the

receiver needs to wait for more than 63 packets before it can start RS decoding,

which introduces too much delay).

b. The intrapacket RS codeword length N is redundant for the time being. It is cur-

rently set to be identical to PTI as extra redundancy protection.

c. For type-2 packets, N and K are not actually meaningful since no intrapacket RS

protection is used within those packets. They are set to be the same values as in the

type-1 packets associated with the current class to provide even more redundancy

protection.

d. For type-3 packets, none of the RS coding parameters is used. N is set to the same

value as PTI; K is set to the total number of type-3 packets, and n and k are

concatenated together to keep a copy of SEQ.

5. The CS header checksum byte is generated using one’s complement arithmetic.

111

E.2 Recovery of JSNM Packet Header

Due to possible transmission errors, JSNM packets may arrive at the receiver corrupted.

Although JSNM does provide RS protection at both the intrapacket and interpacket level, this

protection scheme could not possibly function without knowing the correct original encoding

configurations, which is contained in every JSNM packet header. Thus, it is crucial to recover

the header information before any further operations can be performed. This section explains

in detail how to recover the headers.

E.2.1 Checksum verification

The very first step in header recovery is to verify the header checksum CS byte. A trust

coefficient, ti, is associated with each packet header and initialized to be 1. A checksum mis-

match indicates that errors have occured and ti is reduced by half. A matching checksum leaves

ti unmodified.

E.2.2 Packet type identification

The second step is to identify packet types from the two copies of PTI bytes stored in the

header. Based on the maximum-likelihood estimation principle, a simplistic approach can be

used: if the PTI byte has more 1s than 0s, then it is identified to be a (un)protected source

information packet; otherwise it is identified to be an interpacket RS protection packet. The

complete decision logic can be described as the following:

If PTI = N (most probably no errors)

If PTI has more 1s than 0s

PTI = 1

else

PTI = 0

else PTI 6= N (there are errors)

If both PTI and N have more 1 than 0

PTI = 1

else if both PTI and N have more 0 than 1

PTI = 0

else if PTI + N has more 1s than 0s

112

PTI = 1

else if PTI + N has more 0s than 1s

PTI = 0

else

PTI postponed for later decision

We will revisit the packet header identification step later, when we have additional information

from the rest of the header bytes. For example, it is impossible for a type-1 packet to be between

two type-2 packets. This kind of logic constraint could be used later to correct identification

errors.

E.2.3 Sequence number recovery

In a network channel, it is possible for packets to arrive at the destination out of order. To

correctly reconstruct the video bit stream, we need to utilize the sequence number information

included in the header section. Thus, recovering the sequence number is vital to the reassembly

procedure.

The receiver allocates an indicator array, F , whose element indicates whether or not a

specific packet has arrived. The receiver also keeps two counters: Cc, which keeps the latest

received sequence number; Ce, which keeps the next expected sequence number. Ce is initialized

to be the value sent by the sender REQ message, Cc is set when the first packet arrives. Under

normal situations, Ce = SEQ, but this could be invalidated when any packet arrives out of

order. More specifically, the following situation could happen:

1. Ce = SEQ: the current received packet sequence number matches the receiver’s expecta-

tion. This is a normal packet arrival.

2. Ce < SEQ: the received sequence number is greater than the receiver’s expected value.

If the corresponding indicator flag in the F array is not set, this most probably means a

future packet has arrived out of order; if the flag is already set, this means this sequence

number has been corrupted.

3. Ce > SEQ: the received sequence number is lower than the receiver’s expected value.

this means the sequence number has been corrupted.

113

Depending on which situation occurs, the receiver takes corresponding actions based on the

following strategy:

1. Ce = SEQ: The corresponding flag element in the F array is set. Both Ce and Cc are

increased by 1, and the packet content is sent to an internal buffer for further processing.

2. Ce < SEQ: The receiver checks the corresponding element in the F flag array.

a. If the flag is not set, then a future packet has arrived. The flag is set, the packet

content buffered, and Cc = max(Cc, SEQ). Ce is not modified.

b. If the flag is set, then either the current SEQ or the previous SEQ of the same value

if bogus. In this case, we employ the first-arrived-stays (FAS) strategy and declare

the current SEQ corrupted.

3. Ce > SEQ: Based on the FAS strategy, either this SEQ is corrupted or this packet

belongs to the previous GOP. This packet is immediately discarded and not buffered.

When the SEQ for the current received packet is declared to be corrupted, it must be

recovered to prevent the current packet from being discarded. The receiver keeps all SEQ-

corrupted packets in the memory and notes down their arrival time. When the time arrives

to play back the current received GOP, the receiver will do its best to make intelligent and

reasonable guesses of the SEQ values. Only when this fails will the receiver discard the packet.

The receiver recovers the SEQ values under the guidance of the following rules:

1. Recovery based on neighboring SEQ: If an SEQ-corrupted packet physically arrived

after packet i− 1, and before packet i + 1, then the corrupted SEQ is recovered as i. The

same rule applies to multiple (up to 3) consecutive SEQ-corrupted packets.

2. Recovery based on neighboring TS: The packet sequence number SEQ and its times-

tamp TS are closely related. Clearly a packet with a smaller sequence number must also

have an earlier timestamp. This rule can also be used in conjunction with the previous

rule to increase the correctness of recovery.

3. Recovery based on RS requirement: Since the interpacket RS codeword length n has

to be equal to 2m−1, we need to collect 2m−1 packets before we can start interpacket RS

decoding, among which k packets would be type-1 packets (PTI = 1) and n − k packets

114

would be type-2 packets (PTI = 0). Thus, if we have k − 1 type-1 packets from the

same layer (which can be derived from the values of K, n, and k in the header section)

and n− k − 1 type-2 packets from the same layer, plus one type-1 packet and one type-2

packet, all from the same layer but arrived out of order and do not follow the recovery-by-

neighborhood rule, we can still safely recover their sequence number by filling the blanks

in the RS codeword.

4. Failed Recovery: When both the two above situations do not apply, we discard the

current packet. Discarding packets is not a fatal event in the JSNM protocol because

of the intrapacket RS decoder’s ability to correct packet erasures. We can safely discard

n−k packets in a layer and still recover everything. As a matter of fact, if we already have

k packets with confirmed SEQ for a layer, we should discard all of the rest of the packets

(for the same layer) with corrupted SEQ numbers to reduce the probability of error.

E.2.4 Timestamp recovery

Recovering packet timestamp information is important for the receiver to correctly estimate

the RTT. Fortunately, it is relatively easy to recover the timestamp information, since the

sender transmits video packets at a constant rate; thus, the timestamps should be evenly

spaced. Timestamp recovery is performed at the same time as sequence number recovery since

they complement each other.

E.2.5 Interpacket RS configuration recovery

After the receiver receives a series of packets, identifies their packet types and recovers their

sequence numbers, the next step is to determine the packet layer boundary. All the packets

from the same layer contain the same K, n and k, this could be used to identify packets from

the same layer. Furthermore, a layer boundary (n) can only occur at packet 2m − 1.

After the receiver receives the first packet and verifies its header checksum, the receiver

fetches the value of n and, if it is a valid RS codeword length, uses it as the temporary layer

boundary. A subsequently arrived packet either confirms the value of n, or submits another

valid RS codeword length n̂ as a candidate. Each candidate for the value of n has an associated

scalar v which is increased whenever this candidate is confirmed by a newly arrived packet (we

denote that as a vote). The candidate with the highest vote becomes the final n.

115

The value of k is determined by the same candidate-vote strategy. It is different from n in

that it does not have the 2m − 1 limitation. However, it must be smaller than the final n and

be an odd integer.

E.2.6 Intrapacket RS configuration recovery

The value of K for packets in the same layer can be obtained using the candidate-vote

procedure. It must be smaller than 256 and be an odd integer.

E.2.7 Second-iteration header recovery

After the previous steps, the packet headers have been recovered, and the receiver could

conceivably go directly to the video stream reassembly procedure. However, an additional

second-iteration header recovery has proved to be helpful and to improve recovery accuracy.

1. Correcting illegal PTI values: The packet layer structure does not allow certain cases

such as a type-2 packet in between two type-1 packets, or vice versa. In other words,

packets of the same type should always form a consecutive array with a valid length: a

type-1 packet array has odd length while a type-2 packet array has even length, and their

sum should be a valid RS codeword length. These rules can be used to find irregularities

in the PTI values and correct them.

2. Removing unnecessary packets with dubious SEQ: As mentioned before, if the

receiver has already received k packets (for the same layer) whose SEQ numbers are

confirmed (not based on intelligent guesses), then it is essentially unnecessary to recover

the other packets (from the same layer) with corrupted SEQ (or small trust coefficient

ti). We can simply discard them and treat them as RS erasures.

3. Correcting irregular RS configurations: In Section 5.3 we pointed out that there are

certain relations between the RS configuration parameters for different layers. For exam-

ple, both the intrapacket RS encoding rate Ki/N and the interpacket RS encoding rate

ki/ni should normally increase with layer index i, etc. We can correct any irregularities

at this stage by going back to the RS configuration recovery step and select the candidate

with the second-highest vote.

The recovery of the JSNM packet header is now complete. Based on the header information,

the receiver can now reassemble the video bit-stream.

116

RTTSLSEQL

Sequence
Number

Psymbol

Symbol Error
Probability

b0 b1

Packet 1 Packet 3

Packet 4

Indicator Byte 1

Packet 2

b7b6b5b3b2 b4

2 bits

Timestamp

Time Duration in Receiver

Figure E.2 Format of the JSNM feedback packet.

E.3 Format of the JSNM Feedback Packet

Another important data structure in the JSNM protocol is the format of the feedback packet,

which contains the information required for the receiver to estimate the current network link

condition. It is shown in Figure E.2.

The JSNM feedback packet contains a 10-byte header and an array of bytes indicating the

status of each packet sent by the JSNM sender. The header consists of SEQL, the sequence

number for the latest received packet, TSL, its original timestamp, ∆RT , the time duration this

packet has spent in the receiver, and Psymbol, the estimated wireless symbol error probability.

The existence of both SEQL and TSL provides redundancy protection, in case one of them is

not correctly received, the sender can still derive the correct timestamp from the other one. In

the indicator array, two bits in each byte are allocated for each packet, so the total length of

the JSNM feedback packet in bytes is the total number of packets divided by 4. The value of

the two bits and its corresponding indicated packet status are:

1. 00: The “correct” flag, indicating that the packet has arrived in time and can be correctly

decoded.

2. 01: The “corrupted” flag, indicating that the packet has arrived in time but cannot be

correctly decoded (too many errors have occurred, SEQ cannot be recovered, etc).

3. 10: The “lost” flag, indicating that the packet has not arrived within the specified dead-

line. The receiver will regard any packet that arrives after the deadline as a lost packet.

4. 11: The “other” flag, mostly reserved for type-3 packets. When the receiver finishes

receiving packets, it is impossible for it to tell if the sender has sent out more type-3

117

packets, which have not arrived in time because they are delayed or simply lost in the

channel. The receiver sets the “other” flag for these packets up to the end of the feedback

packet. This flag can also be used on type-1 and type-2 packets to indicate that a packet

has arrived too late and cannot be correctly decoded.

The length of the JSNM feedback packet is predetermined by the sender according to the

target rate. The sender transmits this information to the receiver via the REQ message in the

session negotiation stage.

118

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical Jour-

nal, vol. 27, pp. 379–423, 623–656, 1948.

[2] R. E. V. Dyck and D. J. Miller, “Transport of wireless video using separate, concatenated,

and joint source-channel coding,” Proceedings of the IEEE, vol. 87, pp. 1734–1750, 1999.

[3] B. Belzer, J. Liao, and J. D. Villasenor, “Adaptive video coding for mobile wireless net-

works,” in Proceedings of ICIP 1994, vol. 2, pp. 972–976.

[4] J.-R. Li, S. Ha, and V. Bharghavan, “HPF: A transport protocol for supporting hetero-

geneous packet flows in the internet,” in Proceedings of IEEE Infocom 1999, vol. 2, pp.

543–550.

[5] S. B. Z. Azami, P. Duhamel, and O. Rioul, “Joint source-channel coding: Panorama of

methods,” in Proceedings of CNES Workshop on Data Compression 1996, pp. 1232–1254.

[6] G. M. Davis and J. M. Danskin, “Joint source and channel coding for image transmission

over lossy packet networks,” in SPIE Conference on Wavelet Applications of Digital Image

Processing XIX 1996, vol. 2847, pp. 376–387.

[7] K. Ramchandran, A. Ortega, K. Uz, and M. Vetterli, “Mutilresolution broadcast for

digital HDTV using joint source/channel coding,” IEEE Journal on Selected Areas in

Communications, vol. 11, pp. 6–23, Jan. 1993.

[8] S. B. Z. Azami, O. Rioul, and P. Duhamel, “Performance bounds for joint source-channel

coding of uniform memoryless sources using a binary decomposition,” in Proceedings of

European Workshop on Emerging Techniques for Communication Terminals 1997, pp. 259–

263.

[9] B. Belzer, J. D. Villasenor, and B. Girod, “Joint source-channel coding of image with

trellis coded quantization and convolutional codes,” in Proceedings of ICIP 1995, vol. 2,

pp. 85–88.

119

[10] G. Sherwood and K. Zeger, “Progressive image coding for noisy channels,” IEEE Signal

Processing Letters, vol. 4, pp. 72–81, Jul. 1997.

[11] H. Man, F. Kossentini, and M. Smith, “Progressive image coding for noisy channels,”

IEEE Signal Processing Letters, vol. 4, pp. 8–11, Aug. 1997.

[12] J. Lu, A. Nosratinia, and B. Aazhang, “Progressive source-channel coding of images over

bursty error channels,” in Proceedings of ICIP 1998, vol. 2, pp. 127–131.

[13] M. P. C. Fossorier, Z. Xiong, and K. Zeger, “Joint source-channel image coding for a power

constrained noisy channel,” in Proceedings of ICIP 1998, vol. 2, pp. 122–126.

[14] M. Brystrom and J. W. Modestino, “Combined source channel coding for transmission of

video over a slow-fading Rician channel,” in Proceedings of ICIP 1998, vol. 2, pp. 147–151.

[15] T.-H. Lan and A. H. Tewfik, “Power optimized mode selection for H.263 video coding and

wireless communications,” in Proceedings of ICIP 1998, vol. 2, pp. 113–117.

[16] H. Zheng and K. J. R. Liu, “Image and video transmission over wireless channel: A

subband modulation approach,” in Proceedings of ICIP 1998, vol. 2, pp. 132–136.

[17] Z. Xiong, B.-J. Kim, and W. A. Pearlman, “Progressive video coding for noisy channels,”

in Proceedings of ICIP 1998, vol. 1, pp. 334–337.

[18] S. Aramvith, I.-M. Pao, and M.-T. Sun, “A rate-control scheme for video transport over

wireless channels,” IEEE Transaction on Circuits and Systems for Video Technology, vol.

11, pp. 569–580, May. 2001.

[19] S. Appadwedula, D. L. Jones, K. Ramchandran, and I. Konzintsev, “Joint source-channel

matching for a wireless communications link,” in Proceedings of ICC 1998, pp. 482–486.

[20] S. Appadwedula, D. L. Jones, K. Ramchandran, and I. Konzintsev, “Joint source-channel

matching for a wireless communications link,” in Proceedings of DCC 1998, p. 523.

[21] A. Murat Tekalp, Digital Video Processing. Beijing: Prentice Hall, 1998.

[22] G. K. Wallace, “The JPEG still picture compression standard,” Communications of the

ACM, vol. 34, pp. 4–21, Apr. 1991.

120

[23] A. Said and W. A. Pearlman, “A new fast and efficient image codec based on set partition-

ing in hierarchical trees,” IEEE Transaction on Circuits and Systems for Video Technology,

vol. 6, pp. 243–250, 1996.

[24] D. Fronczak and D. Seltz, “Motion-JPEG and MPEG solutions for multimedia,” in

Conference Record of WESCON 1995, p. 738.

[25] S.-Y. Huang and J.-S. Wang, “A low-cost desktop videoconferencing codec: an adaptive

motion-JPEG design,” IEEE Transaction on Consumer Electronics, vol. 40, pp. 944–950,

Nov. 1994.

[26] S. Okada, Y. Matsuda, T. Watanabe, and K. Kondo, “A single chip motion JPEG codec

LSI,” IEEE Transaction on Consumer Electronics., vol. 43, pp. 418–422, Aug. 1997.

[27] H. Yamauchi, S. Okada, Y. Matsuda, T. Mori, T. Watanabe, S. Okada, A. Kobayashi,

i. Ogura, and Y. Harada, “One-chip 15 frame/s mega-pixel real-time image processor,” in

Proceedings of ISSCC 2001, pp. 144–145.

[28] Y-W. Lei and M. Ouhyoung, “Software-baed motion JPEG with progressive refinement for

computer animation,” IEEE Transaction on Consumer Electronics, vol. 40, pp. 557–562,

Aug. 1994.

[29] W. Zheng and Z. Xiao, “A novel video coding scheme with frequency-domain-based condi-

tional frame replenishment algorithm,” in Proceedings of ICICS 1997, vol. 1, pp. 274–278.

[30] B. G. Haskell, F. W. Mounts, and J. C. Candy, “Interframe coding of videotelephone

pictures,” Proceedings of the IEEE, vol. 60, pp. 792–800, 1972.

[31] B.-J Kim and W. A. Peralman, “An embedded wavelet video coder using three-dimensional

set partitioning in hierarchical trees (SPIHT),” in Proceedings of DCC 1997, pp. 251–260.

[32] G. Lin and Z. Liu, “3D wavelet video codec and its rate control in ATM network,” in

Proceedings of IEEE International Symposium on Circuits and Systems 1999, vol. 4, pp.

447–450.

[33] J. Karlekar and U. B. Desai, “SPIHT video coder,” in Proceedings of IEEE Region 10

International Conference on Global Connectivity in Energy, Computer, Communication

and Control 1998, vol. 1, pp. 45–48.

121

[34] N. D. Doulamis, A. D. Doulamis, G. E. Konstantoulakis, and G. I. Stassinopoulos, “Effi-

cient modeling of VBR mpeg-1 coded video sources,” IEEE Transaction on Circuits and

Systems for Video Technology, vol. 10, pp. 93–112, Feb. 2000.

[35] C-Y. Hsu and A. Ortega, “Rate control for robust video transmission over wireless chan-

nels,” in Proceedings of VCIP 1997, vol. 3024, pp. 1200–1211.

[36] A. Ortega and M. Khansari, “Rate control for video coding over variable bit rate channels

with applications to wireless transmission,” in Proceedings of ICIP 1995, vol. 3, pp. 388–

391.

[37] R. E. Blahut, Digital Transmission of Information. Reading, MA: Addison-Wesley, 1990.

[38] J. Hagenauer, “Rate-compatible punctured convolutional codes (RCPC codes) and their

applications,” IEEE Tranaction on Communications, vol. 36, pp. 389–400, Apr. 1988.

[39] J. Hagenauer, N. Seshadri, and C-E. W .Sundberg, “The performance of rate-compatible

punctured convolutional codes for digital mobile radio,” IEEE Transaction on Communi-

cations, vol. 38, pp. 966–980, July 1990.

[40] J. Hagenauer and T. Stockhammer, “Channel coding and transmission aspects for wireless

multimedia,” Proceedings of the IEEE, vol. 87, pp. 1764–1777, 1999.

[41] D. E. Comer, Internetworking with TCP/IP. Upper Saddle River, NJ: Prentice Hall, 1995.

[42] A. S. Tanenbaum, Computer Networks. Upper Saddle River, NJ: Prentice Hall, 1994.

[43] J. R. Li, X. Gao, L. Qian, and V. Bharghavan, “Goodput control for heterogeneous data

streams,” in Proceedings of the 10th International Workshop on Network and Operating

System Supoort for Digital Audio and Video, Jun. 2000, pp. 482–491.

[44] L. Qian, “Joint source-channel matching for wireless video transmission,” M.S. thesis,

University of Illinois at Urbana-Champaign, Jan. 1998.

[45] M. Khansari and M. Vetterli, “Layered transmission of signals over power-constrained

wireless channels,” in Proceedings of ICIP 1995, vol. 3, pp. 380–383.

[46] D. Wu, Y. T. Hou, and Y.-Q. Zhang, “Scalable video coding and transport over broad-band

wireless networks,” Proceedings of the IEEE, vol. 89, pp. 6–20, 2001.

122

[47] X. Jun and A. R. Barron, “Asymptotic minimax regret for data compression, gambling,

and prediction,” IEEE Transaction on Information Theory, vol. 46, pp. 431–445, March

2000.

[48] R. Rejaie, M. Handley, and D. Estrin, “Layered quality adaptation for Internet video

streaming,” IEEE Transaction on Selected Areas in Communications, vol. 18, pp. 2530–

2543, Dec. 2000.

[49] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for communication networks:

Shadow prices, proportional fairness and stability,” Journal of Operational Research Soci-

ety, vol. 49, pp. 237–252, 1998.

[50] M. Freytes, C. E. Rodriguez, and C. A. Marques, “Real-time H.263+ video transmission

on 802.11 wireless LANs,” in Proceedings of International Conference on Information

Technology: Coding and Computing 2001, pp. 125–129.

[51] J. Cai and C. W. Chen, “FEC-based video streaming over packet loss networks with

pre-interleaving,” in Proceedings of International Conference on Information Technology:

Coding and Computing 2001, pp. 125–129.

[52] B. J. Vickers, C. Albuquerque, and T. Suda, “Source-adaptive multilayered multicast

algorithms for real-time video distribution,” IEEE/ACM Transaction on Networking, vol.

8, pp. 720–733, Dec. 2000.

[53] R. Kim, B. Roh, and J. Kim, “Bandwidth regegotiation with traffic smoothing and joint

rate control for VBR mpeg video over ATM,” IEEE Transaction on Circuits and Systems

for Video Technology, vol. 10, pp. 693–703, Aug. 2000.

[54] D. Wu, Y. T. Hou, W. Zhu, H. Lee, T. Chiang, Y.-Q. Zhang, and H. J. Chao, “On end-

to-end architecture for transporting MPEG-4 video over the internet,” IEEE Transaction

on Circuits and Systems for Video Technology, vol. 10, pp. 932–941, Sept. 2000.

[55] J. W. Kim, Y.-G. Kim, H. S. Song, T.-Y. Kuo, Y. J. Chung, and C.-C. J. Kuo, “TCP-

friendly Internet video streaming employing variable frame-rate encoding and interpola-

tion,” IEEE Transaction on Circuits and Systems for Video Technology., vol. 10, pp.

1164–1177, Oct. 2000.

123

[56] H. Liu, N. Ansari, and Y. Q. Shi, “On-line dynamic bandwidth allocation for VBR video

tranmission,” in Proceedings of IEEE International Conference on Information Technology:

Coding and Computing 2001, pp. 354–358.

[57] W. Zhu, Q. Zhang, and Y.-Q. Zhang, “Network-adaptive rate control with unequal loss

protection for scalable video over Internet,” in Proceedings of IEEE International Sympo-

sium on Circuits and Systems 2001, vol. 5, pp. 109–112.

[58] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On the self-similar nature of Ethernet

traffic (extended version),” IEEE/ACM Transaction on Networking, vol. 2, pp. 1–15, 1994.

[59] H. Wang and N. Moayeri, “Finite-state Markov channel-A useful model for radio commu-

nication channels,” IEEE Transaction on Commmunications, vol. 44, pp. 163–171, Feb.

1995.

[60] R. H. Riedi, M. S. Crouse, V. J. Ribeiro, and R. G. Baraniuk, “A multifractal wavelet

model with application to network traffic,” IEEE Transaction on Information Theory, vol.

45, pp. 992–1018, Apr. 1999.

[61] F. Kelly, “Mathematical modelling of the internet,” in Proceedings of the 4th International

Congress on Industrial and Applied Mathematics, July 1999.

[62] Y. S. Sun, F. M. Tsou, M. C. Chen, and Z. Tsai, “A TCP-friendly congestion control

scheme for real-time packet video using prediction,” in Proceedings of GLOBECOM 1999,

vol. 3, pp. 1818–1822.

[63] S. Floyd and K. Fall, “Promoting the use of end-to-end congestion control in the Internet,”

IEEE/ACM Transaction, vol. 7, no. 4, pp. 458–472, Aug 1999.

[64] M. Gerla, W. Weng, and R. L. Cigno, “Bandwidth feedback control of TCP and real time

sources in the Internet,” in Proceedings of IEEE GLOBECOM 2000, vol. 1, pp. 561–565.

[65] J. Widmer, R. Denda, and M. Mauve, “A survey on TCP-friendly congestion control,”

IEEE Network, vol. 15, pp. 28–37, May-June 2001.

[66] Y. R. Yang, S. K. Min, and S. S. Larn, “Transient behaviors of TCP-friendly congestion

control protocols,” in Proceedings of INFOCOM 2001, vol. 3, pp. 1716–1725.

124

[67] M. Zorzi, R. R. Rao, and L. B. Milstein, “ARQ error control for fading mobile radio

channels,” IEEE Transaction on Vehicle Technology, vol. 46, pp. 445–455, May. 1997.

[68] H. Liu and M. E. Zarki, “Performance of H.263 video transmission over wireless channels

using hybrid ARQ,” IEEE Journal on Selected Areas in Communications, vol. 15, no. 9,

pp. 567–571, Dec. 1997.

[69] I. Rhee and S. R. Joshi, “Error recovery for interactive video tranmission over the internet,”

IEEE Transaction on Selected Areas in Communications, vol. 18, pp. 1033–1049, Jun. 2000.

[70] S. McCanne, M. Vetterli, and V. Jacobson, “Low-complexity video coding for receiver-

driven layered multicast,” IEEE Transaction on Selected Areas in Communications, vol.

15, pp. 983–1001, 1997 1997.

[71] P. A. Chou, A. E. Mohr, A. Wang, and S. Mehrotra, “FEC and pseudo-ARQ for receiver-

driven layered multicast of audio and video,” in Proceedings of DCC 2000, pp. 440–449.

[72] R. Fu, L. B. Sung, and A. Gupta, “Scalable layered MPEG-2 video multicast architecture,”

IEEE Transaction on Consumer Electronics, vol. 47, pp. 55–62, Feb. 2001.

[73] J. Padley, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP throughput: a simple

model and its empirical validation,” in Proceedings of SIGCOMM 1998.

[74] Q. Zhang, W. Zhu, and Y.-Q. Zhang, “Network-adaptive rate control with tcp-friendly

protocol for multiple video objects,” in Proceedings of IEEE International Conference on

Multimedia and Expo 2000, vol. 2, pp. 1055–1058.

[75] L-J. Lin, A. Ortega, and C.-C Jay Kuo, “Cubic spline approximation of rate and distortion

functions for MPEG video,” in Proceedings of IST/SPIE, Digital Video Compression:

Algorithms and Technologies 1996, vol. 2668, pp. 169–180.

[76] G. Sudhir, J. C. M. Lee, and A. K. Jain, “Automatic classification of tennis video for high-

level content-based retrieval,” in Proceedings of the 1998 IEEE International Workshop

on Content-Based Access of Image and Video Database, pp. 81–90.

[77] Y. Wang, J. Huang, Z. Liu, and T. Chen, “Multimedia content classification using motion

and audio information,” in Proceedings of the 1997 IEEE International Symposium on

Circuits and Systems, vol. 2, pp. 1488–1491.

125

[78] C-Y. Hsu and A. Ortega, “A Lagrangian optimization approach to rate control for delay-

constrained video transmission over burst-error channels,” in Proceedings of ICASSP 1998,

vol. 5, pp. 2989–2992.

[79] L-J. Lin, A. Ortega, and C.-C. Jay Kuo, “A gradient-based rate control algorithm with

applications to MPEG video,” in Proceedings of ICIP 1995, vol. 3, pp. 392–395.

[80] L-J. Lin and A. Ortega, “Bit-rate control using piecewise approximated rate-distortion

characteristics,” IEEE Transaction on Circuits and Systems for Video Technology, vol. 3,

pp. 665–676, Feb. 1998.

[81] V. F. Demyanov and V. N. Malozemov, Introduction to Minimax. NY: Dover Publications,

1990.

126

VITA

Leiming Qian was born in Lishui, Zhejiang province, People’s Republic of China. He

received the B.E. degree in mechanical engineering from Tsinghua University, Beijing,

P. R. C, in 1996. He received the M.S. degree in electrical engineering from the University

of Illinois at Urbana-Champaign, in 1999.

Since 1996, he has been working as a research assistant at the University of Illinois at

Urbana-Champaign. His current research interests include joint source-channel coding,

image and video compression techniques, and network video streaming protocols.

127

